WorldWideScience

Sample records for action potential evoked

  1. Direct detection of a single evoked action potential with MRS in Lumbricus terrestris.

    Science.gov (United States)

    Poplawsky, Alexander J; Dingledine, Raymond; Hu, Xiaoping P

    2012-01-01

    Functional MRI (fMRI) measures neural activity indirectly by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In this study, we used MR to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation, and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of (-1.2 ± 0.3) × 10(-5) radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase caused by a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using MR. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Analysis of electrically evoked compound action potential of the auditory nerve in children with bilateral cochlear implants.

    Science.gov (United States)

    Caldas, Fernanda Ferreira; Cardoso, Carolina Costa; Barreto, Monique Antunes de Souza Chelminski; Teixeira, Marina Santos; Hilgenberg, Anacléia Melo da Silva; Serra, Lucieny Silva Martins; Bahmad Junior, Fayez

    2016-01-01

    The cochlear implant device has the capacity to measure the electrically evoked compound action potential of the auditory nerve. The neural response telemetry is used in order to measure the electrically evoked compound action potential of the auditory nerve. To analyze the electrically evoked compound action potential, through the neural response telemetry, in children with bilateral cochlear implants. This is an analytical, prospective, longitudinal, historical cohort study. Six children, aged 1-4 years, with bilateral cochlear implant were assessed at five different intervals during their first year of cochlear implant use. There were significant differences in follow-up time (p=0.0082) and electrode position (p=0.0019) in the T-NRT measure. There was a significant difference in the interaction between time of follow-up and electrode position (p=0.0143) when measuring the N1-P1 wave amplitude between the three electrodes at each time of follow-up. The electrically evoked compound action potential measurement using neural response telemetry in children with bilateral cochlear implants during the first year of follow-up was effective in demonstrating the synchronized bilateral development of the peripheral auditory pathways in the studied population. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  3. [Value of condensation and rarefaction click evoked action potential latency difference in the diagnosis of Meniere's disease].

    Science.gov (United States)

    Wang, Z; Shao, X; Yan, W; Lin, H

    2000-06-01

    To study the value of condensation and rarefaction clicks evoked action potential (AP) latency difference (LD) in diagnosis of Meniere's disease. AP was recorded with ECochG in controls (50 ears) and patients with Meniere's disease(90 ears) and sensorineural hearing loss(SNHL) of other origins(60 ears). LD was calculated and analyzed. LD in patients with Meniere's disease was (0.30 +/- 0.15) ms, which was significantly larger than that of controls(0.18 +/- 0.07) ms and of patients with SNHL of other origins(0.20 +/- 0.10) ms (P curve was larger than those with flat auditory sensation curve(P rarefaction click evoked AP latency difference can be an objective parameter in diagnosis of Meniere's disease.

  4. In-vitro characterization of a cochlear implant system for recording of evoked compound action potentials

    Science.gov (United States)

    2012-01-01

    Background Modern cochlear implants have integrated recording systems for measuring electrically evoked compound action potentials of the auditory nerve. The characterization of such recording systems is important for establishing a reliable basis for the interpretation of signals acquired in vivo. In this study we investigated the characteristics of the recording system integrated into the MED-EL PULSARCI100 cochlear implant, especially its linearity and resolution, in order to develop a mathematical model describing the recording system. Methods In-vitro setup: The cochlear implant, including all attached electrodes, was fixed in a tank of physiologic saline solution. Sinusoidal signals of the same frequency but with different amplitudes were delivered via a signal generator for measuring and recording on a single electrode. Computer simulations: A basic mathematical model including the main elements of the recording system, i.e. amplification and digitalization stage, was developed. For this, digital output for sinusoidal input signals of different amplitudes were calculated using in-vitro recordings as reference. Results Using an averaging of 100 measurements the recording system behaved linearly down to approximately -60 dB of the input signal range. Using the same method, a system resolution of 10 μV was determined for sinusoidal signals. The simulation results were in very good agreement with the results obtained from in-vitro experiments. Conclusions The recording system implemented in the MED-EL PULSARCI100 cochlear implant for measuring the evoked compound action potential of the auditory nerve operates reliably. The developed mathematical model provides a good approximation of the recording system. PMID:22531599

  5. Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the Nucleus CI24M cochlear implant system.

    NARCIS (Netherlands)

    Cafarelli-Dees, D.; Dillier, N.; Lai, W.K.; Wallenberg, E. von; Dijk, B. van; Akdas, F.; Aksit, M.; Batman, C.; Beynon, A.J.; Burdo, S.; Chanal, J.M.; Collet, L.; Conway, M.; Coudert, C.; Craddock, L.; Cullington, H.; Deggouj, N.; Fraysse, B.; Grabel, S.; Kiefer, J.; Kiss, J.G.; Lenarz, T.; Mair, A.; Maune, S.; Muller-Deile, J.; Piron, J.P.; Razza, S.; Tasche, C.; Thai-Van, H.; Toth, F.; Truy, E.; Uziel, A.; Smoorenburg, G.F.

    2005-01-01

    One hundred and forty-seven adult recipients of the Nucleus 24 cochlear implant system, from 13 different European countries, were tested using neural response telemetry to measure the electrically evoked compound action potential (ECAP), according to a standardised postoperative measurement

  6. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    Science.gov (United States)

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  7. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    Science.gov (United States)

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  8. Skin denervation does not alter cortical potentials to surface concentric electrode stimulation: A comparison with laser evoked potentials and contact heat evoked potentials.

    Science.gov (United States)

    La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A

    2018-01-01

    In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.

  9. Normalization of auditory evoked potential and visual evoked potential in patients with idiot savant.

    Science.gov (United States)

    Chen, X; Zhang, M; Wang, J; Lou, F; Liang, J

    1999-03-01

    To investigate the variations of auditory evoked potentials (AEP) and visual evoked potentials (VEP) of patients with idiot savant (IS) syndrome. Both AEP and VEP were recorded from 7 patients with IS syndrome, 21 mentally retarded (MR) children without the syndrome and 21 normally age-matched controls, using a Dantec concerto SEEG-16 BEAM instrument. Both AEP and VEP of MR group showed significantly longer latencies (P1 and P2 latencies of AEP, P savant syndrome presented normalized AEP and VEP.

  10. Action potential-evoked calcium release is impaired in single skeletal muscle fibers from heart failure patients.

    Directory of Open Access Journals (Sweden)

    Marino DiFranco

    Full Text Available Exercise intolerance in chronic heart failure (HF has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC, but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+ release, mandating investigations in skeletal muscle from HF patients. The purpose of this study was to test the hypothesis that Ca2+ release is significantly impaired in the skeletal muscle of HF patients in whom exercise capacity is severely diminished compared to age-matched healthy volunteers.Using state-of-the-art electrophysiological and optical techniques in single muscle fibers from biopsies of the locomotive vastus lateralis muscle, we measured the action potential (AP-evoked Ca2+ release in 4 HF patients and 4 age-matched healthy controls. The mean peak Ca2+ release flux in fibers obtained from HF patients (10±1.2 µM/ms was markedly (2.6-fold and significantly (p<0.05 smaller than in fibers from healthy volunteers (28±3.3 µM/ms. This impairment in AP-evoked Ca2+ release was ubiquitous and was not explained by differences in the excitability mechanisms since single APs were indistinguishable between HF patients and healthy volunteers.These findings prove the feasibility of performing electrophysiological experiments in single fibers from human skeletal muscle, and offer a new approach for investigations of myopathies due to HF and other diseases. Importantly, we have demonstrated that one step in the ECC process, AP-evoked Ca2+ release, is impaired in single muscle fibers in HF patients.

  11. Automatic classification of visual evoked potentials based on wavelet decomposition

    Science.gov (United States)

    Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz

    2017-04-01

    Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.

  12. Potassium conductances mediate bidirectional state-dependent modulation of action potential evoked dendritic calcium signals in dentate gyrus granule cells

    Directory of Open Access Journals (Sweden)

    János Brunner

    2014-03-01

    Full Text Available Backpropagating action potentials (bAPs and local calcium signals that they trigger are fundamental for dendritic functions. Here we addressed the question what extent the changes of local dendritic membrane properties can contribute to the shaping of the coupling between dendritic action potentials and the local calcium responses. Using a combination of in vitro electrophysiological and confocal imaging techniques we found that activation of dendritic GIRK channels via mGlu2 or GABAB receptors enhanced the bAP¬-triggered calcium signals in the dendrites of dentate gyrus granule cells (GCs. The enhancement of calcium signals was significant only in those dendritic regions, where these receptors are predominantly expressed. Similarly to GIRK channel activation, somatic hyperpolarization by DC current injection (from -64 mV to -77 mV, significantly increased bAP-associated calcium signals in the proximal dendrites. The hyperpolarization was associated with a decrease in the input resistance due to the rectification of the membrane potential of GCs. The effect of hyperpolarization on the calcium signals was maintained when T-type calcium currents were blocked but it decreased when GIRK channels were inhibited. Simultaneous dual somato-dendritic recordings from GCs showed that somatic hyperpolarization accelerated the repolarization phase of dendritic bAP in the proximal region whereas the rising phase and peak amplitude was not affected. We hypothesize that the larger driving force for calcium ions during the faster repolarization can contribute to the increasing in calcium signals. Employment of previously recorded dendritic bAP waveforms from hyperpolarized membrane potential as voltage command evoked larger calcium currents in nucleated patches compared to bAP waveform from the same recording at depolarized membrane potential. Furthermore, addition of native, high-voltage activated, inactivating potassium conductance by somatic dynamic clamp

  13. Brainstem Auditory Evoked Potential in HIV-Positive Adults.

    Science.gov (United States)

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C

    2015-10-20

    To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.

  14. Brainstem evoked potentials in infantile spasms

    International Nuclear Information System (INIS)

    Miyazaki, Masahito; Hashimoto, Toshiaki; Murakawa, Kazuyoshi; Tayama, Masanobu; Kuroda, Yasuhiro

    1992-01-01

    In ten patients with infantile spasms, brainstem evoked potentials and MRI examinations were performed to evaluate the brainstem involvement. The result of short latency somatosensory evoked potentials (SSEP) following the right median nerve stimulation revealed abnormal findings including the absence or low amplitudes of the waves below wave P3 and delayed central conduction time in 7 of the ten patients. The result of auditory brainstem responses (ABR) revealed abnormal findings including low amplitudes of wave V, prolonged interpeak latency of waves I-V and absence of the waves below wave IV in 5 of the ten patients. The result of the MRI examinations revealed various degrees of the brainstem atrophy in 6 of the ten patients, all of whom showed abnormal brainstem evoked potentials. The result of this study demonstrates that patients with infantile spasms are frequently associated with brainstem dysfunction and raises the possibility that brainstem atrophy might be a cause of infantile spasms. (author)

  15. International Evoked Potentials Symposium

    CERN Document Server

    1980-01-01

    The past decade has seen great progress in the measurement of evoked potentials in man; a steady increase in our understanding of their charac­ teristics, their origins and their usefulness; and a growing application in the field of clinical diagnosis. The topic is a truly multidisciplinary one. Important research contributions have been made by workers of many different backgrounds and clinical applications span the specialities. This book represents a revised and updated version of the work originally presented at the international evoked potential symposium held in Nottingham 4-6 1978. The Nottingham Symposium provided a forum for a state-of-the-art discussion amongst workers from many different disciplines and from many different countries. For each major topic in the field an expert review set the scene for discussion of current research presentations. This format is retained in the book: the chapters in Part A provide the context in which the research presented in Part B is set. The task of selecting m...

  16. Can visual evoked potentials be used in biometric identification?

    Science.gov (United States)

    Power, Alan J; Lalor, Edmund C; Reilly, Richard B

    2006-01-01

    Due to known differences in the anatomical structure of the visual pathways and generators in different individuals, the use of visual evoked potentials offers the possibility of an alternative to existing biometrics methods. A study based on visual evoked potentials from 13 individuals was carried out to assess the best combination of temporal, spectral and AR modeling features to realize a robust biometric. From the results it can be concluded that visual evoked potentials show considerable biometric qualities, with classification accuracies reaching a high of 86.54% and that a specific temporal and spectral combination was found to be optimal. Based on these results the visual evoked potential may be a useful tool in biometric identification when used in conjunction with more established biometric methods.

  17. Activation of Mechanosensitive Transient Receptor Potential/Piezo Channels in Odontoblasts Generates Action Potentials in Cocultured Isolectin B4-negative Medium-sized Trigeminal Ganglion Neurons.

    Science.gov (United States)

    Sato, Masaki; Ogura, Kazuhiro; Kimura, Maki; Nishi, Koichi; Ando, Masayuki; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2018-04-27

    Various stimuli to the dentin surface elicit dentinal pain by inducing dentinal fluid movement causing cellular deformation in odontoblasts. Although odontoblasts detect deformation by the activation of mechanosensitive ionic channels, it is still unclear whether odontoblasts are capable of establishing neurotransmission with myelinated A delta (Aδ) neurons. Additionally, it is still unclear whether these neurons evoke action potentials by neurotransmitters from odontoblasts to mediate sensory transduction in dentin. Thus, we investigated evoked inward currents and evoked action potentials form trigeminal ganglion (TG) neurons after odontoblast mechanical stimulation. We used patch clamp recordings to identify electrophysiological properties and record evoked responses in TG neurons. We classified TG cells into small-sized and medium-sized neurons. In both types of neurons, we observed voltage-dependent inward currents. The currents from medium-sized neurons showed fast inactivation kinetics. When mechanical stimuli were applied to odontoblasts, evoked inward currents were recorded from medium-sized neurons. Antagonists for the ionotropic adenosine triphosphate receptor (P2X 3 ), transient receptor potential channel subfamilies, and Piezo1 channel significantly inhibited these inward currents. Mechanical stimulation to odontoblasts also generated action potentials in the isolectin B 4 -negative medium-sized neurons. Action potentials in these isolectin B 4 -negative medium-sized neurons showed a short duration. Overall, electrophysiological properties of neurons indicate that the TG neurons with recorded evoked responses after odontoblast mechanical stimulation were myelinated Aδ neurons. Odontoblasts established neurotransmission with myelinated Aδ neurons via P2X 3 receptor activation. The results also indicated that mechanosensitive TRP/Piezo1 channels were functionally expressed in odontoblasts. The activation of P2X 3 receptors induced an action potential

  18. Slow cortical evoked potentials after noise exposure

    Energy Technology Data Exchange (ETDEWEB)

    von Wedel, H; Opitz, H J

    1979-07-01

    Human cortical evoked potentials under conditions of stimuation are registrated in the post-stimulatory phase of a five minutes lasting equally masking white noise (90 dB HL). Changes of the evoked potentials during adaptation, possible analogy with high tone losses after noise representation and the origin of tinnitus are examined. Stimulation was started 3 sec after the off-effect of the noise. For five minutes periodically tone bursts were represented. Each train of stimulation consists of tone bursts of three frequencies: 2 kcs, 4 kcs, 8 kcs. The 0.5 sec lasting tones were separated by pauses of 2 sec. During the experiment stimulation and analysis were controlled by a computer. Changes in latency and amplitudes of the cortical evoked potentials were registered. Changes of the adaptation patterns as a function of the poststimulatory time are discussed.

  19. Vibration and muscle contraction affect somatosensory evoked potentials

    OpenAIRE

    Cohen, LG; Starr, A

    1985-01-01

    We recorded potentials evoked by specific somatosensory stimuli over peripheral nerve, spinal cord, and cerebral cortex. Vibration attenuated spinal and cerebral potentials evoked by mixed nerve and muscle spindle stimulation; in one subject that was tested, there was no effect on cutaneous input. Presynaptic inhibition of Ia input in the spinal cord and muscle spindle receptor occupancy are probably the responsible mechanisms. In contrast, muscle contraction attenuated cerebral potentials to...

  20. Binaural interaction in auditory evoked potentials: Brainstem, middle- and long-latency components

    OpenAIRE

    McPherson, DL; Starr, A

    1993-01-01

    Binaural interaction occurs in the auditory evoked potentials when the sum of the monaural auditory evoked potentials are not equivalent to the binaural evoked auditory potentials. Binaural interaction of the early- (0-10 ms), middle- (10-50 ms) and long-latency (50-200 ms) auditory evoked potentials was studied in 17 normal young adults. For the early components, binaural interaction was maximal at 7.35 ms accounting for a reduction of 21% of the amplitude of the binaural evoked potentials. ...

  1. On the Dynamics of Action Representations Evoked by Names of Manipulable Objects

    Science.gov (United States)

    Bub, Daniel N.; Masson, Michael E. J.

    2012-01-01

    Two classes of hand action representations are shown to be activated by listening to the name of a manipulable object (e.g., cellphone). The functional action associated with the proper use of an object is evoked soon after the onset of its name, as indicated by primed execution of that action. Priming is sustained throughout the duration of the…

  2. Evaluation of the Slope of Amplitude Growth Function Changes of the Electrically Evoked Action Potential in Three Months after Receiving the Device in Children with Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Ali Reza Pourjavid

    2012-04-01

    Full Text Available Objective: In neural response telemetry, intracochlear electrodes stimulate the auditory nerve and record the neural responses. The electrical stimulation is sent to the auditory nerve by an electrode and the resulted response, called electrically evoked compound action potential, is recorded by an adjacent electrode. The most important clinical applications of this test are evaluation and monitoring the intra and postoperative responses of auditory nerve and help to primary setting of speech processor. The aim of this study was evaluating the potential's slope of amplitude growth function changes three monthes after receiving the devise in pediatric cochlear implant recipients. Materials & Methods: This longitudinal study evaluated the potentials' slope of amplitude growth function changes in four given electrodes in four sessions after receiving the devise by approximately one month's intervals in all of the children who implanted in Amir Alam and Hazrat-e-Rasoul hospitals in 2007, July to December. Friedman test was used to analyse the results. Results: Electrically evoked compound action potential's mean slope of each electrode was more in later sessions relative to first session, while there was significant difference between the 1st and the other electrodes’ responses in every session (P<0.05. Conclusion: The reliabiliy of the responses results in more assurance of clinician to fit the speech processor for along time. Better responses in apical electrodes may lead to develope an effective coding strategy.

  3. Stimulator with arbitrary waveform for auditory evoked potentials

    International Nuclear Information System (INIS)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J

    2007-01-01

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential

  4. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  5. Visual evoked potentials in patients after methanol poisoning.

    Science.gov (United States)

    Urban, Pavel; Zakharov, Sergey; Diblík, Pavel; Pelclová, Daniela; Ridzoň, Petr

    2016-01-01

    We report the results of the visual evoked potentials (VEP) examination in patients after severe poisoning by methanol. The group of 47 patients (38 males and 9 females) was assembled out of persons who survived an outbreak of poisoning by the methanol adulterated alcohol beverages, which happened in the Czech Republic in 2012-2013. The visual evoked potentials examination was performed using monocular checkerboard pattern-reversal stimulation. Two criteria of abnormality were chosen: missing evoked response, and wave P1 latency > 117 ms. Non-parametric statistical methods (median, range, and the median test) were used to analyze factors influencing the VEP abnormality. The visual evoked potential was abnormal in 20 patients (43%), 5 of them had normal visual acuity on the Snellen chart. The VEP abnormality did not correlate significantly with initial serum concentrations of methanol, formic acid or lactate; however, it showed statistically significant inverse relation to the initial serum pH: the subgroup with the abnormal VEP had significantly lower median pH in comparison with the subgroup with the normal VEP (7.16 vs. 7.34, p = 0.04). The abnormality was not related to chronic alcohol abuse. The visual evoked potentials examination appeared sensitive enough to detected even subclinical impairment of the optic system. Metabolic acidosis is likely to be the key factor related to the development of visual damage induced by methanol. The examination performed with a delay of 1-9 months after the poisoning documented the situation relatively early after the event. It is considered as a baseline for the planned long-term follow-up of the patients, which will make it possible to assess the dynamics of the observed changes, their reversibility, and the occurrence of potential late sequelae. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  6. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    Science.gov (United States)

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  7. Electrically evoked compound action potentials artefact rejection by independent component analysis: procedure automation.

    Science.gov (United States)

    Akhoun, Idrick; McKay, Colette; El-Deredy, Wael

    2015-01-15

    Independent-components-analysis (ICA) successfully separated electrically-evoked compound action potentials (ECAPs) from the stimulation artefact and noise (ECAP-ICA, Akhoun et al., 2013). This paper shows how to automate the ECAP-ICA artefact cancellation process. Raw-ECAPs without artefact rejection were consecutively recorded for each stimulation condition from at least 8 intra-cochlear electrodes. Firstly, amplifier-saturated recordings were discarded, and the data from different stimulus conditions (different current-levels) were concatenated temporally. The key aspect of the automation procedure was the sequential deductive source categorisation after ICA was applied with a restriction to 4 sources. The stereotypical aspect of the 4 sources enables their automatic classification as two artefact components, a noise and the sought ECAP based on theoretical and empirical considerations. The automatic procedure was tested using 8 cochlear implant (CI) users and one to four stimulus electrodes. The artefact and noise sources were successively identified and discarded, leaving the ECAP as the remaining source. The automated ECAP-ICA procedure successfully extracted the correct ECAPs compared to standard clinical forward masking paradigm in 22 out of 26 cases. ECAP-ICA does not require extracting the ECAP from a combination of distinct buffers as it is the case with regular methods. It is an alternative that does not have the possible bias of traditional artefact rejections such as alternate-polarity or forward-masking paradigms. The ECAP-ICA procedure bears clinical relevance, for example as the artefact rejection sub-module of automated ECAP-threshold detection techniques, which are common features of CI clinical fitting software. Copyright © 2014. Published by Elsevier B.V.

  8. Transmitter modulation of spike-evoked calcium transients in arousal related neurons

    DEFF Research Database (Denmark)

    Kohlmeier, Kristi Anne; Leonard, Christopher S

    2006-01-01

    Nitric oxide synthase (NOS)-containing cholinergic neurons in the laterodorsal tegmentum (LDT) influence behavioral and motivational states through their projections to the thalamus, ventral tegmental area and a brainstem 'rapid eye movement (REM)-induction' site. Action potential-evoked intracel......Nitric oxide synthase (NOS)-containing cholinergic neurons in the laterodorsal tegmentum (LDT) influence behavioral and motivational states through their projections to the thalamus, ventral tegmental area and a brainstem 'rapid eye movement (REM)-induction' site. Action potential......-evoked intracellular calcium transients dampen excitability and stimulate NO production in these neurons. In this study, we investigated the action of several arousal-related neurotransmitters and the role of specific calcium channels in these LDT Ca(2+)-transients by simultaneous whole-cell recording and calcium...... of cholinergic LDT neurons and that inhibition of spike-evoked Ca(2+)-transients is a common action of neurotransmitters that also activate GIRK channels in these neurons. Because spike-evoked calcium influx dampens excitability, our findings suggest that these 'inhibitory' transmitters could boost firing rate...

  9. A Telehealth System for Remote Auditory Evoked Potential Monitoring

    OpenAIRE

    Millan, Jorge; Yunda, Leonardo

    2013-01-01

    A portable, Internet-based EEG/Auditory Evoked Potential (AEP) monitoring system was developed for remote electrophysiological studies during sleep. The system records EEG/AEP simultaneously at the subject?s home for increased comfort and flexibility. The system provides simultaneous recording and remote viewing of EEG, EMG and EOG waves and allows on-line averaging of auditory evoked potentials. The design allows the recording of all major AEP components (brainstem, middle and late latency E...

  10. Objective correlate of subjective pain perception by contact heat-evoked potentials.

    Science.gov (United States)

    Granovsky, Yelena; Granot, Michal; Nir, Rony-Reuven; Yarnitsky, David

    2008-01-01

    The method of pain-evoked potentials has gained considerable acceptance over the last 3 decades regarding its objectivity, repeatability, and quantifiability. The present study explored whether the relationship between pain-evoked potentials and pain psychophysics obtained by contact heat stimuli is similar to those observed for the conventionally used laser stimulation. Evoked potentials (EPs) were recorded in response to contact heat stimuli at different body sites in 24 healthy volunteers. Stimuli at various temperatures were applied to the forearm (43 degrees C, 46 degrees C, 49 degrees C, and 52 degrees C) and leg (46 degrees C and 49 degrees C). The amplitudes of both components (N2 and P2) were strongly associated with the intensity of the applied stimuli and with subjective pain perception. Yet, regression analysis revealed pain perception and not stimulus intensity as the major contributing factor. A significant correlation was found between the forearm and the leg for both psychophysics and EPs amplitude. Contact heat can generate readily distinguishable evoked potentials on the scalp, consistent between upper and lower limbs. Although these potentials bear positive correlation with both stimulus intensity and pain magnitude, the latter is the main contributor to the evoked brain response.

  11. Evoked potentials in pediatric cerebral malaria

    Directory of Open Access Journals (Sweden)

    Minal Bhanushali

    2011-12-01

    Full Text Available Cortical evoked potentials (EP provide localized data regarding brain function and may offer prognostic information and insights into the pathologic mechanisms of malariamediated cerebral injury. As part of a prospective cohort study, we obtained somatosensory evoked potentials (SSEPs and brainstem auditory EPs (AEPs within 24 hours of admission on 27 consecutive children admitted with cerebral malaria (CM. Children underwent follow-up for 12 months to determine if they had any long term neurologic sequelae. EPs were obtained in 27 pediatric CM admissions. Two children died. Among survivors followed an average of 514 days, 7/25 (28.0% had at least one adverse neurologic outcome. Only a single subject had absent cortical EPs on admission and this child had a good neurologic outcome. Among pediatric CM survivors, cortical EPs are generally intact and do not predict adverse neurologic outcomes. Further study is needed to determine if alterations in cortical EPs can be used to predict a fatal outcome in CM.

  12. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds.

    Science.gov (United States)

    DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg

    2016-06-01

    Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.

  13. The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.

    Science.gov (United States)

    Hoth, Sebastian; Dziemba, Oliver Christian

    2017-12-01

    : Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.

  14. Awareness during anaesthesia for surgery requiring evoked potential monitoring: A pilot study

    Directory of Open Access Journals (Sweden)

    Pritish J Korula

    2017-01-01

    Full Text Available Background: Evoked potential monitoring such as somatosensory-evoked potential (SSEP or motor-evoked potential (MEP monitoring during surgical procedures in proximity to the spinal cord requires minimising the minimum alveolar concentrations (MACs below the anaesthetic concentrations normally required (1 MAC to prevent interference in amplitude and latency of evoked potentials. This could result in awareness. Our primary objective was to determine the incidence of awareness while administering low MAC inhalational anaesthetics for these unique procedures. The secondary objective was to assess the adequacy of our anaesthetic technique from neurophysiologist′s perspective. Methods: In this prospective observational pilot study, 61 American Society of Anesthesiologists 1 and 2 patients undergoing spinal surgery for whom intraoperative evoked potential monitoring was performed were included; during the maintenance phase, 0.7-0.8 MAC of isoflurane was targeted. We evaluated the intraoperative depth of anaesthesia using a bispectral (BIS index monitor as well as the patients response to surgical stimulus (PRST scoring system. Post-operatively, a modified Bruce questionnaire was used to verify awareness. The adequacy of evoked potential readings was also assessed. Results: Of the 61 patients, no patient had explicit awareness. Intraoperatively, 19 of 61 patients had a BIS value of above sixty at least once, during surgery. There was no correlation with PRST scoring and BIS during surgery. Fifty-four out of 61 patient′s evoked potential readings were deemed ′good′ or ′fair′ for the conduct of electrophysiological monitoring. Conclusions: This pilot study demonstrates that administering low MAC inhalational anaesthetics to facilitate evoked potential monitoring does not result in explicit awareness. However, larger studies are needed to verify this. The conduct of SSEP electrophysiological monitoring was satisfactory with the use of this

  15. Refractory episodic vertigo: role of intratympanic gentamicin and vestibular evoked myogenic potentials,

    Directory of Open Access Journals (Sweden)

    Erika Celis-Aguilar

    Full Text Available Abstract Introduction: Even today, the treatment of intractable vertigo remains a challenge. Vestibular ablation with intratympanic gentamicin stands as a good alternative in the management of refractory vertigo patients. Objective: To control intractable vertigo through complete saccular and horizontal canal vestibular ablation with intratympanic gentamicin treatment. Methods: Patients with refractory episodic vertigo were included. The inclusion criteria were: unilateral ear disease, moderate to profound sensorineural hearing loss, and failure to other treatments. Included patients underwent 0.5-0.8 mL of gentamicin intratympanic application at a 30 mg/mL concentration. Vestibular ablation was confirmed by the absence of response on cervical vestibular evoked myogenic potentials and no response on caloric tests. Audiometry, electronystagmography with iced water, and vestibular evoked myogenic potentials were performed in all patients. Results: Ten patients were included; nine patients with Meniere's disease and one patient with (late onset delayed hydrops. Nine patients showed an absent response on vestibular evoked myogenic potentials and no response on caloric tests. The only patient with low amplitude on cervical vestibular evoked myogenic potentials had vertigo recurrence. Vertigo control was achieved in 90% of the patients. One patient developed hearing loss >30 dB. Conclusions: Cervical vestibular evoked myogenic potentials confirmed vestibular ablation in patients treated with intratympanic gentamicin. High-grade vertigo control was due to complete saccular and horizontal canal ablation (no response to iced water in electronystagmography and no response on cervical vestibular evoked myogenic potentials.

  16. Effects of single cycle binaural beat duration on auditory evoked potentials.

    Science.gov (United States)

    Mihajloski, Todor; Bohorquez, Jorge; Özdamar, Özcan

    2014-01-01

    Binaural beat (BB) illusions are experienced as continuous central pulsations when two sounds with slightly different frequencies are delivered to each ear. It has been shown that steady-state auditory evoked potentials (AEPs) to BBs can be captured and investigated. The authors recently developed a new method of evoking transient AEPs to binaural beats using frequency modulated stimuli. This methodology was able to create single BBs in predetermined intervals with varying carrier frequencies. This study examines the effects of the BB duration and the frequency modulating component of the stimulus on the binaural beats and their evoked potentials. Normal hearing subjects were tested with a set of four durations (25, 50, 100, and 200 ms) with two stimulation configurations, binaural dichotic (binaural beats) and diotic (frequency modulation). The results obtained from the study showed that out of the given durations, the 100 ms beat, was capable of evoking the largest amplitude responses. The frequency modulation effect showed a decrease in peak amplitudes with increasing beat duration until their complete disappearance at 200 ms. Even though, at 200 ms, the frequency modulation effects were not present, the binaural beats were still perceived and captured as evoked potentials.

  17. Index finger somatosensory evoked potentials in blind Braille readers.

    Science.gov (United States)

    Giriyappa, Dayananda; Subrahmanyam, Roopakala Mysore; Rangashetty, Srinivasa; Sharma, Rajeev

    2009-01-01

    Traditionally, vision has been considered the dominant modality in our multi-sensory perception of the surrounding world. Sensory input via non-visual tracts becomes of greater behavioural relevance in totally blind individuals to enable effective interaction with the world around them. These include audition and tactile perceptions, leading to an augmentation in these perceptions when compared with normal sighted individuals. The objective of the present work was to study the index finger somatosensory evoked potentials (SEPs) in totally blind and normal sighted individuals. SEPs were recorded in 15 Braille reading totally blind females and compared with 15 age-matched normal sighted females. Latency and amplitudes of somatosensory evoked potential waveforms (N9, N13, and N20) were measured. Amplitude of N20 SEP (a cortical somatosensory evoked potential) was significantly larger in the totally blind than in normal sighted individuals (p Braille reading right index finger. Totally blind Braille readers have larger N20 amplitude, suggestive of greater somatosensory cortical representation of the Braille reading index finger.

  18. Refractory episodic vertigo: role of intratympanic gentamicin and vestibular evoked myogenic potentials.

    Science.gov (United States)

    Celis-Aguilar, Erika; Hinojosa-González, Ramon; Vales-Hidalgo, Olivia; Coutinho-Toledo, Heloisa

    Even today, the treatment of intractable vertigo remains a challenge. Vestibular ablation with intratympanic gentamicin stands as a good alternative in the management of refractory vertigo patients. To control intractable vertigo through complete saccular and horizontal canal vestibular ablation with intratympanic gentamicin treatment. Patients with refractory episodic vertigo were included. The inclusion criteria were: unilateral ear disease, moderate to profound sensorineural hearing loss, and failure to other treatments. Included patients underwent 0.5-0.8mL of gentamicin intratympanic application at a 30mg/mL concentration. Vestibular ablation was confirmed by the absence of response on cervical vestibular evoked myogenic potentials and no response on caloric tests. Audiometry, electronystagmography with iced water, and vestibular evoked myogenic potentials were performed in all patients. Ten patients were included; nine patients with Meniere's disease and one patient with (late onset) delayed hydrops. Nine patients showed an absent response on vestibular evoked myogenic potentials and no response on caloric tests. The only patient with low amplitude on cervical vestibular evoked myogenic potentials had vertigo recurrence. Vertigo control was achieved in 90% of the patients. One patient developed hearing loss >30dB. Cervical vestibular evoked myogenic potentials confirmed vestibular ablation in patients treated with intratympanic gentamicin. High-grade vertigo control was due to complete saccular and horizontal canal ablation (no response to iced water in electronystagmography and no response on cervical vestibular evoked myogenic potentials). Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Proprioceptive evoked potentials in man

    DEFF Research Database (Denmark)

    Arnfred, S; Chen, A C; Eder, Derek N

    2000-01-01

    We studied cerebral evoked potentials on the scalp to the stimulation of the right hand from a change in weight of 400-480 g in ten subjects. Rise-time was 20g/10 ms, Inter Stimulus Interval 2s and stimulus duration was 100 ms. The cerebral activations were a double positive contralateral C3'/P70......). Further studies of the PEP are needed to assess the influence of load manipulations and of muscle contraction and to explore the effect of attentional manipulation....

  20. Cortical evoked potentials to an auditory illusion: binaural beats.

    Science.gov (United States)

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-08-01

    To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.

  1. Pattern visual evoked potentials in malingering.

    Science.gov (United States)

    Nakamura, A; Akio, T; Matsuda, E; Wakami, Y

    2001-03-01

    We previously developed a new method for estimating objective visual acuity by means of pattern visual evoked potentials (PVEP). In this study, this method was applied to the diagnosis of malingering. Six patients ranging in age from 40 to 54 years (mean 47 years) with suspected malingering were evaluated by means of the visual evoked potential test, optokinetic nystagmus (OKN) inhibition test, and the visual field test. In the PVEP study, the stimulus consisted of black and white checkerboards (39', 26', 15', and 9') with a visual angle of 8 degrees, contrast level of 15%, and a frequency of 0.7 Hz. One hundred PVEP responses were averaged per session. Routine ophthalmic examinations were normal in all patients. Five patients had a tubularly constricted visual field, and the remaining patient had a normal visual field. The objective visual acuities of the six patients estimated from PVEP were better than their subjective visual acuities estimated with Landolt rings. Among a variety of psychophysical and electrophysiologic ancillary tests, we consider our PVEP method a useful method for objectively determining visual acuity in a patient with signs of ocular malingering.

  2. Study on change of multi-modally evoked potentials in nasopharyngeal carcinoma patients after radiotherapy

    International Nuclear Information System (INIS)

    Qin Ling; Chen Jiaxin; Zhang Lixiang; Wang Tiejian; Han Min; Lu Xiaoling

    2001-01-01

    Objective: To investigate possible changes of multi-modally evoked potentials in nasopharyngeal carcinoma patients after radiotherapy. Methods: Altogether 48 nasopharyngeal carcinoma patients receiving primary conventional external beam irradiation were examined before and after radiotherapy to determine their brainstem auditory-evoked potential (BAEP), short-latency somatosensory-evoked potential (SLSEP) and pattern reversal visual-evoked potential (PRVEP). Results: In comparison with the conditions before radiotherapy, in different periods after radiotherapy abnormal peak latency and interval latency difference were found in BAEP, SLSEP and PRVEP. Conclusion: Nasopharyngeal carcinoma after radiotherapy may cause abnormal function of nerve conduction in early periods, which can be showed by BAEP, SLSEP, PRVEP, and injury can be timely detected if the three evoked potentials are used together. Thus authors suggest BAEP, SLSEP, PRVEP should be examined in nasopharyngeal carcinoma patients during and after the radiotherapy so as to find early damage in auditory somatosensory and visual conduction pathways

  3. Long-term potentiation (LTP) of human sensory-evoked potentials.

    Science.gov (United States)

    Kirk, Ian J; McNair, Nicolas A; Hamm, Jeffrey P; Clapp, Wesley C; Mathalon, Daniel H; Cavus, Idil; Teyler, Timothy J

    2010-09-01

    Long-term potentiation (LTP) is the principal candidate synaptic mechanism underlying learning and memory, and has been studied extensively at the cellular and molecular level in laboratory animals. Inquiry into the functional significance of LTP has been hindered by the absence of a human model as, until recently, LTP has only been directly demonstrated in humans in isolated cortical tissue obtained from patients undergoing surgery, where it displays properties identical to those seen in non-human preparations. In this brief review, we describe the results of paradigms recently developed in our laboratory for inducing LTP-like changes in visual-, and auditory-evoked potentials. We describe how rapid, repetitive presentation of sensory stimuli leads to a persistent enhancement of components of sensory-evoked potential in normal humans. Experiments to date, investigating the locus, stimulus specificity, and NMDA receptor dependence of these LTP-like changes suggest that they have the essential characteristics of LTP seen in experimental animals. The ability to elicit LTP from non-surgical patients will provide a human model system allowing the detailed examination of synaptic plasticity in normal subjects and may have future clinical applications in the assessment of cognitive disorders. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes.

    Science.gov (United States)

    Hancock, Jane M; Weatherall, Kate L; Choisy, Stéphanie C; James, Andrew F; Hancox, Jules C; Marrion, Neil V

    2015-05-01

    Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. Auditory and visual evoked potentials during hyperoxia

    Science.gov (United States)

    Smith, D. B. D.; Strawbridge, P. J.

    1974-01-01

    Experimental study of the auditory and visual averaged evoked potentials (AEPs) recorded during hyperoxia, and investigation of the effect of hyperoxia on the so-called contingent negative variation (CNV). No effect of hyperoxia was found on the auditory AEP, the visual AEP, or the CNV. Comparisons with previous studies are discussed.

  6. [Patterns of action potential firing in cortical neurons of neonatal mice and their electrophysiological property].

    Science.gov (United States)

    Furong, Liu; Shengtian, L I

    2016-05-25

    To investigate patterns of action potential firing in cortical heurons of neonatal mice and their electrophysiological properties. The passive and active membrane properties of cortical neurons from 3-d neonatal mice were observed by whole-cell patch clamp with different voltage and current mode. Three patterns of action potential firing were identified in response to depolarized current injection. The effects of action potential firing patterns on voltage-dependent inward and outward current were found. Neurons with three different firing patterns had different thresholds of depolarized current. In the morphology analysis of action potential, the three type neurons were different in rise time, duration, amplitude and threshold of the first action potential evoked by 80 pA current injection. The passive properties were similar in three patterns of action potential firing. These results indicate that newborn cortical neurons exhibit different patterns of action potential firing with different action potential parameters such as shape and threshold.

  7. Characterization of Cochlear, Vestibular and Cochlear-Vestibular Electrically Evoked Compound Action Potentials in Patients with a Vestibulo-Cochlear Implant

    Directory of Open Access Journals (Sweden)

    T. A. K. Nguyen

    2017-11-01

    Full Text Available The peripheral vestibular system is critical for the execution of activities of daily life as it provides movement and orientation information to motor and sensory systems. Patients with bilateral vestibular hypofunction experience a significant decrease in quality of life and have currently no viable treatment option. Vestibular implants could eventually restore vestibular function. Most vestibular implant prototypes to date are modified cochlear implants to fast-track development. These use various objective measurements, such as the electrically evoked compound action potential (eCAP, to supplement behavioral information. We investigated whether eCAPs could be recorded in patients with a vestibulo-cochlear implant. Specifically, eCAPs were successfully recorded for cochlear and vestibular setups, as well as for mixed cochlear-vestibular setups. Similarities and slight differences were found for the recordings of the three setups. These findings demonstrated the feasibility of eCAP recording with a vestibulo-cochlear implant. They could be used in the short term to reduce current spread and avoid activation of non-targeted neurons. More research is warranted to better understand the neural origin of vestibular eCAPs and to utilize them for clinical applications.

