WorldWideScience

Sample records for action potential propagation

  1. Uncertainty propagation in nerve impulses through the action potential mechanism

    Torres Valderrama, A.; Witteveen, J.A.S.; Navarro Jimenez, M.I.; Blom, J.G.

    2015-01-01

    We investigate the propagation of probabilistic uncertainty through the action potential mechanism in nerve cells. Using the Hodgkin-Huxley (H-H) model and Stochastic Collocation on Sparse Grids, we obtain an accurate probabilistic interpretation of the deterministic dynamics of the transmembrane po

  2. Pressure wave model for action potential propagation in excitable cells

    Rvachev, M M

    2003-01-01

    Speed of propagation of small-amplitude pressure waves through the cytoplasmic interior of myelinated and unmyelinated axons of different diameters is theoretically estimated and is found to generally agree with the action potential (AP) conduction velocities. This remarkable coincidence allows to surmise a model in which AP spread along axon is propelled not by straggling ionic currents as in the widely accepted local circuit theory, but by mechanoactivation of the membrane ion channels by a traveling pressure pulse. Hydraulic pulses propagating in the viscous axoplasm are calculated to decay over ~1 mm distances, and it is further hypothesized that it is the role of influxing during the AP calcium ions to activate membrane skeletal protein network attached to the membrane cytoplasmic side for a brief radial contraction amplifying the pressure pulse and preventing its decay. The model correctly predicts that the AP conduction velocity should vary as the one-half power of axon diameter for large unmyelinated ...

  3. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite

    Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M

    2002-01-01

    to support the back-propagation of the evoked somatic action potential to produce the second dendritic spike. In summary, the balance of spatially distributed excitatory and inhibitory inputs can dynamically switch the mitral cell firing among four different modes: axo-somatic initiation with back......-to-moderate olfactory nerve input, an action potential was initiated near the soma and then back-propagated into the primary dendrite. As olfactory nerve input increased, the initiation site suddenly shifted to the distal primary dendrite. Multi-compartmental modeling indicated that this abrupt shift of the spike......-propagation, dendritic initiation either with no forward propagation, forward propagation alone, or forward propagation followed by back-propagation....

  4. An eikonal-curvature equation for action potential propagation in myocardium.

    Keener, J P

    1991-01-01

    We derive an "eikonal-curvature" equation to describe the propagation of action potential wavefronts in myocardium. This equation is used to study the effects of fiber orientation on propagation in the myocardial wall. There are significant computational advantages to the use of an eikonal-curvature equation over a full ionic model of action potential spread. With this model, it is shown that the experimentally observed misalignment of spreading action potential "ellipses" from fiber orientation in level myocardial surfaces is adequately explained by the rotation of fiber orientation through the myocardial wall. Additionally, it is shown that apparently high propagation velocities on the epicardial and endocardial surfaces are the result of propagation into the midwall region and acceleration along midwall fibers before reemergence at an outer surface at a time preceding what could be accomplished with propagation along the surface alone.

  5. RXP-E: a connexin43-binding peptide that prevents action potential propagation block

    Lewandowski, Rebecca; Procida, Kristina; Vaidyanathan, Ravi;

    2008-01-01

    of action potential propagation in control monolayers; however, propagation was maintained in CTP-RXP-E-treated cells, although at a slower rate. Patch-clamp experiments revealed that RXP-E did not prevent heptanol-induced block of sodium currents, nor did it alter voltage dependence or amplitude of Kir2...

  6. On modelling of physical effects accompanying the propagation of action potentials in nerve fibres

    Engelbrecht, Jüri; Tamm, Kert; Laasmaa, Martin; Vendelin, Marko

    2016-01-01

    The recent theoretical and experimental studies have revealed many details of signal propagation in nervous systems. In this paper an attempt is made to unify various mathematical models which describe the signal propagation in nerve fibres. The analysis of existing single models permits to select the leading physiological effects. As a result, a more general mathematical model is described based on the coupling of action potentials with mechanical waves in a nerve fibre. The crucial issue is how to model coupling effects which are strongly linked to the ion currents through biomembranes.

  7. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues

    Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.

    2016-09-01

    Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.

  8. Distributed computing for membrane-based modeling of action potential propagation.

    Porras, D; Rogers, J M; Smith, W M; Pollard, A E

    2000-08-01

    Action potential propagation simulations with physiologic membrane currents and macroscopic tissue dimensions are computationally expensive. We, therefore, analyzed distributed computing schemes to reduce execution time in workstation clusters by parallelizing solutions with message passing. Four schemes were considered in two-dimensional monodomain simulations with the Beeler-Reuter membrane equations. Parallel speedups measured with each scheme were compared to theoretical speedups, recognizing the relationship between speedup and code portions that executed serially. A data decomposition scheme based on total ionic current provided the best performance. Analysis of communication latencies in that scheme led to a load-balancing algorithm in which measured speedups at 89 +/- 2% and 75 +/- 8% of theoretical speedups were achieved in homogeneous and heterogeneous clusters of workstations. Speedups in this scheme with the Luo-Rudy dynamic membrane equations exceeded 3.0 with eight distributed workstations. Cluster speedups were comparable to those measured during parallel execution on a shared memory machine.

  9. Action potential shape change in an electrically coupled network during propagation: a computer simulation.

    Buckingham, Steven D; Spencer, Andrew N

    2008-06-01

    We applied compartmental computer modeling to test a model of spike shape change in the jellyfish, Polyorchis penicillatus, to determine whether adaptive spike shortening can be attributed to the inactivation properties of a potassium channel. We modeled the jellyfish outer nerve-ring as a continuous linear segment, using ion channel and membrane properties derived in earlier studies. The model supported action potentials that shortened as they propagated away from the site of initiation and this was found to be largely independent of potassium channel inactivation. Spike broadening near the site of initiation was found to be due to a depolarization plateau that collapsed as two spikes spread from the point of initiation. The lifetime of this plateau was found to depend critically on the inward current flux and the space constant of the membrane. These data suggest that the spike shape changes may be due not only to potassium channel inactivation, but also to the passive properties of the membrane.

  10. A new three-variable mathematical model of action potential propagation in cardiac tissue.

    Fenton, Flavio; Karma, Alain

    1996-03-01

    Modeling the electrical activity of the heart, and the complex signaling patterns which underly dangerous arrhythmias such as tachycardia and fibrillation, requires a quantitative model of action potential (AP) propagation. At present, there exist detailed ionic models of the Hodgkin-Huxley form that accurately reproduce dynamical features of the AP at a single cell level (e.g. Luo-Rudy, 1994). However, such models are not computationally tractable to study propagation in two and three-dimensional tissues of many resistively coupled cells. At the other extreme, there exists generic models of excitable media, such as the well-known FitzHugh-Nagumo model, which are only qualitative and do not reproduce essential dynamical features of cardiac AP. A new three-variable model is introduced which bridges the gap between these two types of models. It reproduces quantitatively important `mesoscopic' dynamical properties which are specific to cardiac AP, namely restitution and dispersion. At the same time, it remains computationally tractable and makes it possible to study the effect of these properties on the initiation, dynamics, and stability of complex reentrant excitations in two and three dimensions. Preliminary numerical results of the effect of restitution and dispersion on two-dimensional reentry (i.e. spiral waves) are presented.

  11. Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons.

    Foust, Amanda; Popovic, Marko; Zecevic, Dejan; McCormick, David A

    2010-05-19

    Purkinje neurons are the output cells of the cerebellar cortex and generate spikes in two distinct modes, known as simple and complex spikes. Revealing the point of origin of these action potentials, and how they conduct into local axon collaterals, is important for understanding local and distal neuronal processing and communication. By using a recent improvement in voltage-sensitive dye imaging technique that provided exceptional spatial and temporal resolution, we were able to resolve the region of spike initiation as well as follow spike propagation into axon collaterals for each action potential initiated on single trials. All fast action potentials, for both simple and complex spikes, whether occurring spontaneously or in response to a somatic current pulse or synaptic input, initiated in the axon initial segment. At discharge frequencies of less than approximately 250 Hz, spikes propagated faithfully through the axon and axon collaterals, in a saltatory manner. Propagation failures were only observed for very high frequencies or for the spikelets associated with complex spikes. These results demonstrate that the axon initial segment is a critical decision point in Purkinje cell processing and that the properties of axon branch points are adjusted to maintain faithful transmission.

  12. Applications of control theory to the dynamics and propagation of cardiac action potentials.

    Muñoz, Laura M; Stockton, Jonathan F; Otani, Niels F

    2010-09-01

    Sudden cardiac arrest is a widespread cause of death in the industrialized world. Most cases of sudden cardiac arrest are due to ventricular fibrillation (VF), a lethal cardiac arrhythmia. Electrophysiological abnormalities such as alternans (a beat-to-beat alternation in action potential duration) and conduction block have been suspected to contribute to the onset of VF. This study focuses on the use of control-systems techniques to analyze and design methods for suppressing these precursor factors. Control-systems tools, specifically controllability analysis and Lyapunov stability methods, were applied to a two-variable Karma model of the action-potential (AP) dynamics of a single cell, to analyze the effectiveness of strategies for suppressing AP abnormalities. State-feedback-integral (SFI) control was then applied to a Purkinje fiber simulated with the Karma model, where only one stimulating electrode was used to affect the system. SFI control converted both discordant alternans and 2:1 conduction block back toward more normal patterns, over a wider range of fiber lengths and pacing intervals compared with a Pyragas-type chaos controller. The advantages conferred by using feedback from multiple locations in the fiber, and using integral (i.e., memory) terms in the controller, are discussed.

  13. Propagation of action potentials along complex axonal trees. Model and implementation.

    Manor, Y; Gonczarowski, J; Segev, I

    1991-01-01

    Axonal trees are typically morphologically and physiologically complicated structures. Because of this complexity, axonal trees show a large repertoire of behavior: from transmission lines with delay, to frequency filtering devices in both temporal and spatial domains. Detailed theoretical exploration of the electrical behavior of realistically complex axonal trees is notably lacking, mainly because of the absence of a simple modeling tool. AXONTREE is an attempt to provide such a simulator. It is written in C for the SUN workstation and implements both a detailed compartmental modeling of Hodgkin and Huxley-like kinetics, and a more abstract, event-driven, modeling approach. The computing module of AXONTREE is introduced together with its input/output features. These features allow graphical construction of arbitrary trees directly on the computer screen, and superimposition of the results on the simulated structure. Several numerical improvements that increase the computational efficiency by a factor of 5-10 are presented; most notable is a novel method of dynamic lumping of the modeled tree into simpler representations ("equivalent cables"). AXONTREE's performance is examined using a reconstructed terminal of an axon from a Y cell in cat visual cortex. It is demonstrated that realistically complicated axonal trees can be handled efficiently. The application of AXONTREE for the study of propagation delays along axonal trees is presented in the companion paper (Manor et al., 1991). Images FIGURE 4 PMID:1777566

  14. Role of AMPA and NMDA receptors and back-propagating action potentials in spike timing-dependent plasticity.

    Fuenzalida, Marco; Fernández de Sevilla, David; Couve, Alejandro; Buño, Washington

    2010-01-01

    The cellular mechanisms that mediate spike timing-dependent plasticity (STDP) are largely unknown. We studied in vitro in CA1 pyramidal neurons the contribution of AMPA and N-methyl-d-aspartate (NMDA) components of Schaffer collateral (SC) excitatory postsynaptic potentials (EPSPs; EPSP(AMPA) and EPSP(NMDA)) and of the back-propagating action potential (BAP) to the long-term potentiation (LTP) induced by a STDP protocol that consisted in pairing an EPSP and a BAP. Transient blockade of EPSP(AMPA) with 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX) during the STDP protocol prevented LTP. Contrastingly LTP was induced under transient inhibition of EPSP(AMPA) by combining SC stimulation, an imposed EPSP(AMPA)-like depolarization, and BAP or by coupling the EPSP(NMDA) evoked under sustained depolarization (approximately -40 mV) and BAP. In Mg(2+)-free solution EPSP(NMDA) and BAP also produced LTP. Suppression of EPSP(NMDA) or BAP always prevented LTP. Thus activation of NMDA receptors and BAPs are needed but not sufficient because AMPA receptor activation is also obligatory for STDP. However, a transient depolarization of another origin that unblocks NMDA receptors and a BAP may also trigger LTP.

  15. Remote Monitoring of the Heart Condition of Athletes by Measuring the Cardiac Action Potential Propagation Time Using a Wireless Sensor Network

    Amang Sudarsono

    2016-04-01

    Full Text Available Highly performing athletes are susceptible to cardiac damage of several kinds which may be irreversible. The monitoring of heart rate and ECG waveforms from such subjects by wireless sensor networks has been reported in health and sports care documents. However, a more decisive parameter for instant to instant changes would be the time of Cardiac Action Potential Propagation. This time, which can be between 15-20 ms would shoot suddenly in acute stress in highly performing athletes for short durations. Repeated incidents of such rising values will tend to cause irreversible damage to the heart. We developed the technique of measuring this time and reporting it through a wireless sensor network to monitoring station.

  16. Effective action approach to wave propagation in scalar QED plasmas

    Shi, Yuan; Qin, Hong

    2016-01-01

    A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we study a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well-known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasma...

  17. Correlation of action potentials in adjacent neurons

    Shneider, M N

    2015-01-01

    A possible mechanism for the synchronization of action potential propagation along a bundle of neurons (ephaptic coupling) is considered. It is shown that this mechanism is similar to the salutatory conduction of the action potential between the nodes of Ranvier in myelinated axons. The proposed model allows us to estimate the scale of the correlation, i.e., the distance between neurons in the nervous tissue, wherein their synchronization becomes possible. The possibility for experimental verification of the proposed model of synchronization is discussed.

  18. Perfect Actions with Chemical Potential

    Bietenholz, W

    1998-01-01

    We show how to include a chemical potential \\mu in perfect lattice actions. It turns out that the standard procedure of multiplying the quark fields \\Psi, an example, the case of free fermions with chemical potential is worked out explicitly. Even after truncation, cut-off effects in the pressure and the baryon density are small. Using a (quasi-)perfect action, numerical QCD simulations for non-zero chemical potential become more powerful, because coarse lattices are sufficient for extracting continuum physics.

  19. Role of Sodium Channel on Cardiac Action Potential

    S. H. Sabzpoushan

    2012-06-01

    Full Text Available Sudden cardiac death is a major cause of death worldwide. In most cases, it's caused by abnormal action potential propagation that leads to cardiac arrhythmia. The aim of this article is to study the abnormal action potential propagation through sodium ion concentration variations. We use a new electrophysiological model that is both detailed and computationally efficient. This efficient model is based on the partial differential equation method. The central finite difference method is used for numerical solving of the two-dimensional (2D wave propagation equation. Simulations are implemented in two stages, as a single cardiac cell and as a two-dimensional grid of cells. In both stages, the normal action potential formation in case of a single cell and it's normal propagation in case of a two-dimensional grid of cells were simulated with nominal sodium ion conductance. Then, the effect of sodium ion concentration on the action potential signal was studied by reducing the sodium ion conductance. It is concluded that reducing the sodium ion conductance, decreases both passing ability and conduction velocity of the action potential wave front.

  20. Action-potential modulation during axonal conduction.

    Sasaki, Takuya; Matsuki, Norio; Ikegaya, Yuji

    2011-02-04

    Once initiated near the soma, an action potential (AP) is thought to propagate autoregeneratively and distribute uniformly over axonal arbors. We challenge this classic view by showing that APs are subject to waveform modulation while they travel down axons. Using fluorescent patch-clamp pipettes, we recorded APs from axon branches of hippocampal CA3 pyramidal neurons ex vivo. The waveforms of axonal APs increased in width in response to the local application of glutamate and an adenosine A(1) receptor antagonist to the axon shafts, but not to other unrelated axon branches. Uncaging of calcium in periaxonal astrocytes caused AP broadening through ionotropic glutamate receptor activation. The broadened APs triggered larger calcium elevations in presynaptic boutons and facilitated synaptic transmission to postsynaptic neurons. This local AP modification may enable axonal computation through the geometry of axon wiring.

  1. Multiple front propagation in a potential non-gradient system

    Miguel, M S; Amengual, A; Hernández-García, E

    1995-01-01

    A classification of dynamical systems in terms of their variational properties is reviewed. Within this classification, front propagation is discussed in a non-gradient relaxational potential flow. The model is motivated by transient pattern phenomena in nematics. A front propagating into an unstable homogenous state leaves behind an unstable periodic pattern, which decays via a second front and a second periodic state. An interface between unstable periodic states is shown to be a source of propagating fronts in opposite directions.

  2. Improved Lattice Actions with Chemical Potential

    Bietenholz, W

    1998-01-01

    We give a prescription how to include a chemical potential \\mu into a general lattice action. This inclusion does not cause any lattice artifacts. Hence its application to an improved - or even perfect - action at \\mu =0 yields an improved resp. perfect action at arbitrary \\mu. For short-ranged improved actions, a good scaling behavior holds over a wide region, and the upper bound for the baryon density - which is known for the standard lattice actions - can be exceeded.

  3. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties

    Casale, Amanda E.; Foust, Amanda J.; Bal, Thierry; McCormick, David A.

    2015-01-01

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two o...

  4. Numerical investigation of action potential transmission in plants

    Mariusz Pietruszka

    2014-01-01

    Full Text Available In context of a fairly concise review of recent literature and well established experimental results we reconsider the problem of action potential propagating steadily down the plant cell(s. Having adopted slightly modified Hodgkin-Huxley set of differential equations for the action potential we carried out the numerical investigation of these equations in the course of time. We argue that the Hodgkin-Huxley-Katz model for the nerve impulse can be used to describe the phenomena which take place in plants - this point of view seems to be plausible since the mechanisms involving active ionic transport across membranes from the mathematical point of view are similar. Besides, we compare in a qualitative way our theoretical outcomes with typical experimental results for the action potentials which arise as the reaction of plants to electrical, mechanical and light stimuli. Moreover, we point out the relevance of the sequence of events during the pulse with the appropriate ionic fluxes.

  5. Chemical Potential Dependence of Dressed-Quark Propagator

    ZONGHong-Shi; HOUFeng-Yao; SUNWei-Min; WUXiao-Hua

    2004-01-01

    A method for obtaining the low chemical potential dependence of the dressed quark propagator from an effective quark-quark interaction model is developed.Of particular interest here is to give a general recipe to find without arbitrariness the solution representing the “Wigner”phase at non-zero chemical potential for the purpose of studying QCD phase structure.

  6. Chemical Potential Dependence of Dressed-Quark Propagator

    ZONG Hong-Shi; HOU Feng-Yao; SUN Wei-Min; WU Xiao-Hua

    2004-01-01

    A method for obtaining the low chemical potential dependence of the dressed quark propagator from an effective quark-quark interaction model is developed. Of particular interest here is to give a generalrecipe to find without arbitrariness the solution representing the "Wigner" phase at non-zero chemical potential for the purpose of studying QCD phase structure.

  7. Screening action potentials: The power of light

    Lars eKaestner

    2011-07-01

    Full Text Available Action potentials reflect the concerted activity of all electrogenic constituents in the plasma membrane during the excitation of a cell. Therefore, the action potential is an integrated readout and a promising parameter to detect electrophysiological failures or modifications thereof in diagnosis as well as in drug screens. Cellular action potentials can be recorded by optical approaches. To fulfill the pre-requirements to scale up for e.g. pharmacological screens the following preparatory work has to be provided: (i model cells under investigation need to represent target cells in the best possible manner; (ii optical sensors that can be either small molecule dyes or genetically encoded potential probes need to provide a reliable readout with minimal interaction with the naive behavior of the cells and (iii devices need to be capable to stimulate the cells, read out the signals with the appropriate speed as well as provide the capacity for a sufficient throughput. Here we discuss several scenarios for all three categories in the field of cardiac physiology and pharmacology and provide a perspective to use the power of light in screening cardiac action potentials.

  8. Effective-action approach to wave propagation in scalar QED plasmas

    Shi, Yuan; Fisch, Nathaniel J.; Qin, Hong

    2016-07-01

    A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we give two examples: a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasmas are cold. These waves account for cyclotron absorption features observed in spectra of x-ray pulsars. Moreover, cutoff frequencies of the two nondegenerate electromagnetic waves are red-shifted by different amounts. These corrections need to be taken into account in order to correctly interpret diagnostic results in laser plasma experiments.

  9. Estimation of network structure for signal propagations by the analysis of multichannel action potentials in cultured neural networks; Ta channel katsudo den`i kaiseki ni yoru baiyo shinkei kairomonai kofun denpa keiro no suitei

    Konno, N.; Fukami, T.; Shiina, T. [University of Tsukuba, Tsukuba (Japan); Jinbo, Y. [Nippon Telegraph and Telephone Corp., Tokyo (Japan)

    1998-07-01

    We have fabricated a 64 embedded microelectrode-array substrate using semiconductor technology to investigate the biological signal processing in brain by using cultured neural networks of fetal rat neocortex in vitro. We analyzed temporal and spatial neural networks patterns cultured on electrode-array substrate and attempted to examine the network structure constituted by neurons and the propagating patterns of electrical activity induced by the electric stimulus. In the experiments, each microelectrode size was 30 {mu}m squared and 150{mu} m spaced. For stimulation, one of the electrodes was selected and current pulses were applied through an isolated circuit. After the network was cultured in about 50 days, responses of neurons to electric stimulus were monitored extracellularly through 64-channel electrode array. Data recorded at each electrode consist of several spike trains generated by different cells. Therefore, these trains were separated by using wavelet transform and template matching for each electrode. We referred the temporal patterns of generated spikes for each electrode to as `spike sequences`. Next, we compared With the spike sequences among multichannel data and visualized the Cultured neural networks structure by identifying the directions of propagations and cell connections. 15 refs., 9 figs.

  10. Magnetic Imaging of Applied and Propagating Action Currents in Cardiac Tissue Slices: Determination of Anisotropic Electrical Conductivities in a Two-Dimensional Bidomain.

    Staton, Daniel Joseph

    We describe the first, high-resolution magnetic images of applied currents and propagating action currents in slices of canine cardiac tissue. This tissue was maintained in vitro at 37^circC. Our main conclusions are summarized as follows: the action currents produce magnetic fields which are measurable; during the initial stages of the propagating action potential, small, expanding, quatrefoil loops of current develop; the magnetic fields produced by repolarization currents are larger than previously anticipated. Most of the current associated with the propagating action potential is confined within the wavefront and should be magnetically silent; however, differences in the intracellular and extracellular electrical conductivities, in both the longitudinal and transverse fiber directions, are great enough that expanding quatrefoil current densities are associated with the wavefront and produce measurable magnetic fields. Since action currents are affected by the electrical conductivities, it is of interest to determine their values, which depend not only upon the tissue characteristics, but also on the mathematical model used to interpret the measured data. In our analysis of current injection, we use the anisotropic bidomain model which incorporates a passive, linear membrane. We introduce theoretical techniques to calculate the anisotropic conductivities of a two-dimensional bidomain. To apply these techniques to magnetic fields resulting from current injection into cardiac tissue slices, we need to improve the higher spatial frequency content of our present measurements. This may be done by measuring the magnetic field closer to the cardiac slice (presently 2.5 mm), decreasing the sampling interval of the measurement, and increasing the sampling area of the field. Magnetic fields are produced by propagating action currents, which are in turn the result of the propagating action potential. From the magnetic field, we directly image isochronal transmembrane

  11. Action potential broadening in a presynaptic channelopathy

    R. Begum; Bakiri, Y.; Volynski, K. E.; Kullmann, D M

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for...

  12. Efficient simulation of wave-packet dynamics on multiple coupled potential surfaces with split potential propagation

    Aharonovich, Igal

    2016-01-01

    We present a simple method to expedite simulation of quantum wave-packet dynamics by more than a factor of $2$ with the Strang split-operator propagation. Dynamics of quantum wave-packets are often evaluated using the the \\emph{Strang} split-step propagation, where the kinetic part of the Hamiltonian $\\hat{T}$ and the potential part $\\hat{V}$ are piecewise integrated according to $e^{- i \\hat{H} \\delta t} \\approx e^{- i \\hat{V} \\delta t/2} e^{- i \\hat{T}\\delta t} e^{- i \\hat{V} \\delta t/2}$, which is accurate to second order in the propagation time $\\delta t$. In molecular quantum dynamics, the potential propagation occurs over multiple coupled potential surfaces and requires matrix exponentiation for each position in space and time which is computationally demanding. Our method employs further splitting of the potential matrix $\\hat{V}$ into a diagonal space dependent part $\\hat{V}_{D}(R)$ and an off-diagonal time-dependent coupling-field $\\hat{V}_{OD}(t)$, which then requires only a single matrix exponentia...

  13. Modeling action potential generation and propagation in NRK fibroblasts

    Torres, J.J.; Cornelisse, L.N.; Harks, E.G.; Meerwijk, W.P. van; Theuvenet, A.P.R.; Ypey, D.L.

    2004-01-01

    Normal rat kidney (NRK) fibroblasts change their excitability properties through the various stages of cell proliferation. The present mathematical model has been developed to explain excitability of quiescent (serum deprived) NRK cells. It includes as cell membrane components, on the basis of patch

  14. Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.

    Fabián Muñoz

    Full Text Available Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.

  15. Vertex and Propagator in $\\Phi^{4}$ Theory from 4PI Effective Action in Two Dimensions

    Carrington, M E

    2012-01-01

    A set of self-consistent nonlinear integral equations for the four-point vertex and the propagator are derived from the 4-loop 4PI effective action for scalar field theories. This set of integral equations are solved in two dimensions through numerical lattice calculations. We compare the calculated results with those of perturbation theories. We find that the 4PI calculations are well consistent with the perturbation ones in perturbative regions. Non-perturbative results are also obtained in the 4PI formalism when the interacting strength becomes large. Furthermore, the full-momentum dependence of the four-point vertex is easily obtained in the 4PI effective action theories.

  16. Action potential broadening in a presynaptic channelopathy

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  17. Action potential initiation in neocortical inhibitory interneurons.

    Tun Li

    2014-09-01

    Full Text Available Action potential (AP generation in inhibitory interneurons is critical for cortical excitation-inhibition balance and information processing. However, it remains unclear what determines AP initiation in different interneurons. We focused on two predominant interneuron types in neocortex: parvalbumin (PV- and somatostatin (SST-expressing neurons. Patch-clamp recording from mouse prefrontal cortical slices showed that axonal but not somatic Na+ channels exhibit different voltage-dependent properties. The minimal activation voltage of axonal channels in SST was substantially higher (∼7 mV than in PV cells, consistent with differences in AP thresholds. A more mixed distribution of high- and low-threshold channel subtypes at the axon initial segment (AIS of SST cells may lead to these differences. Surprisingly, NaV1.2 was found accumulated at AIS of SST but not PV cells; reducing NaV1.2-mediated currents in interneurons promoted recurrent network activity. Together, our results reveal the molecular identity of axonal Na+ channels in interneurons and their contribution to AP generation and regulation of network activity.

  18. Decoupling Action Potential Bias from Cortical Local Field Potentials

    Stephen V. David

    2010-01-01

    Full Text Available Neurophysiologists have recently become interested in studying neuronal population activity through local field potential (LFP recordings during experiments that also record the activity of single neurons. This experimental approach differs from early LFP studies because it uses high impendence electrodes that can also isolate single neuron activity. A possible complication for such studies is that the synaptic potentials and action potentials of the small subset of isolated neurons may contribute disproportionately to the LFP signal, biasing activity in the larger nearby neuronal population to appear synchronous and cotuned with these neurons. To address this problem, we used linear filtering techniques to remove features correlated with spike events from LFP recordings. This filtering procedure can be applied for well-isolated single units or multiunit activity. We illustrate the effects of this correction in simulation and on spike data recorded from primary auditory cortex. We find that local spiking activity can explain a significant portion of LFP power at most recording sites and demonstrate that removing the spike-correlated component can affect measurements of auditory tuning of the LFP.

  19. Propagation of electrotonic potentials in plants: Experimental study and mathematical modeling

    Yuri B. Shtessel

    2016-08-01

    Full Text Available Electrostimulation of electrical networks in plants can induce electrotonic or action potentials propagating along their leaves and stems. Both action and electrotonic potentials play important roles in plant physiology and in signal transduction between abiotic or biotic stress sensors and plant responses. It is well known that electrostimulation of plants can induce gene expression, enzymatic systems activation, electrical signaling, plant movements, and influence plant growth. Here we present the mathematical model of electrotonic potentials in plants, which is supported by the experimental data. The information gained from this mathematical model and analytical study can be used not only to elucidate the effects of electrostimulation on higher plants, but also to observe and predict the intercellular and intracellular communication in the form of electrical signals within electrical networks of plants. For electrostimulation, we used the pulse train, sinusoidal and a triangular saw-shape voltage profiles. The amplitude and sign of electrotonic potentials depend on the amplitude, rise and fall of the applied voltage. Electrostimulation by a sinusoidal wave from a function generator induces electrical response between inserted Ag/AgCl electrodes with a phase shift of 90o. This phenomenon shows that electrical networks in leaves of Aloe vera have electrical differentiators. Electrostimulation is an important tool for the evaluation of mechanisms of phytoactuators’ responses in plants without stimulation of abiotic or biotic stress phytosensors.

  20. A Potential Approach of Internet Worm Propagation Based on P2P

    YAO Yu; LUO Xingrui; GAO Fuxiang; YU Ge

    2006-01-01

    Various kinds of active worms have been plunging into the network flows, which make the Internet security problem more serious. Our research on a potential propagation approach of active worms, P2P-based propagation approach, is given in this paper. To measure the propagating performance of our approach, the SEI (Susceptible-Exposed- Infected) propagation model is presented. It proves that with the idea of pure P2P architecture, worms can be hidden in the early stage of propagation, and then infect most of the hosts in a shorter period. By comparing our SEI propagation model with the Simple Epidemic Model, we observe that the size of a worm is a significant parameter which can affect the propagating performance. When the size of the worm becomes large, our approach can still show an excellent propagating performance.

  1. Conduction velocity of antigravity muscle action potentials.

    Christova, L; Kosarov, D; Christova, P

    1992-01-01

    The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.

  2. High Threshold, Proximal Initiation, and Slow Conduction Velocity of Action Potentials in Dentate Granule Neuron Mossy Fibers

    Kress, Geraldine J.; Dowling, Margaret J.; Meeks, Julian P.; Mennerick, Steven

    2008-01-01

    Dentate granule neurons give rise to some of the smallest unmyelinated fibers in the mammalian CNS, the hippocampal mossy fibers. These neurons are also key regulators of physiological and pathophysiological information flow through the hippocampus. We took a comparative approach to studying mossy fiber action potential initiation and propagation in hippocampal slices from juvenile rats. Dentate granule neurons exhibited axonal action potential initiation significantly more proximal than CA3 ...

  3. Phase lagging model of brain response to external stimuli - modeling of single action potential

    Seetharaman, Karthik; Kulish, Vladimir V

    2012-01-01

    In this paper we detail a phase lagging model of brain response to external stimuli. The model is derived using the basic laws of physics like conservation of energy law. This model eliminates the paradox of instantaneous propagation of the action potential in the brain. The solution of this model is then presented. The model is further applied in the case of a single neuron and is verified by simulating a single action potential. The results of this modeling are useful not only for the fundamental understanding of single action potential generation, but also they can be applied in case of neuronal interactions where the results can be verified against the real EEG signal.

  4. Initiation and blocking of the action potential in the axon in a weak ultrasonic field

    Shneider, M N

    2013-01-01

    It is shown that the longitudinal standing ultrasonic wave of low intensity leads to the lateral drift and to redistribution of the transmembrane ion channels in the initial segment of the myelinated axon of a neuron. The analysis is based on the Hodgkin - Huxley model of an axon. Redistribution of the density of transmembrane sodium channels, caused by ultrasound, may reduce the threshold of the action potential, up to its spontaneous initiation. At significant redistribution of sodium channels in membrane, the zones of rarefaction of the transmembrane channels density are formed blocking the propagation of the action potential. After switching the ultrasound off, the unperturbed uniform distribution of transmembrane channels in the axon recovers due to lateral diffusion. The blocking effect of the action potential can be used in anesthesia.

  5. Exact propagator for an electron in a quadratic saddle-point potential and a magnetic field

    Yang Tao; Zhai Zhi-Yuan; Pan Xiao-Yin

    2011-01-01

    We study the propagator for an electron moving in a two-dimensional(2D)quadratic saddle-point potential, in the presence of a perpendicular uniform magnetic field. A closed-form expression for the propagator is derived using the Feynmann path integrals.

  6. Chemical Potential Dependence of the Dressed—Quark Propagator from an Effective Quark—Quark Interaction

    ZONGHong-Shi; PINGJia-Lun; 等

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagator from the dressed-quark propagator,which provides a means of determining the behavior of the chiral and deconfinement order parameters.A comparison with the results of previous researches is given.

  7. WKB propagators in position and momentum space for a linear potential with a ‘ceiling’ boundary

    Zapata, T. A.; Fulling, S. A.

    2017-03-01

    As a model for the semiclassical analysis of quantum-mechanical systems with both potentials and boundary conditions, we construct the WKB propagator for a linear potential sloping away from an impenetrable boundary. First, we find all classical paths from point y to point x in time t and calculate the corresponding action and amplitude functions. A large part of space-time turns out to be classically inaccessible, and the boundary of this region is a caustic of an unusual type, where the amplitude vanishes instead of diverging. We show that this curve is the limit of caustics in the usual sense when the reflecting boundary is approximated by steeply rising smooth potentials. Then, to improve the WKB approximation we construct the propagator for initial data in momentum space; this requires classifying the interesting variety of classical paths with initial momentum p arriving at x after time t. The two approximate propagators are compared by applying them to Gaussian initial packets by numerical integration; the results show physically expected behavior, with advantages to the momentum-based propagator in the classically forbidden regime (large t).

  8. A Modified Approach for Calculating Dressed Quark Propagator at Finite Chemical Potential

    2005-01-01

    Based on the rainbow approximation of Dyson-Schwinger equation and the assumption that the full inverse quark propagator at finite chemical potential is analytic in the neighborhood of μ = 0, it is proved that the dressed From the dressed quark propagator at finite chemical potential μ can be written as (g0-1)[μ]=iγ·(p~)A((p~2))+B((p~2))with (p~)μ=((p),p4+iμ).From the dressed quark propagator at finite chemical potential in Munczek model the bag constant of a baryon and the scalar quark condensate are evaluated. A comparison with previous results is given.

  9. Propagation of fluctuations in interaction networks governed by the law of mass action

    Maslov, Sergei; Ispolatov, Iaroslav

    2007-01-01

    Using an example of physical interactions between proteins, we study how perturbations propagate in interconnected networks whose equilibrium state is governed by the law of mass action. We introduce a comprehensive matrix formalism which predicts the response of this equilibrium to small changes in total concentrations of individual molecules, and explain it using a heuristic analogy to a current flow in a network of resistors. Our main conclusion is that on average changes in free concentrations exponentially decay with the distance from the source of perturbation. We then study how this decay is influenced by such factors as the topology of a network, binding strength, and correlations between concentrations of neighboring nodes. An exact analytic expression for the decay constant is obtained for the case of uniform interactions on the Bethe lattice. Our general findings are illustrated using a real biological network of protein-protein interactions in baker's yeast with experimentally determined protein c...

  10. Unmyelinated visceral afferents exhibit frequency dependent action potential broadening while myelinated visceral afferents do not.

    Li, Bai-Yan; Feng, Bin; Tsu, Hwa Y; Schild, John H

    2007-06-21

    Sensory information arising from visceral organ systems is encoded into action potential trains that propagate along afferent fibers to target nuclei in the central nervous system. These information streams range from tight patterns of action potentials that are well synchronized with the sensory transduction event to irregular, patternless discharge with no clear correlation to the sensory input. In general terms these afferent pathways can be divided into unmyelinated and myelinated fiber types. Our laboratory has a long standing interest in the functional differences between these two types of afferents in terms of the preprocessing of sensory information into action potential trains (synchrony, frequency, duration, etc.), the reflexogenic consequences of this sensory input to the central nervous system and the ionic channels that give rise to the electrophysiological properties of these unique cell types. The aim of this study was to determine whether there were any functional differences in the somatic action potential characteristics of unmyelinated and myelinated vagal afferents in response to different rates of sensory nerve stimulation. Our results showed that activity and frequency-dependent widening of the somatic action potential was quite prominent in unmyelinated but not myelinated vagal afferents. Spike broadening often leads to increased influx of Ca(2+) ions that has been associated with a diverse range of modulatory mechanisms both at the cell body and central synaptic terminations (e.g. increased neurotransmitter release.) We conclude that our observations are indicative of fundamentally different mechanisms for neural integration of sensory information arising from unmyelinated and myelinated vagal afferents.

  11. The propagation from meteorological to hydrological drought and its potential influence factors

    Huang, Shengzhi; Li, Pei; Huang, Qiang; Leng, Guoyong; Hou, Beibei; Ma, Lan

    2017-04-01

    It is important to investigate the propagation from meteorological to hydrological drought and its potential influence factors, which helps to reveal drought propagation process, thereby being helpful for drought mitigation. In this study, Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI) were adopted to characterize meteorological and hydrological droughts, respectively. The propagation time from meteorological to hydrological drought was investigated. The cross wavelet analysis was utilized to examine the correlations between hydrological and meteorological droughts in the Wei River Basin (WRB), a typical arid and semi-arid region in China. Moreover, the potential influence factors on the propagation were explored from the perspectives of large-scale atmospheric circulation anomaly and underlying surface characteristics. Results indicated: (1) the propagation time from meteorological to hydrological drought has noticeably seasonal characteristics, that in spring and summer is short, whilst that in autumn and winter is long; (2) hydrological and meteorological droughts are primarily characterized by statistically positive linkages on both long and short time scales; (3) El Niño Southern Oscillation (ENSO) and Arctic Oscillation (AO) are strongly correlated with actual evaporation, thus strongly impacting the propagation time from meteorological to hydrological drought. Additionally, the propagation time has roughly positive associations with the parameter w of the Fu's equation from the Budyko framework.

  12. Superluminal propagation and broadband omnidirectional antireflection in optical reflectionless potentials

    Thekkekara, L V; Kasture, Sachin; Mulay, Gajendra; Gupta, S Dutta

    2013-01-01

    Reflectionless potentials (RPs) represent a class of potentials that offer total transmission in the context of one dimensional scattering. Optical realization of RPs in stratified medium can exhibit broadband omnidirectional antireflection property. In addition to the antireflection property, RPs are also expected to demonstrate negative delay. We designed refractive index profiles conforming to RPs and realize them in stratified media consisting of Al2O3 and TiO2 heterolayers. In these structures we observed < 1% reflection over the broad wavelength range of 350 nm to 2500 nm for angles of incidence 0 - 50 degrees. The observed reflection and transmission response of RPs are polarization independent. A negative delay of about 31 fsec with discernible pulse narrowing was observed in passage through two RPs. These RPs can be interesting for optical instrumentation as broadband, omni-directional antireflection coatings as well as in pulse control and transmission applications like delay lines.

  13. A fast algorithm for estimating actions in triaxial potentials

    Sanders, Jason L.; Binney, James

    2015-03-01

    We present an approach to approximating rapidly the actions in a general triaxial potential. The method is an extension of the axisymmetric approach presented by Binney, and operates by assuming that the true potential is locally sufficiently close to some Stäckel potential. The choice of Stäckel potential and associated ellipsoidal coordinates is tailored to each individual input phase-space point. We investigate the accuracy of the method when computing actions in a triaxial Navarro-Frenk-White potential. The speed of the algorithm comes at the expense of large errors in the actions, particularly for the box orbits. However, we show that the method can be used to recover the observables of triaxial systems from given distribution functions to sufficient accuracy for the Jeans equations to be satisfied. Consequently, such models could be used to build models of external galaxies as well as triaxial components of our own Galaxy. When more accurate actions are required, this procedure can be combined with torus mapping to produce a fast convergent scheme for action estimation.

  14. Chemical Potential Dependence of the Dressed-Quark Propagator in a Simple Confining QCD Model

    ZONG Hong-Shi; HOU Feng-Yao; CHEN Xiang-Song; LIU Yu-Xin

    2004-01-01

    Based on the Dyson-Schwinger approach, a method for obtaining the chemical potential dependence of the dressed quark propagator in the ‘Nambu-Goldstone' and the ‘Wigner' phase is developed. The bag constant in the presence of the non-zero chemical potential is analysed.

  15. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  16. QCD Effective action at high temperature and small chemical potential

    Villavicencio, C

    2007-01-01

    We present a construction of an effective Yang-Mills action for QCD, from the expansion of the fermionic determinant in terms of powers of the chemical potential at high temperature, for the case of massless quarks. We analyze this expansion in the perturbative region and find that it gives extra spurious information. We propose for the non-perturbative sector a simplified effective action which, in principle, contains only the relevant information.

  17. Loss of Saltation and Presynaptic Action Potential Failure in Demyelinated Axons

    Hamada, Mustafa S.; Popovic, Marko A.; Kole, Maarten H. P.

    2017-01-01

    In cortical pyramidal neurons the presynaptic terminals controlling transmitter release are located along unmyelinated axon collaterals, far from the original action potential (AP) initiation site, the axon initial segment (AIS). Once initiated, APs will need to reliably propagate over long distances and regions of geometrical inhomogeneity like branch points (BPs) to rapidly depolarize the presynaptic terminals and confer temporally precise synaptic transmission. While axon pathologies such as demyelinating diseases are well established to impede the fidelity of AP propagation along internodes, to which extent myelin loss affects propagation along BPs and axon collaterals is not well understood. Here, using the cuprizone demyelination model, we performed optical voltage-sensitive dye (VSD) imaging from control and demyelinated layer 5 pyramidal neuron axons. In the main axon, we find that myelin loss switches the modality of AP propagation from rapid saltation towards a slow continuous wave. The duration of single AP waveforms at BPs or nodes was, however, only slightly briefer. In contrast, by using two-photon microscopy-guided loose-seal patch recordings from axon collaterals we revealed a presynaptic AP broadening in combination with a reduced velocity and frequency-dependent failure. Finally, internodal myelin loss was also associated with de novo sprouting of axon collaterals starting from the primary (demyelinated) axon. Thus, the loss of oligodendrocytes and myelin sheaths bears functional consequences beyond the main axon, impeding the temporal fidelity of presynaptic APs and affecting the functional and structural organization of synaptic connectivity within the neocortex.

  18. Plane wave propagation in a rotating anisotropic medium with voids under the action of a uniform magnetic field

    Maity, Narottam; Barik, S. P.; Chaudhuri, P. K.

    2016-09-01

    In this paper, plane wave propagation in a rotating anisotropic material of general nature under the action of a magnetic field of constant magnitude has been investigated. The material is supposed to be porous in nature and contains voids. Following the concept of [Cowin S. C. and Nunziato, J. W. [1983] “Linear elastic materials with voids,” J. Elasticity 13, 125-147.] the governing equations of motion have been written in tensor notation taking account of rotation, magnetic field effect and presence of voids in the medium and the possibility of plane wave propagation has been examined. A number of particular cases have been derived from our general results to match with previously obtained results in this area. Effects of various parameters on the velocity of wave propagation have been presented graphically.

  19. Action prediction based on anticipatory brain potentials during simulated driving

    Khaliliardali, Zahra; Chavarriaga, Ricardo; Gheorghe, Lucian Andrei; Millán, José del R.

    2015-12-01

    Objective. The ability of an automobile to infer the driver’s upcoming actions directly from neural signals could enrich the interaction of the car with its driver. Intelligent vehicles fitted with an on-board brain-computer interface able to decode the driver’s intentions can use this information to improve the driving experience. In this study we investigate the neural signatures of anticipation of specific actions, namely braking and accelerating. Approach. We investigated anticipatory slow cortical potentials in electroencephalogram recorded from 18 healthy participants in a driving simulator using a variant of the contingent negative variation (CNV) paradigm with Go and No-go conditions: count-down numbers followed by ‘Start’/‘Stop’ cue. We report decoding performance before the action onset using a quadratic discriminant analysis classifier based on temporal features. Main results. (i) Despite the visual and driving related cognitive distractions, we show the presence of anticipatory event related potentials locked to the stimuli onset similar to the widely reported CNV signal (with an average peak value of -8 μV at electrode Cz). (ii) We demonstrate the discrimination between cases requiring to perform an action upon imperative subsequent stimulus (Go condition, e.g. a ‘Red’ traffic light) versus events that do not require such action (No-go condition; e.g. a ‘Yellow’ light); with an average single trial classification performance of 0.83 ± 0.13 for braking and 0.79 ± 0.12 for accelerating (area under the curve). (iii) We show that the centro-medial anticipatory potentials are observed as early as 320 ± 200 ms before the action with a detection rate of 0.77 ± 0.12 in offline analysis. Significance. We show for the first time the feasibility of predicting the driver’s intention through decoding anticipatory related potentials during simulated car driving with high recognition rates.

  20. Sodium and potassium conductance changes during a membrane action potential.

    Bezanilla, F; Rojas, E; Taylor, R E

    1970-12-01

    1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential.

  1. The mode of action of quinidine on isolated rabbit atria interpreted from intracellular potential records.

    VAUGHAN WILLIAMS, E M

    1958-09-01

    An attempt has been made to show why quinidine, which has long been known not to lengthen the duration of the cardiac action potential, measured with external electrodes, and also not to lengthen, and sometimes to shorten, the absolute refractory period, nevertheless reduces the maximum frequency at which atria can respond to a stimulus. Simultaneous measurements have been made in electrically driven isolated rabbit atria of contractions, conduction velocity and intracellular potentials before and during exposure to a wide range of concentrations of quinidine sulphate. The resting potential remained undiminished, in contrast to the effect of quinidine on Purkinje fibres. In the therapeutic range of doses, up to 10 mg./l., the half-time for repolarization was either shortened or unchanged, thus providing an explanation for the failure of quinidine to prolong the absolute refractory period. In contrast, even at low concentrations of quinidine, conduction velocity and the rate of rise of the action potential were greatly slowed, and the height of the overshoot was reduced. The terminal phase of the action potential was prolonged. It is known that the rate of rise of the action potential is a function of the level of repolarization at which an impulse takes off (the more negative the take-off point, the faster the rate of rise). Normally, a stimulus introduced when repolarization has proceeded to 2/3 of the resting potential evokes a response with a rate of rise fast enough for propagation, so that the duration of the terminal 1/3 of the phase of repolarization has no influence upon the length of the effective refractory period. In the presence of quinidine, however, the rate of rise itself was directly reduced, thus repolarization had to proceed further before the critical take-off point was reached at which the rate of rise was fast enough for propagation, and the duration of the terminal phase of repolarization thus became significant. It has been concluded that

  2. Action potential initiation in the hodgkin-huxley model.

    Lucy J Colwell

    2009-01-01

    Full Text Available A recent paper of B. Naundorf et al. described an intriguing negative correlation between variability of the onset potential at which an action potential occurs (the onset span and the rapidity of action potential initiation (the onset rapidity. This correlation was demonstrated in numerical simulations of the Hodgkin-Huxley model. Due to this antagonism, it is argued that Hodgkin-Huxley-type models are unable to explain action potential initiation observed in cortical neurons in vivo or in vitro. Here we apply a method from theoretical physics to derive an analytical characterization of this problem. We analytically compute the probability distribution of onset potentials and analytically derive the inverse relationship between onset span and onset rapidity. We find that the relationship between onset span and onset rapidity depends on the level of synaptic background activity. Hence we are able to elucidate the regions of parameter space for which the Hodgkin-Huxley model is able to accurately describe the behavior of this system.

  3. Compound sensory action potential in normal and pathological human nerves

    Krarup, Christian

    2004-01-01

    , with fiber loss or increased conduction velocity variability changes of the SNAP may be smaller than expected from normal nerve. The biophysical characteristics of sensory and motor fibers differ, and this may to some extent determine divergent pathophysiological changes in sensory and motor fibers......The compound sensory nerve action potential (SNAP) is the result of phase summation and cancellation of single fiber potentials (SFAPs) with amplitudes that depend on fiber diameter, and the amplitude and shape of the SNAP is determined by the distribution of fiber diameters. Conduction velocities...... at different conduction distances are determined by summation of SFAPs of varying fiber diameters, and differ in this respect, also, from the compound muscle action potential (CMAP) for which conduction velocities are determined by the very fastest fibers in the nerve. The effect and extent of temporal...

  4. Compound sensory action potential in normal and pathological human nerves

    Krarup, Christian

    2004-01-01

    The compound sensory nerve action potential (SNAP) is the result of phase summation and cancellation of single fiber potentials (SFAPs) with amplitudes that depend on fiber diameter, and the amplitude and shape of the SNAP is determined by the distribution of fiber diameters. Conduction velocities...... at different conduction distances are determined by summation of SFAPs of varying fiber diameters, and differ in this respect, also, from the compound muscle action potential (CMAP) for which conduction velocities are determined by the very fastest fibers in the nerve. The effect and extent of temporal......, with fiber loss or increased conduction velocity variability changes of the SNAP may be smaller than expected from normal nerve. The biophysical characteristics of sensory and motor fibers differ, and this may to some extent determine divergent pathophysiological changes in sensory and motor fibers...

  5. Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential

    Ammari, Zied

    2011-01-01

    We consider the quantum dynamics of many bosons systems in the mean field limit with a singular pair-interaction potential, including the attractive or repulsive Coulombic case in three dimensions. By using a measure transportation technique, we show that Wigner measures propagate along the nonlinear Hartree flow. Such property was previously proved only for bounded potentials in our previous works with a slightly different strategy.

  6. Warm body temperature facilitates energy efficient cortical action potentials.

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  7. Microparticles generated by decompression stress cause central nervous system injury manifested as neurohypophysial terminal action potential broadening

    Yang, Ming; Kosterin, Paul; Salzberg, Brian M.; Milovanova, Tatyana N.; Bhopale, Veena M.; Thom, Stephen R.

    2013-01-01

    The study goal was to use membrane voltage changes during neurohypophysial action potential (AP) propagation as an index of nerve function to evaluate the role that circulating microparticles (MPs) play in causing central nervous system injury in response to decompression stress in a murine model. Mice studied 1 h following decompression from 790 kPa air pressure for 2 h exhibit a 45% broadening of the neurohypophysial AP. Broadening did not occur if mice were injected with the MP lytic agent...

  8. Vanadium compounds biological actions and potential as pharmacological agents.

    Tsiani, E; Fantus, I G

    1997-03-01

    Vanadium is an element found in low concentrations in mammals, for which a function remains to be discovered. Over the past century, vanadium compounds have been suggested anecdotally as therapeutic agents for a variety of diseases. The discovery that vanadate inhibits various enzymes, in particular protein tyrosine phosphatases, and mimics many of the biological actions of insulin suggested a potential role in the therapy of diabetes mellitus. Successful use and an enhancement of insulin sensitivity in rodents and human diabetic subjects, as well as the finding that these agents are capable of stimulating metabolic effects while bypassing the insulin receptor and the early steps in insulin action, target these agents preferentially toward type II diabetes mellitus. Long-term safety remains a major concern, as tissue accumulation and relative nonspecificity of enzyme inhibition may result in adverse effects. Continued research into mechanism of action, consequences of chronic administration, and improvement of specificity is warranted. Regardless of their ultimate success or failure as therapeutic agents, vanadium compounds continue to be useful probes of enzyme structure and function in various biological processes. (Trends Endocrinol Metab 1997;8:51-58). (c) 1997, Elsevier Science Inc.

  9. Anharmonic propagation of two-dimensional beams carrying orbital angular momentum in a harmonic potential.

    Zhang, Yiqi; Liu, Xing; Belić, Milivoj R; Zhong, Weiping; Wen, Feng; Zhang, Yanpeng

    2015-08-15

    We analytically and numerically investigate an anharmonic propagation of two-dimensional beams in a harmonic potential. We pick noncentrosymmetric beams of common interest that carry orbital angular momentum. The examples studied include superposed Bessel-Gauss (BG), Laguerre-Gauss (LG), and circular Airy (CA) beams. For the BG beams, periodic inversion, phase transition, and rotation with periodic angular velocity are demonstrated during propagation. For the LG and CA beams, periodic inversion and variable rotation are still there but not the phase transition. On the whole, the "center of mass" and the orbital angular momentum of a beam exhibit harmonic motion, but the motion of the beam intensity distribution in detail is subject to external and internal torques and forces, causing it to be anharmonic. Our results are applicable to other superpositions of finite circularly asymmetric beams.

  10. Glutamate induces series of action potentials and a decrease in circumnutation rate in Helianthus annuus.

    Stolarz, Maria; Król, Elzbieta; Dziubińska, Halina; Kurenda, Andrzej

    2010-03-01

    Reports concerning the function of glutamate (Glu) in the electrical and movement phenomena in plants are scarce. Using the method of extracellular measurement, we recorded electrical potential changes in the stem of 3-week-old Helianthus annuus L. plants after injection of Glu solution. Simultaneously, circumnutation movements of the stem were measured with the use of time-lapse images. Injection of Glu solution at millimolar (200, 50, 5 mM) concentrations in the basal part of the stem evoked a series of action potentials (APs). The APs appeared in the site of injection and in different parts of the stem and were propagated acropetally and/or basipetally along the stem. Glu injection also resulted in a transient, approximately 5-h-long decrease in the stem circumnutation rate. The APs initiated and propagating in the sunflower stem after Glu injection testify the existence of a Glu perception system in vascular plants and suggest its involvement in electrical, long-distance signaling. Our experiments also demonstrated that Glu is a factor affecting circumnutation movements.

  11. Flexible graphene transistors for recording cell action potentials

    Blaschke, Benno M.; Lottner, Martin; Drieschner, Simon; Bonaccini Calia, Andrea; Stoiber, Karolina; Rousseau, Lionel; Lissourges, Gaëlle; Garrido, Jose A.

    2016-06-01

    Graphene solution-gated field-effect transistors (SGFETs) are a promising platform for the recording of cell action potentials due to the intrinsic high signal amplification of graphene transistors. In addition, graphene technology fulfills important key requirements for in-vivo applications, such as biocompability, mechanical flexibility, as well as ease of high density integration. In this paper we demonstrate the fabrication of flexible arrays of graphene SGFETs on polyimide, a biocompatible polymeric substrate. We investigate the transistor’s transconductance and intrinsic electronic noise which are key parameters for the device sensitivity, confirming that the obtained values are comparable to those of rigid graphene SGFETs. Furthermore, we show that the devices do not degrade during repeated bending and the transconductance, governed by the electronic properties of graphene, is unaffected by bending. After cell culture, we demonstrate the recording of cell action potentials from cardiomyocyte-like cells with a high signal-to-noise ratio that is higher or comparable to competing state of the art technologies. Our results highlight the great capabilities of flexible graphene SGFETs in bioelectronics, providing a solid foundation for in-vivo experiments and, eventually, for graphene-based neuroprosthetics.

  12. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond

    Barry, J F; Schloss, J M; Glenn, D R; Song, Y; Lukin, M D; Park, H; Walsworth, R L

    2016-01-01

    A key challenge for neuroscience is noninvasive, label-free sensing of action potential (AP) dynamics in whole organisms with single-neuron resolution. Here, we present a new approach to this problem: using nitrogen-vacancy (NV) quantum defects in diamond to measure the time-dependent magnetic fields produced by single-neuron APs. Our technique has a unique combination of features: (i) it is noninvasive, as the light that probes the NV sensors stays within the biocompatible diamond chip and does not enter the organism, enabling activity monitoring over extended periods; (ii) it is label-free and should be widely applicable to most organisms; (iii) it provides high spatial and temporal resolution, allowing precise measurement of the AP waveforms and conduction velocities of individual neurons; (iv) it directly determines AP propagation direction through the inherent sensitivity of NVs to the associated AP magnetic field vector; (v) it is applicable to neurons located within optically opaque tissue or whole org...

  13. Self-propagative replication of Aβ oligomers suggests potential transmissibility in Alzheimer disease.

    Amit Kumar

    Full Text Available The aggregation of amyloid-β (Aβ peptide and its deposition in parts of the brain form the central processes in the etiology of Alzheimer disease (AD. The low-molecular weight oligomers of Aβ aggregates (2 to 30 mers are known to be the primary neurotoxic agents whose mechanisms of cellular toxicity and synaptic dysfunction have received substantial attention in the recent years. However, how these toxic agents proliferate and induce widespread amyloid deposition throughout the brain, and what mechanism is involved in the amplification and propagation of toxic oligomer species, are far from clear. Emerging evidence based on transgenic mice models indicates a transmissible nature of Aβ aggregates and implicates a prion-like mechanism of oligomer propagation, which manifests as the dissemination and proliferation of Aβ toxicity. Despite accumulating evidence in support of a transmissible nature of Aβ aggregates, a clear, molecular-level understanding of this intriguing mechanism is lacking. Recently, we reported the characterization of unique replicating oligomers of Aβ42 (12-24 mers in vitro called Large Fatty Acid-derived Oligomers (LFAOs (Kumar et al., 2012, J. Biol. Chem. In the current report, we establish that LFAOs possess physiological activity by activating NF-κB in human neuroblastoma cells, and determine the experimental parameters that control the efficiency of LFAO replication by self-propagation. These findings constitute the first detailed report on monomer - oligomer lateral propagation reactions that may constitute potential mechanism governing transmissibility among Aβ oligomers. These data support the previous reports on transmissible mechanisms observed in transgenic animal models.

  14. Potential role of curcumin and taurine combination therapy on human myeloid leukemic cells propagated in vitro.

    El-Houseini, Motawa E; Refaei, Mohammed Osman; Amin, Ahmed Ibrahim; Abol-Ftouh, Mahmoud A

    2013-10-01

    Curcumin and taurine are natural products that have been used in this study evaluating their therapeutic effect on myeloid leukemic cells propagated in vitro. Sixty patients with myeloid leukemia and 30 healthy volunteers were enrolled in the study. All patient groups were admitted to the Medical Oncology Department of the National Cancer Institute, Cairo University. There were statistically significant differences between treated leukemic cells compared to normal mononuclear leukocytes in cell density, interferon-γ and immunophenotypic profile, mainly CD4+, CD8 + and CD25+. This work highlights the possibility of using curcumin and taurine as a potential useful therapy in the management of patients suffering from chronic and acute myeloid leukemias.

  15. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained.

  16. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-09-17

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies.

  17. The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons.

    Christie, B R; Magee, J C; Johnston, D

    1996-01-01

    Long-term depression (LTD) of synaptic efficacy at CA1 synapses is believed to be a Ca(2+)-dependent process. We used high-speed fluorescence imaging and patch-clamp techniques to quantify the spatial distribution of changes in intracellular Ca2+ accompanying the induction of LTD at Schaffer collateral synapses in CA1 pyramidal neurons. Low-frequency stimulation (3 Hz), which was subthreshold for action potentials, produced small changes in [Ca2+]i and failed to elicit LTD. Increasing the stimulus strength so that action potentials were generated produced both robust LTD and increases in [Ca2+]i. Back-propagating action potentials at 3 Hz in the absence of synaptic stimulation also produced increases in [Ca2+]i, but failed to induce LTD. When subthreshold synaptic stimulation was paired with back-propagating action potentials, however, large increases in [Ca2+]i were observed and robust LTD was induced. The LTD was blocked by the N-methyl-D-aspartate receptor (NMDAr) antagonist APV, and stimulus-induced increases in [Ca2+]i were reduced throughout the neuron under these conditions. The LTD was also dependent on Ca2+ influx via voltage-gated Ca2+ channels (VGCCs), because LTD was severely attenuated or blocked by both nimodipine and Ni2+. These findings suggest that back-propagating action potentials can exert a powerful control over the induction of LTD and that both VGCCs and NMDArs are involved in the induction of this form of plasticity.

  18. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart

    Sung, Derrick; Mills, Robert W.; Schettler, Jan; Narayan, Sanjiv M.; Omens, Jeffrey H.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    INTRODUCTION: Mechanical stimulation can induce electrophysiologic changes in cardiac myocytes, but how mechanoelectric feedback in the intact heart affects action potential propagation remains unclear. METHODS AND RESULTS: Changes in action potential propagation and repolarization with increased left ventricular end-diastolic pressure from 0 to 30 mmHg were investigated using optical mapping in isolated perfused rabbit hearts. With respect to 0 mmHg, epicardial strain at 30 mmHg in the anterior left ventricle averaged 0.040 +/- 0.004 in the muscle fiber direction and 0.032 +/- 0.006 in the cross-fiber direction. An increase in ventricular loading increased average epicardial activation time by 25%+/- 3% (P myocardial perfusion or the presence of an electromechanical decoupling agent (butanedione monoxime) during optical mapping. CONCLUSION: Acute loading of the left ventricle of the isolated rabbit heart decreased apparent epicardial conduction velocity and increased action potential duration by a load-dependent mechanism that may not involve stretch-activated channels.

  19. ZrC Ceramics Prepared by Self-propagating High-temperature Synthesis/Single Action Pressing

    CHENG Yong

    2017-01-01

    Full Text Available ZrC ceramics were prepared by mechanical axial compression of self-propagating high-temperature synthesis/single action pressing (SHS/SAP.The effects of pressure on microstructure and densification of the products,as well as the relationship between displacement/variation of the load curve and SHS reaction,were studied.The structure and properties of the products were investigated by XRD and SEM.In addition,the density was measured by the drain away liquid method.Meanwhile,universal testing machine was used to record the displacement and load curve alternations.The results indicate that products are mainly composed of ZrC phase,the process of exhaust are accelerated as the increasing of pressure as well,leading to the smaller size of porosity and crystal particles.Density manifested as an increasing pattern by the elevated pressure with no longer change at 80MPa.Due to the strong attenuation of pressure at the peak of temperature,the density of the production is only 65.7% in 120MPa.The end point of the SHS reaction and the plastic time of the products can be monitored by displacement and load curve.The results provide evidence for the application of self-propagating high-temperature synthesis/pseudo-hot isostatic pressing to further improve the density of ceramics.

  20. Three-dimensional noncommutative Yukawa theory: Induced effective action and propagating modes

    Bufalo, R

    2016-01-01

    In this paper, we establish the analysis of noncommutative Yukawa theory, encompassing neutral and charged scalar fields. We approach the analysis by considering carefully the derivation of the respective effective actions. Hence, based on the obtained results, we compute the one-loop contributions to the neutral and charged scalar field self-energy, as well as to the Chern-Simons polarization tensor. In order to properly define the behaviour of the quantum fields, the known UV/IR mixing due to radiative corrections is analysed in the one-loop physical dispersion relation of the scalar and gauge fields.

  1. A stochastic mechanism for signal propagation in the brain: Force of rapid random fluctuations in membrane potentials of individual neurons.

    Hong, Dawei; Man, Shushuang; Martin, Joseph V

    2016-01-21

    There are two functionally important factors in signal propagation in a brain structural network: the very first synaptic delay-a time delay about 1ms-from the moment when signals originate to the moment when observation on the signal propagation can begin; and rapid random fluctuations in membrane potentials of every individual neuron in the network at a timescale of microseconds. We provide a stochastic analysis of signal propagation in a general setting. The analysis shows that the two factors together result in a stochastic mechanism for the signal propagation as described below. A brain structural network is not a rigid circuit rather a very flexible framework that guides signals to propagate but does not guarantee success of the signal propagation. In such a framework, with the very first synaptic delay, rapid random fluctuations in every individual neuron in the network cause an "alter-and-concentrate effect" that almost surely forces signals to successfully propagate. By the stochastic mechanism we provide analytic evidence for the existence of a force behind signal propagation in a brain structural network caused by rapid random fluctuations in every individual neuron in the network at a timescale of microseconds with a time delay of 1ms.