  8. Phantom somatosensory evoked potentials following selective intraneural electrical stimulation in two amputees.

    Science.gov (United States)

    Granata, Giuseppe; Di Iorio, Riccardo; Romanello, Roberto; Iodice, Francesco; Raspopovic, Stanisa; Petrini, Francesco; Strauss, Ivo; Valle, Giacomo; Stieglitz, Thomas; Čvančara, Paul; Andreu, David; Divoux, Jean-Louis; Guiraud, David; Wauters, Loic; Hiairrassary, Arthur; Jensen, Winnie; Micera, Silvestro; Rossini, Paolo Maria

    2018-06-01

    The aim of the paper is to objectively demonstrate that amputees implanted with intraneural interfaces are truly able to feel a sensation in the phantom hand by recording "phantom" somatosensory evoked potentials from the corresponding brain areas. We implanted four transverse intrafascicular multichannel electrodes, available with percutaneous connections to a multichannel electrical stimulator, in the median and ulnar nerves of two left trans-radial amputees. Two channels of the implants that were able to elicit sensations during intraneural nerve stimulation were chosen, in both patients, for recording somatosensory evoked potentials. We recorded reproducible evoked responses by stimulating the median and the ulnar nerves in both cases. Latencies were in accordance with the arrival of somatosensory information to the primary somatosensory cortex. Our results provide evidence that sensations generated by intraneural stimulation are truly perceived by amputees and located in the phantom hand. Moreover, our results strongly suggest that sensations perceived in different parts of the phantom hand result in different evoked responses. Somatosensory evoked potentials obtained by selective intraneural electrical stimulation in amputee patients are a useful tool to provide an objective demonstration of somatosensory feedback in new generation bidirectional prostheses. Copyright © 2018. Published by Elsevier B.V.

  9. Temporal processing and long-latency auditory evoked potential in stutterers.

    Science.gov (United States)

    Prestes, Raquel; de Andrade, Adriana Neves; Santos, Renata Beatriz Fernandes; Marangoni, Andrea Tortosa; Schiefer, Ana Maria; Gil, Daniela

    Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n=20) and non-stutters (n=21), compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Temporal processing and long-latency auditory evoked potential in stutterers

    Directory of Open Access Journals (Sweden)

    Raquel Prestes

    Full Text Available Abstract Introduction: Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. Objective: To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. Methods: The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n = 20 and non-stutters (n = 21, compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Results: Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Conclusion: Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components.

  11. Visual cortical somatosensory and brainstem auditory evoked potentials following incidental irradiation of the rhombencephalon

    Energy Technology Data Exchange (ETDEWEB)

    Nightingale, S. (Royal Victoria Infirmary, Newcastle upon Tyne (UK)); Schofield, I.S.; Dawes, P.J.D.K. (Newcastle upon Tyne Univ. (UK). Newcastle General Hospital)

    1984-01-01

    Visual, cortical somatosensory and brainstem auditory evoked potentials were recorded before incidental irradiation of the rhombencephalon during radiotherapy in and around the middle ear, and at 11 weeks and eight months after completion of treatment. No patient experienced neurological symptoms during this period. No consistent changes in evoked potentials were found. The failure to demonstrate subclinical radiation-induced demyelination suggests either that the syndrome of early-delayed radiation rhombencephalopathy occurs in an idiosyncratic manner, or that any subclinical lesions are not detectable by serial evoked potential recordings.

  12. Impedance and electrically evoked compound action potential (ECAP drop within 24 hours after cochlear implantation.

    Directory of Open Access Journals (Sweden)

    Joshua Kuang-Chao Chen

    Full Text Available Previous animal study revealed that post-implantation electrical detection levels significantly declined within days. The impact of cochlear implant (CI insertion on human auditory pathway in terms of impedance and electrically evoked compound action potential (ECAP variation within hours after surgery remains unclear, since at this time frequency mapping can only commence weeks after implantation due to factors associated with wound conditions. The study presented our experiences with regards to initial switch-on within 24 hours, and thus the findings about the milieus inside cochlea within the first few hours after cochlear implantation in terms of impedance/ECAP fluctuations. The charts of fifty-four subjects with profound hearing impairment were studied. A minimal invasive approach was used for cochlear implantation, characterized by a small skin incision (≈ 2.5 cm and soft techniques for cochleostomy. Impedance/ECAP was measured intro-operatively and within 24 hours post-operatively. Initial mapping within 24 hours post-operatively was performed in all patients without major complications. Impedance/ECAP became significantly lower measured within 24 hours post-operatively as compared with intra-operatively (p<0.001. There were no differences between pre-operative and post-operative threshold for air-conduction hearing. A significant drop of impedance/ECAP in one day after cochlear implantation was revealed for the first time in human beings. Mechanisms could be related to the restoration of neuronal sensitivity to the electrical stimulation, and/or the interaction between the matrix enveloping the electrodes and the electrical stimulation of the initial switch-on. Less wound pain/swelling and soft techniques both contributed to the success of immediate initial mapping, which implied a stable micro-environment inside the cochlea despite electrodes insertion. Our research invites further studies to correlate initial impedance/ECAP changes

  13. Visual cortical somatosensory and brainstem auditory evoked potentials following incidental irradiation of the rhombencephalon

    International Nuclear Information System (INIS)

    Nightingale, S.; Schofield, I.S.; Dawes, P.J.D.K.

    1984-01-01

    Visual, cortical somatosensory and brainstem auditory evoked potentials were recorded before incidental irradiation of the rhombencephalon during radiotherapy in and around the middle ear, and at 11 weeks and eight months after completion of treatment. No patient experienced neurological symptoms during this period. No consistent changes in evoked potentials were found. The failure to demonstrate subclinical radiation-induced demyelination suggests either that the syndrome of early-delayed radiation rhombencephalopathy occurs in an idiosyncratic manner, or that any subclinical lesions are not detectable by serial evoked potential recordings. (author)

  14. Sensory and semantic activations evoked by action attributes of manipulable objects: Evidence from ERPs

    Science.gov (United States)

    Lee, Chia-lin; Huang, Hsu-Wen; Federmeier, Kara D.; Buxbaum, Laurel J.

    2018-01-01

    “Two route” theories of object-related action processing posit different temporal activation profiles of grasp-to-move actions (rapidly evoked based on object structure) versus skilled use actions (more slowly activated based on semantic knowledge). We capitalized on the exquisite temporal resolution and multidimensionality of Event-Related Potentials (ERPs) to directly test this hypothesis. Participants viewed manipulable objects (e.g., calculator) preceded by objects sharing either “grasp”, “use”, or no action attributes (e.g., bar of soap, keyboard, earring, respectively), as well as by action-unrelated but taxonomically-related objects (e.g., abacus); participants judged whether the two objects were related. The results showed more positive responses to “grasp-to-move” primed objects than “skilled use” primed objects or unprimed objects starting in the P1 (0–150 ms) time window and continuing onto the subsequent N1 and P2 components (150–300 ms), suggesting that only “grasp-to-move”, but not “skilled use”, actions may facilitate visual attention to object attributes. Furthermore, reliably reduced N400s (300–500 ms), an index of semantic processing, were observed to taxonomically primed and “skilled use” primed objects relative to unprimed objects, suggesting that “skilled use” action attributes are a component of distributed, multimodal semantic representations of objects. Together, our findings provide evidence supporting two-route theories by demonstrating that “grasp-to-move” and “skilled use” actions impact different aspects of object processing and highlight the relationship of “skilled use” information to other aspects of semantic memory. PMID:29183777

  15. Steady-state evoked potentials possibilities for mental-state estimation

    Science.gov (United States)

    Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.

    1988-01-01

    The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.

  16. Multi-channel motor evoked potential monitoring during anterior cervical discectomy and fusion

    Directory of Open Access Journals (Sweden)

    Dong-Gun Kim

    Full Text Available Objectives: Anterior cervical discectomy and fusion (ACDF surgery is the most common surgical procedure for the cervical spine with low complication rate. Despite the potential prognostic benefit, intraoperative neurophysiological monitoring (IONM, a method for detecting impending neurological compromise, is not routinely used in ACDF surgery. The present study aimed to identify the potential benefits of monitoring multi-channel motor evoked potentials (MEPs during ACDF surgery. Methods: We retrospectively reviewed 200 consecutive patients who received IONM with multi-channel MEPs and somatosensory evoked potentials (SSEPs. On average, 9.2 muscles per patient were evaluated under MEP monitoring. Results: The rate of MEP change during surgery in the multi-level ACDF group was significantly higher than the single-level group. Two patients from the single-level ACDF group (1.7% and four patients from the multi-level ACDF group (4.9% experienced post-operative motor deficits. Multi-channel MEPs monitoring during single and multi-level ACDF surgery demonstrated higher sensitivity, specificity, positive predictive and negative predictive value than SSEP monitoring. Conclusions: Multi-channel MEP monitoring might be beneficial for the detection of segmental injury as well as long tract injury during single- and multi-level ACDF surgery. Significance: This is first large scale study to identify the usefulness of multi-channel MEPs in monitoring ACDF surgery. Keywords: Disc disease, Somatosensory evoked potentials, Intraoperative neurophysiological monitoring, Motor evoked potentials, Anterior cervical discectomy and fusion

  17. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2017-11-01

    Full Text Available IntroductionHuman multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation.Methods14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording.ResultsVestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects (“grand average” bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study.ConclusionGalvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level.SignificanceDifferential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  18. Abdominal acupuncture reduces laser-evoked potentials in healthy subjects

    DEFF Research Database (Denmark)

    Pazzaglia, C.; Liguori, S.; Minciotti, I.

    2015-01-01

    Objective: Acupuncture is known to reduce clinical pain, although the exact mechanism is unknown. The aim of the current study was to investigate the effect of acupuncture on laser-evoked potential amplitudes and laser pain perception. Methods: In order to evaluate whether abdominal acupuncture...... is able to modify pain perception, 10 healthy subjects underwent a protocol in which laser-evoked potentials (LEPs) and laser pain perception were collected before the test (baseline), during abdominal acupuncture, and 15. min after needle removal. The same subjects also underwent a similar protocol...... in which, however, sham acupuncture without any needle penetration was used. Results: During real acupuncture, both N1 and N2/P2 amplitudes were reduced, as compared to baseline (p . < 0.01). The reduction lasted up to 15. min after needle removal. Furthermore, laser pain perception was reduced during...

  19. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    Science.gov (United States)

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  20. Deconvolution of the vestibular evoked myogenic potential.

    Science.gov (United States)

    Lütkenhöner, Bernd; Basel, Türker

    2012-02-07

    The vestibular evoked myogenic potential (VEMP) and the associated variance modulation can be understood by a convolution model. Two functions of time are incorporated into the model: the motor unit action potential (MUAP) of an average motor unit, and the temporal modulation of the MUAP rate of all contributing motor units, briefly called rate modulation. The latter is the function of interest, whereas the MUAP acts as a filter that distorts the information contained in the measured data. Here, it is shown how to recover the rate modulation by undoing the filtering using a deconvolution approach. The key aspects of our deconvolution algorithm are as follows: (1) the rate modulation is described in terms of just a few parameters; (2) the MUAP is calculated by Wiener deconvolution of the VEMP with the rate modulation; (3) the model parameters are optimized using a figure-of-merit function where the most important term quantifies the difference between measured and model-predicted variance modulation. The effectiveness of the algorithm is demonstrated with simulated data. An analysis of real data confirms the view that there are basically two components, which roughly correspond to the waves p13-n23 and n34-p44 of the VEMP. The rate modulation corresponding to the first, inhibitory component is much stronger than that corresponding to the second, excitatory component. But the latter is more extended so that the two modulations have almost the same equivalent rectangular duration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Cortical modulation of short-latency TMS-evoked potentials

    Directory of Open Access Journals (Sweden)

    Domenica eVeniero

    2013-01-01

    Full Text Available Transcranial magnetic stimulation - electroencephalogram (TMS-EEG co-registration offers the opportunity to test reactivity of brain areas across distinct conditions through TMS-evoked potentials (TEPs. Several TEPs have been described, their functional meaning being largely unknown. In particular, short-latency potentials peaking at 5 (P5 and 8 (N8 ms after the TMS pulse have been recently described, but because of their huge amplitude, the problem of whether their origin is cortical or not has been opened. To gain information about these components, we employed a protocol that modulates primary motor cortex excitability (MI through an exclusively cortical phenomena: low frequency stimulation of premotor area (PMC. TMS was applied simultaneously with EEG recording from 70 electrodes. Amplitude of TEPs evoked by 200 single-pulses TMS delivered over MI at 110% of resting motor threshold was measured before and after applying 900 TMS conditioning stimuli to left premotor cortex with 1 Hz repetition rate. Single subject analyses showed reduction in TEPs amplitude after PMC conditioning in a sample of participants and increase in TEPs amplitude in two subjects. No effects were found on corticospinal excitability as recorded by motor evoked potentials (MEPs. Furthermore, correlation analysis showed an inverse relation between the effects of the conditioning protocol on P5-N8 complex amplitude and MEPs amplitude. Because the effects of the used protocol have been ascribed to a cortical interaction between premotor area and MI, we suggest that despite the sign of P5-N8 amplitude modulation is not consistent across participant, this modulation could indicate, at least in part, their cortical origin. We conclude that with an accurate experimental procedure early-latency components can be used to evaluate the reactivity of the stimulated cortex.

  2. Brainstem auditory evoked potentials in horses

    Directory of Open Access Journals (Sweden)

    Juliana Almeida Nogueira da Gama

    2016-04-01

    Full Text Available ABSTRACT: The brainstem auditory evoked potential (BAEP evaluates the integrity of the auditory pathways to the brainstem. The aim of this study was to evoke BAEPs in 21 clinically normal horses. The animals were sedated with detomidine hydrochloride (0.013mg.kg-1 BW. Earphones were inserted and rarefaction clicks at 90 dB and noise masking at 40 dB were used. After performing the test, the latencies of waves (I, II, III, IV, and V and interpeaks(I-III, III-V, and I-V were identified. The mean latencies of the waves were as follows: wave I, 2.4 ms; wave II, 2.24 ms; wave III, 3.61ms; wave IV, 4.61ms; and wave V, 5.49ms. The mean latencies of the interpeaks were as follows: I-III, 1.37ms; III-V, 1.88ms; and I-V, 3.26ms. This is the first study using BAEPs in horses in Brazil, and the observed latencies will be used as normative data for the interpretation of tests performed on horses with changes related to auditory system or neurologic abnormalities.

  3. Active action potential propagation but not initiation in thalamic interneuron dendrites

    Science.gov (United States)

    Casale, Amanda E.; McCormick, David A.

    2012-01-01

    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  4. Single-sweep spectral analysis of contact heat evoked potentials

    DEFF Research Database (Denmark)

    Hansen, Tine M; Graversen, Carina; Frøkjaer, Jens B

    2015-01-01

    AIMS: The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep ch......AIMS: The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single...... by 13% (P = 0.04) and 9% (P = 0.007), while the beta and gamma bands were increased by 10% (P = 0.006) and 24% (P = 0.04). CONCLUSION: The decreases in the delta and theta band are suggested to represent a decrease in the pain specific morphology of the CHEPs, which indicates a diminished pain response...

  5. Perceptual learning of acoustic noise generates memory-evoked potentials.

    Science.gov (United States)

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-02

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Relationship of Visual Evoked Potential Asymmetries to the Performance of Sonar Operators

    Science.gov (United States)

    1981-08-11

    also been related to EP variability. Schizophrenic adults and patients with Korsakoff’s Syndrome have shown higher evoked potential variability than...average evoked response in Korsakoff patients. J. Psychiatry Res. 6: 253-260, 1969. Santoro, T. and D. Fender. Rules for the perception of

  7. [Effects of sevoflurane and propofol on evoked potentials during neurosurgical anesthesia].

    Science.gov (United States)

    Nakagawa, Itsuo; Hidaka, Syozo; Okada, Hironori; Kubo, Takashi; Okamura, Kenta; Kato, Takahiro

    2006-06-01

    The effect of anesthetics on somatosensory evoked potential (SEP) and auditory brain stem response (ABR) has been a subject of intense reseach over the last two decades. In fact, volatile anesthetics have been repeatedly shown to decrease cortical amplitude in a dose-dependent fashion but the information regarding the effect of propofol is incomplete. The purpose of this study was to compare the effects of sevoflurane and propofol on evoked potentials during comparable depth of anesthesia guided by bispectral index (BIS). Forty four patients scheduled for neurosurgery were studied. Anesthesia was maintained with intravenous propofol using target controlled infusion (TCI). We measured the change of amplitude and latency of SEP(N20-P25), ABR (V wave) and visual evoked potential (VEP: P100) at three sets of sevoflurane (0%, 1%, 2%) or propofol concentrations (effect site concentration of 1.5, 2.0, 3.0 microug x ml(-1)). BIS monitor was used to measure relative depth of hypnosis. With increasing concentrations of sevoflurane (0, 1% and 2%), SEP showed dose-related reduction in its amplitude, ABR produced less marked changes and VEP showed a significant reduction at 1%. VEP at the propofol concentration of 3.0 microg x ml(-1) was decreased significantly compared with the amplitude at 1.5 microg x ml(-1) concentration. No significant change was observed with SEP and ABR during the change of propofol dosages. BIS values were almost the same with each anesthetics. VEP was most strongly affected with anesthetics, and ABR showed less marked influence of sevoflurane and propofol. Propofol based TIVA technique would induce less change in evoked potentials than sevoflurane.

  8. Conduction velocity of the human spinothalamic tract as assessed by laser evoked potentials

    DEFF Research Database (Denmark)

    Cruccu, G.; Iannetti, G. D.; Agostino, R.

    2000-01-01

    To study the conduction velocity of the spinothalamic tract (STT) we delivered CO2 laser pulses, evoking pinprick sensations, to the skin overlying the vertebral spinous processes at different spinal levels from C5 to T10 and recorded evoked potentials (LEPs) in 15 healthy human subjects...

  9. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.

    Science.gov (United States)

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2010-04-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Evoking prescribed spike times in stochastic neurons

    Science.gov (United States)

    Doose, Jens; Lindner, Benjamin

    2017-09-01

    Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.

  11. Exploring the methods of data analysis in multifocal visual evoked potentials

    DEFF Research Database (Denmark)

    Malmqvist, Lasse; Santiago de Abreu, Lucimar; Fraser, C.

    2016-01-01

    Purpose: The multifocal visual evoked potential (mfVEP) provides a topographical assessment of visual function, which has already shown potential for use in patients with glaucoma and multiple sclerosis. However, the variability in mfVEP measurements has limited its broader application. The purpo...

  12. Normalization reduces intersubject variability in cervical vestibular evoked myogenic potentials.

    Science.gov (United States)

    van Tilburg, Mark J; Herrmann, Barbara S; Guinan, John J; Rauch, Steven D

    2014-09-01

    Cervical vestibular evoked myogenic potentials are used to assess saccular and inferior vestibular nerve function. Normalization of the VEMP waveform has been proposed to reduce the variability in vestibular evoked myogenic potentials by correcting for muscle activation. In this study, we test the hypothesis that normalization of the raw cervical VEMP waveform causes a significant decrease in the intersubject variability. Prospective cohort study. Large specialty hospital, department of otolaryngology. Twenty healthy subjects were used in this study. All subjects underwent cervical vestibular evoked myogenic potential testing using short tone bursts at 250, 500, 750, and 1,000 Hz. Both intersubject and intrasubject variability was assessed. Variability between raw and normalized peak-to-peak amplitudes was compared using the coefficient of variation. Intrasubject variability was assessed using the intraclass correlation coefficient and interaural asymmetry ratio. cVEMPs were present in most ears. Highest peak-to-peak amplitudes were recorded at 750 Hz. Normalization did not alter cVEMP tuning characteristics. Normalization of the cVEMP response caused a significant reduction in intersubject variability of the peak-to-peak amplitude. No significant change was seen in the intrasubject variability. Normalization significantly reduces cVEMP intersubject variability in healthy subjects without altering cVEMP characteristics. By reducing cVEMP amplitude variation due to nonsaccular, muscle-related factors, cVEMP normalization is expected to improve the ability to distinguish between healthy and pathologic responses in the clinical application of cVEMP testing.

  13. [Intraoperative pain stimuli change somatosensory evoked potentials, but not auditory evoked potentials during isoflurane/nitrous oxide anesthesia].

    Science.gov (United States)

    Rundshagen, I; Kochs, E; Bischoff, P; Schulte am Esch, J

    1997-10-01

    Evoked potentials are used for intraoperative monitoring to assess changes of cerebral function. This prospective randomised study assesses the influence of surgical stimulation on midlatency components of somatosensory (SEPs) and auditory evoked potentials (AEPs) in anaesthetised patients. After approval of the Ethics Committee and written informed consent 36 orthopaedic patients (34 +/- 15 y, 73 +/- 14 kg. 1.71 +/- 0.07 m, ASA I-II) were randomly included in the study. Anaesthesia was induced with 1.5 micrograms/kg fentanyl, 0.3 mg/kg etomidate and 0.1 mg/kg vecuronium. The lungs were intubated and patients normoventilated in steady state anaesthesia with isoflurane (end-tidal 0.6%) and 66% nitrous oxide. 18 patients (group 1) were assigned to the SEP group: median nerve stimulation, recording at Erb, C 6 and the contralateral somatosensory cortex (N20, P25, N35) vs Fz. AEPs were recorded in group 2 (n = 18): binaural stimulation, recording at Cz versus linked mastoid (V, Na, Pa, Nb). Recordings were performed during 30 min before the start of surgery (baseline: BL), at skin incision (SURG1) and at the preparation of the periost (SURG2). Heart rate, mean arterial blood pressure, oxygen saturation, endtidal pCO2 and isoflurane (PetISO) concentrations were registered simultaneously. Data were analysed by one-way analysis of variance. Post hoc comparison were made by Mann-Whitney U-Wilcoxon Rank Sum Test with p beats/min) to SURG2 (76 +/- 12 beats/min). Increases of amplitudes of midlatency SEP amplitudes indicate increased nociceptive signal transmission which is not blunted by isoflurane-nitrous oxide anaesthesia. In contrast, unchanged AEPs indicate adequate levels of the hypnotic components of anaesthesia.

  14. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells.

    Science.gov (United States)

    Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long

    2012-10-25

    The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.

  15. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    Science.gov (United States)

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.

  16. Multimodal evoked potentials follow up in multiple sclerosis patients under fingolimod therapy

    DEFF Research Database (Denmark)

    Iodice, R; Carotenuto, A; Dubbioso, R

    2016-01-01

    related to EDSS at baseline (t=-1), while MEP and total EP sum score were related to EDSS at all time points. CONCLUSION: Fingolimod is able to improve visual and somatosensory evoked potential in RR-MS patients even if clinical disability scale remains stable. VEP and SEP could give eloquent information...... patients examined 12months prior to initiation of fingolimod (t=-1), at treatment initiation (t=0) and 1year later (t=+1) were compared. Each EP (VEP, MEP, SEP) and EP sum score, a global evoked potential score as the sum score of the each EP score was evaluated and correlated with Expanded Disability...

  17. Guanfacine potentiates the activation of prefrontal cortex evoked by warning signals.

    Science.gov (United States)

    Clerkin, Suzanne M; Schulz, Kurt P; Halperin, Jeffrey M; Newcorn, Jeffrey H; Ivanov, Iliyan; Tang, Cheuk Y; Fan, Jin

    2009-08-15

    Warning signals evoke an alert state of readiness that prepares for a rapid response by priming a thalamo-frontal-striatal network that includes the dorsolateral prefrontal cortex (DLPFC). Animal models indicate that noradrenergic input is essential for this stimulus-driven activation of DLPFC, but the precise mechanisms involved have not been determined. We tested the role that postsynaptic alpha(2A) adrenoceptors play in the activation of DLPFC evoked by warning cues using a placebo-controlled challenge with the alpha(2A) agonist guanfacine. Sixteen healthy young adults were scanned twice with event-related functional magnetic resonance imaging (fMRI), while performing a simple cued reaction time (RT) task following administration of a single dose of oral guanfacine (1 mg) and placebo in counterbalanced order. The RT task temporally segregates the neural effects of warning cues and motor responses and minimizes mnemonic demands. Warning cues produced a marked reduction in RT accompanied by significant activation in a distributed thalamo-frontal-striatal network, including bilateral DLPFC. Guanfacine selectively increased the cue-evoked activation of the left DLPFC and right anterior cerebellum, although this increase was not accompanied by further reductions in RT. The effects of guanfacine on DLPFC activation were specifically associated with the warning cue and were not seen for visual- or target-related activation. Guanfacine produced marked increases in the cue-evoked activation of DLPFC that correspond to the well-described actions of postsynaptic alpha(2) adrenoceptor stimulation. The current procedures provide an opportunity to test postsynaptic alpha(2A) adrenoceptor function in the prefrontal cortex in the pathophysiology of several psychiatric disorders.

  18. Effect of caffeine on vestibular evoked myogenic potential: a systematic review with meta-analysis.

    Science.gov (United States)

    Souza, Maria Eduarda Di Cavalcanti Alves de; Costa, Klinger Vagner Teixeira da; Menezes, Pedro de Lemos

    2017-12-24

    Caffeine can be considered the most consumed drug by adults worldwide, and can be found in several foods, such as chocolate, coffee, tea, soda and others. Overall, caffeine in moderate doses, results in increased physical and intellectual productivity, increases the capacity of concentration and reduces the time of reaction to sensory stimuli. On the other hand, high doses can cause noticeable signs of mental confusion and error induction in intellectual tasks, anxiety, restlessness, muscle tremors, tachycardia, labyrinthine changes, and tinnitus. Considering that the vestibular evoked myogenic potential is a clinical test that evaluates the muscular response of high intensity auditory stimulation, the present systematic review aimed to analyze the effects of caffeine on vestibular evoked myogenic potential. This study consisted of the search of the following databases: MEDLINE, CENTRAL, ScienceDirect, Scopus, Web of Science, LILACS, SciELO and ClinicalTrials.gov. Additionally, the gray literature was also searched. The search strategy included terms related to intervention (caffeine or coffee consumption) and the primary outcome (vestibular evoked myogenic potential). Based on the 253 potentially relevant articles identified through the database search, only two full-text publications were retrieved for further evaluation, which were maintained for qualitative analysis. Analyzing the articles found, caffeine has no effect on vestibular evoked myogenic potential in normal individuals. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Predictability of painful stimulation modulates the somatosensory-evoked potential in the rat

    NARCIS (Netherlands)

    Schaap, M.W.H.; van Oostrom, H.; Doornenbal, A.; Baars, A.M.; Arndt, S.S.; Hellebrekers, L.J.

    2013-01-01

    Abstract Somatosensory-evoked potentials (SEPs) are used in humans and animals to increase knowledge about nociception and pain. Since the SEP in humans increases when noxious stimuli are administered unpredictably, predictability potentially influences the SEP in animals as well. To assess the

  20. Influence of detomidine and buprenorphine on motor-evoked potentials in horses.

    Science.gov (United States)

    Nollet, H; Van Ham, L; Gasthuys, F; Dewulf, J; Vanderstraeten, G; Deprez, P

    2003-04-26

    Horses need to be sedated before they are investigated by transcranial magnetic stimulation because of the mild discomfort induced by the evoked muscle contraction and the noise of stimulation. This paper describes the influence of a combination of detomidine (10 microg/kg bodyweight) and a low dose of buprenorphine (2.4 microg/kg) on the onset latency and peak-to-peak amplitude of magnetic motor-evoked potentials in normal horses. There were no significant differences between measurements of these parameters made before the horses were sedated and measurements made 10 and 30 minutes after the drugs were administered.

  1. Long-term visuo-gustatory appetitive and aversive conditioning potentiate human visual evoked potentials

    DEFF Research Database (Denmark)

    Christoffersen, Gert R.J.; Laugesen, Jakob L.; Møller, Per

    2017-01-01

    Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive...... and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared...... before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes...

  2. Feasibility and performance evaluation of generating and recording visual evoked potentials using ambulatory Bluetooth based system.

    Science.gov (United States)

    Ellingson, Roger M; Oken, Barry

    2010-01-01

    Report contains the design overview and key performance measurements demonstrating the feasibility of generating and recording ambulatory visual stimulus evoked potentials using the previously reported custom Complementary and Alternative Medicine physiologic data collection and monitoring system, CAMAS. The methods used to generate visual stimuli on a PDA device and the design of an optical coupling device to convert the display to an electrical waveform which is recorded by the CAMAS base unit are presented. The optical sensor signal, synchronized to the visual stimulus emulates the brain's synchronized EEG signal input to CAMAS normally reviewed for the evoked potential response. Most importantly, the PDA also sends a marker message over the wireless Bluetooth connection to the CAMAS base unit synchronized to the visual stimulus which is the critical averaging reference component to obtain VEP results. Results show the variance in the latency of the wireless marker messaging link is consistent enough to support the generation and recording of visual evoked potentials. The averaged sensor waveforms at multiple CPU speeds are presented and demonstrate suitability of the Bluetooth interface for portable ambulatory visual evoked potential implementation on our CAMAS platform.

  3. Long-Term Visuo-Gustatory Appetitive and Aversive Conditioning Potentiate Human Visual Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Gert R. J. Christoffersen

    2017-09-01

    Full Text Available Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs, specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes was asymmetrically distributed over the posterior hemispheres despite the fact that the images were bilaterally symmetrical across the two visual hemifields. The percentage increases of N2-to-P3 amplitudes in each experimental subject correlated with the subject’s evaluation of positive or negative hedonic valences of the two juices. The results from 118 scalp electrodes gave surface maps of theta power distributions showing increased power over posterior visual areas after the pairings. Source current distributions calculated from swLORETA revealed that visual evoked currents rose as a result of conditioning in five cortical regions—from primary visual areas and into the inferior temporal gyrus (ITG. These learning-induced changes were seen after both appetitive and aversive training while a sham trained control group showed no changes. It is concluded that long-term visuo-gustatory conditioning potentiated the N2-P3 complex, and it is suggested that the changes are regulated by the perceived hedonic valence of the US.

  4. Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis.

    Science.gov (United States)

    Granovsky, Yelena; Matre, Dagfinn; Sokolik, Alexander; Lorenz, Jürgen; Casey, Kenneth L

    2005-06-01

    The human palm has a lower heat detection threshold and a higher heat pain threshold than hairy skin. Neurophysiological studies of monkeys suggest that glabrous skin has fewer low threshold heat nociceptors (AMH type 2) than hairy skin. Accordingly, we used a temperature-controlled contact heat evoked potential (CHEP) stimulator to excite selectively heat receptors with C fibers or Adelta-innervated AMH type 2 receptors in humans. On the dorsal hand, 51 degrees C stimulation produced painful pinprick sensations and 41 degrees C stimuli evoked warmth. On the glabrous thenar, 41 degrees C stimulation produced mild warmth and 51 degrees C evoked strong but painless heat sensations. We used CHEP responses to estimate the conduction velocities (CV) of peripheral fibers mediating these sensations. On hairy skin, 41 degrees C stimuli evoked an ultra-late potential (mean, SD; N wave latency: 455 (118) ms) mediated by C fibers (CV by regression analysis: 1.28 m/s, N=15) whereas 51 degrees C stimuli evoked a late potential (N latency: 267 (33) ms) mediated by Adelta afferents (CV by within-subject analysis: 12.9 m/s, N=6). In contrast, thenar responses to 41 and 51 degrees C were mediated by C fibers (average N wave latencies 485 (100) and 433 (73) ms, respectively; CVs 0.95-1.35 m/s by regression analysis, N=15; average CV=1.7 (0.41) m/s calculated from distal glabrous and proximal hairy skin stimulation, N=6). The exploratory range of the human and monkey palm is enhanced by the abundance of low threshold, C-innervated heat receptors and the paucity of low threshold AMH type 2 heat nociceptors.

  5. Assessment of visual disability using visual evoked potentials.

    Science.gov (United States)

    Jeon, Jihoon; Oh, Seiyul; Kyung, Sungeun

    2012-08-06

    The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9-42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19-36 years), 19 optic neuritis patients (19 eyes: ages 9-71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = -0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = -0.072x + 1.22 (-0.072). This resulted in a prediction reference of visual acuity associated with malingering vs. real

  6. 4-aminopyridine in scala media reversibly alters the cochlear potentials and suppresses electrically evoked oto-acoustic emissions.

    Science.gov (United States)

    Kirk, D L; Yates, G K

    1998-01-01

    Iontophoresis of 4-aminopyridine into scala media of the guinea pig cochlea caused elevation of the thresholds of the compound action potential of the auditory nerve, loss of amplitude of the extracellular cochlear microphonic response (CM), increase in the endocochlear potential (EP) and reduction in the amplitude of electrically evoked oto-acoustic emissions (EEOAEs). These changes were reversible over 10-20 min. The reciprocity of the changes in the CM and the EP was consistent with an interruption of both DC and AC currents through outer hair cells (OHCs), probably by blockade of mechano-electrical transduction (MET) channels in OHCs. Reductions in EEOAEs were consistent with the extrinsically applied generating current entering the OHC via the MET channels. Implications for the activation of OHC electromotility in vivo are discussed.

  7. Effect of mechanical tactile noise on amplitude of visual evoked potentials: multisensory stochastic resonance.

    Science.gov (United States)

    Méndez-Balbuena, Ignacio; Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana; Manjarrez, Elias

    2015-10-01

    The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP. Copyright © 2015 the American Physiological Society.

  8. Use of the Stockwell Transform in the Detection of P300 Evoked Potentials with Low-Cost Brain Sensors

    Directory of Open Access Journals (Sweden)

    Alan F. Pérez-Vidal

    2018-05-01

    Full Text Available The evoked potential is a neuronal activity that originates when a stimulus is presented. To achieve its detection, various techniques of brain signal processing can be used. One of the most studied evoked potentials is the P300 brain wave, which usually appears between 300 and 500 ms after the stimulus. Currently, the detection of P300 evoked potentials is of great importance due to its unique properties that allow the development of applications such as spellers, lie detectors, and diagnosis of psychiatric disorders. The present study was developed to demonstrate the usefulness of the Stockwell transform in the process of identifying P300 evoked potentials using a low-cost electroencephalography (EEG device with only two brain sensors. The acquisition of signals was carried out using the Emotiv EPOC® device—a wireless EEG headset. In the feature extraction, the Stockwell transform was used to obtain time-frequency information. The algorithms of linear discriminant analysis and a support vector machine were used in the classification process. The experiments were carried out with 10 participants; men with an average age of 25.3 years in good health. In general, a good performance (75–92% was obtained in identifying P300 evoked potentials.

  9. A comparison of auditory evoked potentials to acoustic beats and to binaural beats

    OpenAIRE

    Pratt, H; Starr, A; Michalewski, HJ; Dimitrijevic, A; Bleich, N; Mittelman, N

    2010-01-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source cur...

  10. Human neural tuning estimated from compound action potentials in normal hearing human volunteers

    Science.gov (United States)

    Verschooten, Eric; Desloovere, Christian; Joris, Philip X.

    2015-12-01

    The sharpness of cochlear frequency tuning in humans is debated. Evoked otoacoustic emissions and psychophysical measurements suggest sharper tuning in humans than in laboratory animals [15], but this is disputed based on comparisons of behavioral and electrophysiological measurements across species [14]. Here we used evoked mass potentials to electrophysiologically quantify tuning (Q10) in humans. We combined a notched noise forward masking paradigm [9] with the recording of trans tympanic compound action potentials (CAP) from masked probe tones in awake human and anesthetized monkey (Macaca mulatta). We compare our results to data obtained with the same paradigm in cat and chinchilla [16], and find that CAP-Q10values in human are ˜1.6x higher than in cat and chinchilla and ˜1.3x higher than in monkey. To estimate frequency tuning of single auditory nerve fibers (ANFs) in humans, we derive conversion functions from ANFs in cat, chinchilla, and monkey and apply these to the human CAP measurements. The data suggest that sharp cochlear tuning is a feature of old-world primates.

  11. Quantifying interhemispheric symmetry of somatosensory evoked potentials with the intraclass correlation coefficient

    NARCIS (Netherlands)

    van de Wassenberg, Wilma J. G.; van der Hoeven, Johannes H.; Leenders, Klaus L.; Maurits, Natasha M.

    Although large intersubject variability is reported for cortical somatosensory evoked potentials (SEPs), variability between hemispheres within one subject is thought to be small. Therefore, interhemispheric comparison of SEP waveforms might be clinically useful to detect unilateral abnormalities in

  12. Brain state-dependence of electrically evoked potentials monitored with head-mounted electronics.

    Science.gov (United States)

    Richardson, Andrew G; Fetz, Eberhard E

    2012-11-01

    Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout the 24-h sleep-wake cycle in freely behaving monkeys. A novel, head-mounted electronic device was used to electrically stimulate at one site and record evoked potentials at other sites. Electrically evoked potentials (EEPs) revealed the connectivity pattern between several cortical sites and the basal forebrain. We quantified state-dependent changes in the EEPs. Cortico-cortical EEP amplitude increased during slow-wave sleep, compared to wakefulness, while basal-cortical EEP amplitude decreased. The results demonstrate the utility of using portable electronics to document state-dependent connectivity changes in freely behaving primates.

  13. Comparison of sensitivity of magnetic resonance imaging and evoked potentials in the detection of brainstem involvement in multiple sclerosis

    International Nuclear Information System (INIS)

    Comi, G.; Martinelli, V.; Medaglini, S.; Locatelli, T.; Magnani, G.; Poggi, A.; Triulzi, F.

    1988-01-01

    A comparison was made of the sensitivity of magnetic resonance imaging and the combined use of Brainstem Auditory Evoked Potential and Median Somatosensory Evoked Potential in the detection of brainstem dysfunction in 54 multiple sclerosis patients. 10 refs.; 2 tabs

  14. Effect of extradural morphine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Selmar, P; Hansen, O B

    1987-01-01

    The effect of the extradural (L2-3) administration of morphine 6 mg on early (less than 0.5 s) somatosensory evoked cortical potentials (SEP) to electrical stimulation of the L1- and S1-dermatomes was examined in eight patients. Extradural morphine did not influence SEP amplitude. SEP latency did...

  15. Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials.

    Directory of Open Access Journals (Sweden)

    Heike Althen

    Full Text Available The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN, an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system.

  16. SOMATOSENSORY EVOKED POTENTIALS IN DIABETES MELLITUS TYPE - 2

    Directory of Open Access Journals (Sweden)

    Rekha

    2015-10-01

    Full Text Available Diabetes mellitus is the most common metabolic disorder affecting majority of population. It is estimated that over 400 million people throughout the world have diabetes. It has progressed to be a pandemic from an epidemic causing morbidity and mortality in the population. Among the many complications of diabetes, diabetic neuropathies contribute majorly to the morbidity associated with the disease. Axonal conduction is affected by elevated levels of protein kinase c causing neuronal ischemia; decreased ce llular myoinositol affecting sodium potassium ATPase pump leads to decreased nerve conduction; Somatosensory E voked P otentials (SSEPs reflect the activity of somatosensory pathways mediated through the dorsal columns of the spinal cord and the specific so matosensory cortex. Recording of Somatosensory Evoked Potentials in diabetics is done to assess the sensory involvement of spinal cord. Presence of SEPs provides clear evidence for axonal continuity and by using different stimulation sites, the rate of reg eneration can be determined. Both onset and peak latencies of all SEP components are prolonged in patients with diabetes. Present study is done to compare somatosensory evoked potentials in diabetics and normal subjects. MATERIALS AND METHOD S: The present study was undertaken at the Upgraded Department of Physiology, Osmania Medical College, Koti, Hyderabad. The study was conducted on subjects, both male and female in the age group of 45 to 55 years, suffering from type II diabetes excluding other neurologi cal disorders. Non - invasive method of estimation of nerve conduction studies using SFEMG/EP — Electromyography or evoked potential system (Nicolet systems — USA using surface electrodes with automated computerized monitor attached with printer is used. RESUL TS : ANOVA showed statistically significant N9 latency (right & left sides. Latencies of all the components of SSEPs were more significant than amplitudes in Diabetic

  17. Use of auditory evoked potentials for intra-operative awareness in anesthesia: a consciousness-based conceptual model.

    Science.gov (United States)

    Dong, Xuebao; Suo, Puxia; Yuan, Xin; Yao, Xuefeng

    2015-01-01

    Auditory evoked potentials (AEPs) have been used as a measure of the depth of anesthesia during the intra-operative process. AEPs are classically divided, on the basis of their latency, into first, fast, middle, slow, and late components. The use of auditory evoked potential has been advocated for the assessment of Intra-operative awareness (IOA), but has not been considered seriously enough to universalize it. It is because we have not explored enough the impact of auditory perception and auditory processing on the IOA phenomena as well as on the subsequent psychological impact of IOA on the patient. More importantly, we have seldom tried to look at the phenomena of IOP from the perspective of consciousness itself. This perspective is especially important because many of IOA phenomena exist in the subconscious domain than they do in the conscious domain of explicit recall. Two important forms of these subconscious manifestations of IOA are the implicit recall phenomena and post-operative dreams related to the operation. Here, we present an integrated auditory consciousness-based model of IOA. We start with a brief description of auditory awareness and the factors affecting it. Further, we proceed to the evaluation of conscious and subconscious information processing by auditory modality and how they interact during and after intra-operative period. Further, we show that both conscious and subconscious auditory processing affect the IOA experience and both have serious psychological implications on the patient subsequently. These effects could be prevented by using auditory evoked potential during monitoring of anesthesia, especially the mid-latency auditory evoked potentials (MLAERs). To conclude our model with present hypothesis, we propose that the use of auditory evoked potential should be universal with general anesthesia use in order to prevent the occurrences of distressing outcomes resulting from both conscious and subconscious auditory processing during

  18. Effects of stimulation intensity, gender and handedness upon auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Susana Camposano

    1992-03-01

    Full Text Available Left handers and women show less anatomical brain asymmetry, larger corpus callosum and more bilateral representation of specific functions. Sensory and cognitive components of cortical auditory evoked potentials (AEF have been shown to be asymmetric in right handed males and to be influenced by stimulus intensity. In this study the influence of sex, handedness and stimulus intensity upon AEP components is investigated under basal conditions of passive attention. 14 right handed males, 14 right handed females, 14 left handed males, and 14 left handed females were studied while lying awake and paying passive attention to auditory stimulation (series of 100 binaural clicks, duration 1 msec, rate 1/sec, at four intensities. Cz, C3 and C4 referenced to linked mastoids and right EOG were recorded. Analysis time was 400 msec, average evoked potentials were based on 100 clicks. Stimulus intensity and gender affect early sensory components (P1N1 and N1P2 at central leads, asymmetry is influenced only by handedness, right handers showing larger P1N1 amplitudes over the right hemisphere.

  19. Unmasking of an early laser evoked potential by a point localization task

    DEFF Research Database (Denmark)

    Valeriani, M.; Restuccia, D.; Le Pera, D.

    2000-01-01

    Objectives: The investigation of the CO2 laser evoked potential (LEP) modifications following a point localization task. Methods: LEPs were recorded from 10 healthy subjects in two different conditions. (1) Task condition: laser stimuli were shifted among 3 different locations on the right hand d...

  20. Short-interval and long-interval intracortical inhibition of TMS-evoked EEG potentials.

    Science.gov (United States)

    Premoli, Isabella; Király, Julia; Müller-Dahlhaus, Florian; Zipser, Carl M; Rossini, Pierre; Zrenner, Christoph; Ziemann, Ulf; Belardinelli, Paolo

    2018-03-15

    Inhibition in the human motor cortex can be probed by means of paired-pulse transcranial magnetic stimulation (ppTMS) at interstimulus intervals of 2-3 ms (short-interval intracortical inhibition, SICI) or ∼100 ms (long-interval intracortical inhibition, LICI). Conventionally, SICI and LICI are recorded as motor evoked potential (MEP) inhibition in the hand muscle. Pharmacological experiments indicate that they are mediated by GABAA and GABAB receptors, respectively. SICI and LICI of TMS-evoked EEG potentials (TEPs) and their pharmacological properties have not been systematically studied. Here, we sought to examine SICI by ppTMS-evoked compared to single-pulse TMS-evoked TEPs, to investigate its pharmacological manipulation and to compare SICI with our previous results on LICI. PpTMS-EEG was applied to the left motor cortex in 16 healthy subjects in a randomized, double-blind placebo-controlled crossover design, testing the effects of a single oral dose 20 mg of diazepam, a positive modulator at the GABAA receptor, vs. 50 mg of the GABAB receptor agonist baclofen on SICI of TEPs. We found significant SICI of the N100 and P180 TEPs prior to drug intake. Diazepam reduced SICI of the N100 TEP, while baclofen enhanced it. Compared to our previous ppTMS-EEG results on LICI, the SICI effects on TEPs, including their drug modulation, were largely analogous. Findings suggest a similar interaction of paired-pulse effects on TEPs irrespective of the interstimulus interval. Therefore, SICI and LICI as measured with TEPs cannot be directly derived from SICI and LICI measured with MEPs, but may offer novel insight into paired-pulse responses recorded directly from the brain rather than muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Long latency auditory evoked potentials in children with cochlear implants: systematic review.

    Science.gov (United States)

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Matas, Carla Gentile; Carvalho, Ana Claudia Martinho de

    2013-11-25

    The aim of this study was to analyze the findings on Cortical Auditory Evoked Potentials in children with cochlear implant through a systematic literature review. After formulation of research question and search of studies in four data bases with the following descriptors: electrophysiology (eletrofisiologia), cochlear implantation (implante coclear), child (criança), neuronal plasticity (plasticidade neuronal) and audiology (audiologia), were selected articles (original and complete) published between 2002 and 2013 in Brazilian Portuguese or English. A total of 208 studies were found; however, only 13 contemplated the established criteria and were further analyzed; was made data extraction for analysis of methodology and content of the studies. The results described suggest rapid changes in P1 component of Cortical Auditory Evoked Potentials in children with cochlear implants. Although there are few studies on the theme, cochlear implant has been shown to produce effective changes in central auditory path ways especially in children implanted before 3 years and 6 months of age.

  2. Biomarkers of neuropathic pain in skin nerve degeneration neuropathy: contact heat-evoked potentials as a physiological signature.

    Science.gov (United States)

    Wu, Shao-Wei; Wang, Yi-Chia; Hsieh, Paul-Chen; Tseng, Ming-Tsung; Chiang, Ming-Chang; Chu, Chih-Pang; Feng, Fang-Ping; Lin, Yea-Huey; Hsieh, Sung-Tsang; Chao, Chi-Chao

    2017-03-01

    Contact heat-evoked potentials (CHEPs) have become an established method of assessing small-fiber sensory nerves; however, their potential as a physiological signature of neuropathic pain symptoms has not been fully explored. To investigate the diagnostic efficacy in examining small-fiber sensory nerve degeneration, the relationship with skin innervations, and clinical correlates with sensory symptoms, we recruited 188 patients (115 men) with length-dependent sensory symptoms and reduced intraepidermal nerve fiber (IENF) density at the distal leg to perform CHEP, quantitative sensory testing, and nerve conduction study. Fifty-seven age- and sex-matched controls were enrolled for comparison of CHEP and skin innervation. Among patients with neuropathy, 144 patients had neuropathic pain and 64 cases had evoked pain. Compared with quantitative sensory testing and nerve conduction study parameters, CHEP amplitudes showed the highest sensitivity for diagnosing small-fiber sensory nerve degeneration and exhibited the strongest correlation with IENF density in multiple linear regression. Contact heat-evoked potential amplitudes were strongly correlated with the degree of skin innervation in both patients with neuropathy and controls, and the slope of the regression line between CHEP amplitude and IENF density was higher in patients with neuropathy than in controls. Patients with evoked pain had higher CHEP amplitude than those without evoked pain, independent of IENF density. Receiver operating characteristic analysis showed that CHEP had better performance in diagnosing small-fiber sensory nerve degeneration than thermal thresholds. Furthermore, CHEPs showed superior classification accuracy with respect to evoked pain. In conclusion, CHEP is a sensitive tool to evaluate pathophysiology of small-fiber sensory nerve and serves as a physiological signature of neuropathic pain symptoms.

  3. Ocular vestibular evoked myogenic potential in patients with benign paroxysmal positional vertigo

    Directory of Open Access Journals (Sweden)

    Mozhgan Masoom

    2014-06-01

    Full Text Available Background and Aim: Since utricle is the main damaged organ in benign paroxysmal positional vertigo (BPPV, ocular vestibular evoked myogenic potential (oVEMP may be an appropriate method to evaluate the utricule dysfunction and the effect of disease recurrence rate on it. This study aimed to record myogenic potential in patients with benign paroxysmal positional vertigo.Methods: In a cross-sectional study, ocular myogenic potential was recorded in 25 healthy subjects and 20 patients with benign paroxysmal positional vertigo using 500 Hz-tone bursts (95 dB nHL.Results: In the affected ear, mean amplitude was lower and mean threshold was higher than those in the unaffected ear and in the normal group (p<0.05. Mean amplitude asymmetry ratio of patients was more than the healthy subjects (p0.05. Frequencies of abnormal responses in the affected ears were higher than in unaffected ears and in the normal group (p<0.05. Furthermore, the patients with recurrent vertigo showed more abnormalities than the patients with non-recurrent (p=0.030.Conclusion: In the recurrent benign paroxysmal positional vertigo, ocular vestibular evoked myogenic potential showed more damage in the utricle, suggesting this response could be used to evaluate the patients with benign paroxysmal positional vertigo.

  4. Contact Heat Evoked Potentials (CHEPs) in Patients with Mild-Moderate Alzheimer's Disease and Matched Control-A Pilot Study

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Madsen, Caspar Skau; Waldemar, Gunhild

    2016-01-01

    OBJECTIVE: Clinical studies have found that patients with Alzheimer's disease report pain of less intensity and with a lower affective response, which has been thought to be due to altered pain processing. The authors wished to examine the cerebral processing of non-painful and painful stimuli...... threshold and heat pain threshold. Somatosensory evoked potentials, amplitude, and latency were within normal range and similar for the two groups. CONCLUSIONS: The findings suggest that the processing of non-painful and painful stimuli is preserved in patients with mild to moderate Alzheimer's disease....... using somatosensory evoked potentials and contact heat evoked potentials in patients with Alzheimer's disease and in healthy elderly controls. DESIGN: Case-control study SETTING AND SUBJECTS: Twenty outpatients with mild-moderate Alzheimer's disease and in 17 age- and gender-matched healthy controls...

  5. Combined ocular and cervical vestibular evoked myogenic potential in individuals with vestibular hyporeflexia and in patients with Ménière's disease.

    Science.gov (United States)

    Silva, Tatiana Rocha; de Resende, Luciana Macedo; Santos, Marco Aurélio Rocha

    The vestibular evoked myogenic potential is a potential of mean latency that measures the muscle response to auditory stimulation. This potential can be generated from the contraction of the sternocleidomastoid muscle and also from the contraction of extraocular muscles in response to high-intensity sounds. This study presents a combined or simultaneous technique of cervical and ocular vestibular evoked myogenic potential in individuals with changes in the vestibular system, for use in otoneurologic diagnosis. To characterize the records and analyze the results of combined cervical and ocular VEMP in individuals with vestibular hyporeflexia and in those with Ménière's disease. The study included 120 subjects: 30 subjects with vestibular hyporeflexia, 30 with Ménière's disease, and 60 individuals with normal hearing. Data collection was performed by simultaneously recording the cervical and ocular vestibular evoked myogenic potential. There were differences between the study groups (individuals with vestibular hyporeflexia and individuals with Ménière's disease) and the control group for most of wave parameters in combined cervical and ocular vestibular evoked myogenic potential. For cervical vestibular evoked myogenic potential, it was observed that the prolongation of latency of the P13 and N23 waves was the most frequent finding in the group with vestibular hyporeflexia and in the group with Ménière's disease. For ocular vestibular evoked myogenic potential, prolonged latency of N10 and P15 waves was the most frequent finding in the study groups. Combined cervical and ocular vestibular evoked myogenic potential presented relevant results for individuals with vestibular hyporeflexia and for those with Ménière's disease. There were differences between the study groups and the control group for most of the wave parameters in combined cervical and ocular vestibular evoked myogenic potential. Copyright © 2016 Associação Brasileira de Otorrinolaringologia

  6. Brainstem auditory evoked potentials in healthy cats recorded with surface electrodes

    Directory of Open Access Journals (Sweden)

    Mihai Musteata

    2013-01-01

    Full Text Available The aim of this study was to evaluate the brainstem auditory evoked potentials of seven healthy cats, using surface electrodes. Latencies of waves I, III and V, and intervals I–III, I–V and III–V were recorded. Monaural and binaural stimulation of the cats were done with sounds ranging between 40 and 90 decibel Sound Pressure Level. All latencies were lower than those described in previous studies, where needle electrodes were used. In the case of binaural stimulation, latencies of waves III and V were greater compared to those obtained for monaural stimulation (P P > 0.05. Regardless of the sound intensity, the interwave latency was constant (P > 0.05. Interestingly, no differences were noticed for latencies of waves III and V when sound intensity was higher than 80dB SPL. This study completes the knowledge in the field of electrophysiology and shows that the brainstem auditory evoked potentials in cats using surface electrodes is a viable method to record the transmission of auditory information. That can be faithfully used in clinical practice, when small changes of latency values may be an objective factor in health status evaluation.

  7. Abnormalities in auditory evoked potentials of 75 patients with Arnold-Chiari malformations types I and II

    Directory of Open Access Journals (Sweden)

    Henriques Filho Paulo Sergio A.

    2006-01-01

    Full Text Available OBJECTIVE: To evaluate the frequency and degree of severity of abnormalities in the auditory pathways in patients with Chiari malformations type I and II. METHOD: This is a series-of-case descriptive study in which the possible presence of auditory pathways abnormalities in 75 patients (48 children and 27 adults with Chiari malformation types I and II were analyzed by means of auditory evoked potentials evaluation. The analysis was based on the determination of intervals among potentials peak values, absolute latency and amplitude ratio among potentials V and I. RESULTS: Among the 75 patients studied, 27 (36% disclosed Arnold-Chiari malformations type I and 48 (64% showed Arnold-Chiari malformations type II. Fifty-three (71% of these patients showed some degree of auditory evoked potential abnormalities. Tests were normal in the remaining 22 (29% patients. CONCLUSION: Auditory evoked potentials testing can be considered a valuable instrument for diagnosis and evaluation of brain stem functional abnormalities in patients with Arnold-Chiari malformations type I and II. The determination of the presence and degree of severity of these abnormalities can be contributory to the prevention of further handicaps in these patients either through physical therapy or by means of precocious corrective surgical intervention.

  8. Steady-state pattern electroretinogram and short-duration transient visual evoked potentials in glaucomatous and healthy eyes.

    Science.gov (United States)

    Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V

    2018-01-01

    This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  9. [Recommendations for the clinical use of motor evoked potentials in multiple sclerosis].

    Science.gov (United States)

    Fernández, V; Valls-Sole, J; Relova, J L; Raguer, N; Miralles, F; Dinca, L; Taramundi, S; Costa-Frossard, L; Ferrandiz, M; Ramió-Torrentà, Ll; Villoslada, P; Saiz, A; Calles, C; Antigüedad, A; Alvarez-Cermeño, J C; Prieto, J M; Izquierdo, G; Montalbán, X; Fernández, O

    2013-09-01

    To establish clinical guidelines for the clinical use and interpretation of motor evoked potentials (MEP) in diagnosing and monitoring patients with multiple sclerosis (MS). Recommendations for MEP use and interpretation will help us rationalise and optimise resources used in MS patient diagnosis and follow up. We completed an extensive literature review and pooled our own data to produce a consensus statement with recommendations for the clinical use of MEPs in the study of MS. MEPs, in addition to spinal and cranial magnetic resonance imaging (MRI), help us diagnose and assess MS patients whose disease initially presents as spinal cord syndrome and those with non-specific brain MRI findings, or a normal brain MRI and clinical signs of MS. Whenever possible, a multimodal evoked potential study should be performed on patients with suspected MS in order to demonstrate involvement of the motor pathway which supports a diagnosis of dissemination in space. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  10. Auditory- and visual-evoked potentials in Mexican infants are not affected by maternal supplementation with 400 mg/d docosahexaenoic acid in the second half of pregnancy.

    Science.gov (United States)

    Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha

    2012-08-01

    The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P right visual-evoked potentials were strongly correlated (range, 0.79-0.94; all P 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.

  11. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex

    Science.gov (United States)

    Smiley, John F.; Schroeder, Charles E.

    2017-01-01

    Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is

  12. Auditory evoked potential measurements in elasmobranchs

    Science.gov (United States)

    Casper, Brandon; Mann, David

    2005-04-01

    Auditory evoked potentials (AEP) were first used to examine hearing in elasmobranchs by Corwin and Bullock in the late 1970s and early 1980s, marking the first time AEPs had been measured in fishes. Results of these experiments identified the regions of the ear and brain in which sound is processed, though no actual hearing thresholds were measured. Those initial experiments provided the ground work for future AEP experiments to measure fish hearing abilities in a manner that is much faster and more convenient than classical conditioning. Data will be presented on recent experiments in which AEPs were used to measure the hearing thresholds of two species of elasmobranchs: the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicencis. Audiograms were analyzed and compared to previously published audiograms obtained using classical conditioning with results indicating that hearing thresholds were similar for the two methods. These data suggest that AEP testing is a viable option when measuring hearing in elasmobranchs and can increase the speed in which future hearing measurements can be obtained.

  13. touché is required for touch evoked generator potentials within vertebrate sensory neurons

    Science.gov (United States)

    Low, Sean E.; Ryan, Joel; Sprague, Shawn M.; Hirata, Hiromi; Cui, Wilson W.; Zhou, Weibin; Hume, Richard I.; Kuwada, John Y.; Saint-Amant, Louis

    2010-01-01

    The process by which light-touch in vertebrates is transformed into an electrical response in cutaneous mechanosensitive neurons is a largely unresolved question. To address this question we undertook a forward genetic screen in zebrafish (Danio rerio) to identify mutants exhibiting abnormal touch-evoked behaviors, despite the presence of sensory neurons and peripheral neurites. One family, subsequently named touché, was found to harbor a recessive mutation which produced offspring that were unresponsive to light-touch, but responded to a variety of other sensory stimuli. The optogenetic activation of motor behaviors by touché mutant sensory neurons expressing ChannelRhodopsin-2 suggested that the synaptic output of sensory neurons was intact, consistent with a defect in sensory neuron activation. To explore sensory neuron activation we developed an in vivo preparation permitting the precise placement of a combined electrical and tactile stimulating probe upon eGFP positive peripheral neurites. In wild type larva electrical and tactile stimulation of peripheral neurites produced action potentials detectable within the cell body. In a subset of these sensory neurons an underlying generator potential could be observed in response to subthreshold tactile stimuli. A closer examination revealed that the amplitude of the generator potential was proportional to the stimulus amplitude. When assayed touché mutant sensory neurons also responded to electrical stimulation of peripheral neurites similar to wild type larvae, however tactile stimulation of these neurites failed to uncover a subset of sensory neurons possessing generator potentials. These findings suggest that touché is required for generator potentials, and that generator potentials underlie responsiveness to light-touch in zebrafish. PMID:20631165

  14. The cortical spatiotemporal correlate of otolith stimulation: Vestibular evoked potentials by body translations.

    Science.gov (United States)

    Ertl, M; Moser, M; Boegle, R; Conrad, J; Zu Eulenburg, P; Dieterich, M

    2017-07-15

    The vestibular organ senses linear and rotational acceleration of the head during active and passive motion. These signals are necessary for bipedal locomotion, navigation, the coordination of eye and head movements in 3D space. The temporal dynamics of vestibular processing in cortical structures have hardly been studied in humans, let alone with natural stimulation. The aim was to investigate the cortical vestibular network related to natural otolith stimulation using a hexapod motion platform. We conducted two experiments, 1. to estimate the sources of the vestibular evoked potentials (VestEPs) by means of distributed source localization (n=49), and 2. to reveal modulations of the VestEPs through the underlying acceleration intensity (n=24). For both experiments subjects were accelerated along the main axis (left/right, up/down, fore/aft) while the EEG was recorded. We were able to identify five VestEPs (P1, N1, P2, N2, P3) with latencies between 38 and 461 ms as well as an evoked beta-band response peaking with a latency of 68 ms in all subjects and for all acceleration directions. Source localization gave the cingulate sulcus visual (CSv) area and the opercular-insular region as the main origin of the evoked potentials. No lateralization effects due to handedness could be observed. In the second experiment, area CSv was shown to be integral in the processing of acceleration intensities as sensed by the otolith organs, hinting at its potential role in ego-motion detection. These robust VestEPs could be used to investigate the mechanisms of inter-regional interaction in the natural context of vestibular processing and multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effect of surgery on sensory threshold and somatosensory evoked potentials after skin stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1990-01-01

    We have studied the effect of surgical injury on cutaneous sensitivity and somatosensory evoked potentials (SSEP) to dermatomal electrical stimulation in 10 patients undergoing hysterectomy. Forty-eight hours after surgery, sensory threshold increased from 2.2 (SEM 0.3) mA to 4.4 (1.1) mA (P less...

  16. Single-Trial Evoked Potential Estimating Based on Sparse Coding under Impulsive Noise Environment

    Directory of Open Access Journals (Sweden)

    Nannan Yu

    2018-01-01

    Full Text Available Estimating single-trial evoked potentials (EPs corrupted by the spontaneous electroencephalogram (EEG can be regarded as signal denoising problem. Sparse coding has significant success in signal denoising and EPs have been proven to have strong sparsity over an appropriate dictionary. In sparse coding, the noise generally is considered to be a Gaussian random process. However, some studies have shown that the background noise in EPs may present an impulsive characteristic which is far from Gaussian but suitable to be modeled by the α-stable distribution 1<α≤2. Consequently, the performances of general sparse coding will degrade or even fail. In view of this, we present a new sparse coding algorithm using p-norm optimization in single-trial EPs estimating. The algorithm can track the underlying EPs corrupted by α-stable distribution noise, trial-by-trial, without the need to estimate the α value. Simulations and experiments on human visual evoked potentials and event-related potentials are carried out to examine the performance of the proposed approach. Experimental results show that the proposed method is effective in estimating single-trial EPs under impulsive noise environment.

  17. Effects of myelin or cell body brainstem lesions on 3-channel Lissajous' trajectories of feline auditory brainstem evoked potentials

    OpenAIRE

    Pratt, H; Zaaroor, M; Bleich, N; Starr, A

    1991-01-01

    Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion - midline nuchal ridge, left - right mastoids, vertex - midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re. human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (S...

  18. Gating of the vertex somatosensory and auditory evoked potential P50 and the correlation to skin conductance orienting response in healthy men

    DEFF Research Database (Denmark)

    Arnfred, S M; Eder, D N; Hemmingsen, R P

    2001-01-01

    A defect in auditory evoked potential (AEP) P50 gating supports the theory of information-processing deficits in schizophrenia. The relationship between gating of the mid-latency evoked potentials (EP) in the somatosensory and the auditory modalities has not been studied together before. In schiz...

  19. Comparing the Efficacy of Excitatory Transcranial Stimulation Methods Measuring Motor Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Vera Moliadze

    2014-01-01

    Full Text Available The common aim of transcranial stimulation methods is the induction or alterations of cortical excitability in a controlled way. Significant effects of each individual stimulation method have been published; however, conclusive direct comparisons of many of these methods are rare. The aim of the present study was to compare the efficacy of three widely applied stimulation methods inducing excitability enhancement in the motor cortex: 1 mA anodal transcranial direct current stimulation (atDCS, intermittent theta burst stimulation (iTBS, and 1 mA transcranial random noise stimulation (tRNS within one subject group. The effect of each stimulation condition was quantified by evaluating motor-evoked-potential amplitudes (MEPs in a fixed time sequence after stimulation. The analyses confirmed a significant enhancement of the M1 excitability caused by all three types of active stimulations compared to sham stimulation. There was no significant difference between the types of active stimulations, although the time course of the excitatory effects slightly differed. Among the stimulation methods, tRNS resulted in the strongest and atDCS significantly longest MEP increase compared to sham. Different time courses of the applied stimulation methods suggest different underlying mechanisms of action. Better understanding may be useful for better targeting of different transcranial stimulation techniques.

  20. Evoked potential correlates of selective attention with multi-channel auditory inputs

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.

    1975-01-01

    Ten subjects were presented with random, rapid sequences of four auditory tones which were separated in pitch and apparent spatial position. The N1 component of the auditory vertex evoked potential (EP) measured relative to a baseline was observed to increase with attention. It was concluded that the N1 enhancement reflects a finely tuned selective attention to one stimulus channel among several concurrent, competing channels. This EP enhancement probably increases with increased information load on the subject.

  1. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  2. [The modified method registration of kinesthetic evoked potentials and its application for research of proprioceptive sensitivity disorders at spondylogenic cervical myelopathy].

    Science.gov (United States)

    Gordeev, S A; Voronin, S G

    2016-01-01

    To analyze the efficacy of modified (passive radiocarpal articulation flexion/extension) and «standard» (passive radiocarpal articulation flexion) methods of kinesthetic evoked potentials for proprioceptive sensitivity assessment in healthy subjects and patients with spondylotic cervical myelopathy. The study included 14 healthy subjects (4 women and 10 men, mean age 54.1±10.5 years) and 8 patients (2 women and 6 men, mean age 55.8±10.9 years) with spondylotic cervical myelopathy. Muscle-joint sensation was examined during the clinical study. A modified method of kinesthetic evoked potentials was developed. This method differed from the "standard" one by the organization of a cycle including several passive movements,where each new movement differed from the preceding one by the direction. The modified method of kinesthetic evoked potentials ensures more reliable kinesthetic sensitivity assessment due to movement variability. Asignificant increaseof the latent periods of the early components of the response was found in patients compared to healthy subjects. The modified method of kinesthetic evoked potentials can be used for objective diagnosis of proprioceptive sensitivity disorders in patients with spondylotic cervical myelopathy.

  3. Normative data for Aδ contact heat evoked potentials in adult population: a multicenter study.

    Science.gov (United States)

    Granovsky, Yelena; Anand, Praveen; Nakae, Aya; Nascimento, Osvaldo; Smith, Benn; Sprecher, Elliot; Valls-Solé, Josep

    2016-05-01

    There has been a significant increase over recent years in the use of contact heat evoked potentials (CHEPs) for the evaluation of small nerve fiber function. Measuring CHEP amplitude and latency has clinical utility for the diagnosis and assessment of conditions with neuropathic pain. This international multicenter study aimed to provide reference values for CHEPs to stimuli at 5 commonly examined body sites. Contact heat evoked potentials were recorded from 226 subjects (114 females), distributed per age decade between 20 and 79 years. Temperature stimuli were delivered by a thermode (32°C-51°C at a rate of 70°C/s). In phase I of the study, we investigated side-to-side differences and reported the maximum normal side-to-side difference in Aδ CHEP peak latency and amplitude for leg, forearm, and face. In phase II, we obtained normative data for 3 CHEP parameters (N2P2 amplitude, N2 latency, and P2 latency), stratified for gender and age decades from face, upper and lower limbs, and overlying cervical and lumbar spine. In general, larger CHEP amplitudes were associated with higher evoked pain scores. Females had CHEPs of larger amplitude and shorter latency than males. This substantive data set of normative values will facilitate the clinical use of CHEPs as a rapid, noninvasive, and objective technique for the assessment of patients presenting with neuropathic pain.

  4. Backpropagating Action Potentials Enable Detection of Extrasynaptic Glutamate by NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Yu-Wei Wu

    2012-05-01

    Full Text Available Synaptic NMDA receptors (NMDARs are crucial for neural coding and plasticity. However, little is known about the adaptive function of extrasynaptic NMDARs occurring mainly on dendritic shafts. Here, we find that in CA1 pyramidal neurons, backpropagating action potentials (bAPs recruit shaft NMDARs exposed to ambient glutamate. In contrast, spine NMDARs are “protected,” under baseline conditions, from such glutamate influences by perisynaptic transporters: we detect bAP-evoked Ca2+ entry through these receptors upon local synaptic or photolytic glutamate release. During theta-burst firing, NMDAR-dependent Ca2+ entry either downregulates or upregulates an h-channel conductance (Gh of the cell depending on whether synaptic glutamate release is intact or blocked. Thus, the balance between activation of synaptic and extrasynaptic NMDARs can determine the sign of Gh plasticity. Gh plasticity in turn regulates dendritic input probed by local glutamate uncaging. These results uncover a metaplasticity mechanism potentially important for neural coding and memory formation.

  5. Site of cochlear stimulation and its effect on electrically evoked compound action potentials using the MED-EL standard electrode array

    Directory of Open Access Journals (Sweden)

    Helbig Silke

    2009-12-01

    Full Text Available Abstract Background The standard electrode array for the MED-EL MAESTRO cochlear implant system is 31 mm in length which allows an insertion angle of approximately 720°. When fully inserted, this long electrode array is capable of stimulating the most apical region of the cochlea. No investigation has explored Electrically Evoked Compound Action Potential (ECAP recordings in this region with a large number of subjects using a commercially available cochlear implant system. The aim of this study is to determine if certain properties of ECAP recordings vary, depending on the stimulation site in the cochlea. Methods Recordings of auditory nerve responses were conducted in 67 subjects to demonstrate the feasibility of ECAP recordings using the Auditory Nerve Response Telemetry (ART™ feature of the MED-EL MAESTRO system software. These recordings were then analyzed based on the site of cochlear stimulation defined as basal, middle and apical to determine if the amplitude, threshold and slope of the amplitude growth function and the refractory time differs depending on the region of stimulation. Results Findings show significant differences in the ECAP recordings depending on the stimulation site. Comparing the apical with the basal region, on average higher amplitudes, lower thresholds and steeper slopes of the amplitude growth function have been observed. The refractory time shows an overall dependence on cochlear region; however post-hoc tests showed no significant effect between individual regions. Conclusions Obtaining ECAP recordings is also possible in the most apical region of the cochlea. However, differences can be observed depending on the region of the cochlea stimulated. Specifically, significant higher ECAP amplitude, lower thresholds and steeper amplitude growth function slopes have been observed in the apical region. These differences could be explained by the location of the stimulating electrode with respect to the neural tissue

  6. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap.

    Science.gov (United States)

    Schvartz-Leyzac, Kara C; Pfingst, Bryan E

    2016-11-01

    Electrically evoked compound action potential (ECAP) measures of peak amplitude, and amplitude-growth function (AGF) slope have been shown to reflect characteristics of cochlear health (primarily spiral ganglion density) in anesthetized cochlear-implanted guinea pigs. Likewise, the effect of increasing the interphase gap (IPG) in each of these measures also reflects SGN density in the implanted guinea pig. Based on these findings, we hypothesize that suprathreshold ECAP measures, and also how they change as the IPG is increased, have the potential to be clinically applicable in human subjects. However, further work is first needed in order to determine the characteristics of these measures in humans who use cochlear implants. The current study examined across-site patterns of suprathreshold ECAP measures in 10 bilaterally-implanted, adult cochlear implant users. Results showed that both peak amplitude and slope of the AGF varied significantly from electrode to electrode in ear-specific patterns across the subjects' electrode arrays. As expected, increasing the IPG on average increased the peak amplitude and slope. Across ears, there was a significant, negative correlation between the slope of the ECAP AGF and the duration of hearing loss. Across-site patterns of ECAP peak amplitude and AGF slopes were also compared with common ground impedance values and significant correlations were observed in some cases, depending on the subject and condition. The results of this study, coupled with previous studies in animals, suggest that it is feasible to measure the change in suprathreshold ECAP measures as the IPG increases on most electrodes. Further work is needed to investigate the relationship between these measures and cochlear implant outcomes, and determine how these measures might be used when programming a cochlear-implant processor. Published by Elsevier B.V.

  7. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia

    DEFF Research Database (Denmark)

    Astrup, J; Symon, L; Branston, N M

    1977-01-01

    + as well as evoked potential were made in the baboon neocortex. Reductions in blood flow were obtained by occlusion of the middle cerebral artery and depression beyond the ischemic threshold of electrical function achieved by a reduction of systemic blood pressure which, in the ischemic zones, changed...

  8. Pattern Visual Evoked Potential as a Predictor of Occlusion Therapy for Amblyopia

    OpenAIRE

    Chung, Woosuk; Hong, Samin; Lee, Jong Bok; Han, Sueng-Han

    2008-01-01

    Purpose This study was conducted to investigate the role of the pattern visual evoked potential (pVEP) as a predictor of occlusion therapy for patients with strabismic, anisometropic, and isometropic amblyopia. The secondary aim was to compare the characteristics of pVEP between strabismic and anisometropic amblyopia. Methods This retrospective comparative case series included 120 patients who had received occlusion therapy or a glasses prescription for correction of strabismic, anisometropic...

  9. Interhemispheric Asymmetries in Visual Evoked Potential Amplitude

    Science.gov (United States)

    1980-06-12

    Layne, 1965) and of patients with Korsakoff’s syndrome (Malerstein and Callaway, 1969) . In the schizophrenics, the high variability is related to poor...communication. Malerstein, A. J., Callaway, E. Two-tone average evoked response in Korsakoff patients. J. Psychiatr. Res. 6: 253-260, 1969. Marsh, G

  10. Multifocal Visual Evoked Potential in Eyes With Temporal Hemianopia From Chiasmal Compression: Correlation With Standard Automated Perimetry and OCT Findings.

    Science.gov (United States)

    Sousa, Rafael M; Oyamada, Maria K; Cunha, Leonardo P; Monteiro, Mário L R

    2017-09-01

    To verify whether multifocal visual evoked potential (mfVEP) can differentiate eyes with temporal hemianopia due to chiasmal compression from healthy controls. To assess the relationship between mfVEP, standard automated perimetry (SAP), and Fourier domain-optical coherence tomography (FD-OCT) macular and peripapillary retinal nerve fiber layer (RNFL) thickness measurements. Twenty-seven eyes with permanent temporal visual field (VF) defects from chiasmal compression on SAP and 43 eyes of healthy controls were submitted to mfVEP and FD-OCT scanning. Multifocal visual evoked potential was elicited using a stimulus pattern of 60 sectors and the responses were averaged for the four quadrants and two hemifields. Optical coherence tomography macular measurements were averaged in quadrants and halves, while peripapillary RNFL thickness was averaged in four sectors around the disc. Visual field loss was estimated in four quadrants and each half of the 24-2 strategy test points. Multifocal visual evoked potential measurements in the two groups were compared using generalized estimated equations, and the correlations between mfVEP, VF, and OCT findings were quantified. Multifocal visual evoked potential-measured temporal P1 and N2 amplitudes were significantly smaller in patients than in controls. No significant difference in amplitude was observed for nasal parameters. A significant correlation was found between mfVEP amplitudes and temporal VF loss, and between mfVEP amplitudes and the corresponding OCT-measured macular and RNFL thickness parameters. Multifocal visual evoked potential amplitude parameters were able to differentiate eyes with temporal hemianopia from controls and were significantly correlated with VF and OCT findings, suggesting mfVEP is a useful tool for the detection of visual abnormalities in patients with chiasmal compression.

  11. New composite index based on midlatency auditory evoked potential and electroencephalographic parameters to optimize correlation with propofol effect site concentration - Comparison with bispectral index and solitary used fast extracting auditory evoked potential index

    NARCIS (Netherlands)

    Vereecke, HEM; Vasquez, PM; Jensen, EW; Thas, O; Vandenbroecke, R; Mortier, EP; Struys, MMRF

    Background: This study investigates the accuracy of a composite index, the A-Line (R) auditory evoked potentials index version 1.6 (AAI(1.6); Danmeter A/S, Odense, Denmark), as a measure of cerebral anesthetic drug effect in a model for predicting a calculated effect site concentration of propofol

  12. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    Science.gov (United States)

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  13. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M

    2014-07-14

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population.

  14. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2014-07-01

    Full Text Available The evoked electromyographic signal (eEMG potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05 between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI population.

  15. Dynamic Action Potential Restitution Contributes to Mechanical Restitution in Right Ventricular Myocytes From Pulmonary Hypertensive Rats.

    Science.gov (United States)

    Hardy, Matthew E L; Pervolaraki, Eleftheria; Bernus, Olivier; White, Ed

    2018-01-01

    We investigated the steepened dynamic action potential duration (APD) restitution of rats with pulmonary artery hypertension (PAH) and right ventricular (RV) failure and tested whether the observed APD restitution properties were responsible for negative mechanical restitution in these myocytes. PAH and RV failure were provoked in male Wistar rats by a single injection of monocrotaline (MCT) and compared with saline-injected animals (CON). Action potentials were recorded from isolated RV myocytes at stimulation frequencies between 1 and 9 Hz. Action potential waveforms recorded at 1 Hz were used as voltage clamp profiles (action potential clamp) at stimulation frequencies between 1 and 7 Hz to evoke rate-dependent currents. Voltage clamp profiles mimicking typical CON and MCT APD restitution were applied and cell shortening simultaneously monitored. Compared with CON myocytes, MCT myocytes were hypertrophied; had less polarized diastolic membrane potentials; had action potentials that were triggered by decreased positive current density and shortened by decreased negative current density; APD was longer and APD restitution steeper. APD90 restitution was unchanged by exposure to the late Na + -channel blocker (5 μM) ranolazine or the intracellular Ca 2+ buffer BAPTA. Under AP clamp, stimulation frequency-dependent inward currents were smaller in MCT myocytes and were abolished by BAPTA. In MCT myocytes, increasing stimulation frequency decreased contraction amplitude when depolarization duration was shortened, to mimic APD restitution, but not when depolarization duration was maintained. We present new evidence that the membrane potential of PAH myocytes is less stable than normal myocytes, being more easily perturbed by external currents. These observations can explain increased susceptibility to arrhythmias. We also present novel evidence that negative APD restitution is at least in part responsible for the negative mechanical restitution in PAH myocytes. Thus

  16. Sugammadex to reverse neuromuscular blockade and provide optimal conditions for motor-evoked potential monitoring

    Directory of Open Access Journals (Sweden)

    Mehdi Trifa

    2017-01-01

    Full Text Available Sugammadex is a novel pharmacologic agent, which reverses neuromuscular blockade (NMB via a mechanism that differs completely from acetylcholinesterase inhibitors. By encapsulating rocuronium, sugammadex can provide recovery of neuromuscular function even when there is a profound degree of NMB. We report anecdotal experience with the use of sugammadex to reverse NMB to facilitate intraoperative neurophysiological monitoring (motor evoked potentials in an adolescent with scoliosis during posterior spinal fusion. Its potential application in this unique clinical scenario is discussed, and potential dosing schemes are reviewed.

  17. Cholinergic pairing with visual activation results in long-term enhancement of visual evoked potentials.

    Directory of Open Access Journals (Sweden)

    Jun Il Kang

    Full Text Available Acetylcholine (ACh contributes to learning processes by modulating cortical plasticity in terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, it is not known if ACh induces long term effects within the primary visual cortex (V1 that could sustain visual learning mechanisms. In the present study we analyzed visual evoked potentials (VEPs in V1 of rats during a 4-8 h period after coupling visual stimulation to an intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine, nicotinic (mecamylamine, alpha7 (methyllycaconitine, and NMDA (CPP receptor antagonists before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude (56% during a 6 h period. Pre-treatment with scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, while alpha7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex.

  18. [Recognition of the spatially transformed objects in men and women: an analysis of the behavior and evoked potentials].