  2. Ultrafast action potentials mediate kilohertz signaling at a central synapse.

    Ritzau-Jost, Andreas; Delvendahl, Igor; Rings, Annika; Byczkowicz, Niklas; Harada, Harumi; Shigemoto, Ryuichi; Hirrlinger, Johannes; Eilers, Jens; Hallermann, Stefan

    2014-10-01

    Fast synaptic transmission is important for rapid information processing. To explore the maximal rate of neuronal signaling and to analyze the presynaptic mechanisms, we focused on the input layer of the cerebellar cortex, where exceptionally high action potential (AP) frequencies have been reported in vivo. With paired recordings between presynaptic cerebellar mossy fiber boutons and postsynaptic granule cells, we demonstrate reliable neurotransmission up to ∼1 kHz. Presynaptic APs are ultrafast, with ∼100 μs half-duration. Both Kv1 and Kv3 potassium channels mediate the fast repolarization, rapidly inactivating sodium channels ensure metabolic efficiency, and little AP broadening occurs during bursts of up to 1.5 kHz. Presynaptic Cav2.1 (P/Q-type) calcium channels open efficiently during ultrafast APs. Furthermore, a subset of synaptic vesicles is tightly coupled to Ca(2+) channels, and vesicles are rapidly recruited to the release site. These data reveal mechanisms of presynaptic AP generation and transmitter release underlying neuronal kHz signaling.

  3. Acute nerve stretch and the compound motor action potential

    Wolfe Jacob

    2011-08-01

    Full Text Available Abstract In this paper, the acute changes in the compound motor action potential (CMAP during mechanical stretch were studied in hamster sciatic nerve and compared to the changes that occur during compression. In response to stretch, the nerve physically broke when a mean force of 331 gm (3.3 N was applied while the CMAP disappeared at an average stretch force of 73 gm (0.73 N. There were 5 primary measures of the CMAP used to describe the changes during the experiment: the normalized peak to peak amplitude, the normalized area under the curve (AUC, the normalized duration, the normalized velocity and the normalized velocity corrected for the additional path length the impulses travel when the nerve is stretched. Each of these measures was shown to contain information not available in the others. During stretch, the earliest change is a reduction in conduction velocity followed at higher stretch forces by declines in the amplitude of the CMAP. This is associated with the appearance of spontaneous EMG activity. With stretch forces Multiple means of predicting when a change in the CMAP suggests a significant stretch are discussed and it is clear that a multifactorial approach using both velocity and amplitude parameters is important. In the case of pure compression, it is only the amplitude of the CMAP that is critical in predicting which changes in the CMAP are associated with significant compression.

  4. Action-specific effects in perception and their potential applications

    Witt, Jessica K.; Linkenauger, Sally; Wickens, Chris

    2016-01-01

    Spatial perception is biased by action. Hills appear steeper and distances appear farther to individuals who would have to exert more effort to transverse the space. Objects appear closer, smaller, and faster when they are easier to obtain. Athletes who are playing better than others see their targets as bigger. These phenomena are collectively known as action-specific effects on perception. In this target article, we review evidence for action-specific effects, including evidence that they r...

  5. Quantum entanglement in the voltage dependent sodium channel can reproduce the salient features of neuronal action potential initiation

    Summhammer, Johann

    2007-01-01

    We investigate the effects of a quantum entanglement regime within an ion conducting molecule (ion channel) of the neuronal plasma membrane on the onset dynamics of propagating nerve pulses (action potentials). In particular, we model the onset parameters of the sodium current in the Hodgkin Huxley equation as three similar but independent probabilistic mechanisms which become quantum entangled. The underlying physics is general and can involve entanglement between various degrees of freedom underlaying ion transition states or 'gating states' during conduction, e.g. Na$^+$ ions in different channel locations, or different 'affinity' states of ions with atoms lining the sub-regions of the channel protein ('filter-states'). We find that the 'quantum corrected' Hodgkin Huxley equation incorporating entangled systems states can reproduce action potential pulses with the critical onset dynamics observed recently in neocortical neurons in vivo by Naundorf et al. [Nature {\\bf 440}, 1060 (20 April 2006)]. Interestin...

  6. Training Process Reduction Based On Potential Weights Linear Analysis To Accelarate Back Propagation Network

    Asadi, Roya; Sulaiman, Nasir

    2009-01-01

    Learning is the important property of Back Propagation Network (BPN) and finding the suitable weights and thresholds during training in order to improve training time as well as achieve high accuracy. Currently, data pre-processing such as dimension reduction input values and pre-training are the contributing factors in developing efficient techniques for reducing training time with high accuracy and initialization of the weights is the important issue which is random and creates paradox, and leads to low accuracy with high training time. One good data preprocessing technique for accelerating BPN classification is dimension reduction technique but it has problem of missing data. In this paper, we study current pre-training techniques and new preprocessing technique called Potential Weight Linear Analysis (PWLA) which combines normalization, dimension reduction input values and pre-training. In PWLA, the first data preprocessing is performed for generating normalized input values and then applying them by pre-...

  7. Cornwall-Jackiw-Tomboulis Effective Potential for Quark Propagator in Real-Time Thermal Field Theory and Landau Gauge

    2005-01-01

    We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in Landau gauge. In the approximation that the function A(p2) in inverse quark propagator is replaced by unity, by means of the running gauge coupling and the quark mass function invariant under the renormalization group in zero temperature Quantum Chromadynamics (QCD), we obtain a calculable expression for the thermal effective potential, which will be a useful means to research chiral phase transition in QCD in the real-time formalism.

  8. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study.

    Popovic, Marko A; Foust, Amanda J; McCormick, David A; Zecevic, Dejan

    2011-09-01

    The spatial pattern of Na(+) channel clustering in the axon initial segment (AIS) plays a critical role in tuning neuronal computations, and changes in Na(+) channel distribution have been shown to mediate novel forms of neuronal plasticity in the axon. However, immunocytochemical data on channel distribution may not directly predict spatio-temporal characteristics of action potential initiation, and prior electrophysiological measures are either indirect (extracellular) or lack sufficient spatial resolution (intracellular) to directly characterize the spike trigger zone (TZ). We took advantage of a critical methodological improvement in the high sensitivity membrane potential imaging (V(m) imaging) technique to directly determine the location and length of the spike TZ as defined in functional terms. The results show that in mature axons of mouse cortical layer 5 pyramidal cells, action potentials initiate in a region ∼20 μm in length centred between 20 and 40 μm from the soma. From this region, the AP depolarizing wave invades initial nodes of Ranvier within a fraction of a millisecond and propagates in a saltatory fashion into axonal collaterals without failure at all physiologically relevant frequencies. We further demonstrate that, in contrast to the saltatory conduction in mature axons, AP propagation is non-saltatory (monotonic) in immature axons prior to myelination.

  9. Optophysiological approach to resolve neuronal action potentials with high spatial and temporal resolution in cultured neurons

    Stephane ePages

    2011-10-01

    Full Text Available Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm. Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (> 10 % of fluorescence change for 100 mV depolarization and time response (submillisecond of the dye allows the robust detection of action potentials (APs even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms resolution and high spatial (µm resolution.

  10. Differential effects of K(+) channel blockers on frequency-dependent action potential broadening in supraoptic neurons.

    Hlubek, M D; Cobbett, P

    2000-09-15

    Recordings were made from magnocellular neuroendocrine cells dissociated from the supraoptic nucleus of the adult guinea pig to determine the role of voltage gated K(+) channels in controlling the duration of action potentials and in mediating frequency-dependent action potential broadening exhibited by these neurons. The K(+) channel blockers charybdotoxin (ChTx), tetraethylammonium (TEA), and 4-aminopyridine (4-AP) increased the duration of individual action potentials indicating that multiple types of K(+) channel are important in controlling action potential duration. The effect of these K(+) channel blockers was almost completely reversed by simultaneous blockade of voltage gated Ca(2+) channels with Cd(2+). Frequency-dependent action potential broadening was exhibited by these neurons during trains of action potentials elicited by membrane depolarizing current pulses presented at 10 Hz but not at 1 Hz. 4-AP but not ChTx or TEA inhibited frequency-dependent action potential broadening indicating that frequency-dependent action potential broadening is dependent on increasing steady-state inactivation of A-type K(+) channels (which are blocked by 4-AP). A model of differential contributions of voltage gated K(+) channels and voltage gated Ca(2+) channels to frequency-dependent action potential broadening, in which an increase of Ca(2+) current during each successive action potential is permitted as a result of the increasing steady-state inactivation of A-type K(+) channels, is presented.

  11. Circadian- and Light-Dependent Regulation of Resting Membrane Potential and Spontaneous Action Potential Firing of Drosophila Circadian Pacemaker Neurons

    Sheeba, Vasu; Gu, Huaiyu; Sharma, Vijay K.; O'Dowd, Diane K.; Holmes, Todd C

    2007-01-01

    The ventral lateral neurons (LNvs) of adult Drosophila brain express oscillating clock proteins and regulate circadian behavior. Whole cell current-clamp recordings of large LNvs in freshly dissected Drosophila whole brain preparations reveal two spontaneous activity patterns that correlate with two underlying patterns of oscillating membrane potential: tonic and burst firing of sodium-dependent action potentials. Resting membrane potential and spontaneous action potential firing are rapidly ...

  12. Ontogeny of vestibular compound action potentials in the domestic chicken

    Jones, S. M.; Jones, T. A.

    2000-01-01

    Compound action potentials of the vestibular nerve were measured from the surface of the scalp in 148 chickens (Gallus domesticus). Ages ranged from incubation day 18 (E18) to 22 days posthatch (P22). Responses were elicited using linear acceleration cranial pulses. Response thresholds decreased at an average rate of -0.45 dB/day. The decrease was best fit by an exponential model with half-maturity time constant of 5.1 days and asymptote of approximately -25.9 dB re:1.0 g/ms. Mean threshold approached within 3 dB of the asymptote by ages P6-P9. Similarly, response latencies decreased exponentially to within 3% of mature values at ages beyond P9. The half-maturity time constant for peripheral response peak latencies P1, N1, and P2 was comparable to thresholds and ranged from approximately 4.6 to 6.2 days, whereas central peaks (N2, P3, and N3) ranged from 2.9 to 3.4 days. Latency-intensity slopes for P1, N1, and P2 tended to decrease with age, reaching mature values within approximately 100 hours of hatching. Amplitudes increased as a function of age with average growth rates for response peaks ranging from 0.04 to 0.09 microV/day. There was no obvious asymptote to the growth of amplitudes over the ages studied. Amplitude-intensity slopes also increased modestly with age. The results show that gravity receptors are responsive to transient cranial stimuli as early as E19 in the chicken embryo. The functional response of gravity receptors continues to develop for many days after all major morphological structures are in place. Distinct maturational processes can be identified in central and peripheral neural relays. Functional improvements during maturation may result from refinements in the receptor epithelia, improvements in central and peripheral synaptic transmission, increased neural myelination, as well as changes in the mechanical coupling between the cranium and receptor organ.

  13. Distribution of Action Potential Duration and T-wave Morphology: a Simulation Study

    Ryzhii, Elena; Wei, Daming

    2009-01-01

    The results of a simulation study of the action potential duration (APD) distribution and T-wave morphology taking into account the midmyocardial cells (M-cells) concept are described. To investigate the effect of M-cells we present a computer model in which ion channel action potential formulations are incorporated into three-dimensional whole heart model. We implemented inhomogeneous continuous action potential duration distribution based on different distributions of maximal slow delayed rectifier current conductance. Using the proposed action potential distribution procedure midmural zeniths with longest action potential length were created as islands of model cells in the depth of thickest areas of ventricular tissue. Different spatial functions on layer indexes were simulated and their influences on electrocardiogram waveforms were analyzed. Changing parameters of ion channel model we varied duration of minimal and maximal action potential and investigated T-wave amplitude, Q-Tpeak and QT intervals vari...

  14. Understanding the Electrical Behavior of the Action Potential in Terms of Elementary Electrical Sources

    Rodriguez-Falces, Javier

    2015-01-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However,…

  15. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals.

    Jackson, M B; Konnerth, A.; Augustine, G.J.

    1991-01-01

    Hormone release from nerve terminals in the neurohypophysis is a sensitive function of action potential frequency. We have investigated the cellular mechanisms responsible for this frequency-dependent facilitation by combining patch clamp and fluorimetric Ca2+ measurements in single neurosecretory terminals in thin slices of the rat posterior pituitary. In these terminals both action potential-induced changes in the intracellular Ca2+ concentration ([Ca2+]i) and action potential duration were...

  16. Effect of a prenylamine analog (MG8926) on spontaneous action potentials in isolated rabbit sinoatrial node.

    Nakanishi, H; Matsuoka, I; Ono, T; Yoshida, H; Uchibori, T; Kogi, K

    1996-12-01

    Effects of verapamil, prenylamine and a prenylamine analog, MG8926 on the intracellular spontaneous action potentials recorded from the isolated rabbit sinoatrial (SA) node were studied. Verapamil (1 microM), a selective inhibitor for slow Ca2+ channels, prolonged the cycle length, decreased the rate of diastolic depolarization, the rate of rise of action potential, the amplitude of action potential and the maximal diastolic potential, and usually arrested showing subthreshold fluctuation of the membrane potential within several ten min. Prenylamine (10 microM), a nonselective inhibitor for slow Ca2+ channels, tended to prolong the cycle length to decrease the diastolic depolarization, the rate of rise of action potential, the amplitude of action potential. However, these changes were statistically insignificant. Prenylamine at the concentration of 10 microM had no effect on the maximal diastolic potential. MG8926 (10 microM) prolonged the cycle length, decreased the rate of diastolic depolarization, the rate of rise of action potential and tended to decrease the amplitude of action potential. MG8926 at the concentration of 10 microM had almost no effect on the maximal diastolic potential. The present findings may indicate that replacement of phenyl residue of prenylamine by cyclohexyl residue increases the inhibitory action on the slow Ca2+ channels in rabbit SA node.

  17. Kv3.1 uses a timely resurgent K(+) current to secure action potential repolarization.

    Labro, Alain J; Priest, Michael F; Lacroix, Jérôme J; Snyders, Dirk J; Bezanilla, Francisco

    2015-12-17

    High-frequency action potential (AP) transmission is essential for rapid information processing in the central nervous system. Voltage-dependent Kv3 channels play an important role in this process thanks to their high activation threshold and fast closure kinetics, which reduce the neuron's refractory period. However, premature Kv3 channel closure leads to incomplete membrane repolarization, preventing sustainable AP propagation. Here, we demonstrate that Kv3.1b channels solve this problem by producing resurgent K(+) currents during repolarization, thus ensuring enough repolarizing power to terminate each AP. Unlike previously described resurgent Na(+) and K(+) currents, Kv3.1b's resurgent current does not originate from recovery of channel block or inactivation but results from a unique combination of steep voltage-dependent gating kinetics and ultra-fast voltage-sensor relaxation. These distinct properties are readily transferrable onto an orthologue Kv channel by transplanting the voltage-sensor's S3-S4 loop, providing molecular insights into the mechanism by which Kv3 channels contribute to high-frequency AP transmission.

  18. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.

    Biswa Sengupta

    Full Text Available The initiation and propagation of action potentials (APs places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na(+ and K(+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin-Huxley model of the squid axon, optimizing the kinetics or number of Na(+ and K(+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost.

  19. Latencies in action potential stimulation in a two-dimensional bidomain: A numerical simulation

    Barach, John Paul

    1991-05-01

    A numerical simulation is performed in which a uniform planar slab of idealized cardiac tissue is stimulated at the center. The cardiac slab is modeled as an anisotropic bidomain; within each domain current flow is determined by a forced diffusion equation in which the transmembrane current connecting the domains provides the forcing term. An action potential (AP) propagates outward after a time latency dependent upon the stimulus size and the physiological variables. Its isochrones are elliptical with an asymmetry that is a small fraction of the imposed asymmetry in resistivity. External voltages resemble the first derivative of those in the internal domain and tests with continuing stimuli exhibit a relaxation time of about 3 ms and space constants that agree with other work. The AP latency increases very strongly near threshold stimulus and decreases as the log (stimulus) for large stimuli in the ``virtual cathode'' range. Latencies in the longitudinal, transverse, and diagonal directions are found to be the same over a wide range of stimulus size and type.

  20. The Potential in General Linear Electrodynamics: Causal Structure, Propagators and Quantization

    Pfeifer, Christian

    2016-01-01

    An axiomatic approach to electrodynamics reveals that Maxwell electrodynamics is just one instance of a variety of theories for which the name electrodynamics is justified. They all have in common that their fundamental input are Maxwell's equations $\\textrm{d} F = 0$ (or $F = \\textrm{d} A$) and $\\textrm{d} H = J$ and a constitutive law $H = \\# F$ which relates the field strength two-form $F$ and the excitation two-form $H$. A local and linear constitutive law defines what is called general linear electrodynamics whose best known application are the effective description of electrodynamics inside media including, e.g., birefringence. We will analyze the classical theory of the electromagnetic potential $A$ before we use methods familiar from mathematical quantum field theory in curved spacetimes to quantize it in a locally covariant way. Our analysis of the classical theory contains the derivation of retarded and advanced propagators, the analysis of the causal structure on the basis of the constitutive law (...

  1. Electromagnetic potential in pre-metric electrodynamics: Causal structure, propagators and quantization

    Pfeifer, Christian; Siemssen, Daniel

    2016-05-01

    An axiomatic approach to electrodynamics reveals that Maxwell electrodynamics is just one instance of a variety of theories for which the name electrodynamics is justified. They all have in common that their fundamental input are Maxwell's equations d F =0 (or F =d A ) and d H =J and a constitutive law H =#F which relates the field strength two-form F and the excitation two-form H . A local and linear constitutive law defines what is called local and linear pre-metric electrodynamics whose best known application is the effective description of electrodynamics inside media including, e.g., birefringence. We analyze the classical theory of the electromagnetic potential A before we use methods familiar from mathematical quantum field theory in curved spacetimes to quantize it in a locally covariant way. Our analysis of the classical theory contains the derivation of retarded and advanced propagators, the analysis of the causal structure on the basis of the constitutive law (instead of a metric) and a discussion of the classical phase space. This classical analysis sets the stage for the construction of the quantum field algebra and quantum states. Here one sees, among other things, that a microlocal spectrum condition can be formulated in this more general setting.

  2. The potential in general linear electrodynamics. Causal structure, propagators and quantization

    Siemssen, Daniel [Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw (Poland); Pfeifer, Christian [Institute for Theoretical Physics, Leibniz Universitaet Hannover (Germany); Center of Applied Space Technology and Microgravity (ZARM), Universitaet Bremen (Germany)

    2016-07-01

    From an axiomatic point of view, the fundamental input for a theory of electrodynamics are Maxwell's equations dF=0 (or F=dA) and dH=J, and a constitutive law H=F, which relates the field strength 2-form F and the excitation 2-form H. In this talk we consider general linear electrodynamics, the theory of electrodynamics defined by a linear constitutive law. The best known application of this theory is the effective description of electrodynamics inside (linear) media (e.g. birefringence). We analyze the classical theory of the electromagnetic potential A before we use methods familiar from mathematical quantum field theory in curved spacetimes to quantize it. Our analysis of the classical theory contains the derivation of retarded and advanced propagators, the analysis of the causal structure on the basis of the constitutive law (instead of a metric) and a discussion of the classical phase space. This classical analysis sets the stage for the construction of the quantum field algebra and quantum states, including a (generalized) microlocal spectrum condition.

  3. Effect of Bohm quantum potential in the propagation of ion-acoustic waves in degenerate plasmas

    Hasan, M. M.; Hossen, M. A.; Rafat, A.; Mamun, A. A.

    2016-10-01

    A theoretical investigation has been carried out on the propagation of the ion-acoustic (IA) waves in a relativistic degenerate plasma containing relativistic degenerate electron and positron fluids in the presence of inertial non-relativistic light ion fluid. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and mixed mK-dV (mmK-dV) equations are derived by adopting the reductive perturbation method. In order to analyze the basic features (phase speed, amplitude, width, etc.) of the IA solitary waves (SWs), the SWs solutions of the K-dV, mK-dV, and mmK-dV are numerically analyzed. It is found that the degenerate pressure, inclusion of the new phenomena like the Fermi temperatures and quantum mechanical effects (arising due to the quantum diffraction) of both electrons and positrons, number densities, etc., of the plasma species remarkably change the basic characteristics of the IA SWs which are found to be formed either with positive or negative potential. The implication of our results in explaining different nonlinear phenomena in astrophysical compact objects, e.g., white dwarfs, neutron stars, etc., and laboratory plasmas like intense laser-solid matter interaction experiments, etc., are mentioned.

  4. On the excitation of action potentials by protons and its potential implications for cholinergic transmission

    Fillafer, Christian

    2014-01-01

    One of the most conserved mechanisms for transmission of a nerve pulse across a synapse relies on acetylcholine. Ever since the Nobel-prize winning works of Dale and Loewi, it has been assumed that acetylcholine - subsequent to its action on a postsynaptic cell - is split into inactive by-products by acetylcholinesterase. Herein, this widespread assumption is falsified. Excitable cells (Chara australis internodes), which had previously been unresponsive to acetylcholine, became acetylcholine-sensitive in presence of acetylcholinesterase. The latter was evidenced by a striking difference in cell membrane depolarisation upon exposure to 10 mM intact acetylcholine (deltaV=-2plus/minus5 mV) and its hydrolysate respectively (deltaV=81plus/minus19 mV) for 60 sec. This pronounced depolarization, which also triggered action potentials, was clearly attributed to one of the hydrolysis products: acetic acid (deltaV=87plus/minus9 mV at pH 4.0; choline ineffective in range 1-10 mM). In agreement with our findings, numerou...

  5. Propagation of uncertainties for an evaluation of the Azores-Gibraltar Fracture Zone tsunamigenic potential

    Antoshchenkova, Ekaterina; Imbert, David; Richet, Yann; Bardet, Lise; Duluc, Claire-Marie; Rebour, Vincent; Gailler, Audrey; Hébert, Hélène

    2016-04-01

    The aim of this study is to assess evaluation the tsunamigenic potential of the Azores-Gibraltar Fracture Zone (AGFZ). This work is part of the French project TANDEM (Tsunamis in the Atlantic and English ChaNnel: Definition of the Effects through numerical Modeling; www-tandem.cea.fr), special attention is paid to French Atlantic coasts. Structurally, the AGFZ region is complex and not well understood. However, a lot of its faults produce earthquakes with significant vertical slip, of a type that can result in tsunami. We use the major tsunami event of the AGFZ on purpose to have a regional estimation of the tsunamigenic potential of this zone. The major reported event for this zone is the 1755 Lisbon event. There are large uncertainties concerning source location and focal mechanism of this earthquake. Hence, simple deterministic approach is not sufficient to cover on the one side the whole AGFZ with its geological complexity and on the other side the lack of information concerning the 1755 Lisbon tsunami. A parametric modeling environment Promethée (promethee.irsn.org/doku.php) was coupled to tsunami simulation software based on shallow water equations with the aim of propagation of uncertainties. Such a statistic point of view allows us to work with multiple hypotheses simultaneously. In our work we introduce the seismic source parameters in a form of distributions, thus giving a data base of thousands of tsunami scenarios and tsunami wave height distributions. Exploring our tsunami scenarios data base we present preliminary results for France. Tsunami wave heights (within one standard deviation of the mean) can be about 0.5 m - 1 m for the Atlantic coast and approaching 0.3 m for the English Channel.

  6. Making Class Actions Work: The Untapped Potential of the Internet

    Robert H. Klonoff

    2008-04-01

    Full Text Available Over twenty years ago, the Supreme Court recognized that in class action litigation, absent class members “must receive notice plus an opportunity to be heard and participate in the litigation, whether in person or through counsel.” Although the absent class members’ rights to receive notice and an opportunity to opt out are of vital importance, the ability to be heard and participate in the litigation are also important.

  7. Triangulation of the monophasic action potential causes flattening of the electrocardiographic T-wave

    Bhuiyan, Tanveer Ahmed; Graff, Claus; Thomsen, Morten Bækgaard

    2012-01-01

    of the action potential under the effect of the IKr blocker sertindole and associated these changes to concurrent changes in the morphology of electrocardiographic T-waves in dogs. We show that, under the effect of sertindole, the peak changes in the morphology of action potentials occur at time points similar...

  8. Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons.

    Colbert, C M; Magee, J C; Hoffman, D A; Johnston, D

    1997-09-01

    Na+ action potentials propagate into the dendrites of pyramidal neurons driving an influx of Ca2+ that seems to be important for associative synaptic plasticity. During repetitive (10-50 Hz) firing, dendritic action potentials display a marked and prolonged voltage-dependent decrease in amplitude. Such a decrease is not apparent in somatic action potentials. We investigated the mechanisms of the different activity dependence of somatic and dendritic action potentials in CA1 pyramidal neurons of adult rats using whole-cell and cell-attached patch-clamp methods. There were three main findings. First, dendritic Na+ currents decreased in amplitude when repeatedly activated by brief (2 msec) depolarizations. Recovery was slow and voltage-dependent. Second, Na+ currents decreased much less in somatic than in dendritic patches. Third, although K+ currents remained constant during trains, K+ currents were necessary for dendritic action potential amplitude to decrease in whole-cell experiments. These results suggest that regional differences in Na+ and K+ channels determine the differences in the activity dependence of somatic and dendritic action potential amplitudes.

  9. Prolonged modification of action potential shape by synaptic inputs in molluscan neurones.

    Winlow, W

    1985-01-01

    1. Somatic action potentials of Lymnaea neurons are modified by excitatory or inhibitory synaptic inputs and have been studied using phase-plane techniques and an action potential duration monitor. 2. Excitatory synaptic inputs increase the rate of neuronal discharge, cause action potential broadening, a decrease in the maximum rate of depolarization (Vd) and a decrease in the maximum rate of repolarization (Vr). 3. Inhibitory synaptic inputs decrease the discharge rate and cause narrowing of action potentials, an increase in Vd and an increase in Vr. 4. The effects reported above outlast the original synaptic inputs by many seconds and, if the somatic action potentials are similar to those in the axon terminals, they may have far-reaching effects on transmitter release.

  10. Consumer-Related Food Waste: Causes and Potential for Action

    Jessica Aschemann-Witzel

    2015-05-01

    Full Text Available In the past decade, food waste has received increased attention on both academic and societal levels. As a cause of negative economic, environmental and social effects, food waste is considered to be one of the sustainability issues that needs to be addressed. In developed countries, consumers are one of the biggest sources of food waste. To successfully reduce consumer-related food waste, it is necessary to have a clear understanding of the factors influencing food waste-related consumer perceptions and behaviors. The present paper presents the results of a literature review and expert interviews on factors causing consumer-related food waste in households and supply chains. Results show that consumers’ motivation to avoid food waste, their management skills of food provisioning and food handling and their trade-offs between priorities have an extensive influence on their food waste behaviors. We identify actions that governments, societal stakeholders and retailers can undertake to reduce consumer-related food waste, highlighting that synergistic actions between all parties are most promising. Further research should focus on exploring specific food waste contexts and interactions more in-depth. Experiments and interventions in particular can contribute to a shift from analysis to solutions.

  11. Neuronal oscillations enhance stimulus discrimination by ensuring action potential precision

    Schaefer, Andreas T; Angelo, Kamilla; Spors, Hartwig

    2006-01-01

    Although oscillations in membrane potential are a prominent feature of sensory, motor, and cognitive function, their precise role in signal processing remains elusive. Here we show, using a combination of in vivo, in vitro, and theoretical approaches, that both synaptically and intrinsically gene......, membrane potential oscillations dramatically enhance the discriminatory capabilities of individual neurons and networks of cells and provide one attractive explanation for their abundance in neurophysiological systems....

  12. Theoretical Study on the Propagation of Acoustic Phonon Modes in Single-Wall Carbon Nanotubes by Different Potential Models

    CAO Bing; ZHANG Wei; HUAI Ping; ZHU Zhi-Yuan

    2009-01-01

    Propagation of a heat pulse in (10,0) zig-zag carbon nanotubes,modeled by the Brenner-Ⅱ and Tersoff bondorder potentials,respectively,is investigated using a molecular dynamics simulation.The longitudinal acoustic mode,twisting phonon mode,and second sound waves are observed in the simulation.The time variations of speed and intensity of the above three phonon modes are in good agreement with the previous works based on the Brenner-Ⅰ potential.Higher speed and weaker peak intensity are observed in the simulation of the Tersoff potential.The inherent over-binding of radicals and the non-local effects in Tersoff's covalent-bonding formula may play an important role in the heat pulse propagating simulation.

  13. Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons

    Lee, Philip R.; Cohen, Jonathan E.; Iacobas, Dumitru A.; Iacobas, Sanda; Fields, R. Douglas

    2017-01-01

    Gene regulatory networks underlie the long-term changes in cell specification, growth of synaptic connections, and adaptation that occur throughout neonatal and postnatal life. Here we show that the transcriptional response in neurons is exquisitely sensitive to the temporal nature of action potential firing patterns. Neurons were electrically stimulated with the same number of action potentials, but with different inter-burst intervals. We found that these subtle alterations in the timing of action potential firing differentially regulates hundreds of genes, across many functional categories, through the activation or repression of distinct transcriptional networks. Our results demonstrate that the transcriptional response in neurons to environmental stimuli, coded in the pattern of action potential firing, can be very sensitive to the temporal nature of action potential delivery rather than the intensity of stimulation or the total number of action potentials delivered. These data identify temporal kinetics of action potential firing as critical components regulating intracellular signalling pathways and gene expression in neurons to extracellular cues during early development and throughout life. PMID:28256583

  14. Potential synergy of phytochemicals in cancer prevention: mechanism of action.

    Liu, Rui Hai

    2004-12-01

    Epidemiological studies have consistently shown that regular consumption of fruits and vegetables is strongly associated with reduced risk of developing chronic diseases, such as cancer and cardiovascular disease. It is now widely believed that the actions of the antioxidant nutrients alone do not explain the observed health benefits of diets rich in fruits and vegetables, because taken alone, the individual antioxidants studied in clinical trials do not appear to have consistent preventive effects. Work performed by our group and others has shown that fruits and vegetable phytochemical extracts exhibit strong antioxidant and antiproliferative activities and that the major part of total antioxidant activity is from the combination of phytochemicals. We proposed that the additive and synergistic effects of phytochemicals in fruits and vegetables are responsible for these potent antioxidant and anticancer activities and that the benefit of a diet rich in fruits and vegetables is attributed to the complex mixture of phytochemicals present in whole foods. This explains why no single antioxidant can replace the combination of natural phytochemicals in fruits and vegetables to achieve the health benefits. The evidence suggests that antioxidants or bioactive compounds are best acquired through whole-food consumption, not from expensive dietary supplements. We believe that a recommendation that consumers eat 5 to 10 servings of a wide variety of fruits and vegetables daily is an appropriate strategy for significantly reducing the risk of chronic diseases and to meet their nutrient requirements for optimum health.

  15. Alterations in nerve and muscle compound action potentials after acute acrylamide administration.

    Anderson, R. J.

    1982-01-01

    The early deficits of neurotoxicity induced by acrylamide were examined in rats by comparing nerve and muscle action potentials before and 24 hr after exposure to acrylamide (25, 50 or 100 mg/kg). No changes were seen in the nerve action potential amplitude or duration. The 25 mg/kg dose produced a more variable nerve conduction velocity. There was also a significant broadening of the muscle compound action potential. Neither of these effects were seen in the fasted controls. However, the len...

  16. Consequences of converting graded to action potentials upon neural information coding and energy efficiency.

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na(+) and K(+) channels, with generator potential and graded potential models lacking voltage-gated Na(+) channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na(+) channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a 'footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.

  17. Antioxidant properties of melatonin and its potential action in diseases.

    Karaaslan, Cigdem; Suzen, Sibel

    2015-01-01

    In recent years, relationship between free radicals and oxidative stress with aging, cancer, atherosclerosis, neurodegenerative disorders, diabetes, and inflammatory diseases became increasingly clear. Confirming the role of oxidants in numerous pathological conditions such as cancer, the antioxidants developed as therapeutics have been proven ineffective. It is well established that melatonin (MLT) and its metabolites are able to function as endogenous free-radical scavengers and broadspectrum antioxidants. Numerous studies also proved the role of MLT and its derivatives in many physiological processes and therapeutic functions, such as the regulation of circadian rhythm and immune functions. The aim of this review is to arouse attention to MLT as a potentially valuable agent in the prevention and/or treatment of some diseases.

  18. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Reporting potential natural disasters and initial... Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose. The purpose of reporting potential natural disasters is to provide a systematic procedure for rapid...

  19. Spatial and frequency domain ring source models for the single muscle fiber action potential

    Henneberg, Kaj-åge; R., Plonsey

    1994-01-01

    In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...

  20. Control of Secretion by Encodes of Action Potentials in Neuronal Cells

    Kailai Duan; Zhuan Zhou

    2003-01-01

    @@ Action potentials (APs) are principle physiological stimuli of neurotransmitter secretion or synaptic transmis sion. Most studies on stimulus-secretion-coupling have been performed under voltage clamp using artificial electric stimulations.

  1. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy.

    Kole, Maarten H P; Letzkus, Johannes J; Stuart, Greg J

    2007-08-16

    Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits.

  2. Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones.

    Kim, Jinhyun; Wei, Dong-Sheng; Hoffman, Dax A

    2005-11-15

    A-type potassium channels regulate neuronal firing frequency and the back-propagation of action potentials (APs) into dendrites of hippocampal CA1 pyramidal neurones. Recent molecular cloning studies have found several families of voltage-gated K(+) channel genes expressed in the mammalian brain. At present, information regarding the relationship between the protein products of these genes and the various neuronal functions performed by voltage-gated K(+) channels is lacking. Here we used a combination of molecular, electrophysiological and imaging techniques to show that one such gene, Kv4.2, controls AP half-width, frequency-dependent AP broadening and dendritic action potential propagation. Using a modified Sindbis virus, we expressed either the enhanced green fluorescence protein (EGFP)-tagged Kv4.2 or an EGFP-tagged dominant negative mutant of Kv4.2 (Kv4.2g(W362F)) in CA1 pyramidal neurones of organotypic slice cultures. Neurones expressing Kv4.2g(W362F) displayed broader action potentials with an increase in frequency-dependent AP broadening during a train compared with control neurones. In addition, Ca(2)(+) imaging of Kv4.2g(W362F) expressing dendrites revealed enhanced AP back-propagation compared to control neurones. Conversely, neurones expressing an increased A-type current through overexpression of Kv4.2 displayed narrower APs with less frequency dependent broadening and decreased dendritic propagation. These results point to Kv4.2 as the major contributor to the A-current in hippocampal CA1 neurones and suggest a prominent role for Kv4.2 in regulating AP shape and dendritic signalling. As Ca(2)(+) influx occurs primarily during AP repolarization, Kv4.2 activity can regulate cellular processes involving Ca(2)(+)-dependent second messenger cascades such as gene expression and synaptic plasticity.

  3. Propagation of singularities for Schr\\"odinger equations with modestly long range type potentials

    2013-01-01

    In a previous paper by the second author, we discussed a characterization of the microlocal singularities for solutions to Schr\\"odinger equations with long range type perturbations, using solutions to a Hamilton-Jacobi equation. In this paper we show that we may use Dollard type approximate solutions to the Hamilton-Jacobi equation if the perturbation satisfies somewhat stronger conditions. As applications, we describe the propagation of microlocal singularities for $e^{itH_0}e^{-itH}$ when ...

  4. Epidermal Laser Stimulation of Action Potentials in the Frog Sciatic Nerve

    2008-10-01

    Laser Stimulation of Action Potentials in the Frog Sciatic Nerve Nichole M. Jindra Robert J. Thomas Human Effectiveness Directorate Directed...in the Frog Sciatic Nerve 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S) .Nichole M. Jindra, Robert J. Thomas, Douglas N...Alan Rice 14. ABSTRACT Measurements of laser stimulated action potentials in the sciatic nerve of leopard frogs (Rana pipiens) were made using

  5. Uniform Action Potential Repolarization within the Sarcolemma of In Situ Ventricular Cardiomyocytes

    Bu, Guixue; Adams, Heather; Berbari, Edward J.; Rubart, Michael

    2009-01-01

    Previous studies have speculated, based on indirect evidence, that the action potential at the transverse (t)-tubules is longer than at the surface membrane in mammalian ventricular cardiomyocytes. To date, no technique has enabled recording of electrical activity selectively at the t-tubules to directly examine this hypothesis. We used confocal line-scan imaging in conjunction with the fast response voltage-sensitive dyes ANNINE-6 and ANNINE-6plus to resolve action potential-related changes ...

  6. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals.

    Jackson, M B; Konnerth, A; Augustine, G J

    1991-01-15

    Hormone release from nerve terminals in the neurohypophysis is a sensitive function of action potential frequency. We have investigated the cellular mechanisms responsible for this frequency-dependent facilitation by combining patch clamp and fluorimetric Ca2+ measurements in single neurosecretory terminals in thin slices of the rat posterior pituitary. In these terminals both action potential-induced changes in the intracellular Ca2+ concentration ([Ca2+]i) and action potential duration were enhanced by high-frequency stimuli, all with a frequency dependence similar to that of hormone release. Furthermore, brief voltage clamp pulses inactivated a K+ current with a very similar frequency dependence. These results support a model for frequency-dependent facilitation in which the inactivation of a K+ current broadens action potentials, leading to an enhancement of [Ca2+]i signals. Further experiments tested for a causal relationship between action potential broadening and facilitation of [Ca2+]i changes. First, increasing the duration of depolarization, either by broadening action potentials with the K(+)-channel blocker tetraethylammonium or by applying longer depolarizing voltage clamp steps, increased [Ca2+]i changes. Second, eliminating frequency-dependent changes in duration, by voltage clamping the terminal with constant duration pulses, substantially reduced the frequency-dependent enhancement of [Ca2+]i changes. These results indicate that action potential broadening contributes to frequency-dependent facilitation of [Ca2+]i changes. However, the small residual frequency dependence of [Ca2+]i changes seen with constant duration stimulation suggests that a second process, distinct from action potential broadening, also contributes to facilitation. These two frequency-dependent mechanisms may also contribute to activity-dependent plasticity in synaptic terminals.

  7. Laser-Based Propagation of Human iPS and ES Cells Generates Reproducible Cultures with Enhanced Differentiation Potential

    Kristi A. Hohenstein Elliott

    2012-01-01

    Full Text Available Proper maintenance of stem cells is essential for successful utilization of ESCs/iPSCs as tools in developmental and drug discovery studies and in regenerative medicine. Standardization is critical for all future applications of stem cells and necessary to fully understand their potential. This study reports a novel approach for the efficient, consistent expansion of human ESCs and iPSCs using laser sectioning, instead of mechanical devices or enzymes, to divide cultures into defined size clumps for propagation. Laser-mediated propagation maintained the pluripotency, quality, and genetic stability of ESCs/iPSCs and led to enhanced differentiation potential. This approach removes the variability associated with ESC/iPSC propagation, significantly reduces the expertise, labor, and time associated with manual passaging techniques and provides the basis for scalable delivery of standardized ESC/iPSC lines. Adoption of standardized protocols would allow researchers to understand the role of genetics, environment, and/or procedural effects on stem cells and would ensure reproducible production of stem cell cultures for use in clinical/therapeutic applications.

  8. Detection of Variability of the Motor Unit Action Potential Shape by Means of the Firing Patterns

    Krarup, Christian; Nikolic, Mile; Dahl, Kristian;

    1997-01-01

    The motor unit action potential is a summation of the potentials of the individual muscle fibers from the same motor unit.By using a newly developed automatic EMG decomposition system, variability of the firing patterns of the muscle fibers are analyzed.......The motor unit action potential is a summation of the potentials of the individual muscle fibers from the same motor unit.By using a newly developed automatic EMG decomposition system, variability of the firing patterns of the muscle fibers are analyzed....

  9. Variations in retrieval monitoring during action memory judgments: evidence from event-related potentials (ERPs).

    Leynes, P Andrew; Kakadia, Bhavika

    2013-02-01

    The present study investigated the neuroscience of memory for actions using event-related potentials (ERPs). Actions were performed, initiated but not completed (i.e., interrupted), or watched while the experimenter performed the action during encoding. Memory was assessed in a reality monitoring (RM) test (performed vs. watched actions), as well as in an internal source monitoring (ISM) test (performed vs. interrupted) while ERPs were recorded. Behavioral measures provided evidence of robust old/new recognition for all actions, but the analysis of source errors revealed that interrupted actions were often confused with performed actions. The ERP correlate of recollection, the parietal "old/new" effect (700-900ms), was observed for all actions. The right frontal "old/new" effect (1500-1800ms) that correlates with general memory monitoring was observed in RM but not in ISM. Instead, ISM was associated with the late posterior negativity (LPN) that has been connected to more specific memory monitoring. This pattern of ERP findings suggest that, in this context, general monitoring was used to discriminate self- versus other-performed actions, whereas more specific monitoring was required to support the discrimination of completed and interrupted actions. We argue that the mix of general/specific monitoring processes is shaped by the global retrieval context, which includes the number of memory features that overlap and the combination of sources being considered among other factors.

  10. Non-linear propagation of laser beam and focusing due to self-action in optical fiber: Non-paraxial approach

    R K Khanna; R C Chouhan

    2003-10-01

    A somewhat more general analysis for solving spatial propagation characteristics of intense Gaussian beam is presented and applied to the laser beam propagation in step-index profile as well as parabolic profile dielectric fibers with Kerr non-linearity. Considering self-action due to saturating and non-saturating non-linearity in the refractive index, a general theory has been developed without any kind of power series expansion for the dielectric constant as is usually done in other theories that make use of paraxial approximation. Result of the steady state self-focusing analysis indicates that the Kerr non-linearity acts as a perturbation on the radial inhomogeneity due to fiber geometry. Analysis indicates that the paraxial rays and peripheral rays focus at different points, indicating aberration effect. Calculated critical power matches with the experimentally reported result.

  11. Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism.

    Ahmed, Zaghloul; Wieraszko, Andrzej

    2015-07-01

    This paper investigates the influence of pulsed magnetic fields (PMFs) on amplitude of evoked, compound action potential (CAP) recorded from the segments of sciatic nerve in vitro. PMFs were applied for 30 min at frequency of 0.16 Hz and intensity of 15 mT. In confirmation of our previous reports, PMF exposure enhanced amplitude of CAPs. The effect persisted beyond PMF activation period. As expected, CAP amplitude was attenuated by antagonists of sodium channel, lidocaine, and tetrodotoxin. Depression of the potential by sodium channels antagonists was reversed by subsequent exposure to PMFs. The effect of elevated potassium concentration and veratridine on the action potential was modified by exposure to PMFs as well. Neither inhibitors of protein kinase C and protein kinase A, nor known free radicals scavengers had any effects on PMF action. Possible mechanisms of PMF action are discussed.

  12. Action-space clustering of tidal streams to infer the Galactic potential

    Sanderson, Robyn E; Hogg, David W

    2014-01-01

    We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires full three-dimensional positions and velocities for all stars in the streams, but does not require identification of any specific stream, nor determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered---that is, most informative---when the potential used to calculate the actions is closest to the true potential. We measure the amount of clustering with the Kullback-Leibler Divergence (KLD) or relative entropy, a statistical measure of information which also provides uncertainties for our parameter estimates. We show, for toy Gaia-like data in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the true values of the potential parameters. The precision depends on the observational errors and the number and...

  13. Effect of an educational game on university students' learning about action potentials.

    Luchi, Kelly Cristina Gaviao; Montrezor, Luís Henrique; Marcondes, Fernanda K

    2017-06-01

    The aim of this study was to evaluate the effect of an educational game that is used for teaching the mechanisms of the action potentials in cell membranes. The game was composed of pieces representing the intracellular and extracellular environments, ions, ion channels, and the Na(+)-K(+)-ATPase pump. During the game activity, the students arranged the pieces to demonstrate how the ions move through the membrane in a resting state and during an action potential, linking the ion movement with a graph of the action potential. To test the effect of the game activity on student understanding, first-year dental students were given the game to play at different times in a series of classes teaching resting membrane potential and action potentials. In all experiments, students who played the game performed better in assessments. According to 98% of the students, the game supported the learning process. The data confirm the students' perception, indicating that the educational game improved their understanding about action potentials.

  14. Effects of acetylcholine and noradrenalin on action potentials of isolated rabbit sinoatrial and atrial myocytes

    Arie O. Verkerk

    2012-05-01

    Full Text Available The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh and noradrenalin (NA as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signalling proteins (RGS proteins suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 µM ACh and 1 µM NA on the intrinsic action potentials of sinotrial (SA nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1–1,000 nM, while a clear-cut frequency dependence in the range of 1–4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA or a combination of both and may thus guide further experiments with RGS proteins.

  15. Frequency-dependent action potential prolongation in Aplysia pleural sensory neurones.

    Edstrom, J P; Lukowiak, K D

    1985-10-01

    The effects of repetitive activity on action-potential shape in Aplysia californica pleural sensory cells are described. Action potentials were evoked by intracellular current injection at frequencies between 7.41 and 0.2 Hz. In contrast to other molluscan neurons having brief action potentials, it was found that at these firing rates the normally brief action potential develops a prominent shoulder or plateau during the repolarization phase. Higher stimulus rates broaden the action potential more rapidly and to a greater extent than lower stimulus rates. Inactivation is slow relative to activation; effects of 3-s 6-Hz trains are detectable after 1 min rest. The amplitude of the plateau voltage reaches a maximum of 50-70 mV at the highest stimulus rates tested. Frequency-dependent increases in action-potential duration measured at half-amplitude normally range between 6 and 15 ms. Cadmium, at concentrations between 0.05 and 0.5 mM, antagonizes frequency-dependent broadening. The increases in duration induced by repetitive activity are more sensitive to cadmium than are the increases in plateau amplitude. Tetraethylammonium, at concentrations between 0.5 and 10 mM, slightly increases the duration and amplitude of single action potentials. During repetitive activity at high stimulus rates the maximum duration and rate of broadening are both increased but the amplitude of the plateau potential is not affected by these tetraethylammonium concentrations. Above 10 mM, tetraethylammonium greatly increases the duration and amplitude of single action potentials as well as the rates of action-potential duration and amplitude increase during repetitive activity. These high tetraethylammonium concentrations also cause the normally smoothly increasing duration and amplitude to reach a maximum value early in a train and then decline slowly during the remainder of the train. The consequences of frequency-dependent spike broadening in these neurons have not yet been investigated

  16. Perturbation analysis of spontaneous action potential initiation by stochastic ion channels

    Keener, James P.

    2011-07-01

    A stochastic interpretation of spontaneous action potential initiation is developed for the Morris-Lecar equations. Initiation of a spontaneous action potential can be interpreted as the escape from one of the wells of a double well potential, and we develop an asymptotic approximation of the mean exit time using a recently developed quasistationary perturbation method. Using the fact that the activating ionic channel\\'s random openings and closings are fast relative to other processes, we derive an accurate estimate for the mean time to fire an action potential (MFT), which is valid for a below-threshold applied current. Previous studies have found that for above-threshold applied current, where there is only a single stable fixed point, a diffusion approximation can be used. We also explore why different diffusion approximation techniques fail to estimate the MFT. © 2011 American Physical Society.

  17. Sodium and calcium currents shape action potentials in immature mouse inner hair cells.

    Marcotti, Walter; Johnson, Stuart L; Rusch, Alfons; Kros, Corne J

    2003-11-01

    Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both alpha1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at -71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency.

  18. Myeloperoxidase propagates damage and is a potential therapeutic target for subacute stroke.

    Forghani, Reza; Kim, Hyeon Ju; Wojtkiewicz, Gregory R; Bure, Lionel; Wu, Yue; Hayase, Makoto; Wei, Ying; Zheng, Yi; Moskowitz, Michael A; Chen, John W

    2015-03-01

    Few effective treatment options exist for stroke beyond the hyperacute period. Radical generation and myeloperoxidase (MPO) have been implicated in stroke. We investigated whether pharmacologic reduction or gene deletion of this highly oxidative enzyme reduces infarct propagation and improves outcome in the transient middle cerebral artery occlusion mouse model (MCAO). Mice were treated with 4-aminobenzoic acid hydrazide (ABAH), a specific irreversible MPO inhibitor. Three treatment regimens were used: (1) daily throughout the 21-day observational period, (2) during the acute stage (first 24 hours), or (3) during the subacute stage (daily starting on day 2). We found elevated MPO activity in ipsilateral brain 3 to 21 days after ischemia. 4-Aminobenzoic acid hydrazide reduced enzyme activity by 30% to 40% and final lesion volume by 60% (Pafter 24 hours of stroke onset.

  19. Docosahexaenoic acid has influence on action potentials and transient outward potassium currents of ventricular myocytes

    Yang Zhen-Yu

    2010-04-01

    Full Text Available Abstract Background There are many reports about the anti-arrhythmic effects of ω-3 polyunsaturated fatty acids, however, the mechanisms are still not completely delineated. The purpose of this study was to investigate the characteristics of action potentials and transient outward potassium currents (Ito of Sprague-Dawley rat ventricular myocytes and the effects of docosahexaenoic acid (DHA on action potentials and Ito. Methods The calcium-tolerant rat ventricular myocytes were isolated by enzyme digestion. Action potentials and Ito of epicardial, mid-cardial and endocardial ventricular myocytes were recorded by whole-cell patch clamp technique. Results 1. Action potential durations (APDs were prolonged from epicardial to endocardial ventricular myocytes (P 2. Ito current densities were decreased from epicardial to endocardial ventricular myocytes, which were 59.50 ± 15.99 pA/pF, 29.15 ± 5.53 pA/pF, and 12.29 ± 3.62 pA/pF, respectively at +70 mV test potential (P 3. APDs were gradually prolonged with the increase of DHA concentrations from 1 μmol/L to 100 μmol/L, however, APDs changes were not significant as DHA concentrations were in the range of 0 μmol/L to 1 μmol/L. 4. Ito currents were gradually reduced with the increase of DHA concentrations from 1 μmol/L to 100 μmol/L, and its half-inhibited concentration was 5.3 μmol/L. The results showed that there were regional differences in the distribution of action potentials and Ito in rat epicardial, mid-cardial and endocardial ventricular myocytes. APDs were prolonged and Ito current densities were gradually reduced with the increase of DHA concentrations. Conclusion The anti-arrhythmia mechanisms of DHA are complex, however, the effects of DHA on action potentials and Ito may be one of the important causes.

  20. Modeling and simulation of ion channels and action potentials in taste receptor cells

    CHEN PeiHua; LIU Xiaodong; ZHANG Wei; ZHOU Jun; WANG Ping; YANG Wei; LUO JianHong

    2009-01-01

    Based on patch clamp data on the ionic currents of rat taste receptor cells,a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components,including voltage-gated Na~+ currents and outward delayed rectifier K~+ currents.Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants.The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed.Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.

  1. Modeling and simulation of ion channels and action potentials in taste receptor cells

    2009-01-01

    Based on patch clamp data on the ionic currents of rat taste receptor cells, a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components, including voltage-gated Na+ currents and outward delayed rectifier K+ currents. Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants. The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed. Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.

  2. Optical magnetic detection of single-neuron action potentials using NV-diamond

    Turner, Matthew; Barry, John; Schloss, Jennifer; Glenn, David; Walsworth, Ron

    2016-05-01

    A key challenge for neuroscience is noninvasive, label-free sensing of action potential dynamics in whole organisms with single-neuron resolution. Here, we report a new approach to this problem: using nitrogen-vacancy (NV) color centers in diamond to measure the time-dependent magnetic fields produced by single-neuron action potentials. We demonstrate our method using excised single neurons from two invertebrate species, marine worm and squid; and then by single-neuron action potential magnetic sensing exterior to whole, live, opaque marine worms for extended periods with no adverse effect. The results lay the groundwork for real-time, noninvasive 3D magnetic mapping of functional mammalian neuronal networks.

  3. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  4. Attenuation by phentolamine of hypoxia and levcromakalim-induced abbreviation of the cardiac action potential.

    Tweedie, D.; Boachie-Anash, G.; Henderson, C. G.; Kane, K. A.

    1993-01-01

    1. The effects of phentolamine (5-30 microM) and glibenclamide (10 microM) on action potential characteristics were examined in guinea-pig papillary muscle exposed to either hypoxia or levcromakalim (20 microM). 2. The hypoxia-induced abbreviation of action potential duration (APD) and effective refractory period (ERP) were attenuated but not abolished by glibenclamide (10 microM). Hypoxia reduced APD by 24 +/- 2 vs 65 +/- 4% in glibenclamide- and vehicle-treated tissue, respectively. 3. Phen...

  5. Differential effects of thioridazine enantiomers on action potential duration in rabbit papillary muscle

    Jensen, A. S.; Pennisi, C. P.; Sevcencu, C.;

    2015-01-01

    with (+)-thioridazine. In this study we for the first time investigate the cardiotoxicity of the isolated thioridazine enantiomers and show their effects on ventricular repolarization. The effects of (+)-thioridazine, (-)-thioridazine, and racemate on the rabbit ventricular action potential duration (APD) were...... investigated in a randomized controlled blinded experiment. Action potentials were measured in papillary muscles isolated from 21 female rabbits, and the drug effect on 90% APD in comparison with control (DeltaDelta-APD90) was evaluated. Increasing concentrations of (+)-thioridazine and the racemate caused...

  6. Effects of some heavy metals on the action potentials of an identified Helix pomatia photosensitive neuron.

    Kartelija, Gordana; Radenović, Lidija; Todorović, Natasa; Nedeljković, Miodrag

    2005-06-01

    In the photosensitive MB neuron in the left parietal ganglion of Helix pomatia, the onset of light prolongs significantly (by about 40%) the duration of the action potential. The broadening of the action potential after the onset of light was found to be due to its calcium component and could not be induced after blocking Ca(2+) channels by Cd(2+) and Pb(2+) and in absence of Ca(2+) in medium. The blocking effect of both compounds was reversible. It was found that CdCl(2) exhibited a more intense blocking effect than PbCl(2).

  7. Corrosion of Steel in Concrete – Potential Monitoring and Electrochemical Impedance Spectroscopy during Corrosion Initiation and Propagation

    Küter, Andre; Mason, Thomas O.; Geiker, Mette Rica;

    2005-01-01

    A reinforced mortar specimen that allows potential measurements and electrochemical impedance spectroscopy (EIS) immediately after preparation was designed and tested. The specimen consists of a mortar cylinder with a central rebar and a concentric arrangement of embedded Ru/Ir activated titanium...... and titanium wires can be monitored immediately after preparation. The wire arrangement also allows investigation of local changes in the bulk mortar by EIS or by measuring the potential development of the titanium wires versus an external standard electrode. The specimen design was evaluated...... in an investigation on the effect of the steel quality and the steel surface properties on initiation and propagation of chloride-induced reinforcement corrosion. Besides untreated (as received) carbon rebars and stainless rebars, selected surface treatments and galvanization were investigated. The surface treatments...

  8. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  9. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected.

  10. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi, E-mail: kumamote@cc.saga-u.ac.jp

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  11. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2

    Grubb, Søren Jahn; Aistrup, Gary L; Koivumäki, Jussi T

    2015-01-01

    Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions...

  12. Ca2+ involvement in the action potential generation of myenteric neurones in the rat oesophagus.

    De Laet, A; Cornelissen, W; Adriaensen, D; Van Bogaert, P-P; Scheuermann, D W; Timmermans, J-P

    2002-04-01

    Intracellular recordings were used to study the physiological behaviour of rat oesophageal myenteric neurones, which are embedded in striated muscle. Injection of depolarizing pulses evoked action potentials with a clear 'shoulder' in all neurones. This shoulder disappeared under low Ca2+/high Mg2+ conditions. Tetrodotoxin (TTX; 1 micromol L-1) did not impede spike firing, whereas under combined TTX and low Ca2+/high Mg2+ conditions the action potentials were completely abolished, indicating that TTX- resistant action potentials are mediated by a Ca2+ current. Further experiments with omega-conotoxin GVIA (100 nmol L-1) revealed that these Ca2+ currents enter the cell via N-type voltage-activated Ca2+ channels (see also accompanying paper). Tetraethylammonium (10 mmol L-1) caused broadening of the action potentials, which probably resulted from prolonged Ca2+ influx due to blockade of the delayed rectifier K+ channel. Although Ca2+ appears to be involved in the spike generation of all rat oesophageal myenteric neurones, only a minority (14%) shows a slow afterhyperpolarization. Thus, no strict correlation exists between the presence of a shoulder and a slow afterhyperpolarization. Furthermore, morphological identification of 25 of the impaled neurones revealed that there was no strict correlation between morphology and electrophysiological behaviour. Consequently, rat oesophageal myenteric neurones appear to differ in several aspects from myenteric neurones in smooth muscle regions of the gastrointestinal tract.

  13. Youth Participatory Action Research and Educational Transformation: The Potential of Intertextuality as a Methodological Tool

    Bertrand, Melanie

    2016-01-01

    In this article, Melanie Bertrand explores the potential of using the concept of intertextuality--which captures the way snippets of written or spoken text from one source become incorporated into other sources--in the study and practice of youth participatory action research (YPAR). Though this collective and youth-centered form of research…

  14. Zinc-dependent action potentials in giant neurons of the snail, Euhadra quaestia.

    Kawa, K

    1979-09-14

    In giant neurons of subesophageal ganglion of the Japanese land snail, Euhadra quaestia Deshayes, permeation of Zn ions through Ca channels were investigated with a conventional current clamp method. All-or-none action potentials of long duration (90 to 120 sec) were evoked in 24 mM Zn containing salines. The overshoots were about +10 mV and the maximum rate of rises (MRRs) was about 2.9 V/sec. The amplitudes and the MRRs of the action potentials depended on external Zn ion concentrations. The action potentials were suppressed by specific Ca-channel inhibitors such as Co2+, La3+ and Verapamil, but they were resistant to Na-channel inhibitor, tetrodotoxin, even at 30 microM. It is concluded that these action potentials are generated by Zn ions permeating Ca channels in snail neuronal membrane. On the basis of Hagiwara and Takahashi's (S. Hagiwara & K. Takahashi, 1967, J. Gen. Physiol. 50:583) model of Ca channels, it is inferred that Zn ions are 5 to 10 times stronger in affinity to Ca channels than Ca ions, but 10 to 20 times less permeable.

  15. Origin of ulnar compound muscle action potential investigated in patients with ulnar neuropathy at the wrist.

    Higashihara, Mana; Sonoo, Masahiro; Imafuku, Ichiro; Ugawa, Yoshikazu; Tsuji, Shoji

    2010-05-01

    The compound muscle action potential from the abductor digiti minimi muscle is bi-lobed, and its second peak is formed by far-field potentials (FFPs). We investigated their origin in two patients with ulnar neuropathy at the wrist that spared the hypothenar muscles. FFPs were lost or distorted, which indicated that the deep motor branch-innervated muscles, such as the interossei, mainly contributed to the FFPs, especially to their initial N1 and steep following P1 components.

  16. A dual potassium channel activator improves repolarization reserve and normalizes ventricular action potentials

    Calloe, Kirstine; Di Diego, José M; Hansen, Rie Schultz

    2016-01-01

    in cultured canine cardiac myocytes and determined whether a dual K(+) current activator can normalize K(+) currents and restore action potential (AP) configuration. METHODS AND RESULTS: Ventricular myocytes were isolated and cultured for up to 48h. Current and voltage clamp recordings were made using patch...... of EADs. Our results suggest a potential benefit of K(+) current activators under conditions of reduced repolarization reserve including heart failure....

  17. Effects of benactyzine on action potentials and contractile force of guinea pig papillary muscles

    2000-01-01

    Aim:To explore the effects of benactyzine (BEN) on the action potential and contractile force in guinea pig papillary muscles.Methods:Conventional microelectrode technique was used to record the fast action potentials (FAP) and slow action potentials (SAP) of guinea pig papillary muscles.Results:Benactyzine 5,10,50 μmol·L-1 suppressed the maximal upstroke velocity (vmax) of FAP and contractile force (Fc) concentration-dependently while prolonged the action potential duration at 50%,90% repolarization (APD50,APD90) and effective refractory period (ERP) of FAP.The suppression on the vmax was frequency-dependent.Benactyzine 5,10,50μmol·L-1 lengthened the APD50,APD90 of SAP induced by isoprenaline or histamine when perfused with KCl 22 mmol·L-1 Tyrode's solution.The vmax of the SAP was not decreased by benactyzine 5,10 μmol·L-1 but by 50 μmol·L-1.The effects on the SAP were antagonized by elevation of the extracellular calcium from 2.0 to 5.6 mmol·L-1.The effects of benactyzine on SAP elicited by tetrodotoxin resembled that by isoprenaline or histamine except the more pronounced suppression on vmax and action potential amplitude (APA).The persistent rapid spontaneous activity and triggered tachyarrhythmia induced by ouabain were also abolished immediately by benactyzine 5 μmol·L-1.Conclusion:Benactyzine can inhibit Na+,K+,Ca2+ transmembrane movement and intracellular Ca2+ mobilization in the myocardium,and this may be the electrophysiological basis of its effects against experimental arrhythmias.

  18. Implementation of the electron propagator to second order on GPUs to estimate the ionization potentials of confined atoms

    García-Hernández, Erwin; Díaz-García, Cecilia; Vargas, Rubicelia; Garza, Jorge

    2014-09-01

    The best way to estimate ionization potentials (I) for confined atoms is by using the same Hamiltonian for the neutral and the corresponding hypothetical ionized atom. For this purpose, we have implemented the electron propagator to second order (EP2) by using parallel programming techniques on graphic processing units (GPUs). These programming techniques exploit the GPUs for the evaluation of two-electron integrals, which is required for a self- consistent process and because of the reduction involved in the four-index integral transformation. As an example, we present results for confined helium, beryllium and neon atoms, and these are contrasted with previously reported results. Although Koopmans’ theorem (KT) provides good estimates for ionization potentials, it is evident that EP2 corrects these estimates. Unfortunately, the correction made by EP2 does not reveal a trend for confined atoms because in the case of certain confinement regions KT overestimates, whereas for other regions, KT underestimates the ionization potential. The orbital crossing between unoccupied orbitals is responsible for this behavior. In particular, if the lowest unoccupied atomic orbital (LUMO) crosses a virtual orbital, the difference {{I}_{EP2}}-{{I}_{KT}} will change its sign. Thus, EP2 approximation is required when the ionization potential is estimated for confined atoms.

  19. Propagation-of-uncertainty from contact angle and streaming potential measurements to XDLVO model assessments of membrane-colloid interactions.

    Muthu, Satish; Childress, Amy; Brant, Jonathan

    2014-08-15

    Membrane fouling assessed from a fundamental standpoint within the context of the Derjaguin-Landau-Verwey-Overbeek (DLVO) model. The DLVO model requires that the properties of the membrane and foulant(s) be quantified. Membrane surface charge (zeta potential) and free energy values are characterized using streaming potential and contact angle measurements, respectively. Comparing theoretical assessments for membrane-colloid interactions between research groups requires that the variability of the measured inputs be established. The impact that such variability in input values on the outcome from interfacial models must be quantified to determine an acceptable variance in inputs. An interlaboratory study was conducted to quantify the variability in streaming potential and contact angle measurements when using standard protocols. The propagation of uncertainty from these errors was evaluated in terms of their impact on the quantitative and qualitative conclusions on extended DLVO (XDLVO) calculated interaction terms. The error introduced into XDLVO calculated values was of the same magnitude as the calculated free energy values at contact and at any given separation distance. For two independent laboratories to draw similar quantitative conclusions regarding membrane-foulant interfacial interactions the standard error in contact angle values must be⩽2.5°, while that for the zeta potential values must be⩽7 mV.

  20. 'Catching the waves' - slow cortical potentials as moderator of voluntary action.

    Schmidt, Stefan; Jo, Han-Gue; Wittmann, Marc; Hinterberger, Thilo

    2016-09-01

    The readiness potential is an ongoing negativity in the EEG preceding a self-initiated movement by approximately 1.5s. So far it has predominantly been interpreted as a preparatory signal with a causal link to the upcoming movement. Here a different hypothesis is suggested which we call the selective slow cortical potential sampling hypothesis. In this review of recent research results we argue that the initiation of a voluntary action is more likely during negative fluctuations of the slow cortical potential and that the sampling and averaging of many trials leads to the observed negativity. That is, empirical evidence indicates that the early readiness potential is not a neural correlate of preconscious motor preparation and thus a determinant of action. Our hypothesis thereafter challenges the classic interpretation of the Libet experiment which is often taken as proof that there is no free will. We furthermore suggest that slow cortical potentials are related to an urge to act but are not a neural indicator of the decision process of action initiation.