    Science.gov (United States)

    Slavutskaia, A V; Gerasimenko, N Iu; Mikhaĭlova, E S

    2012-01-01

    In 16 men and 15 women analyzed the accuracy, reaction time and visual evoked potentials during the recognition of familiar objects at different levels of spatial transformation. We used the three levels of transformation: in a fixed position relative to each other details were carried out (1) the displacement of all the details in the radial direction and (2 and 3) a similar shift in conjunction with the rotation of all the details of the figure by +/- 0-45 and +/- 45-90 degrees. The task performance was not dependent on gender: the transformation of the image led to a deterioration of identification with the most identification impairment in the case of maximal details' rotation. Changes in evoked potentials (ERP) are different for men and women. Only in men early (100 ms after stimulus) response of the parietal cortex associated with the level of figure transformation: the more rotation evoked the higher the response. In women figure transformation evoked the ERP changes in the time window of negativity N170, they are associated with figure ungrouping but not with details rotation, and are localized in other visual areas--occipital and temporal. The data obtained are discussed in light of theory of gender specificity of the visual representations of space.

  19. Muscle potentials evoked by magnetic stimulation of the sciatic nerve in unilateral sciatic nerve dysfunction

    NARCIS (Netherlands)

    Van Soens, I.; Struys, M. M. R. F.; Van Ham, L. M. L.

    Magnetic stimulation of the sciatic nerve and subsequent recording of the muscle-evoked potential (MEP) was performed in eight dogs and three cats with unilateral sciatic nerve dysfunction. Localisation of the lesion in the sciatic nerve was based on the history, clinical neurological examination

  20. Correlation of pattern reversal visual evoked potential parameters with the pattern standard deviation in primary open angle glaucoma.

    Science.gov (United States)

    Kothari, Ruchi; Bokariya, Pradeep; Singh, Ramji; Singh, Smita; Narang, Purvasha

    2014-01-01

    To evaluate whether glaucomatous visual field defect particularly the pattern standard deviation (PSD) of Humphrey visual field could be associated with visual evoked potential (VEP) parameters of patients having primary open angle glaucoma (POAG). Visual field by Humphrey perimetry and simultaneous recordings of pattern reversal visual evoked potential (PRVEP) were assessed in 100 patients with POAG. The stimulus configuration for VEP recordings consisted of the transient pattern reversal method in which a black and white checker board pattern was generated (full field) and displayed on VEP monitor (colour 14″) by an electronic pattern regenerator inbuilt in an evoked potential recorder (RMS EMG EP MARK II). The results of our study indicate that there is a highly significant (P<0.001) negative correlation of P100 amplitude and a statistically significant (P<0.05) positive correlation of N70 latency, P100 latency and N155 latency with the PSD of Humphrey visual field in the subjects of POAG in various age groups as evaluated by Student's t-test. Prolongation of VEP latencies were mirrored by a corresponding increase of PSD values. Conversely, as PSD increases the magnitude of VEP excursions were found to be diminished.

  1. Functional MRI brain imaging studies using the Contact Heat Evoked Potential Stimulator (CHEPS in a human volunteer topical capsaicin pain model

    Directory of Open Access Journals (Sweden)

    Shenoy R

    2011-10-01

    Full Text Available Ravikiran Shenoy1, Katherine Roberts1, Anastasia Papadaki2, Donald McRobbie2, Maarten Timmers3, Theo Meert3, Praveen Anand11Peripheral Neuropathy Unit, Hammersmith Hospital, Imperial College London; 2Imaging Sciences Department, Charing Cross Hospital, London, United Kingdom; 3Johnson and Johnson Pharmaceutical Research and Development, Beerse, BelgiumAbstract: Acute application of topical capsaicin produces spontaneous burning and stinging pain similar to that seen in some neuropathic states, with local hyperalgesia. Use of capsaicin applied topically or injected intradermally has been described as a model for neuropathic pain, with patterns of activation in brain regions assessed using functional magnetic resonance imaging (fMRI and positron emission tomography. The Contact Heat Evoked Potential Stimulator (CHEPS is a noninvasive clinically practical method of stimulating cutaneous A-delta nociceptors. In this study, topical capsaicin (1% was applied to the left volar forearm for 15 minutes of twelve adult healthy human volunteers. fMRI scans and a visual analog pain score were recorded during CHEPS stimulation precapsaicin and postcapsaicin application. Following capsaicin application there was a significant increase in visual analog scale (mean ± standard error of the mean; precapsaicin 26.4 ± 5.3; postcapsaicin 48.9 ± 6.0; P < 0.0001. fMRI demonstrated an overall increase in areas of activation, with a significant increase in the contralateral insular signal (mean ± standard error of the mean; precapsaicin 0.434 ± 0.03; postcapsaicin 0.561 ± 0.07; P = 0.047. The authors of this paper recently published a study in which CHEPS-evoked A-delta cerebral potential amplitudes were found to be decreased postcapsaicin application. In patients with neuropathic pain, evoked pain and fMRI brain responses are typically increased, while A-delta evoked potential amplitudes are decreased. The protocol of recording fMRI following CHEPS stimulation

  2. Otolithic disease: clinical features and the role of vestibular evoked myogenic potentials.

    Science.gov (United States)

    Curthoys, Ian S; Manzari, Leonardo

    2013-07-01

    Through selective tests of the function of the canal and otolith sense organs, it is possible to assert that patient conditions are purely otolithic and that the canals are not involved. The video head impulse test selectively tests each semicircular canal; the ocular vestibular-evoked myogenic potential to 500 Hz Fz (Fz is the location on the forehead in the midline at the hairline) bone-conducted vibration (BCV) selectively tests the utricular macula and the cervical vestibular-evoked myogenic potential to 500 Hz Fz BCV selectively tests the saccular macula. The development of new specific tests of otolith function has shown that some patients may have specific deficits of just otolithic function. In the authors' experience, patients who complain strongly of postural unsteadiness should be suspected to have otolithic deficits. They may also have vertigo and in some cases have spontaneous nystagmus of peripheral origin, even though their semicircular canal function is normal. The prognosis for such patients is good. They usually appear to regain their postural stability spontaneously over weeks (or longer), even though they still have an otolithic deficit as shown by objective tests when they are free of symptoms. It is not known what procedures may accelerate the recovery of otolith function. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Proprioceptive evoked potentials in man: cerebral responses to changing weight loads on the hand

    DEFF Research Database (Denmark)

    Arnfred, S; He, Chen; Eder, D

    2000-01-01

    We studied cerebral evoked potentials on the scalp to the stimulation of the right hand from a change in weight of 400-480 g in ten subjects. Rise-time was 20g/10 ms, Inter Stimulus Interval 2s and stimulus duration was 100 ms. The cerebral activations were a double positive contralateral C3'/P70...

  4. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs.

    Science.gov (United States)

    Hewitt, Matthew M; Adams, Gregory; Mazzone, Stuart B; Mori, Nanako; Yu, Li; Canning, Brendan J

    2016-06-01

    Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonist HOE 140. These cough responses rapidly desensitized, consistent with reports of B2 receptor desensitization. Bradykinin-evoked cough was potentiated by inhibition of both neutral endopeptidase and angiotensin-converting enzyme (with thiorphan and captopril, respectively), but was largely unaffected by muscarinic or thromboxane receptor blockade (atropine and ICI 192605), cyclooxygenase, or nitric oxide synthase inhibition (meclofenamic acid and N(G)-nitro-L-arginine). Calcium influx studies in bronchopulmonary vagal afferent neurons dissociated from vagal sensory ganglia indicated that the tachykinin-containing C-fibers arising from the jugular ganglia mediate bradykinin-evoked coughing. Also implicating the jugular C-fibers was the observation that simultaneous blockade of neurokinin2 (NK2; SR48968) and NK3 (SR142801 or SB223412) receptors nearly abolished the bradykinin-evoked cough responses. The data suggest that bradykinin induces coughing in guinea pigs by activating B2 receptors on bronchopulmonary C-fibers. We speculate that therapeutics targeting the actions of bradykinin may prove useful in the treatment of cough. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Broad-Band Visually Evoked Potentials: Re(convolution in Brain-Computer Interfacing.

    Directory of Open Access Journals (Sweden)

    Jordy Thielen

    Full Text Available Brain-Computer Interfaces (BCIs allow users to control devices and communicate by using brain activity only. BCIs based on broad-band visual stimulation can outperform BCIs using other stimulation paradigms. Visual stimulation with pseudo-random bit-sequences evokes specific Broad-Band Visually Evoked Potentials (BBVEPs that can be reliably used in BCI for high-speed communication in speller applications. In this study, we report a novel paradigm for a BBVEP-based BCI that utilizes a generative framework to predict responses to broad-band stimulation sequences. In this study we designed a BBVEP-based BCI using modulated Gold codes to mark cells in a visual speller BCI. We defined a linear generative model that decomposes full responses into overlapping single-flash responses. These single-flash responses are used to predict responses to novel stimulation sequences, which in turn serve as templates for classification. The linear generative model explains on average 50% and up to 66% of the variance of responses to both seen and unseen sequences. In an online experiment, 12 participants tested a 6 × 6 matrix speller BCI. On average, an online accuracy of 86% was reached with trial lengths of 3.21 seconds. This corresponds to an Information Transfer Rate of 48 bits per minute (approximately 9 symbols per minute. This study indicates the potential to model and predict responses to broad-band stimulation. These predicted responses are proven to be well-suited as templates for a BBVEP-based BCI, thereby enabling communication and control by brain activity only.

  6. The real-time link between person perception and action: brain potential evidence for dynamic continuity.

    Science.gov (United States)

    Freeman, Jonathan B; Ambady, Nalini; Midgley, Katherine J; Holcomb, Phillip J

    2011-01-01

    Using event-related potentials, we investigated how the brain extracts information from another's face and translates it into relevant action in real time. In Study 1, participants made between-hand sex categorizations of sex-typical and sex-atypical faces. Sex-atypical faces evoked negativity between 250 and 550 ms (N300/N400 effects), reflecting the integration of accumulating sex-category knowledge into a coherent sex-category interpretation. Additionally, the lateralized readiness potential revealed that the motor cortex began preparing for a correct hand response while social category knowledge was still gradually evolving in parallel. In Study 2, participants made between-hand eye-color categorizations as part of go/no-go trials that were contingent on a target's sex. On no-go trials, although the hand did not actually move, information about eye color partially prepared the motor cortex to move the hand before perception of sex had finalized. Together, these findings demonstrate the dynamic continuity between person perception and action, such that ongoing results from face processing are immediately and continuously cascaded into the motor system over time. The preparation of action begins based on tentative perceptions of another's face before perceivers have finished interpreting what they just saw. © 2010 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business

  7. Visual evoked potentials of mildly mentally retarded and control children.

    Science.gov (United States)

    Gasser, T; Pietz, J; Schellberg, D; Köhler, W

    1988-10-01

    Visual evoked potentials (VEPs) were recorded from 25 10- to 13-year-old mildly mentally retarded children and compared with those from 31 control children of the same age-range. Correlations of VEPs with age were weak, but a relationship between VEPs and IQ was demonstrated for the control group. The retarded group had significantly longer latencies and higher amplitude peaks than the control group, with the differences occurring primarily over non-specific cortex and for secondary components. Analysis also showed that the retarded group were neurophysiologically heterogeneous. Since the same children had been analyzed earlier by quantitative EEG methods, comparisons are made with respect to these two methods of investigating brain function.

  8. Visual evoked potentials in neuromyelitis optica and its spectrum disorders.

    Science.gov (United States)

    Ringelstein, Marius; Kleiter, Ingo; Ayzenberg, Ilya; Borisow, Nadja; Paul, Friedemann; Ruprecht, Klemens; Kraemer, Markus; Cohn, Eva; Wildemann, Brigitte; Jarius, Sven; Hartung, Hans-Peter; Aktas, Orhan; Albrecht, Philipp

    2014-04-01

    Optic neuritis (ON) is a key feature of neuromyelitis optica (NMO). Recently, NMO patients of predominantly Afro-Brazilian origin were evaluated by visual evoked potentials (VEPs) and showed marked amplitude reductions. Here, we analyzed VEPs in a predominantly Caucasian cohort, consisting of 43 patients with definite NMO, 18 with anti-aquaporin (AQP) 4 antibody-seropositive NMO spectrum disorders and 61 matched healthy controls. We found reduced amplitudes in only 12.3%, prolonged latencies in 41.9% and a lack of response in 14.0% of NMO eyes. Delayed P100 latencies in eyes without prior ON suggested this was a subclinical affection. The data indicate heterogenous patterns in NMO, warranting further investigation.

  9. Analysis of relationship among visual evoked potential, oscillatory potential and visual acuity under stimulated weightlessness

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    2013-05-01

    Full Text Available AIM: To observe the influence of head-down tilt simulated weightlessness on visual evoked potential(VEP, oscillatory potentials(OPsand visual acuity, and analyse the relationship among them. METHODS: Head-down tilt for -6° was adopted in 14 healthy volunteers. Distant visual acuity, near visual acuity, VEP and OPs were recorded before, two days and five days after trial. The record procedure of OPs followed the ISCEV standard for full-field clinical electroretinography(2008 update. RESULTS: Significant differences were detected in the amplitude of P100 waves and ∑OPs among various time points(P<0.05. But no relationship was observed among VEP, OPs and visual acuity. CONCLUSION: Head-down tilt simulated weightlessness induce the rearrange of blood of the whole body including eyes, which can make the change of visual electrophysiology but not visual acuity.

  10. Correlation of pattern reversal visual evoked potential parameters with the pattern standard deviation in primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Ruchi Kothari

    2014-04-01

    Full Text Available AIM:To evaluate whether glaucomatous visual field defect particularly the pattern standard deviation (PSD of Humphrey visual field could be associated with visual evoked potential (VEP parameters of patients having primary open angle glaucoma (POAG.METHODS:Visual field by Humphrey perimetry and simultaneous recordings of pattern reversal visual evoked potential (PRVEP were assessed in 100 patients with POAG. The stimulus configuration for VEP recordings consisted of the transient pattern reversal method in which a black and white checker board pattern was generated (full field and displayed on VEP monitor (colour 14” by an electronic pattern regenerator inbuilt in an evoked potential recorder (RMS EMG EP MARK II.RESULTS:The results of our study indicate that there is a highly significant (P<0.001 negative correlation of P100 amplitude and a statistically significant (P<0.05 positive correlation of N70 latency, P100 latency and N155 latency with the PSD of Humphrey visual field in the subjects of POAG in various age groups as evaluated by Student’s t-test.CONCLUSION:Prolongation of VEP latencies were mirrored by a corresponding increase of PSD values. Conversely, as PSD increases the magnitude of VEP excursions were found to be diminished.

  11. [Forensic application of brainstem auditory evoked potential in patients with brain concussion].

    Science.gov (United States)

    Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin

    2008-12-01

    To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (Pconcussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.

  12. Maturation of long latency auditory evoked potentials in hearing children: systematic review.

    Science.gov (United States)

    Silva, Liliane Aparecida Fagundes; Magliaro, Fernanda Cristina Leite; Carvalho, Ana Claudia Martinho de; Matas, Carla Gentile

    2017-05-15

    To analyze how Auditory Long Latency Evoked Potentials (LLAEP) change according to age in children population through a systematic literature review. After formulation of the research question, a bibliographic survey was done in five data bases with the following descriptors: Electrophysiology (Eletrofisiologia), Auditory Evoked Potentials (Potenciais Evocados Auditivos), Child (Criança), Neuronal Plasticity (Plasticidade Neuronal) and Audiology (Audiologia). Level 1 evidence articles, published between 1995 and 2015 in Brazilian Portuguese or English language. Aspects related to emergence, morphology and latency of P1, N1, P2 and N2 components were analyzed. A total of 388 studies were found; however, only 21 studies contemplated the established criteria. P1 component is characterized as the most frequent component in young children, being observed around 100-150 ms, which tends to decrease as chronological age increases. The N2 component was shown to be the second most commonly observed component in children, being observed around 200-250 ms.. The other N1 and P2 components are less frequent and begin to be seen and recorded throughout the maturational process. The maturation of LLAEP occurs gradually, and the emergence of P1, N1, P2 and N2 components as well as their latency values are variable in childhood. P1 and N2 components are the most observed and described in pediatric population. The diversity of protocols makes the comparison between studies difficult.

  13. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia.

    Science.gov (United States)

    Ewing, Samuel G; Grace, Anthony A

    2013-02-01

    Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Laser-Induced Evoked Potentials in the Brain after Nonperceptible Optical Stimulation at the Neiguan Acupoint: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Gerhard Litscher

    2012-01-01

    Full Text Available We report on small but reproducible human cerebral evoked potentials after bilateral nonperceptible laser needle (658 nm, 40 mW, 500 μm, 1 Hz irradiation of the Neiguan acupoint (PC6. The results which are unique in scientific literature were obtained in a 26-year-old female healthy volunteer within a joint study between the Medical University of Graz, the Karl-Franzens University of Graz, and the Graz University of Technology. The findings of the 32-channel evoked potential analysis indicate that exposure to laser needle stimulation with a frequency of 1 Hz can modulate the ascending reticular activating system. Further studies are absolutely necessary to confirm or refute the preliminary findings.

  15. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials

    DEFF Research Database (Denmark)

    Epp, Bastian; Yasin, Ifat; Verhey, Jesko L.

    2013-01-01

    at a fixed physical intensity is varied by introducing auditory cues of (i) interaural target signal phase disparity and (ii) coherent masker level fluctuations in different frequency regions. In agreement with previous studies, psychoacoustical experiments showed that both stimulus manipulations result......The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound...... in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners...

  16. [Evoked potentials N200/P300 disorders and clinical phenotype in Cuban families with paranoid schizophrenia: a family-based association study].

    Science.gov (United States)

    Guerra López, Seidel; Martín Reyes, Migdyrai; Pedroso Rodríguez, María de Los Ángeles; Reyes Berazain, Adnelys; Mendoza Quiñones, Raúl; Bravo Collazo, Tania Martha; Días de Villarvilla, Thais; Machado Cano, María Julia; Bobés León, María Antonieta

    2015-04-01

    N200 and P300 event-related evoked potentials provide sensitive measurements of sensory and cognitive function and have been used to study information processing in patients with schizophrenia and their unaffected first-degree relatives. Reduced amplitude and increased latency of N200 and P300 potentials have been consistently reported in schizophrenia. Thus, event-related evoked potentials abnormalities are promising possible biological markers for genetic vulnerability to schizophrenia. To assess the association of changes in latency, amplitude and topographic distribution of potentials N200 and P300 of patients with paranoid schizophrenia and their healthy first-degree relatives, in families with schizophrenia multiplex. We measured latency and amplitude of the N200 and P300 component of evoked potentials using an auditory odd-ball paradigm in 25 schizophrenic patients (probands) from 60 families multiply affected with paranoid schizophrenia, 23 of their non-schizophrenic first-degree relatives and 25 unrelated healthy controls, through a study of family association. Schizophrenic patients and their relatives showed significant latency prolongation and amplitude reduction of the N200 and P300 waves compared to controls. Left-temporal as compared to right-temporal N200 and P300 were significantly smaller in schizophrenic patients and their non-schizophrenic first-degree relatives than in controls. Our results suggest that event-related evoked potentials abnormalities may serve as markers of genetic vulnerability in schizophrenia. Confirming results of other researchers, this present study suggests that latency prolongation and amplitude reduction of the N200 and P300 waves and an altered topography at temporal sites may be a trait “marker” of paranoid schizophrenia.

  17. Conscious wireless electroretinogram and visual evoked potentials in rats.

    Directory of Open Access Journals (Sweden)

    Jason Charng

    Full Text Available The electroretinogram (ERG, retina and visual evoked potential (VEP, brain are widely used in vivo tools assaying the integrity of the visual pathway. Current recordings in preclinical models are conducted under anesthesia, which alters neural physiology and contaminates responses. We describe a conscious wireless ERG and VEP recording platform in rats. Using a novel surgical technique to chronically implant electrodes subconjunctivally on the eye and epidurally over the visual cortex, we are able to record stable and repeatable conscious ERG and VEP signals over at least 1 month. We show that the use of anaesthetics, necessary for conventional ERG and VEP measurements, alters electrophysiology recordings. Conscious visual electrophysiology improves the viability of longitudinal studies by eliminating complications associated with repeated anaesthesia. It will also enable uncontaminated assessment of drug effects, allowing the eye to be used as an effective biomarker of the central nervous system.

  18. Correlates of a single cortical action potential in the epidural EEG

    Science.gov (United States)

    Teleńczuk, Bartosz; Baker, Stuart N; Kempter, Richard; Curio, Gabriel

    2015-01-01

    To identify the correlates of a single cortical action potential in surface EEG, we recorded simultaneously epidural EEG and single-unit activity in the primary somatosensory cortex of awake macaque monkeys. By averaging over EEG segments coincident with more than hundred thousand single spikes, we found short-lived (≈ 0.5 ms) triphasic EEG deflections dominated by high-frequency components > 800 Hz. The peak-to-peak amplitude of the grand-averaged spike correlate was 80 nV, which matched theoretical predictions, while single-neuron amplitudes ranged from 12 to 966 nV. Combining these estimates with post-stimulus-time histograms of single-unit responses to median-nerve stimulation allowed us to predict the shape of the evoked epidural EEG response and to estimate the number of contributing neurons. These findings establish spiking activity of cortical neurons as a primary building block of high-frequency epidural EEG, which thus can serve as a quantitative macroscopic marker of neuronal spikes. PMID:25554430

  19. Vestibular-Evoked Myogenic Potentials in Bilateral Vestibulopathy

    Directory of Open Access Journals (Sweden)

    Sally M. Rosengren

    2018-04-01

    Full Text Available Bilateral vestibulopathy (BVP is a chronic condition in which patients have a reduction or absence of vestibular function in both ears. BVP is characterized by bilateral reduction of horizontal canal responses; however, there is increasing evidence that otolith function can also be affected. Cervical and ocular vestibular-evoked myogenic potentials (cVEMPs/oVEMPs are relatively new tests of otolith function that can be used to test the saccule and utricle of both ears independently. Studies to date show that cVEMPs and oVEMPs are often small or absent in BVP but are in the normal range in a significant proportion of patients. The variability in otolith function is partly due to the heterogeneous nature of BVP but is also due to false negative and positive responses that occur because of the large range of normal VEMP amplitudes. Due to their variability, VEMPs are not part of the diagnosis of BVP; however, they are helpful complementary tests that can provide information about the extent of disease within the labyrinth. This article is a review of the use of VEMPs in BVP, summarizing the available data on VEMP abnormalities in patients and discussing the limitations of VEMPs in diagnosing bilateral loss of otolith function.

  20. Identification of causal relations between haemodynamic variables, auditory evoked potentials and isoflurane by means of fuzzy logic

    DEFF Research Database (Denmark)

    Jensen, E W; Nebot, A; Caminal, P

    1999-01-01

    The aim of this study was to identify a possible relationship between haemodynamic variables, auditory evoked potentials (AEP) and inspired fraction of isoflurane (ISOFl). Two different models (isoflurane and mean arterial pressure) were identified using the fuzzy inductive reasoning (FIR...

  1. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Guang-Hua [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054 (China)

    2015-03-10

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.

  2. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    International Nuclear Information System (INIS)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing; Xu, Guang-Hua

    2015-01-01

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n n with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method

  3. Mapping human brain networks with cortico-cortical evoked potentials

    Science.gov (United States)

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  4. Spontaneous and Evoked Activity from Murine Ventral Horn Cultures on Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Bryan J. Black

    2017-09-01

    Full Text Available Motor neurons are the site of action for several neurological disorders and paralytic toxins, with cell bodies located in the ventral horn (VH of the spinal cord along with interneurons and support cells. Microelectrode arrays (MEAs have emerged as a high content assay platform for mechanistic studies and drug discovery. Here, we explored the spontaneous and evoked electrical activity of VH cultures derived from embryonic mouse spinal cord on multi-well plates of MEAs. Primary VH cultures from embryonic day 15–16 mice were characterized by expression of choline acetyltransferase (ChAT by immunocytochemistry. Well resolved, all-or-nothing spontaneous spikes with profiles consistent with extracellular action potentials were observed after 3 days in vitro, persisting with consistent firing rates until at least day in vitro 19. The majority of the spontaneous activity consisted of tonic firing interspersed with coordinated bursting across the network. After 5 days in vitro, spike activity was readily evoked by voltage pulses where a minimum amplitude and duration required for excitation was 300 mV and 100 μs/phase, respectively. We characterized the sensitivity of spontaneous and evoked activity to a host of pharmacological agents including AP5, CNQX, strychnine, ω-agatoxin IVA, and botulinum neurotoxin serotype A (BoNT/A. These experiments revealed sensitivity of the cultured VH to both agonist and antagonist compounds in a manner consistent with mature tissue derived from slices. In the case of BoNT/A, we also demonstrated intoxication persistence over an 18-day period, followed by partial intoxication recovery induced by N- and P/Q-type calcium channel agonist GV-58. In total, our findings suggest that VH cultures on multi-well MEA plates may represent a moderate throughput, high content assay for performing mechanistic studies and for screening potential therapeutics pertaining to paralytic toxins and neurological disorders.

  5. Video outside versus video inside the web: do media setting and image size have an impact on the emotion-evoking potential of video?

    NARCIS (Netherlands)

    Verleur, R.; Verhagen, Pleunes Willem; Crawford, Margaret; Simonson, Michael; Lamboy, Carmen

    2001-01-01

    To explore the educational potential of video-evoked affective responses in a Web-based environment, the question was raised whether video in a Web-based environment is experienced differently from video in a traditional context. An experiment was conducted that studied the affect-evoking power of

  6. Chromatic spatial contrast sensitivity estimated by visual evoked cortical potential and psychophysics

    Science.gov (United States)

    Barboni, M.T.S.; Gomes, B.D.; Souza, G.S.; Rodrigues, A.R.; Ventura, D.F.; Silveira, L.C.L.

    2013-01-01

    The purpose of the present study was to measure contrast sensitivity to equiluminant gratings using steady-state visual evoked cortical potential (ssVECP) and psychophysics. Six healthy volunteers were evaluated with ssVECPs and psychophysics. The visual stimuli were red-green or blue-yellow horizontal sinusoidal gratings, 5° × 5°, 34.3 cd/m2 mean luminance, presented at 6 Hz. Eight spatial frequencies from 0.2 to 8 cpd were used, each presented at 8 contrast levels. Contrast threshold was obtained by extrapolating second harmonic amplitude values to zero. Psychophysical contrast thresholds were measured using stimuli at 6 Hz and static presentation. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. ssVECP and both psychophysical contrast sensitivity functions (CSFs) were low-pass functions for red-green gratings. For electrophysiology, the highest contrast sensitivity values were found at 0.4 cpd (1.95 ± 0.15). ssVECP CSF was similar to dynamic psychophysical CSF, while static CSF had higher values ranging from 0.4 to 6 cpd (P chromatic functions showed no specific tuning shape; however, at high spatial frequencies the evoked potentials showed higher contrast sensitivity than the psychophysical methods (P chromatic red-green CSFs in agreement with psychophysical thresholds, mainly if the same temporal properties are applied to the stimulus. For blue-yellow CSF, correlation between electrophysiology and psychophysics was poor at high spatial frequency, possibly due to a greater effect of chromatic aberration on this kind of stimulus. PMID:23369980

  7. Brownian Optogenetic-Noise-Photostimulation on the Brain Amplifies Somatosensory-Evoked Field Potentials

    Directory of Open Access Journals (Sweden)

    Nayeli Huidobro

    2017-08-01

    Full Text Available Stochastic resonance (SR is an inherent and counter-intuitive mechanism of signal-to-noise ratio (SNR facilitation in biological systems associated with the application of an intermediate level of noise. As a first step to investigate in detail this phenomenon in the somatosensory system, here we examined whether the direct application of noisy light on pyramidal neurons from the mouse-barrel cortex expressing a light-gated channel channelrhodopsin-2 (ChR2 can produce facilitation in somatosensory evoked field potentials. Using anesthetized Thy1-ChR2-YFP transgenic mice, and a new neural technology, that we called Brownian optogenetic-noise-photostimulation (BONP, we provide evidence for how BONP directly applied on the barrel cortex modulates the SNR in the amplitude of whisker-evoked field potentials (whisker-EFP. In all transgenic mice, we found that the SNR in the amplitude of whisker-EFP (at 30% of the maximal whisker-EFP exhibited an inverted U-like shape as a function of the BONP level. As a control, we also applied the same experimental paradigm, but in wild-type mice, as expected, we did not find any facilitation effects. Our results show that the application of an intermediate intensity of BONP on the barrel cortex of ChR2 transgenic mice amplifies the SNR of somatosensory whisker-EFPs. This result may be relevant to explain the improvements found in sensory detection in humans produced by the application of transcranial-random-noise-stimulation (tRNS on the scalp.

  8. Effect of elevated potassium ion concentrations on electrically evoked release of (/sup 3/H)acetylcholine in slices of rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Szerb, J C; Hadhazy, P; Dudar, J D [Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Physiology and Biophysics

    1978-01-01

    To establish the effect of raising the concentration of extracellular potassium ions on axonal conduction and transmitter release in a mammalian central pathway, the septohippocampal cholinergic tract, the rate of (/sup 3/H) acetylcholine release evoked by electrical stimulation was measured in rat hippocampal slices superfused with Krebs' solution containing 3-15 mM K/sup +/. The evoked release of (/sup 3/H) acetylcholine was abolished by the presence of tetrodotoxin or by the omission of Ca/sup 2 +/ in the superfusion medium, indicating that it originated from terminals depolarized by conducted action potentials. Potassium concentrations between 3 and 8 mM had no effect but 10-15 mM K/sup +/ reduced the rate of evoked release and decreased the size of the releasable pool of (/sup 3/H) acetylcholine. Decreasing the sodium content of the Krebs' solution to 97 mM or less had effects similar to those of elevated (K/sup +/). Elevated K/sup +/ (10-15 mM) reversibly reduced the size of compound action potentials in the fimbria and the alveus. The results suggest that extracellular potassium concentrations occurring under physiological conditions do not affect axonal conduction and transmitter release but that both are reduced in pathological states when extracellular (K/sup +/) above 8 mM occur.

  9. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Premji, Azra; Ziluk, Angela; Nelson, Aimee J

    2010-08-05

    Intermittent theta-burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI). The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs) recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS. Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS. We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.

  10. Vestibular myogenic and acoustical brainstem evoked potentials in neurological practice

    Directory of Open Access Journals (Sweden)

    O. S. Korepina

    2012-01-01

    Full Text Available Along with the inspection of acoustical cortex and brainstem EP in neurologic, otoneurologic and audiologic practice recently start to use so-called vestibular evoked myogenic potentials (VEMP. It is shown, that at ear stimulation by a loud sound and record of sterno-cleidomastoid contraction is possible to estimate function of the inferior vestibular nerve and vestibulospinal pathways, a sacculo-cervical reflex. In article some methodical and clinical questions of application of these kinds are presented. Combine research acoustic brainstem EP and VEMP allows to confirm effectively lesions of acoustical and vestibular ways at brainstem. The conclusion becomes, that this kind of inspection is important for revealing demielinisation and defeats in vestibulospinal tract, that quite often happens at MS, and at estimation of efficiency of treatment

  11. A Comparison of Visual Evoked Potential (VEP)-Based Methods for the Low-Cost Emotiv EPOC Neuroheadset

    OpenAIRE

    Hvaring, Fredrik Tron; Ulltveit-Moe, Andreas H

    2014-01-01

    Brain computer interfaces (BCIs) enable interaction with computers through electrical brain signals recorded from the scalp through an electroencephalogram (EEG). These BCIs are characterized by expensive equipment and long setup times, which limits their commercial use. In this thesis, a BCI was implemented that uses the low-cost EEG acquisition device Emotiv EPOC and visual evoked potentials (VEPs), which are potentials in the EEG elicited by visual stimulus. A structured literature review ...

  12. Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.

    Science.gov (United States)

    Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B

    2017-09-27

    Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the

  13. Simulation of action potential propagation in plants.

    Science.gov (United States)

    Sukhov, Vladimir; Nerush, Vladimir; Orlova, Lyubov; Vodeneev, Vladimir

    2011-12-21

    Action potential is considered to be one of the primary responses of a plant to action of various environmental factors. Understanding plant action potential propagation mechanisms requires experimental investigation and simulation; however, a detailed mathematical model of plant electrical signal transmission is absent. Here, the mathematical model of action potential propagation in plants has been worked out. The model is a two-dimensional system of excitable cells; each of them is electrically coupled with four neighboring ones. Ion diffusion between excitable cell apoplast areas is also taken into account. The action potential generation in a single cell has been described on the basis of our previous model. The model simulates active and passive signal transmission well enough. It has been used to analyze theoretically the influence of cell to cell electrical conductivity and H(+)-ATPase activity on the signal transmission in plants. An increase in cell to cell electrical conductivity has been shown to stimulate an increase in the length constant, the action potential propagation velocity and the temperature threshold, while the membrane potential threshold being weakly changed. The growth of H(+)-ATPase activity has been found to induce the increase of temperature and membrane potential thresholds and the reduction of the length constant and the action potential propagation velocity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A Brain Computer Interface for Robust Wheelchair Control Application Based on Pseudorandom Code Modulated Visual Evoked Potential

    DEFF Research Database (Denmark)

    Mohebbi, Ali; Engelsholm, Signe K.D.; Puthusserypady, Sadasivan

    2015-01-01

    In this pilot study, a novel and minimalistic Brain Computer Interface (BCI) based wheelchair control application was developed. The system was based on pseudorandom code modulated Visual Evoked Potentials (c-VEPs). The visual stimuli in the scheme were generated based on the Gold code...

  15. Comparison of auditory evoked potentials and the A-line ARX Index for monitoring the hypnotic level during sevoflurane and propofol induction

    DEFF Research Database (Denmark)

    Litvan, H; Jensen, E W; Revuelta, M

    2002-01-01

    Extraction of the middle latency auditory evoked potentials (AEP) by an auto regressive model with exogenous input (ARX) enables extraction of the AEP within 1.7 s. In this way, the depth of hypnosis can be monitored at almost real-time. However, the identification and the interpretation of the a......Extraction of the middle latency auditory evoked potentials (AEP) by an auto regressive model with exogenous input (ARX) enables extraction of the AEP within 1.7 s. In this way, the depth of hypnosis can be monitored at almost real-time. However, the identification and the interpretation...

  16. A new method for registration of kinesthetic evoked potentials for studies of proprioceptive sensitivity in normal subjects and patients with organic lesions in the brain.

    Science.gov (United States)

    Gordeev, S A; Voronin, S G

    2015-01-01

    The proprioceptive sensitivity of healthy volunteers and convalescents after acute cerebrovascular episodes was studied by a new neurophysiological method for registration of kinesthetic evoked potentials emerging in response to passive 50(o) bending of the hand in the wrist joint with the angular acceleration of 350 rad/sec(2). Kinesthetic evoked potentials were recorded above the somatosensory cortex projection areas in the hemispheres contra- and ipsilateral to the stimulated limb. The patients exhibited significantly longer latencies and lesser amplitudes of the early components of response in the involved hemisphere in comparison with normal subjects. The method for registration of the kinesthetic evoked potentials allows a more detailed study of the mechanisms of kinesthetic sensitivity in health and in organic involvement of the brain.

  17. Color vision in attention-deficit/hyperactivity disorder: a pilot visual evoked potential study.

    Science.gov (United States)

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2015-01-01

    Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue-yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Thirty-one adolescents (aged 13-18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue-yellow, red-green) and achromatic stimuli. No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Larger amplitude in the P1 component for blue-yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue-yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  18. The motor evoked potential in AIDS and HAM/TSP: state of the evidence.

    Science.gov (United States)

    Leon-Sarmiento, Fidias E; Elfakhani, Mohamed; Boutros, Nash N

    2009-12-01

    We aimed to better understand the involvement of the corticospinal tract, assessed by non-invasive transcranial stimulation, in order to determine the actual involvement of the motor system in patients with HAM/TSP and AIDS. An exhaustive MEDLINE search for the period of 1985 to 2008 for all articles cross-referenced for 'HTLV-I, HTLV-II, HTLV-III and HIV, HIV1, HIV2, evoked potential, motor evoked potential, high voltage electrical stimulation, transcranial magnetic stimulation, magnetic stimulation, corticomotor physiology, motor pathways, acquired immunodeficiency syndrome, AIDS, SIDA, tropical spastic paraparesis, HTLV-I-associated myelopathy, HAM, TSP, and HAM/TSP' were selected and analysed. Eighteen papers published in English, Spanish, Portuguese, French and Japanese were identified. Only the central motor conduction time has been analyzed in seropositive patients to human retroviruses. The investigations done on HAM/TSP support the involvement of the pyramidal tract mainly at lower levels, following a centripetal pattern; in AIDS, such an involvement seems to be more prominent at brain levels following a centrifugal pattern. The central motor conduction time abnormalities and involvement differences of the corticospinal tract of patients with AIDS and HAM/TSP dissected here would allow to re-orient early neurorehabilitation measures in these retroviruses-associated neurodegenerative disorders. Besides this, more sophisticated and sensitive non-invasive corticospinal stimulation measures that detect early changes in thalamocortical-basal ganglia circuitry will be needed in both clinically established as well as asymptomatic patients at times when the fastest corticospinal fibers remain uninvolved.

  19. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Ziluk Angela

    2010-08-01

    Full Text Available Abstract Background Intermittent theta-burst stimulation (iTBS is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI. The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS. Results Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS. Conclusion We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.

  20. Cortical somatosensory-evoked potentials during spine surgery in patients with neuromuscular and idiopathic scoliosis under propofol-remifentanil anaesthesia

    NARCIS (Netherlands)

    Hermanns, H.; Lipfert, P.; Meier, S.; Jetzek-Zader, M.; Krauspe, R.; Stevens, M. F.

    2007-01-01

    BACKGROUND: Intraoperative monitoring of the spinal cord via cortical somatosensory-evoked potentials (SSEP) is a routine during spinal surgery. However, especially in neuromuscular scoliosis, the reliability of cortical SSEP has been questioned. Therefore, we compared the feasibility of cortical

  1. [Communication and auditory behavior obtained by auditory evoked potentials in mammals, birds, amphibians, and reptiles].

    Science.gov (United States)

    Arch-Tirado, Emilio; Collado-Corona, Miguel Angel; Morales-Martínez, José de Jesús

    2004-01-01

    amphibians, Frog catesbiana (frog bull, 30 animals); reptiles, Sceloporus torcuatus (common small lizard, 22 animals); birds: Columba livia (common dove, 20 animals), and mammals, Cavia porcellus, (guinea pig, 20 animals). With regard to lodging, all animals were maintained at the Institute of Human Communication Disorders, were fed with special food for each species, and had water available ad libitum. Regarding procedure, for carrying out analysis of auditory evoked potentials of brain stem SPL amphibians, birds, and mammals were anesthetized with ketamine 20, 25, and 50 mg/kg, by injection. Reptiles were anesthetized by freezing (6 degrees C). Study subjects had needle electrodes placed in an imaginary line on the half sagittal line between both ears and eyes, behind right ear, and behind left ear. Stimulation was carried out inside a no noise site by means of a horn in free field. The sign was filtered at between 100 and 3,000 Hz and analyzed in a computer for provoked potentials (Racia APE 78). In data shown by amphibians, wave-evoked responses showed greater latency than those of the other species. In reptiles, latency was observed as reduced in comparison with amphibians. In the case of birds, lesser latency values were observed, while in the case of guinea pigs latencies were greater than those of doves but they were stimulated by 10 dB, which demonstrated best auditory threshold in the four studied species. Last, it was corroborated that as the auditory threshold of each species it descends conforms to it advances in the phylogenetic scale. Beginning with these registrations, we care able to say that response for evoked brain stem potential showed to be more complex and lesser values of absolute latency as we advance along the phylogenetic scale; thus, the opposing auditory threshold is better agreement with regard to the phylogenetic scale among studied species. These data indicated to us that seeking of auditory information is more complex in more

  2. Sensory-Evoked Intrinsic Imaging Signals in the Olfactory Bulb Are Independent of Neurovascular Coupling

    Directory of Open Access Journals (Sweden)

    Roberto Vincis

    2015-07-01

    Full Text Available Functional brain-imaging techniques used in humans and animals, such as functional MRI and intrinsic optical signal (IOS imaging, are thought to largely rely on neurovascular coupling and hemodynamic responses. Here, taking advantage of the well-described micro-architecture of the mouse olfactory bulb, we dissected the nature of odor-evoked IOSs. Using in vivo pharmacology in transgenic mouse lines reporting activity in different cell types, we show that parenchymal IOSs are largely independent of neurotransmitter release and neurovascular coupling. Furthermore, our results suggest that odor-evoked parenchymal IOSs originate from changes in light scattering of olfactory sensory neuron axons, mostly due to water movement following action potential propagation. Our study sheds light on a direct correlate of neuronal activity, which may be used for large-scale functional brain imaging.