  1. Phorbol esters broaden the action potential in CA1 hippocampal pyramidal cells.

    Storm, J F

    1987-03-20

    Intracellular recordings were made from CA1 pyramidal cells in rat hippocampal slices. Single action potentials were elicited by injection of brief current pulses. Bath application of phorbol esters (4 beta-phorbol-12,13-diacetate, 0.3-5 microM; or 4 beta-phorbol-12,13-dibutyrate, 5-10 microM) broadened the action potential in each of the cells tested (n = 9). The broadening reflected slowing of the repolarization, whereas the upstroke of the spike was unchanged. This effect may enhance transmitter release from synaptic terminals, and contribute to enhancement of synaptic transmission through activation of protein kinase C, a mechanism which has been associated with long term potentiation.

  2. Variations in onset of action potential broadening: effects on calcium current studied in chick ciliary ganglion neurones.

    Pattillo, J M; Artim, D E; Simples, J E; Meriney, S D

    1999-02-01

    1. The voltage dependence and kinetic properties of stage 40 ciliary ganglion calcium currents were determined using short (10 ms) voltage steps. These properties aided the interpretation of the action potential-evoked calcium current described below, and the comparison of our data with those observed in other preparations. 2. Three different natural action potential waveforms were modelled by a series of ramps to generate voltage clamp commands. Calcium currents evoked by these model action potentials were compared before and after alterations in the repolarization phase of each action potential. 3. Abrupt step repolarizations from various time points were used to estimate the time course of calcium current activation during each action potential. Calcium current evoked by fast action potentials (duration at half-amplitude, 0.5 or 1.0 ms) did not reach maximal activation until the action potential had repolarized by 40-50 %. In contrast, calcium current evoked by a slow action potential (duration at half-amplitude, 2.2 ms) was maximally activated near the peak of the action potential. 4. Slowing the rate of repolarization of the action potential (broadening) from different times was used to examine effects on peak and total calcium influx. With all three waveforms tested, broadening consistently increased total calcium influx (integral). However, peak calcium current was either increased or decreased depending on the duration of the control action potential tested and the specific timing of the initiation of broadening the repolarization phase. 5. The opposite effects on peak calcium current observed with action potential broadening beginning at different time points in repolarization may provide a mechanism for the variable effects of potassium channel blockers on transmitter release magnitude.

  3. Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons.

    Poolos, N P; Johnston, D

    1999-07-01

    Evidence is accumulating that voltage-gated channels are distributed nonuniformly throughout neurons and that this nonuniformity underlies regional differences in excitability within the single neuron. Previous reports have shown that Ca2+, Na+, A-type K+, and hyperpolarization-activated, mixed cation conductances have varying distributions in hippocampal CA1 pyramidal neurons, with significantly different densities in the apical dendrites compared with the soma. Another important channel mediates the large-conductance Ca2+-activated K+ current (IC), which is responsible in part for repolarization of the action potential (AP) and generation of the afterhyperpolarization that follows the AP recorded at the soma. We have investigated whether this current is activated by APs retrogradely propagating in the dendrites of hippocampal pyramidal neurons using whole-cell dendritic patch-clamp recording techniques. We found no IC activation by back-propagating APs in distal dendritic recordings. Dendritic APs activated IC only in the proximal dendrites, and this activation decayed within the first 100-150 micrometer of distance from the soma. The decay of IC in the proximal dendrites occurred despite AP amplitude, plus presumably AP-induced Ca2+ influx, that was comparable with that at the soma. Thus we conclude that IC activation by action potentials is nonuniform in the hippocampal pyramidal neuron, which may represent a further example of regional differences in neuronal excitability that are determined by the nonuniform distribution of voltage-gated channels in dendrites.

  4. Molecular statics simulation of crack propagation in {alpha}-Fe using EAM potentials

    Shastry, V.; Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1996-12-01

    The behavior of mode 1 cracks in {alpha}-Fe is investigated using molecular statics methods with embedded atom (EAM) potentials. A double ended crack of finite size embedded in a cylindrical simulation cell and fixed boundary conditions are prescribed along the periphery of the cell, whereas periodic boundary conditions are imposed parallel to the crack front. The displacement field of the finite crack is represented by that of an equivalent pileup of opening dislocations distributed in a manner consistent with the anisotropy of the crystal and traction free conditions of the crack faces. The crack lies on the {l_brace}110{r_brace} plane and the crack front is located either along <100>< <110> or <111> directions. The crack tip response is rationalized in terms of the surface energy ({gamma}{sub s}) of the cleavage plane and the unstable stacking energies ({gamma}{sub us}) of the slip planes emanating from the crack front.

  5. Slowly moving matter-wave gap soliton propagation in weak random nonlinear potential

    Zhang Ming-Rui; Zhang Yong-Liang; Jiang Xun-Ya; Zi Jian

    2008-01-01

    We systematically investigate the motion of slowly moving matter-wave gap solitons in a nonlinear potential, produced by the weak random spatial variation of the atomic scattering length. With the weak randomness, we construct an effective-particle theory to study the motion of gap solitons. Based on the effective-particle theory, the effect of the randomness on gap solitous is obtained, and the motion of gap solitons is finally solved. Moreover, the analytic results for the general behaviours of gap soliton motion, such as the ensemble-average speed and the reflection probability depending on the weak randomness are obtained. We find that with the increase of the random strength the ensemble-average speed of gap solitons decreases slowly where the reduction is proportional to the variance of the weak randomness, and the reflection probability becomes larger. The theoretical results are in good agreement with the numerical simulations based on the Gross-Pitaevskii equation.

  6. An experimental study on a function of the cupula. Effect of cupula removal on the ampullary nerve action potential.

    Suzuki, M; Harada, Y; Sugata, Y

    1984-01-01

    We used a posterior semicircular canal that had been isolated from a frog. From the utricular side the ampulla was cut open at a position one third of the way along the long axis. The cupula was removed through this opening using a glass micropipette. The action potential from the posterior ampullary nerve was recorded before and after removal of the cupula. After removal, the action potential disappeared almost completely. When the cupula was put back on the crista, the action potential was restored. When the cupula was put back upside down, the action potential recovered, but to a lesser extent.

  7. The DBI Action, Higher-derivative Supergravity, and Flattening Inflaton Potentials

    Bielleman, Sjoerd; Pedro, Francisco G; Valenzuela, Irene; Wieck, Clemens

    2016-01-01

    In string theory compactifications it is common to find an effective Lagrangian for the scalar fields with a non-canonical kinetic term. We study the effective action of the scalar position moduli of Type II D$p$-branes. In many instances the kinetic terms are in fact modified by a term proportional to the scalar potential itself. This can be linked to the appearance of higher-dimensional supersymmetric operators correcting the K\\"ahler potential. We identify the supersymmetric dimension-eight operators describing the $\\alpha'$ corrections captured by the D-brane Dirac-Born-Infeld action. Our analysis then allows an embedding of the D-brane moduli effective action into an $\\mathcal N = 1$ supergravity formulation. The effects of the potential-dependent kinetic terms may be very important if one of the scalars is the inflaton, since they lead to a flattening of the scalar potential. We analyze this flattening effect in detail and compute its impact on the CMB observables for single-field inflation with monomia...

  8. Microparticles generated by decompression stress cause central nervous system injury manifested as neurohypophysial terminal action potential broadening.

    Yang, Ming; Kosterin, Paul; Salzberg, Brian M; Milovanova, Tatyana N; Bhopale, Veena M; Thom, Stephen R

    2013-11-01

    The study goal was to use membrane voltage changes during neurohypophysial action potential (AP) propagation as an index of nerve function to evaluate the role that circulating microparticles (MPs) play in causing central nervous system injury in response to decompression stress in a murine model. Mice studied 1 h following decompression from 790 kPa air pressure for 2 h exhibit a 45% broadening of the neurohypophysial AP. Broadening did not occur if mice were injected with the MP lytic agent polyethylene glycol telomere B immediately after decompression, were rendered thrombocytopenic, or were treated with an inhibitor of nitric oxide synthase-2 (iNOS) prior to decompression, or in knockout (KO) mice lacking myeloperoxidase or iNOS. If MPs were harvested from control (no decompression) mice and injected into naive mice, no AP broadening occurred, but AP broadening was observed with injections of equal numbers of MPs from either wild-type or iNOS KO mice subjected to decompression stress. Although not required for AP broadening, MPs from decompressed mice, but not control mice, exhibit NADPH oxidase activation. We conclude that inherent differences in MPs from decompressed mice, rather than elevated MPs numbers, mediate neurological injury and that a component of the perivascular response to MPs involves iNOS. Additional study is needed to determine the mechanism of AP broadening and also mechanisms for MP generation associated with exposure to elevated gas pressure.

  9. Ca2+ imaging of mouse neocortical interneurone dendrites: Ia-type K+ channels control action potential backpropagation

    Goldberg, Jesse H; Tamas, Gabor; Yuste, Rafael

    2003-01-01

    GABAergic interneurones are essential in cortical processing, yet the functional properties of their dendrites are still poorly understood. In this first study, we combined two-photon calcium imaging with whole-cell recording and anatomical reconstructions to examine the calcium dynamics during action potential (AP) backpropagation in three types of V1 supragranular interneurones: parvalbumin-positive fast spikers (FS), calretinin-positive irregular spikers (IS), and adapting cells (AD). Somatically generated APs actively backpropagated into the dendritic tree and evoked instantaneous calcium accumulations. Although voltage-gated calcium channels were expressed throughout the dendritic arbor, calcium signals during backpropagation of both single APs and AP trains were restricted to proximal dendrites. This spatial control of AP backpropagation was mediated by Ia-type potassium currents and could be mitigated by by previous synaptic activity. Further, we observed supralinear summation of calcium signals in synaptically activated dendritic compartments. Together, these findings indicate that in interneurons, dendritic AP propagation is synaptically regulated. We propose that interneurones have a perisomatic and a distal dendritic functional compartment, with different integrative functions. PMID:12844506

  10. Dynamic properties of the action potential encoder in an insect mechanosensory neuron.

    French, A S

    1984-08-01

    A variety of sensory receptors show adaptation to dynamic stimuli that can be well characterized as fractional differentiation of the input signal. The cause of this behavior is unknown, but because it can be represented by linear systems theory, it has been assumed to arise during early linear processes of transduction or adaptation, rather than during the nonlinear process of action potential encoding. I measured the action potential encoding properties of an insect mechanoreceptor by direct electrical stimulation of the sensory cell axon and found a dynamic response that is identical to the response given by mechanical stimulation. This indicates that the fractional differentiation is a property of the encoder rather than the transducer.

  11. Regulation of cough and action potentials by voltage-gated Na channels.

    Carr, Michael J

    2013-10-01

    The classical role ascribed to voltage-gated Na channels is the conduction of action potentials. Some excitable tissues such as cardiac muscle and skeletal muscle predominantly express a single voltage-gated Na channels isoform. Of the nine voltage-gated Na channels, seven are expressed in neurons, of these Nav 1.7, 1.8 and 1.9 are expressed in sensory neurons including vagal sensory neurons that innervate the airways and initiate cough. Nav 1.7 and Nav 1.9 are of particular interest as they represent two extremes in the functional diversity of voltage-gated Na channels. Voltage-gated Na channel isoforms expressed in airway sensory neurons produce multiple distinct Na currents that underlie distinct aspects of sensory neuron function. The interaction between voltage-gated Na currents underlies the characteristic ability of airway sensory nerves to encode encounters with irritant stimuli into action potential discharge and evoke the cough reflex.

  12. A Study of Surface Motor Unit Action Potentials in First Dorsal Interosseus (FDI) Muscle

    2007-11-02

    Lefever and Carlo J. Deluca, "A Procedure for Decomposing the Myoelectric Signal Into It’s Constituent Action Potentials---Part 1, Technique, Theory, and...of surface MUAP’s using wavelet matching technique. II. SURFACE MUAP’S AND WAVELETS EMG signals are composed of different MUAP’s. Each...displays an impulse property, which means that it changes in a rapid fashion. Due to this property, the EMG signal is well suited to wavelet analysis

  13. Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro.

    Bourque, C W; Renaud, L P

    1985-06-01

    Action potential durations, measured at one-third peak amplitude, were examined during intracellular recordings in 134 supraoptic nucleus neurones maintained in vitro in perfused hypothalamic explants. Spike durations ranged between 1.2 and 3.9 ms and were dependent on firing frequency. Shortest measurements (1.74 +/- 0.03 ms; mean +/- S.E. of mean) were obtained during relative quiescence, i.e. less than or equal to 0.5 Hz. A gradual increase in firing frequency through continuous injection of depolarizing current prolonged spike duration, with maximum levels (2.68 +/- 0.05 ms) achieved at 20 Hz. When interspike interval variability was eliminated and firing was more precisely regulated by brief 15-20 ms intracellular current pulses given at pre-determined frequencies, a proportional relationship between increasing spike duration and firing frequency was retained but the change in spike duration at frequencies between 2 and 10 Hz was less pronounced. Once action potentials had achieved the long duration configuration, their return to the shorter duration took place gradually during any succeeding silent interval with a time constant of 4.9 s. Action potential broadening occurred progressively and was most pronounced at the onset of spontaneous or current-induced bursts. In thirty-six phasically active neurones, spike broadening at the onset of a burst was concurrent with the presence of 5-10 consecutive short (less than or equal to 100 ms) interspike intervals; thereafter, despite a greater than 50% reduction in firing frequency, action potential durations remained prolonged throughout the burst. In all of nineteen cells tested, frequency-dependent changes in spike duration were reversibly decreased or blocked by Cd2+, Co2+ and Mn2+, or when CaCl2 was exchanged for equimolar amounts of EGTA in the perfusion medium. These observations indicate that a Ca2+ conductance contributes to frequency- and firing-pattern-dependent changes in spike duration in rat supraoptic

  14. SHAPING OF ACTION POTENTIALS BY TYPE I AND TYPE II BK CHANNELS

    Jaffe, David B.; Wang, Bin; Brenner, Robert

    2011-01-01

    The BK channel is a Ca2+ and voltage-gated conductance responsible for shaping action potential waveforms in many types of neurons. Type II BK channels are differentiated from type I channels by their pharmacology and slow gating kinetics. The β4 accessory subunit confers type II properties on BK α subunits. Empirically derived properties of BK channels, with and without the β4 accessory subunit, were obtained using a heterologous expression system under physiological ionic conditions. These ...

  15. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK channels

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A.; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S; Klyachko, Vitaly A.

    2013-01-01

    Loss of FMRP causes Fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely r...

  16. Mephenesin, methocarbamol, chlordiazepoxide and diazepam: actions on spinal reflexes and ventral root potentials.

    Crankshaw, D P; Raper, C

    1970-01-01

    1. Dose levels of mephenesin, methocarbamol, chlordiazepoxide and diazepam which abolished polysynaptic reflex contractions had no effect on monosynaptic knee-jerk reflexes in chloralose anaesthetized cats.2. Ventral root potentials were recorded following stimulation of the corresponding dorsal root (L7 or S1), and the areas of the mono- and polysynaptic components were measured by planimetry.3. Dose levels of the drugs which abolished polysynaptic reflex contractions reduced the areas of the polysynaptic component of the ventral root potentials by about 50%. Mephenesin and methocarbamol reduced the area of the monosynaptic component to a similar extent. Chlordiazepoxide was less potent in this respect while diazepam was without effect at this dose level.4. Linear regression lines were calculated for the reduction in the mono- and polysynaptic components of ventral root potentials with increasing doses of each of the four drugs. With methocarbamol and mephenesin the lines were parallel and coincident. With chlordiazepoxide and diazepam they were parallel but not coincident. Large doses of diazepam were required to reduce the area of the monosynaptic component, this drug being the only one of the four tested to have a differential action on the two components which was statistically significant.5. The results are discussed in terms of depressant actions of the drugs on alpha-motorneurones, effects of the drugs at higher centres concerned with motor function, and the lack of evidence that spinal interneurones represent a specific site of action for centrally acting skeletal muscle relaxants.

  17. Noisy unmaskers of multistability of periodic rhythms in a model of the ventricular cardiac action potential

    Surovyatkina, Elena; Egorchenkov, Roman; Ivanov, Guennady

    2007-06-01

    The coexistence of different dynamical regimes of cardiac cell-model at a fixed set of stimulation parameters, i.e. multistability, revealed by noise is presented in this paper. Numerical simulations are performed using Luo-Rudy (LR1) action potential model. Numerical experiments with LR1 model conducted via noisy periodical stimulation showed the coexistence of several periodic rhythms. Weak noise in period of stimulation causes a hopping process between all the (meta-) stable rhythms of cell-model. This process is reflected in several parallel branches of the bifurcation diagram: noise unveils new, invisible before, stable rhythms which could appear in this model at different initial conditions. The phenomenon of multistability is directly evidenced by other numerical experiments: we have established the multistability property of a cell consisting in the fact that different initial conditions of stimulation (different extrasystole application times) lead to different stable periodic rhythms. We have obtained the shaping of attraction basins on the action potential curves. Such basins of attraction contain a set of initial conditions which determinate a stable periodic rhythm. We have found a close association between the attraction basins of the complex rhythms on the curves of action potential and the cardiac vulnerable windows on ECG record, during which extra stimuli can induce life threatening arrhythmias. Obtained results allow us to make a conclusion that multistability is very important for the electrical conduction system of the heart from the cell level to the integrated function of the heart.

  18. Action potential characteristics of demyelinated rat sciatic nerve following application of 4-aminopyridine.

    Targ, E F; Kocsis, J D

    1986-01-15

    The sciatic nerves of rats were demyelinated by microinjection of lysophosphatidylcholine. A variety of abnormalities such as conduction slowing and block were present. Application of the potassium channel blocker 4-aminopyridine (4-AP) to the lesion site, led to an increase in area of the compound action potential recorded across the site of demyelination. Single axon recordings revealed three types of changes that may account for the 4-AP-induced increase in the compound response. One group showed broadening of the action potential. Other axons showed hyperexcitability following 4-AP, as manifest by spontaneous firing and multiple spike discharge following a single stimulus. In some of the axons studied, 4-AP led to overcoming of conduction block. Although many axons showed increased excitability properties in the presence of 4-AP, the frequency-following ability of the axons was reduced, and the absolute refractory period of the axons was increased. These results indicate that pharmacological blockade of potassium channels with 4-AP not only leads to action potential broadening in demyelinated axons, but to a variety of excitability changes. These heterogeneous effects of 4-AP should be considered in the rationale for its clinical use.

  19. Formation mechanism of propagated sensation along the meridians, as verified by cortical somatosensory-evoked potential topographic maps

    Jinsen Xu; Xiaohua Pan; Shuxia Zheng; Xianglong Hu; Zheyan Sa

    2011-01-01

    The peripheral driver stimulating theory states that as a driver passes along a certain meridian during acupuncture; the driver provokes nerve sense devices along the meridian, resulting in the nerve impulse entering the central nervous system. Accordingly, volunteers have reported propagated sensations along the meridians (PSM). The present study was designed to utilize a cortical somatosensory-evoked potential (CSEP) topographic map for determining whether stimulation expansion occurs in somatosensory area I when sensation was provoked in individuals with obvious PSM. The sensation was blocked by mechanical compression, and the sensation was imitated in individuals without PSM. Results revealed a red, high-potential signal in the representative area of the lower limbs in individuals with obvious PSM symptoms when the Gall Bladder Meridian (GBM) sensation passed to the head and face. This representative area was near the middle line of the CSEP topographic map, and a red, high-potential signal, which jumps over the representative area of the upper limbs, also appeared in the representative face area, which was at the external region of the CSEP topographic map. However, in individuals exhibiting no PSM, only a red high-potential signal appeared in the representative lower limb area. When Hegu (LI 4) was stimulated in individuals without PSM, an obvious evoked response appeared only in the representative upper limb area. However, when Hegu was stimulated in individuals exhibiting PSM, the response area was larger in the representative upper limb area and extended to the representative face area. When Guangming (GB 37) was stimulated in PSM individuals, the face representation response disappeared and was confined to a foot representation of the somatosensory area I when PSM was blocked by mechanical pressure. Results suggested that mechanical compression blocked PSM, and corresponding changes were exhibited in the CSEP topographic map. These results provide

  20. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials.

    Suzuki, Ikuro; Fukuda, Mao; Shirakawa, Keiichi; Jiko, Hideyasu; Gotoh, Masao

    2013-11-15

    Multi-electrode arrays (MEAs) can be used for noninvasive, real-time, and long-term recording of electrophysiological activity and changes in the extracellular chemical microenvironment. Neural network organization, neuronal excitability, synaptic and phenotypic plasticity, and drug responses may be monitored by MEAs, but it is still difficult to measure presynaptic activity, such as neurotransmitter release, from the presynaptic bouton. In this study, we describe the development of planar carbon nanotube (CNT)-MEA chips that can measure both the release of the neurotransmitter dopamine as well as electrophysiological responses such as field postsynaptic potentials (fPSPs) and action potentials (APs). These CNT-MEA chips were fabricated by electroplating the indium-tin oxide (ITO) microelectrode surfaces. The CNT-plated ITO electrode exhibited electrochemical response, having much higher current density compared with the bare ITO electrode. Chronoamperometric measurements using these CNT-MEA chips detected dopamine at nanomolar concentrations. By placing mouse striatal brain slices on the CNT-MEA chip, we successfully measured synaptic dopamine release from spontaneous firings with a high S/N ratio of 62. Furthermore, APs and fPSPs were measured from cultured hippocampal neurons and slices with high temporal resolution and a 100-fold greater S/N ratio. Our CNT-MEA chips made it possible to measure neurotransmitter dopamine (presynaptic activities), postsynaptic potentials, and action potentials, which have a central role in information processing in the neuronal network. CNT-MEA chips could prove useful for in vitro studies of stem cell differentiation, drug screening and toxicity, synaptic plasticity, and pathogenic processes involved in epilepsy, stroke, and neurodegenerative diseases.

  1. T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex.

    Deleuze, Charlotte; David, François; Béhuret, Sébastien; Sadoc, Gérard; Shin, Hee-Sup; Uebele, Victor N; Renger, John J; Lambert, Régis C; Leresche, Nathalie; Bal, Thierry

    2012-08-29

    The thalamic output during different behavioral states is strictly controlled by the firing modes of thalamocortical neurons. During sleep, their hyperpolarized membrane potential allows activation of the T-type calcium channels, promoting rhythmic high-frequency burst firing that reduces sensory information transfer. In contrast, in the waking state thalamic neurons mostly exhibit action potentials at low frequency (i.e., tonic firing), enabling the reliable transfer of incoming sensory inputs to cortex. Because of their nearly complete inactivation at the depolarized potentials that are experienced during the wake state, T-channels are not believed to modulate tonic action potential discharges. Here, we demonstrate using mice brain slices that activation of T-channels in thalamocortical neurons maintained in the depolarized/wake-like state is critical for the reliable expression of tonic firing, securing their excitability over changes in membrane potential that occur in the depolarized state. Our results establish a novel mechanism for the integration of sensory information by thalamocortical neurons and point to an unexpected role for T-channels in the early stage of information processing.

  2. Relation between size of compound sensory or muscle action potentials, and length of nerve segment.

    Kimura, J; Machida, M; Ishida, T; Yamada, T; Rodnitzky, R L; Kudo, Y; Suzuki, S

    1986-05-01

    In 24 median nerves from 12 healthy subjects, antidromic digital sensory potentials progressively diminished in size, averaging 40.4, 37.0, 30.7, and 23.9 microV X msec with stimulation at the palm, wrist, elbow, and axilla, respectively. In contrast, compound muscle action potentials changed minimally, measuring 19.4, 19.8, 19.0, and 18.2 mV X msec, respectively. Similar studies of the ulnar and radial nerves showed identical trends. Physiologic temporal dispersion can mimic conduction block of sensory nerves by summating the peaks of opposite polarity generated by fast- and slow-conducting axons. This type of cancellation affects muscle responses much less because motor unit potentials of longer duration superimpose nearly in phase, given the same latency shift as the sensory potentials.

  3. ACTION-SPACE CLUSTERING OF TIDAL STREAMS TO INFER THE GALACTIC POTENTIAL

    Sanderson, Robyn E.; Helmi, Amina [Kapteyn Astronomical Institute, P.O. Box 800, 9700 AV Groningen (Netherlands); Hogg, David W., E-mail: robyn@astro.columbia.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2015-03-10

    We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires three-dimensional positions and velocities for all stars to be fit, but does not require identification of any specific stream or determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered when the potential used to calculate the actions is closest to the true potential. Clustering is quantified with the Kullback-Leibler Divergence (KLD), which also provides conditional uncertainties for our parameter estimates. We show, for toy Gaia-like data in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the input potential. The precision depends on the observational errors and number of streams; using K III giants as tracers, we measure the enclosed mass at the average radius of the sample stars accurate to 3% and precise to 20%-40%. Recovery of the scale radius is precise to 25%, biased 50% high by the small galactocentric distance range of stars in our mock sample (1-25 kpc, or about three scale radii, with mean 6.5 kpc). 20-25 streams with at least 100 stars each are required for a stable confidence interval. With radial velocities (RVs) to 100 kpc, all parameters are determined with ∼10% accuracy and 20% precision (1.3% accuracy for the enclosed mass), underlining the need to complete the RV catalog for faint halo stars observed by Gaia.

  4. Action Research’s Potential to Foster Institutional Change for Urban Water Management

    Dimitrios Zikos

    2013-04-01

    Full Text Available The paper discusses the potential of action research to meet the challenges entailed in institutional design for urban water management. Our overall aim is to briefly present action research and discuss its methodological merits with regard to the challenges posed by the different conceptual bases for extrapolating the effects of institutional design on institutional change. Thus, our aim is to explore how Action Research meets the challenge of scoping the field in an open fashion for determining the appropriate mechanisms of institutional change and supporting the emerging of new water institutions. To accomplish this aim, we select the Water Framework Directive (WFD as an illustrative driving force requiring changes in water management practices and implying the need for the emergence of new institutions. We employ a case of urban water management in the Volos Metropolitan Area, part of the Thessaly region in Greece, where a Pilot River Basin Plan was implemented. By applying action research and being involved in a long process of interaction between stakeholders, we examine the emergence of new institutions dealing with urban water management under the general principles of the major driving force for change: the WFD.

  5. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential.

    Desbois, Andrew P; Smith, Valerie J

    2010-02-01

    Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of action and safety makes them attractive as antibacterial agents for various applications in medicine, agriculture and food preservation, especially where the use of conventional antibiotics is undesirable or prohibited. Moreover, the evolution of inducible FFA-resistant phenotypes is less problematic than with conventional antibiotics. The potential for commercial or biomedical exploitation of antibacterial FFAs, especially for those from natural sources, is discussed.

  6. Action potential generation in the small intestine of W mutant mice that lack interstitial cells of Cajal

    Malysz, J; Thuneberg, L; Mikkelsen, Hanne Birte

    1996-01-01

    The small intestine of W/Wv mice lacks both the network of interstitial cells of Cajal (ICC), associated with Auerbach's plexus, and pacemaker activity, i.e., it does not generate slow-wave-type action potentials. The W/Wv muscle preparations showed a wide variety of electrical activities, ranging...... from total quiescence to generation of action potentials at regular or irregular frequency with or without periods of quiescence. The action potentials consisted of a slow component with superimposed spikes, preceded by a slowly developing depolarization and followed by a transient hyperpolarization....... The action potentials were completely abolished by L-type Ca2+ channel blockers. W/Wv mice responded to K+ channel blockade (0.5 mM Ba2+ or 10 mM tetraethylammonium chloride) with effects on amplitude, frequency, rate of rise, and duration of the action potentials. In quiescent tissues from W/Wv mice, K...

  7. The real-time link between person perception and action: brain potential evidence for dynamic continuity.

    Freeman, Jonathan B; Ambady, Nalini; Midgley, Katherine J; Holcomb, Phillip J

    2011-01-01

    Using event-related potentials, we investigated how the brain extracts information from another's face and translates it into relevant action in real time. In Study 1, participants made between-hand sex categorizations of sex-typical and sex-atypical faces. Sex-atypical faces evoked negativity between 250 and 550 ms (N300/N400 effects), reflecting the integration of accumulating sex-category knowledge into a coherent sex-category interpretation. Additionally, the lateralized readiness potential revealed that the motor cortex began preparing for a correct hand response while social category knowledge was still gradually evolving in parallel. In Study 2, participants made between-hand eye-color categorizations as part of go/no-go trials that were contingent on a target's sex. On no-go trials, although the hand did not actually move, information about eye color partially prepared the motor cortex to move the hand before perception of sex had finalized. Together, these findings demonstrate the dynamic continuity between person perception and action, such that ongoing results from face processing are immediately and continuously cascaded into the motor system over time. The preparation of action begins based on tentative perceptions of another's face before perceivers have finished interpreting what they just saw.

  8. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels.

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S; Klyachko, Vitaly A

    2013-02-20

    Loss of FMRP causes fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx, and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation independent and are mediated selectively by BK channels via interaction of FMRP with BK channel's regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology.

  9. Towards a thermodynamic theory of nerve pulse propagation.

    Andersen, Søren S L; Jackson, Andrew D; Heimburg, Thomas

    2009-06-01

    Nerve membranes consist of an approximately equal mixture of lipids and proteins. The propagation of nerve pulses is usually described with the ionic hypothesis, also known as the Hodgkin-Huxley model. This model assumes that proteins alone enable nerves to conduct signals due to the ability of various ion channel proteins to transport selectively sodium and potassium ions. While the ionic hypothesis describes electrical aspects of the action potential, it does not provide a theoretical framework for understanding other experimentally observed phenomena associated with nerve pulse propagation. This fact has led to a revised view of the action potential based on the laws of thermodynamics and the assumption that membrane lipids play a fundamental role in the propagation of nerve pulses. In general terms, we describe how pulses propagating in nerve membranes resemble propagating sound waves. We explain how the language of thermodynamics enables us to account for a number of phenomena not addressed by the ionic hypothesis. These include a thermodynamic explanation of the effect of anesthetics, the induction of action potentials by local nerve cooling, the physical expansion of nerves during pulse propagation, reversible heat production and the absence of net heat release during the action potential. We describe how these measurable features of a propagating nerve pulse, as well as the observed voltage change that accompanies an action potential, represent different aspects of a single phenomenon that can be predicted and explained by thermodynamics. We suggest that the proteins and lipids of the nerve membrane naturally constitute a single ensemble with thermodynamic properties appropriate for the description of a broad range of phenomena associated with a propagating nerve pulse.

  10. Whey protein potentiates the intestinotrophic action of glucagon-like peptide-2 in parenterally fed rats

    Liu, Xiaowen; Murali, Sangita G; Holst, Jens J

    2009-01-01

    Glucagon-like peptide-2 (GLP-2) is a nutrient-regulated intestinotrophic hormone derived from proglucagon in the distal intestine. Enteral nutrients (EN) potentiate the action of GLP-2 to reverse parenteral nutrition (PN)-induced mucosal hypoplasia. The objective was to determine what enteral...... protein component, casein, soy, or whey protein, potentiates the intestinal growth response to GLP-2 in rats with PN-induced mucosal hypoplasia. Rats received PN and continuous intravenous infusion of GLP-2 (100 microg/kg/day) for 7 days. Six EN groups received PN+GLP-2 for days 1-3 and partial PN+GLP-2...... whey protein, and not casein or soy, potentiated the ability of GLP-2 to reverse PN-induced mucosal hypoplasia and further increase ileal villus height, crypt depth, and mucosa cellularity compared with PN+GLP-2 alone, P

  11. An Excel-based implementation of the spectral method of action potential alternans analysis.

    Pearman, Charles M

    2014-12-01

    Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro-arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T-wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results.

  12. Carbon Monoxide Effects onHuman Ventricle Action PotentialAssessed by Mathematical Simulations

    Beatriz eTrenor

    2013-10-01

    Full Text Available Carbon monoxide (CO that is produced in a number of different mammalian tissues is now known to have significant effects on the cardiovascular system. These include: i vasodilation, ii changes in heart rate and strength of contractions and iii modulation of autonomic nervous system input to both the pacemaker and the working myocardium. Excessive CO in the environment is toxic and can initiate or mediate life threatening cardiac rhythm disturbances. Recent reports link these ventricular arrhythmias to an increase in the slowly inactivating, or ‘late’ component of the Na+ current in the mammalian heart.The main goal of this paper is to explore the basis of this pro-arrhythmic capability of CO by incorporating recently reported changes in CO-induced ion channel activity and intracellular signalling pathways in the mammalian heart. To do this, a quite well-documented mathematical model of the action potential and intracellular calcium transient in the human ventricular myocyte has been employed. In silico iterations based on this model provide a useful first step in illustrating the cellular electrophysiological consequences of CO that have been reported from mammalian heart experiments. Specifically, when the Grandi et al. model of the human ventricular action potential is utilized, and after the Na+ and Ca2+ currents in a single myocyte are modified based on the experimental literature, early after-depolarization (EAD rhythm disturbances appear, and important elements of the underlying causes of these EADs are revealed/illustrated. Our modified mathematical model of the human ventricular action potential also provides a convenient digital platform for designing future experimental work and relating these changes in cellular cardiac electrophysiology to emerging clinical and epidemiological data on CO toxicity.

  13. The Effects of Action Potential Stimulation on Pain, Swelling and Function of Patients with Knee Osteoarthritis

    Razieh Sepehri

    2012-06-01

    Full Text Available Background: Knee osteoarthritis (OA is one of the most prevalent joint diseases. Electrical muscle stimulation is effective to improve its symptoms. Today, action potential stimulation (APS with various currents and periods is used to treat OA. This study aims at analyzing the effect of action potential stimulation in improving knee OA symptoms. Materials and Methods: In this clinical trial, patients with mild to moderate knee OA divided randomly in two groups each had 15 people. Along with the conventional exercises of physiotherapy, one group received 16 minutes action potential stimulation with the lowest intensity (sensible; but the other group besides receiving the conventional exercises of physiotherapy was connected into a plugged off machine for 16 minutes. Certain variables were measured and recorded four times. Results: Comparing the variables before and after intervention did not show any meaningful difference between the two groups. But within group, pain with p=0.0001 showed a meaningful decrease. Decreasing of swelling (inflammation in group 1 and 2 was meaningful with p<0.001 and p<0.001, respectively. For group 1, knee flexion range was improved meaningfully between first and fourth times as p<0.031, but it was not meaningful for group 2. Duration of 50 meters walking and step up and down from three steps significantly decreased in both groups. Conclusion: Although there was no significant difference in variables between two groups, but within both groups’ pain and swelling decreased and functional ability increased, thus, it can be concluded that type of APS does not play a key role in treating knee OA.

  14. Analytical solution for Klein-Gordon equation and action function of the solution for Dirac equation in counter-propagating laser waves

    Hu, Huayu

    2015-01-01

    Nonperturbative calculation of QED processes participated by a strong electromagnetic field, especially provided by strong laser facilities at present and in the near future, generally resorts to the Furry picture with the usage of analytical solutions of the particle dynamical equation, such as the Klein-Gordon equation and Dirac equation. However only for limited field configurations such as a plane-wave field could the equations be solved analytically. Studies have shown significant interests in QED processes in a strong field composed of two counter-propagating laser waves, but the exact solutions in such a field is out of reach. In this paper, inspired by the observation of the structure of the solutions in a plane-wave field, we develop a new method and obtain the analytical solution for the Klein-Gordon equation and equivalently the action function of the solution for the Dirac equation in this field, under a largest dynamical parameter condition that there exists an inertial frame in which the particl...

  15. Effects of Potassium Currents upon Action Potential of Cardiac Cells Exposed to External Electric fields

    An-Ying Zhang; Xiao-Feng Pang

    2008-01-01

    Previous studies show that exposure to high-voltage electric fields would influence the electro cardiogram both in experimental animate and human beings. The effects of the external electric fields upon action potential of cardiac cells are studied in this paper based on the dynamical model, LR91. Fourth order Runger-Kuta is used to analyze the change of potassium ion channels exposed to external electric fields in detail. Results indicate that external electric fields could influence the current of potassium ion by adding an induced component voltage on membrane. This phenomenon might be one of the reasons of heart rate anomaly under the high-voltage electric fields.

  16. The Healthy Bus project in Denmark: need for an action potential assessment.

    Poulsen, Kjeld B

    2004-06-01

    Research over the last 50 years has repeatedly documented that bus drivers are exposed to several physical and psychological risk factors, which are associated with health problems in the form of heart, musculo-skeletal and stomach disease, and increased coronary mortality. So why has there been little action to improve the situation when it is so obviously indicated by such assessments? This article describes the long and complex process that has made it possible to launch almost 200 interventions among the 3500 municipal bus drivers in Copenhagen. Using a participative action research design, new evidence was gathered by broadening the traditional work environmental scope to lifestyle, health issues and private matters. Comparing this updated needs assessment with a national reference population, it was found that drivers were often still worse off. Again, simply presenting new evidence did not seem to lead to changes and further work is needed to empower the stakeholders so that they can commit to start making effective interventions. It is concluded that every needs assessment has to be supplemented with an evaluation of the action potential.

  17. Increase in action potential duration and inhibition of the delayed rectifier outward current IK by berberine in cat ventricular myocytes.

    Sánchez-Chapula, J.

    1996-01-01

    1. In the present work, the effects of the antiarrhythmic drug, berberine, on action potential and ionic currents of cat ventricular myocytes were studied. 2. Berberine prolonged action potential duration in cat ventricular myocytes without altering other variables of the action potential. 3. The drug at concentrations of 0.3-30 microM blocked only the delayed rectifier (IK) current with an IC50 = 4.1 microM. Berberine produced a tonic block and a phasic block that was increased with the dura...

  18. Supernormal Conduction and Suppression of Spatially Discordant Alternans of Cardiac Action Potentials.

    Jing, Linyuan; Agarwal, Anuj; Patwardhan, Abhijit

    2015-01-01

    Spatially discordant alternans (DA) of action potential durations (APD) is thought to be more pro-arrhythmic than concordant alternans. Super normal conduction (SNC) has been reported to suppress formation of DA. An increase in conduction velocity (CV) as activation rate increases, i.e., a negative CV restitution, is widely considered as hallmark of SNC. Our aim in this study is to show that it is not an increase in CV for faster rates that prevents formation of DA, rather, it is the ratio of the CV for the short relative to the long activation that is critical in DA suppression. To illustrate this subtlety, we simulated this phenomenon using two approaches; (1) by using the standard, i.e., S1S2 protocol to quantify restitution and disabling the slow inactivation gate j of the sodium current (INa), and (2) by using the dynamic, i.e., S1S1 protocol for quantification of restitution and increasing INa at different cycle lengths (CL). Even though both approaches produced similar CV restitution curves, DA was suppressed only during the first approach, where the CV of the short of the long-short action potential (AP) pattern was selectively increased. These results show that negative CV restitution, which is considered characteristic of SNC, per se, is not causal in suppressing DA, rather, the critical factor is a change in the ratio of the velocities of the short and the long APs.

  19. Supernormal Conduction and Suppression of Spatial Discord in Alternans of Cardiac Action Potentials

    Linyuan eJing

    2016-01-01

    Full Text Available Spatially discordant alternans (DA of action potential durations (APD is thought to be more pro-arrhythmic than concordant alternans. Super normal conduction (SNC has been reported to suppress formation of DA. An increase in conduction velocity (CV as activation rate increases, i.e. a negative CV restitution, is widely considered as hallmark of SNC. Our aim in this study is to show that it is not an increase in CV for faster rates that prevents formation of DA, rather, it is the ratio of the CV for the short relative to the long activation that is critical in DA suppression. To illustrate this subtlety, we simulated this phenomenon using two approaches; (1 by using the standard, i.e. S1S2 protocol to quantify restitution and disabling the slow inactivation gate j of the sodium current (INa, and (2 by using the dynamic, i.e. S1S1 protocol for quantification of restitution and increasing INa at different cycle lengths (CL. Even though both approaches produced similar CV restitution curves, DA was suppressed only during the first approach, where the CV of the short of the long-short action potential (AP pattern was selectively increased. These results show that negative CV restitution, which is considered characteristic of SNC, per se, is not causal in suppressing DA, rather, the critical factor is a change in the ratio of the velocities of the short and the long APs.

  20. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  1. The use of sensory action potential to evaluate inferior alveolar nerve damage after orthognathic surgery.

    Calabria, Francesca; Sellek, Lucy; Gugole, Fabio; Trevisiol, Lorenzo; Trevisol, Lorenzo; Bertolasi, Laura; D'Agostino, Antonio

    2013-03-01

    To assess and monitor the common event of neurosensory disturbance to the inferior alveolar nerve (IAN) after bilateral sagittal split osteotomy, we used clinical sensory tests and neurophysiologic test sensory action potentials. The diagnostic value of these tests was evaluated by comparing them with the degree of nerve damage reported by patients. Fourteen patients undergoing bilateral sagittal split osteotomy were analyzed preoperatively and 2 years postoperatively. Patients were evaluated bilaterally for positive and negative symptoms: light touch sensation, paraesthesia, hyperesthesia, and dysaesthesia; a "sensation score" was then calculated for each patient. Patients were also asked if they would be willing to repeat the procedure knowing the sensation loss they had now. Next, the right and left IAN were evaluated using sensory action potential and correlated with the other results. Before surgery, the medium latency difference between left and right was lower compared with postsurgery, with all patients having some deficit. The reduction in medium amplitude of 67% after the intervention was statistically significant. The frequency of abnormal findings in the electrophysiologic tests indicating IAN injury correlated with subjective sensory alteration. All patients said that they would repeat the surgery. Electrophysiologic testing is recommended for the evaluation of nerve dysfunction and seems a sensitive method for accurately assessing postsurgical nerve conduction.

  2. The characteristics of action potential and nonselective cation current of cardiomyocytes in rabbit superior vena cava

    WANG Pan; YANG XinChun; LIU XiuLan; BAO RongFeng; LIU TaiFeng

    2008-01-01

    As s special focus in initiating and maintaining atrial fibrillation (AF), cardiomyocytes in superior vena cavs (SVC) have distinctive electrophysiological characters. In this study, we found that comparing with the right atrial (RA) cardiomyoctyes, the SVC cardiomyoctyes had longer APD90 at the different basic cycle lengths; the conduction block could be observed on both RA and SVC cardiomyoctyes. A few of SVC cardiomyoctyes showed slow response action potentials with automatic activity and some others showed early afterdepolarization (EAD) spontaneously. Further more, we found that there are nonselective cation current (INs) in both SVC and RA cardiomyocytes. The peak density of INs in SVC cardiomyocytes was smaller than that in RA cardiomyocytes. Removal of extracellular divalent cation and glucose could increase INs in SVC cardiomyocytes. The agonist or the antagonist of INs may increase or decrease APD. To sum up, some SVC cardiomyocytes possess the ability of spontaneous activity; the difference of transmembrane action potentials between SVC and RA cardiomyocytes is partly because of the different density of INs between them; the agonist or the antagonist of INs can increase or decrease APD leading to the enhancement or reduction of EAD genesis in SVC cardiomyocytes. INs in rabbit myocytes is fairly similar to TRPC3 current in electrophysiological property, which might play an important role in the mechanisms of AF.

  3. Modulation of action potential and calcium signaling by levetiracetam in rat sensory neurons.

    Ozcan, Mete; Ayar, Ahmet

    2012-06-01

    Levetiracetam (LEV), a new anticonvulsant agent primarily used to treat epilepsy, has been used in pain treatment but the cellular mechanism of this action remains unclear. This study aimed to investigate effects of LEV on the excitability and membrane depolarization-induced calcium signaling in isolated rat sensory neurons using the whole-cell patch clamp and fura 2-based ratiometric Ca(2+)-imaging techniques. Dorsal root ganglia (DRG) were excised from neonatal rats, and cultured following enzymatic and mechanical dissociation. Under current clamp conditions, acute application of LEV (30 µM, 100 µM and 300 µM) significantly increased input resistance and caused the membrane to hyperpolarize from resting membrane potential in a dose-dependent manner. Reversal potentials of action potential (AP) after hyperpolarising amplitudes were shifted to more negative, toward to potassium equilibrium potentials, after application of LEV. It also caused a decrease in number of APs in neurons fired multiple APs in response to prolonged depolarization. Fura-2 fluorescence Ca(2+) imaging protocols revealed that HiK(+) (30 mM)-induced intracellular free Ca(2+) ([Ca(2+)](i)) was inhibited to 97.8 ± 4.6% (n = 17), 92.6 ± 4.8% (n = 17, p < 0.01) and 89.1 ± 5.1% (n = 18, p < 0.01) after application of 30 µM, 100 µM and 300 µM LEV (respectively), without any significant effect on basal levels of [Ca(2+)](i). This is the first evidence for the effect of LEV on the excitability of rat sensory neurons through an effect which might involve activation of potassium channels and inhibition of entry of Ca(2+), providing new insights for cellular mechanism(s) of LEV in pain treatment modalities.

  4. Whey protein potentiates the intestinotrophic action of glucagon-like peptide-2 in parenterally fed rats.

    Liu, Xiaowen; Murali, Sangita G; Holst, Jens J; Ney, Denise M

    2009-11-01

    Glucagon-like peptide-2 (GLP-2) is a nutrient-regulated intestinotrophic hormone derived from proglucagon in the distal intestine. Enteral nutrients (EN) potentiate the action of GLP-2 to reverse parenteral nutrition (PN)-induced mucosal hypoplasia. The objective was to determine what enteral protein component, casein, soy, or whey protein, potentiates the intestinal growth response to GLP-2 in rats with PN-induced mucosal hypoplasia. Rats received PN and continuous intravenous infusion of GLP-2 (100 microg/kg/day) for 7 days. Six EN groups received PN+GLP-2 for days 1-3 and partial PN+GLP-2 plus EN for days 4-7. EN was provided by ad libitum intake of a semielemental liquid diet with different protein sources: casein, hydrolyzed soy, whey protein concentrate (WPC), and hydrolyzed WPC+casein. Controls received PN+GLP-2 alone. EN induced significantly greater jejunal sucrase activity and gain of body weight, and improved feed efficiency compared with PN+GLP-2 alone. EN induced greater ileal proglucagon expression, increased plasma concentration of bioactive GLP-2 by 35%, and reduced plasma dipeptidyl peptidase IV (DPP-IV) activity compared with PN+GLP-2 alone, P whey protein, and not casein or soy, potentiated the ability of GLP-2 to reverse PN-induced mucosal hypoplasia and further increase ileal villus height, crypt depth, and mucosa cellularity compared with PN+GLP-2 alone, P whey protein to induce greater mucosal surface area was associated with decreased DPP-IV activity in ileum and colon compared with casein, soy, or PN+GLP-2 alone, P whey protein potentiates the action of GLP-2 to reverse PN-induced mucosal hypoplasia in association with decreased intestinal DPP-IV activity.

  5. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-01

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation.

  6. Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory

    Arefi, Mohammad; Zenkour, Ashraf M.

    2016-11-01

    Strain gradient theory is used to study free vibration, wave propagation and tension analyses of a sandwich micro/nano rod made of piezoelectric materials under electric potential. The structure is resting on a Pasternak’s foundation medium. Love’s rod model is used for derivation of displacement field. The piezoelectric face sheets are subjected to two-dimensional electric potential including an applied voltage at top of plate and a cosine term along the thickness direction. Hamilton’s principle is used to derive governing equations of motion in terms of axial displacement and electric potential. Three distinct behaviors of the present problem including free vibration, wave propagation and tension analyses are performed. Some important numerical results are presented in detail to capture the effect of materials length scales and applied voltage on the different behaviors of microrod.

  7. Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons.

    Yang Xia

    Full Text Available GABAA receptors distributed in somatodendritic compartments play critical roles in regulating neuronal activities, including spike timing and firing pattern; however, the properties and functions of GABAA receptors at the axon are still poorly understood. By recording from the cut end (bleb of the main axon trunk of layer -5 pyramidal neurons in prefrontal cortical slices, we found that currents evoked by GABA iontophoresis could be blocked by picrotoxin, indicating the expression of GABAA receptors in axons. Stationary noise analysis revealed that single-channel properties of axonal GABAA receptors were similar to those of somatic receptors. Perforated patch recording with gramicidin revealed that the reversal potential of the GABA response was more negative than the resting membrane potential at the axon trunk, suggesting that GABA may hyperpolarize the axonal membrane potential. Further experiments demonstrated that the activation of axonal GABAA receptors regulated the amplitude and duration of action potentials (APs and decreased the AP-induced Ca2+ transients at the axon. Together, our results indicate that the waveform of axonal APs and the downstream Ca2+ signals are modulated by axonal GABAA receptors.

  8. Action potential-simulated weak electric fields can directly initiate myelination

    Lei Liu; Shifu Zhao; Haiming Wang

    2008-01-01

    BACKGROUND: Myelination is a process whereby glial cells identify, adhere, wrap and enclose axons to form a spiral myelin sheath.OBJECTIVE: To investigate the effects of action potential-simulated weak electric fields on myelination in the central nervous system.DESIGN AND SETTING: This single-sample observation study was performed at the 324 Hospital of Chinese PLA.MATERIALS: Two 5 μm carbon fibers were provided by the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. One Sprague Dawley rat, aged 1 day, was used.METHODS: Cerebral cortex was harvested from the rat to prepare a suspension [(1-2)×105/mL] containing neurons and glial cells. To simulate the axon, carbon fibers were placed at the bottom of the neuron-glial cell coculture dish, and were electrified with a single phase square wave current, 1×10-2, 1×10-3, 1×10-4, and 1×10-5 seconds, 1 Hz, 40 mV, and 10 μA, 30 minutes each, once aday for 10 consecutive days to simulate weak negative electric fields during action potential conduction.MAIN OUTCOME MEASURES: Glial cell growth and wrapping of carbon fibers were observed by phase contrast microscopy and immunohistochemistry.RESULTS: On culture day 7, cell groups were found to adhere to negative carbon fibers in the 1×10-3 seconds square wave group. Cell membrane-like substances grew out of cell groups, wrapped the carbon fibers, and stretched to the ends of carbon fibers. Only some small and round cells close to negative carbon fibers were found on culture day 12. In the 1×10-4 and 1×10-3 seconds square wave groups, the negative carbon fibers were wrapped by oligodendrocytes or their progenitor cells.CONCLUSION: The local negative electric field which is generated by action potentials at 1×(10-4-10-3)seconds, 40 mV can directly initiate and participate in myelination in the central nervous system.

  9. Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons.

    Tan, Y P; Llano, I

    1999-10-01

    1. Action potential-evoked [Ca2+]i rises in basket cell axons of rat cerebellar slices were studied using two-photon laser scanning microscopy and whole-cell recording, to identify the K+ channels controlling the shape of the axonal action potential. 2. Whole-cell recordings of Purkinje cell IPSCs were used to screen K+ channel subtypes which could contribute to axonal repolarization. alpha-Dendrotoxin, 4-aminopyridine, charybdotoxin and tetraethylammonium chloride increased IPSC rate and/or amplitude, whereas iberiotoxin and apamin failed to affect the IPSCs. 3. The effects of those K+ channel blockers that enhanced transmitter release on the [Ca2+]i rises elicited in basket cell axons by action potentials fell into three groups: 4-aminopyridine strongly increased action potential-evoked [Ca2+]i; tetraethylammonium and charybdotoxin were ineffective alone but augmented the effects of 4-aminopyridine; alpha-dendrotoxin had no effect. 4. We conclude that cerebellar basket cells contain at least three pharmacologically distinct K+ channels, which regulate transmitter release through different mechanisms. 4-Aminopyridine-sensitive, alpha-dendrotoxin-insensitive K+ channels are mainly responsible for repolarization in basket cell presynaptic terminals. K+ channels blocked by charybdotoxin and tetraethylammonium have a minor role in repolarization. alpha-Dendrotoxin-sensitive channels are not involved in shaping the axonal action potential waveform. The two last types of channels must therefore exert control of synaptic activity through a pathway unrelated to axonal action potential broadening.

  10. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor

    Duan, Xiaojie; Gao, Ruixuan; Xie, Ping; Cohen-Karni, Tzahi; Qing, Quan; Choe, Hwan Sung; Tian, Bozhi; Jiang, Xiaocheng; Lieber, Charles M.

    2012-03-01

    The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be

  11. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK channels

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A.; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S.; Klyachko, Vitaly A.

    2013-01-01

    SUMMARY Loss of FMRP causes Fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation-independent and are mediated selectively by BK channels via interaction of FMRP with BK channel’s regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology. PMID:23439122

  12. QCD Dirac Spectrum at Finite Chemical Potential: Anomalous Effective Action, Berry Phase and Composite Fermions

    Liu, Yizhuang

    2015-01-01

    We show that the QCD Dirac spectrum at finite chemical potential using a 2-matrix model in the spontaneously broken phase, is amenable to a generic 2-dimensional effective action on a curved eigenvalue manifold. The eigenvalues form a droplet with strong screening and non-linear plasmons. The droplet is threaded by a magnetic vortex which is at the origin of a Berry phase. The adiabatic transport in the droplet maps onto the one in the fractional quantum Hall effect, suggesting that composite fermions at half filling are Dirac particles. We use this observation to argue for two novel anomalous effects in the edge transport of composite fermions, and conversely on a novel contribution to the QCD quark condensate in a rotating frame.

  13. Effect of sampling frequency on the measurement of phase-locked action potentials.

    Go eAshida

    2010-09-01

    Full Text Available Phase-locked spikes in various types of neurons encode temporal information. To quantify the degree of phase-locking, the metric called vector strength (VS has been most widely used. Since VS is derived from spike timing information, error in measurement of spike occurrence should result in errors in VS calculation. In electrophysiological experiments, the timing of an action potential is detected with finite temporal precision, which is determined by the sampling frequency. In order to evaluate the effects of the sampling frequency on the measurement of VS, we derive theoretical upper and lower bounds of VS from spikes collected with finite sampling rates. We next estimate errors in VS assuming random sampling effects, and show that our theoretical calculation agrees with data from electrophysiological recordings in vivo. Our results provide a practical guide for choosing the appropriate sampling frequency in measuring VS.

  14. Inhomogeneity of action potential waveshape assists frequency entrainment of cardiac pacemaker cells.

    Cloherty, S L; Lovell, N H; Celler, B G; Dokos, S

    2001-10-01

    In this paper, we have employed ionic models of sinoatrial node cells to investigate the synchronization of a pair of coupled cardiac pacemaker cells from central and peripheral regions of the sinoatrial node. The free-running cycle length of the cell models was perturbed using two independent techniques and the minimum coupling conductance required to achieve frequency entrainment was used to assess the relative ease with which various cell pairs achieve entrainment. The factors effecting entrainment were further investigated using single-cell models paced with an artificial biphasic coupling current. Our simulation results suggest that dissimilar cell types, those with largely different upstroke velocities entrain more easily, that is, they require less coupling conductance to achieve 1:1 frequency entrainment. We, therefore, propose that regional variation in action-potential waveshape within the sinoatrial node assists frequency synchronization in vivo.

  15. A Shab potassium channel contributes to action potential broadening in peptidergic neurons.

    Quattrocki, E A; Marshall, J; Kaczmarek, L K

    1994-01-01

    We have cloned the gene for a potassium channel, Aplysia Shab, that is expressed in the bag cell neurons of Aplysia. The voltage dependence and kinetics of the Aplysia Shab current in oocytes match those of IK2, one of the two delayed rectifiers in these neurons. Like IK2, but in contrast with other members of the Shab subfamily, the Aplysia Shab current inactivates within several hundred milliseconds. This inactivation occurs by a process whose properties do not match those previously described for C-type and N-type mechanisms. Neither truncation of the N-terminus nor block by tetraethylammonium alters the time course of inactivation. By incorporating the characteristics of Aplysia Shab into a computational model, we have shown how this current contributes to the normal enhancement of action potentials that occurs in the bag cell neurons at the onset of neuropeptide secretion.

  16. Sequential dissection of multiple ionic currents in single cardiac myocytes under action potential-clamp.

    Banyasz, Tamas; Horvath, Balazs; Jian, Zhong; Izu, Leighton T; Chen-Izu, Ye

    2011-03-01

    The cardiac action potential (AP) is shaped by myriad ionic currents. In this study, we develop an innovative AP-clamp Sequential Dissection technique to enable the recording of multiple ionic currents in the single cell under AP-clamp. This new technique presents a significant step beyond the traditional way of recording only one current in any one cell. The ability to measure many currents in a single cell has revealed two hitherto unknown characteristics of the ionic currents in cardiac cells: coordination of currents within a cell and large variation of currents between cells. Hence, the AP-clamp Sequential Dissection method provides a unique and powerful tool for studying individual cell electrophysiology.

  17. Mechanism of Action and Clinical Potential of Fingolimod for the Treatment of Stroke

    Wentao Li

    2016-08-01

    Full Text Available Fingolimod (FTY720 is an orally bio-available immunomodulatory drug currently approved by the FDA for the treatment of multiple sclerosis. Currently, there is a significant interest in the potential benefits of FTY720 on stroke outcomes. FTY720 and the sphingolipid signaling pathway it modulates has a ubiquitous presence in the central nervous system and both rodent models and pilot clinical trials seem to indicate that the drug may improve overall functional recovery in different stroke subtypes. Although the precise mechanisms behind these beneficial effects are yet unclear, there is evidence that FTY720 has a role in regulating cerebrovascular responses, blood brain barrier permeability, and cell survival in the event of cerebrovascular insult. In this article, we critically review the data obtained from the latest laboratory findings and clinical trials involving both ischemic and hemorrhagic stroke, and attempt to form a cohesive picture of FTY720’s mechanisms of action in stroke

  18. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus.

    Jack Kent

    Full Text Available BACKGROUND: Circadian ( approximately 24 hr rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by "clock genes", less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K(+ channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1(-/- mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT and Kcnma1(-/- slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1(-/- SCNs showed increased variability in the timing of the daily SFR peak. CONCLUSIONS/SIGNIFICANCE: These results suggest that BK channels regulate multiple aspects of the circadian patterning of neuronal activity in the SCN. In addition, these data illustrate the characteristics of a disrupted SCN rhythm downstream of clock gene-mediated timekeeping and its relationship to behavioral rhythms.

  19. Potential Beneficiaries of the Obama Administration’s Executive Action Programs Deeply Embedded in US Society

    Donald Kerwin

    2016-03-01

    Full Text Available The Obama administration has developed two broad programs to defer immigration enforcement actions against undocumented persons living in the United States: (1 Deferred Action for Parents of Americans and Lawful Permanent Residents (DAPA; and (2 Deferred Action for Childhood Arrivals (DACA. The DACA program, which began in August 2012, was expanded on November 20, 2014. DAPA and the DACA expansion (hereinafter referred to as “DACA-plus” are currently under review by the US Supreme Court and subject to an active injunction.This paper offers a statistical portrait of the intended direct beneficiaries of DAPA, DACA, and DACA-plus. It finds that potential DAPA, DACA, and DACA-plus recipients are deeply embedded in US society, with high employment rates, extensive US family ties, long tenure, and substantial rates of English-language proficiency. The paper also notes various groups that would benefit indirectly from the full implementation of DAPA and DACA or, conversely, would suffer from the removal of potential beneficiaries of these programs. For example, all those who would rely on the retirement programs of the US government will benefit from the high employment rates and relative youth of the DACA population, while many US citizens who rely on the income of a DAPA-eligible parent would fall into poverty or extreme poverty should that parent be removed from the United States.This paper offers an analysis of potential DAPA and DACA beneficiaries. In an earlier study, the authors made the case for immigration reform based on long-term trends related to the US undocumented population, including potential DAPA and DACA beneficiaries (Warren and Kerwin 2015. By contrast, this paper details the degree to which these populations have become embedded in US society. It also compares persons eligible for the original DACA program with those eligible for DACA-plus.As stated, the great majority of potential DAPA and DACA recipients enjoy strong family

  20. Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea-pig gastric pylorus.

    van Helden, D F; Imtiaz, M S; Nurgaliyeva, K; von der Weid, P; Dosen, P J

    2000-04-01

    1. Intracellular recordings made in single bundle strips of a visceral smooth muscle revealed rhythmic spontaneous membrane depolarizations termed slow waves (SWs). These exhibited 'pacemaker' and 'regenerative' components composed of summations of more elementary events termed spontaneous transient depolarizations (STDs). 2. STDs and SWs persisted in the presence of tetrodotoxin, nifedipine and ryanodine, and upon brief exposure to Ca2+-free Cd2+-containing solutions; they were enhanced by ACh and blocked by BAPTA AM, cyclopiazonic acid and caffeine. 3. SWs were also inhibited in heparin-loaded strips. SWs were observed over a wide range of membrane potentials (e.g. -80 to -45 mV) with increased frequencies at more depolarized potentials. 4. Regular spontaneous SW activity in this preparation began after 1-3 h superfusion of the tissue with physiological saline following the dissection procedure. Membrane depolarization applied before the onset of this activity induced bursts of STD-like events (termed the 'initial' response) which, when larger than threshold levels initiated regenerative responses. The combined initial-regenerative waveform was termed the SW-like action potential. 5. Voltage-induced responses exhibited large variable latencies (typical range 0.3-4 s), refractory periods of approximately 11 s and a pharmacology that was indistinguishable from those of STDs and spontaneous SWs. 6. The data indicate that SWs arise through more elementary inositol 1,4,5-trisphosphate (IP3) receptor-induced Ca2+ release events which rhythmically synchronize to trigger regenerative Ca2+ release and induce inward current across the plasmalemma. The finding that action potentials, which were indistinguishable from SWs, could be evoked by depolarization suggests that membrane potential modulates IP3 production. Voltage feedback on intracellular IP3-sensitive Ca2+ release is likely to have a major influence on the generation and propagation of SWs.

  1. Use of electrochemical potential noise to detect initiation and propagation of stress corrosion cracks in a 17-4 PH steel

    Gonzalez-Rodriguez, J.G. [UAEM, Cuernavaca (Mexico); Salinas-Bravo, V.M.; Garcia-Ochoa, E. [Inst. de Investigaciones Electricas, Temixco (Mexico). Dept. de Fisicoquimica Aplicada; Diaz-Sanchez, A. [Inst. Nacional de Investigaciones Nucleares, Toluca (Mexico). Dept. de Materiales

    1997-09-01

    Corrosion potential transients were associated with nucleation and propagation of stress corrosion cracks in a 17-4 precipitation-hardenable (PH) martensitic stainless steel (SS) during slow strain rate tests (SSRT) at 90 C in deaerated sodium chloride (NaCl) solutions, Test solutions included 20 wt% NaCl at pH 3 and 7, similar to normal and faulted steam turbine environments, respectively. Time series were analyzed using the fast Fourier transform method. At the beginning of straining, the consistent noise behavior was perturbed with small potential transients, probably associated with rupture of the surface oxide layer. After yielding, these transients increased in intensity. At maximum load, the transients were still higher in intensity and frequency. These potential transients were related to crack nucleation and propagation. When the steel did not fail by stress corrosion cracking (SCC), such transients were found only at the beginning of the test. The power spectra showed some differences in all cases in roll-off slope and voltage magnitude, but these were not reliable tools to monitor the initiation and propagation of stress corrosion cracks.

  2. Action potential broadening induced by lithium may cause a presynaptic enhancement of excitatory synaptic transmission in neonatal rat hippocampus.

    Colino, A; García-Seoane, J J; Valentín, A

    1998-07-01

    Lithium enhances excitatory synaptic transmission in CA1 pyramidal cells, but the mechanisms remain unclear. The present study demonstrates that lithium enhances the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid (AMPA) receptor-mediated components of the excitatory postsynaptic current (EPSC). Lithium decreased the magnitude of paired-pulse facilitation and presented an inverse correlation between the lithium-induced enhancement of synaptic transmission and initial paired-pulse facilitation, which is consistent with a presynaptic mode of action. The enhancement of synaptic strength is likely to act, at least in part, by increasing the amplitude of the presynaptic Ca2+ transient. One mechanism which could account for this change of the presynaptic Ca2+ transient is an increase in the duration of the action potential. We investigated action potential in hippocampal pyramidal neurons and found that lithium (0.5-6 mM) increased the half-amplitude duration and reduced the rate of repolarization, whereas the rate of depolarization remained similar. To find out whether the lithium synaptic effects might be explained by spike broadening, we investigated the field recording of the excitatory postsynaptic potential (EPSP) in hippocampal slices and found three lines of evidence. First, the prolongation of the presynaptic action potential with 4-aminopyridine and tetraethylammonium blocked or reduced the synaptic effects of lithium. Second, the lithium-induced synaptic enhancement was modulated when presynaptic Ca2+ influx was varied by changing the external Ca2+ concentration. Finally, both effects, the synaptic transmission increment and the action potential broadening, were independent of inositol depletion. These results suggest that lithium enhances synaptic transmission in the hippocampus via a presynaptic site of action: the mechanism underlying the potentiating effect may be attributable to an increased Ca2+ influx consequent

  3. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel

    Zhang, Hongkang; Zou, Beiyan; Yu, Haibo; Moretti, Alessandra; Wang, Xiaoying; Yan, Wei; Babcock, Joseph J.; Bellin, Milena; McManus, Owen B.; Tomaselli, Gordon; Nan, Fajun; Laugwitz, Karl-Ludwig; Li, Min

    2012-01-01

    Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG), leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS, ∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG), which encode two repolarizing potassium currents known as IKs and IKr. The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of IKr by reducing voltage sensitivity of inactivation, not via slowing of deactivation, could more effectively restore normal QT duration if IKs is reduced. Using a unique specific chemical activator for IKr that has a primary effect of causing a right shift of V1/2 for inactivation, we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed, this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast, an IKr chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent. PMID:22745159

  4. Phase relationship between alternans of early and late phases of ventricular action potentials.

    Linyuan eJing

    2012-06-01

    Full Text Available Background: Alternans of early phase and of duration of action potential (AP critically affect dispersion of refractoriness through their influence on conduction and repolarization. We investigated the phase relationship between the two alternans and its effect on conduction. Methods and Results: Transmembrane potentials recorded from ventricles of 8 swine and 3 canines during paced activation intervals of ≤ 300 ms were used to quantify alternans of maximum rate of depolarization (|dv/dt|max and of APD. Incidence of APD alternans was 62% and 76% in swine and canines. Alternans of APD was frequently accompanied with alternans of |dv/dt|max. Of these, 4 and 26 % were out of phase in swine and canines, i.e. low |dv/dt|max preceded long APD. Computer simulations show that out of phase alternans attenuate variation of wavelength and thus minimize formation of spatially discordant alternans. Conclusions: The spontaneous switching of phase relationship between alternans of depolarization and repolarization suggests that mechanisms underlying these alternans may operate independent of each other. The phase between these alternans can critically impact spatial dispersion of refractoriness and thus stability of conduction, with the in phase relation promoting transition from concord to discord while out of phase preventing formation of discord.

  5. Zinc-related actions of sublethal levels of benzalkonium chloride: Potentiation of benzalkonium cytotoxicity by zinc.

    Mitani, Tsuyoshi; Elmarhomy, Ahmed Ibrahim Elhossany; Dulamjav, Luvsandorj; Anu, Enkhtumur; Saitoh, Shohei; Ishida, Shiro; Oyama, Yasuo

    2017-04-25

    Benzalkonium chloride (BZK) is a common preservative used in pharmaceutical and personal care products. ZnCl2 was recently reported to significantly potentiate the cytotoxicity of some biocidal compounds. In the present study, therefore, we compared the cytotoxic potency of BZK and then further studied the Zn(2+)-related actions of the most cytotoxic agent among BZK, using flow cytometric techniques with appropriate fluorescent probes in rat thymocytes. Cytotoxicity of benzylcetyldimethylammonium (BZK-C16) was more potent that those of benzyldodecyldimethylammonium and benzyldimethyltetradecylammonium. ZnCl2 (1-10 μM) significantly potentiated the cytotoxicity of BZK-C16 at a sublethal concentration (1 μM). The co-treatment of cells with 3 μM ZnCl2 and 1 μM BZK-C16 increased the population of both living cells with phosphatidylserine exposed on membrane surfaces and dead cells. BZK-C16 at 0.3-1.0 μM elevated intracellular Zn(2+) levels by increasing Zn(2+) influx, and augmented the cytotoxicity of 100 μM H2O2. Zn(2+) is concluded to facilitate the toxicity of BZK. We suggest that the toxicity of BZK is determined after taking extracellular (plasma) and/or environmental Zn(2+) levels into account.

  6. Optimisation of Ionic Models to Fit Tissue Action Potentials: Application to 3D Atrial Modelling

    Amr Al Abed

    2013-01-01

    Full Text Available A 3D model of atrial electrical activity has been developed with spatially heterogeneous electrophysiological properties. The atrial geometry, reconstructed from the male Visible Human dataset, included gross anatomical features such as the central and peripheral sinoatrial node (SAN, intra-atrial connections, pulmonary veins, inferior and superior vena cava, and the coronary sinus. Membrane potentials of myocytes from spontaneously active or electrically paced in vitro rabbit cardiac tissue preparations were recorded using intracellular glass microelectrodes. Action potentials of central and peripheral SAN, right and left atrial, and pulmonary vein myocytes were each fitted using a generic ionic model having three phenomenological ionic current components: one time-dependent inward, one time-dependent outward, and one leakage current. To bridge the gap between the single-cell ionic models and the gross electrical behaviour of the 3D whole-atrial model, a simplified 2D tissue disc with heterogeneous regions was optimised to arrive at parameters for each cell type under electrotonic load. Parameters were then incorporated into the 3D atrial model, which as a result exhibited a spontaneously active SAN able to rhythmically excite the atria. The tissue-based optimisation of ionic models and the modelling process outlined are generic and applicable to image-based computer reconstruction and simulation of excitable tissue.

  7. Calcium Transients Closely Reflect Prolonged Action Potentials in iPSC Models of Inherited Cardiac Arrhythmia

    C. Ian Spencer

    2014-08-01

    Full Text Available Long-QT syndrome mutations can cause syncope and sudden death by prolonging the cardiac action potential (AP. Ion channels affected by mutations are various, and the influences of cellular calcium cycling on LQTS cardiac events are unknown. To better understand LQTS arrhythmias, we performed current-clamp and intracellular calcium ([Ca2+]i measurements on cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPS-CM. In myocytes carrying an LQT2 mutation (HERG-A422T, APs and [Ca2+]i transients were prolonged in parallel. APs were abbreviated by nifedipine exposure and further lengthened upon releasing intracellularly stored Ca2+. Validating this model, control iPS-CM treated with HERG-blocking drugs recapitulated the LQT2 phenotype. In LQT3 iPS-CM, expressing NaV1.5-N406K, APs and [Ca2+]i transients were markedly prolonged. AP prolongation was sensitive to tetrodotoxin and to inhibiting Na+-Ca2+ exchange. These results suggest that LQTS mutations act partly on cytosolic Ca2+ cycling, potentially providing a basis for functionally targeted interventions regardless of the specific mutation site.

  8. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.

    Chen, W; Zhang, J J; Hu, G Y; Wu, C P

    1996-07-01

    Two different types of action potentials were observed among the pyramidal cells and interneurons in cat motor cortex: the narrow action potentials and the wide action potentials. These two types of action potentials had similar rising phases (528.8 +/- 77.0 vs 553.1 +/- 71.8 mV/ms for the maximal rising rate), but differed in spike duration (0.44 +/- 0.09 vs 1.40 +/- 0.39 ms) and amplitude (57.31 +/- 8.22 vs 72.52 +/- 8.31 mV), implying that the ionic currents contributing to repolarization of these action potentials are different. Here we address this issue by pharmacological manipulation and using voltage-clamp technique in slices of cat motor cortex. Raising extracellular K+ concentration (from 3 mM to 10 mM), applying a low dose of 4-aminopyridine (2-200 microM) or administering a low concentration of tetraethylammonium (0.2-1.0 mM) each not only broadened the narrow action potentials, but also increased their amplitudes. In contrast, high K+ medium or low dose of tetraethylammonium only broadened the wide action potentials, leaving their amplitudes unaffected, and 4-aminopyridine had only a slight broadening effect on the wide spikes. These results implied that K+ currents were involved in the repolarization of both types of action potentials, and that the K+ currents in the narrow action potentials seemed to activate much earlier than those in the wide spikes. This early activated K+ current may counteract the rapid sodium current, yielding the extremely brief duration and small amplitude of the narrow spikes. The sensitivity of the narrow spikes to 4-aminopyridine may not be mainly attributed to blockade of the classical A current (IA), because depolarizing the membrane potential to inactivate IA did not reproduce the effects of 4-aminopyridine. Blockade of Ca2+ influx slowed the last two-thirds repolarization of the wide action potentials. On the contrary, the narrow action potentials were not affected by Ca(2+)-current blockers, but if they were first

  9. Potential involvement of serotonergic signaling in ketamine's antidepressant actions: A critical review.

    du Jardin, Kristian Gaarn; Müller, Heidi Kaastrup; Elfving, Betina; Dale, Elena; Wegener, Gregers; Sanchez, Connie

    2016-11-03

    A single i.v. infusion of ketamine, classified as an N-methyl-d-aspartate (NMDA) receptor antagonist, may alleviate depressive symptoms within hours of administration in treatment resistant depressed patients, and the antidepressant effect may last for several weeks. These unique therapeutic properties have prompted researchers to explore the mechanisms mediating the antidepressant effects of ketamine, but despite many efforts, no consensus on its antidepressant mechanism of action has been reached. Recent preclinical reports have associated the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) with the antidepressant-like action of ketamine. Here, we review the current evidence for a serotonergic role in ketamine's antidepressant effects. The pharmacological profile of ketamine may include equipotent activity on several non-NMDA targets, and the current hypotheses for the mechanisms responsible for ketamine's antidepressant activity do not appear to preclude the possibility that non-glutamate neurotransmitters are involved in the antidepressant effects. At multiple levels, the serotonergic and glutamatergic systems interact, and such crosstalk could support the notion that changes in serotonergic neurotransmission may impact ketamine's antidepressant potential. In line with these prospects, ketamine may increase 5-HT levels in the prefrontal cortex of rats, plausibly via hippocampal NMDA receptor inhibition and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In addition, a number of preclinical studies suggest that the antidepressant-like effects of ketamine may depend on endogenous activation of 5-HT receptors. Recent imaging and behavioral data predominantly support a role for 5-HT1A or 5-HT1B receptors, but the full range of 5-HT receptors has currently not been systematically investigated in this context. Furthermore, the nature of any 5-HT dependent mechanism in ketamine's antidepressant effect is currently not

  10. Characterization of the cell of origin and propagation potential of the fibroblast growth factor 9-induced mouse model of lung adenocarcinoma.

    Arai, Daisuke; Hegab, Ahmed E; Soejima, Kenzo; Kuroda, Aoi; Ishioka, Kota; Yasuda, Hiroyuki; Naoki, Katsuhiko; Kagawa, Shizuko; Hamamoto, Junko; Yin, Yongjun; Ornitz, David M; Betsuyaku, Tomoko

    2015-03-01

    Fibroblast growth factor 9 (FGF9) is essential for lung development and is highly expressed in a subset of human lung adenocarcinomas. We recently described a mouse model in which FGF9 expression in the lung epithelium caused proliferation of the airway epithelium at the terminal bronchioles and led to rapid development of adenocarcinoma. Here, we used this model to characterize the effects of prolonged FGF9 induction on the proximal and distal lung epithelia, and examined the propagation potential of FGF9-induced lung tumours. We showed that prolonged FGF9 over-expression in the lung resulted in the development of adenocarcinomas arising from both alveolar type II and airway secretory cells in the lung parenchyma and airways, respectively. We found that tumour cells harboured tumour-propagating cells that were able to form secondary tumours in recipient mice, regardless of FGF9 expression. However, the highest degree of tumour propagation was observed when unfractionated tumour cells were co-administered with autologous, tumour-associated mesenchymal cells. Although the initiation of lung adenocarcinomas was dependent on activation of the FGF9-FGF receptor 3 (FGFR3) signalling axis, maintenance and propagation of the tumour was independent of this signalling. Activation of an alternative FGF-FGFR axis and the interaction with tumour stromal cells is likely to be responsible for the development of this independence. This study demonstrates the complex role of FGF-FGFR signalling in the initiation, growth and propagation of lung cancer. Our findings suggest that analysing the expressions of FGF-FGFRs in human lung cancer will be a useful tool for guiding customized therapy.

  11. Averaging methods for extracting representative waveforms from motor unit action potential trains.

    Malanda, Armando; Navallas, Javier; Rodriguez-Falces, Javier; Rodriguez-Carreño, Ignacio; Gila, Luis

    2015-08-01

    In the context of quantitative electromyography (EMG), it is of major interest to obtain a waveform that faithfully represents the set of potentials that constitute a motor unit action potential (MUAP) train. From this waveform, various parameters can be determined in order to characterize the MUAP for diagnostic analysis. The aim of this work was to conduct a thorough, in-depth review, evaluation and comparison of state-of-the-art methods for composing waveforms representative of MUAP trains. We evaluated nine averaging methods: Ensemble (EA), Median (MA), Weighted (WA), Five-closest (FCA), MultiMUP (MMA), Split-sweep median (SSMA), Sorted (SA), Trimmed (TA) and Robust (RA) in terms of three general-purpose signal processing figures of merit (SPMF) and seven clinically-used MUAP waveform parameters (MWP). The convergence rate of the methods was assessed as the number of potentials per MUAP train (NPM) required to reach a level of performance that was not significantly improved by increasing this number. Test material comprised 78 MUAP trains obtained from the tibialis anterioris of seven healthy subjects. Error measurements related to all SPMF and MWP parameters except MUAP amplitude descended asymptotically with increasing NPM for all methods. MUAP amplitude showed a consistent bias (around 4% for EA and SA and 1-2% for the rest). MA, TA and SSMA had the lowest SPMF and MWP error figures. Therefore, these methods most accurately preserve and represent MUAP physiological information of utility in clinical medical practice. The other methods, particularly WA, performed noticeably worse. Convergence rate was similar for all methods, with NPM values averaged among the nine methods, which ranged from 10 to 40, depending on the waveform parameter evaluated.

  12. Short Time Quantum Propagator and Bohmian Trajectories

    De Gosson, Maurice,; Hiley, Basil

    2013-01-01

    We begin by giving correct expressions for the short-time action; following the work of one of us and Makri--Miller. We use these estimates to derive a correct expression modulo modulo delta(t)sqr for the quantum propagator and we show that the quantum potential is negligible modulo delta(t)sqr for a point source. We finally prove that this implies that the quantum motion is classical for very short times.

  13. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B

    MENG Yan; ZHAO ChunYan; ZHANG XueXin; ZHAO HuaShan; GUO LiRong; Lü Bin; ZHAO XueJian; YANG BaoXue

    2009-01-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead Ⅱ) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by float-ing microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5±4.2), (45.5±6.9) and (43.8±7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6±2.9), (38.7±5.6) and (38.2±7.3) ms, P<0.05). The atrial ventricular heart block type Ⅱ and Ⅲ only appeared in the aging UT-B null mice (52 w old). The amplitude of action potential and Vmax decreased significantly in UT-B null mice ((92.17±10.56) and (101.89±9.54) mV/s) vs those in wild-type mice (vs (110.51±10.38) and (109.53±10.64) mV/s, P<0.05). The action potential duration at 50% and 90% (APD50 and APD90) was significantly prolonged in UT-B null mice ((123.83±11.17) and (195.43±16.41) ms) vs that in wild-type mice ((108.27±10.85) and (171.00±15.53) ms, P<0.05). The maximal sodium current decreased significantly in UT-B null mice (-8.80±0.92) nA vs that in wild-type mice ((-5.98±1.07) nA, P<0.05). These results provide the first evidence that UT-B deletion causes progressive heart block in mice.

  14. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B

    2009-01-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead II) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by floating microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5 ± 4.2), (45.5 ± 6.9) and (43.8 ± 7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6 ± 2.9), (38.7 ± 5.6) and (38.2 ± 7.3) ms, P<0.05). The atrial ventricular heart block type II and III only appeared in the aging UT-B null mice (52 w old). The amplitude of action potential and Vmax decreased significantly in UT-B null mice ((92.17 ± 10.56) and (101.89 ± 9.54) mV/s) vs those in wild-type mice (vs (110.51 ± 10.38) and (109.53 ± 10.64) mV/s, P<0.05). The action potential duration at 50% and 90% (APD50 and APD90) was significantly prolonged in UT-B null mice ((123.83 ± 11.17) and (195.43 ± 16.41) ms) vs that in wild-type mice ((108.27 ± 10.85) and (171.00 ± 15.53) ms, P<0.05). The maximal sodium current decreased significantly in UT-B null mice (-8.80 ± 0.92) nA vs that in wild-type mice ((-5.98 ± 1.07) nA, P<0.05). These results provide the first evidence that UT-B deletion causes progressive heart block in mice.

  15. CLINICAL AND EXPERIMENTAL STUDIES OF LARGE AMPLITUDE ACTION POTENTIAL OF THE SUFFERED FACIAL MUSCLES IN INTRATEMPORAL FACIAL NERVE PARALYSIS

    任重; 惠莲

    1999-01-01

    Objctive. To testify the phenomenon that large amplitude action potential appears at the early stage oil facial paralysis, and to search for the mechanism through clinical and experimental studies. Patients(aninmls) and methods. The action potentials of the orbicular ocular and oral museles were recorded in 34 normal persons by electromyogram instrtiments. The normal range of amplitude percentage was found out according to the normal distribution, One hundred patients with facial paralysis were also studied. The action potentials of facial muscles were recorded ia 17 guinea pigs before and after the facial nerve was comp~ and the facial nerve was examined under electromicroscope before and after the compression.Results. The amplitude percentage of the suffered side to the healthy side was more than 153 percent in 6 of the 100 patients. Large amplitude action potential occured in 35 per cent guinea pigs which were performed the experiment of facial nerve compression. Electromicroscopic examination revealed separation of the lammae of the facial nerve's myelin sheath in the guinea pigs which exhibited large amplitude action potential Conclusion. The facial nerve exhibited a temporary over-excitability at the early stage of facial nerve injury in scane patients and guinea pigs. If the injury was limited in the myelin sheath, the prognods was relatively good.

  16. CLINICAL AND EXPERIMENTAL STUDIES OF LARGE AMPLITUDE ACTION POTENTIAL OF THE SUFFERED FACIAL MUSCLES IN INTRATEMPORAL FACIAL NERVE PARALYSIS

    1999-01-01

    Ojective. To testify the phenomenon that large amplitude action potential appears at the early stage of facial paralysis, and to search for the mechanism through clinical and experimental studies. Patients(animals) and methods. The action potentials of the orbicular ocular and oral muscles were recorded in 34 normal persons by electromyogram instruments. The normal range of amplitude percentage was found out according to he normal distribution. One hundred patients with facial paralysis were also studied. The action potentials of facial muscles were recorded in 17 guinea pigs before and after the facial nerve was compressed and the facial nerve was examined under electromicroscope before and after the compression.Results. The amplitude percentage of the suffered ide to the healthy side was more than 153 percent in 6 of the 100 patients. Lare amplitude action potential ocured in 35 per cent guinea pigs which were performed the experiment of facial nrve compression. Electromicroscopic examination revealed separation of the lammae of the facial nerve's myelin sheath in the guinea pigs which exhibited large amplitude action potential.Conclusion. The facial nerve exhibited a temporary over-exciability at the early stage of facial nerve injury in some patients and guinea pigs. If the injury waslimited in the myelin sheath, te prognosis was relatively good.

  17. An experimental study on the physical properties of the cupula. Effect of cupular sectioning on the ampullary nerve action potential.

    Suzuki, M; Harada, Y; Kishimoto, A

    1985-01-01

    The frog posterior semicircular canal (PSC) was isolated and a part of the ampullary wall was cut to allow removal of the cupula from the crista. The cupula was replaced on the crista and the PSC ampullary action potential was recorded. The cupula was again removed and was sectioned in half, either in the plane vertical to the crista (vertical sectioning), or in the plane parallel to the crista (horizontal sectioning). The sectioned half of the cupula was then replaced on the crista. The action potentials after replacement of the vertical or horizontal segments of the cupula were compared to those achieved when the entire cupula was replaced. After vertical sectioning, the action potentials were significantly reduced; they were 50.3% of the completely replaced cupula when a small stimulus was used and 79.1% when a large stimulus was used. A reduced attachment surface between the cupular base and the crista is possibly responsible for the decreased action potential in the vertically sectioned specimen. After horizontal sectioning, the action potentials were 64.5% for the small stimulus and 108.2% for the large stimulus. These results indicate that elicited responses are related to the height of the cupula and the deflection angle. This further suggests that the movement of the cupula is represented by that of the elastic system.

  18. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B.

    Meng, Yan; Zhao, Chunyan; Zhang, Xuexin; Zhao, Huashan; Guo, Lirong; Lü, Bin; Zhao, Xuejian; Yang, Baoxue

    2009-05-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead II) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by floating microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5 +/- 4.2), (45.5 +/- 6.9) and (43.8 +/- 7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6 +/- 2.9), (38.7 +/- 5.6) and (38.2 +/- 7.3) ms, PUT-B null mice (52 w old). The amplitude of action potential and V (max) decreased significantly in UT-B null mice ((92.17 +/- 10.56) and (101.89 +/- 9.54) mV/s) vs those in wild-type mice (vs (110.51 +/- 10.38) and (109.53 +/- 10.64) mV/s, PUT-B null mice ((123.83 +/- 11.17) and (195.43 +/- 16.41) ms) vs that in wild-type mice ((108.27 +/- 10.85) and (171.00 +/- 15.53) ms, PUT-B null mice (-8.80 +/- 0.92) nA vs that in wild-type mice ((-5.98 +/- 1.07) nA, PUT-B deletion causes progressive heart block in mice.

  19. Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells.

    Storm, J F

    1987-04-01

    1. The repolarization of the action potential, and a fast after-hyperpolarization (a.h.p.) were studied in CA1 pyramidal cells (n = 76) in rat hippocampal slices (28-37 degrees C). Single spikes were elicited by brief (1-3 ms) current pulses, at membrane potentials close to rest (-60 to -70 mV). 2. Each action potential was followed by four after-potentials: (a) the fast a.h.p., lasting 2-5 ms; (b) an after-depolarization; (c) a medium a.h.p., (50-100 ms); and (d) a slow a.h.p. (1-2 s). Both the fast a.h.p. and the slow a.h.p. (but not the medium a.h.p.) were inhibited by Ca2+-free medium or Ca2+-channel blockers (Co2+, Mn2+ or Cd2+); but tetraethylammonium (TEA; 0.5-2 nM) blocked only the fast a.h.p., and noradrenaline (2-5 microM) only the slow a.h.p. This suggests that two Ca2+-activated K+ currents were involved: a fast, TEA-sensitive one (IC) underlying the fast a.h.p., and a slow noradrenaline-sensitive one (IAHP) underlying the slow a.h.p. 3. Like the fast a.h.p., spike repolarization seems to depend on a Ca2+-dependent K+ current of the fast, TEA-sensitive kind (IC). The repolarization was slowed by Ca2+-free medium, Co2+, Mn2+, Cd2+, or TEA, but not by noradrenaline. Charybdotoxin (CTX; 30 nM), a scorpion toxin which blocks the large-conductance Ca2+-activated K+ channel in muscle, had a similar effect to TEA. The effects of TEA and Cd2+ (or Mn2+) showed mutual occlusion. Raising the external K+ concentration reduced the fast a.h.p. and slowed the spike repolarization, whereas Cl- loading of the cell was ineffective. 4. The transient K+ current, IA, seems also to contribute to spike repolarization, because: (a) 4-aminopyridine (4-AP; 0.1 mM), which blocks IA, slowed the spike repolarization; (b) depolarizing pre-pulses, which inactivate IA, had a similar effect; (c) hyperpolarizing pre-pulses speeded up the spike repolarization; (d) the effects of 4-AP and pre-pulses persisted during Ca2+ blockade (like IA); and (e) depolarizing pre-pulses reduced the

  20. Sensitivity analysis of potential events affecting the double-shell tank system and fallback actions

    Knutson, B.J.

    1996-09-27

    Sensitivity analyses were performed for fall-back positions (i.e., management actions) to accommodate potential off-normal and programmatic change events overlaid on the waste volume projections and their uncertainties. These sensitivity analyses allowed determining and ranking tank system high-risk parameters and fall- back positions that will accommodate the respective impacts. This quantification of tank system impacts shows periods where tank capacity is sensitive to certain variables that must be carefully managed and/or evaluated. Identifying these sensitive variables and quantifying their impact will allow decision makers to prepare fall-back positions and focus available resources on the highest impact parameters where technical data are needed to reduce waste projection uncertainties. For noncomplexed waste, the period of capacity vulnerability occurs during the years of single-shell tank (SST) retrieval (after approximately 2009) due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate and 200-East SST solids transfer volume. For complexed waste, the period of capacity vulnerability occurs during the period after approximately 2005 due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate. 200-East SST solids transfer volume. complexed waste reduction factor using evaporation, and 200-west saltwell liquid porosity.

  1. Direction-selective circuitry in rat retina develops independently of GABAergic, cholinergic and action potential activity.

    Le Sun

    Full Text Available The ON-OFF direction selective ganglion cells (DSGCs in the mammalian retina code image motion by responding much more strongly to movement in one direction. They do so by receiving inhibitory inputs selectively from a particular sector of processes of the overlapping starburst amacrine cells, a type of retinal interneuron. The mechanisms of establishment and regulation of this selective connection are unknown. Here, we report that in the rat retina, the morphology, physiology of the ON-OFF DSGCs and the circuitry for coding motion directions develop normally with pharmacological blockade of GABAergic, cholinergic activity and/or action potentials for over two weeks from birth. With recent results demonstrating light independent formation of the retinal DS circuitry, our results strongly suggest the formation of the circuitry, i.e., the connections between the second and third order neurons in the visual system, can be genetically programmed, although emergence of direction selectivity in the visual cortex appears to require visual experience.

  2. A regenerative microchannel device for recording multiple single-unit action potentials in awake, ambulatory animals.

    Srinivasan, Akhil; Tipton, John; Tahilramani, Mayank; Kharbouch, Adel; Gaupp, Eric; Song, Chao; Venkataraman, Poornima; Falcone, Jessica; Lacour, Stéphanie P; Stanley, Garrett B; English, Arthur W; Bellamkonda, Ravi V

    2016-02-01

    Despite significant advances in robotics, commercially advanced prosthetics provide only a small fraction of the functionality of the amputated limb that they are meant to replace. Peripheral nerve interfacing could provide a rich controlling link between the body and these advanced prosthetics in order to increase their overall utility. Here, we report on the development of a fully integrated regenerative microchannel interface with 30 microelectrodes and signal extraction capabilities enabling evaluation in an awake and ambulatory rat animal model. In vitro functional testing validated the capability of the microelectrodes to record neural signals similar in size and nature to those that occur in vivo. In vitro dorsal root ganglia cultures revealed striking cytocompatibility of the microchannel interface. Finally, in vivo, the microchannel interface was successfully used to record a multitude of single-unit action potentials through 63% of the integrated microelectrodes at the early time point of 3 weeks. This marks a significant advance in microchannel interfacing, demonstrating the capability of microchannels to be used for peripheral nerve interfacing.

  3. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    Domenico F Galati

    2016-09-01

    Full Text Available Abstract Brain-derived neurotrophic factor (BDNF regulates both action potential (AP generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function.

  4. Potential action of androstenedione on the proliferation and apoptosis of stromal endometrial cells

    Anido Mabel

    2004-12-01

    Full Text Available Abstract Background Hyperandrogenic conditions have been associated with a high prevalence of endometrial pathologies related to cell survival. However, the action of androgens on proliferation and apoptosis in endometrial cells is poorly understood. Therefore, the aim of the present study was to evaluate the effect of androstenedione on cell proliferation, cell death and expression of estrogen receptor (ER isoforms and proteins related to apoptosis in endometrial cells using two in vitro experimental approaches. Methods The endometrial tissue was obtained from 20 eumenorrheic women [28.7 (25 – 35 years] during the early secretory phase. We analyzed cell proliferation (immunohistochemistry of Ki-67 and spectrophotometric assay; apoptosis (DNA fragmentation (TUNEL and Annexin V-FITC binding; ER-alpha, ER-beta bcl-2 and bax mRNA abundance (RT-PCR in explants and isolated endometrial epithelial (EEC and stromal cells (ESC incubated with androstenedione 1 micro mol/l (A4 or A4 plus hydroxyflutamide 10 micro mol/l (F for 24 h. Results In explants, A4 induced an increase of cell proliferation and a decrease on apoptosis in the stromal compartment (p Conclusions These results indicate that androstenedione may modulate cell survival, expression of ER-beta and proteins related to apoptosis, suggesting a potential mechanism that associates the effect of hyperandrogenemia on the endometrial tissue.

  5. Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons.

    Fabbro, Alessandra; Sucapane, Antonietta; Toma, Francesca Maria; Calura, Enrica; Rizzetto, Lisa; Carrieri, Claudia; Roncaglia, Paola; Martinelli, Valentina; Scaini, Denis; Masten, Lara; Turco, Antonio; Gustincich, Stefano; Prato, Maurizio; Ballerini, Laura

    2013-01-01

    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies.

  6. Action potential generation in an anatomically constrained model of medial superior olive axons.

    Lehnert, Simon; Ford, Marc C; Alexandrova, Olga; Hellmundt, Franziska; Felmy, Felix; Grothe, Benedikt; Leibold, Christian

    2014-04-09

    Neurons in the medial superior olive (MSO) encode interaural time differences (ITDs) with sustained firing rates of >100 Hz. They are able to generate such high firing rates for several hundred milliseconds despite their extremely low-input resistances of only few megaohms and high synaptic conductances in vivo. The biophysical mechanisms by which these leaky neurons maintain their excitability are not understood. Since action potentials (APs) are usually assumed to be generated in the axon initial segment (AIS), we analyzed anatomical data of proximal MSO axons in Mongolian gerbils and found that the axon diameter is <1 μm and the internode length is ∼100 μm. Using a morphologically constrained computational model of the MSO axon, we show that these thin axons facilitate the excitability of the AIS. However, for ongoing high rates of synaptic inputs the model generates a substantial fraction of APs in its nodes of Ranvier. These distally initiated APs are mediated by a spatial gradient of sodium channel inactivation and a strong somatic current sink. The model also predicts that distal AP initiation increases the dynamic range of the rate code for ITDs.

  7. Effects of stochastic channel gating and distribution on the cardiac action potential.

    Lemay, Mathieu; de Lange, Enno; Kucera, Jan P

    2011-07-21

    Ion channels exhibit stochastic conformational changes determining their gating behavior. In addition, the process of protein turnover leads to a natural variability of the number of membrane and gap junctional channels. Nevertheless, in computational models, these two aspects are scarcely considered and their impacts are largely unknown. We investigated the effects of stochastic current fluctuations and channel distributions on action potential duration (APD), intercellular conduction delays (ICDs) and conduction blocks using a modified ventricular cell model (Rudy et al.) with Markovian formulations of the principal ion currents (to simulate their stochastic open-close gating behavior) and with channel counts drawn from Poisson distributions (to simulate their natural variability). In single cells, APD variability (coefficient of variation: 1.6% at BCL=1000ms) was essentially caused by stochastic channel gating of I(Ks), persistent I(Na) and I(Ca,L). In cell strands, ICD variability induced by stochastic channel gating and Poissonian channel distributions was low under normal conditions. Nonetheless, at low intercellular coupling levels, Poissonian gap junctional channel distribution resulted in a large ICD variability (coefficient of variation >20%), highly heterogeneous conduction patterns and conduction blocks. Therefore, the stochastic behavior of current fluctuations and channel distributions can contribute to the heterogeneity of conduction patterns and to conduction block, as observed previously in experiments in cardiac tissue with altered intercellular coupling.

  8. Low Somatic Sodium Conductance Enhances Action Potential Precision in Time-Coding Auditory Neurons.

    Yang, Yang; Ramamurthy, Bina; Neef, Andreas; Xu-Friedman, Matthew A

    2016-11-23

    Auditory nerve fibers encode sounds in the precise timing of action potentials (APs), which is used for such computations as sound localization. Timing information is relayed through several cell types in the auditory brainstem that share an unusual property: their APs are not overshooting, suggesting that the cells have very low somatic sodium conductance (gNa). However, it is not clear how gNa influences temporal precision. We addressed this by comparing bushy cells (BCs) in the mouse cochlear nucleus with T-stellate cells (SCs), which do have normal overshooting APs. BCs play a central role in both relaying and refining precise timing information from the auditory nerve, whereas SCs discard precise timing information and encode the envelope of sound amplitude. Nucleated-patch recording at near-physiological temperature indicated that the Na current density was 62% lower in BCs, and the voltage dependence of gNa inactivation was 13 mV hyperpolarized compared with SCs. We endowed BCs with SC-like gNa using two-electrode dynamic clamp and found that synaptic activity at physiologically relevant rates elicited APs with significantly lower probability, through increased activation of delayed rectifier channels. In addition, for two near-simultaneous synaptic inputs, the window of coincidence detection widened significantly with increasing gNa, indicating that refinement of temporal information by BCs is degraded by gNa Thus, reduced somatic gNa appears to be an adaption for enhancing fidelity and precision in time-coding neurons.

  9. 'Action potential-like' ST elevation following pseudo-Wellens' electrocardiogram.

    Oksuz, Fatih; Sensoy, Baris; Sen, Fatih; Celik, Ethem; Ozeke, Ozcan; Maden, Orhan

    2015-01-01

    Coronary artery vasospasm is an important cause of chest pain syndromes that can lead to myocardial infarction, ventricular arrhythmias, and sudden death. In 1959, Prinzmetal et al described a syndrome of nonexertional chest pain with ST-segment elevation on electrocardiography. Persistent angina is challenging, and repeated coronary angioplasty may be required in this syndrome. Calcium antagonists are extremely effective in treating and preventing coronary spasm, and may provide long-lasting relief for the patient. Whereas the Wellens' syndrome is characterized by symmetrically inverted T-waves with preserved R waves in the precordial leads suggestive of impending myocardial infarction due to a critical proximal left anterior descending stenosis, the pseudo-Wellens' syndrome caused by coronary artery spasm has also rarely been reported in literature. We present a pseudo-Wellens syndrome as a cause of vasospastic angina, and a diffuse ST segment elavation on electrocardiogram resembling the Greek letter lambda, called also 'action potential-like' ECG in a patient with vasospastic-type Printzmetal angina.

  10. Modulation of action potential trains in rabbit saphenous nerve unmyelinated fibers.

    Zhu, Zhi-Ru; Liu, Yi-Hui; Ji, Wei-Gang; Duan, Jian-Hong; Hu, San-Jue

    2013-01-01

    Usually, the main axon is assumed to faithfully conduct action potentials (APs). Recent data have indicated that neural processing can occur along the axonal path. However, the patterns and mechanisms of temporal coding are not clear. In the present study, single fiber recording was used to analyze activity-dependent modulation of AP trains in the main axons of C fibers in the rabbit saphenous nerve. Trains of 5 superthreshold electrical pulses at interstimulus intervals of 20 or 50 ms were applied to the nerve trunk for 200 s. The interspike intervals (ISIs) for these trains were compared to the input interstimulus intervals. Three basic types of C fibers were observed in response to repeated stimuli: first, the ISI between the first and second AP (ISI1-2) of type 1 was longer than the interstimulus interval; second, the ISI1-2 of type 2 showed wavelike fluctuations around the interstimulus interval, and third, the ISI1-2 of type 3 exhibited shorter intervals for a long period. Furthermore, both 4-aminopyridine-sensitive potassium and hyperpolarization-activated cation currents were involved in the modulation of ISI1-2 of train pulses. These data provide new evidence that multiple modes of neural conduction can occur along the main axons of C fibers.

  11. Effects of terpineol on the compound action potential of the rat sciatic nerve

    M.R. Moreira

    2001-10-01

    Full Text Available Terpineol, a volatile terpenoid alcohol of low toxicity, is widely used in the perfumery industry. It is an important chemical constituent of the essential oil of many plants with widespread applications in folk medicine and in aromatherapy. The effects of terpineol on the compound action potential (CAP of rat sciatic nerve were studied. Terpineol induced a dose-dependent blockade of the CAP. At 100 µM, terpineol had no demonstrable effect. At 300 µM terpineol, peak-to-peak amplitude and conduction velocity of CAP were significantly reduced at the end of 180-min exposure of the nerve to the drug, from 3.28 ± 0.22 mV and 33.5 ± 7.05 m/s, respectively, to 1.91 ± 0.51 mV and 26.2 ± 4.55 m/s. At 600 µM, terpineol significantly reduced peak-to-peak amplitude and conduction velocity from 2.97 ± 0.55 mV and 32.8 ± 3.91 m/s to 0.24 ± 0.23 mV and 2.72 ± 2.72 m/s, respectively (N = 5. All these effects developed slowly and were reversible upon 180-min washout.

  12. The transformative potential of action research and ICT in the Second Language (L2 classroom

    Farren Margaret

    2015-12-01

    Full Text Available This study shows the transformative potential of action research and information and communications technology (ICT in the second language (L2 classroom. Two enquiries from teacher-researchers are detailed in the article. Their engagement in a collaborative professional development Masters programme was pivotal in designing and implementing ICT creatively in their classroom. Gee (2008 advocates the use of the preferred media of our classroom students in order to address their learning. Prensky (2001 urges us to feel the fear and do it anyway with our digital native classes. A post-primary teacher and a primary teacher show us how they felt the fear, did it and transformed aspects of their own teaching in the process. The Masters programme required the teachers to engage with innovative practices, informed by their own values, and integrate technologies that were new to them into their repertoire of classroom strategies. Peer validation meetings with colleagues enabled meaningful insights to emerge from the research. The teachers improve and transform their second language (L2 practice in collaboration and validation with others.

  13. Wavelet transform for real-time detection of action potentials in neural signals.

    Quotb, Adam; Bornat, Yannick; Renaud, Sylvie

    2011-01-01

    We present a study on wavelet detection methods of neuronal action potentials (APs). Our final goal is to implement the selected algorithms on custom integrated electronics for on-line processing of neural signals; therefore we take real-time computing as a hard specification and silicon area as a price to pay. Using simulated neural signals including APs, we characterize an efficient wavelet method for AP extraction by evaluating its detection rate and its implementation cost. We compare software implementation for three methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet transform (SWT). We evaluate detection rate and implementation cost for detection functions dynamically comparing a signal with an adaptive threshold proportional to its SD, where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different data formats to set an optimal compromise between accuracy and silicon cost. Detection accuracy is evaluated together with false negative and false positive detections. Simulation results show that for on-line AP detection implemented on a configurable digital integrated circuit, APs underneath the noise level can be detected using SWT with a well-selected mother wavelet, combined to an adaptive threshold.

  14. Dispersion of compound muscle action potential in hereditary neuropathies and chronic inflammatory demyelinating polyneuropathy.

    Stanton, Michael; Pannoni, Valerie; Lewis, Richard A; Logigian, Eric L; Naguib, Demian; Shy, Michael E; Cleland, James; Herrmann, David N

    2006-10-01

    Distal compound muscle action potential (DCMAP) dispersion, defined as a DCMAP duration > or = 9 ms, and proximal-distal (P-D) CMAP dispersion are considered useful in the electrodiagnosis of chronic inflammatory demyelinating polyneuropathy (CIDP). Distal and P-D CMAP dispersion have not been fully studied in hereditary neuropathies, and it is not known whether these measures distinguish hereditary from acquired demyelination. We compared DCMAP duration and P-D CMAP dispersion in 91 genetically characterized hereditary neuropathies and 33 subjects with CIDP. DCMAP dispersion was more frequent in nerves affected by CIDP (41.5%) than in Charcot-Marie-Tooth disease (CMT)1A (24.4%), CMT1B (7.4%), hereditary neuropathy with liability to pressure palsies (HNPP) (10.5%), or CMTX (9.8%). P-D CMAP dispersion was more frequent in CIDP (27.7% of nerves) than in hereditary neuropathies (16.3%) when applying American Academy of Neurology (AAN) criteria; however, its frequency was similar in CIDP and the hereditary neuropathies using the more restrictive criteria of the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM). Although dispersion is more common in CIDP than in the hereditary neuropathies, DCMAP and P-D dispersion occur in at least one motor nerve in a significant proportion of hereditary neuropathies, and cannot be used in isolation to distinguish acquired from hereditary demyelination.

  15. An overview of skin penetration enhancers: penetration enhancing activity, skin irritation potential and mechanism of action

    Sarunyoo Songkro

    2009-08-01

    Full Text Available Transdermal drug delivery has attracted considerable attention over the past 2-3 decades in regard of its many potentialadvantages. However, the role of the skin as a protective barrier renders skin absorption of most drugs problematic. Therefore,skin penetration enhancers are frequently used in the field of transdermal drug delivery in order to reversibly reduce thebarrier function of the stratum corneum, the outermost layer of the skin. To date, a wide range of chemical compounds havebeen shown to enhance the skin penetration of therapeutic drugs. This review presents a critical account of the most commonlyused chemical penetration enhancers (fatty acids and surfactants, and some newer classes of chemical enhancers (terpenes,polymers, monoolein, oxazolidinones, with emphasis on their efficacy, mechanism of action, and skin irritation potential. Thisreview also discusses the traditional and more recently developed methods for the screening and evaluation of chemical penetration enhancers, and addresses the continuing problems in the rational selection of a chemical penetration enhancer for a specific drug to be delivered via the transdermal route.

  16. MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro

    F Woodward Hopf

    2013-04-01

    Full Text Available The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell, a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition.

  17. Ionic mechanisms maintaining action potential conduction velocity at high firing frequencies in an unmyelinated axon.

    Cross, Kevin P; Robertson, R Meldrum

    2016-05-01

    The descending contralateral movement detector (DCMD) is a high-performance interneuron in locusts with an axon capable of transmitting action potentials (AP) at more than 500 Hz. We investigated biophysical mechanisms for fidelity of high-frequency transmission in this axon. We measured conduction velocities (CVs) at room temperature during exposure to 10 mmol/L cadmium, a calcium current antagonist, and found significant reduction in CV with reduction at frequencies >200 Hz of ~10%. Higher temperatures induced greater CV reductions during exposure to cadmium across all frequencies of ~20-30%. Intracellular recordings during 15 min of exposure to cadmium or nickel, also a calcium current antagonist, revealed an increase in the magnitude of the afterhyperpolarization potential (AHP) and the time to recover to baseline after the AHP (Medians for Control: -19.8%; Nickel: 167.2%; Cadmium: 387.2%), that could be due to a T-type calcium current. However, the removal of extracellular calcium did not mimic divalent cation exposure suggesting calcium currents are not the cause of the AHP increase. Computational modeling showed that the effects of the divalent cations could be modeled with a persistent sodium current which could be blocked by high concentrations of divalent cations. Persistent sodium current shortened the AHP duration in our models and increased CV for high-frequency APs. We suggest that faithful, high-frequency axonal conduction in the DCMD is enabled by a mechanism that shortens the AHP duration like a persistent or resurgent sodium current.

  18. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

    Fikret Emre eKapucu

    2012-06-01

    Full Text Available In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESC, exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI histograms. Moreover, the algorithm calculates interspike interval thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  19. Effect of thermal acclimation on action potentials and sarcolemmal K+ channels from Pacific bluefin tuna cardiomyocytes.

    Galli, G L J; Lipnick, M S; Block, B A

    2009-08-01

    To sustain cardiac muscle contractility relatively independent of temperature, some fish species are capable of temporarily altering excitation-contraction coupling processes to meet the demands of their environment. The Pacific bluefin tuna, Thunnus orientalis, is a partially endothermic fish that inhabits a wide range of thermal niches. The present study examined the effects of temperature and thermal acclimation on sarcolemmal K(+) currents and their role in action potential (AP) generation in bluefin tuna cardiomyocytes. Atrial and ventricular myocytes were enzymatically isolated from cold (14 degrees C)- and warm (24 degrees C)-acclimated bluefin tuna. APs and current-voltage relations of K(+) channels were measured using the whole cell current and voltage clamp techniques, respectively. Data were collected either at the cardiomyocytes' respective acclimation temperature of 14 or 24 degrees C or at a common test temperature of 19 degrees C (to reveal the effects of acclimation). AP duration (APD) was prolonged in cold-acclimated (CA) cardiomyocytes tested at 14 degrees C compared with 19 degrees C and in warm-acclimated (WA) cardiomyocytes tested at 19 degrees C compared with 24 degrees C. This effect was mirrored by a decrease in the density of the delayed-rectifier current (I(Kr)), whereas the density of the background inward-rectifier current (I(K1)) was unchanged. When CA and WA cardiomyocytes were tested at a common temperature of 19 degrees C, no significant effects of temperature acclimation on AP shape or duration were observed, whereas I(Kr) density was markedly increased in CA cardiomyocytes. I(K1) density was unaffected in CA ventricular myocytes but was significantly reduced in CA atrial myocytes, resulting in a depolarization of atrial resting membrane potential. Our results indicate the bluefin AP is relatively short compared with other teleosts, which may allow the bluefin heart to function at cold temperatures without the necessity for thermal

  20. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake.

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A S; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-02-01

    Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na(+)-rich animal and nutrition for the plant.

  1. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics.

    Kapucu, Fikret E; Tanskanen, Jarno M A; Mikkonen, Jarno E; Ylä-Outinen, Laura; Narkilahti, Susanna; Hyttinen, Jari A K

    2012-01-01

    In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESCs), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI) histograms. Moreover, the algorithm calculates ISI thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average (CMA) and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA) data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  2. Atria selective prolongation by NIP-142, an antiarrhythmic agent, of refractory period and action potential duration in guinea pig myocardium.

    Matsuda, Tomoyuki; Takeda, Kentaro; Ito, Mie; Yamagishi, Reiko; Tamura, Miku; Nakamura, Hideki; Tsuruoka, Noriko; Saito, Tomoaki; Masumiya, Haruko; Suzuki, Takeshi; Iida-Tanaka, Naoko; Itokawa-Matsuda, Maho; Yamashita, Toru; Tsuruzoe, Nobutomo; Tanaka, Hikaru; Shigenobu, Koki

    2005-05-01

    NIP-142 is a novel benzopyran compound that was shown to prolong the atrial effective refractory period and terminate experimental atrial fibrillation in the dog. In the present study, we examined the effects of NIP-142 on isolated guinea pig myocardium and on the G-protein-coupled inwardly rectifying potassium channel current (acetylcholine-activated potassium current; I(KACh)) expressed in Xenopus oocytes. NIP-142 (10 and 100 microM) concentration-dependently prolonged the refractory period and action potential duration in the atrium but not in the ventricle. E-4031 and 4-aminopyridine prolonged action potential duration in both left atrium and right ventricle. Prolongation by NIP-142 of the atrial action potential duration was observed at stimulation frequencies between 0.5 and 5 Hz. In contrast, the prolongation by E-4031 was not observed at higher frequencies. Tertiapin, a blocker of I(KACh), prolonged action potential duration in the atrium but not in the ventricle. NIP-142 completely reversed the carbachol-induced shortening of atrial action potential duration. NIP-142 (1 to 100 microM), as well as tertiapin (0.1 to 100 nM), concentration-dependently blocked I(KACh) expressed in Xenopus oocytes; the blockade by NIP-142 was not affected by membrane voltage. In conclusion, NIP-142 was shown to prolong atrial refractory period and action potential duration through blockade of I(KACh) which may possibly explain its previously described antiarrhythmic activity. NIP-142 has pharmacological properties that are different from classical class III antiarrhythmic agents such as atria specificity and lack of reverse frequency dependence, and thus appears promising for the treatment of supraventricular arrhythmia.

  3. Resilient RTN fast spiking in Kv3.1 null mice suggests redundancy in the action potential repolarization mechanism.

    Porcello, Darrell M; Ho, Chi Shun; Joho, Rolf H; Huguenard, John R

    2002-03-01

    Fast spiking (FS), GABAergic neurons of the reticular thalamic nucleus (RTN) are capable of firing high-frequency trains of brief action potentials, with little adaptation. Studies in recombinant systems have shown that high-voltage-activated K(+) channels containing the Kv3.1 and/or Kv3.2 subunits display biophysical properties that may contribute to the FS phenotype. Given that RTN expresses high levels of Kv3.1, with little or no Kv3.2, we tested whether this subunit was required for the fast action potential repolarization mechanism essential to the FS phenotype. Single- and multiple-action potentials were recorded using whole-cell current clamp in RTN neurons from brain slices of wild-type and Kv3.1-deficient mice. At 23 degrees C, action potentials recorded from homozygous Kv3.1 deficient mice (Kv3.1(-/-)) compared with their wild-type (Kv3.1(+/+)) counterparts had reduced amplitudes (-6%) and fast after-hyperpolarizations (-16%). At 34 degrees C, action potentials in Kv3.1(-/-) mice had increased duration (21%) due to a reduced rate of repolarization (-30%) when compared with wild-type controls. Action potential trains in Kv3.1(-/-) were associated with a significantly greater spike decrement and broadening and a diminished firing frequency versus injected current relationship (F/I) at 34 degrees C. There was no change in either spike count or maximum instantaneous frequency during low-threshold Ca(2+) bursts in Kv3.1(-/-) RTN neurons at either temperature tested. Our findings show that Kv3.1 is not solely responsible for fast spikes or high-frequency firing in RTN neurons. This suggests genetic redundancy in the system, possibly in the form of other Kv3 members, which may suffice to maintain the FS phenotype in RTN neurons in the absence of Kv3.1.

  4. Stimulation rate modulates effects of the dihydropyridine CGP 28 392 on cardiac calcium-dependent action potentials.

    Kamp, T. J.; Miller, R. J.; Sanguinetti, M C

    1985-01-01

    Calcium (Ca2+)-dependent action potentials were recorded from 22 mM potassium (K+)-depolarized guinea-pig papillary muscle at several different pacing frequencies in the absence and presence of CGP 28 392 (10 microM), a Ca2+ channel agonist. The maximum upstroke velocity (Vmax) of the slow response action potential was measured to determine relative changes in Ca2+ current as a function of pacing frequency. CGP 28 392 increased Vmax more than two fold at low rates of stimulation (1 or 12 puls...

  5. Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer’s disease

    Valerie eVingtdeux

    2012-07-01

    Full Text Available Since the discovery of prion diseases, the concept that a transmissible pathogen could be a protein has emerged. As such, this transmissible protein agent can transfer its pathological mis-folded shape to the same but normally folded protein thus leading to the propagation of a disease. This idea is now extrapolate to several neurological diseases associated with protein mis-folding and aggregation, such as Alzheimer’s disease. Alzheimer’s disease (AD is a slowly developing dementing disease characterized by the coexistence of two types of lesions: the parenchymal amyloid deposits and the intraneuronal neurofibrillary tangles (NFT. Amyloid deposits are composed of amyloid-beta peptides that derive from sequential cleavages of its precursor named amyloid protein precursor. Neurofibrillary tangle is characterized by intraneuronal aggregation of abnormally modified microtubule-associated Tau proteins. A synergistic relationship between the two lesions may trigger the progression of the disease. Thus, starting in the medial temporal lobe and slowly progressing through temporal, frontal, parietal and occipital cortex, the progression of NFT is well correlated with clinical expression of the disease. However, little is known about the mechanism driving the spatiotemporal propagation of these lesions ultimately leading to the disease. A growing number of studies suggest a prion-like diffusion of amyloid deposits and NFT. In the present chapter, we will develop the current hypotheses regarding the molecular and cellular mechanisms driving the development and spreading of Alzheimer disease lesions from the window of multivesicular bodies and exosomes.

  6. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates

    Elskus, Adria A.

    2012-01-01

    Despite decades of agricultural and urban use of fungicides and widespread detection of these pesticides in surface waters, relatively few data are available on the effects of fungicides on fish and invertebrates in the aquatic environment. Nine fungicides are reviewed in this report: azoxystrobin, boscalid, chlorothalonil, fludioxonil, myclobutanil, fenarimol, pyraclostrobin, pyrimethanil, and zoxamide. These fungicides were identified as emerging chemicals of concern because of their high or increasing global use rates, detection frequency in surface waters, or likely persistence in the environment. A review of the literature revealed significant sublethal effects of fungicides on fish, aquatic invertebrates, and ecosystems, including zooplankton and fish reproduction, fish immune function, zooplankton community composition, metabolic enzymes, and ecosystem processes, such as leaf decomposition in streams, among other biological effects. Some of these effects can occur at fungicide concentrations well below single-species acute lethality values (48- or 96-hour concentration that effects a response in 50 percent of the organisms, that is, effective concentration killing 50 percent of the organisms in 48 or 96 hours) and chronic sublethal values (for example, 21-day no observed adverse effects concentration), indicating that single-species toxicity values may dramatically underestimate the toxic potency of some fungicides. Fungicide modes of toxic action in fungi can sometimes reflect the biochemical and (or) physiological effects of fungicides observed in vertebrates and invertebrates; however, far more studies are needed to explore the potential to predict effects in nontarget organisms based on specific fungicide modes of toxic action. Fungicides can also have additive and (or) synergistic effects when used with other fungicides and insecticides, highlighting the need to study pesticide mixtures that occur in surface waters. For fungicides that partition to

  7. The mitochondrial monoamine oxidase-aldehyde dehydrogenase pathway: a potential site of action of daidzin.

    Rooke, N; Li, D J; Li, J; Keung, W M

    2000-11-02

    Recent studies showed that daidzin suppresses ethanol intake in ethanol-preferring laboratory animals. In vitro, it potently and selectively inhibits the mitochondrial aldehyde dehydrogenase (ALDH-2). Further, it inhibits the conversion of monoamines such as serotonin (5-HT) and dopamine (DA) into their respective acid metabolites, 5-hydroxyindole-3-acetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in isolated hamster or rat liver mitochondria. Studies on the suppression of ethanol intake and inhibition of 5-HIAA (or DOPAC) formation by six structural analogues of daidzin suggested a potential link between these two activities. This, together with the finding that daidzin does not affect the rates of mitochondria-catalyzed oxidative deamination of these monoamines, raised the possibility that the ethanol intake-suppressive (antidipsotropic) action of daidzin is not mediated by the monoamines but rather by their reactive biogenic aldehyde intermediates such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or 3,4-dihydroxyphenylacetaldehyde (DOPAL) which accumulate in the presence of daidzin. To further evaluate this possibility, we synthesized more structural analogues of daidzin and tested and compared their antidipsotropic activities in Syrian golden hamsters with their effects on monoamine metabolism in isolated hamster liver mitochondria using 5-HT as the substrate. Effects of daidzin and its structural analogues on the activities of monoamine oxidase (MAO) and ALDH-2, the key enzymes involved in 5-HT metabolism in the mitochondria, were also examined. Results from these studies reveal a positive correlation between the antidipsotropic activities of these analogues and their abilities to increase 5-HIAL accumulation during 5-HT metabolism in isolated hamster liver mitochondria. Daidzin analogues that potently inhibit ALDH-2 but have no or little effect on MAO are most antidipsotropic, whereas those that also potently inhibit MAO exhibit little, if

  8. Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes.

    Hume, J R; Uehara, A

    1985-11-01

    Single myocardial cells were enzymatically dispersed from guinea-pig atria and ventricles. At 25 degrees C, atrial cell action potentials differed significantly from ventricular cell action potentials in duration (atrial = 141 ms, ventricular = 497 ms) and over-shoot (atrial = +36 mV, ventricular = +42 mV). Action potentials of atrial and ventricular cells responded differently to changes in external K+ concentration ([K+]o). Elevation of [K+]o from 6 to 11 mM depolarized atrial cells but produced no significant change in action potential duration; similar changes in [K+]o depolarized ventricular cells and produced a significant shortening of the action potential duration. Voltage-clamp experiments were performed to investigate the ionic basis underlying the different action potential configurations of single atrial and ventricular myocytes. A single-micropipette voltage-clamp technique was used, employing either extremely small-tip diameter pipettes, without internal cell dialysis (Hume & Giles, 1983), or larger tip diameter pipettes, with internal dialysis (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). Two significant differences in background K+ conductance in single atrial and ventricular myocytes were observed: (i) the isochronal (5 s) current-voltage relationship of single ventricular myocytes exhibited a region of prominent negative slope conductance and elevation of [K+]o produced cross-over; a negative slope conductance region was absent in atrial cells and elevation of [K+]o produced very little cross-over of isochronal current-voltage relationships, and (ii) hyperpolarizing voltage pulses applied from holding potentials of -50 mV elicited inward current in ventricular cells which decayed with time; similar voltage-clamp pulses in atrial cells elicited inward currents which fail to decay. Single K+ channel current measurements confirmed the existence of different resting K+ channel properties in single atrial and ventricular myocytes. Resting K

  9. Conopressin affects excitability, firing, and action potential shape through stimulation of transient and persistent inward currents in mulluscan neurons.

    van Soest, P F; Kits, K S

    1998-04-01

    The molluscan vasopressin/oxytocin-related neuropeptide conopressin activates two persistent inward currents in neurons from the anterior lobe of the right cerebral ganglion of Lymnaea stagnalis that are involved in the control of male copulatory behavior. The low-voltage-activated (LVA) current is activated at a wide range of membrane potentials, its amplitude being only weakly voltage dependent. The high-voltage-activated (HVA) current is activated at potentials positive to -40 mV only and shows a steep voltage dependence. Occurrence of both currents varies from cell to cell, some expressing both and others only the HVA current. In most neurons that have the LVA current, a conopressin-independent persistent inward current (INSR) is found that resembles the HVA current in its voltage dependence. The functional importance of the LVA and HVA currents was studied under current-clamp conditions in isolated anterior lobe neurons. In cells exhibiting both current types, the effect of activation of the LVA current alone was investigated as follows: previously recorded LVA current profiles were injected into the neurons, and the effects were compared with responses induced by conopressin. Both treatments resulted in a strong depolarization and firing activity. No differences in firing frequency and burst duration were observed, indicating that activation of the LVA current is sufficient to evoke bursts. In cells exhibiting only the HVA current, the effect of conopressin on the response to a depolarizing stimulus was tested. Conopressin reversibly increased the number of action potentials generated by the stimulus, suggesting that the HVA current enhances excitability and counteracts accommodation. Conopressin enhanced action potential broadening during depolarizing stimuli in many neurons. Voltage-clamp experiments performed under ion-selective conditions revealed the presence of transient sodium and calcium currents. Using the action potential clamp technique, it was

  10. The FLIC Overlap Quark Propagator

    Kamleh, W; Leinweber, D B; Williams, A G; Zhang, J; Kamleh, Waseem; Bowman, Patrick O.; Leinweber, Derek B.; Williams, Anthony G.; Zhang, Jianbo

    2004-01-01

    FLIC overlap fermions are a variant of the standard (Wilson) overlap action, with the FLIC (Fat Link Irrelevant Clover) action as the overlap kernel rather than the Wilson action. The structure of the FLIC overlap fermion propagator in momentum space is studied, and a comparison against previous studies of the Wilson overlap propagator in quenched QCD is performed. To explore the scaling properties of the propagator for the two actions, numerical calculations are performed in Landau Gauge across three lattices with different lattice spacing $a$ and similar physical volumes. We find that at light quark masses the acti ons agree in both the infrared and the ultraviolet, but at heavier masses some disagreement in the ultraviolet appears. This is attributed to the two action s having different discretisation errors with the FLIC overlap providing superior performance in this regime. Both actions scale reasonably, but some scaling violations are observed.

  11. Developmental impairment of compound action potential in the optic nerve of myelin mutant taiep rats.

    Roncagliolo, Manuel; Schlageter, Carol; León, Claudia; Couve, Eduardo; Bonansco, Christian; Eguibar, José R

    2006-01-05

    The taiep rat is a myelin mutant with an initial hypomyelination, followed by a progressive demyelination of the CNS. The neurological correlates start with tremor, followed by ataxia, immobility episodes, epilepsy and paralysis. The optic nerve, an easily-isolable central tract fully myelinated by oligodendrocytes, is a suitable preparation to evaluate the developmental impairment of central myelin. We examined the ontogenic development of optic nerve compound action potentials (CAP) throughout the first 6 months of life of control and taiep rats. Control optic nerves (ON) develop CAPs characterized by three waves. Along the first month, the CAPs of taiep rats showed a delayed maturation, with lower amplitudes and longer latencies than controls; at P30, the conduction velocity has only a third of the normal value. Later, as demyelination proceeds, the conduction velocity of taiep ONs begins to decrease and CAPs undergo a gradual temporal dispersion. CAPs of control and taiep showed differences in their pharmacological sensitivity to TEA and 4-AP, two voltage dependent K+ channel-blockers. As compared with TEA, 4-AP induced a significant increase of the amplitudes and a remarkable broadening of CAPs. After P20, unlike controls, the greater sensitivity to 4-AP exhibited by taiep ONs correlates with the detachment and retraction of paranodal loops suggesting that potassium conductances could regulate the excitability as demyelination of CNS axons progresses. It is concluded that the taiep rat, a long-lived mutant, provides a useful model to study the consequences of partial demyelination and the mechanisms by which glial cells regulate the molecular organization and excitability of axonal membranes during development and disease.

  12. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons

    Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C.

    2016-01-01

    Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca2+ entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca2+ buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca2+-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca2+ elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377724

  13. Dynamics of the late Na(+) current during cardiac action potential and its contribution to afterdepolarizations.

    Horvath, Balazs; Banyasz, Tamas; Jian, Zhong; Hegyi, Bence; Kistamas, Kornel; Nanasi, Peter P; Izu, Leighton T; Chen-Izu, Ye

    2013-11-01

    The objective of this work is to examine the contribution of late Na(+) current (INa,L) to the cardiac action potential (AP) and arrhythmogenic activities. In spite of the rapidly growing interest toward this current, there is no publication available on experimental recording of the dynamic INa,L current as it flows during AP with Ca(2+) cycling. Also unknown is how the current profile changes when the Ca(2+)-calmodulin dependent protein kinase II (CaMKII) signaling is altered, and how the current contributes to the development of arrhythmias. In this study we use an innovative AP-clamp Sequential Dissection technique to directly record the INa,L current during the AP with Ca(2+) cycling in the guinea pig ventricular myocytes. First, we found that the magnitude of INa,L measured under AP-clamp is substantially larger than earlier studies indicated. CaMKII inhibition using KN-93 significantly reduced the current. Second, we recorded INa,L together with IKs, IKr, and IK1 in the same cell to understand how these currents counterbalance to shape the AP morphology. We found that the amplitude and the total charge carried by INa,L exceed that of IKs. Third, facilitation of INa,L by Anemone toxin II prolonged APD and induced Ca(2+) oscillations that led to early and delayed afterdepolarizations and triggered APs; these arrhythmogenic activities were eliminated by buffering Ca(2+) with BAPTA. In conclusion, INa,L contributes a significantly large inward current that prolongs APD and unbalances the Ca(2+) homeostasis to cause arrhythmogenic APs.