  3. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials.

    Science.gov (United States)

    Jin, Jing; Allison, Brendan Z; Wang, Xingyu; Neuper, Christa

    2012-04-15

    Brain-computer interfaces (BCIs) allow users to communicate via brain activity alone. Many BCIs rely on the P300 and other event-related potentials (ERPs) that are elicited when target stimuli flash. Although there have been considerable research exploring ways to improve P300 BCIs, surprisingly little work has focused on new ways to change visual stimuli to elicit more recognizable ERPs. In this paper, we introduce a "combined" BCI based on P300 potentials and motion-onset visual evoked potentials (M-VEPs) and compare it with BCIs based on each simple approach (P300 and M-VEP). Offline data suggested that performance would be best in the combined paradigm. Online tests with adaptive BCIs confirmed that our combined approach is practical in an online BCI, and yielded better performance than the other two approaches (P<0.05) without annoying or overburdening the subject. The highest mean classification accuracy (96%) and practical bit rate (26.7bit/s) were obtained from the combined condition. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Sound-Making Actions Lead to Immediate Plastic Changes of Neuromagnetic Evoked Responses and Induced β-Band Oscillations during Perception.

    Science.gov (United States)

    Ross, Bernhard; Barat, Masihullah; Fujioka, Takako

    2017-06-14

    Auditory and sensorimotor brain areas interact during the action-perception cycle of sound making. Neurophysiological evidence of a feedforward model of the action and its outcome has been associated with attenuation of the N1 wave of auditory evoked responses elicited by self-generated sounds, such as talking and singing or playing a musical instrument. Moreover, neural oscillations at β-band frequencies have been related to predicting the sound outcome after action initiation. We hypothesized that a newly learned action-perception association would immediately modify interpretation of the sound during subsequent listening. Nineteen healthy young adults (7 female, 12 male) participated in three magnetoencephalographic recordings while first passively listening to recorded sounds of a bell ringing, then actively striking the bell with a mallet, and then again listening to recorded sounds. Auditory cortex activity showed characteristic P1-N1-P2 waves. The N1 was attenuated during sound making, while P2 responses were unchanged. In contrast, P2 became larger when listening after sound making compared with the initial naive listening. The P2 increase occurred immediately, while in previous learning-by-listening studies P2 increases occurred on a later day. Also, reactivity of β-band oscillations, as well as θ coherence between auditory and sensorimotor cortices, was stronger in the second listening block. These changes were significantly larger than those observed in control participants (eight female, five male), who triggered recorded sounds by a key press. We propose that P2 characterizes familiarity with sound objects, whereas β-band oscillation signifies involvement of the action-perception cycle, and both measures objectively indicate functional neuroplasticity in auditory perceptual learning. SIGNIFICANCE STATEMENT While suppression of auditory responses to self-generated sounds is well known, it is not clear whether the learned action-sound association

  5. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2010-01-01

    Full Text Available Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated, and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486. On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats. Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress

  6. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials.

    Science.gov (United States)

    Epp, Bastian; Yasin, Ifat; Verhey, Jesko L

    2013-12-01

    The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound at a fixed physical intensity is varied by introducing auditory cues of (i) interaural target signal phase disparity and (ii) coherent masker level fluctuations in different frequency regions. In agreement with previous studies, psychoacoustical experiments showed that both stimulus manipulations result in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners who participated in the psychoacoustical experiment. The data indicate differences in N1 and P2 between stimuli with and without interaural phase disparities. However, differences for stimuli with and without coherent masker modulation were only found for P2, i.e., only P2 is sensitive to the increase in audibility, irrespective of the cue that caused the masking release. The amplitude of P2 is consistent with the psychoacoustical finding of an addition of the masking releases when both cues are present. Even though it cannot be concluded where along the auditory pathway the audibility is represented, the P2 component of auditory evoked potentials is a candidate for an objective measure of audibility in the human auditory system. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Can a finding of cervical vestibular evoked myogenic potentials contribute to vestibular migraine diagnostics?

    Directory of Open Access Journals (Sweden)

    Tihana Vešligaj

    2016-02-01

    Full Text Available Aim To investigate differences in vestibular evoked myogenic potentials (VEMP results with patients suffering from vestibular migraine and healthy people, taking into consideration values of threshold and latency of occurrence of the characteristic wave complex, size of amplitude, and interaural amplitude ratio. According to the results, determine the importance and usefulness of VEMP in vestibular migraine diagnostics. Methods A total number of 62 subjects were included in the study, 32 of them belonging to a group of patients suffering from vestibular migraine (VM, while other 30 were in a control group of healthy subjects. Information was collected during the diagnostic evaluation. General and otoneurological history of patients and bedside tests, audiological results, videonystagmography and cervical vestibular evoked myogenic potentials (cVEMP were made. Results There was a difference in an interaural ratio of amplitudes in the experimental and control groups, but it was not found to be clinically significant. By ToneBurst 500 Hz method, the interaural amplitude ratio higher than 35% was measured in 46.97% subjects, while the response was totally unilaterally missing in 28.8% patients. Conclusion Even the sophisticated method as cVEMP does not give the ultimate result confirming the vestibular migraine diagnosis, and neither do other diagnostic methods. cVEMP result can contribute to the completion of full mosaic of vestibular migraine diagnostics.

  8. Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro.

    Science.gov (United States)

    Sobieski, Courtney; Jiang, Xiaoping; Crawford, Devon C; Mennerick, Steven

    2015-08-05

    Neuron-astrocyte interactions are critical for proper CNS development and function. Astrocytes secrete factors that are pivotal for synaptic development and function, neuronal metabolism, and neuronal survival. Our understanding of this relationship, however, remains incomplete due to technical hurdles that have prevented the removal of astrocytes from neuronal circuits without changing other important conditions. Here we overcame this obstacle by growing solitary rat hippocampal neurons on microcultures that were comprised of either an astrocyte bed (+astrocyte) or a collagen bed (-astrocyte) within the same culture dish. -Astrocyte autaptic evoked EPSCs, but not IPSCs, displayed an altered temporal profile, which included increased synaptic delay, increased time to peak, and severe glutamate release asynchrony, distinct from previously described quantal asynchrony. Although we observed minimal alteration of the somatically recorded action potential waveform, action potential propagation was altered. We observed a longer latency between somatic initiation and arrival at distal locations, which likely explains asynchronous EPSC peaks, and we observed broadening of the axonal spike, which likely underlies changes to evoked EPSC onset. No apparent changes in axon structure were observed, suggesting altered axonal excitability. In conclusion, we propose that local astrocyte support has an unappreciated role in maintaining glutamate release synchrony by disturbing axonal signal propagation. Certain glial cell types (oligodendrocytes, Schwann cells) facilitate the propagation of neuronal electrical signals, but a role for astrocytes has not been identified despite many other functions of astrocytes in supporting and modulating neuronal signaling. Under identical global conditions, we cultured neurons with or without local astrocyte support. Without local astrocytes, glutamate transmission was desynchronized by an alteration of the waveform and arrival time of axonal

  9. Predictive value of neurological examination for early cortical responses to somatosensory evoked potentials in patients with postanoxic coma

    NARCIS (Netherlands)

    Bouwes, Aline; Binnekade, Jan M.; Verbaan, Bart W.; Zandbergen, Eveline G. J.; Koelman, Johannes H. T. M.; Weinstein, Henry C.; Hijdra, Albert; Horn, Janneke

    2012-01-01

    Bilateral absence of cortical N20 responses of median nerve somatosensory evoked potentials (SEP) predicts poor neurological outcome in postanoxic coma after cardiopulmonary resuscitation (CPR). Although SEP is easy to perform and available in most hospitals, it is worthwhile to know how

  10. Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice

    Directory of Open Access Journals (Sweden)

    Zhao Zhi-Qi

    2010-01-01

    Full Text Available Abstract Background Our previous study demonstrated that nitric oxide (NO contributes to long-term potentiation (LTP of C-fiber-evoked field potentials by tetanic stimulation of the sciatic nerve in the spinal cord in vivo. Ryanodine receptor (RyR is a downstream target for NO. The present study further explored the role of RyR in synaptic plasticity of the spinal pain pathway. Results By means of field potential recordings in the adult male rat in vivo, we showed that RyR antagonist reduced LTP of C-fiber-evoked responses in the spinal dorsal horn by tetanic stimulation of the sciatic nerve. Using spinal cord slice preparations and field potential recordings from superficial dorsal horn, high frequency stimulation of Lissauer's tract (LT stably induced LTP of field excitatory postsynaptic potentials (fEPSPs. Perfusion of RyR antagonists blocked the induction of LT stimulation-evoked spinal LTP, while Ins(1,4,5P3 receptor (IP3R antagonist had no significant effect on LTP induction. Moreover, activation of RyRs by caffeine without high frequency stimulation induced a long-term potentiation in the presence of bicuculline methiodide and strychnine. Further, in patch-clamp recordings from superficial dorsal horn neurons, activation of RyRs resulted in a large increase in the frequency of miniature EPSCs (mEPSCs. Immunohistochemical study showed that RyRs were expressed in the dorsal root ganglion (DRG neurons. Likewise, calcium imaging in small DRG neurons illustrated that activation of RyRs elevated [Ca2+]i in small DRG neurons. Conclusions These data indicate that activation of presynaptic RyRs play a crucial role in the induction of LTP in the spinal pain pathway, probably through enhancement of transmitter release.

  11. Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation

    DEFF Research Database (Denmark)

    Rector, D M; Poe, G R; Kristensen, Morten Pilgaard

    1997-01-01

    , concurrently with larger population postsynaptic potentials. Optical signals occurred over a time course similar to that for electrical signals and increased with larger stimulation amplitude to a maximum, then decreased with further increases in stimulation current. Camera images revealed a topographic......We assessed relationships of evoked electrical and light scattering changes from cat dorsal hippocampus following Schaeffer collateral stimulation. Under anesthesia, eight stimulating electrodes were placed in the left hippocampal CA field and an optic probe, coupled to a photodiode or a charge....... Electrode recordings and photodiode output were simultaneously acquired at 2.4 kHz during single biphasic pulse stimuli 0.5 ms in duration with 0.1-Hz intervals. Camera images were digitized at 100 Hz. An average of 150 responses was calculated for each of six stimulating current levels. Stimuli elicited...

  12. Optimization of visual evoked potential (VEP) recording systems.

    Science.gov (United States)

    Karanjia, Rustum; Brunet, Donald G; ten Hove, Martin W

    2009-01-01

    To explore the influence of environmental conditions on pattern visual evoked potential (VEP) recordings. Fourteen subjects with no known ocular pathology were recruited for the study. In an attempt to optimize the recording conditions, VEP recordings were performed in both the seated and recumbent positions. Comparisons were made between recordings using either LCD or CRT displays and recordings obtained in silence or with quiet background music. Paired recordings (in which only one variable was changed) were analyzed for changes in P100 latency, RMS noise, and variability. Baseline RMS noise demonstrated a significant decrease in the variability during the first 50msec accompanied by a 73% decrease in recording time for recumbent position when compared to the seated position (pmusic did not affect the amount of RMS noise during the first 50msec of the recordings. This study demonstrates that the use of the recumbent position increases patient comfort and improves the signal to noise ratio. In contrast, the addition of background music to relax the patient did not improve the recording signal. Furthermore, the study illustrates the importance of avoiding low-contrast visual stimulation patterns obtained with LCD as they lead to higher latencies resulting in false positive recordings. These findings are important when establishing or modifying a pattern VEP recording protocol.

  13. Discrepancy between perceived pain and cortical processing: A voxel-based morphometry and contact heat evoked potential study.

    Science.gov (United States)

    Kramer, J L K; Jutzeler, C R; Haefeli, J; Curt, A; Freund, P

    2016-01-01

    The purpose of this study was to determine if local gray and white matter volume variations between subjects could account for variability in responses to CHEP stimulation. Structural magnetic resonance imaging was used to perform voxel-based morphometry (VBM) of gray and white matter in 30 neurologically healthy subjects. Contact heat stimulation was performed on the dorsum of the right hand at the base of the thumb. Evoked potentials were acquired from a vertex-recording electrode referenced to linked ears. Controlling for age, total intracranial volume, and skull/scalp thickness, CHEP amplitude and pain rating were not significantly correlated between subjects. A VBM region of interest approach demonstrated a significant interaction between pain rating and N2 amplitude in the right insular cortex (ppain rating. This finding suggests that the discrepancy between pain ratings and the amplitude of evoked potentials is not solely related to measurement artifact, but rather attributable, in part, to anatomical differences between subjects. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface

    Science.gov (United States)

    Ng, Kian B.; Bradley, Andrew P.; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  15. INFLUENCE OF DANCE TRAINING ON SACCULOCOLLIC PATHWAY: VESTIBULAR EVOKED MYOGENIC POTENTIALS (VEMP) AS AN OBJECTIVE TOOL

    OpenAIRE

    Swathi; Sathish Kumar

    2013-01-01

    ABSTRACT : Auditory system is shaped by experience and training. Training (s ensory experience) induces neurophysiologic changes & plasticity in normal hearing individuals, hearing loss patients, hearing aid users and cochlear implanted subjects. Not only speech stimulus, but music also brings about functional and structural organi zation of the brain in musician compared to non - musicians. The Vestibular evoked myogenic potentials (VEMP) are a biphasic in...

  16. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    David L García-Ramírez

    Full Text Available Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD. PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT, dopamine (DA and noradrenaline (NA on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs or intracellular excitatory postsynaptic currents (EPSCs. The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75% but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic

  17. Multimodal evoked potentials and the ovarian cycle in young ovulating women Potenciais evocados nas diferentes fases do ciclo menstrual da mulher

    Directory of Open Access Journals (Sweden)

    LUIZ ANTONIO DE LIMA RESENDE

    2000-06-01

    Full Text Available There is controversy over how hormonal conditions influence cerebral physiology. We studied pattern-shift visual evoked potentials (PS-VEP, brain stem auditory evoked potentials (BAEP and short-latency somatosensory evoked potentials (SSEV in 20 female volunteers at different phases of the menstrual cycle (estrogen phase, ovulatory day and progesterone phase. Statistical analysis showed decreased latencies for P100 (PS-VEP, N19 and P22 (SSEV waves in the progesterone phase compared with the estrogen phase. There was no significant difference between the estrogen and the ovulation day values. Comparing the three above stages, there were no significant differences in the brainstem auditory evoked potentials. The reduction of the latencies of the potentials generated in multisynaptic circuits provides the first consistent neurophysiological basis for a tentative comprehension of human pre-menstrual syndrome.Há controvérsias sobre como variações hormonais do ciclo menstrual da mulher influenciam a neurofisiologia cerebral. Estudamos potenciais evocados de curta latência, visuais, auditivos e sômato-sensoriais, em 20 mulheres voluntárias normais, nas diferentes fases do ciclo menstrual (fase estrogênica, fase ovulatória, fase progestacional. Comparação entre fase estrogênica e ovulatória mostrou resultados similares. Ondas I, III, V dos potenciais evocados auditivos não apresentaram diferenças estatisticamente significativas entre as três fases do ciclo. Análise estatística dos resultados mostrou diminuição significativa das latências das ondas P100, N19 e P22 obtidas na fase progestacional, comparadas com aquelas obtidas na fase estrogênica. Como estas ondas são geradas em circuitos multissinápticos, tal redução de latências, na fase progestacional, fornece a primeira base neurofisiológica consistente para tentativa de compreensão da síndrome pré-menstrual da mulher.

  18. Visual evoked potentials and selective attention to points in space

    Science.gov (United States)

    Van Voorhis, S.; Hillyard, S. A.

    1977-01-01

    Visual evoked potentials (VEPs) were recorded to sequences of flashes delivered to the right and left visual fields while subjects responded promptly to designated stimuli in one field at a time (focused attention), in both fields at once (divided attention), or to neither field (passive). Three stimulus schedules were used: the first was a replication of a previous study (Eason, Harter, and White, 1969) where left- and right-field flashes were delivered quasi-independently, while in the other two the flashes were delivered to the two fields in random order (Bernoulli sequence). VEPs to attended-field stimuli were enhanced at both occipital (O2) and central (Cz) recording sites under all stimulus sequences, but different components were affected at the two scalp sites. It was suggested that the VEP at O2 may reflect modality-specific processing events, while the response at Cz, like its auditory homologue, may index more general aspects of selective attention.

  19. Auditory Evoked Potentials and Hand Preference in 6-Month-Old Infants: Possible Gender-Related Differences in Cerebral Organization.

    Science.gov (United States)

    Shucard, Janet L.; Shucard, David W.

    1990-01-01

    Verbal and musical stimuli were presented to infants in a study of the relations of evoked potential left-right amplitude asymmetries to gender and hand preference. There was a relation between asymmetry and hand preference, and for girls, between asymmetry and stimulus condition. Results suggest a gender difference in cerebral hemisphere…

  20. Using affective knowledge to generate and validate a set of emotion-related, action words.

    Science.gov (United States)

    Portch, Emma; Havelka, Jelena; Brown, Charity; Giner-Sorolla, Roger

    2015-01-01

    Emotion concepts are built through situated experience. Abstract word meaning is grounded in this affective knowledge, giving words the potential to evoke emotional feelings and reactions (e.g., Vigliocco et al., 2009). In the present work we explore whether words differ in the extent to which they evoke 'specific' emotional knowledge. Using a categorical approach, in which an affective 'context' is created, it is possible to assess whether words proportionally activate knowledge relevant to different emotional states (e.g., 'sadness', 'anger', Stevenson, Mikels & James, 2007a). We argue that this method may be particularly effective when assessing the emotional meaning of action words (e.g., Schacht & Sommer, 2009). In study 1 we use a constrained feature generation task to derive a set of action words that participants associated with six, basic emotional states (see full list in Appendix S1). Generation frequencies were taken to indicate the likelihood that the word would evoke emotional knowledge relevant to the state to which it had been paired. In study 2 a rating task was used to assess the strength of association between the six most frequently generated, or 'typical', action words and corresponding emotion labels. Participants were presented with a series of sentences, in which action words (typical and atypical) and labels were paired e.g., "If you are feeling 'sad' how likely would you be to act in the following way?" … 'cry.' Findings suggest that typical associations were robust. Participants always gave higher ratings to typical vs. atypical action word and label pairings, even when (a) rating direction was manipulated (the label or verb appeared first in the sentence), and (b) the typical behaviours were to be performed by the rater themselves, or others. Our findings suggest that emotion-related action words vary in the extent to which they evoke knowledge relevant for different emotional states. When measuring affective grounding, it may then be

  1. Visual evoked potentials in overt hypothyroid patients before and after achievement of euthyroidism

    Directory of Open Access Journals (Sweden)

    Aprajita

    2017-01-01

    Full Text Available Background: Visual evoked potential (VEP measures the time taken for visual stimulus to travel from the eye to the occipital cortex. Hypothyroidism affects the central nervous system (CNS through its role in gene expression, myelin production, axonal transportation, and neurotransmitters. Delay in the conduction of impulses results in abnormal VEP. Objective: Correlate the electrophysiological findings of VEP in newly diagnosed treatment-naive hypothyroid patients before and after 3 months of treatment and to find the correlation with serum thyroid-stimulating hormone (TSH levels. Materials and Methods: VEP was measured using Recorders and Medicare Systems Electromyograph Evoked Potential Mark II machine in 30 patients (serum TSH ≥10 mIU/L between 18 and 50 years of age who were followed up after 3 months of treatment. Results: The mean age (±standard deviation of the patients was 31.8 (±8.3 years. There was prolongation of VEP latencies which tends to decrease following hormone replacement therapy. It was found to be most significant for P100 (ms waveform (P < 0.001. The amplitude (P100-N75 mV which was decreased in hypothyroid patients showed improvement following achievement of euthyroidism. Significant positive correlation was found between P100, N75 latency and pretreatment serum TSH levels. Conclusion: Hypothyroid patients may have changes in the latencies and the amplitude of VEP which are reversible to a great extent with thyroxine replacement therapy. VEP thus acts as a dependable marker for CNS affection in thyroid diseases to detect subtle early changes and to assess the response to treatment in correlation with the clinical improvement.

  2. Cervical and ocular vestibular evoked potentials in Machado-Joseph disease: Functional involvement of otolith pathways.

    Science.gov (United States)

    Ribeiro, Rodrigo Souza; Pereira, Melissa Marques; Pedroso, José Luiz; Braga-Neto, Pedro; Barsottini, Orlando Graziani Povoas; Manzano, Gilberto Mastrocola

    2015-11-15

    Machado-Joseph disease is defined as an autosomal dominant ataxic disorder caused by degeneration of the cerebellum and its connections and is associated with a broad range of clinical symptoms. The involvement of the vestibular system is responsible for several symptoms and signs observed in the individuals affected by the disease. We measured cervical and ocular vestibular evoked myogenic potentials in a sample of Machado-Joseph disease patients in order to assess functional pathways involved. Bilateral measures of cervical and ocular vestibular evoked myogenic potentials (cVEMP and oVEMP) were obtained from 14 symptomatic patients with genetically proven Machado-Joseph disease and compared with those from a control group of 20 healthy subjects. Thirteen (93%) patients showed at least one abnormal test result; oVEMP and cVEMP responses were absent in 17/28 (61%) and 11/28 (39%) measures, respectively; and prolonged latency of cVEMP was found in 3/28 (11%) measures. Of the 13 patients with abnormal responses, 9/13 (69%) patients showed discordant abnormal responses: four with absent oVEMP and present cVEMP, two with absent cVEMP and present oVEMP, and three showed unilateral prolonged cVEMP latencies. Both otolith-related vestibulocollic and vestibulo-ocular pathways are severely affected in Machado-Joseph disease patients evaluated by VEMPs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Spatial adaptation of the cortical visual evoked potential of the cat.

    Science.gov (United States)

    Bonds, A B

    1984-06-01

    Adaptation that is spatially specific for the adapting pattern has been seen psychophysically in humans. This is indirect evidence for independent analyzers (putatively single units) that are specific for orientation and spatial frequency in the human visual system, but it is unclear how global adaptation characteristics may be related to single unit performance. Spatially specific adaptation was sought in the cat visual evoked potential (VEP), with a view towards relating this phenomenon with what we know of cat single units. Adaptation to sine-wave gratings results in a temporary loss of cat VEP amplitude, with induction and recovery similar to that seen in human psychophysical experiments. The amplitude loss was specific for both the spatial frequency and orientation of the adapting pattern. The bandwidth of adaptation was not unlike the average selectivity of a population of cat single units.

  4. Possible Long Term Effects of Chemical Warfare Using Visual Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Abbas Riazi

    2014-09-01

    Full Text Available Some studies have already addressed the effects of occupational organic solvent exposure on the visually evoked potentials (VEPs. Visual system is an important target for Sulphur Mustard (SM toxicity. A number of Iranian victims of Sulphur Mustard (SM agent were apprehensive about the delay effect of SM on their vision and a possible delay effect of SM on their visual cortex. This investigation was performed on 34 individuals with a history of chemical exposure and a control group of 15 normal people. The Toennies electro-diagnosis device was used and its signals were saved as the latencies. The mean of N75, N140 and P100 of victims of chemical warfare (VCWs and control group indicated no significant results (P>0.05. The VCWs did not show any visual symptoms and there was no clear deficit in their VEPs.

  5. Effect of epidural 0.25% bupivacaine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1989-01-01

    The effect of lumbar epidural analgesia with similar volumes (about 25 ml) of 0.25% and 0.5% bupivacaine on early (less than 0.5 seconds) somatosensory evoked potentials (SEPs) to electrical stimulation of the S1, L1, and T10 dermatomes was examined in two groups of ten patients. Level of sensory...... analgesia to pinprick was T5.7 +/- 0.8 and T6.4 +/- 0.7 in the 0.25% and 0.5% bupivacaine group, respectively. Motor blockade was more pronounced in the 0.5% bupivacaine group (p less than 0.05). Despite similar analgesia to pinprick, SEPs were more reduced during 0.5% bupivacaine than during 0...

  6. Influence of visual angle on pattern reversal visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Ruchi Kothari

    2014-01-01

    Full Text Available Purpose: The aim of this study was to find whether the visual evoked potential (VEP latencies and amplitude are altered with different visual angles in healthy adult volunteers or not and to determine the visual angle which is the optimum and most appropriate among a wide range of check sizes for the reliable interpretation of pattern reversal VEPs (PRVEPs. Materials and Methods: The present study was conducted on 40 healthy volunteers. The subjects were divided into two groups. One group consisted of 20 individuals (nine males and 11 females in the age range of 25-57 years and they were exposed to checks subtending a visual angle of 90, 120, and 180 minutes of arc. Another group comprised of 20 individuals (10 males and 10 females in the age range of 36-60 years and they were subjected to checks subtending a visual angle of 15, 30, and 120 minutes of arc. The stimulus configuration comprised of the transient pattern reversal method in which a black and white checker board is generated (full field on a VEP Monitor by an Evoked Potential Recorder (RMS EMG. EPMARK II. The statistical analysis was done by One Way Analysis of Variance (ANOVA using EPI INFO 6. Results: In Group I, the maximum (max. P100 latency of 98.8 ± 4.7 and the max. P100 amplitude of 10.05 ± 3.1 μV was obtained with checks of 90 minutes. In Group II, the max. P100 latency of 105.19 ± 4.75 msec as well as the max. P100 amplitude of 8.23 ± 3.30 μV was obtained with 15 minutes. The min. P100 latency in both the groups was obtained with checks of 120 minutes while the min. P100 amplitude was obtained with 180 minutes. A statistically significant difference was derived between means of P100 latency for 15 and 30 minutes with reference to its value for 120 minutes and between the mean value of P100 amplitude for 120 minutes and that of 90 and 180 minutes. Conclusion: Altering the size of stimulus (visual angle has an effect on the PRVEP parameters. Our study found that the 120

  7. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    International Nuclear Information System (INIS)

    Morioka, T.; Fujii, K.; Fukui, M.; Mizushima, A.; Matsumoto, S.; Hasuo, K.; Yamamoto, T.; Tobimatsu, S.

    1995-01-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  8. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, T. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fujii, K. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fukui, M. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Mizushima, A. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Matsumoto, S. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Hasuo, K. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Yamamoto, T. [Dept. of Otolaryngology, Kyushu Univ. Fukuoka (Japan); Tobimatsu, S. [Dept. of Clinical Neurophysiology, Neurological Inst., Kyushu Univ., Fukuoka (Japan)

    1995-10-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  9. Scent-evoked nostalgia.

    Science.gov (United States)

    Reid, Chelsea A; Green, Jeffrey D; Wildschut, Tim; Sedikides, Constantine

    2015-01-01

    Can scents evoke nostalgia; what might be the psychological implications of such an evocation? Participants sampled 12 scents and rated the extent to which each scent was familiar, arousing and autobiographically relevant, as well as the extent to which each scent elicited nostalgia. Participants who were high (compared to low) in nostalgia proneness reported more scent-evoked nostalgia, and scents elicited greater nostalgia to the extent that they were arousing, familiar and autobiographically relevant. Scent-evoked nostalgia predicted higher levels of positive affect, self-esteem, self-continuity, optimism, social connectedness and meaning in life. In addition, scent-evoked nostalgia was characterised by more positive emotions than either non-nostalgic autobiographical memories or non-nostalgic non-autobiographical memories. Finally, scent-evoked nostalgia predicted in-the-moment feelings of personal (general or object-specific) nostalgia. The findings represent a foray into understanding the triggers and affective signature of scent-evoked nostalgia.

  10. Brain-stem evoked potentials and noise effects in seagulls.

    Science.gov (United States)

    Counter, S A

    1985-01-01

    Brain-stem auditory evoked potentials (BAEP) recorded from the seagull were large-amplitude, short-latency, vertex-positive deflections which originate in the eighth nerve and several brain-stem nuclei. BAEP waveforms were similar in latency and configurations to that reported for certain other lower vertebrates and some mammals. BAEP recorded at several pure tone frequencies throughout the seagull's auditory spectrum showed an area of heightened auditory sensitivity between 1 and 3 kHz. This range was also found to be the primary bandwidth of the vocalization output of young seagulls. Masking by white noise and pure tones had remarkable effects on several parameters of the BAEP. In general, the tone- and click-induced BAEP were either reduced or obliterated by both pure tone and white noise maskers of specific signal to noise ratios and high intensity levels. The masking effects observed in this study may be related to the manner in which seagulls respond to intense environmental noise. One possible conclusion is that intense environmental noise, such as aircraft engine noise, may severely alter the seagull's localization apparatus and induce sonogenic stress, both of which could cause collisions with low-flying aircraft.

  11. Simultaneous detection of P300 and steady-state visually evoked potentials for hybrid brain-computer interface.

    Science.gov (United States)

    Combaz, Adrien; Van Hulle, Marc M

    2015-01-01

    We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.

  12. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons.

    Science.gov (United States)

    Tanner, Geoffrey R; Lutas, Andrew; Martínez-François, Juan Ramón; Yellen, Gary

    2011-06-08

    ATP-sensitive potassium channels (K(ATP) channels) are important sensors of cellular metabolic state that link metabolism and excitability in neuroendocrine cells, but their role in nonglucosensing central neurons is less well understood. To examine a possible role for K(ATP) channels in modulating excitability in hippocampal circuits, we recorded the activity of single K(ATP) channels in cell-attached patches of granule cells in the mouse dentate gyrus during bursts of action potentials generated by antidromic stimulation of the mossy fibers. Ensemble averages of the open probability (p(open)) of single K(ATP) channels over repeated trials of stimulated spike activity showed a transient increase in p(open) in response to action potential firing. Channel currents were identified as K(ATP) channels through blockade with glibenclamide and by comparison with recordings from Kir6.2 knock-out mice. The transient elevation in K(ATP) p(open) may arise from submembrane ATP depletion by the Na(+)-K(+) ATPase, as the pump blocker strophanthidin reduced the magnitude of the elevation. Both the steady-state and stimulus-elevated p(open) of the recorded channels were higher in the presence of the ketone body R-β-hydroxybutyrate, consistent with earlier findings that ketone bodies can affect K(ATP) activity. Using perforated-patch recording, we also found that K(ATP) channels contribute to the slow afterhyperpolarization following an evoked burst of action potentials. We propose that activity-dependent opening of K(ATP) channels may help granule cells act as a seizure gate in the hippocampus and that ketone-body-mediated augmentation of the activity-dependent opening could in part explain the effect of the ketogenic diet in reducing epileptic seizures.

  13. Roles of N-methyl-d-aspartate receptors during the sensory stimulation-evoked field potential responses in mouse cerebellar cortical molecular layer.

    Science.gov (United States)

    Xu, Yin-Hua; Zhang, Guang-Jian; Zhao, Jing-Tong; Chu, Chun-Ping; Li, Yu-Zi; Qiu, De-Lai

    2017-11-01

    The functions of N-methyl-d-aspartate receptors (NMDARs) in cerebellar cortex have been widely studied under in vitro condition, but their roles during the sensory stimulation-evoked responses in the cerebellar cortical molecular layer in living animals are currently unclear. We here investigated the roles of NMDARs during the air-puff stimulation on ipsilateral whisker pad-evoked field potential responses in cerebellar cortical molecular layer in urethane-anesthetized mice by electrophysiological recording and pharmacological methods. Our results showed that cerebellar surface administration of NMDA induced a dose-dependent decrease in amplitude of the facial stimulation-evoked inhibitory responses (P1) in the molecular layer, accompanied with decreases in decay time, half-width and area under curve (AUC) of P1. The IC 50 of NMDA induced inhibition in amplitude of P1 was 46.5μM. In addition, application of NMDA induced significant increases in the decay time, half-width and AUC values of the facial stimulation-evoked excitatory responses (N1) in the molecular layer. Application of an NMDAR blocker, D-APV (250μM) abolished the facial stimulation-evoked P1 in the molecular layer. These results suggested that NMDARs play a critical role during the sensory information processing in cerebellar cortical molecular layer in vivo in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Potencial evocado miogênico vestibular a baixas frequências de estimulação Vestibular evoked myogenic potentials using low frequency stimuli

    Directory of Open Access Journals (Sweden)

    Aline Cabral de Oliveira

    2011-12-01

    Full Text Available Os potenciais evocados miogênicos vestibulares são reflexos vestíbulo-cervicais, decorrentes da estimulação do sáculo com sons de forte intensidade. São necessários parâmetros de normalidade para indivíduos jovens normais, utilizando-se estímulos a baixas frequências, as quais configuram a região de maior sensibilidade desse órgão sensorial. OBJETIVO: Realizar normatização do potencial evocado miogênico vestibular para baixas frequências de estimulação. MATERIAL E MÉTODO: Captou-se o potencial evocado miogênico vestibular em 160 orelhas, no músculo esternocleidomastoideo, de forma ipsilateral, por meio da promediação de 200 tone bursts, frequência de 250 Hz, intensidade de 95 dB NAn. FORMA DE ESTUDO: Estudo de coorte contemporânea com corte transversal. RESULTADOS: Aplicando-se o teste T de Student ou o Teste de Mann-Whitney, não foi constatada diferença significativa para parâmetros do potencial evocado miogênico vestibular entre os gêneros, para p Vestibular evoked myogenic potentials are vestibulocervical reflexes resulting from sacculus stimulation with strong intensity sounds. Normality parameters are necessary for young normal individuals, using low frequency stimuli, which configure the most sensitive region of this sensory organ. AIM: To establish vestibular evoked myogenic potential standards for low frequency stimulation. MATERIAL AND METHOD: Vestibular evoked myogenic potential was captured from 160 ears, in the ipsilateral sternocleidomastoid muscle, using 200 averaged tone-burst stimuli, at 250 Hz, with an intensity of 95 dB NAn. CASE STUDY: Clinical observational cross-sectional. RESULTS: Neither the student's t-test nor the Mann-Whitney test showed a significant difference in latency or vestibular evoked myogenic potential amplitudes, for p <; 0.05. Irrespective of gender, we found latencies of p13-n23 and p13-n23 interpeaks of 13.84 ms (± 1.41, 23.81 ms (±1.99 and 10.62 ms (± 6.56, respectively

  15. Intra-oral orthosis vs amitriptyline in chronic tension-type headache: a clinical and laser evoked potentials study

    Directory of Open Access Journals (Sweden)

    Sardaro Michele

    2006-05-01

    Full Text Available Abstract Background In the present study, we examined clinical and laser-evoked potentials (LEP features in two groups of chronic tension-type headache (CTTH patients treated with two different approaches: intra-oral appliance of prosthesis, aiming to reduce muscular tenderness, and 10 mg daily amitriptyline. Methods Eighteen patients with diagnosed CTTH participated in this open label, controlled study. A baseline evaluation was performed for clinical features, Total Tenderness Score (TTS and a topographic analysis of LEPs obtained manually and the pericranial points stimulation in all patients vs. healthy subjects. Thereafter, patients were randomly assigned to a two-month treatment by either amitriptyline or intra-oral appliance. Results and discussion Both the intra-oral appliance and amitriptyline significantly reduced headache frequency. The TTS was significantly reduced in the group treated with the appliance. The amplitude of P2 response elicited by stimulation of pericranial zones showed a reduction after amitriptyline treatment. Both therapies were effective in reducing headache severity, the appliance with a prevalent action on the pericranial muscular tenderness, amitriptyline reducing the activity of the central cortical structures subtending pain elaboration Conclusion The results of this study may suggest that in CTTH both the interventions at the peripheral and central levels improve the outcome of headache.

  16. A portable, differential amplifier for recording high frequency EEG signals and evoked potentials

    International Nuclear Information System (INIS)

    Donos, Cristian; Giurgiu, Liviu; Popescu, Aurel; Mocanu, Marian

    2010-01-01

    In a clinical context, EEG refers to recording the brain's spontaneous electric activity, using small electrodes placed on the scalp. The signals collected are electric 'potentials' measured between two electrodes. Usually, for a healthy adult, these signals have small voltage (10 μV to 100 μV) and frequencies in the 0-40 Hz range. In the scientific literature, there are mentioned EEG signals and evoked potentials that have higher frequencies (up to 600 Hz) and amplitudes lower than 500 ηV. For this reason, building an amplifier capable of recording EEG signals in the ηV range and with frequencies up to couple of kHz is necessary to continue research beyond 600 Hz. We designed a very low noise amplifier that is able to measure/record EEG signals in the ηV range over a very large frequency bandwidth (0.09 Hz -385 kHz).(Author)

  17. Quantification of the proportion of motor neurons recruited by transcranial electrical stimulation during intraoperative motor evoked potential monitoring.

    Science.gov (United States)

    Tsutsui, Shunji; Yamada, Hiroshi; Hashizume, Hiroshi; Minamide, Akihito; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Yoshida, Munehito

    2013-12-01

    Transcranial motor evoked potentials (TcMEPs) are widely used to monitor motor function during spinal surgery. However, they are much smaller and more variable in amplitude than responses evoked by maximal peripheral nerve stimulation, suggesting that a limited number of spinal motor neurons to the target muscle are excited by transcranial stimulation. The aim of this study was to quantify the proportion of motor neurons recruited during TcMEP monitoring under general anesthesia. In twenty patients who underwent thoracic and/or lumbar spinal surgery with TcMEP monitoring, the triple stimulation technique (TST) was applied to the unilateral upper arm intraoperatively. Total intravenous anesthesia was employed. Trains of four stimuli were delivered with maximal intensity and an inter-pulse interval of 1.5 ms. TST responses were recorded from the abductor digiti minimi muscle, and the negative peak amplitude and area were measured and compared between the TST test (two collisions between transcranial and proximal and distal peripheral stimulation) and control response (two collisions between two proximal and one distal peripheral stimulation). The highest degree of superimposition of the TST test and control responses was chosen from several trials per patient. The average ratios (test:control) were 17.1 % (range 1.8-38 %) for the amplitudes and 21.6 % (range 2.9-40 %) for the areas. The activity of approximately 80 % of the motor units to the target muscle cannot be detected by TcMEP monitoring. Therefore, changes in evoked potentials must be interpreted cautiously when assessing segmental motor function with TcMEP monitoring.

  18. Addition of visual noise boosts evoked potential-based brain-computer interface.

    Science.gov (United States)

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-05-14

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.

  19. Screening action potentials: The power of light

    Directory of Open Access Journals (Sweden)

    Lars eKaestner

    2011-07-01

    Full Text Available Action potentials reflect the concerted activity of all electrogenic constituents in the plasma membrane during the excitation of a cell. Therefore, the action potential is an integrated readout and a promising parameter to detect electrophysiological failures or modifications thereof in diagnosis as well as in drug screens. Cellular action potentials can be recorded by optical approaches. To fulfill the pre-requirements to scale up for e.g. pharmacological screens the following preparatory work has to be provided: (i model cells under investigation need to represent target cells in the best possible manner; (ii optical sensors that can be either small molecule dyes or genetically encoded potential probes need to provide a reliable readout with minimal interaction with the naive behavior of the cells and (iii devices need to be capable to stimulate the cells, read out the signals with the appropriate speed as well as provide the capacity for a sufficient throughput. Here we discuss several scenarios for all three categories in the field of cardiac physiology and pharmacology and provide a perspective to use the power of light in screening cardiac action potentials.

  20. [Maturation of cerebral somatosensory evoked potentials].

    Science.gov (United States)

    Cadilhac, J; Zhu, Y; Georgesco, M; Echenne, B; Rodiere, M

    1985-07-01

    Cerebral somatosensory evoked potentials (SEPs) were elicited by stimulation of the median nerve and/or posterior tibial nerve in 117 children of 1 day to 16 years old. A major negative wave (N) was consistently recorded from the parietal region of the scalp when the arm was stimulated. The peak latency, the onset latency, the rising time and the duration of H wave are closely correlated with age and body length. The latencies are shortest in the subjects of 1-3 years old. SEPs to lower extremity stimulation were inconstant in the infants before the age of one. The major positive wave (P) has a variable topographic distribution along the middle line, over the scalp. The latencies are also very variable in the different subjects of the same age as well as in the same subject with different locations of active electrode. Among the parameters studied as for N wave, only the rising time of P wave is significantly correlated with age. The latencies of P wave have the shortest value in the subjects of 1-3 years old. The comparison of SEPs to upper and to lower limb stimulations shows that there is no relationship between them in respect to their morphology and amplitude. The minimum value of the latencies of N and P waves was observed at the same age but the difference between the peak latencies of P and N waves in the same subject increases considerably after 2 years of age and reaches the adult value after 5 years of age. These resultats indicate that the maturation of the peripheral somatosensory pathways proceeds at a higher rate than that of the central somatosensory pathways, that the maturation of the somatosensory pathways of the upper limb precedes that of the lower limb, and that the rising time of N or P waves is a good index of cortical maturation. The clinical utility of these SEPs in pediatrics is discussed.

  1. Brainstem auditory-evoked potential in Boxer dogs

    Directory of Open Access Journals (Sweden)

    Mariana Isa Poci Palumbo

    2014-10-01

    Full Text Available Brainstem auditory-evoked potential (BAEP has been widely used for different purposes in veterinary practice and is commonly used to identify inherited deafness and presbycusis. In this study, 43 Boxer dogs were evaluated using the BAEP. Deafness was diagnosed in 3 dogs (2 bilateral and 1 unilateral allowing the remaining 40 Boxers to be included for normative data analysis including an evaluation on the influence of age on the BAEP. The animals were divided into 2 groups of 20 Boxers each based on age. The mean age was 4.54 years (range, 1-8 in group I, and 9.83 years (range, 8.5-12 in group II. The mean latency for I, III, and V waves were 1.14 (±0.07, 2.64 (±0.11, and 3.48 (±0.10 ms in group I, and 1.20 (±0.12, 2.73 (±0.15, and 3.58 (±0.22 ms in group II, respectively. The mean inter-peak latencies for the I-III, III-V and I-V intervals were 1.50 (±0.15, 0.84 (±0.15, and 2.34 (±0.11 ms in group I, and 1.53 (±0.16, 0.85 (±0.15, and 2.38 (±0.19 ms in group II, respectively. Latencies of waves I and III were significant different between group I and II. For the I-III, III-V and I-V intervals, no significant differences were observed between the 2 groups. As far as we know, this is the first normative study of BAEP obtained from Boxer dogs.

  2. Pudendal somatosensory evoked potentials in normal women

    Directory of Open Access Journals (Sweden)

    Geraldo A. Cavalcanti

    2007-12-01

    Full Text Available OBJECTIVE: Somatosensory evoked potential (SSEP is an electrophysiological test used to evaluate sensory innervations in peripheral and central neuropathies. Pudendal SSEP has been studied in dysfunctions related to the lower urinary tract and pelvic floor. Although some authors have already described technical details pertaining to the method, the standardization and the influence of physiological variables in normative values have not yet been established, especially for women. The aim of the study was to describe normal values of the pudendal SSEP and to compare technical details with those described by other authors. MATERIALS AND METHODS: The clitoral sensory threshold and pudendal SSEP latency was accomplished in 38 normal volunteers. The results obtained from stimulation performed on each side of the clitoris were compared to ages, body mass index (BMI and number of pregnancies. RESULTS: The values of clitoral sensory threshold and P1 latency with clitoral left stimulation were respectively, 3.64 ± 1.01 mA and 37.68 ± 2.60 ms. Results obtained with clitoral right stimulation were 3.84 ± 1.53 mA and 37.42 ± 3.12 ms, respectively. There were no correlations between clitoral sensory threshold and P1 latency with age, BMI or height of the volunteers. A significant difference was found in P1 latency between nulliparous women and volunteers who had been previously submitted to cesarean section. CONCLUSIONS: The SSEP latency represents an accessible and reproducible method to investigate the afferent pathways from the genitourinary tract. These results could be used as normative values in studies involving genitourinary neuropathies in order to better clarify voiding and sexual dysfunctions in females.

  3. Four weeks' inhalation exposure of Long Evans rats to 4-tert-butyltoluene: Effect on evoked potentials, behaviour and brain neurochemistry

    DEFF Research Database (Denmark)

    Lam, Henrik Rye; Ladefoged, Ole; Østergaard, Grete

    2000-01-01

    Long-lasting central nervous system (CNS) neurotoxicity of 4-tert-butyltoluene (TBT) has been investigated using electrophysiology, behaviour, and neurochemistry in Long Evans rats exposed by inhalation to 0, 20, or 40 p.p.m. TBT 6 hr/day, 7 days/week for 4 weeks. Flash evoked potentials...... and somatosensory evoked potentials were not affected by TBT In Auditory Brain Stem Response there was no shift in hearing threshold, but the amplitude of the first wave was increased in both exposed groups at high stimulus levels. Three to four months after the end of exposure, behavioural studies in Morris water...... maze and eight-arm maze failed to demonstrate any TBT induced effects. Exposure was followed by a 5 months exposure-free period prior to gross regional and subcellular (synaptosomal) neurochemical investigations of the brain. TBT reduced the NA concentration in whole brain minus cerebellum...

  4. [Cortical potentials evoked to response to a signal to make a memory-guided saccade].

    Science.gov (United States)

    Slavutskaia, M V; Moiseeva, V V; Shul'govskiĭ, V V

    2010-01-01

    The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.

  5. The intra-individual reproducibility of flash-evoked potentials in a sample of children.

    Science.gov (United States)

    Schellberg, D; Gasser, T; Köhler, W

    1987-07-01

    Visual evoked potentials (VEPs) to flash stimuli were recorded twice from 26 children aged 10-13 years, with an intersession interval of about 10 months. Test-retest reliability was poor for recordings taken from scalp locations overlying non-specific cortex and somewhat better for specific cortex. The size of consistency coefficients (i.e. correlations within session) showed that noise and artefacts were not the decisive factors which lower reliability. A comparison with retest correlations of broad band parameters of the EEG at rest for the same sample showed, to our surprise, smaller retest reliability for VEP parameters. Variability of the VEP in children over time seems to be a substantial as its well-known inter-individual variability.

  6. Automated single-trial assessment of laser-evoked potentials as an objective functional diagnostic tool for the nociceptive system.

    Science.gov (United States)

    Hatem, S M; Hu, L; Ragé, M; Gierasimowicz, A; Plaghki, L; Bouhassira, D; Attal, N; Iannetti, G D; Mouraux, A

    2012-12-01

    To assess the clinical usefulness of an automated analysis of event-related potentials (ERPs). Nociceptive laser-evoked potentials (LEPs) and non-nociceptive somatosensory electrically-evoked potentials (SEPs) were recorded in 37 patients with syringomyelia and 21 controls. LEP and SEP peak amplitudes and latencies were estimated using a single-trial automated approach based on time-frequency wavelet filtering and multiple linear regression, as well as a conventional approach based on visual inspection. The amplitudes and latencies of normal and abnormal LEP and SEP peaks were identified reliably using both approaches, with similar sensitivity and specificity. Because the automated approach provided an unbiased solution to account for average waveforms where no ERP could be identified visually, it revealed significant differences between patients and controls that were not revealed using the visual approach. The automated analysis of ERPs characterized reliably and objectively LEP and SEP waveforms in patients. The automated single-trial analysis can be used to characterize normal and abnormal ERPs with a similar sensitivity and specificity as visual inspection. While this does not justify its use in a routine clinical setting, the technique could be useful to avoid observer-dependent biases in clinical research. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Monophasic action potentials and activation recovery intervals as measures of ventricular action potential duration: experimental evidence to resolve some controversies

    NARCIS (Netherlands)

    Coronel, Ruben; de Bakker, Jacques M. T.; Wilms-Schopman, Francien J. G.; Opthof, Tobias; Linnenbank, André C.; Belterman, Charly N.; Janse, Michiel J.

    2006-01-01

    BACKGROUND: Activation recovery intervals (ARIs) and monophasic action potential (MAP) duration are used as measures of action potential duration in beating hearts. However, controversies exist concerning the correct way to record MAPs or calculate ARIs. We have addressed these issues

  8. Long-latency auditory evoked potentials with verbal and nonverbal stimuli.

    Science.gov (United States)

    Oppitz, Sheila Jacques; Didoné, Dayane Domeneghini; Silva, Débora Durigon da; Gois, Marjana; Folgearini, Jordana; Ferreira, Geise Corrêa; Garcia, Michele Vargas

    2015-01-01

    Long-latency auditory evoked potentials represent the cortical activity related to attention, memory, and auditory discrimination skills. Acoustic signal processing occurs differently between verbal and nonverbal stimuli, influencing the latency and amplitude patterns. To describe the latencies of the cortical potentials P1, N1, P2, N2, and P3, as well as P3 amplitude, with different speech stimuli and tone bursts, and to classify them in the presence and absence of these data. A total of 30 subjects with normal hearing were assessed, aged 18-32 years old, matched by gender. Nonverbal stimuli were used (tone burst; 1000Hz - frequent and 4000Hz - rare); and verbal (/ba/ - frequent; /ga/, /da/, and /di/ - rare). Considering the component N2 for tone burst, the lowest latency found was 217.45ms for the BA/DI stimulus; the highest latency found was 256.5ms. For the P3 component, the shortest latency with tone burst stimuli was 298.7 with BA/GA stimuli, the highest, was 340ms. For the P3 amplitude, there was no statistically significant difference among the different stimuli. For latencies of components P1, N1, P2, N2, P3, there were no statistical differences among them, regardless of the stimuli used. There was a difference in the latency of potentials N2 and P3 among the stimuli employed but no difference was observed for the P3 amplitude. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  9. Long-latency auditory evoked potentials with verbal and nonverbal stimuli,

    Directory of Open Access Journals (Sweden)

    Sheila Jacques Oppitz

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Long-latency auditory evoked potentials represent the cortical activity related to attention, memory, and auditory discrimination skills. Acoustic signal processing occurs differently between verbal and nonverbal stimuli, influencing the latency and amplitude patterns. OBJECTIVE: To describe the latencies of the cortical potentials P1, N1, P2, N2, and P3, as well as P3 amplitude, with different speech stimuli and tone bursts, and to classify them in the presence and absence of these data. METHODS: A total of 30 subjects with normal hearing were assessed, aged 18-32 years old, matched by gender. Nonverbal stimuli were used (tone burst; 1000 Hz - frequent and 4000 Hz - rare; and verbal (/ba/ - frequent; /ga/, /da/, and /di/ - rare. RESULTS: Considering the component N2 for tone burst, the lowest latency found was 217.45 ms for the BA/DI stimulus; the highest latency found was 256.5 ms. For the P3 component, the shortest latency with tone burst stimuli was 298.7 with BA/GA stimuli, the highest, was 340 ms. For the P3 amplitude, there was no statistically significant difference among the different stimuli. For latencies of components P1, N1, P2, N2, P3, there were no statistical differences among them, regardless of the stimuli used. CONCLUSION: There was a difference in the latency of potentials N2 and P3 among the stimuli employed but no difference was observed for the P3 amplitude.

  10. Corticobulbar motor evoked potentials from tongue muscles used as a control in cervical spinal surgery

    Directory of Open Access Journals (Sweden)

    Dong-Gun Kim

    Full Text Available Objective: Motor evoked potentials (MEPs changes might be caused to the non-surgically induced factors during cervical spinal surgery. Therefore, control MEPs recorded cranially to the exit of the C5 root are highly recommendable in cervical spinal surgery. We studied whether corticobulbar MEPs (C-MEPs from tongue muscle could be used as a control MEPs in cervical spinal surgery. Methods: Twenty-five consecutive cervical spinal surgeries were analyzed. Stimulation of motor area for tongue was done by subcutaneous electrodes placed at C3/C4 (10–20 EEG System, and recording was done from both sides of tongue. Results: C-MEPs were recorded successfully 24 out of the 25 (96% tested patients. Forty-six out of fifty MEPs (92% from tongue muscles were monitorable from the baseline. In two patients, we could obtain only unilateral C-MEPs. Mean MEPs latencies obtained from the left and right side of the tongue were 11.5 ± 1 ms and 11.5 ± 0.8 ms, respectively. Conclusions: Monitoring C-MEPs from tongue muscles might be useful control in cervical spinal surgery. They were easily elicited and relatively free from phenomenon of peripheral stimulation of the hypoglossal nerves. Significance: This is first study to identify the usefulness of C-MEPs as a control of cervical spinal surgery. Keywords: Intraoperative neurophysiological monitoring, Motor-evoked potential, Corticospinal tract, Corticobulbar MEPs, Hypoglossal nerve

  11. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings.

    Science.gov (United States)

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control.

  12. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings

    Science.gov (United States)

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control. PMID:26137479

  13. DC-Evoked Modulation of Excitability of Myelinated Nerve Fibers and Their Terminal Branches; Differences in Sustained Effects of DC.

    Science.gov (United States)

    Kaczmarek, Dominik; Jankowska, Elzbieta

    2018-03-15

    Direct current (DC) evokes long-lasting changes in neuronal networks both presynaptically and postsynaptically and different mechanisms were proposed to be involved in them. Different mechanisms were also suggested to account for the different dynamics of presynaptic DC actions on myelinated nerve fibers stimulated before they entered the spinal gray matter and on their terminal branches. The aim of the present study was to examine whether these different dynamics might be related to differences in the involvement of K + channels. To this end, we compared effects of the K + channel blocker 4-amino-pyridine (4-AP) on DC-evoked changes in the excitability of afferent fibers stimulated within the dorsal columns (epidurally) and within their projection areas in the dorsal horn and motor nuclei (intraspinally). 4-AP was applied systemically in deeply anesthetized rats. DC-evoked increases in the excitability of epidurally stimulated afferent nerve fibers, and increases in field potentials evoked by these fibers, were not affected by 4-AP. In contrast, sustained decreases rather than increases in the excitability of intraspinally stimulated terminal nerve branches were evoked by local application of DC in conjunction with 4-AP. The study leads to the conclusion that 4-AP-sensitive K + channels contribute to the sustained DC-evoked post-polarization increases in the excitability at the level of terminal branches of nerve fibers but not of the nodes of Ranvier nor within the juxta-paranodal regions where other mechanisms would be involved in inducing the sustained DC-evoked changes. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Visual perception and frontal lobe in intellectual disabilities: a study with evoked potentials and neuropsychology.

    Science.gov (United States)

    Muñoz-Ruata, J; Caro-Martínez, E; Martínez Pérez, L; Borja, M

    2010-12-01

    Perception disorders are frequently observed in persons with intellectual disability (ID) and their influence on cognition has been discussed. The objective of this study is to clarify the mechanisms behind these alterations by analysing the visual event related potentials early component, the N1 wave, which is related to perception alterations in several pathologies. Additionally, the relationship between N1 and neuropsychological visual tests was studied with the aim to understand its functional significance in ID persons. A group of 69 subjects, with etiologically heterogeneous mild ID, performed an odd-ball task of active discrimination of geometric figures. N1a (frontal) and N1b (post-occipital) waves were obtained from the evoked potentials. They also performed several neuropsychological tests. Only component N1a, produced by the target stimulus, showed significant correlations with the visual integration, visual semantic association, visual analogical reasoning tests, Perceptual Reasoning Index (Wechsler Intelligence Scale for Children Fourth Edition) and intelligence quotient. The systematic correlations, produced by the target stimulus in perceptual abilities tasks, with the N1a (frontal) and not with N1b (posterior), suggest that the visual perception process involves frontal participation. These correlations support the idea that the N1a and N1b are not equivalent. The relationship between frontal functions and early stages of visual perception is revised and discussed, as well as the frontal contribution with the neuropsychological tests used. A possible relationship between the frontal activity dysfunction in ID and perceptive problems is suggested. Perceptive alteration observed in persons with ID could indeed be because of altered sensory areas, but also to a failure in the frontal participation of perceptive processes conceived as elaborations inside reverberant circuits of perception-action. © 2010 The Authors. Journal of Intellectual Disability

  15. Clinical application of multifocal visual evoked potentials in children with epilepsy caused by intracranial disease

    International Nuclear Information System (INIS)

    Yukawa, Eiichi; Kim, Yeong-Jin; Kawasaki, Kensuke; Yoshii, Toshiaki; Hara, Yoshiaki

    2006-01-01

    We investigated whether visual field defects could be objectively evaluated using multifocal visual evoked potential (m-VEP) in two children with epilepsy caused by intracranial disease in whom it was difficult to measure the visual field. To determine normal waves in m-VEP, recording was performed using a visual evoked response imaging system (VERIS) Junior Science program (Mayo, Aichi, Japan) in 20 healthy children (20 eyes) peak latency and amplitude were used for assessment. In the two children with epilepsy, m-VEPs were recorded, and compared with the results of static perimetry or the lesions observed by Magnetic Resonance Imaging (MRI). In the 20 healthy children, there was no significant difference in the peak latency or amplitude among 4 quadrants by one-way analysis of variance. m-VEP in the children with epilepsy showed abnormal waves, corresponding to the visual field defects in the static perimetry or the lesions observed by MRI. Objective evaluation of visual field defects using m-VEP may be useful in children with epilepsy caused by intracranial disease in whom kinetic/static perimetry as a subjective examination is difficult. (author)

  16. Dose-response characteristics of methylphenidate on locomotor behavior and on sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Swann Alan C

    2006-01-01

    Full Text Available Abstract Background Methylphenidate (MPD is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA, nucleus accumbens (NAc, and prefrontal cortex (PFC. Methods The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39 rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p. on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10. Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. Results Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% ± 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% ± 5.9% after 2.5 mg/kg MPD, and 56.5% ± 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of

  17. Comparison of a new composite index based on midlatency auditory evoked potentials and electroencephalographic parameters with bispectral index (BIS) during moderate propofol sedation.

    Science.gov (United States)

    Hadzidiakos, D; Petersen, S; Baars, J; Herold, K; Rehberg, B

    2006-11-01

    Derived parameters of the electroencephalogram and auditory evoked potentials can be used to determine depth of anaesthesia and sedation. However, it is not known whether any parameter can identify the occurrence of awareness in individual patients. We have compared the performance of bispectral index and a new composite index derived from auditory evoked potentials and the electroencephalogram (AAI 1.61) in predicting consciousness, explicit and implicit memory during moderate sedation with propofol. Twenty-one patients with spinal anaesthesia received intraoperatively propofol at the age-corrected C(50) for loss of consciousness and were presented test words via headphones. Bispectral index and AAI 1.61 (auditory evoked potentials, AEP-Monitor2) were recorded in parallel as well as the Observer's Assessment of Alertness/Sedation-score. Postoperatively, testing for explicit and implicit memory formation was performed. Bispectral index and AAI 1.61 correlated well with loss of consciousness defined by an Observer's Assessment of Alertness/Sedation-score of 2 (identical P(K) of 0.87), but did not allow a prediction of postoperative explicit or implicit recall. Both bispectral index and AAI may be indices of depth of sedation rather than indicators of memory formation, which persists during propofol sedation even after loss of consciousness.

  18. Pattern visual evoked potentials elicited by organic electroluminescence screen.

    Science.gov (United States)

    Matsumoto, Celso Soiti; Shinoda, Kei; Matsumoto, Harue; Funada, Hideaki; Sasaki, Kakeru; Minoda, Haruka; Iwata, Takeshi; Mizota, Atsushi

    2014-01-01

    To determine whether organic electroluminescence (OLED) screens can be used as visual stimulators to elicit pattern-reversal visual evoked potentials (p-VEPs). Checkerboard patterns were generated on a conventional cathode-ray tube (S710, Compaq Computer Co., USA) screen and on an OLED (17 inches, 320 × 230 mm, PVM-1741, Sony, Tokyo, Japan) screen. The time course of the luminance changes of each monitor was measured with a photodiode. The p-VEPs elicited by these two screens were recorded from 15 eyes of 9 healthy volunteers (22.0 ± 0.8 years). The OLED screen had a constant time delay from the onset of the trigger signal to the start of the luminescence change. The delay during the reversal phase from black to white for the pattern was 1.0 msec on the cathode-ray tube (CRT) screen and 0.5 msec on the OLED screen. No significant differences in the amplitudes of P100 and the implicit times of N75 and P100 were observed in the p-VEPs elicited by the CRT and the OLED screens. The OLED screen can be used as a visual stimulator to elicit p-VEPs; however the time delay and the specific properties in the luminance change must be taken into account.

  19. Changes in vestibular evoked myogenic potentials after Meniere attacks.

    Science.gov (United States)

    Kuo, Shih-Wei; Yang, Ting-Hua; Young, Yi-Ho

    2005-09-01

    The aim of this study was to apply videonystagmography (VNG) and vestibular evoked myogenic potential (VEMP) tests to patients with Meniere attacks, to explore the mechanics of where saccular disorders may affect the semicircular canals. From January 2001 to December 2003, 12 consecutive patients with unilateral definite Meniere's disease with vertiginous attacks underwent VNG for recording spontaneous nystagmus, as well as VEMP tests. At the very beginning of the Meniere attack, the spontaneous nystagmus beat toward the lesion side in 5 patients (42%) and toward the healthy side in 7 patients (58%). Twenty-four hours later, only 6 patients (50%) showed spontaneous nystagmus beating toward the healthy side. Nevertheless, spontaneous nystagmus subsided in all patients within 48 hours. The VEMP test was performed within 24 hours of a Meniere attack; the VEMPs were normal in 4 patients and abnormal in 8 patients (67%). After 48 hours, 4 patients with initially abnormal VEMPs had resolution and return to normal VEMPs, and the other 4 patients still had absent VEMPs. Most patients (67%) with Meniere attacks revealed abnormal VEMPs, indicating that the saccule participates in a Meniere attack. This is an important idea that stimulates consideration of the mechanism of Meniere attacks.

  20. The influence of caffeine on calorics and cervical vestibular evoked myogenic potentials (cVEMPs).

    Science.gov (United States)

    McNerney, Kathleen; Coad, Mary Lou; Burkard, Robert

    2014-03-01

    Prior to undergoing vestibular function testing, it is not uncommon for clinicians to request that patients abstain from caffeine 24 hr prior to the administration of the tests. However, there is little evidence that caffeine affects vestibular function. To evaluate whether the results from two tests commonly used in a clinical setting to assess vestibular function (i.e., calorics and the cervical vestibular evoked myogenic potential [cVEMP]) are affected by caffeine. Subjects were tested with and without consuming a moderate amount of caffeine prior to undergoing calorics and cVEMPs. Thirty young healthy controls (mean = 23.28 yr; females = 21). Subjects were excluded if they reported any history of vestibular/balance impairment. The Variotherm Plus Caloric Irrigator was used to administer the water, while the I-Portal VNG software was used to collect and analyze subjects' eye movements. The TECA Evoked Potential System was used for the cVEMP stimulus presentation as well as for the data collection. During cVEMP collection, subjects were asked to monitor their sternocleidomastoid muscle contraction with a Delsys EMG monitor. IBM SPSS Statistics 20 was used to statistically analyze the results via paired t-tests. Analysis of the data revealed that ingestion of caffeine did not significantly influence the results of either test of vestibular function. The results revealed that a moderate amount of caffeine does not have a clinically significant effect on the results from caloric and cVEMP tests in young healthy adults. Future research is necessary to determine whether similar results would be obtained from individuals with a vestibular impairment, as well as older adults. American Academy of Audiology.

  1. Using affective knowledge to generate and validate a set of emotion-related, action words

    Directory of Open Access Journals (Sweden)

    Emma Portch

    2015-07-01

    Full Text Available Emotion concepts are built through situated experience. Abstract word meaning is grounded in this affective knowledge, giving words the potential to evoke emotional feelings and reactions (e.g., Vigliocco et al., 2009. In the present work we explore whether words differ in the extent to which they evoke ‘specific’ emotional knowledge. Using a categorical approach, in which an affective ‘context’ is created, it is possible to assess whether words proportionally activate knowledge relevant to different emotional states (e.g., ‘sadness’, ‘anger’, Stevenson, Mikels & James, 2007a. We argue that this method may be particularly effective when assessing the emotional meaning of action words (e.g., Schacht & Sommer, 2009. In study 1 we use a constrained feature generation task to derive a set of action words that participants associated with six, basic emotional states (see full list in Appendix S1. Generation frequencies were taken to indicate the likelihood that the word would evoke emotional knowledge relevant to the state to which it had been paired. In study 2 a rating task was used to assess the strength of association between the six most frequently generated, or ‘typical’, action words and corresponding emotion labels. Participants were presented with a series of sentences, in which action words (typical and atypical and labels were paired e.g., “If you are feeling ‘sad’ how likely would you be to act in the following way?” … ‘cry.’ Findings suggest that typical associations were robust. Participants always gave higher ratings to typical vs. atypical action word and label pairings, even when (a rating direction was manipulated (the label or verb appeared first in the sentence, and (b the typical behaviours were to be performed by the rater themselves, or others. Our findings suggest that emotion-related action words vary in the extent to which they evoke knowledge relevant for different emotional states. When

  2. Detrended fluctuation analysis of compound action potentials re-corded in the cutaneous nerves of diabetic rats

    International Nuclear Information System (INIS)

    Quiroz-González, Salvador; Rodríguez-Torres, Erika Elizabeth; Segura-Alegría, Bertha; Pereira-Venegas, Javier; Lopez-Gomez, Rosa Estela; Jiménez-Estrada, Ismael

    2016-01-01

    Highlights: • Fractal analysis of compound action potentials (CAP) evoked in diabetic nerves. • Diabetic rats showed an increment in the chaotic behavior of CAP responses. • Diabetes provokes impaired transmission of sensory information in rats. - Abstract: The electrophysiological alterations in nerves due to diabetes are classically studied in relation to their instantaneous frequency, conduction velocity and amplitude. However, analysis of amplitude variability may reflect the occurrence of feedback loop mechanisms that adjust the output as a function of its previous activity could indicate fractal dynamics. We assume that a peripheral neuropathy, such as that evoked by diabetes, the inability to maintain a steady flow of sensory information is reflected as a breakdown of the long range power-law correlation of CAP area fluctuation from cutaneous nerves. To test this, we first explored in normal rats whether fluctuations in the trial-to-trial CAP area showed a self-similar behavior or fractal structure by means of detrended fluctuations analysis (DFA), and Poincare plots. In addition, we determine whether such CAP fluctuations varied by diabetes induction. Results showed that CAP area fluctuation of SU nerves evoked in normal rats present a long term correlation and self-similar organization (fractal behavior) from trial to trial stimulation as evidenced by DFA of CAP areas. However, CAPs recorded in diabetic nerves exhibited significant reductions in area, larger duration and increased area variability and different Poincare plots than control nerves. The Hurst exponent value determined with the DFA method from a series of 2000 CAPs evoked in diabetic SU nerves was smaller than in control nerves. It is proposed that in cutaneous nerves of normal rats variability of the CAP area present a long term correlation and self-similar organization (fractal behavior), and reflect the ability to maintain a steady flow of sensory information through cutaneous nerves

  3. Effect Of Electromagnetic Waves Emitted From Mobile Phone On Brain Stem Auditory Evoked Potential In Adult Males.

    Science.gov (United States)

    Singh, K

    2015-01-01

    Mobile phone (MP) is commonly used communication tool. Electromagnetic waves (EMWs) emitted from MP may have potential health hazards. So, it was planned to study the effect of electromagnetic waves (EMWs) emitted from the mobile phone on brainstem auditory evoked potential (BAEP) in male subjects in the age group of 20-40 years. BAEPs were recorded using standard method of 10-20 system of electrode placement and sound click stimuli of specified intensity, duration and frequency.Right ear was exposed to EMW emitted from MP for about 10 min. On comparison of before and after exposure to MP in right ear (found to be dominating ear), there was significant increase in latency of II, III (p potential.

  4. Low luminance/eyes closed and monochromatic stimulations reduce variability of flash visual evoked potential latency

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Subramanian

    2013-01-01

    Full Text Available Context: Visual evoked potentials are useful in investigating the physiology and pathophysiology of the human visual system. Flash visual evoked potential (FVEP, though technically easier, has less clinical utility because it shows great variations in both latency and amplitude for normal subjects. Aim: To study the effect of eye closure, low luminance, and monochromatic stimulation on the variability of FVEPs. Subjects and Methods: Subjects in self-reported good health in the age group of 18-30 years were divided into three groups. All participants underwent FVEP recording with eyes open and with white light at 0.6 J luminance (standard technique. Next recording was done in group 1 with closed eyes, group 2 with 1.2 and 20 J luminance, and group 3 with red and blue lights, while keeping all the other parameters constant. Two trials were given for each eye, for each technique. The same procedure was repeated at the same clock time on the following day. Statistical Analysis: Variation in FVEP latencies between the individuals (interindividual variability and the variations within the same individual for four trials (intraindividual variability were assessed using coefficient of variance (COV. The technique with lower COV was considered the better method. Results: Recording done with closed eyes, 0.6 J luminance, and monochromatic light (blue > red showed lower interindividual and intraindividual variability in P2 and N2 as compared to standard techniques. Conclusions: Low luminance flash stimulations and monochromatic light will reduce FVEP latency variability and may be clinically useful modifications of FVEP recording technique.

  5. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.

    Science.gov (United States)

    Li, Rui; Zhang, Xiaodong; Li, Hanzhe; Zhang, Liming; Lu, Zhufeng; Chen, Jiangcheng

    2018-08-01

    Brain control technology can restore communication between the brain and a prosthesis, and choosing a Brain-Computer Interface (BCI) paradigm to evoke electroencephalogram (EEG) signals is an essential step for developing this technology. In this paper, the Scene Graph paradigm used for controlling prostheses was proposed; this paradigm is based on Steady-State Visual Evoked Potentials (SSVEPs) regarding the Scene Graph of a subject's intention. A mathematic model was built to predict SSVEPs evoked by the proposed paradigm and a sinusoidal stimulation method was used to present the Scene Graph stimulus to elicit SSVEPs from subjects. Then, a 2-degree of freedom (2-DOF) brain-controlled prosthesis system was constructed to validate the performance of the Scene Graph-SSVEP (SG-SSVEP)-based BCI. The classification of SG-SSVEPs was detected via the Canonical Correlation Analysis (CCA) approach. To assess the efficiency of proposed BCI system, the performances of traditional SSVEP-BCI system were compared. Experimental results from six subjects suggested that the proposed system effectively enhanced the SSVEP responses, decreased the degradation of SSVEP strength and reduced the visual fatigue in comparison with the traditional SSVEP-BCI system. The average signal to noise ratio (SNR) of SG-SSVEP was 6.31 ± 2.64 dB, versus 3.38 ± 0.78 dB of traditional-SSVEP. In addition, the proposed system achieved good performances in prosthesis control. The average accuracy was 94.58% ± 7.05%, and the corresponding high information transfer rate (IRT) was 19.55 ± 3.07 bit/min. The experimental results revealed that the SG-SSVEP based BCI system achieves the good performance and improved the stability relative to the conventional approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Optical mapping of optogenetically shaped cardiac action potentials

    Science.gov (United States)

    Park, Sarah A.; Lee, Shin-Rong; Tung, Leslie; Yue, David T.

    2014-01-01

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation. PMID:25135113

  7. Infrared neural stimulation (INS) inhibits electrically evoked neural responses in the deaf white cat

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud M.; Robinson, Alan; Young, Hunter K.

    2014-03-01

    Infrared neural stimulation (INS) has been used in the past to evoke neural activity from hearing and partially deaf animals. All the responses were excitatory. In Aplysia californica, Duke and coworkers demonstrated that INS also inhibits neural responses [1], which similar observations were made in the vestibular system [2, 3]. In deaf white cats that have cochleae with largely reduced spiral ganglion neuron counts and a significant degeneration of the organ of Corti, no cochlear compound action potentials could be observed during INS alone. However, the combined electrical and optical stimulation demonstrated inhibitory responses during irradiation with infrared light.

  8. Impact of substance P on the correlation of spike train evoked by electro acupuncture

    International Nuclear Information System (INIS)

    Jin, Chen; Zhang, Xuan; Wang, Jiang; Guo, Yi; Zhao, Xue; Guo, Yong-Ming

    2016-01-01

    Highlights: • We analyze spike trains induced by EA before and after inhibiting SP in PC6 area. • Inhibiting SP leads to an increase of spiking rate of median nerve. • SP may modulate membrane potential to affect the spiking rate. • SP has an influence on long-range correlation of spike train evoked by EA. • SP play an important role in EA-induced neural spiking and encoding. - Abstract: Substance P (SP) participates in the neural signal transmission evoked by electro-acupuncture (EA). This paper investigates the impact of SP on the correlation of spike train in the median nerve evoked by EA at 'Neiguan' acupoint (PC6). It shows that the spiking rate and interspike interval (ISI) distribution change obviously after inhibiting SP. This variation of spiking activity indicates that SP affects the temporal structure of spike train through modulating the action potential on median nerve filaments. Furtherly, the correlation coefficient and scaling exponent are considered to measure the correlation of spike train. Scaled Windowed Variance (SWV) method is applied to calculate scaling exponent which quantifies the long-range correlation of the neural electrical signals. It is found that the correlation coefficients of ISI increase after inhibiting SP released. In addition, the scaling exponents of neuronal spike train have significant differences between before and after inhibiting SP. These findings demonstrate that SP has an influence on the long-range correlation of spike train. Our results indicate that SP may play an important role in EA-induced neural spiking and encoding.

  9. Is action potential threshold lowest in the axon?

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Stuart, Greg J.

    2008-01-01

    Action potential threshold is thought to be lowest in the axon, but when measured using conventional techniques, we found that action potential voltage threshold of rat cortical pyramidal neurons was higher in the axon than at other neuronal locations. In contrast, both current threshold and voltage

  10. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats

    International Nuclear Information System (INIS)

    Krueger, Katharina; Straub, Heidrun; Hirner, Alfred V.; Hippler, Joerg; Binding, Norbert; Musshoff, Ulrich

    2009-01-01

    Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krueger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Muβhoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krueger, K., Straub, H., Binding, N., Muβhoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krueger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Muβhoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA V ) and monomethylarsonous acid (MMA III ) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA V had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA III strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 μmol/l (adult rats) and 25 μmol/l (young rats) and LTP amplitudes at concentrations of 25 μmol/l (adult rats) and 10 μmol/l (young rats), respectively. In contrast, application of 1 μmol/l MMA III led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at this concentration (Krueger, K., Gruner, J

  11. Action potential propagation: ion current or intramembrane electric field?

    Science.gov (United States)

    Martí, Albert; Pérez, Juan J; Madrenas, Jordi

    2018-01-01

    The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.

  12. Brainstem auditory evoked potential testing in Dalmatian dogs in Brazil

    Directory of Open Access Journals (Sweden)

    M.I.P. Palumbo

    2014-04-01

    Full Text Available The brain stem auditory-evoked potential (BAEP is an electrophysiologic test that detects and records the electrical activity in the auditory system from cochlea to midbrain, generated after an acoustic stimulus applied to the external ear. The aim of this study is to obtain normative data for BAEP in Dalmatian dogs in order to apply this to the evaluation of deafness and other neurologic disorders. BAEP were recorded from 30 Dalmatian dogs for a normative Brazilian study. Mean latencies for waves I, III, and V were 1.14 (±0.09, 2.62 (±0.10, and 3.46 (±0.14 ms, respectively. Mean inter-peak latencies for I-III, III-V, and I-V intervals were 1.48 (±0.17, 0.84 (±0.12, and 2.31 (±0.18 ms, respectively. Unilateral abnormalities were found in 16.7% of animals and bilateral deafness was seen in one dog. The normative data obtained in this paper is compatible with other published data. As far as we know this is the first report of deafness occurrence in Dalmatian dogs in Brazil.

  13. Pattern reversal visual evoked potentials in migraine subjects without aura

    Directory of Open Access Journals (Sweden)

    Pedro F. Moreira Filho

    1994-12-01

    Full Text Available Twenty seven patients with migraine without aura were investigated. The age was between 12 and 54 years; 5 were men and 22 women. The diagnosis of migraine was made according to the classification proposed by the International Headache Society. The method of visual evoked potential was performed with pattern reversal (VEP-PR, with monocular stimulation. The stimulation was performed with pattern reversal with 4x4 cm black and white and red and green squared screen placed 1 meter from the nasion at stimulus frequency 1/s; 128 individual trials were analysed. The VEP-PR with black/white and red/green study showed a significant increase of value of the P-100 latency in 10 migraine patients. In 8 cases the LP100 in VEP-PR black/white was normal but in VEP-PR red/green the LP100 showed increase. Specifically in 1 of our cases, LP100 were normal in VEP-PR black/white but in the red/green there were no reproductice waves. On basis of these observations we consider that the method of VEP-PR is an useful instrument for investigation of migraine patients without aura.

  14. Evaluation of an automated analysis for pain-related evoked potentials

    Directory of Open Access Journals (Sweden)

    Wulf Michael

    2017-09-01

    Full Text Available This paper presents initial steps towards an auto-mated analysis for pain-related evoked potentials (PREP to achieve a higher objectivity and non-biased examination as well as a reduction in the time expended during clinical daily routines. While manually examining, each epoch of an en-semble of stimulus-locked EEG signals, elicited by electrical stimulation of predominantly intra-epidermal small nerve fibers and recorded over the central electrode (Cz, is in-spected for artifacts before calculating the PREP by averag-ing the artifact-free epochs. Afterwards, specific peak-latencies (like the P0-, N1 and P1-latency are identified as certain extrema in the PREP’s waveform. The proposed automated analysis uses Pearson’s correlation and low-pass differentiation to perform these tasks. To evaluate the auto-mated analysis’ accuracy its results of 232 datasets were compared to the results of the manually performed examina-tion. Results of the automated artifact rejection were compa-rable to the manual examination. Detection of peak-latencies was more heterogeneous, indicating some sensitivity of the detected events upon the criteria used during data examina-tion.

  15. Selective effects of an octopus toxin on action potentials

    Science.gov (United States)

    Dulhunty, Angela; Gage, Peter W.

    1971-01-01

    1. A lethal, water soluble toxin (Maculotoxin, MTX) with a molecular weight less than 540, can be extracted from the salivary glands of an octopus (Hapalochlaena maculosa). 2. MTX blocks action potentials in sartorius muscle fibres of toads without affecting the membrane potential. Delayed rectification is not inhibited by the toxin. 3. At low concentrations (10-6-10-5 g/ml.) MTX blocks action potentials only after a certain number have been elicited. The number of action potentials, which can be defined accurately, depends on the concentration of MTX and the concentration of sodium ions in the extracellular solution. 4. The toxin has no post-synaptic effect at the neuromuscular junction and it is concluded that it blocks neuromuscular transmission by inhibiting action potentials in motor nerve terminals. PMID:4330930

  16. Early visual evoked potentials are modulated by eye position in humans induced by whole body rotations

    Directory of Open Access Journals (Sweden)

    Petit Laurent

    2004-09-01

    Full Text Available Abstract Background To reach and grasp an object in space on the basis of its image cast on the retina requires different coordinate transformations that take into account gaze and limb positioning. Eye position in the orbit influences the image's conversion from retinotopic (eye-centered coordinates to an egocentric frame necessary for guiding action. Neuroimaging studies have revealed eye position-dependent activity in extrastriate visual, parietal and frontal areas that is along the visuo-motor pathway. At the earliest vision stage, the role of the primary visual area (V1 in this process remains unclear. We used an experimental design based on pattern-onset visual evoked potentials (VEP recordings to study the effect of eye position on V1 activity in humans. Results We showed that the amplitude of the initial C1 component of VEP, acknowledged to originate in V1, was modulated by the eye position. We also established that putative spontaneous small saccades related to eccentric fixation, as well as retinal disparity cannot explain the effects of changing C1 amplitude of VEP in the present study. Conclusions The present modulation of the early component of VEP suggests an eye position-dependent activity of the human primary visual area. Our findings also evidence that cortical processes combine information about the position of the stimulus on the retinae with information about the location of the eyes in their orbit as early as the stage of primary visual area.