  14. Dynamics of the Late Na+ current during cardiac action potential and its contribution to afterdepolarizations

    Horvath, Balazs; Banyasz, Tamas; Jian, Zhong; Hegyi, Bence; Kistamas, Kornel; Nanasi, Peter P.; Izu, Leighton T.; Chen-Izu, Ye

    2013-01-01

    The objective of this work is to examine the contribution of late Na+ current (INa,L) to the cardiac action potential (AP) and arrhythmogenic activities. In spite of the rapidly growing interest toward this current, there is no publication available on experimental recording of the dynamic INa,L current as it flows during AP with Ca2+ cycling. Also unknown is how the current profile changes when the Ca2+-calmodulin dependent protein kinase II (CaMKII) signaling is altered, and how the current contributes to the development of arrhythmias. In this study we use an innovative AP-clamp Sequential Dissection technique to directly record the INa,L current during the AP with Ca2+ cycling in the guinea pig ventricular myocytes. First, we found that the magnitude of INa,L measured under AP-clamp is substantially larger than earlier studies indicated. CaMKII inhibition using KN-93 significantly reduced the current. Second, we recorded INa,L together with IKs, IKr, and IK1 in the same cell to understand how these currents counterbalance to shape the AP morphology. We found that the amplitude and the total charge carried by INa,L exceed that of IKs. Third, facilitation of INa,L by Anemone toxin II prolonged APD and induced Ca2+ oscillations that led to early and delayed afterdepolarizations and triggered APs; these arrhythmogenic activities were eliminated by buffering Ca2+ with BAPTA. In conclusion, INa,L contributes a significantly large inward current that prolongs APD and unbalances the Ca2+ homeostasis to cause arrhythmogenic APs. PMID:24012538

  15. Beta-adrenergic stimulation reverses the IKr–IKs dominant pattern during cardiac action potential

    Banyasz, Tamas; Jian, Zhong; Horvath, Balazs; Khabbaz, Shaden; Izu, Leighton T.; Chen-Izu, Ye

    2014-01-01

    β-adrenergic stimulation differentially modulates different K+ channels and thus fine-tunes cardiac action potential (AP) repolarization. However, it remains unclear how the proportion of IKs, IKr, and IK1 current in the same cell would be altered by β-adrenergic stimulation, which would change the relative contribution of individual K+ current to the total repolarization reserve. In this study we used an innovative AP-clamp Sequential Dissection technique to directly record the dynamic –IKs, IKr, IK1– currents during the AP in guinea pig ventricular myocytes under physiologically relevant conditions. Our data provide quantitative measures of the magnitude and time course of IKs, IKr, IK1 currents in the same cell under its own steady-state AP, in a physiological milieu, and with preserved Ca2+ homeostasis. We found that isoproterenol treatment significantly enhanced IKs, moderately increased IK1, but slightly decreased IKr in a dose-dependent manner. The dominance pattern of the K+ currents was IKr>IK1>IKs at the control condition, but reversed to IKr

  16. Effects of estragole on the compound action potential of the rat sciatic nerve

    J.H. Leal-Cardoso

    2004-08-01

    Full Text Available Estragole, a relatively nontoxic terpenoid ether, is an important constituent of many essential oils with widespread applications in folk medicine and aromatherapy and known to have potent local anesthetic activity. We investigated the effects of estragole on the compound action potential (CAP of the rat sciatic nerve. The experiments were carried out on sciatic nerves dissected from Wistar rats. Nerves, mounted in a moist chamber, were stimulated at a frequency of 0.2 Hz, with electric pulses of 50-100-µs duration at 10-20 V, and evoked CAP were monitored on an oscilloscope and recorded on a computer. CAP control parameters were: peak-to-peak amplitude (PPA, 9.9 ± 0.55 mV (N = 15, conduction velocity, 92.2 ± 4.36 m/s (N = 15, chronaxy, 45.6 ± 3.74 µs (N = 5, and rheobase, 3.9 ± 0.78 V (N = 5. Estragole induced a dose-dependent blockade of the CAP. At 0.6 mM, estragole had no demonstrable effect. At 2.0 and 6.0 mM estragole, PPA was significantly reduced at the end of 180-min exposure of the nerve to the drug to 85.6 ± 3.96 and 13.04 ± 1.80% of control, respectively. At 4.0 mM, estragole significantly altered PPA, conduction velocity, chronaxy, and rheobase (P <= 0.05, ANOVA; N = 5 to 49.3 ± 6.21 and 77.7 ± 3.84, 125.9 ± 10.43 and 116.7 ± 4.59%, of control, respectively. All of these effects developed slowly and were reversible upon a 300-min wash-out. The data show that estragole dose-dependently blocks nerve excitability.

  17. Encoding of High Frequencies Improves with Maturation of Action Potential Generation in Cultured Neocortical Neurons

    Nikitin, Evgeny S.; Bal, Natalia V.; Malyshev, Aleksey; Ierusalimsky, Victor N.; Spivak, Yulia; Balaban, Pavel M.; Volgushev, Maxim

    2017-01-01

    The ability of neocortical neurons to detect and encode rapid changes at their inputs is crucial for basic neuronal computations, such as coincidence detection, precise synchronization of activity and spike-timing dependent plasticity. Indeed, populations of cortical neurons can respond to subtle changes of the input very fast, on a millisecond time scale. Theoretical studies and model simulations linked the encoding abilities of neuronal populations to the fast onset dynamics of action potentials (APs). Experimental results support this idea, however mechanisms of fast onset of APs in cortical neurons remain elusive. Studies in neuronal cultures, that are allowing for accurate control over conditions of growth and microenvironment during the development of neurons and provide better access to the spike initiation zone, may help to shed light on mechanisms of AP generation and encoding. Here we characterize properties of AP encoding in neocortical neurons grown for 11–25 days in culture. We show that encoding of high frequencies improves upon culture maturation, which is accompanied by the development of passive electrophysiological properties and AP generation. The onset of APs becomes faster with culture maturation. Statistical analysis using correlations and linear model approaches identified the onset dynamics of APs as a major predictor of age-dependent changes of encoding. Encoding of high frequencies strongly correlated also with the input resistance of neurons. Finally, we show that maturation of encoding properties of neurons in cultures is similar to the maturation of encoding in neurons studied in slices. These results show that maturation of AP generators and encoding is, to a large extent, determined genetically and takes place even without normal micro-environment and activity of the whole brain in vivo. This establishes neuronal cultures as a valid experimental model for studying mechanisms of AP generation and encoding, and their maturation. PMID

  18. Observer-Based Vaccination Strategy for a True Mass Action SEIR Epidemic Model with Potential Estimation of All the Populations

    M. De la Sen

    2011-01-01

    Full Text Available This paper presents a simple continuous-time linear vaccination-based control strategy for a SEIR (susceptible plus infected plus infectious plus removed populations propagation disease model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes more difficult contacts among the susceptible and infected. The control objective is the asymptotically tracking of the removed-by-immunity population to the total population while achieving simultaneously the remaining population (i.e., susceptible plus infected plus infectious to asymptotically converge to zero. A state observer is used to estimate the true various partial populations of the susceptible, infected, infectious, and immune which are assumed to be unknown. The model parameters are also assumed to be, in general, unknown. In this case, the parameters are replaced by available estimates to implement the vaccination action.

  19. Inter-subject variability in human atrial action potential in sinus rhythm versus chronic atrial fibrillation.

    Carlos Sánchez

    Full Text Available Human atrial electrophysiology exhibits high inter-subject variability in both sinus rhythm (SR and chronic atrial fibrillation (cAF patients. Variability is however rarely investigated in experimental and theoretical electrophysiological studies, thus hampering the understanding of its underlying causes but also its implications in explaining differences in the response to disease and treatment. In our study, we aim at investigating the ability of populations of human atrial cell models to capture the inter-subject variability in action potential (AP recorded in 363 patients both under SR and cAF conditions.Human AP recordings in atrial trabeculae (n = 469 from SR and cAF patients were used to calibrate populations of computational SR and cAF atrial AP models. Three populations of over 2000 sampled models were generated, based on three different human atrial AP models. Experimental calibration selected populations of AP models yielding AP with morphology and duration in range with experimental recordings. Populations using the three original models can mimic variability in experimental AP in both SR and cAF, with median conductance values in SR for most ionic currents deviating less than 30% from their original peak values. All cAF populations show similar variations in G(K1, G(Kur and G(to, consistent with AF-related remodeling as reported in experiments. In all SR and cAF model populations, inter-subject variability in I(K1 and I(NaK underlies variability in APD90, variability in I(Kur, I(CaL and I(NaK modulates variability in APD50 and combined variability in Ito and I(Kur determines variability in APD20. The large variability in human atrial AP triangulation is mostly determined by I(K1 and either I(NaK or I(NaCa depending on the model.Experimentally-calibrated human atrial AP models populations mimic AP variability in SR and cAF patient recordings, and identify potential ionic determinants of inter-subject variability in human atrial AP

  20. Synthesis of a dendritic estrogen cluster: A potential tool for studies of nuclear versus extranuclear pathways of estrogen actions

    Jian Chen; Hu Zheng; Yan Song; Yu Feng Liang; Qing Rong Qi

    2012-01-01

    A novel estrogen dendrimer has been synthesized through a combination of divergent and convergent approaches in 9 practical steps and in good yields.It was characterized and confirmed by elemental analysis,FT-IR,MS,1H NMR,13C NMR.The dendrimer contains 16 estrone units and is potentially a useful tool for the studies of estrogen actions.

  1. Flattening of the electrocardiographic T-wave is a sign of proarrhythmic risk and a reflection of action potential triangulation

    Bhuiyan, Tanveer Ahmed; Graff, Claus; Kanters, J.K.;

    2013-01-01

    Drug-induced triangulation of the cardiac action potential is associated with increased risk of arrhythmic events. It has been suggested that triangulation causes a flattening of the electrocardiographic T-wave but the relationship between triangulation, T-wave flattening and onset of arrhythmia...

  2. The afterhyperpolarizing potential following a train of action potentials is suppressed in an acute epilepsy model in the rat Cornu Ammonis 1 area.

    Kernig, K; Kirschstein, T; Würdemann, T; Rohde, M; Köhling, R

    2012-01-10

    In hippocampal Cornu Ammonis 1 (CA1) neurons, a prolonged depolarization evokes a train of action potentials followed by a prominent afterhyperpolarizing potential (AHP), which critically dampens neuronal excitability. Because it is not known whether epileptiform activity alters the AHP and whether any alteration of the AHP is independent of inhibition, we acutely induced epileptiform activity by bath application of the GABA(A) receptor blocker gabazine (5 μM) in the rat hippocampal slice preparation and studied its impact on the AHP using intracellular recordings. Following 10 min of gabazine wash-in, slices started to develop spontaneous epileptiform discharges. This disinhibition was accompanied by a significant shift of the resting membrane potential of CA1 neurons to more depolarized values. Prolonged depolarizations (600 ms) elicited a train of action potentials, the number of which was not different between baseline and gabazine treatment. However, the AHP following the train of action potentials was significantly reduced after 20 min of gabazine treatment. When the induction of epileptiform activity was prevented by co-application of 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX, 10 μM) and D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5, 50 μM) to block α-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) and N-methyl-d-aspartate (NMDA) receptors, respectively, the AHP was preserved despite of GABA(A) receptor inhibition suggesting that the epileptiform activity was required to suppress the AHP. Moreover, the AHP was also preserved when the slices were treated with the protein kinase blockers H-9 (100 μM) and H-89 (1 μM). These results demonstrate that the AHP following a train of action potentials is rapidly suppressed by acutely induced epileptiform activity due to a phosphorylation process-presumably involving protein kinase A.

  3. Inhibitors of protein kinase C prevent enhancement of calcium current and action potentials in peptidergic neurons of Aplysia.

    Conn, P J; Strong, J A; Kaczmarek, L K

    1989-02-01

    Following brief stimulation of an afferent pathway, the bag cell neurons of Aplysia undergo a dramatic change in excitability, resulting in a prolonged discharge of spontaneous action potentials. During the discharge, the action potentials of the bag cell neurons become enhanced in height and width. The afterdischarge triggers release of neuroactive peptides that initiate egg-laying behavior in this animal. Evidence suggests that changes in excitability of the bag cell neurons may be mediated by activation of protein kinase C (PKC) and cAMP-dependent protein kinase (cAMP-PK). PKC activators, such as the phorbol ester TPA (12-O-tetradecanoyl-13-phorbol acetate), enhance the amplitude of action potentials in isolated bag cell neurons in cell culture. These agents act by unmasking a previously covert species of voltage-dependent calcium channel resulting in an increase in calcium current. In the accompanying paper (Conn et al., 1989), we showed that H-7, a protein kinase inhibitor, inhibits the effect of TPA, and is a selective inhibitor of PKC relative to cAMP-PK in these cells. We now report that another PKC inhibitor, sphinganine, also inhibits the effect of TPA on action potential height and calcium current in cultured bag cell neurons, and that N-acetylsphinganine, an inactive sphinganine analog, fails to inhibit the effects of PKC activators. Although both H-7 and sphinganine prevent the effects of TPA when added prior to TPA addition, neither compound reverses the effects of TPA when added after the action potentials have already become enhanced by TPA.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Modulation of presynaptic action potential kinetics underlies synaptic facilitation of type B photoreceptors after associative conditioning in Hermissenda.

    Gandhi, C C; Matzel, L D

    2000-03-01

    Descriptions of conditioned response generation in Hermissenda stipulate that the synaptic interaction between type B and A photoreceptors should be enhanced after associative pairings of light and rotation. Although evidence from several laboratories has confirmed this assumption, the mechanism underlying this synaptic facilitation has not been elucidated. Here we report that in vitro conditioning (i.e., light paired with stimulation of vestibular hair cells) modifies the kinetics of presynaptic action potentials in the B photoreceptor in a manner sufficient to account for this synaptic facilitation. After paired training, we observed an increase in the duration of evoked action potentials and a decrease in the amplitude of the spike afterhyperpolarization in the B-cell. As previously reported, paired training also enhanced the excitability (i.e., input resistance and evoked spike rate) of the B photoreceptor. In a second experiment, simultaneous recordings were made in type B and A photoreceptors, and paired training was found to produce an increase in the amplitude of the IPSP in the A photoreceptor in response to an evoked spike in the B-cell. Importantly, there was no change in the initial slope of the postsynaptic IPSP in the A photoreceptor, suggesting that spike duration-independent mechanisms of neurotransmitter exocytosis or postsynaptic receptor sensitivity did not contribute to the observed synaptic facilitation. Perfusion of 4-aminopyridine (4-AP) mimicked a known effect of behavioral conditioning in that it specifically reduced the amplitude of the transient voltage-dependent K(+) current (I(A)) in the B-cell, but in addition, produced action potential broadening and synaptic facilitation that was analogous to that observed after in vitro conditioning. Finally, the effect of 4-AP on B-cell action potentials and on the postsynaptic IPSP in the A-cell was occluded by previous paired (but not unpaired) training, suggesting that the prolongation of the B

  5. Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties.

    Zhou, F M; Hablitz, J J

    1996-08-01

    1. Whole cell patch-clamp techniques, combined with direct visualization of neurons, were used to study action potential (AP) and repetitive firing properties of layer I neurons in slices of rat neocortex. 2. Layer I neurons had resting membrane potentials (RMP) of -59.8 +/- 4.7 mV (mean +/- SD) and input resistances (RN) of 592 +/- 284 M Omega. Layer II/III pyramidal neurons had RMPs and RNs of -61.5 +/- 5.6 mV and 320 +/- 113 M omega, respectively. A double exponential function was needed to describe the charging curves of both neuron types. In layer I neurons, tau(0) was 45 +/- 22 ms and tau(1) was 5 +/- 3.3 ms whereas in layer II/III pyramidal neurons, tau(0) was 41 +/- 11 ms and tau(1) was 3 +/- 2.6 ms. Estimates of specific membrane resistance (Rm) for layer I and layer II/III cells were 45 +/- 22 and 41 +/- 11 k omega cm2, respectively (Cm was assumed to be 1 microF/cm2). 3. AP threshold was -41 +/- 2 mV in layer I neurons. Spike amplitudes, measured from threshold to peak, were 90.6 +/- 7.7 mV. AP durations, measured both at the base and half maximal amplitude, were 2.5 +/- 0.4 and 1.1 +/- 0.2 ms, respectively. AP 10-90% rise and repolarization times were 0.6 +/- 0.1 and 1.1 +/- 0.2 ms, respectively. In layer II/III pyramidal neurons, AP threshold was -41 +/- 2.5 mV and spike amplitude was 97 +/- 9.7 mV. AP duration at base and half maximal amplitude was 5.4 +/- 1.1 ms and 1.8 +/- 0.2 ms, respectively. AP 10-90% rise and decay times were 0.6 +/- 0.1 ms and 2.8 +/- 0.6 ms, respectively. 4. Layer I neurons were fast spiking cells that showed little frequency adaptation, a large fast afterhyperpolarization (fAHP), and no slow afterhyperpolarization (sAHP). Some cells had a medium afterhyperpolarization (mAHP) and a slow afterdepolarization (sADP). All pyramidal cells in layer II/III and "atypical" pyramidal neurons in upper layer II showed regular spiking behavior, prominent frequency adaptation, and marked sAHPs. 5. In both layer I neurons and layer II

  6. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons.

    Colbert, C M; Johnston, D

    1996-11-01

    A long-standing hypothesis is that action potentials initiate first in the axon hillock/initial segment (AH-IS) region because of a locally high density of Na+ channels. We tested this idea in subicular pyramidal neurons by using patch-clamp recordings in hippocampal slices. Simultaneous recordings from the soma and IS confirmed that orthodromic action potentials initiated in the axon and then invaded the soma. However, blocking Na+ channels in the AH-IS with locally applied tetrodotoxin (TTX) did not raise the somatic threshold membrane potential for orthodromic spikes. TTX applied to the axon beyond the AH-IS (30-60 microm from the soma) raised the apparent somatic threshold by approximately 8 mV. We estimated the Na+ current density in the AH-IS and somatic membranes by using cell-attached patch-clamp recordings and found similar magnitudes (3-4 pA/microm2). Thus, the present results suggest that orthodromic action potentials initiate in the axon beyond the AH-IS and that the minimum threshold for spike initiation of the neuron is not determined by a high density of Na+ channels in the AH-IS region.

  7. Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglion neurons.

    Schink, Martin; Leipold, Enrico; Schirmeyer, Jana; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H

    2016-01-01

    Dorsal root ganglion (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 μM) or low-intensity blue light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8(-/-)), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and, at higher concentrations, progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure.

  8. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control.

    Bravo, Alejandra; Gill, Sarjeet S; Soberón, Mario

    2007-03-15

    Bacillus thuringiensis Crystal (Cry) and Cytolitic (Cyt) protein families are a diverse group of proteins with activity against insects of different orders--Lepidoptera, Coleoptera, Diptera and also against other invertebrates such as nematodes. Their primary action is to lyse midgut epithelial cells by inserting into the target membrane and forming pores. Among this group of proteins, members of the 3-Domain Cry family are used worldwide for insect control, and their mode of action has been characterized in some detail. Phylogenetic analyses established that the diversity of the 3-Domain Cry family evolved by the independent evolution of the three domains and by swapping of domain III among toxins. Like other pore-forming toxins (PFT) that affect mammals, Cry toxins interact with specific receptors located on the host cell surface and are activated by host proteases following receptor binding resulting in the formation of a pre-pore oligomeric structure that is insertion competent. In contrast, Cyt toxins directly interact with membrane lipids and insert into the membrane. Recent evidence suggests that Cyt synergize or overcome resistance to mosquitocidal-Cry proteins by functioning as a Cry-membrane bound receptor. In this review we summarize recent findings on the mode of action of Cry and Cyt toxins, and compare them to the mode of action of other bacterial PFT. Also, we discuss their use in the control of agricultural insect pests and insect vectors of human diseases.

  9. Doubts about actions and flanker incongruity-related potentials and performance

    Tops, Mattie; Wijers, Albertus A.

    2012-01-01

    The brain networks that are involved in flanker incongruity and error processing are also consistently implicated in mental disorders such as obsessive compulsive disorder (OCD) that feature increased "Doubts about Actions" (DaA) scores. In the present study we investigated whether DaA scores, simil

  10. On the use of upper extremity proximal nerve action potentials in the localization of focal nerve lesions producing axonotmesis.

    White, J C

    1997-09-01

    Ulnar, median, and radial proximal nerve action potentials (PNAPs) were recorded from the axilla and supraclavicularly, with stimulation of the nerves at the elbow or the radial groove, in 30 control subjects for each nerve. In addition to routine nerve conduction studies, wrist to elbow median nerve action potentials were recorded proximal to the lesion in 76 patients with carpal tunnel syndrome of varying degrees of severity to determine the effect that the distal lesion might have on more proximal nerve conduction. Utilizing this information, PNAPs, standard nerve conduction studies, and needle electrode examinations were carried out in patients with focal elbow area nerve or brachial plexus lesions producing axonotmesis. PNAPs confirmed the site of the lesions producing axonotmesis when localization was possible with standard nerve conduction and/or needle electrode studies and were the sole means by which localization of the lesions producing only sensory axonotmesis was accomplished.

  11. Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance.

    Kocsis, J D; Waxman, S G; Hildebrand, C; Ruiz, J A

    1982-12-22

    Extracellular application of potassium channel blocking agents is known to increase the amplitude and duration of the compound action potential in non-myelinated and demyelinated axons, but not in mature mammalian myelinated fibres. In the present study we used intra-axonal and whole nerve recording techniques to study the effects of the potassium channel blocking agent 4-aminopyridine (4-AP) on regenerating rat nerve fibres. Our results indicate that early regenerating (premyelinated) axons show considerable broadening of the action potential after 4-AP application and late regenerating (myelinated) axons give rise to burst activity following a single stimulus after 4-AP application. 4-AP did not affect spike waveform or firing properties of normal mature sciatic nerve fibres. These results demonstrate the importance of potassium conductance in stabilizing firing properties of myelinated regenerating axons.

  12. Effects of nerve growth factor on the action potential duration and repolarizing currents in a rabbit model of myocardial infarction

    Lan, Yun-Feng; Zhang, Jian-Cheng; Gao, Jin-Lao; Wang, Xue-Ping; Fang, Zhou; Fu, Yi-Cheng; Chen, Mei-Yan; Lin, Min; Xue, Qiao; Li, Yang

    2013-01-01

    Objectives To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Methods Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck f...

  13. Morphological Characterization of the Action Potential Initiation Segment in GnRH Neuron Dendrites and Axons of Male Mice.

    Herde, Michel K; Herbison, Allan E

    2015-11-01

    GnRH neurons are the final output neurons of the hypothalamic network controlling fertility in mammals. In the present study, we used ankyrin G immunohistochemistry and neurobiotin filling of live GnRH neurons in brain slices from GnRH-green fluorescent protein transgenic male mice to examine in detail the location of action potential initiation in GnRH neurons with somata residing at different locations in the basal forebrain. We found that the vast majority of GnRH neurons are bipolar in morphology, elaborating a thick (primary) and thinner (secondary) dendrite from opposite poles of the soma. In addition, an axon-like process arising predominantly from a proximal dendrite was observed in a subpopulation of GnRH neurons. Ankyrin G immunohistochemistry revealed the presence of a single action potential initiation zone ∼27 μm in length primarily in the secondary dendrite of GnRH neurons and located 30 to 140 μm distant from the cell soma, depending on the type of process and location of the cell body. In addition to dendrites, the GnRH neurons with cell bodies located close to hypothalamic circumventricular organs often elaborated ankyrin G-positive axon-like structures. Almost all GnRH neurons (>90%) had their action potential initiation site in a process that initially, or ultimately after a hairpin loop, was coursing in the direction of the median eminence. These studies indicate that action potentials are initiated in different dendritic and axonal compartments of the GnRH neuron in a manner that is dependent partly on the neuroanatomical location of the cell body.

  14. High-Bandwidth Atomic Force Microscopy Reveals A Mechanical spike Accompanying the Action Potential in mammalian Nerve Terminals

    Salzberg, Brian M.

    2008-03-01

    Information transfer from neuron to neuron within nervous systems occurs when the action potential arrives at a nerve terminal and initiates the release of a chemical messenger (neurotransmitter). In the mammalian neurohypophysis (posterior pituitary), large and rapid changes in light scattering accompany secretion of transmitter-like neuropeptides. In the mouse, these intrinsic optical signals are intimately related to the arrival of the action potential (E-wave) and the release of arginine vasopressin and oxytocin (S-wave). We have used a high bandwidth (20 kHz) atomic force microscope (AFM) to demonstrate that these light scattering signals are associated with changes in nerve terminal volume, detected as nanometer-scale movements of a cantilever positioned on top of the neurohypophysis. The most rapid mechanical response, the ``spike'', has duration comparable to that of the action potential (˜2 ms) and probably reflects an increase in terminal volume due to H2O movement associated with Na^+-influx. Elementary calculations suggest that two H2O molecules accompanying each Na^+-ion could account for the ˜0.5-1.0 å increase in the diameter of each terminal during the action potential. Distinguishable from the mechanical ``spike'', a slower mechanical event, the ``dip'', represents a decrease in nerve terminal volume, depends upon Ca^2+-entry, as well as on intra-terminal Ca^2+-transients, and appears to monitor events associated with secretion. A simple hypothesis is that this ``dip'' reflects the extrusion of the dense core granule that comprises the secretory products. These dynamic high bandwidth AFM recordings are the first to monitor mechanical events in nervous systems and may provide novel insights into the mechanism(s) by which excitation is coupled to secretion at nerve terminals.

  15. Sodium entry during action potentials of mammalian central neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons

    Carter, Brett C.; Bean, Bruce P.

    2009-01-01

    We measured the time course of sodium entry during action potentials of mouse central neurons at 37 °C to examine how efficiently sodium entry is coupled to depolarization. In cortical pyramidal neurons, sodium entry was nearly completely confined to the rising phase of the spike: only ~25% more sodium enters than the theoretical minimum necessary for spike depolarization. However, in fast-spiking GABAergic neurons (cerebellar Purkinje cells and cortical interneurons), twice as much sodium en...

  16. Shaping of action potentials by type I and type II large-conductance Ca²+-activated K+ channels.

    Jaffe, D B; Wang, B; Brenner, R

    2011-09-29

    The BK channel is a Ca(2+) and voltage-gated conductance responsible for shaping action potential waveforms in many types of neurons. Type II BK channels are differentiated from type I channels by their pharmacology and slow gating kinetics. The β4 accessory subunit confers type II properties on BK α subunits. Empirically derived properties of BK channels, with and without the β4 accessory subunit, were obtained using a heterologous expression system under physiological ionic conditions. These data were then used to study how BK channels alone (type I) and with the accessory β4 subunit (type II) modulate action potential properties in biophysical neuron models. Overall, the models support the hypothesis that it is the slower kinetics provided by the β4 subunit that endows the BK channel with type II properties, which leads to broadening of action potentials and, secondarily, to greater recruitment of SK channels reducing neuronal excitability. Two regions of parameter space distinguished type II and type I effects; one where the range of BK-activating Ca(2+) was high (>20 μM) and the other where BK-activating Ca(2+) was low (∼0.4-1.2 μM). The latter required an elevated BK channel density, possibly beyond a likely physiological range. BK-mediated sharpening of the spike waveform associated with the lack of the β4 subunit was sensitive to the properties of voltage-gated Ca(2+) channels due to electrogenic effects on spike duration. We also found that depending on Ca(2+) dynamics, type II BK channels may have the ability to contribute to the medium AHP, a property not generally ascribed to BK channels, influencing the frequency-current relationship. Finally, we show how the broadening of action potentials conferred by type II BK channels can also indirectly increase the recruitment of SK-type channels decreasing the excitability of the neuron.

  17. Action Potential Modulation in CA1 Pyramidal Neuron Axons Facilitates OLM Interneuron Activation in Recurrent Inhibitory Microcircuits of Rat Hippocampus

    Sooyun Kim

    2014-01-01

    Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive ...

  18. Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression?

    Kraskov, Alexander; Dancause, Numa; Quallo, Marsha M; Shepherd, Samantha; Lemon, Roger N

    2009-12-24

    The discovery of "mirror neurons" in area F5 of the ventral premotor cortex has prompted many theories as to their possible function. However, the identity of mirror neurons remains unknown. Here, we investigated whether identified pyramidal tract neurons (PTNs) in area F5 of two adult macaques exhibited "mirror-like" activity. About half of the 64 PTNs tested showed significant modulation of their activity while monkeys observed precision grip of an object carried out by an experimenter, with somewhat fewer showing modulation during precision grip without an object or grasping concealed from the monkey. Therefore, mirror-like activity can be transmitted directly to the spinal cord via PTNs. A novel finding is that many PTNs (17/64) showed complete suppression of discharge during action observation, while firing actively when the monkey grasped food rewards. We speculate that this suppression of PTN discharge might be involved in the inhibition of self-movement during action observation.

  19. Potential pathways of pesticide action on erectile function-a contributory factor in male infertility

    RP Kaur; V Gupta; AF Christopher; P Bansal

    2015-01-01

    One of the important objectives of this manuscript is to focus on the place of erectile dysfunction as an important factor for infertility. The review is about correlating the indiscriminate use of pesticides and to find out and highlight the evidences for mechanism of action of these pesticides for erectile dysfunction and find out the most used and most dangerous pesticide from erectile dysfunction point of view. The review suggests that erectile dysfunction is having a significant place as a causal factor for infertility. Study infers that pesticides are having multiple mechanisms of action through which these cause erectile dysfunction. It also reflects that acetamiprid is having most devastating effect causing erectile dysfunction as it acts through multiple inhibitory pathways. The review successfully highlights the indiscriminate regional use of pesticides.

  20. Amplitude of sensory nerve action potential in early stage diabetic peripheral neuropathy:an analysis of 500 cases

    Yunqian Zhang; Jintao Li; Tingjuan Wang; Jianlin Wang

    2014-01-01

    Early diagnosis of diabetic peripheral neuropathy is important for the successful treatment of diabetes mellitus. In the present study, we recruited 500 diabetic patients from the Fourth Afifl-iated Hospital of Kunming Medical University in China from June 2008 to September 2013: 221 cases showed symptoms of peripheral neuropathy (symptomatic group) and 279 cases had no symptoms of peripheral impairment (asymptomatic group). One hundred healthy control sub-jects were also recruited. Nerve conduction studies revealed that distal motor latency was longer, sensory nerve conduction velocity was slower, and sensory nerve action potential and amplitude of compound muscle action potential were signiifcantly lower in the median, ulnar, posterior tibial and common peroneal nerve in the diabetic groups compared with control subjects. More-over, the alterations were more obvious in patients with symptoms of peripheral neuropathy. Of the 500 diabetic patients, neural conduction abnormalities were detected in 358 cases (71.6%), among which impairment of the common peroneal nerve was most prominent. Sensory nerve abnormality was more obvious than motor nerve abnormality in the diabetic groups. The ampli-tude of sensory nerve action potential was the most sensitive measure of peripheral neuropathy. Our results reveal that varying degrees of nerve conduction changes are present in the early, as-ymptomatic stage of diabetic peripheral neuropathy.

  1. Amplitude of sensory nerve action potential in early stage diabetic peripheral neuropathy: an analysis of 500 cases.

    Zhang, Yunqian; Li, Jintao; Wang, Tingjuan; Wang, Jianlin

    2014-07-15

    Early diagnosis of diabetic peripheral neuropathy is important for the successful treatment of diabetes mellitus. In the present study, we recruited 500 diabetic patients from the Fourth Affiliated Hospital of Kunming Medical University in China from June 2008 to September 2013: 221 cases showed symptoms of peripheral neuropathy (symptomatic group) and 279 cases had no symptoms of peripheral impairment (asymptomatic group). One hundred healthy control subjects were also recruited. Nerve conduction studies revealed that distal motor latency was longer, sensory nerve conduction velocity was slower, and sensory nerve action potential and amplitude of compound muscle action potential were significantly lower in the median, ulnar, posterior tibial and common peroneal nerve in the diabetic groups compared with control subjects. Moreover, the alterations were more obvious in patients with symptoms of peripheral neuropathy. Of the 500 diabetic patients, neural conduction abnormalities were detected in 358 cases (71.6%), among which impairment of the common peroneal nerve was most prominent. Sensory nerve abnormality was more obvious than motor nerve abnormality in the diabetic groups. The amplitude of sensory nerve action potential was the most sensitive measure of peripheral neuropathy. Our results reveal that varying degrees of nerve conduction changes are present in the early, asymptomatic stage of diabetic peripheral neuropathy.

  2. Role of gap junction channel in the development of beat-to-beat action potential repolarization variability and arrhythmias.

    Magyar, Janos; Banyasz, Tamas; Szentandrassy, Norbert; Kistamas, Kornel; Nanasi, Peter P; Satin, Jonathan

    2015-01-01

    The short-term beat-to-beat variability of cardiac action potential duration (SBVR) occurs as a random alteration of the ventricular repolarization duration. SBVR has been suggested to be more predictive of the development of lethal arrhythmias than the action potential prolongation or QT prolongation of ECG alone. The mechanism underlying SBVR is not completely understood but it is known that SBVR depends on stochastic ion channel gating, intracellular calcium handling and intercellular coupling. Coupling of single cardiomyocytes significantly decreases the beat-to-beat changes in action potential duration (APD) due to the electrotonic current flow between neighboring cells. The magnitude of this electrotonic current depends on the intercellular gap junction resistance. Reduced gap junction resistance causes greater electrotonic current flow between cells, and reduces SBVR. Myocardial ischaemia (MI) is known to affect gap junction channel protein expression and function. MI increases gap junction resistance that leads to slow conduction, APD and refractory period dispersion, and an increase in SBVR. Ultimately, development of reentry arrhythmias and fibrillation are associated post-MI. Antiarrhythmic drugs have proarrhythmic side effects requiring alternative approaches. A novel idea is to target gap junction channels. Specifically, the use of gap junction channel enhancers and inhibitors may help to reveal the precise role of gap junctions in the development of arrhythmias. Since cell-to-cell coupling is represented in SBVR, this parameter can be used to monitor the degree of coupling of myocardium.

  3. Complex Dynamic Thresholds and Generation of the Action Potentials in the Neural-Activity Model

    Kirillov, S. Yu.; Nekorkin, V. I.

    2016-05-01

    This work is devoted to studying the processes of activation of the neurons whose excitation thresholds are not constant and vary in time (the so-called dynamic thresholds). The neuron dynamics is described by the FitzHugh-Nagumo model with nonlinear behavior of the recovery variable. The neuron response to the external pulsed activating action in the presence of a slowly varying synaptic current is studied within the framework of this model. The structure of the dynamic threshold is studied and its properties depending on the external-action parameters are established. It is found that the formation of the "folds" in the separatrix threshold manifold in the model phase space is a typical feature of the complex dynamic threshold. High neuron sensitivity to the action of the comparatively weak slow control signals is established. This explains the capability of the neurons to perform flexible tuning of their selective properties for detecting various external signals in sufficiently short times (of the order of duration of several spikes).

  4. Propagation and interaction of matter-wave solitons in Bose-Einstein condensates with time-dependent scattering length and varying potentials

    Li Biao; Li Yuqi [Nonlinear Science Center, Ningbo University, Ningbo 315211 (China); Zhang Xiaofei; Liu, W M, E-mail: biaolee2000@yahoo.com.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-09-14

    We present two families of one-soliton solutions and three families of two-soliton solutions for a generalized nonlinear Schroedinger equation, which is characterized by the time-dependent scattering length and varying potentials. Then, we investigate the propagation of one-soliton and interactions of two-soliton by some selected control functions. The results show that the intensities of one- and two-soliton first increase rapidly to a peak value, and then decay very slowly to the background value; thus, the lifetimes of both one-soliton and two-soliton in Bose-Einstein condensates can be extended largely at least to the order of the lifetime of a Bose-Einstein condensate in real experiments. Our results open up new ways of considerable experimental interest for the management of matter-wave solitons in Bose-Einstein condensates.

  5. Adaptation decision-making in the Nordic Countries: assessing the potential for joint action

    Juhola, Sirkku; Goodsite, Michael Evan; Davis, Marion

    2014-01-01

    on the issue. This paper explores the potential for Nordic cooperation on adaptation; specifically, for the development of a regional adaptation strategy. In particular, it addresses two questions (1) What is the current state of adaptation in the Nordic countries? and (2) What are the potential benefits...

  6. Antidiabetic Drugs: Mechanisms of Action and Potential Outcomes on Cellular Metabolism.

    Meneses, Maria J; Silva, Branca M; Sousa, Mário; Sá, Rosália; Oliveira, Pedro F; Alves, Marco G

    2015-01-01

    Diabetes mellitus (DM) is one of the most prevalent chronic diseases and has been a leading cause of death in the last decades. Thus, methods to detect, prevent or delay this disease and its co-morbidities have long been a matter of discussion. Nowadays, DM patients, particularly those suffering with type 2 DM, are advised to alter their diet and physical exercise regimens and then proceed progressively from monotherapy, dual therapy, and multi-agent therapy to insulin administration, as the disease becomes more severe. Although progresses have been made, the pursuit for the "perfect" antidiabetic drug still continues. The complexity of DM and its impact on whole body homeodynamics are two of the main reasons why there is not yet such a drug. Moreover, the molecular mechanisms by which DM can be controlled are still under an intense debate. As the associated risks, disadvantages, side effects and mechanisms of action vary from drug to drug, the choice of the most suitable therapy needs to be thoroughly investigated. Herein we propose to discuss the different classes of antidiabetic drugs available, their applications and mechanisms of action, particularly those of the newer and/or most widely prescribed classes. A special emphasis will be made on their effects on cellular metabolism, since these drugs affect those pathways in several cellular systems and organs, promoting metabolic alterations responsible for either deleterious or beneficial effects. This is a crucial property that needs to be carefully investigated when prescribing an antidiabetic.

  7. Modulatory action of acetylcholine on the Na+-dependent action potentials in Kenyon cells isolated from the mushroom body of the cricket brain.

    Terazima, E; Yoshino, M

    2010-12-01

    Kenyon cells, intrinsic neurons of the insect mushroom body, have been assumed to be a site of conditioning stimulus (CS) and unconditioned stimulus (US) association in olfactory learning and memory. Acetylcholine (ACh) has been implicated to be a neurotransmitter mediating CS reception in Kenyon cells, causing rapid membrane depolarization via nicotinic ACh receptors. However, the long-term effects of ACh on the membrane excitability of Kenyon cells are not fully understood. In this study, we examined the effects of ACh on Na(+) dependent action potentials (Na(+) spikes) elicited by depolarizing current injection and on net membrane currents under the voltage clamp condition in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Current-clamp studies using amphotericin B perforated-patch recordings showed that freshly dispersed cricket Kenyon cells could produce repetitive Na(+) spikes in response to prolonged depolarizing current injection. Bath application of ACh increased both the instantaneous frequency and the amplitudes of Na(+) spikes. This excitatory action of ACh on Kenyon cells is attenuated by the pre-treatment of the cells with the muscarinic receptor antagonists, atropine and scopolamine, but not by the nicotinic receptor antagonist mecamylamine. Voltage-clamp studies further showed that bath application of ACh caused an increase in net inward currents that are sensitive to TTX, whereas outward currents were decreased by this treatment. These results indicate that in order to mediate CS, ACh may modulate the firing properties of Na(+) spikes of Kenyon cells through muscarinic receptor activation, thus increasing Na conductance and decreasing K conductance.

  8. Waveform Similarity Analysis: A Simple Template Comparing Approach for Detecting and Quantifying Noisy Evoked Compound Action Potentials.

    Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira

    2015-01-01

    Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound

  9. Methanol extract of Tephrosia vogelii leaves potentiates the contractile action of acetylcholine on isolated rabbit jejunum

    Tavershima Dzenda

    2015-09-01

    Conclusions: The findings demonstrate that methanol extract of Tephrosia vogelii leaves potentiates the contractile effect of ACh on intestinal smooth muscle, supporting the traditional claim that the plant is purgative.

  10. Impacts of tourism hotspots on vegetation communities show a higher potential for self-propagation along roads than hiking trails.

    Wolf, Isabelle D; Croft, David B

    2014-10-01

    Vegetation communities along recreational tracks may suffer from substantial edge-effects through the impacts of trampling, modified environmental conditions and competition with species that benefit from disturbance. We assessed impacts on trackside vegetation by comparing high and low usage tourism sites at a 1-10 m distance from recreational tracks in a popular arid-lands tourism destination in South Australia. The central aim was quantification of the strengths and spatial extent of tourism impacts along recreational tracks with a qualitative comparison of roads and trails. Track-distance gradients were most prevalent at high usage sites. There, species community composition was altered, total plant cover decreased, non-native species cover increased, plant diversity increased or decreased (depending on the distance) and soil compaction increased towards recreational tracks. Roadside effects were greater and more pervasive than trailside effects. Further, plant diversity did not continuously increase towards the road verge as it did along trails but dropped sharply in the immediate road shoulder which indicated high disturbance conditions that few species were able to tolerate. To our knowledge, we are the first to demonstrate that the access mode to a recreation site influences the potential of certain impacts, such as the increase of non-native species, to self-perpetuate from their points of introduction to disjointed sites with a predisposition to disturbance. Due to this propulsion of impacts, the overall spatial extent of roadside impacts was far greater than initially apparent from assessments at the road verge. We discuss possible means of mitigating these impacts.

  11. Cardiovascular pleiotropic actions of DPP-4 inhibitors: a step at the cutting edge in understanding their additional therapeutic potentials.

    Balakumar, Pitchai; Dhanaraj, Sokkalingam A

    2013-09-01

    Dipeptidyl peptidase 4 (DPP-4) is a serine protease enzyme expressed widely in many tissues, including the cardiovascular system. The incretin hormones such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are released from the small intestine into the vasculature during a meal, and these incretins have a potential to release insulin from pancreatic beta cells of islets of Langerhans, affording a glucose-lowering action. However, both incretins are hurriedly degraded by the DPP-4. Inhibitors of DPP-4, therefore, enhance the bioavailability of GLP-1 and GIP, and thus have been approved for better glycemic management in patients afflicted with type 2 diabetes mellitus (T2DM). Five different DPP-4 inhibitors, often called as 'gliptins', namely sitagliptin, vildagliptin, saxagliptin, linagliptin and alogliptin have been approved hitherto for clinical use. These drugs are used along with diet and exercise to lower blood sugar in diabetic subjects. T2DM is intricately related with an increased risk of cardiovascular disease. Growing body of evidence suggests that gliptins, in addition to their persuasive anti-diabetic action, have a beneficial pleiotropic action on the heart and vessels. In view of the fact of cardiovascular disease susceptibility of patients afflicted with T2DM, gliptins might offer additional therapeutic benefits in treating diabetic cardiovascular complications. Exploring further the cardiovascular pleiotropic potentials of gliptins might open a panorama in impeccably employing these agents for the dual management of T2DM and T2DM-associated perilous cardiovascular complications. This review will shed lights on the newly identified beneficial pleiotropic actions of gliptins on the cardiovascular system.

  12. Computational modeling of voltage-gated Ca channels inhibition: identification of different effects on uterine and cardiac action potentials

    Wing Chiu eTong

    2014-10-01

    Full Text Available The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs. Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models – of uterine smooth muscle cells (USMC, cardiac sinoatrial node cells (SAN and ventricular cells – to investigate the relative effects of reducing two important voltage-gated Ca currents – the L-type (ICaL and T-type (ICaT Ca currents. Reduction of ICaL (10% alone, or ICaT (40% alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine

  13. Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons.

    Fransén, Erik; Alonso, Angel A; Dickson, Clayton T; Magistretti, Jacopo; Hasselmo, Michael E

    2004-01-01

    A multicompartmental biophysical model of entorhinal cortex layer II stellate cells was developed to analyze the ionic basis of physiological properties, such as subthreshold membrane potential oscillations, action potential clustering, and the medium afterhyperpolarization. In particular, the simulation illustrates the interaction of the persistent sodium current (I(Nap)) and the hyperpolarization activated inward current (Ih) in the generation of subthreshold membrane potential oscillations. The potential role of Ih in contributing to the medium hyperpolarization (mAHP) and rebound spiking was studied. The role of Ih and the slow calcium-activated potassium current Ikappa(AHP) in action potential clustering was also studied. Representations of Ih and I(Nap) were developed with parameters based on voltage-clamp data from whole-cell patch and single channel recordings of stellate cells (Dickson et al., J Neurophysiol 83:2562-2579, 2000; Magistretti and Alonso, J Gen Physiol 114:491-509, 1999; Magistretti et al., J Physiol 521:629-636, 1999a; J Neurosci 19:7334-7341, 1999b). These currents interacted to generate robust subthreshold membrane potentials with amplitude and frequency corresponding to data observed in the whole cell patch recordings. The model was also able to account for effects of pharmacological manipulations, including blockade of Ih with ZD7288, partial blockade with cesium, and the influence of barium on oscillations. In a model with a wider range of currents, the transition from oscillations to single spiking, to spike clustering, and finally tonic firing could be replicated. In agreement with experiment, blockade of calcium channels in the model strongly reduced clustering. In the voltage interval during which no data are available, the model predicts that the slow component of Ih does not follow the fast component down to very short time constants. The model also predicts that the fast component of Ih is responsible for the involvement in the

  14. Bursting regimes in a reaction-diffusion system with action potential-dependent equilibrium.

    Stephen R Meier

    Full Text Available The equilibrium Nernst potential plays a critical role in neural cell dynamics. A common approximation used in studying electrical dynamics of excitable cells is that the ionic concentrations inside and outside the cell membranes act as charge reservoirs and remain effectively constant during excitation events. Research into brain electrical activity suggests that relaxing this assumption may provide a better understanding of normal and pathophysiological functioning of the brain. In this paper we explore time-dependent ionic concentrations by allowing the ion-specific Nernst potentials to vary with developing transmembrane potential. As a specific implementation, we incorporate the potential-dependent Nernst shift into a one-dimensional Morris-Lecar reaction-diffusion model. Our main findings result from a region in parameter space where self-sustaining oscillations occur without external forcing. Studying the system close to the bifurcation boundary, we explore the vulnerability of the system with respect to external stimulations which disrupt these oscillations and send the system to a stable equilibrium. We also present results for an extended, one-dimensional cable of excitable tissue tuned to this parameter regime and stimulated, giving rise to complex spatiotemporal pattern formation. Potential applications to the emergence of neuronal bursting in similar two-variable systems and to pathophysiological seizure-like activity are discussed.

  15. Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation

    Zingman, Leonid V.; Zhu, Zhiyong; Sierra, Ana; Stepniak, Elizabeth; Burnett, Colin M-L.; Maksymov, Gennadiy; Anderson, Mark E.; Coetzee, William A.; Hodgson-Zingman, Denice M.

    2011-01-01

    Physical activity is one of the most important determinants of cardiac function. The ability of the heart to increase delivery of oxygen and metabolic fuels relies on an array of adaptive responses necessary to match bodily demand while avoiding exhaustion of cardiac resources. The ATP-sensitive potassium (KATP) channel has the unique ability to adjust cardiac membrane excitability in accordance with ATP and ADP levels, and up-regulation of its expression that occurs in response to exercise could represent a critical element of this adaption. However, the mechanism by which KATP channel expression changes result in a beneficial effect on cardiac excitability and function remains to be established. Here, we demonstrate that an exercise-induced rise in KATP channel expression enhanced the rate and magnitude of action potential shortening in response to heart rate acceleration. This adaptation in membrane excitability promoted significant reduction in cardiac energy consumption under escalating workloads. Genetic disruption of normal KATP channel pore function abolished the exercise-related changes in action potential duration adjustment and caused increased cardiac energy consumption. Thus, an expression-driven enhancement in the KATP channel-dependent membrane response to alterations in cardiac workload represents a previously unrecognized mechanism for adaptation to physical activity and a potential target for cardioprotection. PMID:21439969

  16. Frequency-dependent effects of phenytoin on the maximum upstroke velocity of action potentials in guinea-pig papillary muscles.

    Kojima, M; Ichiyama, M; Ban, T

    1986-07-01

    Phenytoin, at 50 to 200 micrograms reduced the maximum upstroke velocity of action potentials (Vmax) with increases in frequency from 0.25 to 5 Hz and in the external potassium concentration [( K+]0) from 2.7 to 8.1 mM. The drug-induced shortening of action potential duration was evident at 0.25 to 2 Hz but little at 3 to 5 Hz. Time courses of recovery of Vmax was studied by applying premature responses between the conditioning responses at 1 Hz both in control and in drug-treated preparations. Concerning the time courses of the difference between the Vmax values before and after drug treatments at the same diastolic interval, with increases in drug concentrations the intercepts at APD90 were increased but the time constants were not changed or slightly decreased in 8.1 to 5.4 mM [K+]0, whereas they were increased in 2.7 mM [K+]0. To understand the kinetic behavior of this drug on sodium channels, rate constants for the interaction of phenytoin with three states of channels in terms of Hondeghem-Katzung model were estimated from the above experiments of Vmax. The model most consistent with the present experiments was that with an affinity for inactivated channels 20 times greater than that for resting channels and with a minor affinity for open channels. Phenytoin produced a delay in the time course of recovery of overshoot and action potential duration at 0 mV (APD0), suggesting an additional inhibition of the slow channel by this drug.

  17. EFFECTS OF DESENSITIZATION AND REBOUND TO ADENOSINE ON ACTION POTENTIAL AND CONTRACTILITY IN ATRIAL CELLS IN GUINEA-PIGS

    张凤杰; 臧伟进; 于晓江; 胡浩; 张春虹; 孙强; 吕军

    2002-01-01

    Objective To investigate the effects of desensitization and rebound to adenosine(Ado) on action potential duration(APD) and contractility in guinea-pig atrial cells. Methods Electrical activity was recorded using standard intracellular microelectrode technique and contractility was recorded using. We studied the effects of adenosine on the action potential and desensitization of contractility and rebound of contractility. Results The results showed that action potential duration were shortened by 1,10,100μmol*L-1Ado, the ratio of shortened APD was (9.58±1.40)%,(13.80±2.26)%,(24.80±3.19)%, respectively. 1μmol*L-1Ado had no desensitization (P>0.05), but the time of desensitization of 10μmol*L-1 Ado and 100μmol*L-1 Ado was 1 minute(P<0.05) and 5 minutes(P<0.05), respectively. The desensitization of contractility of 10*!μmol*L-1 Ado was obvious in atrial cells, the decrease of contractility of 10*!μmol*L-1 Ado was obvious in atrial cells, the decrease of contractility was changed from (31.4±16.04)%(2 minutes) to (50.60±15.87)% (4 minutes), compared with control. After washing out Ado, contractility was shown to rebound, the ratio of increase of contractility by 1,10,100μmol*L-1 Ado was (12.38±7.50)%,(19.00±8.14)% and (27.60±13.44)%, respectively. Conclusion Ado can abbreviate APD in atrial cells. The desensitization of Ado on APD is characterized by concentration-dependent and time-dependent in atrial cells, and the desensitization of contractility of Ado is obvious and contractility was shown to rebound after washing out Ado.

  18. Recovery time of motor evoked potentials following lengthening and shortening muscle action in the tibialis anterior

    Tallent, J.; Goodall, S.; Hortobagyi, T.; Gibson, A. St Clair; French, D. N.; Howatson, G.

    2012-01-01

    Motor evoked potentials (MEP) at rest remain facilitated following an isometric muscle contraction. Because the pre-synaptic and post-synaptic control of shortening (SHO) and lengthening (LEN) contractions differs, the possibility exists that the recovery of the MEP is also task specific. The time c

  19. Serotonin spillover onto the axon initial segment of motoneurons induces central fatigue by inhibiting action potential initiation

    Cotel, Florence; Exley, Richard; Cragg, Stephanie

    2013-01-01

    --as during motor exercise--activated 5-HT1A receptors that decreased motoneuronal excitability. Electrophysiological tests combined with pharmacology showed that focal activation of 5-HT1A receptors at the axon initial segment (AIS), but not on other motoneuronal compartments, inhibited the action potential...... adequately independently of the muscle physiology. Indirect evidence indicates that central fatigue is caused by serotonin (5-HT), but the cellular mechanisms are unknown. In a slice preparation from the spinal cord of the adult turtle, we found that prolonged stimulation of the raphe-spinal pathway...

  20. A major role for calcium-dependent potassium current in action potential repolarization in adrenal chromaffin cells.

    Pancrazio, J J; Johnson, P A; Lynch, C

    1994-12-30

    To determine the extent which Ca dependent K current (IKCa) contributes during an action potential (AP), bovine chromaffin cells were voltage-clamped using a pre-recorded AP as the command voltage waveform. Based on (1) differential sensitivity of IKCa and Ca-independent K current (IK) to tetraethylammonium; (2) measurements of AP currents under conditions where Ca activation of IKCa had been abolished; and (3) blockade by charybdotoxin, IKCa comprised 70-90% of the outward K current during AP repolarization. In addition, observations are made concerning the form of AP-evoked Ca current.

  1. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes.

    Stimers, Joseph R; Song, Li; Rusch, Nancy J; Rhee, Sung W

    2015-01-01

    Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.

  2. Potential Mechanism of Action of meso-Dihydroguaiaretic Acid on Mycobacterium tuberculosis H37Rv

    Aldo F. Clemente-Soto

    2014-12-01

    Full Text Available The isolation and characterization of the lignan meso-dihydroguaiaretic acid (MDGA from Larrea tridentata and its activity against Mycobacterial tuberculosis has been demonstrated, but no information regarding its mechanism of action has been documented. Therefore, in this study we carry out the gene expression from total RNA obtained from M. tuberculosis H37Rv treated with MDGA using microarray technology, which was validated by quantitative real time polymerase chain reaction. Results showed that the alpha subunit of coenzyme A transferase of M. tuberculosis H37Rv is present in both geraniol and 1-and 2-methylnaphthalene degradation pathways, which are targeted by MDGA. This assumption was supported by molecular docking which showed stable interaction between MDGA with the active site of the enzyme. We propose that inhibition of coenzyme A transferase of M. tuberculosis H37Rv results in the accumulation of geraniol and 1-and 2-methylnaphtalene inside bacteria, causing membrane destabilization and death of the pathogen. The natural product MDGA is thus an attractive template to develop new anti-tuberculosis drugs, because its target is different from those of known anti-tubercular agents.

  3. Immunomodulatory effects of fluoxetine: A new potential pharmacological action for a classic antidepressant drug?

    Di Rosso, María Emilia; Palumbo, María Laura; Genaro, Ana María

    2016-07-01

    Selective serotonin reuptake inhibitors are frequently used antidepressants. In particular, fluoxetine is usually chosen for the treatment of the symptoms of depression, obsessive-compulsive, panic attack and bulimia nervosa. Antidepressant therapy has been associated with immune dysfunction. However, there is contradictory evidence about the effect of fluoxetine on the immune system. Experimental findings indicate that lymphocytes express the serotonin transporter. Moreover it has been shown that fluoxetine is able to modulate the immune function through a serotonin-dependent pathway and through a novel independent mechanism. In addition, several studies have shown that fluoxetine can alter tumor cell viability. Thus, it was recently demonstrated in vivo that chronic fluoxetine treatment inhibits tumor growth by increasing antitumor T-cell activity. Here we briefly review some of the literature referring to how fluoxetine is able to modify, for better or worse, the functionality of the immune system. These results of our analysis point to the relevance of the novel pharmacological action of this drug as an immunomodulator helping to treat several pathologies in which immune deficiency and/or deregulation is present.

  4. Potential mechanism of action of meso-dihydroguaiaretic acid on Mycobacterium tuberculosis H37Rv.

    Clemente-Soto, Aldo F; Balderas-Rentería, Isaías; Rivera, Gildardo; Segura-Cabrera, Aldo; Garza-González, Elvira; del Rayo Camacho-Corona, María

    2014-12-02

    The isolation and characterization of the lignan meso-dihydroguaiaretic acid (MDGA) from Larrea tridentata and its activity against Mycobacterial tuberculosis has been demonstrated, but no information regarding its mechanism of action has been documented. Therefore, in this study we carry out the gene expression from total RNA obtained from M. tuberculosis H37Rv treated with MDGA using microarray technology, which was validated by quantitative real time polymerase chain reaction. Results showed that the alpha subunit of coenzyme A transferase of M. tuberculosis H37Rv is present in both geraniol and 1-and 2-methylnaphthalene degradation pathways, which are targeted by MDGA. This assumption was supported by molecular docking which showed stable interaction between MDGA with the active site of the enzyme. We propose that inhibition of coenzyme A transferase of M. tuberculosis H37Rv results in the accumulation of geraniol and 1-and 2-methylnaphtalene inside bacteria, causing membrane destabilization and death of the pathogen. The natural product MDGA is thus an attractive template to develop new anti-tuberculosis drugs, because its target is different from those of known anti-tubercular agents.

  5. Genotoxic and cytotoxic action potential of Terminalia citrina, a medicinal plant of ethnopharmacological significance

    Akhtar, Muhammad Furqan; Saleem, Ammara; Sharif, Ali; Akhtar, Bushra; Nasim, Maaz Bin; Peerzada, Sohaib; Raza, Moosa; Ijaz, Hira; Ahmed, Shoaib; Shabbir, Maryam; Ali, Sajid; Akbar, Zeeshan; Ul Hassan, Syed Saeed

    2016-01-01

    Most herbal medicines utilized in complementary and alternative medicine lack safety evaluation setting our lives under unwarranted risks. Present study comprised of genotoxic and cytotoxic appraisal of Terminalia citrina fruits which are used as a folklore medicine for treatment of various ailments. Aqueous and ethanolic extracts of T. citrina fruit extracts were evaluated for the presence of different phytochemicals. Genotoxic potential of both the extract of T. citrina was assessed through Ames reverse mutagenicity assay in Salmonella TA 100 and 102 strains. Cytotoxic potential of T. citrina was determined in baby hamster kidney cell line (BHK-21). Statistical analysis was carried out by ANOVA following post hoc test. Phytochemical analysis showed the presence of alkaloids, carbohydrates, phenolic compounds, tannins, catechins and saponins. It was revealed that both the extracts of T. citrina exhibited significant mutagenicity in tester strains. Ethanolic extract showed higher mutagenicity in TA 100 strain, whereas aqueous extract of T. citrina exhibited higher mutagenicity in TA 102 strain than TA 100. Both the extracts of T. citrina showed dose-dependent mutagenicity. Fifty percent cell viability was exhibited by 260 and 545 µg/mL of ethanolic and aqueous extracts respectively. This study concludes that the ethanolic and aqueous fruit extracts of T. citrina may not be safe owing to their mutagenic and cytotoxic potential and it necessitates further investigation regarding its safety evaluation. PMID:28096789

  6. The mechanism of action of two bradykinin-potentiating peptides on isolated smooth muscle.

    Ufkes, J G; Aarsen, P N; van der Meer, C

    1977-07-15

    Bradykinin-induced contractions in the guinea-pig ileum were potentiated by the peptides A-VI-5 (Val-Glu-Ser-Ser-Lys) and BPP5a (Pyr-Lys-Trp-Ala-Pro), while the contractions induced by other agonists were not affected. Neither peptide added alone caused any response. Previous addition of the peptides shortened the latent period following the addition of bradykinin to a value corresponding to the contraction height with an equivalent dose of bradykinin added alone. Bradykinin in contact with a piece of ileum was inactivated at a relatively slow rate. This inactivation was not inhibited by either A-VI-5 or BPP5a in doses causing potentiation. Suppression of the cholinergic activity by cooling, atropine, morphine or tetrodotoxin did not influence the potentiating activity. Addition of the peptides at the moment a submaximal contraction due to bradykinin had been fully established, increased the contraction height within seconds. The two peptides caused a parallel shift to the left of the dose-effect curve of bradykinin, whereas the maximum bradykinin effect remained unchanged. It is concluded that sensitization of bradykinin receptors due to an increased affinity of the receptor for bradykinin is the hypothesis which best fits the experimental findings.

  7. Effect of cardiac glycosides on action potential characteristics and contractility in cat ventricular myocytes: role of calcium overload.

    Ruch, Stuart R; Nishio, Manabu; Wasserstrom, J Andrew

    2003-10-01

    There is increasing evidence that cardiac glycosides act through mechanisms distinct from inhibition of the sodium pump but which may contribute to their cardiac actions. To more fully define differences between agents indicative of multiple sites of action, we studied changes in contractility and action potential (AP) configuration in cat ventricular myocytes produced by six cardiac glycosides (ouabain, ouabagenin, dihydroouabain, actodigin, digoxin, and resibufogenin). AP shortening was observed only with ouabain and actodigin. There was extensive inotropic variability between agents, with some giving full inotropic effects before automaticity occurred whereas others produced minimal inotropy before toxicity. AP shortening was not a result of alterations in calcium current or the inward rectifier potassium current, but correlated with an increase in steady-state outward current (Iss), which was sensitive to KB-R7943, a Na+-Ca2+ exchange (NCX) inhibitor. Interestingly, Iss was observed following exposure to ouabain and dihydroouabain, suggesting that an additional mechanism is operative with dihydroouabain that prevents AP shortening. Further investigation into differences in inotropy between ouabagenin, dihydroouabain and ouabain revealed almost identical responses under AP voltage clamp. Thus all agents appear to act on the sodium pump and thereby secondarily increase the outward reverse mode NCX current, but the extent of AP duration shortening and positive inotropy elicited by each agent is limited by development of their toxic actions. The quantitative differences between cardiac glycosides suggest that mechanisms independent of sodium pump inhibition may result from an altered threshold for calcium overload possibly involving direct or indirect effects on calcium release from the sarcoplasmic reticulum.

  8. Fast calcium and voltage-sensitive dye imaging in enteric neurones reveal calcium peaks associated with single action potential discharge.

    Michel, K; Michaelis, M; Mazzuoli, G; Mueller, K; Vanden Berghe, P; Schemann, M

    2011-12-15

    Slow changes in [Ca(2+)](i) reflect increased neuronal activity. Our study demonstrates that single-trial fast [Ca(2+)](i) imaging (≥200 Hz sampling rate) revealed peaks each of which are associated with single spike discharge recorded by consecutive voltage-sensitive dye (VSD) imaging in enteric neurones and nerve fibres. Fast [Ca(2+)](i) imaging also revealed subthreshold fast excitatory postsynaptic potentials. Nicotine-evoked [Ca(2+)](i) peaks were reduced by -conotoxin and blocked by ruthenium red or tetrodotoxin. Fast [Ca(2+)](i) imaging can be used to directly record single action potentials in enteric neurones. [Ca(2+)](i) peaks required opening of voltage-gated sodium and calcium channels as well as Ca(2+) release from intracellular stores.

  9. Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions.

    Géza Berecki

    Full Text Available BACKGROUND: The SCN5A encoded sodium current (I(Na generates the action potential (AP upstroke and is a major determinant of AP characteristics and AP propagation in cardiac myocytes. Unfortunately, in cardiac myocytes, investigation of kinetic properties of I(Na with near-physiological ion concentrations and temperature is technically challenging due to the large amplitude and rapidly activating nature of I(Na, which may seriously hamper the quality of voltage control over the membrane. We hypothesized that the alternating voltage clamp-current clamp (VC/CC technique might provide an alternative to traditional voltage clamp (VC technique for the determination of I(Na properties under physiological conditions. PRINCIPAL FINDINGS: We studied I(Na under close-to-physiological conditions by VC technique in SCN5A cDNA-transfected HEK cells or by alternating VC/CC technique in both SCN5A cDNA-transfected HEK cells and rabbit left ventricular myocytes. In these experiments, peak I(Na during a depolarizing VC step or maximal upstroke velocity, dV/dt(max, during VC/CC served as an indicator of available I(Na. In HEK cells, biophysical properties of I(Na, including current density, voltage dependent (inactivation, development of inactivation, and recovery from inactivation, were highly similar in VC and VC/CC experiments. As an application of the VC/CC technique we studied I(Na in left ventricular myocytes isolated from control or failing rabbit hearts. CONCLUSIONS: Our results demonstrate that the alternating VC/CC technique is a valuable experimental tool for I(Na measurements under close-to-physiological conditions in cardiac myocytes.

  10. The growth cones of Aplysia sensory neurons: Modulation by serotonin of action potential duration and single potassium channel currents.

    Belardetti, F; Schacher, S; Kandel, E R; Siegelbaum, S A

    1986-09-01

    Serotonin (5-HT) closes a specific K channel ("S") in the cell body of Aplysia sensory neurons, resulting in a slow excitatory postsynaptic potential and spike broadening. To determine whether the S channel is present and can be modulated in processes of the neuron other than the cell body, we studied the effects of 5-HT on growth cones of sensory neurons in culture by using the patch-clamp technique. Simultaneous application of 5-HT to the cell body and to the growth cones of sensory neurons produced, in both, a slow depolarization of approximately 5 mV. Also, 5-HT produced a lengthening of the duration of action potential in the growth cone and cell body by 20-30%. Similar effects were observed in isolated growth cones that had been severed from the rest of the neuron, implying that the growth cones contain all the molecular components (i.e., receptors, channels, cAMP cascade) necessary for 5-HT action. Cell-attached patch-clamp recordings demonstrated the presence of S channels in sensory neuron growth cones. Application of serotonin to the bath produced long-lasting all-or-none closures of these channels in a manner identical to the previously characterized action of 5-HT in the cell body. Thus, channel modulation is not restricted to the cell body and probably occurs throughout the sensory neuron. This strengthens the view that S-channel modulation may also occur at the sensory neuron presynaptic terminal, where it could play a role in the presynaptic facilitation produced by 5-HT.