  17. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea

    NARCIS (Netherlands)

    Fridberger, A; vanMaarseveen, JTPW; Scarfone, E; Ulfendahl, M; Flock, B; Flock, A

    1997-01-01

    We have used the guinea pig isolated temporal bone preparation to investigate changes in the nonlinear properties of the tone-evoked cochlear potentials during reversible step displacements of the basilar membrane towards either the scala tympani or the scala vestibuli. The position shifts were

  18. Brain correlates of music-evoked emotions.

    Science.gov (United States)

    Koelsch, Stefan

    2014-03-01

    Music is a universal feature of human societies, partly owing to its power to evoke strong emotions and influence moods. During the past decade, the investigation of the neural correlates of music-evoked emotions has been invaluable for the understanding of human emotion. Functional neuroimaging studies on music and emotion show that music can modulate activity in brain structures that are known to be crucially involved in emotion, such as the amygdala, nucleus accumbens, hypothalamus, hippocampus, insula, cingulate cortex and orbitofrontal cortex. The potential of music to modulate activity in these structures has important implications for the use of music in the treatment of psychiatric and neurological disorders.

  19. Two Sides of the Same Coin: ERP and Wavelet Analyses of Visual Potentials Evoked and Induced by Task-Relevant Faces.

    Science.gov (United States)

    Van der Lubbe, Rob H J; Szumska, Izabela; Fajkowska, Małgorzata

    2016-01-01

    New analysis techniques of the electroencephalogram (EEG) such as wavelet analysis open the possibility to address questions that may largely improve our understanding of the EEG and clarify its relation with related potentials (ER Ps). Three issues were addressed. 1) To what extent can early ERERP components be described as transient evoked oscillations in specific frequency bands? 2) Total EEG power (TP) after a stimulus consists of pre-stimulus baseline power (BP), evoked power (EP), and induced power (IP), but what are their respective contributions? 3) The Phase Reset model proposes that BP predicts EP, while the evoked model holds that BP is unrelated to EP; which model is the most valid one? EEG results on NoGo trials for 123 individuals that took part in an experiment with emotional facial expressions were examined by computing ERPs and by performing wavelet analyses on the raw EEG and on ER Ps. After performing several multiple regression analyses, we obtained the following answers. First, the P1, N1, and P2 components can by and large be described as transient oscillations in the α and θ bands. Secondly, it appears possible to estimate the separate contributions of EP, BP, and IP to TP, and importantly, the contribution of IP is mostly larger than that of EP. Finally, no strong support was obtained for either the Phase Reset or the Evoked model. Recent models are discussed that may better explain the relation between raw EEG and ERPs.

  20. Relationship between median nerve somatosensory evoked potentials and spinal cord injury levels in patients with quadriplegia.

    Science.gov (United States)

    de Arruda Serra Gaspar, M I F; Cliquet, A; Fernandes Lima, V M; de Abreu, D C C

    2009-05-01

    Cross-sectional study. To observe if there is a relationship between the level of injury by the American Spinal Cord Injury Association (ASIA) and cortical somatosensory evoked potential (SSEP) recordings of the median nerve in patients with quadriplegia. Rehabilitation Outpatient Clinic at the university hospital in Brazil. Fourteen individuals with quadriplegia and 8 healthy individuals were evaluated. Electrophysiological assessment of the median nerve was performed by evoked potential equipment. The injury level was obtained by ASIA. N(9), N(13) and N(20) were analyzed based on the presence or absence of responses. The parameters used for analyzing these responses were the latency and the amplitude. Data were analyzed using mixed-effect models. N(9) responses were found in all patients with quadriplegia with a similar latency and amplitude observed in healthy individuals; N(13) responses were not found in any patients with quadriplegia. N(20) responses were not found in C5 patients with quadriplegia but it was present in C6 and C7 patients. Their latencies were similar to healthy individuals (P>0.05) but the amplitudes were decreased (P<0.05). This study suggests that the SSEP responses depend on the injury level, considering that the individuals with C6 and C7 injury levels, both complete and incomplete, presented SSEP recordings in the cortical area. It also showed a relationship between the level of spinal cord injury assessed by ASIA and the median nerve SSEP responses, through the latency and amplitude recordings.

  1. Quadratic adaptive algorithm for solving cardiac action potential models.

    Science.gov (United States)

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights

  2. Pattern Visual Evoked Potentials Elicited by Organic Electroluminescence Screen

    Directory of Open Access Journals (Sweden)

    Celso Soiti Matsumoto

    2014-01-01

    Full Text Available Purpose. To determine whether organic electroluminescence (OLED screens can be used as visual stimulators to elicit pattern-reversal visual evoked potentials (p-VEPs. Method. Checkerboard patterns were generated on a conventional cathode-ray tube (S710, Compaq Computer Co., USA screen and on an OLED (17 inches, 320 × 230 mm, PVM-1741, Sony, Tokyo, Japan screen. The time course of the luminance changes of each monitor was measured with a photodiode. The p-VEPs elicited by these two screens were recorded from 15 eyes of 9 healthy volunteers (22.0 ± 0.8 years. Results. The OLED screen had a constant time delay from the onset of the trigger signal to the start of the luminescence change. The delay during the reversal phase from black to white for the pattern was 1.0 msec on the cathode-ray tube (CRT screen and 0.5 msec on the OLED screen. No significant differences in the amplitudes of P100 and the implicit times of N75 and P100 were observed in the p-VEPs elicited by the CRT and the OLED screens. Conclusion. The OLED screen can be used as a visual stimulator to elicit p-VEPs; however the time delay and the specific properties in the luminance change must be taken into account.

  3. Changes of Transient Visual Evoked Potentials in Dyslexic Children

    Directory of Open Access Journals (Sweden)

    Ka Yan Leung

    2011-05-01

    Full Text Available Objectives: To investigate the characteristics of Visual Evoked Potentials (VEP in dyslexics. Methods: Fourteen children, 7 dyslexics and 7 control, aged 7 to 8 years were recruited. All dyslexic subjects were diagnosed by clinical psychologist. All subjects are from mainstream primary schools in Hong Kong, using Chinese and Cantonese as their primary written and spoken language, having normal visual acuity and IQ. Children with reported emotional or behavioral problems or binocular vision problem were excluded. All the subjects participated in pattern-reversal VEP measurements binocularly with 1000msec recording time. Four conditions of stimulations (checkersize: 180 min of arc were applied. (15-Hz at 15% contrast (25-Hz at 1% contrast (315-Hz at 15% contrast (415-Hz at 1% contrast Results: At 15% contrast stimulus, dyslexic subjects showed smaller amplitudes in both frequencies compared with the control group, especially in higher frequency. At 1% contrast stimulus, dyslexic subjects also showed smaller amplitudes in both frequencies and obvious reduction was observed at the later part of the recording period. No observable difference was showed in the latency of both contrast conditions. Conclusion: The attenuated VEP responses in higher frequency at low contrast condition in dyslexic group showed the changes of the transient visual response and this implies an abnormality in magnocellular pathway in dyslexia.

  4. Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment

    DEFF Research Database (Denmark)

    Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.

    2016-01-01

    decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain-computer...... interface (BCI) for neurological cognitive assessment. It is intended for use by patients who suffer from diseases impairing their motor skills, but are still able to control their gaze. Results are based on 11 healthy test subjects. The system performance have an average accuracy of 100% ± 0%. The test...... subjects achieved an information transfer rate (ITR) of 14:64 bits/min ± 7:63 bits=min and a subject test performance of 47:22% ± 34:10%. This study suggests that BCI may be applicable in practice as a computerized cognitive assessment tool. However, many improvements are required for the system...

  5. Non-decussating retinal-fugal fibre syndrome. An inborn achiasmatic malformation associated with visuotopic misrouting, visual evoked potential ipsilateral asymmetry and nystagmus

    NARCIS (Netherlands)

    Apkarian, P.; Bour, L. J.; Barth, P. G.; Wenniger-Prick, L.; Verbeeten, B.

    1995-01-01

    We report a newly identified syndrome in which nasal retinal fibres fail to decussate due to the inborn absence of an optic chiasm. Visual evoked potential (VEP) assessment and neuro-opththalmic evaluation in two unrelated, non-albino children revealed the unusual visual pathway anomaly in the form

  6. Auditory evoked potentials to abrupt pitch and timbre change of complex tones: electrophysiological evidence of 'streaming'?

    Science.gov (United States)

    Jones, S J; Longe, O; Vaz Pato, M

    1998-03-01

    Examination of the cortical auditory evoked potentials to complex tones changing in pitch and timbre suggests a useful new method for investigating higher auditory processes, in particular those concerned with 'streaming' and auditory object formation. The main conclusions were: (i) the N1 evoked by a sudden change in pitch or timbre was more posteriorly distributed than the N1 at the onset of the tone, indicating at least partial segregation of the neuronal populations responsive to sound onset and spectral change; (ii) the T-complex was consistently larger over the right hemisphere, consistent with clinical and PET evidence for particular involvement of the right temporal lobe in the processing of timbral and musical material; (iii) responses to timbral change were relatively unaffected by increasing the rate of interspersed changes in pitch, suggesting a mechanism for detecting the onset of a new voice in a constantly modulated sound stream; (iv) responses to onset, offset and pitch change of complex tones were relatively unaffected by interfering tones when the latter were of a different timbre, suggesting these responses must be generated subsequent to auditory stream segregation.

  7. Modeling of action potential generation in NG108-15 cells.

    Science.gov (United States)

    Molnar, Peter; Hickman, James J

    2014-01-01

    In order to explore the possibility of identifying toxins based on their effect on the shape of action potentials, we created a computer model of the action potential generation in NG108-15 cells (a neuroblastoma/glioma hybrid cell line). To generate the experimental data for model validation, voltage-dependent sodium, potassium and high-threshold calcium currents, as well as action potentials, were recorded from NG108-15 cells with conventional whole-cell patch-clamp methods. Based on the classic Hodgkin-Huxley formalism and the linear thermodynamic description of the rate constants, ion-channel parameters were estimated using an automatic fitting method. Utilizing the established parameters, action potentials were generated using the Hodgkin-Huxley formalism and were fitted to the recorded action potentials. To demonstrate the applicability of the method for toxin detection and discrimination, the effect of tetrodotoxin (a sodium channel blocker) and tefluthrin (a pyrethroid that is a sodium channel opener) were studied. The two toxins affected the shape of the action potentials differently, and their respective effects were identified based on the predicted changes in the fitted parameters.

  8. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo

    2014-12-01

    This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Theta Burst Stimulation of the Cerebellum Modifies the TMS-Evoked N100 Potential, a Marker of GABA Inhibition.

    Directory of Open Access Journals (Sweden)

    Allanah Harrington

    Full Text Available Theta burst stimulation (TBS of the cerebellum, a potential therapy for neurological disease, can modulate corticospinal excitability via the dentato-thalamo-cortical pathway, but it is uncertain whether its effects are mediated via inhibitory or facilitatory networks. The aim of this study was to investigate the effects of 30Hz cerebellar TBS on the N100 waveform of the TMS-evoked potential (TEP, a marker of intracortical GABAB-mediated inhibition. 16 healthy participants (aged 18-30 years; 13 right handed and 3 left handed received 30Hz intermittent TBS (iTBS, continuous TBS (cTBS or sham stimulation over the right cerebellum, in three separate sessions. The first 8 participants received TBS at a stimulus intensity of 80% of active motor threshold (AMT, while the remainder received 90% of AMT. Motor evoked potentials (MEP and TEP were recorded before and after each treatment, by stimulating the first dorsal interosseus area of the left motor cortex. Analysis of the 13 right handed participants showed that iTBS at 90% of AMT increased the N100 amplitude compared to sham and cTBS, without significantly altering MEP amplitude. cTBS at 80% of active motor threshold decreased the N100 amplitude and cTBS overall reduced resting MEP amplitude. The study demonstrates effects of 30Hz cerebellar TBS on inhibitory cortical networks that may be useful for treatment of neurological conditions associated with dysfunctional intracortical inhibition.

  10. Music-Evoked Emotions—Current Studies

    Science.gov (United States)

    Schaefer, Hans-Eckhardt

    2017-01-01

    The present study is focused on a review of the current state of investigating music-evoked emotions experimentally, theoretically and with respect to their therapeutic potentials. After a concise historical overview and a schematic of the hearing mechanisms, experimental studies on music listeners and on music performers are discussed, starting with the presentation of characteristic musical stimuli and the basic features of tomographic imaging of emotional activation in the brain, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which offer high spatial resolution in the millimeter range. The progress in correlating activation imaging in the brain to the psychological understanding of music-evoked emotion is demonstrated and some prospects for future research are outlined. Research in psychoneuroendocrinology and molecular markers is reviewed in the context of music-evoked emotions and the results indicate that the research in this area should be intensified. An assessment of studies involving measuring techniques with high temporal resolution down to the 10 ms range, as, e.g., electroencephalography (EEG), event-related brain potentials (ERP), magnetoencephalography (MEG), skin conductance response (SCR), finger temperature, and goose bump development (piloerection) can yield information on the dynamics and kinetics of emotion. Genetic investigations reviewed suggest the heredity transmission of a predilection for music. Theoretical approaches to musical emotion are directed to a unified model for experimental neurological evidence and aesthetic judgment. Finally, the reports on musical therapy are briefly outlined. The study concludes with an outlook on emerging technologies and future research fields. PMID:29225563

  11. The effects of ultraviolet-A radiation on visual evoked potentials in the young human eye

    International Nuclear Information System (INIS)

    Sanford, B.E.; Beacham, S.; Hanifin, J.P.; Hannon, P.; Streletz, L.; Sliney, D.; Brainard, G.C.

    1996-01-01

    A recent study from this laboratory using visual evoked potentials (VEPs) demonstrated that children's eyes are capable of detecting ultraviolet radiation. The aim of this study was to compare dose-response relationships in two age groups, 6-10 years (n=10) and 20-25 years (n=10). Under photopic viewing conditions (550 lux), exposures of monochromatic UV-A (339 nm) and visible radiation (502 nm) were correlated to VEPs. The results demonstrate that monochromatic UV-A can elicit age and dose dependent responses in the human visual system, suggesting that the eyes of children are more responsive to UV stimuli than the eyes of young adults. (au) 17 refs

  12. A physical action potential generator: design, implementation and evaluation.

    Science.gov (United States)

    Latorre, Malcolm A; Chan, Adrian D C; Wårdell, Karin

    2015-01-01

    The objective was to develop a physical action potential generator (Paxon) with the ability to generate a stable, repeatable, programmable, and physiological-like action potential. The Paxon has an equivalent of 40 nodes of Ranvier that were mimicked using resin embedded gold wires (Ø = 20 μm). These nodes were software controlled and the action potentials were initiated by a start trigger. Clinically used Ag-AgCl electrodes were coupled to the Paxon for functional testing. The Paxon's action potential parameters were tunable using a second order mathematical equation to generate physiologically relevant output, which was accomplished by varying the number of nodes involved (1-40 in incremental steps of 1) and the node drive potential (0-2.8 V in 0.7 mV steps), while keeping a fixed inter-nodal timing and test electrode configuration. A system noise floor of 0.07 ± 0.01 μV was calculated over 50 runs. A differential test electrode recorded a peak positive amplitude of 1.5 ± 0.05 mV (gain of 40x) at time 196.4 ± 0.06 ms, including a post trigger delay. The Paxon's programmable action potential like signal has the possibility to be used as a validation test platform for medical surface electrodes and their attached systems.

  13. Magnetic resonance imaging compared with trimodal evoked potentials in possible multiple sclerosis

    International Nuclear Information System (INIS)

    Roullet, E.; Leger-Ravet, M.B.; Amarenco, P.; Marteau, R.; Lavallard-Rousseau, M.-C.; Dupuch, K.; Iba-Zizen, M.T.; Tamraz, J.; Cabanis, E.A.

    1988-01-01

    Magnetic Resonance Imaging (MRI) of the brain and Evoked Potentials (EP) can both demonstrate the presence of clinically unsuspected demyelinating lesions and have proven to be sensitive (but not specific) in the diagnosis of multiple sclerosis (MS). MRI and EP are positive in 90 to 100% of patients with a definite diagnosis of MS. However, few studies have been conducted in patients with a lesser diagnostic certainty. In possible or suspected MS they gave conflicting results, possibly because of technical discrepancies and different clinical inclusion criteria. Since a number of putative new treatments can be evaluated in patients who have a definite diagnosis of MS, but nevertheless a short duration of disease and a low disability, it was decided to compare the sensitivity of MRI and EP as diagnostic tools in possible MS patients. MRI is shown to be more sensitive, shows more multiple lesions and gives a clearer appreciation of their size and exact location than EP. 10 refs.; 3 tabs

  14. Intraoperative observation of changes in cochlear nerve action potentials during exposure to electromagnetic fields generated by mobile phones.

    Science.gov (United States)

    Colletti, Vittorio; Mandalà, Marco; Manganotti, Paolo; Ramat, Stefano; Sacchetto, Luca; Colletti, Liliana

    2011-07-01

    The rapid spread of devices generating electromagnetic fields (EMF) has raised concerns as to the possible effects of this technology on humans. The auditory system is the neural organ most frequently and directly exposed to electromagnetic activity owing to the daily use of mobile phones. In recent publications, a possible correlation between mobile phone usage and central nervous system tumours has been detected. Very recently a deterioration in otoacoustic emissions and in the auditory middle latency responses after intensive and long-term magnetic field exposure in humans has been demonstrated. To determine with objective observations if exposure to mobile phone EMF affects acoustically evoked cochlear nerve compound action potentials, seven patients suffering from Ménière's disease and undergoing retrosigmoid vestibular neurectomy were exposed to the effects of mobile phone placed over the craniotomy for 5 min. All patients showed a substantial decrease in amplitude and a significant increase in latency of cochlear nerve compound action potentials during the 5 min of exposure to EMF. These changes lasted for a period of around 5 min after exposure. The possibility that EMF can produce relatively long-lasting effects on cochlear nerve conduction is discussed and analysed in light of contrasting previous literature obtained under non-surgical conditions. Limitations of this novel approach, including the effects of the anaesthetics, craniotomy and surgical procedure, are presented in detail.

  15. Action simulation plays a critical role in deceptive action recognition.

    Science.gov (United States)

    Tidoni, Emmanuele; Borgomaneri, Sara; di Pellegrino, Giuseppe; Avenanti, Alessio

    2013-01-09

    The ability to infer deceptive intents from nonverbal behavior is critical for social interactions. By combining single-pulse and repetitive transcranial magnetic stimulation (TMS) in healthy humans, we provide both correlational and causative evidence that action simulation is actively involved in the ability to recognize deceptive body movements. We recorded motor-evoked potentials during a faked-action discrimination (FAD) task: participants watched videos of actors lifting a cube and judged whether the actors were trying to deceive them concerning the real weight of the cube. Seeing faked actions facilitated the observers' motor system more than truthful actions in a body-part-specific manner, suggesting that motor resonance was sensitive to deceptive movements. Furthermore, we found that TMS virtual lesion to the anterior node of the action observation network, namely the left inferior frontal cortex (IFC), reduced perceptual sensitivity in the FAD task. In contrast, no change in FAD task performance was found after virtual lesions to the left temporoparietal junction (control site). Moreover, virtual lesion to the IFC failed to affect performance in a difficulty-matched spatial-control task that did not require processing of spatiotemporal (acceleration) and configurational (limb displacement) features of seen actions, which are critical to detecting deceptive intent in the actions of others. These findings indicate that the human IFC is critical for recognizing deceptive body movements and suggest that FAD relies on the simulation of subtle changes in action kinematics within the motor system.

  16. Recovery function of the human brain stem auditory-evoked potential.

    Science.gov (United States)

    Kevanishvili, Z; Lagidze, Z

    1979-01-01

    Amplitude reduction and peak latency prolongation were observed in the human brain stem auditory-evoked potential (BEP) with preceding (conditioning) stimulation. At a conditioning interval (CI) of 5 ms the alteration of BEP was greater than at a CI of 10 ms. At a CI of 10 ms the amplitudes of some BEP components (e.g. waves I and II) were more decreased than those of others (e.g. wave V), while the peak latency prolongation did not show any obvious component selectivity. At a CI of 5 ms, the extent of the amplitude decrement of individual BEP components differed less, while the increase in the peak latencies of the later components was greater than that of the earlier components. The alterations of the parameters of the test BEPs at both CIs are ascribed to the desynchronization of intrinsic neural events. The differential amplitude reduction at a CI of 10 ms is explained by the different durations of neural firings determining various effects of desynchronization upon the amplitudes of individual BEP components. The decrease in the extent of the component selectivity and the preferential increase in the peak latencies of the later BEP components observed at a CI of 5 ms are explained by the intensification of the mechanism of the relative refractory period.

  17. Do Event-Related Evoked Potentials Reflect Apathy Tendency and Motivation?

    Science.gov (United States)

    Takayoshi, Hiroyuki; Onoda, Keiichi; Yamaguchi, Shuhei

    2018-01-01

    Apathy is a mental state of diminished motivation. Although the reward system as the foundation of the motivation in the human brain has been studied extensively with neuroimaging techniques, the electrophysiological correlates of motivation and apathy have not been fully explored. Thus, in 14 healthy volunteers, we examined whether event-related evoked potentials (ERP) obtained during a simple number discrimination task with/without rewards reflected apathy tendency and a reward-dependent tendency, which were assessed separately using the apathy scale and the temperament and character inventory (TCI). Participants were asked to judge the size of a number, and received feedback based on their performance in each trial. The P3 amplitudes related to the feedback stimuli increased only in the reward condition. Furthermore, the P2 amplitudes related to the negative feedback stimuli in the reward condition had a positive correlation with the reward-dependent tendency in TCI, whereas the P3 amplitudes related to the positive feedback stimuli had a negative correlation with the apathy score. Our result suggests that the P2 and P3 ERPs to reward-related feedback stimuli are modulated in a distinctive manner by the motivational reward dependence and apathy tendency, and thus the current paradigm may be useful for investigating the brain activity associated with motivation. PMID:29445331

  18. Steady-state visually evoked potential correlates of human body perception.

    Science.gov (United States)

    Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja

    2016-11-01

    In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.

  19. Effect of practicing yoga on cervical vestibular evoked myogenic potential.

    Science.gov (United States)

    Shambhu, Tejaswini; Kumar, Shubhaganga Dhrruva; Prabhu, Prashanth

    2017-10-01

    The present study attempted to determine the effect of practicing yoga on functioning of sacculo-collic pathway using cervical vestibular evoked myogenic potential (cVEMP). cVEMP was recorded from 40 participants (20 who practice yoga regularly and 20 who do not practice yoga regularly). The differences in amplitude of P1, N1, P1-N1 complex, asymmetry ratio and latencies of P1 and N1 of cVEMP were compared between both the groups. The results of the study showed that there was a significant increase (p yoga was significantly lower (Mean = 6.73) compared to the control group (Mean = 19.13). Multivariate regression analyses suggested that the number of years of yoga practice significantly predicted the amplitude of P1-N1 complex (β = 0.70, p yoga improves postural control and strengthens the muscles and vestibular system leading to enhanced cVEMP responses. The plastic changes in the vestibular system and increased muscular strength because of constant practicing of yoga could have led to changes in cVEMP responses. However, further studies on a larger group of individuals are essential for better clinical applicability of the results.

  20. Passive language mapping combining real-time oscillation analysis with cortico-cortical evoked potentials for awake craniotomy.

    Science.gov (United States)

    Tamura, Yukie; Ogawa, Hiroshi; Kapeller, Christoph; Prueckl, Robert; Takeuchi, Fumiya; Anei, Ryogo; Ritaccio, Anthony; Guger, Christoph; Kamada, Kyousuke

    2016-12-01

    OBJECTIVE Electrocortical stimulation (ECS) is the gold standard for functional brain mapping; however, precise functional mapping is still difficult in patients with language deficits. High gamma activity (HGA) between 80 and 140 Hz on electrocorticography is assumed to reflect localized cortical processing, whereas the cortico-cortical evoked potential (CCEP) can reflect bidirectional responses evoked by monophasic pulse stimuli to the language cortices when there is no patient cooperation. The authors propose the use of "passive" mapping by combining HGA mapping and CCEP recording without active tasks during conscious resections of brain tumors. METHODS Five patients, each with an intraaxial tumor in their dominant hemisphere, underwent conscious resection of their lesion with passive mapping. The authors performed functional localization for the receptive language area, using real-time HGA mapping, by listening passively to linguistic sounds. Furthermore, single electrical pulses were delivered to the identified receptive temporal language area to detect CCEPs in the frontal lobe. All mapping results were validated by ECS, and the sensitivity and specificity were evaluated. RESULTS Linguistic HGA mapping quickly identified the language area in the temporal lobe. Electrical stimulation by linguistic HGA mapping to the identified temporal receptive language area evoked CCEPs on the frontal lobe. The combination of linguistic HGA and frontal CCEPs needed no patient cooperation or effort. In this small case series, the sensitivity and specificity were 93.8% and 89%, respectively. CONCLUSIONS The described technique allows for simple and quick functional brain mapping with higher sensitivity and specificity than ECS mapping. The authors believe that this could improve the reliability of functional brain mapping and facilitate rational and objective operations. Passive mapping also sheds light on the underlying physiological mechanisms of language in the human brain.

  1. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    Science.gov (United States)

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  2. The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia

    OpenAIRE

    Ding, Zhaofeng; Li, Jinrong; Spiegel, Daniel P.; Chen, Zidong; Chan, Lily; Luo, Guangwei; Yuan, Junpeng; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2016-01-01

    Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated...

  3. Central pathway for spontaneous and prostaglandin E2-evoked cutaneous vasoconstriction.

    Science.gov (United States)

    Rathner, Joseph A; Madden, Christopher J; Morrison, Shaun F

    2008-07-01

    A reduction of heat loss to the environment through increased cutaneous vasoconstrictor (CVC) sympathetic outflow contributes to elevated body temperature during fever. We determined the role of neurons in the dorsomedial hypothalamus (DMH) in increases in CVC sympathetic tone evoked by PGE2 into the preoptic area (POA) in chloralose/urethane-anesthetized rats. The frequency of axonal action potentials of CVC sympathetic ganglion cells recorded from the surface of the tail artery was increased by 1.8 Hz following nanoinjections of bicuculline (50 pmol) into the DMH. PGE2 nanoinjection into the POA elicited a similar excitation of tail CVC neurons (+2.1 Hz). Subsequent to PGE2 into the POA, muscimol (400 pmol/side) into the DMH did not alter the activity of tail CVC neurons. Inhibition of neurons in the rostral raphé pallidus (rRPa) eliminated the spontaneous discharge of tail CVC neurons but only reduced the PGE2-evoked activity. Residual activity was abolished by subsequent muscimol into the rostral ventrolateral medulla. Transections through the neuraxis caudal to the POA increased the activity of tail CVC neurons, which were sustained through transections caudal to DMH. We conclude that while activation of neurons in the DMH is sufficient to activate tail CVC neurons, it is not necessary for their PGE2-evoked activity. These results support a CVC component of increased core temperature elicited by PGE2 in POA that arises from relief of a tonic inhibition from neurons in POA of CVC sympathetic premotor neurons in rRPa and is dependent on the excitation of CVC premotor neurons from a site caudal to DMH.

  4. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  5. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  6. Evoked potentials after painful cutaneous electrical stimulation depict pain relief during a conditioned pain modulation.

    Science.gov (United States)

    Höffken, Oliver; Özgül, Özüm S; Enax-Krumova, Elena K; Tegenthoff, Martin; Maier, Christoph

    2017-08-29

    Conditioned pain modulation (CPM) evaluates the pain modulating effect of a noxious conditioning stimulus (CS) on another noxious test stimulus (TS), mostly based solely on subjective pain ratings. We used painful cutaneous electrical stimulation (PCES) to induce TS in a novel CPM-model. Additionally, to evaluate a more objective parameter, we recorded the corresponding changes of cortical evoked potentials (PCES-EP). We examined the CPM-effect in 17 healthy subjects in a randomized controlled cross-over design during immersion of the non-dominant hand into 10 °C or 24 °C cold water (CS). Using three custom-built concentric surface electrodes, electrical stimuli were applied on the dominant hand, inducing pain of 40-60 on NRS 0-100 (TS). At baseline, during and after CS we assessed the electrically induced pain intensity and electrically evoked potentials recorded over the central electrode (Cz). Only in the 10 °C-condition, both pain (52.6 ± 4.4 (baseline) vs. 30.3 ± 12.5 (during CS)) and amplitudes of PCES-EP (42.1 ± 13.4 μV (baseline) vs. 28.7 ± 10.5 μV (during CS)) attenuated during CS and recovered there after (all p pain ratings during electrical stimulation and amplitudes of PCES-EP correlated significantly with each other (r = 0.5) and with CS pain intensity (r = 0.5). PCES-EPs are a quantitative measure of pain relief, as changes in the electrophysiological response are paralleled by a consistent decrease in subjective pain ratings. This novel CPM paradigm is a feasible method, which could help to evaluate the function of the endogenous pain modulation processes. German Clinical Trials Register DRKS-ID: DRKS00012779 , retrospectively registered on 24 July 2017.

  7. Effects of external trigeminal nerve stimulation (eTNS) on laser evoked cortical potentials (LEP): A pilot study in migraine patients and controls.

    Science.gov (United States)

    Vecchio, Eleonora; Gentile, Eleonora; Franco, Giovanni; Ricci, Katia; de Tommaso, Marina

    2017-01-01

    Background Transcutaneous external supraorbital nerve stimulation has emerged as a treatment option for primary headache disorders, though its action mechanism is still unclear. Study aim In this randomized, sham-controlled pilot study we aimed to test the effects of a single external transcutaneous nerve stimulation session on pain perception and cortical responses induced by painful laser stimuli delivered to the right forehead and the right hand in a cohort of migraine without aura patients and healthy controls. Methods Seventeen migraine without aura patients and 21 age- and sex-matched controls were selected and randomly assigned to a real or sham external transcutaneous nerve stimulation single stimulation session. The external transcutaneous nerve stimulation was delivered with a self-adhesive electrode placed on the forehead and generating a 60 Hz pulse at 16 mA intensity for 20 minutes. For sham stimulation, we used 2 mA intensity. Laser evoked responses were recorded from 21 scalp electrodes in basal condition (T0), during external transcutaneous nerve stimulation and sham stimulation (T1), and immediately after these (T2). The laser evoked responses were analyzed by LORETA software. Results The real external transcutaneous nerve stimulation reduced the trigeminal N2P2 amplitude in migraine and control groups significantly in respect to placebo. The real stimulation was associated with lower activity in the anterior cingulate cortex under trigeminal laser stimuli. The pattern of LEP-reduced habituation was reverted by real and sham transcutaneous stimulation in migraine patients. Conclusions The present results could suggest that the external transcutaneous nerve stimulation may interfere with the threshold and the extent of trigeminal system activation, with a mechanism of potential utility in the resolution and prevention of migraine attacks.

  8. Nicotine Receptor Subtype-Specific Effects on Auditory Evoked Oscillations and Potentials

    Science.gov (United States)

    Featherstone, Robert E.; Phillips, Jennifer M.; Thieu, Tony; Ehrlichman, Richard S.; Halene, Tobias B.; Leiser, Steven C.; Christian, Edward; Johnson, Edwin; Lerman, Caryn; Siegel, Steven J.

    2012-01-01

    Background Individuals with schizophrenia show increased smoking rates which may be due to a beneficial effect of nicotine on cognition and information processing. Decreased amplitude of the P50 and N100 auditory event-related potentials (ERPs) is observed in patients. Both measures show normalization following administration of nicotine. Recent studies identified an association between deficits in auditory evoked gamma oscillations and impaired information processing in schizophrenia, and there is evidence that nicotine normalizes gamma oscillations. Although the role of nicotine receptor subtypes in augmentation of ERPs has received some attention, less is known about how these receptor subtypes regulate the effect of nicotine on evoked gamma activity. Methodology/Principal Findings We examined the effects of nicotine, the α7 nicotine receptor antagonist methyllycaconitine (MLA) the α4β4/α4β2 nicotine receptor antagonist dihydro-beta-erythroidine (DHβE), and the α4β2 agonist AZD3480 on P20 and N40 amplitude as well as baseline and event-related gamma oscillations in mice, using electrodes in hippocampal CA3. Nicotine increased P20 amplitude, while DHβE blocked nicotine-induced enhancements in P20 amplitude. Conversely, MLA did not alter P20 amplitude either when presented alone or with nicotine. Administration of the α4β2 specific agonist AZD3480 did not alter any aspect of P20 response, suggesting that DHβE blocks the effects of nicotine through a non-α4β2 receptor specific mechanism. Nicotine and AZD3480 reduced N40 amplitude, which was blocked by both DHβE and MLA. Finally, nicotine significantly increased event-related gamma, as did AZD3480, while DHβE but not MLA blocked the effect of nicotine on event-related gamma. Conclusions/Significance These results support findings showing that nicotine-induced augmentation of P20 amplitude occurs via a DHβE sensitive mechanism, but suggests that this does not occur through activation of α4β2

  9. Influência dos contrastes de fala nos potenciais evocados auditivos corticais The influence of speech stimuli contrast in cortical auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Kátia de Freitas Alvarenga

    2013-06-01

    Full Text Available Estudos voltados aos potenciais evocados auditivos com estímulos de fala em indivíduos ouvintes são importantes para compreender como a complexidade do estímulo influencia nas características do potencial cognitivo auditivo gerado. OBJETIVO: Caracterizar o potencial evocado auditivo cortical e o potencial cognitivo auditivo P3 com estímulos de contrastes vocálico e consonantal em indivíduos com audição normal. MÉTODO: Participaram deste estudo 31 indivíduos sem alterações auditivas, neurológicas e de linguagem na faixa etária de 7 a 30 anos. Os potenciais evocados auditivos corticais e cognitivo auditivo P3 foram registrados nos canais ativos Fz e Cz utilizando-se os contrastes de fala consonantal (/ba/-/da/ e vocálico (/i/-/a/. Desenho: Estudo de coorte, transversal e prospectivo. RESULTADOS: Houve diferença entre o contraste de fala utilizado e as latências dos componentes N2 (p = 0,00 e P3 (p = 0,00, assim como entre o canal ativo considerado (Fz/Cz e os valores de latência e amplitude de P3. Estas diferenças não ocorreram para os componentes exógenos N1 e P2. CONCLUSÃO: O contraste do estímulo de fala, vocálico ou consonantal, deve ser considerado na análise do potencial evocado cortical, componente N2, e do potencial cognitivo auditivo P3.Studies about cortical auditory evoked potentials using the speech stimuli in normal hearing individuals are important for understanding how the complexity of the stimulus influences the characteristics of the cortical potential generated. OBJECTIVE: To characterize the cortical auditory evoked potential and the P3 auditory cognitive potential with the vocalic and consonantal contrast stimuli in normally hearing individuals. METHOD: 31 individuals with no risk for hearing, neurologic and language alterations, in the age range between 7 and 30 years, participated in this study. The cortical auditory evoked potentials and the P3 auditory cognitive one were recorded in the Fz and Cz

  10. Vestibular neuritis: three-dimensional videonystagmography and vestibular evoked myogenic potential results.

    Science.gov (United States)

    Chen, C W; Young, Y H; Wu, C H

    2000-10-01

    Eight patients diagnosed with vestibular neuritis received the newly developed three-dimensional videonystagmography (3D VNG) and vestibular evoked myogenic potential (VEMP) examination in order to localize the lesion site. Two (25%) of the 8 patients exhibited spontaneous nystagmus with 3 components, indicating that both the horizontal semicircular canal (HSCC) and anterior semicircular canal (ASCC) were affected. The remaining 6 patients (75%) displayed only horizontal nystagmus, meaning that only the HSCC was involved. Seven (88%) of the 8 patients had bilateral normal VEMPs, revealing sparing of the posterior semicircular canal (PSCC). In a comparative study, another seven patients with vestibular neuritis 1 year post-treatment also received the caloric test, 3D VNG and VEMP examination. Only one patient exhibited spontaneous nystagmus. An absent caloric response of the lesioned side persisted in 5 (71%) of the 7 patients. However, all patients showed normal VEMPs bilaterally. 3D VNG and VEMP examination indicates that vestibular neuritis mainly affects the superior division of the vestibular nerve, which innervates the HSCC and ASCC. Meanwhile, the function of the PSCC and saccule, innervated by the inferior vestibular nerve, is preserved.

  11. Music evokes vivid autobiographical memories.

    Science.gov (United States)

    Belfi, Amy M; Karlan, Brett; Tranel, Daniel

    2016-08-01

    Music is strongly intertwined with memories-for example, hearing a song from the past can transport you back in time, triggering the sights, sounds, and feelings of a specific event. This association between music and vivid autobiographical memory is intuitively apparent, but the idea that music is intimately tied with memories, seemingly more so than other potent memory cues (e.g., familiar faces), has not been empirically tested. Here, we compared memories evoked by music to those evoked by famous faces, predicting that music-evoked autobiographical memories (MEAMs) would be more vivid. Participants listened to 30 songs, viewed 30 faces, and reported on memories that were evoked. Memories were transcribed and coded for vividness as in Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. [2002. Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689]. In support of our hypothesis, MEAMs were more vivid than autobiographical memories evoked by faces. MEAMs contained a greater proportion of internal details and a greater number of perceptual details, while face-evoked memories contained a greater number of external details. Additionally, we identified sex differences in memory vividness: for both stimulus categories, women retrieved more vivid memories than men. The results show that music not only effectively evokes autobiographical memories, but that these memories are more vivid than those evoked by famous faces.

  12. Postoperative changes in visual evoked potentials and cognitive function tests following sevoflurane anaesthesia.

    LENUS (Irish Health Repository)

    Iohom, G

    2012-02-03

    We tested the hypothesis that minor disturbance of the visual pathway persists following general anaesthesia even when clinical discharge criteria are met. To test this, we measured visual evoked potentials (VEPs) in 13 ASA I or II patients who did not receive any pre-anaesthetic medication and underwent sevoflurane anaesthesia. VEPs were recorded on four occasions, before anaesthesia and at 30, 60, and 90 min after emergence from anaesthesia. Patients completed visual analogue scales (VAS) for sedation and anxiety, a Trieger Dot Test (TDT) and a Digit Symbol Substitution Test (DSST) immediately before each VEP recording. These results were compared using Student\\'s t-test. P<0.05 was considered significant. VEP latency was prolonged (P<0.001) and amplitude diminished (P<0.05) at 30, 60, and 90 min after emergence from anaesthesia, when VAS scores for sedation and anxiety, TDT, and DSST had returned to pre-anaesthetic levels.

  13. Sex differences in the jealousy-evoking nature of a rival's body build

    NARCIS (Netherlands)

    Dijkstra, Pieternel; Buunk, Abraham (Bram)

    This study among 185 college students showed that potential rivals with a relatively low waist-to-hip ratio (WHR) evoked more jealousy in women than in men. In contrast, rivals with a relatively high shoulder-to-hip ratio (SHR) evoked more jealousy in men than in women, particularly when the rival

  14. Components of action potential repolarization in cerebellar parallel fibres.

    Science.gov (United States)

    Pekala, Dobromila; Baginskas, Armantas; Szkudlarek, Hanna J; Raastad, Morten

    2014-11-15

    Repolarization of the presynaptic action potential is essential for transmitter release, excitability and energy expenditure. Little is known about repolarization in thin, unmyelinated axons forming en passant synapses, which represent the most common type of axons in the mammalian brain's grey matter.We used rat cerebellar parallel fibres, an example of typical grey matter axons, to investigate the effects of K(+) channel blockers on repolarization. We show that repolarization is composed of a fast tetraethylammonium (TEA)-sensitive component, determining the width and amplitude of the spike, and a slow margatoxin (MgTX)-sensitive depolarized after-potential (DAP). These two components could be recorded at the granule cell soma as antidromic action potentials and from the axons with a newly developed miniaturized grease-gap method. A considerable proportion of fast repolarization remained in the presence of TEA, MgTX, or both. This residual was abolished by the addition of quinine. The importance of proper control of fast repolarization was demonstrated by somatic recordings of antidromic action potentials. In these experiments, the relatively broad K(+) channel blocker 4-aminopyridine reduced the fast repolarization, resulting in bursts of action potentials forming on top of the DAP. We conclude that repolarization of the action potential in parallel fibres is supported by at least three groups of K(+) channels. Differences in their temporal profiles allow relatively independent control of the spike and the DAP, whereas overlap of their temporal profiles provides robust control of axonal bursting properties.