  11. Markov models of use-dependence and reverse use-dependence during the mouse cardiac action potential.

    Qinlian Zhou

    Full Text Available The fast component of the cardiac transient outward current, I(Ktof, is blocked by a number of drugs. The major molecular bases of I(Ktof are Kv4.2/Kv4.3 voltage-gated potassium channels. Drugs with similar potencies but different blocking mechanisms have differing effects on action potential duration (APD. We used in silico analysis to determine the effect of I(Ktof-blocking drugs with different blocking mechanisms on mouse ventricular myocytes. We used our existing mouse model of the action potential, and developed 4 new Markov formulations for I(Ktof, I(Ktos, I(Kur, I(Ks. We compared effects of theoretical I(Ktof-specific channel blockers: (1 a closed state, and (2 an open channel blocker. At concentrations lower or close to IC(50, the drug which bound to the open state always had a much greater effect on APD than the drug which bound to the closed state. At concentrations much higher than IC(50, both mechanisms had similar effects at very low pacing rates. However, an open state binding drug had a greater effect on APD at faster pacing rates, particularly around 10 Hz. In summary, our data indicate that drug effects on APD are strongly dependent not only on IC(50, but also on the drug binding state.

  12. Sensitivity of Rabbit Ventricular Action Potential and Ca2+ Dynamics to Small Variations in Membrane Currents and Ion Diffusion Coefficients

    Yuan Hung Lo

    2013-01-01

    Full Text Available Little is known about how small variations in ionic currents and Ca2+ and Na+ diffusion coefficients impact action potential and Ca2+ dynamics in rabbit ventricular myocytes. We applied sensitivity analysis to quantify the sensitivity of Shannon et al. model (Biophys. J., 2004 to 5%–10% changes in currents conductance, channels distribution, and ion diffusion in rabbit ventricular cells. We found that action potential duration and Ca2+ peaks are highly sensitive to 10% increase in L-type Ca2+ current; moderately influenced by 10% increase in Na+-Ca2+ exchanger, Na+-K+ pump, rapid delayed and slow transient outward K+ currents, and Cl− background current; insensitive to 10% increases in all other ionic currents and sarcoplasmic reticulum Ca2+ fluxes. Cell electrical activity is strongly affected by 5% shift of L-type Ca2+ channels and Na+-Ca2+ exchanger in between junctional and submembrane spaces while Ca2+-activated Cl−-channel redistribution has the modest effect. Small changes in submembrane and cytosolic diffusion coefficients for Ca2+, but not in Na+ transfer, may alter notably myocyte contraction. Our studies highlight the need for more precise measurements and further extending and testing of the Shannon et al. model. Our results demonstrate usefulness of sensitivity analysis to identify specific knowledge gaps and controversies related to ventricular cell electrophysiology and Ca2+ signaling.

  13. Effects of changes in frequency on guinea pig ventricular action potential duration and on QT interval under different experimental conditions.

    von Savigny, L; Hohnloser, S; Antoni, H

    1981-01-01

    Isolated perfused guinea pig hearts (Langendorff preparation) were arrested by carbachol (0.1-0.2 mg/l) and electrically stimulated in the region of the av-conducting system. The QT interval was determined by means of extracellular electrodes at different driving frequencies. Separate experiments were performed on papillary muscles from the right ventricle to measure the duration of the transmembrane action potential under comparable conditions. At 35 degrees C (Ke+ 5.4 mmol/l) increasing the frequency of stimulation (range 12-120/min) caused the action potential duration (APD) to decrease to a greater extent than the QT interval. Stepwise rising of the external K+ concentration up to 16.2 mmol/l produced a nearly parallel shift to the APD-frequency relation to lower values. Again, the QT interval was less affected by increasing the external K+ concentration than the APD. Stepwise reduction of the temperature down to 20 degrees C prolonged the APD as well as the QT interval, the effects being more pronounced at lower than at higher stimulation frequencies. Under all examined experimental conditions, the APD proved to be markedly shorter than the QT interval even when the latter is diminished by the duration of QRS. The results suggest that no close relation exists between the APD and the QT interval. The observed divergencies may be due to functional differences among various parts of the ventricles.

  14. The characteristics of action potential and nonselec-tive cation current of cardiomyocytes in rabbit superior vena cava

    2008-01-01

    As a special focus in initiating and maintaining atrial fibrillation (AF), cardiomyocytes in superior vena cava (SVC) have distinctive electrophysiological characters. In this study, we found that comparing with the right atrial (RA) cardiomyoctyes, the SVC cardiomyoctyes had longer APD90 at the different basic cycle lengths; the conduction block could be observed on both RA and SVC cardiomyoctyes. A few of SVC cardiomyoctyes showed slow response action potentials with automatic activity and some others showed early afterdepolarization (EAD) spontaneously. Further more, we found that there are nonselective cation current (INs) in both SVC and RA cardiomyocytes. The peak density of INs in SVC cardiomyocytes was smaller than that in RA cardiomyocytes. Removal of extracellular divalent cation and glucose could increase INs in SVC cardiomyocytes. The agonist or the antagonist of INs may in-crease or decrease APD. To sum up, some SVC cardiomyocytes possess the ability of spontaneous activity; the difference of transmembrane action potentials between SVC and RA cardiomyocytes is partly because of the different density of INs between them; the agonist or the antagonist of INs can in-crease or decrease APD leading to the enhancement or reduction of EAD genesis in SVC cardiomyo-cytes. INs in rabbit myocytes is fairly similar to TRPC3 current in electrophysiological property, which might play an important role in the mechanisms of AF.

  15. Changes in intracellular calcium concentration influence beat-to-beat variability of action potential duration in canine ventricular myocytes.

    Kistamas, K; Szentandrassy, N; Hegyi, B; Vaczi, K; Ruzsnavszky, F; Horvath, B; Banyasz, T; Nanasi, P P; Magyar, J

    2015-02-01

    The aim of the present work was to study the influence of changes in intracellular calcium concentration ([Ca(2+)]i) on beat-to-beat variability (short term variability, SV) of action potential duration (APD) in isolated canine ventricular cardiomyocytes. Series of action potentials were recorded from enzymatically isolated canine ventricular cells using conventional microelectrode technique. Drug effects on SV were evaluated as relative SV changes determined by plotting the drug-induced changes in SV against corresponding changes in APD and comparing these data to the exponential SV-APD function obtained with inward and outward current injections. Exposure of myocytes to the Ca(2+) chelator BAPTA-AM (5 μM) decreased, while Ca(2+) ionophore A23187 (1 μM) increased the magnitude of relative SV. Both effects were primarily due to the concomitant changes in APD. Relative SV was reduced by BAPTA-AM under various experimental conditions including pretreatment with veratridine, BAY K8644, dofetilide or E-4031. Contribution of transient changes of [Ca(2+)]i due to Ca(2+) released from the sarcoplasmic reticulum (SR) was studied using 10 μM ryanodine and 1 μM cyclopiazonic acid: relative SV was reduced by both agents. Inhibition of the Na(+)-Ca(2+) exchanger by 1 μM SEA0400 increased relative SV. It is concluded that elevation of [Ca(2+)]i increases relative SV significantly. More importantly, Ca(2+) released from the SR is an important component of this effect.

  16. Ruby laser-assisted depilation: The mode of action and potential ways of improved outcome

    Topping, Adam Partington

    Aim - To improve efficacy and lessen side effects resulting from normal mode ruby laser (NMRL)-assisted depilation via a greater understanding of its mode of action and the development of novel methods of reducing associated epidermal damage. Employing a thermal imaging camera and ex vivo hair-bearing skin, the targets for the NMRL (pulse duration 900 musec and spot size 7 mm) were defined, the temperatures reached and the heat dissipation rates determined. Production of heat was confined to the hair follicles, with the peak temperatures reached varying considerably between hairs within the same treatment area and also between individuals. Histological assessment for a known indicator of cellular damage (p53 expression) identified the sites and extent of damage, which correlated with the peak temperatures measured. An energy meter was used to detect the penetration of NMRL light through ex vivo skin, which was found to be deeper than previously theorised. The black-haired mouse (C57B1/10) was assessed both macroscopically and histologically and found to be an acceptable animal model of NMRL depilation and associated epidermal damage. Attempts to reduce the epidermal damage by simply stopping the light reaching the epidermis using a chromophore block were assessed. Chromophore did indeed reduce the amount of epidermal damage detected in laser-irradiated ex vivo human skin, whereas in contrast it increased the wounding seen in the much thinner skin of the mouse. Nevertheless the mouse model showed that this technique did not affect the depilation efficacy. An alternative method of reducing epidermal damage using induction of the cells' intrinsic protective mechanisms (heat shock proteins, HSP) was assessed using cultured keratinocytes and the mouse model. Primarily, the sub-lethal temperature optimum for HSP expression in human keratinocytes was determined, then an in vitro model of NMRL-associated epidermal damage was established and the heat pre-treatment assessed

  17. Actions for Curved Branes

    Abou-Zeid, M

    2000-01-01

    The nondeterminantal forms of the Born-Infeld and related brane actions in which the gauge fields couple to both an induced metric and an intrinsic metric are generalised by letting either or both metrics be dynamical. The resulting actions describe ` brane world' and cosmological scenarios in which the gauge fields are confined to the brane, while gravity propagates in both the world-volume and the bulk. In particular, for actions involving a nonsymmetric ` metric', nonsymmetric gravity propagates on the worldvolume. For 3-branes with a symmetric metric, conformal (Weyl) gravity propagates on the worldvolume and has conformally invariant couplings to the gauge fields.

  18. Wave Propagation

    Ferrarese, Giorgio

    2011-01-01

    Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics

  19. Short-time quantum propagator and Bohmian trajectorie

    de Gosson, M.; Hiley, Basil

    2013-01-01

    We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo Δ t 2 for the quantum propagator and we show that the quantum potential is negligible modulo Δ t 2 for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.

  20. Vegetative propagation of jojoba

    Low, C.B.; Hackett, W.P.

    1981-03-01

    Development of jojoba as an economically viable crop requires improved methods of propagation and culture. Rooting experiments were performed on cutting material collected from wild jojoba plants. A striking seasonal fluctuation in rooting potential was found. Jojoba plants can be successfully propagated from stem cuttings made during spring, summer, and, to some extent, fall. Variability among jojoba plants may also play a role in rooting potential, although it is not as important as season. In general, the use of auxin (4,000 ppm indolebutyric acid) on jojoba cuttings during periods of high rooting potential promotes adventitious root formation, but during periods of low rooting potential it has no effect or is even slightly inhibitory. In the greenhouse, cutting-grown plants apparently reproductively matured sooner than those grown from seed. If this observation holds true for plants transplanted into the field, earlier fruit production by cutting--grown plants would mean earlier return of initial planting and maintenance costs.

  1. MIF-1 potentiates the action of tricyclic antidepressants in an animal model of depression.

    Kostowski, W; Danysz, W; Dyr, W; Jankowska, E; Krzaścik, P; Pałejko, W; Stefański, R; Płaźnik, A

    1991-01-01

    In the present paper, the effect of simultaneous treatment of rats with low doses of MIF-1 and tricyclic antidepressants on rat behavior in the forced swim test was studied. It was found that MIF-1 stimulated in a dose-dependent manner "active" behavior of animals in this paradigm. The effect of MIF-1 appeared to be independent of changes in rats' locomotion in the open field test. The combined treatment of rats with MIF-1 (0.01 mg/kg IP) and amitriptyline (5 mg/kg IP) or desipramine (1.25 mg/kg) IP) significantly stimulated active behavior in the forced swim test above the level obtained with each of the drugs given separately. The present data suggest the potential clinical efficacy of a combined therapy of depressive patients with MIF-1 and small doses of tricyclic antidepressants.

  2. Potential food applications of biobased materials. An EU- concerted action project

    Haugaard, V.K.; Udsen, A.M.; Mortensen, G.

    2001-01-01

    and coatings to food but novel commercial applications of these are scarce. Based on information currently available on the properties of biobased packaging materials the study identified products in the fresh meat, dairy, ready meal, beverage, fruit and vegetable, snack, frozen food and dry food categories......The objective of the study was to ascertain the state of the art with regard to the applicability of biobased packaging materials to foods and to identify potential food applications for biobased materials. The study revealed relatively few examples of biobased materials used as primary, secondary...... or tertiary packaging materials for foods. This is due to the fact that published investigations on the use of biobased materials are still scarce, and results obtained remain unpublished because of commercial pressures. The scientific literature contains numerous reports on applications of edible films...

  3. 'Working' cardiomyocytes exhibiting plateau action potentials from human placenta-derived extraembryonic mesodermal cells.

    Okamoto, Kazuma; Miyoshi, Shunichiro; Toyoda, Masashi; Hida, Naoko; Ikegami, Yukinori; Makino, Hatsune; Nishiyama, Nobuhiro; Tsuji, Hiroko; Cui, Chang-Hao; Segawa, Kaoru; Uyama, Taro; Kami, Daisuke; Miyado, Kenji; Asada, Hironori; Matsumoto, Kenji; Saito, Hirohisa; Yoshimura, Yasunori; Ogawa, Satoshi; Aeba, Ryo; Yozu, Ryohei; Umezawa, Akihiro

    2007-07-15

    The clinical application of cell transplantation for severe heart failure is a promising strategy to improve impaired cardiac function. Recently, an array of cell types, including bone marrow cells, endothelial progenitors, mesenchymal stem cells, resident cardiac stem cells, and embryonic stem cells, have become important candidates for cell sources for cardiac repair. In the present study, we focused on the placenta as a cell source. Cells from the chorionic plate in the fetal portion of the human placenta were obtained after delivery by the primary culture method, and the cells generated in this study had the Y sex chromosome, indicating that the cells were derived from the fetus. The cells potentially expressed 'working' cardiomyocyte-specific genes such as cardiac myosin heavy chain 7beta, atrial myosin light chain, cardiac alpha-actin by gene chip analysis, and Csx/Nkx2.5, GATA4 by RT-PCR, cardiac troponin-I and connexin 43 by immunohistochemistry. These cells were able to differentiate into cardiomyocytes. Cardiac troponin-I and connexin 43 displayed a discontinuous pattern of localization at intercellular contact sites after cardiomyogenic differentiation, suggesting that the chorionic mesoderm contained a large number of cells with cardiomyogenic potential. The cells began spontaneously beating 3 days after co-cultivation with murine fetal cardiomyocytes and the frequency of beating cells reached a maximum on day 10. The contraction of the cardiomyocytes was rhythmical and synchronous, suggesting the presence of electrical communication between the cells. Placenta-derived human fetal cells may be useful for patients who cannot supply bone marrow cells but want to receive stem cell-based cardiac therapy.

  4. Hierarchical Affinity Propagation

    Givoni, Inmar; Frey, Brendan J

    2012-01-01

    Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...

  5. Simulations of the cardiac action potential based on the Hodgkin-Huxley kinetics with the use of Microsoft Excel spreadsheets.

    Wu, Sheng-Nan

    2004-03-31

    The purpose of this study was to develop a method to simulate the cardiac action potential using a Microsoft Excel spreadsheet. The mathematical model contained voltage-gated ionic currents that were modeled using either Beeler-Reuter (B-R) or Luo-Rudy (L-R) phase 1 kinetics. The simulation protocol involves the use of in-cell formulas directly typed into a spreadsheet. The capability of spreadsheet iteration was used in these simulations. It does not require any prior knowledge of computer programming, although the use of the macro language can speed up the calculation. The normal configuration of the cardiac ventricular action potential can be well simulated in the B-R model that is defined by four individual ionic currents, each representing the diffusion of ions through channels in the membrane. The contribution of Na+ inward current to the rate of depolarization is reproduced in this model. After removal of Na+ current from the model, a constant current stimulus elicits an oscillatory change in membrane potential. In the L-R phase 1 model where six types of ionic currents were defined, the effect of extracellular K+ concentration on changes both in the time course of repolarization and in the time-independent K+ current can be demonstrated, when the solutions are implemented in Excel. Using the simulation protocols described here, the users can readily study and graphically display the underlying properties of ionic currents to see how changes in these properties determine the behavior of the heart cell. The method employed in these simulation protocols may also be extended or modified to other biological simulation programs.

  6. Methanol extract of Tephrosia vogelii leaves potentiates the contractile action of acetylcholine on isolated rabbit jejunum

    Tavershima Dzenda; Joseph Olusegun Ayo; Alexander Babatunde Adelaiye; Ambrose Osemattah Adaudi

    2015-01-01

    To investigate the modulating role of methanol extract of Tephrosia vogelii leaves on acetylcholine (ACh)-induced contraction of isolated rabbit jejunum. Methods: Rabbit jejunum segment was removed and placed in an organ bath containing Tyrode’s solution, and its contractions were recorded isometrically. Results: ACh (2.0 × 10-10 g/mL) and the extract (2.0 × 10-4 g/mL) individually increased the frequency of contraction (mean ± SEM) of the isolated smooth muscle tissue by 47.6% ± 9.5%and 77.8% ± 66.5%, respectively. When ACh and the extract were combined, the frequency of contraction of the tissue was increased by 222.2% ± 25.9%, representing a 366.7% increase (P < 0.001) over the effect of ACh alone. Similarly, ACh (2.0 × 10-9 g/mL) and the extract individually increased significantly (P < 0.001) the amplitude of contraction of the tissue by 685.7% ± 61.1% and 455.2% ± 38.1%, respectively. When ACh and the extract were combined, the amplitude of contraction of the tissue rose by 1263.8% ± 69.0%, representing 84.3% increase over the effect of ACh alone. Conclusions: The findings demonstrate that methanol extract of Tephrosia vogelii leaves potentiates the contractile effect of ACh on intestinal smooth muscle, supporting the traditional claim that the plant is purgative.

  7. Control of Postharvest Bacterial Soft Rot by Gamma Irradiation and its Potential Modes of Action

    Rae-Dong Jeong

    2016-04-01

    Full Text Available Gamma irradiation was evaluated for its in vitro and in vivo antibacterial activity against a postharvest bacterial pathogen, Erwinia carotovora subsp. carotovora (Ecc. Gamma irradiation in a bacteria cell suspension resulted in a dramatic reduction of the viable counts as well as an increase in the amounts of DNA and protein released from the cells. Gamma irradiation showed complete inactivation of Ecc, especially at a dose of 0.6 kGy. In addition, scanning electron microscopy of irradiated cells revealed severe damage on the surface of most bacterial cells. Along with the morphological changes of cells by gamma irradiation, it also affected the membrane integrity in a dose-dependent manner. The mechanisms by which the gamma irradiation decreased the bacterial soft rot can be directly associated with the disruption of the cell membrane of the bacterial pathogen, along with DNA fragmentation, results in dose-dependent cell inactivation. These findings suggest that gamma irradiation has potential as an antibacterial approach to reduce the severity of the soft rot of paprika.

  8. Potassium conductances mediate bidirectional state-dependent modulation of action potential evoked dendritic calcium signals in dentate gyrus granule cells

    János Brunner

    2014-03-01

    Full Text Available Backpropagating action potentials (bAPs and local calcium signals that they trigger are fundamental for dendritic functions. Here we addressed the question what extent the changes of local dendritic membrane properties can contribute to the shaping of the coupling between dendritic action potentials and the local calcium responses. Using a combination of in vitro electrophysiological and confocal imaging techniques we found that activation of dendritic GIRK channels via mGlu2 or GABAB receptors enhanced the bAP¬-triggered calcium signals in the dendrites of dentate gyrus granule cells (GCs. The enhancement of calcium signals was significant only in those dendritic regions, where these receptors are predominantly expressed. Similarly to GIRK channel activation, somatic hyperpolarization by DC current injection (from -64 mV to -77 mV, significantly increased bAP-associated calcium signals in the proximal dendrites. The hyperpolarization was associated with a decrease in the input resistance due to the rectification of the membrane potential of GCs. The effect of hyperpolarization on the calcium signals was maintained when T-type calcium currents were blocked but it decreased when GIRK channels were inhibited. Simultaneous dual somato-dendritic recordings from GCs showed that somatic hyperpolarization accelerated the repolarization phase of dendritic bAP in the proximal region whereas the rising phase and peak amplitude was not affected. We hypothesize that the larger driving force for calcium ions during the faster repolarization can contribute to the increasing in calcium signals. Employment of previously recorded dendritic bAP waveforms from hyperpolarized membrane potential as voltage command evoked larger calcium currents in nucleated patches compared to bAP waveform from the same recording at depolarized membrane potential. Furthermore, addition of native, high-voltage activated, inactivating potassium conductance by somatic dynamic clamp

  9. Methanol extract of Tephrosia vogelii leaves potentiates the contractile action of acetylcholine on isolated rabbit jejunum

    Tavershima; Dzenda; Joseph; Olusegun; Ayo; Alexander; Babatunde; Adelaiye; Ambrose; Osemattah; Adaudi

    2015-01-01

    Objective:To investigate the modulating role of methanol extract of Tephrosia vogelii leaves on acetylcholine(ACh)-induced contraction of isolated rabbit jejunum.Methods: Rabbit jejunum segment was removed and placed in an organ bath containing Tyrode’s solution, and its contractions were recorded isometrically.Results: ACh(2.0 × 10-10 g/m L) and the extract(2.0 × 10-4 g/m L) individually increased the frequency of contraction(mean ± SEM) of the isolated smooth muscle tissue by 47.6% ± 9.5% and 77.8% ± 66.5%, respectively. When ACh and the extract were combined, the frequency of contraction of the tissue was increased by 222.2% ± 25.9%, representing a 366.7% increase(P < 0.001) over the effect of ACh alone. Similarly, ACh(2.0 × 10-9 g/m L) and the extract individually increased significantly(P < 0.001) the amplitude of contraction of the tissue by 685.7% ± 61.1% and 455.2% ± 38.1%, respectively. When ACh and the extract were combined, the amplitude of contraction of the tissue rose by 1263.8% ± 69.0%, representing 84.3% increase over the ef ect of ACh alone. Conclusions: The findings demonstrate that methanol extract of Tephrosia vogelii leaves potentiates the contractile ef ect of ACh on intestinal smooth muscle, supporting the traditional claim that the plant is purgative.

  10. Exploring potential mechanisms of action of natalizumab in secondary progressive multiple sclerosis.

    Sellebjerg, Finn; Cadavid, Diego; Steiner, Deborah; Villar, Luisa Maria; Reynolds, Richard; Mikol, Daniel

    2016-01-01

    Multiple sclerosis (MS) is a common and chronic central nervous system (CNS) demyelinating disease and a leading cause of permanent disability. Patients most often present with a relapsing-remitting disease course, typically progressing over time to a phase of relentless advancement in secondary progressive MS (SPMS), for which approved disease-modifying therapies are limited. In this review, we summarize the pathophysiological mechanisms involved in the development of SPMS and the rationale and clinical potential for natalizumab, which is currently approved for the treatment of relapsing forms of MS, to exert beneficial effects in reducing disease progression unrelated to relapses in SPMS. In both forms of MS, active brain-tissue injury is associated with inflammation; but in SPMS, the inflammatory response occurs at least partly behind the blood-brain barrier and is followed by a cascade of events, including persistent microglial activation that may lead to chronic demyelination and neurodegeneration associated with irreversible disability. In patients with relapsing forms of MS, natalizumab therapy is known to significantly reduce intrathecal inflammatory responses which results in reductions in brain lesions and brain atrophy as well as beneficial effects on clinical measures, such as reduced frequency and severity of relapse and reduced accumulation of disability. Natalizumab treatment also reduces levels of cerebrospinal fluid chemokines and other biomarkers of intrathecal inflammation, axonal damage and demyelination, and has demonstrated the ability to reduce innate immune activation and intrathecal immunoglobulin synthesis in patients with MS. The efficacy of natalizumab therapy in SPMS is currently being investigated in a randomized, double-blind, placebo-controlled trial.

  11. Cordycepin Decreases Compound Action Potential Conduction of Frog Sciatic Nerve In Vitro Involving Ca2+-Dependent Mechanisms

    Li-Hua Yao

    2015-01-01

    Full Text Available Cordycepin has been widely used in oriental countries to maintain health and improve physical performance. Compound nerve action potential (CNAP, which is critical in signal conduction in the peripheral nervous system, is necessary to regulate physical performance, including motor system physiological and pathological processes. Therefore, regulatory effects of cordycepin on CNAP conduction should be elucidated. In this study, the conduction ability of CNAP in isolated frog sciatic nerves was investigated. Results revealed that cordycepin significantly decreased CNAP amplitude and conductive velocity in a reversible and concentration-dependent manner. At 50 mg/L cordycepin, CNAP amplitude and conductive velocity decreased by 62.18 ± 8.06% and 57.34% ± 6.14% compared with the control amplitude and conductive velocity, respectively. However, the depressive action of cordycepin on amplitude and conductive velocity was not observed in Ca2+-free medium or in the presence of Ca2+ channel blockers (CdCl2/LaCl3. Pretreatment with L-type Ca2+ channel antagonist (nifedipine/deltiazem also blocked cordycepin-induced responses; by contrast, T-type and P-type Ca2+ channel antagonists (Ni2+ failed to block such responses. Therefore, cordycepin decreased the conduction ability of CNAP in isolated frog sciatic nerves via L-type Ca2+ channel-dependent mechanism.

  12. Promoting HIV Vaccine Research in African American Communities: Does the Theory of Reasoned Action Explain Potential Outcomes of Involvement?

    Frew, Paula M; Archibald, Matthew; Martinez, Nina; del Rio, Carlos; Mulligan, Mark J

    2007-01-01

    The HIV/AIDS pandemic continues to challenge the African American community with disproportionate rates of infection, particularly among young women ages 25 to 34 years. Development of a preventive HIV vaccine may bring a substantial turning point in this health crisis. Engagement of the African American community is necessary to improve awareness of the effort and favorably influence attitudes and referent norms. The Theory of Reasoned Action (TRA) may be a useful framework for exploration of community engagement outcomes including future attendance, community mobilization, and study participation. Within the context of HIV vaccine outreach, we conducted a cross-sectional survey in early 2007 with 175 African-American adults (>/= 18 years). Confirmatory factor analysis and structural equation modeling were performed and the findings support the potential of the model in understanding behavioral intentions toward HIV vaccine research.

  13. Dendritic Na(+) spikes enable cortical input to drive action potential output from hippocampal CA2 pyramidal neurons.

    Sun, Qian; Srinivas, Kalyan V; Sotayo, Alaba; Siegelbaum, Steven A

    2014-01-01

    Synaptic inputs from different brain areas are often targeted to distinct regions of neuronal dendritic arbors. Inputs to proximal dendrites usually produce large somatic EPSPs that efficiently trigger action potential (AP) output, whereas inputs to distal dendrites are greatly attenuated and may largely modulate AP output. In contrast to most other cortical and hippocampal neurons, hippocampal CA2 pyramidal neurons show unusually strong excitation by their distal dendritic inputs from entorhinal cortex (EC). In this study, we demonstrate that the ability of these EC inputs to drive CA2 AP output requires the firing of local dendritic Na(+) spikes. Furthermore, we find that CA2 dendritic geometry contributes to the efficient coupling of dendritic Na(+) spikes to AP output. These results provide a striking example of how dendritic spikes enable direct cortical inputs to overcome unfavorable distal synaptic locale to trigger axonal AP output and thereby enable efficient cortico-hippocampal information flow.

  14. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use

    Galati Gaspare

    2009-07-01

    Full Text Available Abstract Background Resveratrol is a non flavonoid polyphenol compound present in many plants and fruits and, at especially high concentrations, in the grape berries of Vitis vinifera. This compound has a strong bioactivity and its cytoprotective action has been demonstrated, however at high concentrations the drug exhibits also an effective anti-proliferative action. We recently showed its ability to abolish the effects of oxidative stress in cultured cells. In this work we assayed the bioactivity of resveratrol as antiproliferative and antiviral drug in cultured fibroblasts. Studies by other Authors showed that this natural compound inhibits the proliferation of different viruses such as herpes simplex, varicella-zoster and influenza A. The results presented here show an evident toxic activity of the drug at high concentrations, on the other hand at sub-cytotoxic concentrations, resveratrol can effectively inhibit the synthesis of polyomavirus DNA. A possible interpretation is that, due to the damage caused by resveratrol to the plasma membrane, the transfer of the virus from the endoplasmic reticulum to the nucleus, may be hindered thus inhibiting the production of viral DNA. Methods The mouse fibroblast line 3T6 and the human tumor line HL60 were used throughout the work. Cell viability and vital cell count were assessed respectively, by the MTT assay and Trypan Blue staining. Cytotoxic properties and evaluation of viral DNA production by agarose gel electrophoresis were performed according to standard protocols. Results Our results show a clear dose dependent both cytotoxic and antiviral effect of resveratrol respectively at high and low concentrations. The cytotoxic action is exerted towards a stabilized cell-line (3T6 as well as a tumor-line (HL60. Furthermore the antiviral action is evident after the phase of virion entry, therefore data suggest that the drug acts during the synthesis of the viral progeny DNA. Conclusion Resveratrol is

  15. Effects of the histamine H1 receptor antagonist hydroxyzine on hERG K+ channels and cardiac action potential duration

    Byung Hoon LEE; Seung Ho LEE; Daehyun CHU; Jin Won HYUN; Han CHOE; Bok Hee CHOI; Su-Hyun JO

    2011-01-01

    To investigate the effects of hydroxyzine on human ether-a-go-go-related gene (hERG) channels to determine the electrolphysiological basis for its proarrhythmic effects.Methods:hERG channels were expressed in Xenopus oocytes and HEK293 cells,and the effects of hydroxyzine on the channels were examined using two-microelectrode voltage-clamp and patch-clamp techniques,respectively.The effects of hydroxyzine on action potential duration were examined in guinea pig ventricular myocytes using current clamp.Results:Hydroxyzine (0.2 and 2 μmol/L) significantly increased the action potential duration at 90% repolarization (APD90) in both concentration- and time-dependent manners.Hydroxyzine (0.03-3 μmol/L) blocked both the steady-state and tail hERG currents.The block was voltage-dependent,and the values of IC50 for blocking the steady-state and tail currents at +20 mV was 0.18±0.02 μmol/L and 0.16±0.01 μmol/L,respectively,in HEK293 cells.Hydroxyzine (5 μmol/L) affected both the activated and the inactivated states of the channels,but not the closed state.The S6 domain mutation Y652A attenuated the blocking of hERG current by ~6-fold.Conclusion:The results suggest that hydroxyzine could block hERG channels and prolong APD.The tyrosine at position 652 in the channel may be responsible for the proarrhythmic effects of hydroxyzine.

  16. Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy.

    David C Sterratt

    Full Text Available CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called "synaptic democracy". How this is established is unclear. The backpropagating action potential (BAP is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy.

  17. Responses of action potential and K+ currents to temperature acclimation in fish hearts: phylogeny or thermal preferences?

    Haverinen, Jaakko; Vornanen, Matti

    2009-01-01

    Electrical activity of the heart is assumed to be one of the key factors that set thermal tolerance limits for ectothermic vertebrates. Therefore, we hypothesized that in thermal acclimation--the duration of cardiac action potential and the repolarizing K+ currents that regulate action potential duration (APD)--the rapid component of the delayed rectifier K+ current (I(Kr)) and the inward rectifier K+ current (I(K1)) are more plastic in eurythermal than in stenothermal fish species. The hypothesis was tested in six freshwater teleosts representing four different fish orders (Cadiformes, Cypriniformes, Perciformes, Salmoniformes) acclimated at +4 degrees C (cold acclimation) or +18 degrees C (warm acclimation). In cold acclimation, a compensatory shortening of APD occurred in all species regardless of thermal tolerances, life styles, or phylogenies of the fish, suggesting that this response is a common characteristic of the teleost heart. The strength of the response did not, however, obey simple eurythermy-stenothermy gradation but differed among the phylogenetic groups. Salmoniformes fish showed the greatest acclimation capacity of cardiac electrical activity, whereas the weakest response appeared in the perch (Perciformes) heart. The underlying ionic mechanisms were also partly phylogeny dependent. Modification of the I(Kr) current was al- most ubiquitously involved in acclimation response of fish cardiac myocytes to temperature, while the ability to change the I(K1) current under chronic thermal stress was absent or showed inverse compensation in Salmoniformes species. Thus, in Salmoniformes fish, the thermal plasticity of APD is strongly based on I(Kr), while other fish groups rely on both I(Kr) and I(K1).

  18. The effects of propofol on local field potential spectra, action potential firing rate, and their temporal relationship in humans and felines

    Sara eHanrahan

    2013-04-01

    Full Text Available Propofol is an intravenous sedative hypnotic, which, acting as a GABAA agonist, results in neocortical inhibition. While propofol has been well studied at the molecular and clinical level, less is known about the effects of propofol at the level of individual neurons and local neocortical networks. We used Utah Electrode Arrays (UEAs to investigate the effects of propofol anesthesia on action potentials (APs and local field potentials (LFPs. UEAs were implanted into the neocortex of two humans and three felines. The two human patients and one feline received propofol by bolus injection, while the other two felines received target-controlled infusions. We examined the changes in LFP power spectra and AP firing at different levels of anesthesia. Increased propofol concentration correlated with decreased high-frequency power in LFP spectra and decreased AP firing rates, and the generation of large amplitude spike-like LFP activity; however, the temporal relationship between APs and LFPs remained relatively consistent at all levels of propofol. The probability that an AP would fire at this local minimum of the LFP increased with propofol administration. The propofol-induced suppression of neocortical network activity allowed LFPs to be dominated by low-frequency spike-like activity, and correlated with sedation and unconsciousness. As the low-frequency spike-like activity increased and the AP-LFP relationship became more predictable firing rate encoding capacity is impaired. This suggests a mechanism for decreased information processing in the neocortex that accounts for propofol-induced unconsciousness.

  19. Unquenched Gluon Propagator in Landau Gauge

    2004-01-01

    Using lattice quantum chromodynamics (QCD) we perform an unquenched calculation of the gluon propagator in Landau gauge. We use configurations generated with the AsqTad quark action by the MILC collaboration for the dynamical quarks and compare the gluon propagator of quenched QCD (i.e., the pure Yang-Mills gluon propagator) with that of 2+1 flavor QCD. The effects of the dynamical quarks are clearly visible and lead to a significant reduction of the nonperturbative infrared enhancement relat...

  20. Excited States in Staggered Meson Propagators

    Bernard, C; De Tar, C; Gottlieb, Steven; Gregory, E B; Heller, U M; Osborn, J; Sugar, R; Toussaint, D; Louis, St; Gottlieb, Steven

    2003-01-01

    We report on preliminary results from multi-particle fits to meson propagators with three flavors of light dynamical quarks. We are able to measure excited states in propagators with pion quantum numbers, which we interpret as the pion 2S state, and is evidence of locality of the action. In the a_0 (0^{++}) propagators we find evidence for excited states which are probably the expected decay channels, pi+eta and K+Kbar.

  1. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues

    Duan, Xiaojie; Fu, Tian-Ming; Liu, Jia; Lieber, Charles M.

    2013-01-01

    Summary Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricated multielectrode arrays (MEAs) and planar FETs, recorded action potential and field potential signals with high signal-to-noise ratio and temporal resolution from cultured neurons, cultured cardiomyocytes, acute brain slices and whole animal hearts. Measurements made with modulation-doped nanoscale active channel SiNW FETs demonstrate that signals recorded from cardiomyocytes are highly localized and have improved time resolution compared to larger planar detectors. In addition, several novel three-dimensional (3D) transistor probes, which were realized using advanced nanowire synthesis methods, have been implemented for intracellular recording. These novel probes include (i) flexible 3D kinked nanowire FETs, (ii) branched intracellular nanotube SiNW FETs, and (iii) active silicon nanotube FETs. Following phospholipid modification of the probes to mimic the cell membrane, the kinked nanowire, branched intracellular nanotube and active silicon nanotube FET probes recorded full-amplitude intracellular action potentials from spontaneously firing cardiomyocytes. Moreover, these probes demonstrated the capability of reversible, stable, and long-term intracellular recording, thus indicating the minimal invasiveness of the new nanoscale structures and suggesting biomimetic internalization via the phospholipid modification. Simultaneous, multi-site intracellular recording from both single cells and cell networks were also readily achieved by interfacing independently addressable nanoprobe devices with cells. Finally, electronic and biological systems have been seamlessly

  2. Study of amplitude frequency spectra of the compound action potentials recorded from normal and M. leprae infected mice using Fourier series analysis.

    Vidyasagar, P B; Lokhandwalla, M N; Damle, P S

    1986-01-01

    Compound action potentials recorded from normal and M. leprae infected mice sciatic nerves were analysed in frequency domain using Fourier Series Analysis. Changes in myelinated fibre potentials were detected as early as 2nd post-inoculation month. This technique could be further developed to aid in early diagnosis of leprosy.

  3. Action Learning: Avoiding Conflict or Enabling Action

    Corley, Aileen; Thorne, Ann

    2006-01-01

    Action learning is based on the premise that action and learning are inextricably entwined and it is this potential, to enable action, which has contributed to the growth of action learning within education and management development programmes. However has this growth in action learning lead to an evolution or a dilution of Revan's classical…

  4. Effect of phentolamine, alprenolol and prenylamine on maximum rate of rise of action potential in guinea-pig papillary muscles.

    Sada, H

    1978-10-01

    Effects of phentolamine (13.3, 26.5 and 53.0 micron), alprenolol (3.5, 7.0 and 17.5 micron) and prenylamine (2.4, 4.8 and 11.9 micron) on the transmembrane potential were studied in isolated guinea-pig papillary muscles, superfused with Tyrode's solution. 1. Phentolamine, alprenolol and prenylamine reduced the maximum rate of rise of action potential (.Vmax) dose-dependently. Higher concentrations of phentolamine and prenylamine caused a loss of plateau in a majority of the preparations. Resting potential was not altered by any of the drugs. Readmittance of drug-free Tyrode's solution reversed these changes induced by 13.3 micron of phentolamine and all conconcentrations of alprenolol almost completely but those induced by higher concentrations of phentolamine and all concentrations of prenylamine only slightly. 2. .Vmax at steady state was increased with decreasing driving frequencies (0.5 and 0.25 Hz) and was decreased with increasing ones (2--5 Hz) in comparison with that at 1 Hz. Such changes were all exaggerated by the above drugs, particularly by prenylamine. 3. Prenylamine and, to a lesser degree, phentolamine and alprenolol delayed dose-dependently the recovery process of .Vmax in premature responses. 4. .Vmax in the first response after interruption of stimulation recovered toward the predrug value in the presence of the above three drugs. The time constants of recovery process ranged between 10.5 and 15.0s for phentolamine, between 4.5 and 15.5s for alprenolol. The time constant of the main component was estimated to be approximately 2s for the recovery process with prenylamine. 5. On the basis of the model recently proposed by Hondeghem and Katzung (1977), it is suggested that the drug molecules associate with the open sodium channels and dissociated slowly from the closed channels and that the inactivation parameter in the drug-associated channels is shifted in the hyperpolarizing direction.

  5. Effectiveness of elite female basketball players’ technical-tactic actions and ways for their improvement at stage of maximal realization of individual potentials

    Sushko R.A.

    2015-08-01

    Full Text Available Purpose: study effectiveness of elite female basketball players’ technical-tactic actions and determine the ways for their improvement at stage of maximal realization of individual potentials. Material: the authors analyzed competition functioning’s indicators of female basketball players of national combined team of Ukraine and their age characteristics. Results: effectiveness of technical-tactic actions in structure of national female basketball players’ combined team of Ukraine competition functioning at European championship. The authors present: indicators of team composition; roles in team; won and lost games; quantity of scored and skipped points; technical-tactic actions; age of sportswomen. Age indicators of elite female basketball players at stage of maximal realization have been given. Conclusions: we have composed a list of the most important technical-tactic actions in competition functioning. We also outlined ways for their perfection at stage of maximal realization of individual potentials of elite female basketball players of different game roles.

  6. Enteral nutrients potentiate the intestinotrophic action of glucagon-like peptide-2 in association with increased insulin-like growth factor-I responses in rats

    Liu, Xiaowen; Murali, Sangita G; Holst, Jens Juul

    2008-01-01

    compared to GLP-2. This indicates that EN potentiates the intestinotrophic action of GLP-2. Proliferation of enterocytes due to GLP-2 infusion was associated with greater expression of ileal proglucagon, GLP-2 receptor, IGF-I, IGF binding protein-3 mRNAs, and greater IGF-I peptide concentration in ileum (p......action in a physiological model of intestinal growth. Key words...

  7. Action-potential duration and the modulation of transmitter release from the sensory neurons of Aplysia in presynaptic facilitation and behavioral sensitization.

    Hochner, B; Klein, M; Schacher, S; Kandel, E R

    1986-11-01

    Presynaptic facilitation of transmitter release from Aplysia sensory neurons is an important contributor to behavioral sensitization of the gill and siphon withdrawal reflex. The enhanced release is accompanied by reduction of the serotonin-sensitive S current in the sensory neurons and a consequent increase in duration of the presynaptic action potential (ranging from 10% to 30%). We find that changes of similar magnitude in the duration of depolarizing voltage-clamp steps in sensory neurons in intact abdominal ganglia yield increases in synaptic potentials of 45-120%. In dissociated cell culture, these changes lead to increases of 25-60% in the synaptic potential. Prolongation of presynaptic depolarization using voltage clamp or prolongation of the duration of the action potential by K(+)-channel blockers leads to prolongation of the time-to-peak of the synaptic potentials; similar changes in time-to-peak occur during presynaptic facilitation. The time-to-peak is not changed by homosynaptic depression or by changing the Ca(2+) concentration, procedures that alter release without changing the duration of the action potential. Preventing the spike from broadening by voltage clamping the presynaptic neuron substantially reduces or blocks the facilitation. These results suggest that broadening of the action potential during facilitation is a causal factor in the enhancement of transmitter release.

  8. Sanitation Can Be A Foundation Disease Management Tool: Potential Of Spreading Binucleate Rhizoctonia from Nursery Propagation Floors To Trays Containing Azalea Stem Cuttings

    Binucelate Rhizoctonia spp. (BNR), the cause of web blight, are present all year on container-grown azaleas in the southern U.S. BNR can be eliminated during vegetative propagation by submerging stem cuttings in 50°C water for 21 minutes. The objective was to evaluate risk of rooting trays being con...

  9. Effect of procainamide on transmembrane action potentials in guinea-pig papillary muscles as affected by external potassium concentration.

    Sada, H; Kojima, M; Ban, T

    1979-11-01

    Effects of procainamide (PA), 0.18, 0.37 and 0.74 mmol/l, on the transmembrane potential were studied in isolated guinea-pig papillary muscles, superfused with modified Tyrode's solution (external K concentration, [K]0 = 5.4 mmol/l) at the basic driving rate of 1 Hz. PA, at 0.37 mmol/l, significantly reduced the maximum rate of rise of action potential (Vmax) with no change in the resting potential. When 2.7 mmol/l [K]0 of the superfusate was exchanged for 15 mmol/l [K]0 solution a decrease in Vmax induced by 0.37 mmol/l PA became more prominent with decrease in resting potential. The reduction of Vmax at steady state was less at lower driving rates (0.25 and 0.5 Hz) and more at higher driving rates (2-5 Hz) than at 1 Hz in 2.7, 5.4 and 10.0 mmol/l [K]0 solution. Such changes were enhanced concentration-dependently by PA at 5.4 mmol/l [K]0. Also, the changes became more significant with an increase in [K]0 from 2.7 mmol/l to 5.4 mmol/l and then to 10.0 mmol/l. The recovery process of Vmax proceeded with two components. The time course of the slow component seen in the Vmax of the first response after interruption of basic driving stimulation at 1 Hz, followed an approximate monoexponential function. The time constants were 6.3, 4.4 and 5.8 s in the presence of 0.18, 0.37 and 0.74 mmol/l PA at 5.4 mmol/l [K]0 and 3.4 and 3.7 s both in the presence of 0.37 mmol/l PA at 2.7 and 10.0 mmol/l [K]0. Vmax values after 30 or 60 s interruption of stimulation were 80-92% of the predrug Vmax value at 1 Hz. The time constants of the first component, estimated by the peeling-off methods at the driving rate of 0.1 Hz, were 11, 31 and 5-22 ms in the presence of 0.37 mmol/l at 5.4, 10.0 and 2.7 mmol/l [K]0 and did not differ significantly from the time constants in control preparations. The results were found to be consistent, to a certain extent, with the model proposed by Hondeghem and Katzung (1977).

  10. Neural recording front-end IC using action potential detection and analog buffer with digital delay for data compression.

    Liu, Lei; Yao, Lei; Zou, Xiaodan; Goh, Wang Ling; Je, Minkyu

    2013-01-01

    This paper presents a neural recording analog front-end IC intended for simultaneous neural recording with action potential (AP) detection for data compression in wireless multichannel neural implants. The proposed neural recording front-end IC detects the neural spikes and sends only the preserved AP information for wireless transmission in order to reduce the overall power consumption of the neural implant. The IC consists of a low-noise neural amplifier, an AP detection circuit and an analog buffer with digital delay. The neural amplifier makes use of a current-reuse technique to maximize the transconductance efficiency for attaining a good noise efficiency factor. The AP detection circuit uses an adaptive threshold voltage to generate an enable signal for the subsequent functional blocks. The analog buffer with digital delay is employed using a finite impulse response (FIR) filter which preserves the AP waveform before the enable signal as well as provides low-pass filtering. The neural recording front-end IC has been designed using standard CMOS 0.18-µm technology occupying a core area of 220 µm by 820 µm.

  11. Action potential duration heterogeneity of cardiac tissue can be evaluated from cell properties using Gaussian Green's function approach.

    Arne Defauw

    Full Text Available Action potential duration (APD heterogeneity of cardiac tissue is one of the most important factors underlying initiation of deadly cardiac arrhythmias. In many cases such heterogeneity can be measured at tissue level only, while it originates from differences between the individual cardiac cells. The extent of heterogeneity at tissue and single cell level can differ substantially and in many cases it is important to know the relation between them. Here we study effects from cell coupling on APD heterogeneity in cardiac tissue in numerical simulations using the ionic TP06 model for human cardiac tissue. We show that the effect of cell coupling on APD heterogeneity can be described mathematically using a Gaussian Green's function approach. This relates the problem of electrotonic interactions to a wide range of classical problems in physics, chemistry and biology, for which robust methods exist. We show that, both for determining effects of tissue heterogeneity from cell heterogeneity (forward problem as well as for determining cell properties from tissue level measurements (inverse problem, this approach is promising. We illustrate the solution of the forward and inverse problem on several examples of 1D and 2D systems.

  12. Single mechanically-gated cation channel currents can trigger action potentials in neocortical and hippocampal pyramidal neurons.

    Nikolaev, Yury A; Dosen, Peter J; Laver, Derek R; van Helden, Dirk F; Hamill, Owen P

    2015-05-22

    The mammalian brain is a mechanosensitive organ that responds to different mechanical forces ranging from intrinsic forces implicated in brain morphogenesis to extrinsic forces that can cause concussion and traumatic brain injury. However, little is known of the mechanosensors that transduce these forces. In this study we use cell-attached patch recording to measure single mechanically-gated (MG) channel currents and their affects on spike activity in identified neurons in neonatal mouse brain slices. We demonstrate that both neocortical and hippocampal pyramidal neurons express stretch-activated MG cation channels that are activated by suctions of ~25mm Hg, have a single channel conductance for inward current of 50-70pS and show weak selectivity for alkali metal cations (i.e., Na(+)action potentials in both neocortical and hippocampal pyramidal neurons. Not all neuron types studied here expressed MG channel currents. In particular, locus coeruleus and cerebellar Purkinje neurons showed no detectable MG channel activity. Moreover their robust rhythmic spike activity was resistant to mechanical modulation. Our observation that a single MG channel current can trigger spiking predicates the need for reassessment of the long held view that the impulse output of central neurons depends only upon their intrinsic voltage-gated channels and/or their integrated synaptic input.

  13. Anticancer potential and mechanism of action of mango ginger (Curcuma amada Roxb.) supercritical CO₂ extract in human glioblastoma cells.

    Ramachandran, Cheppail; Lollett, Ivonne V; Escalon, Enrique; Quirin, Karl-Werner; Melnick, Steven J

    2015-04-01

    Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells.

  14. Liénard-type models for the simulation of the action potential of cardiac nodal cells

    Podziemski, P.; Żebrowski, J. J.

    2013-10-01

    Existing models of cardiac cells which include multi-variable cardiac transmembrane current are too complex to simulate the long time dynamical properties of the heart rhythm. The large number of parameters that need to be defined and set for such models make them not only cumbersome to use but also require a large computing power. Consequently, the application of such models for the bedside analysis of heart rate of a specific patient may be difficult. Other ways of modelling need to be investigated. We consider the general problem of developing a model of cardiac pacemaker tissue that allows to combine the investigation of phenomena at a time scale of thousands of heart beats with the ability to reproduce realistic tissue-level characteristics of cell dynamics. We propose a modified van der Pol-Duffing equation-a Liénard-type oscillator-as a phenomenological model for cardiac nodal tissue, with certain important physiological similarities to ion-channel models of cardiac pacemaker cells. The model presented here is specifically designed to qualitatively reproduce mesoscopic characteristics of cell dynamics, including action potential duration (APD) restitution properties, phase response characteristics, and phase space structure. We show that these characteristics agree qualitatively with the extensive ionic models and experimental results in the literature [Anumonwo et al., 1991, [33], Cao et al., 1999, [49], Coster and Celler, 2003, [31], Qu, 2004, [45], Tsalikakis et al., 2007, [32], Inada et al., 2009, [14], Qu et al., 2010, [50

  15. [Correlation of changes in compound action potential (CAP) tuning curves and cochlear lesion in guinea pigs after explosion].

    Han, D

    1989-01-01

    The purpose of the present study was to investigate the sensitivity of compound action potential (CAP) tuning curves to changes of the cochlear status in guinea pigs after explosion and their ability to reflect specific histological variations. The results were as follows: 1. The CAP tuning curves were abnormally broad and the Q 10 dB values were reduced by a factor of 1 after explosion, indicating wider tuning. 2. The degree of broadening of the CAP tuning curves seemed to increase as the hair cell loss increased. 3. After explosion, the tip of the tuning curve shifted to frequencies significantly higher or lower than that of the signal, it might be related to the location of hair cell loss in the cochlea. 4. In animals for which damage was restricted to only three rows of outer hair cells, changes of the CAP tuning curves were observed. It provides further evidence that the tuning properties of cochlear nerve fibers are dependent upon the integrity of the outer hair cells even though the great majority of fibers innervate inner hair cells only.

  16. Gastrointestinal hormone actions in the central regulation of energy metabolism: potential sensory roles for the circumventricular organs.

    Hoyda, T D; Smith, P M; Ferguson, A V

    2009-04-01

    A variety of circulating signals provide essential information to the central nervous system (CNS) regarding nutritional status. The gastrointestinal system produces many such molecules that are now known to have profound effects on feeding behavior and the control of metabolism as a consequence of their ability to regulate the neural circuitry involved in metabolic homeostasis. Although many of these substances have been suggested to directly access such brain centers, their lipophobic characteristics suggest that alternative mechanisms should be considered. In this paper, we consider one such alternative, namely, that a specialized group of CNS structures collectively known as the sensory circumventricular organs (CVOs), which are not protected by the normal blood-brain barrier, may play important roles in such blood to brain communications. Specifically, we review a developing literature that shows receptors for, and functional actions of, gastrointestinal hormones such as amylin, cholecystokinin, ghrelin and peptide YY in the area postrema and subfornical organ. Collectively, these observations suggest potentially significant roles for the sensory CVOs in the regulation of energy balance.

  17. DCT domain feature extraction scheme based on motor unit action potential of EMG signal for neuromuscular disease classification.

    Doulah, Abul Barkat Mollah Sayeed Ud; Fattah, Shaikh Anowarul; Zhu, Wei-Ping; Ahmad, M Omair

    2014-01-01

    A feature extraction scheme based on discrete cosine transform (DCT) of electromyography (EMG) signals is proposed for the classification of normal event and a neuromuscular disease, namely the amyotrophic lateral sclerosis. Instead of employing DCT directly on EMG data, it is employed on the motor unit action potentials (MUAPs) extracted from the EMG signal via a template matching-based decomposition technique. Unlike conventional MUAP-based methods, only one MUAP with maximum dynamic range is selected for DCT-based feature extraction. Magnitude and frequency values of a few high-energy DCT coefficients corresponding to the selected MUAP are used as the desired feature which not only reduces computational burden, but also offers better feature quality with high within-class compactness and between-class separation. For the purpose of classification, the K-nearest neighbourhood classifier is employed. Extensive analysis is performed on clinical EMG database and it is found that the proposed method provides a very satisfactory performance in terms of specificity, sensitivity and overall classification accuracy.

  18. An experimental study of postoperative monitoring for innervated free muscle graft by the compound muscle action potential in rabbits.

    Tan, Soo-Heong; Shigetomi, Mitsunori; Doi, Kazuteru

    2012-07-01

    This experiment establishes the principles of using the compound muscle action potential (CMAP) as a possible postoperative monitor for free muscle grafts. Twenty rabbits were divided into two groups of ten each to investigate the effects of ischemia on CMAP of the muscles. Rectus femoris model was used and contralateral muscle was used as control. In all muscles total normothermic ischemia of 1.5 hours to mimic the time needed for transfer and inset of the flap was followed by occlusion of the artery in one group and vein in another group after 3 hours. During this ischemia of 1 hour, the CMAP amplitudes decreased and the latencies were prolonged. Latency prolongation was detected within 10 minutes of total, arterial, or venous ischemia. During the revascularization, both amplitude and latency improved, but not to the original values at the start. The results show that CMAP monitoring can provide easily detectable, objective indication of vascular compromise to a muscle graft within as early as 10 minutes of total, arterial, and venous ischemia. Changes in latency are more constant and predictable compared with amplitude changes. This method can provide continuous monitoring and can be used in buried muscle grafts.

  19. Establishment of alternative potency test for botulinum toxin type A using compound muscle action potential (CMAP) in rats.

    Torii, Yasushi; Goto, Yoshitaka; Nakahira, Shinji; Ginnaga, Akihiro

    2014-11-01

    The biological activity of botulinum toxin type A has been evaluated using the mouse intraperitoneal (ip) LD50 test. This method requires a large number of mice to precisely determine toxin activity, and, as such, poses problems with regard to animal welfare. We previously developed a compound muscle action potential (CMAP) assay using rats as an alternative method to the mouse ip LD50 test. In this study, to evaluate this quantitative method of measuring toxin activity using CMAP, we assessed the parameters necessary for quantitative tests according to ICH Q2 (R1). This assay could be used to evaluate the activity of the toxin, even when inactive toxin was mixed with the sample. To reduce the number of animals needed, this assay was set to measure two samples per animal. Linearity was detected over a range of 0.1-12.8 U/mL, and the measurement range was set at 0.4-6.4 U/mL. The results for accuracy and precision showed low variability. The body weight was selected as a variable factor, but it showed no effect on the CMAP amplitude. In this study, potency tests using the rat CMAP assay of botulinum toxin type A demonstrated that it met the criteria for a quantitative analysis method.

  20. Effects of Ginkgolide B on action potential and calcium,potassium current in guinea pig ventricular myocytes

    Xiao-yan QI; Zhi-xiong ZHANG; You-qiu XU

    2004-01-01

    AIM: To investigate the effect of Ginkgolide B (GB) on action potential (AP), delayed rectifier potassium current (IK), and L-type calcium current (ICa-L) in guinea pig ventricular myocytes. METHODS: Single ventricular myocytes were isolated by an enzymatic dissociation method. AP, IK, ICa-L were recorded by whole-cell patch-clamp technique in either current or voltage clamp mode. RESULTS: GB shortened APD in a concentration-dependent manner. GB 0.1, 1, and 10 μmol/L shortened APD50 by 7.9 % (n=5, P>0.05), 18.4 % (n=5, P<0.01), and 28.9 % (n=6, P<0.01), respectively; APD90 by 12.4 % (n=5, P>0.05), 17.6 % (n=5, P<0.01), 26.4 % (n=5, P<0.01),respectively. GB increased IK in a concentration-dependent manner. GB 0.1, 1, and l0 μmol/L increased IK by 20.1% (n=6, P<0.05), 43.1% (n=6, P<0.01), 55.6 % (n=6, P<0.05); increased IKtail by 10.7 % (n=6, P<0.05),25.1% (n=6, P<0.05), and 37.7 % (n=6, P<0.05), respectively at testing potential of +50 mV and shift the I-V curve of Ik upward. But GB had no significant effect on ICa-L at above concentrations. CONCLUSION: GB significantly shortened APD in a concentration-dependent manner which mainly due to increase of IK.

  1. Blockade of sensory neuron action potentials by a static magnetic field in the 10 mT range

    McLean, M.J.; Holcomb, R.R.; Wamil, A.W.; Pickett, J.D. [Vanderbilt Univ. Medical Center, Nashville, TN (United States); Cavopol, A.V. [Northeast Missouri State Univ., Kirksville, MO (United States). Science Div.

    1995-05-01

    To characterize the inhibitory effect of a static magnetic field, action potentials (AP) were elicited by intracellular application of 1 ms depolarizing current pulses of constant amplitude to the somata of adult mouse dorsal root ganglion neurons in monolayer dissociated cell culture. During the control period, < 5% of stimuli failed to elicit AP. During exposure to an {approximately}11 mT static magnetic field at the cell position produced by an array of four permanent center-charged neodymium magnets of alternating polarity (MAG-4A), 66% of stimuli failed to elicit AP. The number of failures was maximal after about 200--250 s in the field and returned gradually to baseline over 400--600 s. A direct or indirect effect on the conformation of AP generating sodium channels could account for these results because (1) failure was preceded often by reduction of maximal rate of rise, an indirect measure of sodium current; (2) recovery was significantly prolonged in more than one-half of neurons that were not stimulated during exposure to the MAG-4A field; and (3) resting membrane potential, input resistance, and chronaxie were unaffected by the field. The effect was diminished or prevented by moving the MAG-4A array along the X or Z axis away from the neuron under study and by increasing the distance between magnets in the XY plane. Reduction of AP firing during exposure to the {approximately}0.1 mT field produced by a MAG-4A array of micromagnets was about the same as that produced by a MAG-4A array of the large magnets above. The {approximately}28 mT field produced at cell position by two magnets of alternating polarity and the {approximately}88 mT field produced by a single magnet had no significant effect on AP firing. These findings suggest that field strength alone cannot account for AP blockade.

  2. Inhibition of the compound action potentials of frog sciatic nerves by aroma oil compounds having various chemical structures.

    Ohtsubo, Sena; Fujita, Tsugumi; Matsushita, Akitomo; Kumamoto, Eiichi

    2015-03-01

    Plant-derived chemicals including aroma oil compounds have an ability to inhibit nerve conduction and modulate transient receptor potential (TRP) channels. Although applying aroma oils to the skin produces a local anesthetic effect, this has not been yet examined throughly. The aim of the present study was to know how nerve conduction inhibitions by aroma oil compounds are related to their chemical structures and whether these activities are mediated by TRP activation. Compound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method. Citral (aldehyde), which activates various types of TRP channels, attenuated the peak amplitude of CAP with the half-maximal inhibitory concentration (IC50) value of 0.46 mmol/L. Another aldehyde (citronellal), alcohol (citronellol, geraniol, (±)-linalool, (-)-linalool, (+)-borneol, (-)-borneol, α-terpineol), ester (geranyl acetate, linalyl acetate, bornyl acetate), and oxide (rose oxide) compounds also reduced CAP peak amplitudes (IC50: 0.50, 0.35, 0.53, 1.7, 2.0, 1.5, 2.3, 2.7, 0.51, 0.71, 0.44, and 2.6 mmol/L, respectively). On the other hand, the amplitudes were reduced by a small extent by hydrocarbons (myrcene and p-cymene) and ketone (camphor) at high concentrations (2-5 mmol/L). The activities of citral and other TRP agonists ((+)-borneol and camphor) were resistant to TRP antagonist ruthenium red. An efficacy sequence for the CAP inhibitions was generally aldehydes ≥ esters ≥ alcohols > oxides > hydrocarbons. The CAP inhibition by the aroma oil compound was not related to its octanol-water partition coefficient. It is suggested that aroma oil compounds inhibit nerve conduction in a manner specific to their chemical structures without TRP activation.

  3. Dendrite-derived supernumerary axons on adult axotomized motor neurons possess proteins that are essential for the initiation and propagation of action potentials and synaptic vesicle release

    Meehan, Claire Francesca; MacDermid, Victoria E; Montague, Steven J;

    2011-01-01

    . This study extends this definition to determine whether, more importantly, these processes possess the prerequisite molecular machinery to function as axons. Using a combination of intracellular labeling and immunohistochemistry, we demonstrate that the distribution of voltage-gated sodium channels...

  4. Intercellular synchronization of intracellular calcium oscillations : a mechanism for pacemaking and propagation of action potentials in networks of normal rat kidney fibroblasts

    Kusters, Johannes Martinus Adrianus Maria

    2008-01-01

    The aim of this thesis was to develop an integrated model that can combines an excitable membrane with an IP3-mediated intracellular calcium oscillator and which can explain the different growth-state dependent states of NRK-cells. Furthermore we investigated the interaction between electrically cou

  5. Approximate analytical solutions for excitation and propagation in cardiac tissue

    Greene, D'Artagnan; Shiferaw, Yohannes

    2015-04-01

    It is well known that a variety of cardiac arrhythmias are initiated by a focal excitation in heart tissue. At the single cell level these currents are typically induced by intracellular processes such as spontaneous calcium release (SCR). However, it is not understood how the size and morphology of these focal excitations are related to the electrophysiological properties of cardiac cells. In this paper a detailed physiologically based ionic model is analyzed by projecting the excitation dynamics to a reduced one-dimensional parameter space. Based on this analysis we show that the inward current required for an excitation to occur is largely dictated by the voltage dependence of the inward rectifier potassium current (IK 1) , and is insensitive to the detailed properties of the sodium current. We derive an analytical expression relating the size of a stimulus and the critical current required to induce a propagating action potential (AP), and argue that this relationship determines the necessary number of cells that must undergo SCR in order to induce ectopic activity in cardiac tissue. Finally, we show that, once a focal excitation begins to propagate, its propagation characteristics, such as the conduction velocity and the critical radius for propagation, are largely determined by the sodium and gap junction currents with a substantially lesser effect due to repolarizing potassium currents. These results reveal the relationship between ion channel properties and important tissue scale processes such as excitation and propagation.

  6. Normal and abnormal electrical propagation in the small intestine.

    Lammers, W J E P

    2015-02-01

    As in other muscular organs, small intestinal motility is determined to a large degree by the electrical activities that occur in the smooth muscle layers of the small intestine. In recent decades, the interstitial cells of Cajal, located in the myenteric plexus, have been shown to be responsible for the generation and propagation of the electrical impulse: the slow wave. It was also known that the slow waves as such do not cause contraction, but that the action potentials ('spikes') that are generated by the slow waves are responsible for the contractions. Recording from large number of extracellular electrodes simultaneously is one method to determine origin and pattern of propagation of these electrical signals. This review reports the characteristics of slow wave propagation through the intestinal tube, the occurrence of propagation blocks along its length, which explains the well-known decrease in frequency, and the specific propagation pattern of the spikes that follow the slow waves. But the value of high-resolution mapping is highest in discovering and analysing mechanisms of arrhythmias in the gut. Most recently, circus movements (also called 're-entries') have been described in the small intestine in several species. Moreover, several types of re-entries have now been described, some similar to what may occur in the heart, such as functional re-entries, but others more unique to the small intestine, such as circumferential re-entry. These findings seem to suggest the possibilities of hitherto unknown pathologies that may be present in the small intestine.

  7. Therapeutic concentrations of varenicline in the presence of nicotine increase action potential firing in human adrenal chromaffin cells.

    Hone, Arik J; Michael McIntosh, J; Rueda-Ruzafa, Lola; Passas, Juan; de Castro-Guerín, Cristina; Blázquez, Jesús; González-Enguita, Carmen; Albillos, Almudena

    2017-01-01

    Varenicline is a nicotinic acetylcholine receptor (nAChR) agonist used to treat nicotine addiction, but a live debate persists concerning its mechanism of action in reducing nicotine consumption. Although initially reported as α4β2 selective, varenicline was subsequently shown to activate other nAChR subtypes implicated in nicotine addiction including α3β4. However, it remains unclear whether activation of α3β4 nAChRs by therapeutically relevant concentrations of varenicline is sufficient to affect the behavior of cells that express this subtype. We used patch-clamp electrophysiology to assess the effects of varenicline on native α3β4* nAChRs (asterisk denotes the possible presence of other subunits) expressed in human adrenal chromaffin cells and compared its effects to those of nicotine. Varenicline and nicotine activated α3β4* nAChRs with EC50 values of 1.8 (1.2-2.7) μM and 19.4 (11.1-33.9) μM, respectively. Stimulation of adrenal chromaffin cells with 10 ms pulses of 300 μM acetylcholine (ACh) in current-clamp mode evoked sodium channel-dependent action potentials (APs). Under these conditions, perfusion of 50 or 100 nM varenicline showed very little effect on AP firing compared to control conditions (ACh stimulation alone), but at higher concentrations (250 nM) varenicline increased the number of APs fired up to 436 ± 150%. These results demonstrate that therapeutic concentrations of varenicline are unlikely to alter AP firing in chromaffin cells. In contrast, nicotine showed no effect on AP firing at any of the concentrations tested (50, 100, 250, and 500 nM). However, perfusion of 50 nM nicotine simultaneously with 100 nM varenicline increased AP firing by 290 ± 104% indicating that exposure to varenicline and nicotine concurrently may alter cellular behavior such as excitability and neurotransmitter release.

  8. An exploratory investigation of various modes of action and potential adverse outcomes of fluoxetine in marine mussels

    Franzellitti, Silvia, E-mail: silvia.franzellitti@unibo.it [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna (Italy); Buratti, Sara; Capolupo, Marco [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); Du, Bowen; Haddad, Samuel P. [Department of Environmental Science, Baylor University, Waco, TX 76798 (United States); Chambliss, C. Kevin [Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798 (United States); Brooks, Bryan W. [Department of Environmental Science, Baylor University, Waco, TX 76798 (United States); Fabbri, Elena [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna (Italy)

    2014-06-01

    Highlights: • Mode of action (MOA) related endpoints and biomarkers of toxicity were assessed in mussels exposed to fluoxetine (FX). • Significant FX bioaccumulation was observed in tissues of mussels exposed to 30 and 300 ng/L FX. • Alterations of cAMP-related cell signaling were observed in exposed mussels as part of the MOA of FX. • FX reduced the health status of mussels inducing lysosomal effects in digestive gland and antioxidant responses in gills. • The importance of considering additional MOAs and adverse outcome pathways for FX impacts on mussels is highlighted. - Abstract: The present study investigated possible adverse outcome pathways (AOPs) of the antidepressant fluoxetine (FX) in the marine mussel Mytilus galloprovincialis. An evaluation of molecular endpoints involved in modes of action (MOAs) of FX and biomarkers for sub-lethal toxicity were explored in mussels after a 7-day administration of nominal FX concentrations encompassing a range of environmentally relevant values (0.03–300 ng/L). FX bioaccumulated in mussel tissues after treatment with 30 and 300 ng/L FX, resulting in bioconcentration factor (BCF) values ranging from 200 to 800, which were higher than expected based solely on hydrophobic partitioning models. Because FX acts as a selective serotonin (5-HT) re-uptake inhibitor increasing serotonergic neurotransmission at mammalian synapses, cell signaling alterations triggered by 5-HT receptor occupations were assessed. cAMP levels and PKA activities were decreased in digestive gland and mantle/gonads of FX-treated mussels, consistent with an increased occupation of 5-HT1 receptors negatively coupled to the cAMP/PKA pathway. mRNA levels of a ABCB gene encoding the P-glycoprotein were also significantly down-regulated. This membrane transporter acts in detoxification towards xenobiotics and in altering pharmacokinetics of antidepressants; moreover, it is under a cAMP/PKA transcriptional regulation in mussels. Potential stress

  9. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents

    Erum Malik

    2016-11-01

    Full Text Available Antimicrobial peptides (AMPs are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations

  10. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents

    Malik, Erum; Dennison, Sarah R.; Harris, Frederick; Phoenix, David A.

    2016-01-01

    Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel

  11. Heeding a Call to Action for U.S. Coral Reefs: the Untapped Potential of the Clean Water Act

    A recently published call to action by Dodge et al. (2008) identifies nine actions needed to protect coral reefs. The authors identify several management goals that cannot be accomplished with MPAs alone, the traditional approach to coral reef protection. For U.S. waters, the Cle...

  12. Problems, Prescriptions and Potential in Actionable Climate Change Science - A Case Study from California Coastal Marsh Research

    MacDonald, G. M.; Ambrose, R. F.; Thorne, K.; Takekawa, J.; Brown, L. N.; Fejtek, S.; Gold, M.; Rosencranz, J.

    2015-12-01

    Frustrations regarding the provision of actionable science extend to both producers and consumers. Scientists decry the lack of application of their research in shaping policy and practices while decision makers bemoan the lack of applicability of scientific research to the specific problems at hand or its narrow focus relative to the plethora of engineering, economic and social considerations that they must also consider. Incorporating climate change adds additional complexity due to uncertainties in estimating many facets of future climate, the inherent variability of climate and the decadal scales over which significant changes will develop. Recently a set of guidelines for successful science-policy interaction was derived from the analysis of transboundary water management. These are; 1 recognizing that science is a crucial but bounded input into the decision-making processes, 2 early establishment of conditions for collaboration and shared commitment among participants, 3 understanding that science-policy interactions are enhanced through greater collaboration and social or group-learning processes, 4 accepting that the collaborative production of knowledge is essential to build legitimate decision-making processes, and 5 engaging boundary organizations and informal networks as well as formal stakeholders. Here we present as a case study research on California coastal marshes, climate change and sea-level that is being conducted by university and USGS scientists under the auspices of the Southwest Climate Science Center. We also present research needs identified by a seperate analysis of best practices for coastal marsh restoration in the face of climate change that was conducted in extensive consultation with planners and managers. The initial communication, scientific research and outreach-dissemination of the marsh scientfic study are outlined and compared to best practices needs identified by planners and the science-policy guidelines outlined above

  13. Neonatal tactile stimulation decreases depression-like and anxiety-like behaviors and potentiates sertraline action in young rats.

    Freitas, Daniele; Antoniazzi, Caren T D; Segat, Hecson J; Metz, Vinícia Garzella; Vey, Luciana Taschetto; Barcelos, Raquel C S; Duarte, Thiago; Duarte, Marta M M F; Burger, Marilise Escobar

    2015-12-01

    It is well known that events which occur in early life exert a significant influence on brain development, what can be reflected throughout adulthood. This study was carried out in order to assess the influence of neonatal tactile stimulation (TS) on behavioral and morphological responses related to depression-like and anxiety-like behaviors, assessed following the administration of sertraline (SERT), a selective serotonin re-uptake inhibitor (SSRI). Male pups were submitted to daily TS, from postnatal day 8 (PND8) to postnatal day 14 (PND14), for 10 min every day. On PND50, adult animals were submitted to forced swimming training (15 min). On PND51, half of each experimental group (UH and TS) received a single sub-therapeutic dose of sertraline (SER, 0.3mg/kg body weight, i.p.) or its vehicle (C, control group). Thirty minutes after injection, depression-like behaviors were quantified in forced swimming test (FST, for 5 min). On the following day, anxiety-like behaviors were assessed in elevated plus maze (EPM), followed by biochemical assessments. TS per se increased swimming time, decreasing immobility time in FST. Besides, TS per se was able to increase frequency of head dipping and time spent in the open arms of EPM, resulting in decreased anxiety index. In addition, groups exposed to TS showed decreased plasma levels of corticosterone per se. Interestingly, while TS exposure significantly potentiated the antidepressant activity of a subtherapeutic dose of SERT, this drug was able to exacerbate TS-induced anxiolytic activity, as observed in FST and EPM, respectively. Decreased plasma levels of both corticosterone and cortisol in animals exposed to TS and treated with SERT are able to confirm the interesting interaction between this neonatal handling and the antidepressant drug. From our results, we conclude that neonatal TS is able to exert beneficial influence on the ability to cope with stressful situations in adulthood, preventing depression and favorably

  14. Elevated heart rate triggers action potential alternans and sudden death. translational study of a homozygous KCNH2 mutation.

    Ulrich Schweigmann

    Full Text Available BACKGROUND: Long QT syndrome (LQTS leads to arrhythmic events and increased risk for sudden cardiac death (SCD. Homozygous KCNH2 mutations underlying LQTS-2 have previously been termed "human HERG knockout" and typically express severe phenotypes. We studied genotype-phenotype correlations of an LQTS type 2 mutation identified in the homozygous index patient from a consanguineous Turkish family after his brother died suddenly during febrile illness. METHODS AND RESULTS: Clinical work-up, DNA sequencing, mutagenesis, cell culture, patch-clamp, in silico mathematical modelling, protein biochemistry, confocal microscopy were performed. Genetic analysis revealed a homozygous C-terminal KCNH2 mutation (p.R835Q in the index patient (QTc ∼506 ms with notched T waves. Parents were I° cousins - both heterozygous for the mutation and clinically unremarkable (QTc ∼447 ms, father and ∼396 ms, mother. Heterologous expression of KCNH2-R835Q showed mildly reduced current amplitudes. Biophysical properties of ionic currents were also only nominally changed with slight acceleration of deactivation and more negative V50 in R835Q-currents. Protein biochemistry and confocal microscopy revealed similar expression patterns and trafficking of WT and R835Q, even at elevated temperature. In silico analysis demonstrated mildly prolonged ventricular action potential duration (APD compared to WT at a cycle length of 1000 ms. At a cycle length of 350 ms M-cell APD remained stable in WT, but displayed APD alternans in R835Q. CONCLUSION: Kv11.1 channels affected by the C-terminal R835Q mutation display mildly modified biophysical properties, but leads to M-cell APD alternans with elevated heart rate and could precipitate SCD under specific clinical circumstances associated with high heart rates.

  15. Serotonin spillover onto the axon initial segment of motoneurons induces central fatigue by inhibiting action potential initiation

    Cotel, Florence; Exley, Richard; Cragg, Stephanie J.; Perrier, Jean-François

    2013-01-01

    Motor fatigue induced by physical activity is an everyday experience characterized by a decreased capacity to generate motor force. Factors in both muscles and the central nervous system are involved. The central component of fatigue modulates the ability of motoneurons to activate muscle adequately independently of the muscle physiology. Indirect evidence indicates that central fatigue is caused by serotonin (5-HT), but the cellular mechanisms are unknown. In a slice preparation from the spinal cord of the adult turtle, we found that prolonged stimulation of the raphe-spinal pathway—as during motor exercise—activated 5-HT1A receptors that decreased motoneuronal excitability. Electrophysiological tests combined with pharmacology showed that focal activation of 5-HT1A receptors at the axon initial segment (AIS), but not on other motoneuronal compartments, inhibited the action potential initiation by modulating a Na+ current. Immunohistochemical staining against 5-HT revealed a high-density innervation of 5-HT terminals on the somatodendritic membrane and a complete absence on the AIS. This observation raised the hypothesis that a 5-HT spillover activates receptors at this latter compartment. We tested it by measuring the level of extracellular 5-HT with cyclic voltammetry and found that prolonged stimulations of the raphe-spinal pathway increased the level of 5-HT to a concentration sufficient to activate 5-HT1A receptors. Together our results demonstrate that prolonged release of 5-HT during motor activity spills over from its release sites to the AIS of motoneurons. Here, activated 5-HT1A receptors inhibit firing and, thereby, muscle contraction. Hence, this is a cellular mechanism for central fatigue. PMID:23487756

  16. State-of-the-art automated patch clamp devices: Heat activation, action potentials and high throughput in ion channel screening

    Sonja eStoelzle

    2011-11-01

    Full Text Available Ion channels are essential in a wide range of cellular functions and their malfunction underlies many disease states making them important targets in drug discovery. Diverse automated patch clamp systems with high-throughput capabilities are available for drug screening, but there are limitations in the application range. For example, solution exchange time, temperature control and the availability of the current clamp mode can be limiting factors. However, further development of existing devices and introduction of new systems widen the range of possible experiments and increase throughput. Here we introduce new features and platforms that meet the needs of drug discovery researchers and basic researchers alike.The Patchliner is an automated patch clamp system capable of recording up to 8 cells simultaneously with high success rates. Novel features such as temperature control and recordings in the current clamp mode are described here. Standard cell lines and excitable cells such as stem cell-derived cardiomyocytes have been used in the voltage clamp and current clamp modes with the view to finding new drug candidates and safety testing methods in a more physiologically relevant environment. The SyncroPatch 96, is a screening platform capable of recording from 96 cells in parallel and offers a throughput of 5000 data points per day. Full dose response curves can be acquired from individual cells reducing the cost per data point. The system is an ideal tool for secondary screening efforts and for safety testing on ligand- and voltage-gated ion channels.The Patchliner and SyncroPatch 96 are ideal platforms for drug discovery, ion channel research and safety testing, combining long awaited features such as parallel action potential recordings and temperature control with extensively increased throughput.

  17. Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons.

    Lien, Cheng-Chang; Jonas, Peter

    2003-03-15

    Kv3 channels are thought to be essential for the fast-spiking (FS) phenotype in GABAergic interneurons, but how these channels confer the ability to generate action potentials (APs) at high frequency is unknown. To address this question, we developed a fast dynamic-clamp system (approximately 50 kHz) that allowed us to add a Kv3 model conductance to CA1 oriens alveus (OA) interneurons in hippocampal slices. Selective pharmacological block of Kv3 channels by 0.3 mm 4-aminopyridine or 1 mm tetraethylammonium ions led to a marked broadening of APs during trains of short stimuli and a reduction in AP frequency during 1 sec stimuli. The addition of artificial Kv3 conductance restored the original AP pattern. Subtraction of Kv3 conductance by dynamic clamp mimicked the effects of the blockers. Application of artificial Kv3 conductance also led to FS in OA interneurons after complete K+ channel block and even induced FS in hippocampal pyramidal neurons in the absence of blockers. Adding artificial Kv3 conductance with altered deactivation kinetics revealed a nonmonotonic relationship between mean AP frequency and deactivation rate, with a maximum slightly above the original value. Insertion of artificial Kv3 conductance with either lowered activation threshold or inactivation also led to a reduction in the mean AP frequency. However, the mechanisms were distinct. Shifting the activation threshold induced adaptation, whereas adding inactivation caused frequency-dependent AP broadening. In conclusion, Kv3 channels are necessary for the FS phenotype of OA interneurons, and several of their gating properties appear to be optimized for high-frequency repetitive activity.

  18. Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus.

    Sooyun Kim

    Full Text Available Oriens-lacunosum moleculare (O-LM interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron-O-LM interneuron excitatory postsynaptic currents (EPSCs showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron-interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits.

  19. Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus.

    Kim, Sooyun

    2014-01-01

    Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron-O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron-interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits.

  20. Archaerhodopsin voltage imaging: synaptic calcium and BK channels stabilize action potential repolarization at the Drosophila neuromuscular junction.

    Ford, Kevin J; Davis, Graeme W

    2014-10-29

    The strength and dynamics of synaptic transmission are determined, in part, by the presynaptic action potential (AP) waveform at the nerve terminal. The ion channels that shape the synaptic AP waveform remain essentially unknown for all but a few large synapses amenable to electrophysiological interrogation. The Drosophila neuromuscular junction (NMJ) is a powerful system for studying synaptic biology, but it is not amenable to presynaptic electrophysiology. Here, we demonstrate that Archaerhodopsin can be used to quantitatively image AP waveforms at the Drosophila NMJ without disrupting baseline synaptic transmission or neuromuscular development. It is established that Shaker mutations cause a dramatic increase in neurotransmitter release, suggesting that Shaker is predominantly responsible for AP repolarization. Here we demonstrate that this effect is caused by a concomitant loss of both Shaker and slowpoke (slo) channel activity because of the low extracellular calcium concentrations (0.2-0.5 mM) used typically to assess synaptic transmission in Shaker. In contrast, at physiological extracellular calcium (1.5 mM), the role of Shaker during AP repolarization is limited. We then provide evidence that calcium influx through synaptic CaV2.1 channels and subsequent recruitment of Slo channel activity is important, in concert with Shaker, to ensure proper AP repolarization. Finally, we show that Slo assumes a dominant repolarizing role during repetitive nerve stimulation. During repetitive stimulation, Slo effectively compensates for Shaker channel inactivation, stabilizing AP repolarization and limiting neurotransmitter release. Thus, we have defined an essential role for Slo channels during synaptic AP repolarization and have revised our understanding of Shaker channels at this model synapse.

  1. Beta-adrenergic stimulation reverses the I Kr-I Ks dominant pattern during cardiac action potential.

    Banyasz, Tamas; Jian, Zhong; Horvath, Balazs; Khabbaz, Shaden; Izu, Leighton T; Chen-Izu, Ye

    2014-11-01

    β-Adrenergic stimulation differentially modulates different K(+) channels and thus fine-tunes cardiac action potential (AP) repolarization. However, it remains unclear how the proportion of I Ks, I Kr, and I K1 currents in the same cell would be altered by β-adrenergic stimulation, which would change the relative contribution of individual K(+) current to the total repolarization reserve. In this study, we used an innovative AP-clamp sequential dissection technique to directly record the dynamic I Ks, I Kr, and I K1 currents during the AP in guinea pig ventricular myocytes under physiologically relevant conditions. Our data provide quantitative measures of the magnitude and time course of I Ks, I Kr, and I K1 currents in the same cell under its own steady-state AP, in a physiological milieu, and with preserved Ca(2+) homeostasis. We found that isoproterenol treatment significantly enhanced I Ks, moderately increased I K1, but slightly decreased I Kr in a dose-dependent manner. The dominance pattern of the K(+) currents was I Kr > I K1 > I Ks at the control condition, but reversed to I Kr < I K1 < I Ks following β-adrenergic stimulation. We systematically determined the changes in the relative contribution of I Ks, I Kr, and I K1 to cardiac repolarization during AP at different adrenergic states. In conclusion, the β-adrenergic stimulation fine-tunes the cardiac AP morphology by shifting the power of different K(+) currents in a dose-dependent manner. This knowledge is important for designing antiarrhythmic drug strategies to treat hearts exposed to various sympathetic tones.

  2. Evaluation of nystatin containing chitosan hydrogels as potential dual action bio-active restorative materials: in vitro approach.

    Perchyonok, V Tamara; Reher, Vanessa; Zhang, Shengmiao; Basson, Nicki; Grobler, Sias

    2014-11-28

    Healing is a specific biological process related to the general phenomenon of growth and tissue regeneration and is a process generally affected by several systemic conditions or as detrimental side-effects of chemotherapy- and radiotherapy-induced inflammation of the oral mucosa. The objectives of this study is to evaluate the novel chitosan based functional drug delivery systems, which can be successfully incorporated into "dual action bioactive restorative materials", capable of inducing in vitro improved wound healing prototype and containing an antibiotic, such as nystatin, krill oil as an antioxidant and hydroxyapatite as a molecular bone scaffold, which is naturally present in bone and is reported to be successfully used in promoting bone integration when implanted as well as promoting healing. The hydrogels were prepared using a protocol as previously reported by us. The physico-chemical features, including surface morphology (SEM), release behaviors, stability of the therapeutic agent-antioxidant-chitosan, were measured and compared to the earlier reported chitosan-antioxidant containing hydrogels. Structural investigations of the reactive surface of the hydrogel are reported. Release of nystatin was investigated for all newly prepared hydrogels. Bio-adhesive studies were performed in order to assess the suitability of these designer materials. Free radical defense capacity of the biomaterials was evaluated using established in vitro model. The bio-adhesive capacity of the materials in the in vitro system was tested and quantified. It was found that the favorable synergistic effect of free radical built-in defense mechanism of the new functional materials increased sustainable bio-adhesion and therefore acted as a functional multi-dimensional restorative material with potential application in wound healing in vitro.

  3. Evaluation of Nystatin Containing Chitosan Hydrogels as Potential Dual Action Bio-Active Restorative Materials: in Vitro Approach

    V. Tamara Perchyonok

    2014-11-01

    Full Text Available Healing is a specific biological process related to the general phenomenon of growth and tissue regeneration and is a process generally affected by several systemic conditions or as detrimental side-effects of chemotherapy- and radiotherapy-induced inflammation of the oral mucosa. The objectives of this study is to evaluate the novel chitosan based functional drug delivery systems, which can be successfully incorporated into “dual action bioactive restorative materials”, capable of inducing in vitro improved wound healing prototype and containing an antibiotic, such as nystatin, krill oil as an antioxidant and hydroxyapatite as a molecular bone scaffold, which is naturally present in bone and is reported to be successfully used in promoting bone integration when implanted as well as promoting healing. The hydrogels were prepared using a protocol as previously reported by us. The physico-chemical features, including surface morphology (SEM, release behaviors, stability of the therapeutic agent-antioxidant-chitosan, were measured and compared to the earlier reported chitosan-antioxidant containing hydrogels. Structural investigations of the reactive surface of the hydrogel are reported. Release of nystatin was investigated for all newly prepared hydrogels. Bio-adhesive studies were performed in order to assess the suitability of these designer materials. Free radical defense capacity of the biomaterials was evaluated using established in vitro model. The bio-adhesive capacity of the materials in the in vitro system was tested and quantified. It was found that the favorable synergistic effect of free radical built-in defense mechanism of the new functional materials increased sustainable bio-adhesion and therefore acted as a functional multi-dimensional restorative material with potential application in wound healing in vitro.

  4. Action potential-evoked calcium release is impaired in single skeletal muscle fibers from heart failure patients.

    Marino DiFranco

    Full Text Available BACKGROUND: Exercise intolerance in chronic heart failure (HF has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC, but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+ release, mandating investigations in skeletal muscle from HF patients. The purpose of this study was to test the hypothesis that Ca2+ release is significantly impaired in the skeletal muscle of HF patients in whom exercise capacity is severely diminished compared to age-matched healthy volunteers. METHODS AND FINDINGS: Using state-of-the-art electrophysiological and optical techniques in single muscle fibers from biopsies of the locomotive vastus lateralis muscle, we measured the action potential (AP-evoked Ca2+ release in 4 HF patients and 4 age-matched healthy controls. The mean peak Ca2+ release flux in fibers obtained from HF patients (10±1.2 µM/ms was markedly (2.6-fold and significantly (p<0.05 smaller than in fibers from healthy volunteers (28±3.3 µM/ms. This impairment in AP-evoked Ca2+ release was ubiquitous and was not explained by differences in the excitability mechanisms since single APs were indistinguishable between HF patients and healthy volunteers. CONCLUSIONS: These findings prove the feasibility of performing electrophysiological experiments in single fibers from human skeletal muscle, and offer a new approach for investigations of myopathies due to HF and other diseases. Importantly, we have demonstrated that one step in the ECC process, AP-evoked Ca2+ release, is impaired in single muscle fibers in HF patients.

  5. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch

    Anand, P.; Bley, K.

    2011-01-01

    Summary Topical capsaicin formulations are used for pain management. Safety and modest efficacy of low-concentration capsaicin formulations, which require repeated daily self-administration, are supported by meta-analyses of numerous studies. A high-concentration capsaicin 8% patch (Qutenza™) was recently approved in the EU and USA. A single 60-min application in patients with neuropathic pain produced effective pain relief for up to 12 weeks. Advantages of the high-concentration capsaicin patch include longer duration of effect, patient compliance, and low risk for systemic effects or drug–drug interactions. The mechanism of action of topical capsaicin has been ascribed to depletion of substance P. However, experimental and clinical studies show that depletion of substance P from nociceptors is only a correlate of capsaicin treatment and has little, if any, causative role in pain relief. Rather, topical capsaicin acts in the skin to attenuate cutaneous hypersensitivity and reduce pain by a process best described as ‘defunctionalization’ of nociceptor fibres. Defunctionalization is due to a number of effects that include temporary loss of membrane potential, inability to transport neurotrophic factors leading to altered phenotype, and reversible retraction of epidermal and dermal nerve fibre terminals. Peripheral neuropathic hypersensitivity is mediated by diverse mechanisms, including altered expression of the capsaicin receptor TRPV1 or other key ion channels in affected or intact adjacent peripheral nociceptive nerve fibres, aberrant re-innervation, and collateral sprouting, all of which are defunctionalized by topical capsaicin. Evidence suggests that the utility of topical capsaicin may extend beyond painful peripheral neuropathies. PMID:21852280

  6. Oscillatory behaviour of ventricular action potential duration in heart failure patients at respiratory rate and low frequency

    Ben eHanson

    2014-10-01

    Full Text Available Oscillations of arterial pressure occur spontaneously at a frequency of approx. 0.1Hz coupled with synchronous oscillations of sympathetic nerve activity (Mayer waves. This study investigated the extent to which corresponding oscillations may occur in ventricular action potential duration (APD.14 ambulatory (outpatient heart failure patients with biventricular pacing devices were studied while seated upright watching movie clips to maintain arousal. Activation recovery intervals (ARI as a measure of ventricular APD were obtained from unipolar electrograms recorded from the LV epicardial pacing lead during steady state RV pacing from the device. Arterial blood pressure was measured non-invasively (Finapress and respiration monitored. Oscillations were quantified using time frequency and coherence analysis.Oscillatory behaviour of ARI at the respiratory frequency was observed in all subjects. The magnitude of the ARI variation ranged from 2.2 ms to 6.9 ms (mean 5.0 ms. Coherence analysis showed a correlation with respiratory oscillation for an average of 43% of the recording time at a significance level of p < 0.05. Oscillations in systolic blood pressure in the Mayer wave frequency range were observed in all subjects for whom blood pressure was recorded (n=13. ARI oscillation in the Mayer wave frequency range was observed in 6/13 subjects (46% over a range of 2.9ms to 9.2ms. Coherence with Mayer waves at the p < 0.05 significance level was present for an average of 29 % of the recording time. In ambulatory patients with heart failure during enhanced mental arousal, left ventricular epicardial APD (ARI oscillated at the respiratory frequency (approx. 0.25Hz. In 6 patients (46% APD oscillated at the slower Mayer wave frequency (approx. 0.1 Hz. These findings may be important in understanding sympathetic activity-related arrhythmogenesis.

  7. Regulation of ClC-1 and KATP channels in action potential-firing fast-twitch muscle fibers.

    Pedersen, Thomas Holm; de Paoli, Frank Vincenzo; de Paoli, Frank Vinzenco; Flatman, John A; Nielsen, Ole Baekgaard

    2009-10-01

    Action potential (AP) excitation requires a transient dominance of depolarizing membrane currents over the repolarizing membrane currents that stabilize the resting membrane potential. Such stabilizing currents, in turn, depend on passive membrane conductance (G(m)), which in skeletal muscle fibers covers membrane conductances for K(+) (G(K)) and Cl(-) (G(Cl)). Myotonic disorders and studies with metabolically poisoned muscle have revealed capacities of G(K) and G(Cl) to inversely interfere with muscle excitability. However, whether regulation of G(K) and G(Cl) occur in AP-firing muscle under normal physiological conditions is unknown. This study establishes a technique that allows the determination of G(Cl) and G(K) with a temporal resolution of seconds in AP-firing muscle fibers. With this approach, we have identified and quantified a biphasic regulation of G(m) in active fast-twitch extensor digitorum longus fibers of the rat. Thus, at the onset of AP firing, a reduction in G(Cl) of approximately 70% caused G(m) to decline by approximately 55% in a manner that is well described by a single exponential function characterized by a time constant of approximately 200 APs (phase 1). When stimulation was continued beyond approximately 1,800 APs, synchronized elevations in G(K) ( approximately 14-fold) and G(Cl) ( approximately 3-fold) caused G(m) to rise sigmoidally to approximately 400% of its level before AP firing (phase 2). Phase 2 was often associated with a failure to excite APs. When AP firing was ceased during phase 2, G(m) recovered to its level before AP firing in approximately 1 min. Experiments with glibenclamide (K(ATP) channel inhibitor) and 9-anthracene carboxylic acid (ClC-1 Cl(-) channel inhibitor) revealed that the decreased G(m) during phase 1 reflected ClC-1 channel inhibition, whereas the massively elevated G(m) during phase 2 reflected synchronized openings of ClC-1 and K(ATP) channels. In conclusion, G(Cl) and G(K) are acutely regulated in AP

  8. Enteral nutrients potentiate glucagon-like peptide-2 action and reduce dependence on parenteral nutrition in a rat model of human intestinal failure

    Brinkman, Adam S; Murali, Sangita G; Hitt, Stacy

    2012-01-01

    after 7 days with continued EN sustained the majority of intestinal adaption and significantly increased expression of colonic proglucagon compared with PN + EN + GLP-2 for 18 days, and increased plasma GLP-2 concentrations compared with TPN alone. In summary, EN potentiate the intestinotrophic actions...

  9. Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the Nucleus CI24M cochlear implant system.

    Cafarelli-Dees, D.; Dillier, N.; Lai, W.K.; Wallenberg, E. von; Dijk, B. van; Akdas, F.; Aksit, M.; Batman, C.; Beynon, A.J.; Burdo, S.; Chanal, J.M.; Collet, L.; Conway, M.; Coudert, C.; Craddock, L.; Cullington, H.; Deggouj, N.; Fraysse, B.; Grabel, S.; Kiefer, J.; Kiss, J.G.; Lenarz, T.; Mair, A.; Maune, S.; Muller-Deile, J.; Piron, J.P.; Razza, S.; Tasche, C.; Thai-Van, H.; Toth, F.; Truy, E.; Uziel, A.; Smoorenburg, G.F.

    2005-01-01

    One hundred and forty-seven adult recipients of the Nucleus 24 cochlear implant system, from 13 different European countries, were tested using neural response telemetry to measure the electrically evoked compound action potential (ECAP), according to a standardised postoperative measurement procedu

  10. Effects of PAD on conduction of action potentials within segmental and ascending branches of single muscle afferents in the cat spinal cord.

    Lomelí, J; Castillo, L; Linares, P; Rudomin, P

    2000-11-01

    In anesthetized and paralyzed cats under artificial respiration, we examined the extent to which primary afferent depolarization (PAD) might affect invasion of action potentials in intraspinal axonal and/or terminal branches of single muscle afferents. To this end, one stimulating micropipette was placed at the L6 spinal level within the intermediate or motor nucleus, and another one at the L3 level, in or close to Clarke's column. Antidromically conducted responses produced in single muscle afferents by stimulation at these two spinal levels were recorded from fine lateral gastrocnemius nerve filaments. In all fibers examined, stimulation of one branch, with strengths producing action potentials, increased the intraspinal threshold of the other branch when applied at short conditioning testing stimulus intervals (<1.5-2.0 ms), because of the refractoriness produced by the action potentials invading the tested branch. Similar increases in the intraspinal threshold were found in branches showing tonic PAD and also during the PAD evoked by stimulation of group I afferent fibers in muscle nerves. It is concluded that during tonic or evoked PAD, axonal branches in the dorsal columns and myelinated terminals of muscle afferents ending deep in the L6 and L3 segmental levels continue to be invaded by action potentials. These findings strengthen the view that presynaptic inhibition of muscle afferents produced by activation of GABAergic mechanisms is more likely to result from changes in the synaptic effectiveness of the afferent terminals than from conduction failure because of PAD.

  11. Propagators and path integrals

    Holten, J.W. van

    1995-08-22

    Path-integral expressions for one-particle propagators in scalar and fermionic field theories are derived, for arbitrary mass. This establishes a direct connection between field theory and specific classical point-particle models. The role of world-line reparametrization invariance of the classical action and the implementation of the corresponding BRST-symmetry in the quantum theory are discussed. The presence of classical world-line supersymmetry is shown to lead to an unwanted doubling of states for massive spin-1/2 particles. The origin of this phenomenon is traced to a `hidden` topological fermionic excitation. A different formulation of the pseudo-classical mechanics using a bosonic representation of {gamma}{sub 5} is shown to remove these extra states at the expense of losing manifest supersymmetry. (orig.).

  12. Propagation of gravity wave packet near critical level

    YUE Xianchang; YI Fan

    2005-01-01

    A couple of two-dimensional linear and fully nonlinear numerical models for compressible atmosphere are used to numerically study the propagation of the gravity wave packet into a mean wind shear. For a linear propagation wave packet, the critical level interactions are in good agreement with the linear critical level theory. The dynamically and convectively unstable regions are formed due to the critical level interaction of a finite-amplitude wave packet, but they would not break. The free exchange of potential energy with kinetic energy in the background atmosphere at rest ceases after entering the mean wind shear. However, it still goes on in the nonlinear propagation. It is shown that the nonlinear effects modify the mean flow markedly, reduce the momentum and energy propagation velocity and drop the elevation of the critical level.The gravity wave packet becomes unstable and breaks down into smaller scales in some regions. It expends much more kinetic energy than potential energy in the early phase of the breakdown. This means that the wave breakdown sets up due to the action of the shear instability rather than a convective one.

  13. Green tea catechins potentiate the neuritogenic action of brain-derived neurotrophic factor: role of 67-kDa laminin receptor and hydrogen peroxide.

    Gundimeda, Usha; McNeill, Thomas H; Fan, Tiffany K; Deng, Ronald; Rayudu, David; Chen, Zachary; Cadenas, Enrique; Gopalakrishna, Rayudu

    2014-02-28

    Delivery of optimal amounts of brain-derived neurotrophic factor (BDNF) to regions of the brain affected by neurodegenerative diseases is a daunting task. Using natural products with neuroprotective properties, such as green tea polyphenols, would be a highly useful complementary approach for inexpensive long-term treatment of these diseases. In this study, we used PC12(TrkB) cells which ectopically express TrkB, a high affinity receptor for BDNF. They differentiate and induce neurite outgrowth in response to BDNF. Using this model, we show for the first time that treatment with extremely low concentrations (BDNF. A synergistic interaction was observed between GTPP constituents, where epigallocatechin and epicatechin, both individually lacking this activity, promoted the action of EGCG. GTPP-induced potentiation of BDNF action required the cell-surface associated 67 kDa laminin receptor (67LR) to which EGCG binds with high affinity. A cell-permeable catalase abolished GTPP/EGCG-induced potentiation of BDNF action, suggesting the possible involvement of H2O2 in the potentiation. Consistently, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 μM) or more effectively through a steady-state generation (1 μM), potentiated BDNF action. Collectively, these results suggest that EGCG, dependent on 67 LR and H2O2, potentiates the neuritogenic action of BDNF. Intriguingly, this effect requires only submicromolar concentrations of EGCG. This is significant as extremely low concentrations of polyphenols are believed to reach the brain after drinking green tea.

  14. Potential hazards to embryo implantation: A human endometrial in vitro model to identify unwanted antigestagenic actions of chemicals

    Fischer, L.; Deppert, W.R. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Pfeifer, D. [Department of Hematology and Oncology, University Hospital Freiburg (Germany); Stanzel, S.; Weimer, M. [Department of Biostatistics, German Cancer Research Center, Heidelberg (Germany); Hanjalic-Beck, A.; Stein, A.; Straßer, M.; Zahradnik, H.P. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Schaefer, W.R., E-mail: wolfgang.schaefer@uniklinik-freiburg.de [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany)

    2012-05-01

    Embryo implantation is a crucial step in human reproduction and depends on the timely development of a receptive endometrium. The human endometrium is unique among adult tissues due to its dynamic alterations during each menstrual cycle. It hosts the implantation process which is governed by progesterone, whereas 17β-estradiol regulates the preceding proliferation of the endometrium. The receptors for both steroids are targets for drugs and endocrine disrupting chemicals. Chemicals with unwanted antigestagenic actions are potentially hazardous to embryo implantation since many pharmaceutical antiprogestins adversely affect endometrial receptivity. This risk can be addressed by human tissue-specific in vitro assays. As working basis we compiled data on chemicals interacting with the PR. In our experimental work, we developed a flexible in vitro model based on human endometrial Ishikawa cells. Effects of antiprogestin compounds on pre-selected target genes were characterized by sigmoidal concentration–response curves obtained by RT-qPCR. The estrogen sulfotransferase (SULT1E1) was identified as the most responsive target gene by microarray analysis. The agonistic effect of progesterone on SULT1E1 mRNA was concentration-dependently antagonized by RU486 (mifepristone) and ZK137316 and, with lower potency, by 4-nonylphenol, bisphenol A and apigenin. The negative control methyl acetoacetate showed no effect. The effects of progesterone and RU486 were confirmed on the protein level by Western blotting. We demonstrated proof of principle that our Ishikawa model is suitable to study quantitatively effects of antiprogestin-like chemicals on endometrial target genes in comparison to pharmaceutical reference compounds. This test is useful for hazard identification and may contribute to reduce animal studies. -- Highlights: ► We compare progesterone receptor-mediated endometrial effects of chemicals and drugs. ► 4-Nonylphenol, bisphenol A and apigenin exert weak

  15. Comparison of regulated passive membrane conductance in action potential-firing fast- and slow-twitch muscle.

    Pedersen, Thomas Holm; Macdonald, William Alexander; de Paoli, Frank Vincenzo; de Paoli, Frank Vinzenco; Gurung, Iman Singh; Nielsen, Ole Baekgaard

    2009-10-01

    In several pathological and experimental conditions, the passive membrane conductance of muscle fibers (G(m)) and their excitability are inversely related. Despite this capacity of G(m) to determine muscle excitability, its regulation in active muscle fibers is largely unexplored. In this issue, our previous study (Pedersen et al. 2009. J. Gen. Physiol. doi:10.1085/jgp.200910291) established a technique with which biphasic regulation of G(m) in action potential (AP)-firing fast-twitch fibers of rat extensor digitorum longus muscles was identified and characterized with temporal resolution of seconds. This showed that AP firing initially reduced G(m) via ClC-1 channel inhibition but after approximately 1,800 APs, G(m) rose substantially, causing AP excitation failure. This late increase of G(m) reflected activation of ClC-1 and K(ATP) channels. The present study has explored regulation of G(m) in AP-firing slow-twitch fibers of soleus muscle and compared it to G(m) dynamics in fast-twitch fibers. It further explored aspects of the cellular signaling that conveyed regulation of G(m) in AP-firing fibers. Thus, in both fiber types, AP firing first triggered protein kinase C (PKC)-dependent ClC-1 channel inhibition that reduced G(m) by approximately 50%. Experiments with dantrolene showed that AP-triggered SR Ca(2+) release activated this PKC-mediated ClC-1 channel inhibition that was associated with reduced rheobase current and improved function of depolarized muscles, indicating that the reduced G(m) enhanced muscle fiber excitability. In fast-twitch fibers, the late rise in G(m) was accelerated by glucose-free conditions, whereas it was postponed when intermittent resting periods were introduced during AP firing. Remarkably, elevation of G(m) was never encountered in AP-firing slow-twitch fibers, even after 15,000 APs. These observations implicate metabolic depression in the elevation of G(m) in AP-firing fast-twitch fibers. It is concluded that regulation of G(m) is

  16. A Comparative Study On The Action Potential Simulation (APS Therapy And The Routine Physiotherapy Protocol In Knee Osteoarthritisin Elderly People

    Abbas Rahimi

    2012-04-01

    Full Text Available Background and Aim: Knee osteoarthritis is the most common cause for which the elderly people refere to physiotherapy outpatient clinics. This study aimed to investigate the effects of the Action Potential Stimulation (APS Therapy and the routine physiotherapy (PT protocol on relieving pain and swelling as well as the duration of the relief period in patients with knee osteoarthritis. Materials and Methods: 69 patients (62 females & 7 males with knee osteoarthritis were recruited in this study. The subjects were divided into two groups including APS Therapy (n=37, mean age: 55±13 years old and the routine PT protocol (n=32, mean age: 61±14 years old groups. A 10-session treatment period was carried out for each group; and their pain and swelling were measured at the first, fifth and tenth sessions and also one-month after the last session (follow up. The swelling was measured using measuring the circumference of the knee on the patella, 5 Cm above and 5 Cm below the patella. The routine PT protocol consisted of hot pack, ultrasound, TENS and exercise; and the APS therapy protocol included hot pack, APS Therapy and the same exercise. During the follow up, 50 out of 61 subjects were called on the phone and any pain changes were recorded.Results: In terms of swelling, the results showed significant reduction just on the patella only in the APS Therapy group (P<0.05. Visual Analogue Pain Scale (VAPS indicated a significant pain reduction in both groups. However, the APS Therapy group showed significantly pain reduction at the end of sessions five, ten and the follow up session (P<0.05. It was also revealed that while routine PT subjects showed no significant pain changes between the tenth and the follow up session, a gradual pain reduction was seen in the APS therapy group during this period (P<0.05. A gradual dosage reduction was recorded only in the APS therapy group, indicating a slight correlation with pain reduction (r=0.4.Conclusion: The

  17. A computational model of the ionic currents, Ca2+ dynamics and action potentials underlying contraction of isolated uterine smooth muscle.

    Wing-Chiu Tong

    Full Text Available Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C coupling of uterine smooth muscle cells (USMC. Our overall aim is to establish a mathematical platform of sufficient biophysical detail to quantitatively describe known uterine E-C coupling parameters and thereby inform future empirical investigations of physiological and pathophysiological mechanisms governing normal and dysfunctional labors. From published and unpublished data we construct mathematical models for fourteen ionic currents of USMCs: Ca2+ currents (L- and T-type, Na+ current, an hyperpolarization-activated current, three voltage-gated K+ currents, two Ca2+-activated K+ current, Ca2+-activated Cl current, non-specific cation current, Na+-Ca2+ exchanger, Na+-K+ pump and background current. The magnitudes and kinetics of each current system in a spindle shaped single cell with a specified surface area:volume ratio is described by differential equations, in terms of maximal conductances, electrochemical gradient, voltage-dependent activation/inactivation gating variables and temporal changes in intracellular Ca2+ computed from known Ca2+ fluxes. These quantifications are validated by the reconstruction of the individual experimental ionic currents obtained under voltage-clamp. Phasic contraction is modeled in relation to the time constant of changing [Ca2+]i. This integrated model is validated by its reconstruction of the different USMC AP configurations (spikes, plateau and bursts of spikes, the change from bursting to plateau type AP produced by estradiol and of simultaneous experimental recordings of spontaneous AP, [Ca2+]i and phasic force. In summary, our advanced mathematical model provides a powerful tool to

  18. Data for spatial characterization of AC signal propagation over primary neuron dendrites

    Hojeong Kim

    2016-03-01

    Full Text Available Action potentials generated near the soma propagate not only into the axonal nerve connecting to the adjacent neurons but also into the dendrites interacting with a diversity of synaptic inputs as well as voltage gated ion channels. Measuring voltage attenuation factors between the soma and all single points of the dendrites in the anatomically reconstructed primary neurons with the same cable properties, we report the signal propagation data showing how the alternating current (AC signal such as action potentials back-propagates over the dendrites among different types of primary neurons. Fitting equations and their parameter values for the data are also presented to quantitatively capture the spatial profile of AC signal propagation from the soma to the dendrites in primary neurons. Our data is supplemental to our original study for the dependency of dendritic signal propagation and excitability, and their relationship on the cell type-specific structure in primary neurons (DOI: 10.1016/j.neulet.2015.10.017 [1].

  19. Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurones.

    Djouhri, L; Bleazard, L; Lawson, S N

    1998-12-15

    1. Intracellular voltage recordings were made from the somata of L6 and S1 dorsal root ganglion (DRG) neurones at 28.5-31 C in young guinea-pigs (150-300 g) anaesthetized with sodium pentobarbitone. Action potentials (APs) evoked by dorsal root stimulation were used to classify conduction velocities (CVs) as C, Adelta or Aalpha/beta. Units with overshooting APs and membrane potentials (Vm) more negative than -40 mV were analysed: 40 C-, 45 Adelta- and 94 Aalpha/beta-fibre units. 2. Sensory receptive properties were characterized as: (a) low-threshold mechanoreceptive (LTM) units (5 C-, 10 Adelta- and 57 Aalpha/beta-fibre units); (b) nociceptive units, responding to noxious mechanical stimuli, some also to noxious heat (40 C-, 27 Adelta- and 27 Aalpha/beta-fibre units); (c) unresponsive units that failed to respond to a variety of tests; and (d) C-fibre cooling-sensitive units (n = 4). LTM units made up about 8 % of identified C-fibre units, 36 % of identified Adelta-fibre units and > 73 % of identified Aalpha/beta-fibre units. Compared with LTM units, the nociceptive units had APs that were longer on average by 3 times (C-fibre units), 1.7 times (Adelta-fibre units) and 1.4 times (Aalpha/beta-fibre units). They also had significantly longer rise times (RTs) and fall times (FTs) in all CV ranges. Between Aalpha/beta-nociceptors and Aalpha/beta-LTMs there was a proportionately greater difference in RT than in FT. The duration of the afterhyperpolarization measured to 80 % recovery (AHP80) was also significantly longer in nociceptive than LTM neurones in all CV ranges: by 3 times (C-fibre units), 6.3 times (Adelta-fibre units) and 3.6 times (Aalpha/beta-fibre units). The mean values of these variables in unresponsive units were similar to those of nociceptive units in each CV range; in C- and Adelta-fibre groups their mean AHP duration was even longer than in nociceptive units. 3. A-fibre LTM neurones were divided into Adelta- (D hair units, n = 8), and Aalpha

  20. Directed HK propagator

    Kocia, Lucas; Heller, Eric J.

    2015-09-01

    We offer a more formal justification for the successes of our recently communicated "directed Heller-Herman-Kluk-Kay" (DHK) time propagator by examining its performance in one-dimensional bound systems which exhibit at least quasi-periodic motion. DHK is distinguished by its single one-dimensional integral—a vast simplification over the usual 2N-dimensional integral in full Heller-Herman-Kluk-Kay (for an N-dimensional system). We find that DHK accurately captures particular coherent state autocorrelations when its single integral is chosen to lie along these states' fastest growing manifold, as long as it is not perpendicular to their action gradient. Moreover, the larger the action gradient, the better DHK will perform. We numerically examine DHK's accuracy in a one-dimensional quartic oscillator and illustrate that these conditions are frequently satisfied such that the method performs well. This lends some explanation for why DHK frequently seems to work so well and suggests that it may be applicable to systems exhibiting quite strong anharmonicity.

  1. microRNA as a potential vector for the propagation of robustness in protein expression and oscillatory dynamics within a ceRNA network.

    Claude Gérard

    Full Text Available microRNAs (miRNAs are small noncoding RNAs that are important post-transcriptional regulators of gene expression. miRNAs can induce thresholds in protein synthesis. Such thresholds in protein output can be also achieved by oligomerization of transcription factors (TF for the control of gene expression. First, we propose a minimal model for protein expression regulated by miRNA and by oligomerization of TF. We show that miRNA and oligomerization of TF generate a buffer, which increases the robustness of protein output towards molecular noise as well as towards random variation of kinetics parameters. Next, we extend the model by considering that the same miRNA can bind to multiple messenger RNAs, which accounts for the dynamics of a minimal competing endogenous RNAs (ceRNAs network. The model shows that, through common miRNA regulation, TF can control the expression of all proteins formed by the ceRNA network, even if it drives the expression of only one gene in the network. The model further suggests that the threshold in protein synthesis mediated by the oligomerization of TF can be propagated to the other genes, which can increase the robustness of the expression of all genes in such ceRNA network. Furthermore, we show that a miRNA could increase the time delay of a "Goodwin-like" oscillator model, which may favor the occurrence of oscillations of large amplitude. This result predicts important roles of miRNAs in the control of the molecular mechanisms leading to the emergence of biological rhythms. Moreover, a model for the latter oscillator embedded in a ceRNA network indicates that the oscillatory behavior can be propagated, via the shared miRNA, to all proteins formed by such ceRNA network. Thus, by means of computational models, we show that miRNAs could act as vectors allowing the propagation of robustness in protein synthesis as well as oscillatory behaviors within ceRNA networks.

  2. Stable propagation of synchronous spiking in cortical neural networks

    Diesmann, Markus; Gewaltig, Marc-Oliver; Aertsen, Ad

    1999-12-01

    The classical view of neural coding has emphasized the importance of information carried by the rate at which neurons discharge action potentials. More recent proposals that information may be carried by precise spike timing have been challenged by the assumption that these neurons operate in a noisy fashion-presumably reflecting fluctuations in synaptic input-and, thus, incapable of transmitting signals with millisecond fidelity. Here we show that precisely synchronized action potentials can propagate within a model of cortical network activity that recapitulates many of the features of biological systems. An attractor, yielding a stable spiking precision in the (sub)millisecond range, governs the dynamics of synchronization. Our results indicate that a combinatorial neural code, based on rapid associations of groups of neurons co-ordinating their activity at the single spike level, is possible within a cortical-like network.

  3. Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle

    Treebak, Jonas Thue; Frøsig, Christian; Pehmøller, Christian

    2009-01-01

    insulin stimulation. CONCLUSION/INTERPRETATION: We provide evidence for site-specific phosphorylation of TBC1D4 in human skeletal muscle in response to physiological hyperinsulinaemia. The data support the idea that TBC1D4 is a nexus for insulin- and exercise-responsive signals that may mediate increased...... insulin action after exercise....

  4. Short-time quantum propagator and Bohmian trajectories☆

    de Gosson, Maurice; Hiley, Basil

    2013-01-01

    We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo Δt2 for the quantum propagator and we show that the quantum potential is negligible modulo Δt2 for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times. PMID:24319313

  5. Short-time quantum propagator and Bohmian trajectories

    Gosson, Maurice de, E-mail: maurice.degosson@gmail.com [Universität Wien, Fakultät für Mathematik, NuHAG, Wien 1090 (Austria); Hiley, Basil [University of London, Birkbeck College, Theoretical Physics Unit, London WC1E 7HX (United Kingdom)

    2013-12-06

    We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo Δt{sup 2} for the quantum propagator and we show that the quantum potential is negligible modulo Δt{sup 2} for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.

  6. Test particles behavior in the framework of a lagrangian geometric theory with propagating torsion

    Aprea, G; Ruffini, R

    2003-01-01

    Working in the lagrangian framework, we develop a geometric theory in vacuum with propagating torsion; the antisymmetric and trace parts of the torsion tensor, considered as derived from local potential fields, are taken and, using the minimal action principle, their field equations are calculated. Actually these will show themselves to be just equations for propagating waves giving torsion a behavior similar to that of metric which, as known, propagates through gravitational waves. Then we establish a principle of minimal substitution to derive test particles equation of motion, obtaining, as result, that they move along autoparallels. We then calculate the analogous of the geodesic deviation for these trajectories and analyze their behavior in the nonrelativistic limit, showing that the torsion trace potential $\\phi$ has a phenomenology which is indistinguishable from that of the gravitational newtonian field; in this way we also give a reason for why there have never been evidence for it.

  7. Biophysical characterization of inwardly rectifying potassium currents (I(K1) I(K,ACh), I(K,Ca)) using sinus rhythm or atrial fibrillation action potential waveforms

    Tang, Chuyi; Skibsbye, Lasse; Yuan, Lei

    2015-01-01

    to voltage protocols adapted from atrial action potentials recorded in human tissue at 1 and 3 Hz. The current recordings were performed in the HEK-293 heterologous cell system expressing either I(K1), I(K,ACh) or I(K,Ca) to establish the individual contribution of each of these currents during the voltage...... changes of atrial action potential waveforms. I(K1) primarily contributes to the atrial electrophysiology at the latter part of repolarization and during the diastolic phase, while both I(K,Ca) under high [Ca2+]i and I(K,ACh) contribute relatively most during repolarization.......Although several physiological, pathophysiological and regulatory properties of classical inward rectifier K+ current I(K1), G-protein coupled inwardly-rectifying K+ current I(K,ACh) and the small-conductance Ca2+ activated K+ current I(K,Ca) have been identified, quantitative biophysical details...

  8. Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons.

    Liu, Pin W; Bean, Bruce P

    2014-04-02

    Kv2 family "delayed-rectifier" potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60-80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from -70 mV, but not -80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at -70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation.

  9. Action-potential duration and the modulation of transmitter release from the sensory neurons of Aplysia in presynaptic facilitation and behavioral sensitization

    Hochner, Binyamin; Klein, Marc; Schacher, Samuel; Kandel, Eric R.

    1986-01-01

    Presynaptic facilitation of transmitter release from Aplysia sensory neurons is an important contributor to behavioral sensitization of the gill and siphon withdrawal reflex. The enhanced release is accompanied by reduction of the serotonin-sensitive S current in the sensory neurons and a consequent increase in duration of the presynaptic action potential (ranging from 10% to 30%). We find that changes of similar magnitude in the duration of depolarizing voltage-clamp steps in sensory neurons...

  10. Treatment of acne with tea tree oil (melaleuca) products: a review of efficacy, tolerability and potential modes of action.

    Hammer, K A

    2015-02-01

    Over-the-counter acne treatments containing tea tree oil from the plant Melaleuca alternifolia are widely available, and evidence indicates that they are a common choice amongst those self-treating their acne. The aims of this review were to collate and evaluate the clinical evidence on the use of tea tree oil products for treating acne, to review safety and tolerability and to discuss the underlying modes of therapeutic action.

  11. NS5806 partially restores action potential duration but fails to ameliorate calcium transient dysfunction in a computational model of canine heart failure

    Maleckar, Mary M; Lines, Glenn T; Koivumäki, Jussi T

    2014-01-01

    AIMS: The study investigates how increased Ito, as mediated by the activator NS5806, affects excitation-contraction coupling in chronic heart failure (HF). We hypothesized that restoring spike-and-dome morphology of the action potential (AP) to a healthy phenotype would be insufficient to restore...... potential. Decreased APD50 and APD90 are both due to altered IK1. Analysis revealed that drug effects depend on transmurality. Ca(2+) transient morphology changes-increased amplitude and shorter time to peak-are due to direct increase in ICa,L and indirect larger SR Ca(2+) release subsequent to Ito...

  12. Viscothermal wave propagation

    Nijhof, Marten Jozef Johannes

    2010-01-01

    In this work, the accuracy, efficiency and range of applicability of various (approximate) models for viscothermal wave propagation are investigated. Models for viscothermal wave propagation describe thewave behavior of fluids including viscous and thermal effects. Cases where viscothermal effects a

  13. Propagation testing multi-cell batteries.

    Orendorff, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lamb, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steele, Leigh Anna Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spangler, Scott Wilmer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  14. Opposing Actions of Chronic[Deta][superscript 9] Tetrahydrocannabinol and Cannabinoid Antagonists on Hippocampal Long-Term Potentiation

    Hoffman, Alexander F.; Oz, Murat; Yang, Ruiqin; Lichtman, Aron H.; Lupica, Carl R.

    2007-01-01

    Memory deficits produced by marijuana arise partly via interaction of the psychoactive component, [Deta][superscript 9]-tetrahydrocannabinol ([Deta][superscript 9]-THC), with cannabinoid receptors in the hippocampus. Although cannabinoids acutely reduce glutamate release and block hippocampal long-term potentiation (LTP), a potential substrate for…

  15. Exact propagators in harmonic superspace

    Kuzenko, Sergei M.

    2004-10-01

    Within the background field formulation in harmonic superspace for quantum N = 2 super-Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in arxiv:hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super-Yang-Mills theory.

  16. Exact propagators in harmonic superspace

    Kuzenko, S M

    2004-01-01

    Within the background field formulation in harmonic superspace for quantum N = 2 super Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super Yang-Mills theory.

  17. The existence of propagated sensation along the meridian proved by neuroelectrophysiology***

    Jinsen Xu; Shuxia Zheng; Xiaohua Pan; Xiaoxiang Zhu; Xianglong Hu

    2013-01-01

    Propagated sensation along the meridian can occur when acupoints are stimulated by acupuncture or electrical impulses. In this study, participants with notable propagated sensation along the me-ridian were given electro-acupuncture at the Jianyu (LI15) acupoint of the large intestine meridian. When participants stated that the sensation reached the back of their hand, regular nervous system action discharge was examined using a physiological recording electrode placed on the superficial branch of the radial nerve. The topographical maps of brain-evoked potential in the primary cortical somatosensory area were also detected. When Guangming (GB37) acupoint in the lower limb and Hegu (LI4) acupoint in the upper limb were stimulated, subjects without propagated sensation along the meridian exhibited a high potential reaction in the corresponding area of the brain cortical so-matosensory area. For subjects with a notable propagated sensation along the meridian, the reac-tion area was larger and extended into the face representative area. These electrophysiological measures directly prove the existence of propagated sensation along the meridian, and the periph-eral stimulated site is consistent with the corresponding primary cortical somatosensory area, which presents a high potential reaction.

  18. Blockade by NIP-142, an antiarrhythmic agent, of carbachol-induced atrial action potential shortening and GIRK1/4 channel.

    Matsuda, Tomoyuki; Ito, Mie; Ishimaru, Sayoko; Tsuruoka, Noriko; Saito, Tomoaki; Iida-Tanaka, Naoko; Hashimoto, Norio; Yamashita, Toru; Tsuruzoe, Nobutomo; Tanaka, Hikaru; Shigenobu, Koki

    2006-08-01

    Mechanisms for the atria-specific action potential-prolonging action of NIP-142 ((3R*,4S*)-4-cyclopropylamino-3,4-dihydro-2,2-dimethyl-6-(4-methoxyphenylacetylamino)-7-nitro-2H-1-benzopyran-3-ol), a benzopyran compound that terminates experimental atrial arrhythmia, was examined. In isolated guinea-pig atrial tissue, NIP-142 reversed the shortening of action potential duration induced by either carbachol or adenosine. These effects were mimicked by tertiapin, but not by E-4031. NIP-142 concentration-dependently blocked the human G protein-coupled inwardly rectifying potassium channel current (GIRK1/4 channel current) expressed in HEK-293 cells with an EC50 value of 0.64 microM. At higher concentrations, NIP-142 blocked the human ether a go-go related gene (HERG) channel current with an EC50 value of 44 microM. In isolated guinea-pig papillary muscles, NIP-142 had no effect on the negative inotropic effect of carbachol under beta-adrenergic stimulation, indicating lack of effect on the muscarinic receptor and Gi protein. These results suggest that NIP-142 directly inhibits the acetylcholine-activated potassium current.

  19. Circadian rhythm of heart rate in the rabbit: prolongation of action potential duration by sustained beta adrenoceptor blockade is not due to associated bradycardia.

    Vaughan Williams, E M; Dennis, P D; Garnham, C

    1986-07-01

    Six litters of six young rabbits were injected intraperitoneally, two per litter, with saline, alinidine, or nadolol once or twice daily for two weeks. In four litters successful radiotransmissions of electrocardiograms were recorded once hourly for four days before and during treatment. Alinidine and nadolol produced an overall mean bradycardia in comparison with saline treated animals, the effect of alinidine exceeding that of nadolol. At 48-70 hours after the end of treatment the hearts were used for in vitro electrophysiological study. Nadolol, but not alinidine, induced a prolongation of action potential duration compared with that of saline treated littermates in both atrial and ventricular muscle. An incidental observation was that heart rate in the rabbit followed a circadian rhythm, heart rates being slower in the morning and faster in late afternoon and evening. The circadian rhythm was attenuated but not abolished by alinidine and nadolol. These results suggest that if prolongation of action potential duration by sustained beta blockade in patients after myocardial infarction contributes to protection against sudden death (by a class III antiarrhythmic action) then alinidine would not be expected to provide a comparable prophylaxis.

  20. [Stimulation of gastric mucosa afferents by phenylephrine potentiates anticonvulsive and eliminates sedative action of sodium valproate in the pentylenetetrazol kindling model in rats].

    Serdiuk, S E; Gmiro, V E; Veselkina, O S

    2014-01-01

    Sodium valproate after chronic intragastric administration in the high dose of 100-200 mg/kg eliminates generalized clonic-tonic pentylenetetrazol seizures in 100 % of rats, but only in 33-57 % of rats it prevents local clonic kindling seizures. Strong sedation is induced by the specified doses of sodium valproate. The combined oral chronic administration of phenylephrine in threshold, noneffective alone dose of 0.2 mg/kg and sodium valproate in high doses of 100 mg/kg and 200 mg/kg potentiates anticonvulsive action of sodium valproate, because prevents both clonic-tonic kindling. seizures in 100 % of rats and clonic kindling seizures in 86-100 % of rats, and also it increases in 1.7-1.9 times anticonvulsive activity of valproate. The specified combinations of sodium valproate with phenylephrine do not produce the sedative side effect. The basis of the mechanism of potentiation of anticonvulsive action and elimination of sedative action of sodium valproate in high doses is the stimulation of gastric mucosa afferents by phenylephrine.

  1. Overview of Antagonists Used for Determining the Mechanisms of Action Employed by Potential Vasodilators with Their Suggested Signaling Pathways

    Yean Chun Loh

    2016-04-01

    Full Text Available This paper is a review on the types of antagonists and the signaling mechanism pathways that have been used to determine the mechanisms of action employed for vasodilation by test compounds. Thus, we exhaustively reviewed and analyzed reports related to this topic published in PubMed between the years of 2010 till 2015. The aim of this paperis to suggest the most appropriate type of antagonists that correspond to receptors that would be involved during the mechanistic studies, as well as the latest signaling pathways trends that are being studied in order to determine the route(s that atest compound employs for inducing vasodilation. The methods to perform the mechanism studies were included. Fundamentally, the affinity, specificity and selectivity of the antagonists to their receptors or enzymes were clearly elaborated as well as the solubility and reversibility. All the signaling pathways on the mechanisms of action involved in the vascular tone regulation have been well described in previous review articles. However, the most appropriate antagonists that should be utilized have never been suggested and elaborated before, hence the reason for this review.

  2. Potential of plant essential oils and their components in animal agriculture – in vitro studies on antibacterial mode of action

    Corliss A. O'bryan

    2015-09-01

    Full Text Available The broad field of agriculture is currently undergoing major changes in practices, with new catch phrases including organic and sustainable. Consumers are more aware than ever before of the food that they eat and they want food free of toxic chemicals, antibiotics and the like. The antimicrobial activity of essential oils and their components has been recognized for several years. Recent research has demonstrated that many of these essential oils have beneficial effects for livestock, including reduction of foodborne pathogens in these animals. Essential oils as natural antimicrobials offer the opportunity to help maintain the safety of our food supply and minimize consumers’ concerns about consumption of synthetic chemicals. Numerous studies have been made into the mode of action of essential oils and the resulting elucidation of bacterial cell targets have contributed to new perspectives on countering antimicrobial resistance and pathogenicity of these bacteria. In this review, after a brief discussion of the uses essential oils in agriculture as antimicrobials, we give an overview of the current knowledge about the antibacterial mode of action of essential oils and their constituents as determined in vitro.

  3. Feedforward Inhibition Underlies the Propagation of Cholinergically Induced Gamma Oscillations from Hippocampal CA3 to CA1

    Zemankovics, Rita; Veres, Judit M.; Oren, Iris; Hájos, Norbert

    2013-01-01

    Gamma frequency (30–80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse ...

  4. Acute alterations of somatodendritic action potential dynamics in hippocampal CA1 pyramidal cells after kainate-induced status epilepticus in mice.

    Daniel Minge

    Full Text Available Pathophysiological remodeling processes at an early stage of an acquired epilepsy are critical but not well understood. Therefore, we examined acute changes in action potential (AP dynamics immediately following status epilepticus (SE in mice. SE was induced by intraperitoneal (i.p. injection of kainate, and behavioral manifestation of SE was monitored for 3-4 h. After this time interval CA1 pyramidal cells were studied ex vivo with whole-cell current-clamp and Ca(2+ imaging techniques in a hippocampal slice preparation. Following acute SE both resting potential and firing threshold were modestly depolarized (2-5 mV. No changes were seen in input resistance or membrane time constant, but AP latency was prolonged and AP upstroke velocity reduced following acute SE. All cells showed an increase in AP halfwidth and regular (rather than burst firing, and in a fraction of cells the notch, typically preceding spike afterdepolarization (ADP, was absent following acute SE. Notably, the typical attenuation of backpropagating action potential (b-AP-induced Ca(2+ signals along the apical dendrite was strengthened following acute SE. The effects of acute SE on the retrograde spread of excitation were mimicked by applying the Kv4 current potentiating drug NS5806. Our data unveil a reduced somatodendritic excitability in hippocampal CA1 pyramidal cells immediately after acute SE with a possible involvement of both Na(+ and K(+ current components.

  5. The electromagnetic potentials without the gauge transformations

    Espinoza, Augusto; Chubykalo, Andrey; Rodriguez, Alejandro Gutierrez; Hernandez, Maria de los Angeles [Universidad Autonoma de Zacatecas (Mexico). Unidad Academica de Fisica

    2011-07-01

    In this note we show that the use of the Helmholtz theorem lead to derivation of uniquely determined electromagnetic potentials without making use of the gauge transformation. These potentials correspond to the potentials obtained by imposing so-called Coulomb condition (gauge) in the traditional approach. We show that the electromagnetic field comprises two components, one of which is characterized by its instantaneous action at a distance, whereas another one propagates in the retarded form with the velocity of light. One of the theoretical consequences of this new definition is that the electromagnetic potentials are real physical quantities as well as the electric and magnetic fields. We show that the reality of the electromagnetic potentials in quantum-mechanics is also a property of these potentials in the classical electrodynamics. Equations for potentials obtained in our approach are already separated with respect to vector and scalar potentials, so there is no necessity in using the gauge transformations and, accordingly, in making use of either Lorentz or Coulomb condition. The vector potential and scalar potential introduced thus are uniquely defined. The scalar potential is a generator of the so called instantaneous action at a distance, whereas the solenoidal vector potential can propagate with the velocity of light and it is responsible for the retarded action of the electromagnetic field. (author)

  6. Inhibition of a cAMP-dependent Ca-activated K conductance by forskolin prolongs Ca action potential duration in lamprey sensory neurons.

    Womble, M D; Wickelgren, W O

    1990-06-04

    Intracellular recordings from primary mechanosensory neurons (dorsal cells) of the lamprey spinal cord were made to test the membrane effects of forskolin, an activator of adenylate cyclase in these cells. At a concentration of 50 microM, forskolin was found to have a pronounced broadening effect on calcium action potentials (Ca APs) produced in the presence of voltage-activated K channel blockers (TEA, 3,4-DAP). Forskolin had no effect on passive membrane properties of the cells, such as resting potential or input resistance. Nor did it affect delayed rectification or Na APs and thus appeared not to block voltage-activated K channels. Forskolin's effect was evident only when a significant Ca component to the AP was present. It appeared not to increase the conductance of the Ca channel since its action was accompanied by a decrease in membrane conductance during the Ca AP, indicating instead an inhibition of a repolarizing Ca-activated conductance, other than a Ca-activated Cl conductance. The prolongation of Ca APs by forskolin, barium or the neurotransmitter GABA were all correlated in voltage-clamp with a decrease in outward current. Under the conductions used here, the major outward conductance in dorsal cells is a Ca-activated K conductance (gK(Ca]28, and it is concluded that the most probable mode of action for forskolin is via a cyclic AMP-mediated inhibition of this conductance. GABA has also been shown to prolong Ca APs in lamprey dorsal cells by inhibiting a repolarizing gK(Ca)28. Thus, the action of this transmitter may be mediated by an increase in intracellular cyclic AMP.

  7. Perfect Derived Propagators

    Schulte, Christian

    2008-01-01

    When implementing a propagator for a constraint, one must decide about variants: When implementing min, should one also implement max? Should one implement linear equations both with and without coefficients? Constraint variants are ubiquitous: implementing them requires considerable (if not prohibitive) effort and decreases maintainability, but will deliver better performance. This paper shows how to use variable views, previously introduced for an implementation architecture, to derive perfect propagator variants. A model for views and derived propagators is introduced. Derived propagators are proved to be indeed perfect in that they inherit essential properties such as correctness and domain and bounds consistency. Techniques for systematically deriving propagators such as transformation, generalization, specialization, and channeling are developed for several variable domains. We evaluate the massive impact of derived propagators. Without derived propagators, Gecode would require 140000 rather than 40000 ...

  8. High energy bosons do not propagate

    Kurkov, M.A., E-mail: Kurkov@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Lizzi, Fedele, E-mail: fedele.lizzi@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Departament de Estructura i Constituents de la Matèria, Institut de Ciéncies del Cosmos, Universitat de Barcelona, Barcelona, Catalonia (Spain); Vassilevich, Dmitri, E-mail: dvassil@gmail.com [CMCC, Universidade Federal do ABC, Santo André, S.P. (Brazil)

    2014-04-04

    We discuss the propagation of bosons (scalars, gauge fields and gravitons) at high energy in the context of the spectral action. Using heat kernel techniques, we find that in the high-momentum limit the quadratic part of the action does not contain positive powers of the derivatives. We interpret this as the fact that the two-point Green functions vanish for nearby points, where the proximity scale is given by the inverse of the cutoff.

  9. Two models of anisotropic propagation of a cardiac excitation wave

    Erofeev, I. S.; Agladze, K. I.

    2014-11-01

    Propagation of the action potential in the real heart is direction-dependent (anisotropic). We propose two general physical models explaining this anisotropy on the cellular level. The first, "delay" model takes into account the frequency of the cell-cell transitions in different directions of propagation, assuming each transition requires some small time interval. The second model relies on the assumption that the action potential transmits to the next cell only from the area at the pole of the previous cell. We estimated parameters of both models by doing optical mapping and fluorescent staining of cardiac cell samples grown on polymer fiber substrate. Both models gave reasonable estimations, but predicted different behaviors of the anisotropy ratio (ratio of the highest and lowest wave velocities) after addition of the suppressor of sodium channels such as lidocaine. The results of the experiment on lidocaine effect on anisotropy ratio were in favor of the first, "delay" model. Estimated average cell-cell transition delay was 240 ± 80 μs, which is close to the characteristic values of synaptic delay.

  10. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential.

    Piao, Hong Hua; Rajakumar, Dhanarajan; Kang, Bok Eum; Kim, Eun Ha; Baker, Bradley J

    2015-01-07

    ArcLight is a genetically encoded fluorescent voltage sensor using the voltage-sensing domain of the voltage-sensing phosphatase from Ciona intestinalis that gives a large but slow-responding optical signal in response to changes in membrane potential (Jin et al., 2012). Fluorescent voltage sensors using the voltage-sensing domain from other species give faster yet weaker optical signals (Baker et al., 2012; Han et al., 2013). Sequence alignment of voltage-sensing phosphatases from different species revealed conserved polar and charged residues at 7 aa intervals in the S1-S3 transmembrane segments of the voltage-sensing domain, suggesting potential coil-coil interactions. The contribution of these residues to the voltage-induced optical signal was tested using a cassette mutagenesis screen by flanking each transmembrane segment with unique restriction sites to allow for the testing of individual mutations in each transmembrane segment, as well as combinations in all four transmembrane segments. Addition of a counter charge in S2 improved the kinetics of the optical response. A double mutation in the S4 domain dramatically reduced the slow component of the optical signal seen in ArcLight. Combining that double S4 mutant with the mutation in the S2 domain yielded a probe with kinetics voltage-sensing domain could potentially lead to fluorescent sensors capable of optically resolving neuronal inhibition and subthreshold synaptic activity.

  11. Green Tea Polyphenols Potentiate the Action of Nerve Growth Factor to Induce Neuritogenesis: Possible Role of Reactive Oxygen Species

    Gundimeda, Usha; McNeill, Thomas H.; Schiffman, Jason E.; Hinton, David R.; Gopalakrishna, Rayudu

    2010-01-01

    Exogenously administered nerve growth factor (NGF) repairs injured axons, but it does not cross the blood-brain barrier. Thus, agents that could potentiate the neuritogenic ability of endogenous NGF would be of great utility in treating neurological injuries. Using the PC12 cell model, here we show that unfractionated green tea polyphenols (GTPP) at low concentrations (0.1 μg/ml) potentiate the ability of low concentrations of NGF (2 ng/ml) to induce neuritogenesis at a level comparable to th...

  12. Kinetics of rate-dependent shortening of action potential duration in guinea-pig ventricle; effects of IK1 and IKr blockade.

    Williams, B A; Dickenson, D R; Beatch, G N

    1999-03-01

    1. The kinetics of shortening of action potential duration (APD) following an increase in pacing rate, from 2 to 3.3 Hz, was characterized in guinea-pig ventricular preparations. Terikalant (RP62719), an inhibitor of the inwardly rectifying K+ current (IK1), and dofetilide, a specific inhibitor of the rapidly activating delayed-rectifier current (IKr), were applied to determine the effect of inhibition of these ion currents on slow APD shortening. 2. Action potentials were recorded from isolated guinea-pig ventricular myocytes using the perforated-patch patch-clamp technique, and monophasic action potentials were recorded from Langendorff-perfused guinea-pig ventricles using a contact epicardial probe. 3. Under control conditions, after an increase in pacing rate, APD immediately decreased, and then shortened slowly with an exponential time course. In ventricular myocytes, the time constant of this exponential shortening was 28+/-4 s and the amount of slow shortening was 21.9+/-0.9 ms (n=8) for an increase in rate from 2 to 3.3 Hz. Similar values were observed in Langendorff-perfused ventricles. 4. Terikalant dose-dependently increased APD and the increase was enhanced by rapid pacing ('positive' rate-dependence). The drug dose-dependently decreased the time constant of shortening and amount of slow APD shortening. In contrast, dofetilide, an inhibitor of IKr, which shows 'reverse' rate-dependent APD widening, had no significant effect on the time constant or amount of slow shortening. 5. These observations suggest that IK1 plays a role in rate-dependent shortening of APD. The results appear to support the hypothesis that 'reverse' rate-dependent effects of IKr blockers are due to these drugs not affecting the ion current(s) mediating intrinsic rate-dependent slow shortening of APD.

  13. Determination of thermodynamic potentials and the aggregation number for micelles with the mass-action model by isothermal titration calorimetry

    Olesen, Niels Erik; Westh, Peter; Holm, René

    2015-01-01

    The aggregation number (n), thermodynamic potentials (ΔG, ΔH, ΔS) and critical micelle concentration (CMC) for 6 natural bile salts were determined on the basis of both original and previously published isothermal titration calorimetry (ITC) data. Different procedures to estimate parameters...

  14. Simple way of determining the dependence of the Hamiltonian on the action variable for certain one-dimensional potentials

    Susskind, S. M.

    1986-07-01

    By further developing an idea found in Goldstein's book Classical Mechanics together with a trivial generalization of the virial theorem, an alternative and simple perturbative procedure for obtaining H=H(J) for certain one-dimensional potentials is presented. The anharmonic oscillator and the Stark effect for hydrogen, both in one dimension, are given as examples of the method.

  15. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Liu, Pin W.; Bean, Bruce P.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and ...

  16. Design and application of measuring system of evoked compound action potential%诱发动作电位测量系统的设计与应用

    孟丽; 李平; 訾蕊; 费兴波

    2015-01-01

    目的:为获得电信号刺激神经纤维时的动作电位,本文设计了一种电诱发复合动作电位测量系统,解决了诱发动作电位的精确采集问题,有效去除了本底噪声的影响。方法分析了范围在十几微伏的电诱发复合动作电位到几十毫伏电极电位测量时存在的难点,以及一个测量系统正常工作时需要满足的测量放大器共模容限和差模容限及电流源电压容限问题。基于此,本文提出采用3级运算放大器级联的方式实现诱发动作电位的采集。系统主要由3级级联放大器、自动零点调整环节和基准电压部分组成,实现对弱信号的放大、消除本底噪声和提供过压保护。结果采用本文设计的系统,测量得到11 mV 的蛙类坐骨神经干复合动作电位和17μV 的豚鼠耳蜗电诱发复合动作电位,验证了本系统可有效测量各种诱发电位。结论采用3级放大器级联的方式和自动零点跟踪方式解决了微弱信号的有效放大和精确采集技术,为进一步研究通过电信号直接刺激神经纤维所产生的动作电位的特性提供可靠的测量手段。%Objective When the nerve fiber is stimulated by the electrical pulse,there is an evoked compound action potential which indicates the synchronism property of the nerve fiber. In order to obtain the precise action potential,a measuring system of evoked compound action potential is presented in this paper. The system can collect the compound action potential precisely and eliminate the effect of ground noise. Methods Firstly,we analyzed the difficulty in the measurement of the compound action potential which ranged from μV level to the mV level. Secondly,we discussed the common-mode tolerance,differential mode tolerance and the voltage margin of the electric current which guaranteed the proper functioning of the measuring system. Based on the issues,we proposed a measuring system of compound action

  17. A Carbohydrate Fraction, AIP1, from Artemisia Iwayomogi Reduces the Action Potential Duration by Activation of Rapidly Activating Delayed Rectifier K+ Channels in Rabbit Ventricular Myocytes

    Park, Won Sun; Son, Youn Kyoung; Ko, Eun A.; Choi, Seong Woo; Kim, Nari; Choi, Tae-Hoon; Youn, Hyun Joo; Jo, Su-Hyun; Hong, Da Hye; Han, Jin

    2010-01-01

    We investigated the effects of a hot-water extract of Artemisia iwayomogi, a plant belonging to family Compositae, on cardiac ventricular delayed rectifier K+ current (IK) using the patch clamp technique. The carbohydrate fraction AIP1 dose-dependently increased the heart rate with an apparent EC50 value of 56.1±5.5 µg/ml. Application of AIP1 reduced the action potential duration (APD) in concentration-dependent fashion by activating IK without significantly altering the resting membrane pote...

  18. Anion-selective channelrhodopsin expressed in neuronal cell culture and in vivo in murine brain: Light-induced inhibition of generation of action potentials.

    Dolgikh, D A; Malyshev, A Yu; Salozhin, S V; Nekrasova, O V; Petrovskaya, L E; Roshchin, M V; Borodinova, A A; Feldman, T B; Balaban, P M; Kirpichnikov, M P; Ostrovsky, M A

    2015-01-01

    Anionic channelrhodopsin slow ChloC was expressed in the culture of nerve cells and in vivo in mouse brain. We demonstrated ability of slow ChloC to suppress effectively the activity of the neuron in response to the illumination with the visible light. It has been shown for a first time that slow ChloC works equally efficiently in both neuronal culture and in the whole brain being expressed in vivo. Thus, slow ChloC could be considered as an effective optogenetic tool capable in response to light stimulation to inhibit the generation of action potentials in the neuron.

  19. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents

    2016-01-01

    Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including verte...

  20. The Wheeler Propagator

    Bollini, C. G.; Rocca, M. C.

    1998-01-01

    We study the half advanced and half retarded Wheeler Green function and its relation to Feynman propagators. First for massless equation. Then, for Klein-Gordon equations with arbitrary mass parameters; real, imaginary or complex. In all cases the Wheeler propagator lacks an on-shell free propagation. The Wheeler function has support inside the light-cone (whatever the mass). The associated vacuum is symmetric with respect to annihilation and creation operators. We show with some examples tha...

  1. Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus.

    Wheeler, D B; Randall, A; Tsien, R W

    1996-04-01

    It has been established that multiple types of Ca2+ channels participate in triggering neurotransmitter release at central synapses, but there is uncertainty about the nature of their combined actions. We investigated synaptic transmission at CA3-CA1 synapses of rat hippocampal slices and asked whether the dependence on omega-CTx-GVIA-sensitive N-type channels and omega-Aga-IVA-sensitive P/Q-type Ca2+ channels can be altered by physiological mechanisms. The reliance on multiple types of Ca2+ channels was not absolute but depended strongly on the amount of Ca2+ influx through individual channels, which was manipulated by prolonging the presynaptic action potential with the K+ channel blocker 4-aminopyridine (4-AP) and by varying the extracellular Ca2+ concentration ([Ca2+]o). We quantified the influence of spike broadening on Ca2+ influx through various Ca2+ channels by imposing mock action potentials on voltage-clamped cerebellar granule neurons. In field recordings of the EPSP in hippocampal slices, action potential prolongation increased the EPSP slope by 2-fold and decreased its reliance on either N-type or P/Q-type Ca2+ channels. The inhibition of synaptic transmission by N-type channel blockade was virtually eliminated in the presence of 4-AP, but it could be restored by lowering [Ca2+]o. These results rule out a scenario in which a significant fraction of presynaptic terminals rely solely on N-type channels to trigger transmission. The change in sensitivity to the neurotoxins with 4-AP could be explained in terms of a nonlinear relationship between Ca2+ entry and synaptic strength, which rises steeply at low [Ca2+]o, but approaches saturation at high [Ca2+]o. This relationship was evaluated experimentally by varying [CA2+]o in the absence and presence of 4-AP. One consequence of this relationship is that down-modulation of presynaptic Ca2+ channels by various modulators would increase the relative impact of spike broadening greatly.

  2. Constitutional flavonoids derived from Epimedium dose-dependently reduce incidence of steroid-associated osteonecrosis not via direct action by themselves on potential cellular targets.

    Ge Zhang

    Full Text Available Intravascular-thrombosis and extravascular-lipid-deposit are the two key pathogenic events considered to interrupt intraosseous blood supply during development of steroid-associated osteonecrosis (ON. However, there are no clinically employed agents capable of simultaneously targeting these two key pathogenic events. The present experimental study demonstrated that constitutional flavonoid glycosides derived from herb Epimedium (EF, composed of seven flavonoid compounds with common stem nuclear exerted dose-dependent effect on inhibition of both thrombosis and lipid-deposition and accordingly reducing incidence of steroid-associated ON in rabbits, which was not via direct action by themselves rather by their common metabolite on potential cellular targets involved in the two pathogenic pathways. The underlying mechanism could be explained by counteracting endothelium injury and excessive adipogenesis. These findings encourage designing clinical trials to investigate potential of EF in prevention of steroid-associated ON.

  3. Cultured hippocampal neurons from trisomy 16 mouse, a model for Down's syndrome, have an abnormal action potential due to a reduced inward sodium current.

    Galdzicki, Z; Coan, E; Rapoport, S I

    1993-02-26

    Mouse trisomy 16 is an animal model for Down's syndrome (human trisomy 21). The whole-cell patch-clamp technique was used to compare passive and active electrical properties of trisomy 16 and diploid mouse 16 fetal hippocampal neurons maintained in culture for 2-5 weeks. There was no significant difference in any mean passive property, including resting potential, membrane resistance, capacitance and time constant. However, in trisomic neurons, the action potential had a 20% significantly slower rising phase and a 20% significantly smaller inward sodium current and inward sodium conductance than did control neurons. The outward conductance was not altered. The ratio of maximum inward conductance to maximum outward conductance was 30% less in the trisomy 16 cells. These results indicate that trisomy 16 hippocampal neurons have abnormal active electrical properties, most likely reflecting reduced sodium channel membrane density. Such subtle differences may influence elaboration of the hippocampus during development.

  4. [A new ECG electrode concept for the conduction of fetal heart action potentials without penetration of the skin].

    Schmidt, S; Langner, K; Rothe, J; Saling, E

    1982-10-01

    Internal cardiotocography is an important method for reliable supervision of the fetus during labor. The main task is the prevention of fetal hypoxia. However, there is a considerable disadvantage as the electrodes used penetrate the fetal skin, creating a possible entry point for organisms. The concept we have developed forms a new way of decreasing the risk of infection during labor by conducting the fetal heart rate potentials without penetrating the skin. The electrode is fixed to the skin of the presenting part by tissue adhesive and electrical contact between the fetal skin and the wire of the electrode is established through using electrolyte fluid.

  5. Canonical formalism of action-at-a-distance electrodynamics and many-particle potential among charged particles

    Ohta, Tadayuki; Kimura, Toshiei

    1993-10-01

    The second post-Coulombian Lagrangian of Wheeler-Feynman electrodynamics for a many-particle system is treated according to a canonical formalism of a singular Lagrangian with higher derivatives. The canonical equations are given in terms of a reduced Hamiltonian with Dirac brackets, but they are transformed to be expressed in terms of ordinary Poisson brackets by redefinition of canonical variables. The reduced Hamiltonian includes a characteristic form of three-particle and four-particle potentials. Finally a direct pathway to the reduced Hamiltonian is presented via first-order formalism of the Maxwell theory with charged particles.

  6. Community Health Workers-Promotores de Salud in Mexico: History and Potential for Building Effective Community Actions.

    Balcazar, Hector; Perez-Lizaur, Ana Bertha; Izeta, Ericka Escalante; Villanueva, Maria Angeles

    2016-01-01

    This article takes a historical perspective combining 3 illustrative examples of the origins of the community health worker (CHW) model in Mexico, as a community-based participatory strategy. Three examples were identified from the sparse literature about CHWs in Mexico emphasizing their key roles and functions in various community settings. The CHW models illustrate what is known of training-development and planning, implementation, and evaluation of the CHWs model in different settings addressing cardiovascular disease and risk factors. The potential exists for integrating CHW projects to expand the health promotion model with new emphasis on municipality and regional participation.

  7. A combined method to estimate parameters of the thalamocortical model from a heavily noise-corrupted time series of action potential

    Wang, Ruofan; Wang, Jiang; Deng, Bin; Liu, Chen; Wei, Xile; Tsang, K. M.; Chan, W. L.

    2014-03-01

    A combined method composing of the unscented Kalman filter (UKF) and the synchronization-based method is proposed for estimating electrophysiological variables and parameters of a thalamocortical (TC) neuron model, which is commonly used for studying Parkinson's disease for its relay role of connecting the basal ganglia and the cortex. In this work, we take into account the condition when only the time series of action potential with heavy noise are available. Numerical results demonstrate that not only this method can estimate model parameters from the extracted time series of action potential successfully but also the effect of its estimation is much better than the only use of the UKF or synchronization-based method, with a higher accuracy and a better robustness against noise, especially under the severe noise conditions. Considering the rather important role of TC neuron in the normal and pathological brain functions, the exploration of the method to estimate the critical parameters could have important implications for the study of its nonlinear dynamics and further treatment of Parkinson's disease.

  8. Effects of Wenxin Keli on the Action Potential and L-Type Calcium Current in Rats with Transverse Aortic Constriction-Induced Heart Failure

    Yu Chen

    2013-01-01

    Full Text Available Objective. We investigated the effects of WXKL on the action potential (AP and the L-type calcium current (ICa-L in normal and hypertrophied myocytes. Methods. Forty male rats were randomly divided into two groups: the control group and the transverse aortic constriction- (TAC- induced heart failure group. Cardiac hypertrophy was induced by TAC surgery, whereas the control group underwent a sham operation. Eight weeks after surgery, single cardiac ventricular myocytes were isolated from the hearts of the rats. The APs and ICa-L were recorded using the whole-cell patch clamp technique. Results. The action potential duration (APD of the TAC group was prolonged compared with the control group and was markedly shortened by WXKL treatment in a dose-dependent manner. The current densities of the ICa-L in the TAC group treated with 5 g/L WXKL were significantly decreased compared with the TAC group. We also determined the effect of WXKL on the gating mechanism of the ICa-L in the TAC group. We found that WXKL decreased the ICa-L by accelerating the inactivation of the channels and delaying the recovery time from inactivation. Conclusions. The results suggest that WXKL affects the AP and blocked the ICa-L, which ultimately resulted in the treatment of arrhythmias.

  9. A combined method to estimate parameters of the thalamocortical model from a heavily noise-corrupted time series of action potential

    Wang, Ruofan; Wang, Jiang; Deng, Bin, E-mail: dengbin@tju.edu.cn; Liu, Chen; Wei, Xile [Department of Electrical and Automation Engineering, Tianjin University, Tianjin (China); Tsang, K. M.; Chan, W. L. [Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon (Hong Kong)

    2014-03-15

    A combined method composing of the unscented Kalman filter (UKF) and the synchronization-based method is proposed for estimating electrophysiological variables and parameters of a thalamocortical (TC) neuron model, which is commonly used for studying Parkinson's disease for its relay role of connecting the basal ganglia and the cortex. In this work, we take into account the condition when only the time series of action potential with heavy noise are available. Numerical results demonstrate that not only this method can estimate model parameters from the extracted time series of action potential successfully but also the effect of its estimation is much better than the only use of the UKF or synchronization-based method, with a higher accuracy and a better robustness against noise, especially under the severe noise conditions. Considering the rather important role of TC neuron in the normal and pathological brain functions, the exploration of the method to estimate the critical parameters could have important implications for the study of its nonlinear dynamics and further treatment of Parkinson's disease.

  10. Sustained Exocytosis after Action Potential-Like Stimulation at Low Frequencies in Mouse Chromaffin Cells Depends on a Dynamin-Dependent Fast Endocytotic Process

    Moya-Díaz, José; Álvarez, Yanina D.; Montenegro, Mauricio; Bayonés, Lucas; Belingheri, Ana V.; González-Jamett, Arlek M.; Cárdenas, Ana M.; Marengo, Fernando D.

    2016-01-01

    Under basal conditions the action potential firing rate of adrenal chromaffin cells is lower than 0.5 Hz. The maintenance of the secretory response at such frequencies requires a continuous replenishment of releasable vesicles. However, the mechanism that allows such vesicle replenishment remains unclear. Here, using membrane capacitance measurements on mouse chromaffin cells, we studied the mechanism of replenishment of a group of vesicles released by a single action potential-like stimulus (APls). The exocytosis triggered by APls (ETAP) represents a fraction (40%) of the immediately releasable pool, a group of vesicles highly coupled to voltage dependent calcium channels. ETAP was replenished with a time constant of 0.73 ± 0.11 s, fast enough to maintain synchronous exocytosis at 0.2–0.5 Hz stimulation. Regarding the mechanism involved in rapid ETAP replenishment, we found that it depends on the ready releasable pool; indeed depletion of this vesicle pool significantly delays ETAP replenishment. On the other hand, ETAP replenishment also correlates with a dynamin-dependent fast endocytosis process (τ = 0.53 ± 0.01 s). In this regard, disruption of dynamin function markedly inhibits the fast endocytosis and delays ETAP replenishment, but also significantly decreases the synchronous exocytosis during repetitive APls stimulation at low frequencies (0.2 and 0.5 Hz). Considering these findings, we propose a model in where both the transfer of vesicles from ready releasable pool and fast endocytosis allow rapid ETAP replenishment during low stimulation frequencies. PMID:27507935

  11. Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel.

    Couraud, F; Jover, E; Dubois, J M; Rochat, H

    1982-01-01

    The action of the neurotoxin in Buthinae scorpion venoms (Androctonus, Buthus or Leiurus genera) has been extensively studied. These proteins induce a prolongation of the action potential of nerves and muscles by slowing down inactivation of the sodium channel. Their affinity for their receptor site depends on membrane potential. In the present report we describe a toxin from a Centrurinae scorpion, Centruroides suffusus, which binds rat brain synaptosomes at a receptor site distinct from the Buthinae scorpion site independently of voltage. We name Androctonus-like toxins, alpha-scorpion toxins (alpha-ScTX), and Centruroides-like toxins, beta-scorpion toxins (beta-ScTX). We further report that beta-ScTX induces repetitive firing in frog myelinated nerve fibres by producing an abnormal sodium permeability. The beta-toxin binds specifically to rat brain synaptosomes (Kd = 3 nM) and induces an inhibition of the uptake and a stimulation of the release of GABA at concentrations which are in good agreement with the Kd value. These effects are blocked by tetrodotoxin. The binding site of beta -ScTX is distinct from those of other neurotoxins acting on the sodium channel like tetrodotoxin, alpha-ScTX and veratridine. The alpha-ScTX/beta-ScTX binding site capacities decreases as development of rat brain synaptosomes progresses ; at day 7 after birth, it is 1.1. and at day 39, 0.3.

  12. SUSTAINED EXOCYTOSIS AFTER ACTION POTENTIAL-LIKE STIMULATION AT LOW FREQUENCIES IN MOUSE CHROMAFFIN CELLS DEPENDS ON A DYNAMIN-DEPENDENT FAST ENDOCYTOTIC PROCESS

    José Moya-Díaz

    2016-07-01

    Full Text Available Under basal conditions the action potential firing rate of adrenal chromaffin cells is lower than 0.5 Hz. The maintenance of the secretory response at such frequencies requires a continuous replenishment of releasable vesicles. However, the mechanism that allows such vesicle replenishment remains unclear. Here, using membrane capacitance measurements on mouse chromaffin cells, we studied the mechanism of replenishment of a group of vesicles released by a single action potential-like stimulus (APls. The exocytosis triggered by APls (ETAP represents a fraction (40% of the immediately releasable pool, a group of vesicles highly coupled to voltage dependent calcium channels. ETAP was replenished with a time constant of 0.73 +/- 0.11 s, fast enough to maintain synchronous exocytosis at 0.2-0.5 Hz stimulation. Regarding the mechanism involved in rapid ETAP replenishment, we found that it depends on the ready releasable pool; indeed depletion of this vesicle pool significantly delays ETAP replenishment. On the other hand, ETAP replenishment also correlates with a dynamin-dependent fast endocytosis process (τ=0.53±0.01 s. In this regard, disruption of dynamin function markedly inhibits the fast endocytosis and delays ETAP replenishment, but also significantly decreases the synchronous exocytosis during repetitive APls stimulation at low frequencies (0.2 and 0.5 Hz. Considering these findings, we propose a model in where both the transfer of vesicles from ready releasable pool and fast endocytosis allow rapid ETAP replenishment during low stimulation frequencies.

  13. Dual optical recordings for action potentials and calcium handling in induced pluripotent stem cell models of cardiac arrhythmias using genetically encoded fluorescent indicators.

    Song, LouJin; Awari, Daniel W; Han, Elizabeth Y; Uche-Anya, Eugenia; Park, Seon-Hye E; Yabe, Yoko A; Chung, Wendy K; Yazawa, Masayuki

    2015-05-01

    Reprogramming of human somatic cells to pluripotency has been used to investigate disease mechanisms and to identify potential therapeutics. However, the methods used for reprogramming, in vitro differentiation, and phenotyping are still complicated, expensive, and time-consuming. To address the limitations, we first optimized a protocol for reprogramming of human fibroblasts and keratinocytes into pluripotency using single lipofection and the episomal vectors in a 24-well plate format. This method allowed us to generate multiple lines of integration-free and feeder-free induced pluripotent stem cells (iPSCs) from seven patients with cardiac diseases and three controls. Second, we differentiated human iPSCs derived from patients with Timothy syndrome into cardiomyocytes using a monolayer differentiation method. We found that Timothy syndrome cardiomyocytes showed slower, irregular contractions and abnormal calcium handling compared with the controls. The results are consistent with previous reports using a retroviral method for reprogramming and an embryoid body-based method for cardiac differentiation. Third, we developed an efficient approach for recording the action potentials and calcium transients simultaneously in control and patient cardiomyocytes using genetically encoded fluorescent indicators, ArcLight and R-GECO1. The dual optical recordings enabled us to observe prolonged action potentials and abnormal calcium handling in Timothy syndrome cardiomyocytes. We confirmed that roscovitine rescued the phenotypes in Timothy syndrome cardiomyocytes and that these findings were consistent with previous studies using conventional electrophysiological recordings and calcium imaging with dyes. The approaches using our optimized methods and dual optical recordings will improve iPSC applicability for disease modeling to investigate mechanisms underlying cardiac arrhythmias and to test potential therapeutics.

  14. Identification of sodium channel isoforms that mediate action potential firing in lamina I/II spinal cord neurons

    Smith Paula L

    2011-09-01

    Full Text Available Abstract Background Voltage-gated sodium channels play key roles in acute and chronic pain processing. The molecular, biophysical, and pharmacological properties of sodium channel currents have been extensively studied for peripheral nociceptors while the properties of sodium channel currents in dorsal horn spinal cord neurons remain incompletely understood. Thus far, investigations into the roles of sodium channel function in nociceptive signaling have primarily focused on recombinant channels or peripheral nociceptors. Here, we utilize recordings from lamina I/II neurons withdrawn from the surface of spinal cord slices to systematically determine the functional properties of sodium channels expressed within the superficial dorsal horn. Results Sodium channel currents within lamina I/II neurons exhibited relatively hyperpolarized voltage-dependent properties and fast kinetics of both inactivation and recovery from inactivation, enabling small changes in neuronal membrane potentials to have large effects on intrinsic excitability. By combining biophysical and pharmacological channel properties with quantitative real-time PCR results, we demonstrate that functional sodium channel currents within lamina I/II neurons are predominantly composed of the NaV1.2 and NaV1.3 isoforms. Conclusions Overall, lamina I/II neurons express a unique combination of functional sodium channels that are highly divergent from the sodium channel isoforms found within peripheral nociceptors, creating potentially complementary or distinct ion channel targets for future pain therapeutics.

  15. Conjugation of cholesterol to HIV-1 fusion inhibitor C34 increases peptide-membrane interactions potentiating its action.

    Axel Hollmann

    Full Text Available Recently, the covalent binding of a cholesterol moiety to a classical HIV-1 fusion inhibitor peptide, C34, was shown to potentiate its antiviral activity. Our purpose was to evaluate the interaction of cholesterol-conjugated and native C34 with membrane model systems and human blood cells to understand the effects of this derivatization. Lipid vesicles and monolayers with defined compositions were used as model membranes. C34-cholesterol partitions more to fluid phase membranes that mimic biological membranes. Importantly, there is a preference of the conjugate for liquid ordered membranes, rich in cholesterol and/or sphingomyelin, as observed both from partition and surface pressure studies. In human erythrocytes and peripheral blood mononuclear cells (PBMC, C34-cholesterol significantly decreases the membrane dipole potential. In PBMC, the conjugate was 14- and 115-fold more membranotropic than T-1249 and enfuvirtide, respectively. C34 or cholesterol alone did not show significant membrane activity. The enhanced interaction of C34-cholesterol with biological membranes correlates with its higher antiviral potency. Higher partitions for lipid-raft like compositions direct the drug to the receptor-rich domains where membrane fusion is likely to occur. This intermediary membrane binding step may facilitate the drug delivery to gp41 in its pre-fusion state.

  16. Unquenching effects in the quark and gluon propagator

    Kamleh, Waseem; Bowman, Patrick O.; Leinweber, Derek B.; Williams, Anthony G.; Zhang, Jianbo

    2007-11-01

    In this work we examine the fat-link irrelevant clover (FLIC) overlap quark propagator and the gluon propagator on both dynamical and quenched lattices. The tadpole-improved Luscher-Weisz gauge action is used in both cases. The dynamical gauge fields use the FLIC fermion action for the sea quark contribution. We observe that the presence of sea quarks causes a suppression of the mass function, quark renormalization function, and gluon dressing function in the infrared. The ultraviolet physics is unaffected.

  17. The role of dietary coconut for the prevention and treatment of Alzheimer's disease: potential mechanisms of action.

    Fernando, W M A D B; Martins, Ian J; Goozee, K G; Brennan, Charles S; Jayasena, V; Martins, R N

    2015-07-14

    Coconut, Cocos nucifera L., is a tree that is cultivated to provide a large number of products, although it is mainly grown for its nutritional and medicinal values. Coconut oil, derived from the coconut fruit, has been recognised historically as containing high levels of saturated fat; however, closer scrutiny suggests that coconut should be regarded more favourably. Unlike most other dietary fats that are high in long-chain fatty acids, coconut oil comprises medium-chain fatty acids (MCFA). MCFA are unique in that they are easily absorbed and metabolised by the liver, and can be converted to ketones. Ketone bodies are an important alternative energy source in the brain, and may be beneficial to people developing or already with memory impairment, as in Alzheimer's disease (AD). Coconut is classified as a highly nutritious 'functional food'. It is rich in dietary fibre, vitamins and minerals; however, notably, evidence is mounting to support the concept that coconut may be beneficial in the treatment of obesity, dyslipidaemia, elevated LDL, insulin resistance and hypertension - these are the risk factors for CVD and type 2 diabetes, and also for AD. In addition, phenolic compounds and hormones (cytokinins) found in coconut may assist in preventing the aggregation of amyloid-β peptide, potentially inhibiting a key step in the pathogenesis of AD. The purpose of the present review was to explore the literature related to coconut, outlining the known mechanistic physiology, and to discuss the potential role of coconut supplementation as a therapeutic option in the prevention and management of AD.

  18. Quantum dynamics via a time propagator in Wigner's phase space

    Grønager, Michael; Henriksen, Niels Engholm

    1995-01-01

    that the simple classical deterministic motion breaks down surprisingly fast in an anharmonic potential. Finally, we discuss the possibility of using the scheme as a useful approach to quantum dynamics in many dimensions. To that end we present a Monte Carlo integration scheme using the norm of the propagator......We derive an expression for a short-time phase space propagator. We use it in a new propagation scheme and demonstrate that it works for a Morse potential. The propagation scheme is used to propagate classical distributions which do not obey the Heisenberg uncertainty principle. It is shown...

  19. Propagation of vibration caused by electrical excitation in the normal human heart.

    Kanai, Hiroshi

    2009-06-01

    The ability to noninvasively detect regional dynamic myocardial damage related to action potentials and mechanical properties affected by heart disease is of great clinical importance. Though there are invaluable clinical tools for diagnosis of a broad range of cardiac conditions, such myocardial properties cannot be evaluated. We have previously shown that pulsive vibration occurs on the myocardium after electrical stimulation of an isolated heart. In this study, using a novel technique for ultrasonic measurement of the myocardial motion, we detected pulsive vibrations spontaneously caused by electrical excitation and by valve closure. Using a sparse sector scan, the vibrations were measured almost simultaneously at about 10,000 points set in the heart wall at a high temporal resolution. The consecutive spatial distributions of the phase of the vibrations revealed wave propagation along the wall in healthy subjects for the first time in vivo. At around the time of the Q-wave of the electrocardiogram, the propagation started from the interventricular septum and extended to both the base and apical sides of the heart with a speed of 1 m/s, which corresponds to the propagation of electrical excitation from the Purkinje fiber-myocyte junction in the interventricular septum. Other vibrations then propagated from the base at several m/s, although some of them had dispersion properties. These are shear waves caused by the mitral-valve closure, corresponding to the first heart sound. These phenomena have potential for detection of regional myocardial tissue damage related to propagation of the action potentials and regional myocardial viscoelasticity.

  20. Shallow-Water Propagation

    2016-06-07

    Shallow- Water Propagation William L. Siegmann Rensselaer Polytechnic Institute 110 Eighth Street Troy, New York 12180-3590 phone: (518) 276...ocean_acoustics LONG-TERM GOALS Develop methods for propagation and coherence calculations in complex shallow- water environments, determine...intensity and coherence. APPROACH (A) Develop high accuracy PE techniques for applications to shallow- water sediments, accounting for

  1. Effect of intracellular Ca2+ and action potential duration on L-type Ca2+ channel inactivation and recovery from inactivation in rabbit cardiac myocytes.

    Altamirano, Julio; Bers, Donald M

    2007-07-01

    Ca(2+) current (I(Ca)) recovery from inactivation is necessary for normal cardiac excitation-contraction coupling. In normal hearts, increased stimulation frequency increases force, but in heart failure (HF) this force-frequency relationship (FFR) is often flattened or reversed. Although reduced sarcoplasmic reticulum Ca(2+)-ATPase function may be involved, decreased I(Ca) availability may also contribute. Longer action potential duration (APD), slower intracellular Ca(2+) concentration ([Ca(2+)](i)) decline, and higher diastolic [Ca(2+)](i) in HF could all slow I(Ca) recovery from inactivation, thereby decreasing I(Ca) availability. We measured the effect of different diastolic [Ca(2+)](i) on I(Ca) inactivation and recovery from inactivation in rabbit cardiac myocytes. Both I(Ca) and Ba(2+) current (I(Ba)) were measured. I(Ca) decay was accelerated only at high diastolic [Ca(2+)](i) (600 nM). I(Ba) inactivation was slower but insensitive to [Ca(2+)](i). Membrane potential dependence of I(Ca) or I(Ba) availability was not affected by [Ca(2+)](i) <600 nM. Recovery from inactivation was slowed by both depolarization and high [Ca(2+)](i). We also used perforated patch with action potential (AP)-clamp and normal Ca(2+) transients, using various APDs as conditioning pulses for different frequencies (and to simulate HF APD). Recovery of I(Ca) following longer APD was increasingly incomplete, decreasing I(Ca) availability. Trains of long APs caused a larger I(Ca) decrease than short APD at the same frequency. This effect on I(Ca) availability was exacerbated by slowing twitch [Ca(2+)](i) decline by approximately 50%. We conclude that long APD and slower [Ca(2+)](i) decline lead to cumulative inactivation limiting I(Ca) at high heart rates and might contribute to the negative FFR in HF, independent of altered Ca(2+) channel properties.

  2. Propagation in polymer parameterised field theory

    Varadarajan, Madhavan

    2017-01-01

    The Hamiltonian constraint operator in loop quantum gravity acts ultralocally. Smolin has argued that this ultralocality seems incompatible with the existence of a quantum dynamics which propagates perturbations between macroscopically seperated regions of quantum geometry. We present evidence to the contrary within an LQG type ‘polymer’ quantization of two dimensional parameterised field theory (PFT). PFT is a generally covariant reformulation of free field propagation on flat spacetime. We show explicitly that while, as in LQG, the Hamiltonian constraint operator in PFT acts ultralocally, states in the joint kernel of the Hamiltonian and diffeomorphism constraints of PFT necessarily describe propagation effects. The particular structure of the finite triangulation Hamiltonian constraint operator plays a crucial role, as does the necessity of imposing (the continuum limit of) its kinematic adjoint as a constraint. Propagation is seen as a property encoded by physical states in the kernel of the constraints rather than that of repeated actions of the finite triangulation Hamiltonian constraint on kinematic states. The analysis yields robust structural lessons for putative constructions of the Hamiltonian constraint in LQG for which ultralocal action co-exists with a description of propagation effects by physical states.

  3. Potential Mechanism of Action of 3′-Demethoxy-6-O-demethyl-isoguaiacin on Methicillin Resistant Staphylococcus aureus

    Juan Manuel J. Favela-Hernández

    2015-07-01

    Full Text Available Bacterial infections represent one of the main threats to global public health. One of the major causative agents associated with high morbidity and mortality infections in hospitals worldwide is methicillin-resistant Staphylococcus aureus. Therefore, there is a need to develop new antibacterial agents to treat these infections, and natural products are a rich source of them. In previous studies, we reported that lignan 3′-demethoxy-6-O-demethylisoguaiacin, isolated and characterized from Larrea tridentate, showed the best activity towards methicillin-resistant S. aureus. Thus, the aim of this study was to determine the potential molecular mechanism of the antibacterial activity of 3′-demethoxy-6-O-demethylisoguaiacin against methicillin-resistant S. aureus using microarray technology. Results of microarray genome expression were validated by real-time polymerase chain reaction (RT-PCR. The genetic profile expression results showed that lignan 3′-demethoxy-6-O-demethylisoguaiacin had activity on cell membrane affecting proteins of the ATP-binding cassette (ABC transport system causing bacteria death. This molecular mechanism is not present in any antibacterial commercial drug and could be a new target for the development of novel antibacterial agents.

  4. Intracellular actions of steroid hormones and their therapeutic value, including the potential of radiohalosteroids against ovarian cancer

    Holt, J.A. (Chicago Univ. (United States). Dept. of Obstetrics and Gynecology); Scharl, A. (Koeln Univ., Cologne (Germany). Frauen-Klinik); Kullander, S. (Lund Univ. (Sweden). Womens Hospital Malmoe); Beckmann, M.W. (Johann Wolfgang von Goethe Univ., Frankfurt am Main (Germany). Zentrum fuer Frauenheilkunde und Geburtshilfe)

    1992-01-01

    With recombinant cDNA technology, yeast and cultured animal cells can be made to express mammalian cDNA steroid receptors from cDNA clones that contain deletions and substitutions. Among the leading problems addressed in these models is the characterization of sequences that promote association or interaction with other transcription regulating molecules, including oncogene products. Recently it has been found that heat shock proteins may serve not only to stabilize the receptor proteins but also to precondition the activation imparted by ligand binding. Aberrant receptor proteins can be found in ovarian cancer. Whether aberrant receptor proteins are associated with transformation in general or with a variable clinical response to steroidal or anti-steroidal therapy is not known. Even after chemotherapy, steroid receptors are expressed in the metastases of ovarian cancers seen clinically, and they may have potential use for localization and treatment of receptor-rich cancers. Radioligand pharmaceuticals appropriate for imaging or for site-directed radiocytotoxicity can be sequestered to the nuclei of receptor-rich cancers. Initial clinical imaging and therapy trials with such pharmaceuticals have been approved and begun. In the use of halogenated estrogen radiopharmaceuticals, liver metabolism and enterohepatic recirculation are important considerations. Ascites prolongs retention of radiohalogenated estrogen in the abdominal cavity. Distant metastases have been localized with [[sup 123]I]-estrogen in breast cancer patients in pre-operative procedures. Receptor-mediated cytotoxicity occurs when estrogen receptor radioligand pharmaceuticals that are Auger electron emitters are used in vitro. (au) (119 refs., 3 figs.).

  5. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B.

    Silva, Filomena; Ferreira, Susana; Duarte, Andreia; Mendonça, Dina I; Domingues, Fernanda C

    2011-12-15

    The increasing incidence of drug-resistant pathogens and toxicity of existing antifungal compounds has drawn attention towards the antimicrobial activity of natural products. The aim of the present study was to evaluate the antifungal activity of coriander essential oil according to classical bacteriological techniques, as well as with flow cytometry. The effect of the essential oil upon germ tube formation, seen as an important virulence factor, and potential synergism with amphotericin B were also studied. Coriander essential oil has a fungicidal activity against the Candida strains tested with MLC values equal to the MIC value and ranging from 0.05 to 0.4% (v/v). Flow cytometric evaluation of BOX, PI and DRAQ5 staining indicates that the fungicidal effect is a result of cytoplasmic membrane damage and subsequent leakage of intracellular components such as DNA. Also, concentrations bellow the MIC value caused a marked reduction in the percentage of germ tube formation for C. albicans strains. A synergetic effect between coriander oil and amphotericin B was also obtained for C. albicans strains, while for C. tropicalis strain only an additive effect was observed. This study describes the antifungal activity of coriander essential oil on Candida spp., which could be useful in designing new formulations for candidosis treatment.

  6. Addictive evaluation of cholic acid-verticinone ester, a potential cough therapeutic agent with agonist action of opioid receptor

    Jiu-liang ZHANG; Hui WANG; Chang CHEN; Hui-fang PI; Han-li RUAN; Peng ZHANG; Ji-zhou WU

    2009-01-01

    Aim: The purpose of this work was to search for potential drugs with potent antitussive and expectorant activities as well as a low toxicity, but without addictive properties. Cholic acid-verticinone ester (CA-Ver) was synthesized based on the clearly elucidated antitussive and expectorant activities of verticinone in bulbs of Fritillaria and different bile acids in Snake Bile. In our previous study, CA-Vet showed a much more potent activity than codeine phosphate. This study was carried out to investigate the central antitussive mechanism and the addictive evaluation of CA-Ver.Methods: Testing on a capsaicin-induced cough model of mice pretreated with naloxone, a non-selective opioid receptor antagonist, was performed for the observation of CA-Ver's central antitussive mechanism. We then took naloxone-induced withdrawal tests of mice for the judgment of CA-Ver's addiction. Lastly, we determined the opioid dependence of CA-Ver in the guinea pig ileum. Results: The test on the capsaicin-induced cough model showed that naloxone could block the antitussive effect of CA-Ver,suggesting the antitussive mechanism of CA-Ver was related to the central opioid receptors. The naloxone-urged withdrawal tests of the mice showed that CA-Ver was not addictive, and the test of the opioid dependence in the guinea pig ileum showed that CA-Ver had no withdrawal response.Conclusion: These findings suggested that CA-Ver deserved attention for its potent antitussive effects related to the central opioid receptors, but without addiction, and had a good development perspective.

  7. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35.

    Minerdi, Daniela; Bossi, Simone; Gullino, Maria Lodovica; Garibaldi, Angelo

    2009-04-01

    Fusarium oxysporum MSA35 [wild-type (WT) strain] is an antagonistic Fusarium that lives in association with a consortium of bacteria belonging to the genera Serratia, Achromobacter, Bacillus and Stenotrophomonas in an Italian soil suppressive to Fusarium wilt. Typing experiments and virulence tests provided evidence that the F. oxysporum isolate when cured of the bacterial symbionts [the cured (CU) form], is pathogenic, causing wilt symptoms identical to those caused by F. oxysporum f. sp. lactucae. Here, we demonstrate that small volatile organic compounds (VOCs) emitted from the WT strain negatively influence the mycelial growth of different formae speciales of F. oxysporum. Furthermore, these VOCs repress gene expression of two putative virulence genes in F. oxysporum lactucae strain Fuslat10, a fungus against which the WT strain MSA 35 has antagonistic activity. The VOC profile of the WT and CU fungus shows different compositions. Sesquiterpenes, mainly caryophyllene, were present in the headspace only of WT MSA 35. No sesquiterpenes were found in the volatiles of ectosymbiotic Serratia sp. strain DM1 and Achromobacter sp. strain MM1. Bacterial volatiles had no effects on the growth of the different ff. spp. of F. oxysporum examined. Hyphae grownwithVOCfrom WT F. oxysporum f. sp. lactucae strain MSA 35 were hydrophobic whereas those grown without VOCs were not, suggesting a correlation between the presence of volatiles in the atmosphere and the phenotype of the mycelium. This is the first report of VOC production by antagonistic F. oxysporum MSA35 and their effects on pathogenic F. oxysporum. The results obtained in this work led us to propose a new potential direct long-distance mechanism for antagonism by F. oxysporum MSA 35 mediated by VOCs. Antagonism could be the consequence of both reduction of pathogen mycelial growth and inhibition of pathogen virulence gene expression.

  8. Effects of tocainide and lidocaine on the transmembrane action potentials as related to external potassium and calcium concentrations in guinea-pig papillary muscles.

    Oshita, S; Sada, H; Kojima, M; Ban, T

    1980-10-01

    Effects of lidocaine and tocainide on transmembrane potentials were studied in isolated guinea-pig papillary muscles, superfused with modified Tyrode's solution containing either 5.4, 2.7, 10.0 or 8.1 mmol/l potassium concentration, [K]0. The last solution applied contained either 1.8 (normal [Ca]0) or 7.2 mmol/l [Ca]0 (high [Ca]0. The concentrations of lidocaine and tocainide used were 18.5, 36.9 and 73.9 mumol/l and 43.7, 87.5 and 174.9 mumol/l in 5.4 mmol/l [K]0 solution and 36.9 and 87.5 mumol/l in the other solutions, respectively. At the driving rate of 1 Hz in 5.4 mmol/l "K]0 solution, both drugs produced dose-dependently a reduction of maximum rate of rise of action potential (Vmax), together with a prolongation of the relative refractory period. Vmax decreased progressively as the driving rate was increased from 1 Hz (for lidocaine) and from 0.25 Hz (for tocainide) to 5 Hz. This action was accentuated dose-dependently. A slow component (time constant tau = 232 ms for lidocaine, 281--303 ms for tocainide) and slower component (tau = 2.1--3.8 s for tocainide) of the recovery (reactivation) of Vmax were observed in premature responses at 0.25 Hz and in the first response after interruption of the basic driving rate at 1 Hz. All these effects were accentuated with rising [K]0 and attenuated in the high [Ca]0 solution. Both drugs abbreviated the action potential duration at 50% (APD50) and 90% (APD90) levels at 5.4, 8.1 and 10.0 mmol/l [K]0 but not at 2.7 mmol/l [K]0 nor a high [Ca]0 at 1 Hz. These [K]0-dependent effects of lidocaine on Vmax were successfully simulated by the model proposed by Hondeghem and Katzung (1977), with a slight change in parameter values. The mode of interaction of lidocaine with sodium channels in the open, closed and rested states was deduced from these results.

  9. Effects of Various Antiepileptics Used to Alleviate Neuropathic Pain on Compound Action Potential in Frog Sciatic Nerves: Comparison with Those of Local Anesthetics

    Yuhei Uemura

    2014-01-01

    Full Text Available Antiepileptics used for treating neuropathic pain have various actions including voltage-gated Na+ and Ca2+ channels, glutamate-receptor inhibition, and GABAA-receptor activation, while local anesthetics are also used to alleviate the pain. It has not been fully examined yet how nerve conduction inhibitions by local anesthetics differ in extent from those by antiepileptics. Fast-conducting compound action potentials (CAPs were recorded from frog sciatic nerve fibers by using the air-gap method. Antiepileptics (lamotrigine and carbamazepine concentration dependently reduced the peak amplitude of the CAP (IC50=0.44 and 0.50 mM, resp.. Carbamazepine analog oxcarbazepine exhibited an inhibition smaller than that of carbamazepine. Antiepileptic phenytoin (0.1 mM reduced CAP amplitude by 15%. On the other hand, other antiepileptics (gabapentin, sodium valproate, and topiramate at 10 mM had no effect on CAPs. The CAPs were inhibited by local anesthetic levobupivacaine (IC50=0.23 mM. These results indicate that there is a difference in the extent of nerve conduction inhibition among antiepileptics and that some antiepileptics inhibit nerve conduction with an efficacy similar to that of levobupivacaine or to those of other local anesthetics (lidocaine, ropivacaine, and cocaine as reported previously. This may serve to know a contribution of nerve conduction inhibition in the antinociception by antiepileptics.

  10. Evaluation of the Electrically Evoked Action Potential Threshold Changes in Three Months after Receiving the Device in Children with Cochlear Implant

    Alireza Pourjavid

    2009-12-01

    Full Text Available Background and Aim: In neural response telemetry (NRT, intracochlear electrodes stimulate the auditory nerve and record the neural responses. The electrical stimulation send to the auditory nerve by an electrode and the resulted response, called electrically evoked compound action potential (ECAP, is recorded by an adjacent electrode. The most important clinical applications of this test are evaluation and monitoring the intra and postoperative responses of auditory nerve and help to primary setting of speech processor. The aim of this study was evaluating of the potential's threshold changes in three monthes after receiving the devise in pediatric cochlear implant recipients.Materials and Methods: This longitudinal study evaluated the potential's threshold in four given electrodes in four sessions after receiving the device by approximately one months intervals in children implanted in Amir Alam and Hazrat-e-Rasoul hospitals in 2007, July to December.Results: ECAP mean threshold level of each electrode did not significantly change in differnent sessions, while there was significant difference between apical and basal electrodes’ responses in every session(p<0.001.Conclusion: The reliabiliy of the responses result in more certainty of clinician to fit the speech processor for a long time. Better responses in apical electrodes may lead to develope an effective coding strategy.

  11. Applying Time-sharing technique in a multimodal compact low-power CMOS neurochip for simultaneous neurochemical and action potential recording.

    Poustinchi, Mohammad; Stacey, R Greg; Musallam, Sam

    2014-01-01

    Brain is an electrochemical system and recent studies suggest simultaneous measurement of interrelated brain's electrical and neurochemical activity may lead to better understanding of brain function in addition to developing optimal neural prosthetics. By exploiting opamp Time-sharing technique to minimized power dissipation and silicon area, we have fabricated a power efficient implantable CMOS microsystem for simultaneous measurement of Action Potential (AP) and neurotransmitter concentration. Both AP-recording and neurotransmitter sensing subsystems share a single 653 nW amplifier which senses picoscale to microscale current that corresponds to micromolar neurotransmitter concentration and microscale AP voltage. This microsystem is fabricated in CMOS 0.18 μm technology and tested using recorded signals from dorsal premotor cortex (PMd) area of a macaque monkey in our lab.

  12. The future of the energy markets. Economic analysis and assessment of potentials and options for action; Die Zukunft der Energiemaerkte. Oekonomische Analyse und Bewertung von Potenzialen und Handlungsmoeglichkeiten

    Buchholz, Wolfgang; Frank, Jonas; Karl, Hans-Dieter; Pfeiffer, Johannes; Pittel, Karen; Triebswetter, Ursula [Ifo-Institut fuer Wirtschaftsforschung e.V., Muenchen (Germany); Habermann, Jochen; Mauch, Wolfgang; Staudacher, Thomas [FfE Forschungsstelle fuer Energiewirtschaft e.V., Muenchen (Germany)

    2012-07-01

    The present study is primarily dedicated to the energy policy goals as well as the challenges of the energy turnaround in terms of economic theory and political action. It gives an account of CO{sub 2} avoidance potentials and avoidance costs and then goes on to address individual measures and packages of measures such as the expansion of renewables, with priority given to those associated with the least CO{sub 2} avoidance costs; measures to improve the economic efficiency of existing coal power plants; power to gas; measures to improve the economic efficiency of cross-sectoral technologies; packages of measures relating to buildings; measures in the area of electromobility; and measures that take account of the European dimension of the energy markets. The following issues are examined in concluding: The EU ETS as a central climate policy instrument, supplementary instruments and reforms in the electricity sector and supplementary instruments for the promotion of energy efficiency.

  13. Substance P modulates sensory action potentials in the lamprey via a protein kinase C-mediated reduction of a 4-aminopyridine-sensitive potassium conductance.

    Parker, D; Svensson, E; Grillner, S

    1997-10-01

    We have examined the effects of the tachykinin substance P on the action potential of lamprey mechanosensory dorsal cells. Substance P increased the spike duration and reduced the afterhyperpolarization. These effects were mimicked by stimulation of the dorsal root, which contains tachykinin-like immunoreactive fibres. The tachykinin antagonist spantide II blocked the effects of both substance P and dorsal root stimulation. The spike broadening was voltage-dependent, and was due to the reduction of a 4-aminopyridine-sensitive potassium conductance. The spike broadening was mimicked by G-protein activators and blocked by the G-protein inhibitor GDPbetaS. Pertussis toxin did not block the effects of substance P. The spike broadening was blocked by the protein kinase C and cAMP-dependent protein kinase inhibitor H7, and by the specific protein kinase C antagonist chelerythrine, but not by the cAMP and cGMP-dependent protein kinase inhibitor H8. The phorbol ester phorbol 12,13-dibutyrate mimicked and blocked the effects of substance P, supporting the role of protein kinase C in the spike modulation. The adenylate cyclase activator forskolin and the cAMP agonist SpcAMPs mimicked but did not block the effects of substance P on the spike duration, suggesting that protein kinase A also modulates the dorsal cell action potential, but that substance P acts independently of this pathway. Substance P also increased the excitability of the dorsal cells. This effect was blocked by 4-AP, PDBu and chelerythrine, but not by H8, suggesting that the increase in excitability shares the same intracellular and effector pathways as the spike broadening.

  14. ERK 1/2 and PI-3 kinase pathways as a potential mechanism of ghrelin action on cell proliferation and apoptosis in the porcine ovarian follicular cells.

    Rak-Mardyla, A; Gregoraszczuk, E L

    2010-08-01

    Recently, we reported the stimulatory effect of ghrelin on ovarian cell proliferation in parallel with the inhibitory action of ghrelin on cell apoptosis. The aim of the presented data propose local activation of extracellular signal-regulated protein kinase 1 and 2 (ERK 1/2) and phosphoinositide-3 (PI-3) kinase pathways as a mechanism of ghrelin effect in the porcine ovary. To test this hypothesis, action of ghrelin on levels of ERK 1/2 with PI-3 kinase activity and protein expression using ELISA and western blot analysis, respectively, was examined. Additionally, to determine which pathways (ERK 1/2 or PI-3 kinase) are the potential signals of ghrelin-mediated cell proliferation and apoptosis in ovarian cells, we used PD098059 (50 microM) and wortmannin (200 microM), well-known inhibitors of these kinases. Treatment of ovarian coculture cells with ghrelin (100, 250, 500 and 1000 pg/ml) showed stimulation of phospho-ERK 1/2 levels and PI-3 kinase activity, with the maximum effect observed after 15 min of cell incubation. Additionally, western blot analysis indicated that ghrelin increased expression of both kinases. Moreover, ghrelin used in combination with PD098059 or wortmannin significantly decreased cell proliferation, which was measured by the Alamar Blue assay and increased apoptosis, which was measured by caspase - 3 activity and DNA fragmentation. In conclusion, these results suggest that the ERK 1/2 and PI-3 kinase pathways may be potential signals of ghrelin mediate the cell proliferation and apoptosis of ovary cells.

  15. Menthol-induced action potentials in Conocephalum conicum as a result of unspecific interactions between menthol and the lipid phase of the plasma membrane.

    Kupisz, Kamila; Trebacz, Kazimierz; Gruszecki, Wiesław I

    2015-07-01

    Our previous study has shown that the liverwort Conocephalum conicum generates action potentials (APs) in response to both temperature drop and menthol, which are also activators of the TRPM8 (transient receptor potential melastatin 8) receptor in animals. Not only similarities but also differences between electrical reactions to menthol and cooling observed in the liverwort aroused our interest in the action of menthol at the molecular level. Patch-clamp investigations have shown that menthol causes a reduction of current flowing through slow vacuolar (SV) channels to 29 ± 10% of the initial value (n = 9); simultaneously, it does not influence magnitudes of currents passing through a single SV channel. This may point to an unspecific interaction between menthol and the lipid phase of the membrane. An influence of menthol on lipid organization in membranes was investigated in two-component monomolecular layers formed with menthol and dipalmitoylphosphatidylcholine (DPPC) at the argon-water interface. Analyses of the mean molecular area parameters vs the molar fraction of the menthol component have shown over-additivity (approximately 20 Å(2) ) in the region of high molar fractions of menthol. Infrared absorption spectroscopy studies have shown that menthol, most probably, induces breaking of a hydrogen bond network formed by ester carbonyl groups and water bridges in the lipid membrane and binds to the polar head group region of DPPC. We conclude that the disruption in the lipid phase of the membrane influences ion channels and/or pumps and subsequently causes generation of APs in excitable plants such as C. conicum.

  16. The Wheeler Propagator

    Bollini, C G

    1998-01-01

    We study the half advanced and half retarded Wheeler Green function and its relation to Feynman propagators. First for massless equation. Then, for Klein-Gordon equations with arbitrary mass parameters; real, imaginary or complex. In all cases the Wheeler propagator lacks an on-shell free propagation. The Wheeler function has support inside the light-cone (whatever the mass). The associated vacuum is symmetric with respect to annihilation and creation operators. We show with some examples that perturbative unitarity holds, whatever the mass (real or complex). Some possible applications are discussed.

  17. Gear Crack Propagation Investigation

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  18. Action potential initial dynamical control and analysis of a minimum neuron model%最小神经元模型放电起始动态控制与分析

    金淇涛; 王江; 魏熙乐; 邓斌; 车艳秋

    2011-01-01

    本文采用最小神经元模型,从生理学角度设计wash-out滤波器,实现了不同放电起始动态机理之间的转换,并证明wash-out滤波器控制通过影响阈下电流的竞争结果改变了神经元的放电起始动态机理.%Neuron is a basic unit of information transmission in the nervous system . Neuron encodes the information input from the dendrites by generating action potential sequences of different firing patterns. The different firing patterns result from different action potential initial dynamic mechanisms for neurons to generate spikes. The result of competition between neuron ion currents with different dynamic features in the sub threshold potential determines the action potential initial dynamic mechanism. In this paper, we adopt a minimum neuron model to design the wash-out filter from a physiological view for achieving the transition between different action potential initial dynamic mechanisms and for verifying that the wash-out filter control changes the action potential initial dynamic mechanism of neuron by affecting the result of competition between currents with different dynamic features in the sub-threshold potential.

  19. Coulomb gauge ghost propagator and the Coulomb form factor

    Quandt, M; Chimchinda, S; Reinhardt, H

    2008-01-01

    The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0--propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0-propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.

  20. Coulomb gauge ghost propagator and the Coulomb form factor

    Quandt, M.; Burgio, G.; Chimchinda, S.; Reinhardt, H.

    The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0 -propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0 -propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.