  15. Short latency compound action potentials from mammalian gravity receptor organs

    Science.gov (United States)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  16. [Loudness optimized registration of compound action potential in cochlear implant recipients].

    Science.gov (United States)

    Berger, Klaus; Hocke, Thomas; Hessel, Horst

    2017-11-01

    Background Postoperative measurements of compound action potentials are not always possible due to the insufficient acceptance of the CI-recipients. This study investigated the impact of different parameters on the acceptance of the measurements. Methods Compound action potentials of 16 CI recipients were measured with different pulse-widths. Recipients performed a loudness rating at the potential thresholds with the different sequences. Results Compound action potentials obtained with higher pulse-widths were rated softer than those obtained with smaller pulse-widths. Conclusions Compound action potentials measured with higher pulse-widths generate a gap between loudest acceptable presentation level and potential threshold. This gap contributes to a higher acceptance of postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.

  17. Studies on the Action Potential From a Thermodynamic Perspective

    DEFF Research Database (Denmark)

    Wang, Tian

    and nerves with ganglia. (2) Attempts have been made to measure the temperature change associated with an action potential as well as an oscillation reaction (Briggs-Rauscher reaction) that shares the adiabatic feature. It turns out that some practical issues need to be solved for the temperature measurement...... of the nerve impulses, while the measured temperature change during the oscillation reaction suggests that there are a reversible adiabatic process and a dissipative process. (3) Local anesthetic e↵ect on nerves is studied. Local anesthetic lidocaine causes a significant stimulus threshold shift of the action......Nerve impulse, also called action potential, has mostly been considered as a pure electrical phenomenon. However, changes in dimensions, e.g. thickness and length, and in temperature along with action potentials have been observed, which indicates that the nerve is a thermodynamic system. The work...

  18. Ghrelin potentiates cardiac reactivity to stress by modulating sympathetic control and beta-adrenergic response.

    Science.gov (United States)

    Camargo-Silva, Gabriel; Turones, Larissa Córdova; da Cruz, Kellen Rosa; Gomes, Karina Pereira; Mendonça, Michelle Mendanha; Nunes, Allancer; de Jesus, Itamar Guedes; Colugnati, Diego Basile; Pansani, Aline Priscila; Pobbe, Roger Luis Henschel; Santos, Robson; Fontes, Marco Antônio Peliky; Guatimosim, Silvia; de Castro, Carlos Henrique; Ianzer, Danielle; Ferreira, Reginaldo Nassar; Xavier, Carlos Henrique

    2018-03-01

    Prior evidence indicates that ghrelin is involved in the integration of cardiovascular functions and behavioral responses. Ghrelin actions are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), which is expressed in peripheral tissues and central areas involved in the control of cardiovascular responses to stress. In the present study, we assessed the role of ghrelin - GHS-R1a axis in the cardiovascular reactivity to acute emotional stress in rats. Ghrelin potentiated the tachycardia evoked by restraint and air jet stresses, which was reverted by GHS-R1a blockade. Evaluation of the autonomic balance revealed that the sympathetic branch modulates the ghrelin-evoked positive chronotropy. In isolated hearts, the perfusion with ghrelin potentiated the contractile responses caused by stimulation of the beta-adrenergic receptor, without altering the amplitude of the responses evoked by acetylcholine. Experiments in isolated cardiomyocytes revealed that ghrelin amplified the increases in calcium transient changes evoked by isoproterenol. Taken together, our results indicate that the Ghrelin-GHS-R1a axis potentiates the magnitude of stress-evoked tachycardia by modulating the autonomic nervous system and peripheral mechanisms, strongly relying on the activation of cardiac calcium transient and beta-adrenergic receptors. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Do Event-Related Evoked Potentials Reflect Apathy Tendency and Motivation?

    Directory of Open Access Journals (Sweden)

    Hiroyuki Takayoshi

    2018-01-01

    Full Text Available Apathy is a mental state of diminished motivation. Although the reward system as the foundation of the motivation in the human brain has been studied extensively with neuroimaging techniques, the electrophysiological correlates of motivation and apathy have not been fully explored. Thus, in 14 healthy volunteers, we examined whether event-related evoked potentials (ERP obtained during a simple number discrimination task with/without rewards reflected apathy tendency and a reward-dependent tendency, which were assessed separately using the apathy scale and the temperament and character inventory (TCI. Participants were asked to judge the size of a number, and received feedback based on their performance in each trial. The P3 amplitudes related to the feedback stimuli increased only in the reward condition. Furthermore, the P2 amplitudes related to the negative feedback stimuli in the reward condition had a positive correlation with the reward-dependent tendency in TCI, whereas the P3 amplitudes related to the positive feedback stimuli had a negative correlation with the apathy score. Our result suggests that the P2 and P3 ERPs to reward-related feedback stimuli are modulated in a distinctive manner by the motivational reward dependence and apathy tendency, and thus the current paradigm may be useful for investigating the brain activity associated with motivation.

  20. Wireless cardiac action potential transmission with ultrasonically inserted silicon microprobes

    International Nuclear Information System (INIS)

    Shen, C J; Ramkumar, A; Lal, A; Gilmour, R F Jr

    2011-01-01

    This paper reports on the integration of ultrasonically inserted horn-shaped cardiac probes with wireless transmission of 3D cardiac action potential measurement for applications in ex vivo preparations such as monitoring the onset of ventricular fibrillation. Ultrasonically inserted silicon horn probes permit reduced penetration force during insertion, allowing silicon, a brittle material, to penetrate cardiac tissue. The probes also allow recording from multiple sites that are lithographically defined. An application-specific integrated circuit has been designed with a 40 dB amplifying stage and a frequency modulating oscillator at 95 MHz to wirelessly transmit the recorded action potentials. This ultrasonically inserted microprobe wireless system demonstrates the initial results in wireless monitoring of 3D action potential propagation, and the extraction of parameters of interest including the action potential duration and diastolic interval

  1. Cervical Vestibular Evoked Myogenic Potential in Hypoglossal Nerve Schwannoma: A Case Report.

    Science.gov (United States)

    Rajasekaran, Aravind Kumar; Savardekar, Amey Rajan; Shivashankar, Nagaraja Rao

    2018-02-01

    Schwannoma of the hypoglossal nerve is rare. This case report documents an atypical abnormality of the cervical vestibular evoked myogenic potential (cVEMP) in a patient with schwannoma of the hypoglossal nerve. The observed abnormality was attributed to the proximity of the hypoglossal nerve to the spinal accessory nerve in the medullary cistern and base of the skull. To report cVEMP abnormality in a patient with hypoglossal nerve schwannoma and provide an anatomical correlation for this abnormality. Case report. A 44-yr-old woman. Pure-tone and speech audiometry, tympanometry, acoustic stapedial reflex, auditory brainstem response, and cVEMP testing were performed. The audiological test results were normal except for the absence of cVEMP on the lesion side (right). A cVEMP abnormality indicating a compromised spinal accessory nerve was observed in a patient with hypoglossal nerve schwannoma. This case report highlights the importance of recording cVEMP in relevant neurological conditions and provides clinical proof for the involvement of the spinal accessory nerve in the vestibulocollic reflex pathway. American Academy of Audiology

  2. DEPRESSION OF THE PHOTIC AFTER DISCHARGE OF FLASH EVOKED POTENTIALS BY PHYSOSTIGMINE, CARBARYL AND PROPOXUR AND THE RELATIONSHIP TO INHIBITION OF BRAIN CHOLINESTERASE

    Science.gov (United States)

    The effects of N-methyl carbamate pesticides on the photic after discharge (PhAD) of flash evoked potentials (FEPs) and the relationship between inhibition of brain cholinesterase (ChE) activity and the PhAD were evaluated. FEPs were recorded in Long Evans rats treated with physo...

  3. Brain stem auditory potentials evoked by clicks in the presence of high-pass filtered noise in dogs.

    Science.gov (United States)

    Poncelet, L; Deltenre, P; Coppens, A; Michaux, C; Coussart, E

    2006-04-01

    This study evaluates the effects of a high-frequency hearing loss simulated by the high-pass-noise masking method, on the click-evoked brain stem-evoked potentials (BAEP) characteristics in dogs. BAEP were obtained in response to rarefaction and condensation click stimuli from 60 dB normal hearing level (NHL, corresponding to 89 dB sound pressure level) to wave V threshold, using steps of 5 dB in eleven 58 to 80-day-old Beagle puppies. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation potential (RCDP). The procedure was repeated while constant level, high-pass filtered (HPF) noise was superposed to the click. Cut-off frequencies of the successively used filters were 8, 4, 2 and 1 kHz. For each condition, wave V and RCDP thresholds, and slope of the wave V latency-intensity curve (LIC) were collected. The intensity range at which RCDP could not be recorded (pre-RCDP range) was calculated. Compared with the no noise condition, the pre-RCDP range significantly diminished and the wave V threshold significantly increased when the superposed HPF noise reached the 4 kHz area. Wave V LIC slope became significantly steeper with the 2 kHz HPF noise. In this non-invasive model of high-frequency hearing loss, impaired hearing of frequencies from 8 kHz and above escaped detection through click BAEP study in dogs. Frequencies above 13 kHz were however not specifically addressed in this study.

  4. A study on dynamic model of steady-state visual evoked potentials.

    Science.gov (United States)

    Zhang, Shangen; Han, Xu; Chen, Xiaogang; Wang, Yijun; Gao, Shangkai; Gao, Xiaorong

    2018-04-04

    Significant progress has been made in the past two decades to considerably improve the performance of steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). However, there are still some unsolved problems that may help us to improve BCI performance, one of which is that our understanding of the dynamic process of SSVEP is still superficial, especially for the transient-state response. This study introduced an antiphase stimulation method (antiphase: phase 0/π), which can simultaneously separate and extract SSVEP and event-related potential (ERP) signals from EEG, and eliminate the interference of ERP to SSVEP. Based on the SSVEP signals obtained by the antiphase stimulation method, the envelope of SSVEP was extracted by the Hilbert transform, and the dynamic model of SSVEP was quantitatively studied by mathematical modeling. The step response of a second-order linear system was used to fit the envelope of SSVEP, and its characteristics were represented by four parameters with physical and physiological meanings: one was amplitude related, one was latency related and two were frequency related. This study attempted to use pre-stimulation paradigms to modulate the dynamic model parameters, and quantitatively analyze the results by applying the dynamic model to further explore the pre-stimulation methods that had the potential to improve BCI performance. The results showed that the dynamic model had good fitting effect with SSVEP under three pre-stimulation paradigms. The test results revealed that the parameters of SSVEP dynamic models could be modulated by the pre-stimulation baseline luminance, and the gray baseline luminance pre-stimulation obtained the highest performance. This study proposed a dynamic model which was helpful to understand and utilize the transient characteristics of SSVEP. This study also found that pre-stimulation could be used to adjust the parameters of SSVEP model, and had the potential to improve the performance

  5. A novel approach for automatic visualization and activation detection of evoked potentials induced by epidural spinal cord stimulation in individuals with spinal cord injury.

    Science.gov (United States)

    Mesbah, Samineh; Angeli, Claudia A; Keynton, Robert S; El-Baz, Ayman; Harkema, Susan J

    2017-01-01

    Voluntary movements and the standing of spinal cord injured patients have been facilitated using lumbosacral spinal cord epidural stimulation (scES). Identifying the appropriate stimulation parameters (intensity, frequency and anode/cathode assignment) is an arduous task and requires extensive mapping of the spinal cord using evoked potentials. Effective visualization and detection of muscle evoked potentials induced by scES from the recorded electromyography (EMG) signals is critical to identify the optimal configurations and the effects of specific scES parameters on muscle activation. The purpose of this work was to develop a novel approach to automatically detect the occurrence of evoked potentials, quantify the attributes of the signal and visualize the effects across a high number of scES parameters. This new method is designed to automate the current process for performing this task, which has been accomplished manually by data analysts through observation of raw EMG signals, a process that is laborious and time-consuming as well as prone to human errors. The proposed method provides a fast and accurate five-step algorithms framework for activation detection and visualization of the results including: conversion of the EMG signal into its 2-D representation by overlaying the located signal building blocks; de-noising the 2-D image by applying the Generalized Gaussian Markov Random Field technique; detection of the occurrence of evoked potentials using a statistically optimal decision method through the comparison of the probability density functions of each segment to the background noise utilizing log-likelihood ratio; feature extraction of detected motor units such as peak-to-peak amplitude, latency, integrated EMG and Min-max time intervals; and finally visualization of the outputs as Colormap images. In comparing the automatic method vs. manual detection on 700 EMG signals from five individuals, the new approach decreased the processing time from several

  6. Research on steady-state visual evoked potentials in 3D displays

    Science.gov (United States)

    Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.

    2015-05-01

    Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-value<0.05) between large and small disparity angle, and the signal-to-noise ratios (SNRs) of small disparity angles is higher than those of large disparity angles. The 3D stimuli with smaller disparity and lower crosstalk are more suitable for applications based on the results of 3D perception and SSVEP responses (SNR). Furthermore, we can infer the 3D perception of users by SSVEP responses, and modify the proper disparity of 3D images automatically in the future.

  7. Combined visual and motor evoked potentials predict multiple sclerosis disability after 20 years.

    Science.gov (United States)

    Schlaeger, Regina; Schindler, Christian; Grize, Leticia; Dellas, Sophie; Radue, Ernst W; Kappos, Ludwig; Fuhr, Peter

    2014-09-01

    The development of predictors of multiple sclerosis (MS) disability is difficult due to the complex interplay of pathophysiological and adaptive processes. The purpose of this study was to investigate whether combined evoked potential (EP)-measures allow prediction of MS disability after 20 years. We examined 28 patients with clinically definite MS according to Poser's criteria with Expanded Disability Status Scale (EDSS) scores, combined visual and motor EPs at entry (T0), 6 (T1), 12 (T2) and 24 (T3) months, and a cranial magnetic resonance imaging (MRI) scan at T0 and T2. EDSS testing was repeated at year 14 (T4) and year 20 (T5). Spearman rank correlation was used. We performed a multivariable regression analysis to examine predictive relationships of the sum of z-transformed EP latencies (s-EPT0) and other baseline variables with EDSST5. We found that s-EPT0 correlated with EDSST5 (rho=0.72, pdisability in MS. © The Author(s) 2014.

  8. Assessment of otolith function using cervical and ocular vestibular evoked myogenic potentials in individuals with motion sickness.

    Science.gov (United States)

    Singh, Niraj Kumar; Pandey, Preeti; Mahesh, Soumya

    2014-01-01

    The involvement of otolith organs in motion sickness has long been debated; however, equivocal findings exist in literature. The present study thus aimed at evaluating the otolith functioning in individuals with motion sickness. Cervical and ocular vestibular evoked myogenic potentials were recorded from 30 individuals with motion sickness, 30 professional drivers and 30 healthy individuals. The results revealed no significant difference in latencies and amplitudes between the groups (p>0.05). Nonetheless, thresholds were significantly elevated and inter-aural asymmetry ratio significantly higher in motion sickness susceptible group (p otolithic function seem the likely reasons behind motion sickness susceptibility.

  9. Numerical investigation of action potential transmission in plants

    Directory of Open Access Journals (Sweden)

    Mariusz Pietruszka

    2014-01-01

    Full Text Available In context of a fairly concise review of recent literature and well established experimental results we reconsider the problem of action potential propagating steadily down the plant cell(s. Having adopted slightly modified Hodgkin-Huxley set of differential equations for the action potential we carried out the numerical investigation of these equations in the course of time. We argue that the Hodgkin-Huxley-Katz model for the nerve impulse can be used to describe the phenomena which take place in plants - this point of view seems to be plausible since the mechanisms involving active ionic transport across membranes from the mathematical point of view are similar. Besides, we compare in a qualitative way our theoretical outcomes with typical experimental results for the action potentials which arise as the reaction of plants to electrical, mechanical and light stimuli. Moreover, we point out the relevance of the sequence of events during the pulse with the appropriate ionic fluxes.

  10. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats

    International Nuclear Information System (INIS)

    Krueger, Katharina; Repges, Hendrik; Hippler, Joerg; Hartmann, Louise M.; Hirner, Alfred V.; Straub, Heidrun; Binding, Norbert; Musshoff, Ulrich

    2007-01-01

    In this study, the effects of pentavalent dimethylarsinic acid ((CH 3 ) 2 AsO(OH); DMA V ) and trivalent dimethylarsinous acid ((CH 3 ) 2 As(OH); DMA III ) on synaptic transmission generated by the excitatory Schaffer collateral-CA1 synapse were tested in hippocampal slices of young (14-21 day-old) and adult (2-4 month-old) rats. Both compounds were applied in concentrations of 1 to 100 μmol/l. DMA V had no effect on the amplitudes of evoked fEPSPs or the induction of LTP recorded from the CA1 dendritic region either in adult or in young rats. However, application of DMA III significantly reduced the amplitudes of evoked fEPSPs in a concentration-dependent manner with a total depression following application of 100 μmol/l DMA III in adult and 10 μmol/l DMA III in young rats. Moreover, DMA III significantly affected the LTP-induction. Application of 10 μmol/l DMA III resulted in a complete failure of the postsynaptic potentiation of the fEPSP amplitudes in slices taken both from adult and young rats. The depressant effect was not reversible after a 30-min washout of the DMA III . In slices of young rats, the depressant effects of DMA III were more pronounced than in those taken from adult ones. Compared to the (absent) effect of DMA V on synaptic transmission, the trivalent compound possesses a considerably higher neurotoxic potential

  11. Modulation of sensory inhibition of motor evoked potentials elicited by TMS prior to movement?

    DEFF Research Database (Denmark)

    Leukel, Christian; Lundbye-Jensen, Jesper; Nielsen, Jens Bo

    because the afferent information triggered the movement and therefore was important for motor performance. Alle et al. (2009). J Physiol 587:5163-5176 Chen et al. (1998). Ann Neurol 44:317-325 Tokimura et al. (2000). J Physiol 523 Pt 2:503-513......Short latency afferent inhibition (SAI) refers to a decrement of the size of a motor evoked potential (MEP) by transcranial magnetic stimulation (TMS) after electrical stimulation of a peripheral afferent nerve (PNS) (Tokimura et al. 2000). Since SAI occurs when TMS is applied at the time...... of corticospinal cells to TMS, which starts approximately 100 ms prior to the onset of movement (Chen et al. 1998). Thus, it is hypothesized that the modulation of the MEP prior to movement is linked to the afferent volley arriving at the sensorimotor cortex. It might be speculated that the MEP was facilitated...

  12. Perturbation analysis of spontaneous action potential initiation by stochastic ion channels

    KAUST Repository

    Keener, James P.; Newby, Jay M.

    2011-01-01

    A stochastic interpretation of spontaneous action potential initiation is developed for the Morris-Lecar equations. Initiation of a spontaneous action potential can be interpreted as the escape from one of the wells of a double well potential

  13. Evoked bioelectrical activity of efferent fibers of the sciatic nerve of white rats in experimental menopause

    Directory of Open Access Journals (Sweden)

    Rodinsky A.G.

    2016-03-01

    Full Text Available The aim of our work was analysis of the bioelectrical activity of efferent fibers of the sciatic nerve in experimental menopause condition. Experiments were performed on 25 female white rats, divided into experimental and control groups. Menopause was modeled by total ovariohysterectomy. In 120 days after modeling we had recorded evoked action potentials of fibers of isolated ventral root L5 induced by stimulation of sciatic nerve with rectangular pulses. Threshold, chronaxia, latency, amplitude and duration of the action potential (AP were analysed. Refractory phenomenon was investigated by applying paired stimuli at intervals of 2 to 20 ms. In the context of long-term hypoestrogenemy threshold of AP appearance was 55,32±7,69%, chronaxy – 115,09±2,67%, latent period – 112,62±1,74% as compared with the control animals (p<0.01. In conditions of paired stimuli applying the amplitude of response to the testing stimulus in animals with ovariohysterectomy at intervals 3 and 4 ms was 61,25±36,45% and 53,48±18,64% (p<0.05 respectively.

  14. A moving story: Whole-body motor training selectively improves the appraisal of action meanings in naturalistic narratives.

    Science.gov (United States)

    Trevisan, Piergiorgio; Sedeño, Lucas; Birba, Agustina; Ibáñez, Agustín; García, Adolfo M

    2017-10-02

    This study examined whether systematic whole-body stimulation and increased attention to visuospatial motion patterns can enhance the appraisal of action meanings evoked by naturalistic texts. Participants listened to action and neutral (non-action) narratives before and after videogame-based bodily training, and responded to questions on information realized by verbs (denoting abstract and action processes) and circumstances (conveying locative or temporal details, for example). Strategically, we worked with dyslexic children, whose potential comprehension deficits could give room to post-training improvements. Results showed a selective boost in understanding of action information, even when controlling for baseline performance. Also, this effect proved uninfluenced by short-term memory skills, and it was absent when training relied on non-action videogames requiring minimal bodily engagement. Of note, the movements described in the texts did not match those performed by participants, suggesting that well-established effector- and direction-specific language embodiment effects may be accompanied by more coarse-grained sensorimotor resonance, driven by activation of motor and visuospatial sensory systems. In sum, the stimulation of movement-related mechanisms seems to selectively boost the appraisal of actions evoked by naturalistic texts. By demonstrating such links between two real-life activities, our study offers an empirical tie between embodied and situated accounts of cognition.

  15. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    Science.gov (United States)

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. © 2016 Elsevier B.V. All rights reserved.

  16. Frequency decoding of periodically timed action potentials through distinct activity patterns in a random neural network

    International Nuclear Information System (INIS)

    Reichenbach, Tobias; Hudspeth, A J

    2012-01-01

    Frequency discrimination is a fundamental task of the auditory system. The mammalian inner ear, or cochlea, provides a place code in which different frequencies are detected at different spatial locations. However, a temporal code based on spike timing is also available: action potentials evoked in an auditory-nerve fiber by a low-frequency tone occur at a preferred phase of the stimulus—they exhibit phase locking—and thus provide temporal information about the tone's frequency. Humans employ this temporal information for discrimination of low frequencies. How might such temporal information be read out in the brain? Here we employ statistical and numerical methods to demonstrate that recurrent random neural networks in which connections between neurons introduce characteristic time delays, and in which neurons require temporally coinciding inputs for spike initiation, can perform sharp frequency discrimination when stimulated with phase-locked inputs. Although the frequency resolution achieved by such networks is limited by the noise in phase locking, the resolution for realistic values reaches the tiny frequency difference of 0.2% that has been measured in humans. (paper)

  17. Sound detection by the longfin squid (em>Loligo pealeiiem>) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure

    DEFF Research Database (Denmark)

    Mooney, T. Aran; Hanlon, Roger T; Christensen-Dalsgaard, Jakob

    2010-01-01

    of two wave types: (1) rapid stimulus-following waves, and (2) slower, high-amplitude waves, similar to some fish AEPs. Responses were obtained between 30 and 500 Hz with lowest thresholds between 100 and 200 Hz. At the best frequencies, AEP amplitudes were often >20 µV. Evoked potentials were...

  18. Corticospinal excitability modulation during action observation.

    Science.gov (United States)

    Sartori, Luisa; Betti, Sonia; Castiello, Umberto

    2013-12-31

    This study used the transcranial magnetic stimulation/motor evoked potential (TMS/MEP) technique to pinpoint when the automatic tendency to mirror someone else's action becomes anticipatory simulation of a complementary act. TMS was delivered to the left primary motor cortex corresponding to the hand to induce the highest level of MEP activity from the abductor digiti minimi (ADM; the muscle serving little finger abduction) as well as the first dorsal interosseus (FDI; the muscle serving index finger flexion/extension) muscles. A neuronavigation system was used to maintain the position of the TMS coil, and electromyographic (EMG) activity was recorded from the right ADM and FDI muscles. Producing original data with regard to motor resonance, the combined TMS/MEP technique has taken research on the perception-action coupling mechanism a step further. Specifically, it has answered the questions of how and when observing another person's actions produces motor facilitation in an onlooker's corresponding muscles and in what way corticospinal excitability is modulated in social contexts.

  19. Background noise can enhance cortical auditory evoked potentials under certain conditions.

    Science.gov (United States)

    Papesh, Melissa A; Billings, Curtis J; Baltzell, Lucas S

    2015-07-01

    To use cortical auditory evoked potentials (CAEPs) to understand neural encoding in background noise and the conditions under which noise enhances CAEP responses. CAEPs from 16 normal-hearing listeners were recorded using the speech syllable/ba/presented in quiet and speech-shaped noise at signal-to-noise ratios of 10 and 30dB. The syllable was presented binaurally and monaurally at two presentation rates. The amplitudes of N1 and N2 peaks were often significantly enhanced in the presence of low-level background noise relative to quiet conditions, while P1 and P2 amplitudes were consistently reduced in noise. P1 and P2 amplitudes were significantly larger during binaural compared to monaural presentations, while N1 and N2 peaks were similar between binaural and monaural conditions. Methodological choices impact CAEP peaks in very different ways. Negative peaks can be enhanced by background noise in certain conditions, while positive peaks are generally enhanced by binaural presentations. Methodological choices significantly impact CAEPs acquired in quiet and in noise. If CAEPs are to be used as a tool to explore signal encoding in noise, scientists must be cognizant of how differences in acquisition and processing protocols selectively shape CAEP responses. Published by Elsevier Ireland Ltd.

  20. Flash visual evoked potentials are not specific enough to identify parieto-occipital lobe involvement in term neonates after significant hypoglycaemia.

    Science.gov (United States)

    Hu, Liyuan; Gu, Qiufang; Zhu, Zhen; Yang, Chenhao; Chen, Chao; Cao, Yun; Zhou, Wenhao

    2014-08-01

    Hypoglycaemia is a significant problem in high-risk neonates and predominant parieto-occipital lobe involvement has been observed after severe hypoglycaemic insult. We explored the use of flash visual evoked potentials (FVEP) in detecting parieto-occipital lobe involvement after significant hypoglycaemia. Full-term neonates (n = 15) who underwent FVEP from January 2008 to May 2013 were compared with infants (n = 11) without hypoglycaemia or parietal-occipital lobe injury. Significant hypoglycaemia was defined as being symptomatic or needing steroids, glucagon or a glucose infusion rate of ≥12 mg/kg/min. The hypoglycaemia group exhibited delayed latency of the first positive waveform on FVEP. The initial detected time for hypoglycaemia was later in the eight subjects with seizures (median 51-h-old) than those without (median 22-h-old) (P = 0.003). Magnetic resonance imaging showed that 80% of the hypoglycaemia group exhibited occipital-lobe injuries, and they were more likely to exhibit abnormal FVEP morphology (P = 0.007) than the controls. FVEP exhibited 100% sensitivity, but only 25% specificity, for detecting injuries to the parieto-occipital lobes. Flash visual evoked potential (FVEP) was sensitive, but not sufficiently specific, in identifying parieto-occipital lobe injuries among term neonates exposed to significant hypoglycaemia. Larger studies exploring the potential role of FVEP in neonatal hypoglycaemia are required. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  1. Paying attention to orthography: A visual evoked potential study

    Directory of Open Access Journals (Sweden)

    Anthony Thomas Herdman

    2013-05-01

    Full Text Available In adult readers, letters and words are rapidly identified within visual networks to allow for efficient reading abilities. Neuroimaging studies of orthography have mostly used words and letter strings that recruit many hierarchical levels in reading. Understanding how single letters are processed could provide further insight into orthographic processing. The present study investigated orthographic processing using single letters and pseudoletters when adults were encouraged to pay attention to or away from orthographic features. We measured evoked potentials (EPs to single letters and pseudoletters from adults while they performed an orthographic-discrimination task (letters vs. pseudoletters, a colour-discrimination task (red vs. blue, and a target-detection task (respond to #1 and #2. Larger and later peaking N1 responses (~170ms and larger P2 responses (~250 ms occurred to pseudoletters as compared to letters. This reflected greater visual processing for pseudoletters. Dipole analyses localized this effect to bilateral fusiform and inferior temporal cortices. Moreover, this letter-pseudoletter difference was not modulated by task and thus indicates that directing attention to or away from orthographic features didn’t affect early visual processing of single letters or pseudoletters within extrastriate regions. Paying attention to orthography or colour as compared to disregarding the stimuli (target-detection task elicited selection negativities at about 175 ms, which were followed by a classical N2-P3 complexes. This indicated that the tasks sufficiently drew participant’s attention to and away from the stimuli. Together these findings revealed that visual processing of single letters and pseudoletters, in adults, appeared to be sensory-contingent and independent of paying attention to stimulus features (e.g., orthography or colour.

  2. State and location dependence of action potential metabolic cost in cortical pyramidal neurons.

    Science.gov (United States)

    Hallermann, Stefan; de Kock, Christiaan P J; Stuart, Greg J; Kole, Maarten H P

    2012-06-03

    Action potential generation and conduction requires large quantities of energy to restore Na(+) and K(+) ion gradients. We investigated the subcellular location and voltage dependence of this metabolic cost in rat neocortical pyramidal neurons. Using Na(+)/K(+) charge overlap as a measure of action potential energy efficiency, we found that action potential initiation in the axon initial segment (AIS) and forward propagation into the axon were energetically inefficient, depending on the resting membrane potential. In contrast, action potential backpropagation into dendrites was efficient. Computer simulations predicted that, although the AIS and nodes of Ranvier had the highest metabolic cost per membrane area, action potential backpropagation into the dendrites and forward propagation into axon collaterals dominated energy consumption in cortical pyramidal neurons. Finally, we found that the high metabolic cost of action potential initiation and propagation down the axon is a trade-off between energy minimization and maximization of the conduction reliability of high-frequency action potentials.

  3. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface.

    Science.gov (United States)

    Wilaiprasitporn, Theerawit; Yagi, Tohru

    2015-01-01

    This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.

  4. Early impairment of somatosensory evoked potentials in very young children with achondroplasia with foramen magnum stenosis.

    Science.gov (United States)

    Fornarino, Stefania; Rossi, Daniela Paola; Severino, Mariasavina; Pistorio, Angela; Allegri, Anna Elsa Maria; Martelli, Simona; Doria Lamba, Laura; Lanteri, Paola

    2017-02-01

    To evaluate the contribution of somatosensory evoked potentials after median nerve (MN-SEPs) and posterior tibial nerve (PTN-SEPs) stimulation in functional assessment of cervical and lumbar spinal stenosis in children with achondroplasia. We reviewed MN-SEPs, PTN-SEPs, and spinal magnetic resonance imaging (MRI) examinations performed in 58 patients with achondroplasia (25 males, 33 females; age range 21d-16y 10mo; mean age 4y 3mo [SD 4y 1mo]). Patients were subdivided into four age categories: achondroplasia, the cortical component of PTN-SEPs is more sensitive than the cortical component and central conduction time of MN-SEPs in detection of cervical spinal cord compression at early ages. © 2016 Mac Keith Press.

  5. Participation of MT3 melatonin receptors in the synergistic effect of melatonin on cytotoxic and apoptotic actions evoked by chemotherapeutics.

    Science.gov (United States)

    Pariente, Roberto; Bejarano, Ignacio; Espino, Javier; Rodríguez, Ana B; Pariente, José A

    2017-11-01

    Melatonin has antitumor activity via several mechanisms including its antiproliferative and proapoptotic effects in addition to its potent antioxidant actions. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs. This study was performed to study the role of melatonin receptors on the cytotoxicity and apoptosis induced by the chemotherapeutic agents cisplatin and 5-fluorouracil in two tumor cell lines, such as human colorectal cancer HT-29 cells and cervical cancer HeLa cells. We found that both melatonin and the two chemotherapeutic agents tested induced a decrease in HT-29 and HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of chemotherapeutic agents, particularly, in 5-fluorouracil-challenged cells. Stimulation of cells with either of the two chemotherapeutic agents in the presence of melatonin further increased caspase-3 activation. Concomitant treatments with melatonin and chemotherapeutic agents augmented the population of apoptotic cells compared to the treatments with chemotherapeutics alone. Blockade of MT1 and/or MT2 receptors with luzindole or 4-P-PDOT was unable to reverse the enhancing effects of melatonin on both cytotoxicity, caspase-3 activation and the amount of apoptotic cells evoked by the chemotherapeutic agents, whereas when MT3 receptors were blocked with prazosin, the synergistic effect of melatonin with chemotherapy on cytotoxicity and apoptosis was reversed. Our findings provided evidence that in vitro melatonin strongly enhances chemotherapeutic-induced cytotoxicity and apoptosis in two tumor cell lines, namely HT-29 and HeLa cells and, this potentiating effect of melatonin is mediated by MT3 receptor stimulation.

  6. [Changes of somatosensory and transcranial magnetic stimulation motor evoked potentials in experimental spinal cord injury].

    Science.gov (United States)

    Hou, Yong; Nie, Lin; Liu, Li-hong; Shao, Jun; Yuan, Yong-jian

    2008-03-18

    To study the changes of somatosensory evoked potential (SEP) and transcranial magnetic simulation motor evoked potential (TMS-MEP) in experimental spinal cord injury (SCI). Thirty-two rabbits were randomly divided into 4 equal groups. All rabbits were anesthetized for 90 min. A group (Group A) underwent only laminectomy of T12 without SCI, stimulation with different intensities was used to induce SEP and TMS-MEP to determine the most appropriate stimulation intensity. The EPs were recorded before and after the operation. The other 3 groups underwent laminectomy of T12 to expose the dura, and a spinal cord compressing apparatus weighing 40 g was put on the intact dura and dorsal surface of spinal cord underneath for 5, 15, and 30 min respectively (Groups B, C, and D). SEP and TMS-MEP were detected after anesthesia, after exposure of spinal cord, and 5 and 30 min, 1 and 6 h, and 1, 3, and 7 d. The latency and amplitude of each wave were measured. The data were analyzed by analysis of variance, t-test and linear correlation. Tarlov behavior score was used to assess the motor function before the operation and 1, 3, and 7 days after SCI. It was found that 100% intensity stimulus obtained stable and reliable MEP waves. Anesthetic did not influence the EPs. The amplitude of SEP began to decrease 5 min after SCI and the latency began to increase 30 min after SCI. And both the amplitude and latency, especially the former, of MEP began to significantly change 5 min after SCI. The latency levels of SEP and MEP increased and the amplitude decreased after compression time-dependently during a certain range of time (all P TMS-MEP are very sensitive to SCI, in particular, the change of amplitude is more sensitive then the latency change and can more accurately reflect the degree of SCI. Combination of SEP and TMS-MEP objectively reflects the SCI degree. EP measurement, as a noninvasive technique, has great value in monitoring spinal cord function.

  7. Noise-evoked otoacoustic emissions in humans

    NARCIS (Netherlands)

    Maat, B; Wit, HP; van Dijk, P

    2000-01-01

    Click-evoked otoacoustic emissions (CEOAEs) and acoustical responses evoked by bandlimited Gaussian noise (noise-evoked otoacoustic emissions; NEOAEs) were measured in three normal-hearing subjects. For the NEOAEs the first- and second-order Wiener kernel and polynomial correlation functions up to

  8. The Role of Odor-Evoked Memory in Psychological and Physiological Health.

    Science.gov (United States)

    Herz, Rachel S

    2016-07-19

    This article discusses the special features of odor-evoked memory and the current state-of-the-art in odor-evoked memory research to show how these unique experiences may be able to influence and benefit psychological and physiological health. A review of the literature leads to the conclusion that odors that evoke positive autobiographical memories have the potential to increase positive emotions, decrease negative mood states, disrupt cravings, and reduce physiological indices of stress, including systemic markers of inflammation. Olfactory perception factors and individual difference characteristics that would need to be considered in therapeutic applications of odor-evoked-memory are also discussed. This article illustrates how through the experimentally validated mechanisms of odor-associative learning and the privileged neuroanatomical relationship that exists between olfaction and the neural substrates of emotion, odors can be harnessed to induce emotional and physiological responses that can improve human health and wellbeing.

  9. The Role of Odor-Evoked Memory in Psychological and Physiological Health

    Directory of Open Access Journals (Sweden)

    Rachel S. Herz

    2016-07-01

    Full Text Available This article discusses the special features of odor-evoked memory and the current state-of-the-art in odor-evoked memory research to show how these unique experiences may be able to influence and benefit psychological and physiological health. A review of the literature leads to the conclusion that odors that evoke positive autobiographical memories have the potential to increase positive emotions, decrease negative mood states, disrupt cravings, and reduce physiological indices of stress, including systemic markers of inflammation. Olfactory perception factors and individual difference characteristics that would need to be considered in therapeutic applications of odor-evoked-memory are also discussed. This article illustrates how through the experimentally validated mechanisms of odor-associative learning and the privileged neuroanatomical relationship that exists between olfaction and the neural substrates of emotion, odors can be harnessed to induce emotional and physiological responses that can improve human health and wellbeing.

  10. Flash visual evoked potentials in patients with periventricular leucomalacia in children less than 1 year of age

    Directory of Open Access Journals (Sweden)

    Jitendra Jethani

    2013-01-01

    Full Text Available Background and Aim: Children with periventricular leucomalacia (PVL are known to have visual impairment of various forms starting from reduced vision, field defects, congnitive problems, and problems with hand eye coordination. There is very scant data/literature on the visual evoked potentials (VEPs at an early age in children with PVL. We did a study to evaluate the flash visual evoked potentials (fVEPs in children with PVL less than 1 year of age. Materials and Methods: A total of nine children diagnosed as having PVL on magnetic resonance imaging were included in the study. The mean age was 9.7μ 3.5 months. All children underwent handheld fVEPs under sedation at two different flash frequencies 1.4 and 8 Hz. Results: The mean latency of N1 and P1 on stimulation with 1.4 Hz was 47.9μ 15.2 and 77.7μ 26.0 ms, respectively. However, on stimulation with 8 Hz the mean latency of N1 and P1 was 189.8μ 25.6 and 238.4μ 33.6 ms, respectively. The mean amplitude with 1.4 Hz and 8 stimulation frequency was 5.6μ 4.5 and 5.59μ 3 mV, respectively. Conclusion: We have found for the first time that there is a change in the latency and the delay occurs at 8 Hz frequency but not at 1.4 Hz. We also conclude that amplitudes by fVEPs may be normal even in presence of periventricular changes. The amplitudes of fVEPs are not reliable in children with PVL.

  11. Viewing instructions accompanying action observation modulate corticospinal excitability

    Directory of Open Access Journals (Sweden)

    David James Wright

    2016-02-01

    Full Text Available Action observation interventions may have the potential to contribute to improved motor function in motor (relearning settings by promoting functional activity and plasticity in the motor regions of the brain. Optimal methods for delivering such interventions, however, have yet to be established. This experiment investigated the effect on corticospinal excitability of manipulating the viewing instructions provided to participants (N = 21 prior to action observation. Specifically, motor evoked potential responses measured from the right hand muscles following single-pulse transcranial magnetic stimulation to the left motor cortex were compared when participants were instructed to observe finger-thumb opposition movement sequences: (i passively; (ii with the intent to imitate the observed movement; or (iii whilst simultaneously and actively imagining that they were performing the movement as they observed it. All three action observation viewing instructions facilitated corticospinal excitability to a greater extent than did observation of a static hand. In addition, the extent to which corticospinal excitability was facilitated was greater during combined observation and imagery, compared to passive observation. These findings have important implications for the design of action observation interventions in motor (relearning settings, where instructions that encourage observers to simultaneously imagine themselves performing the observed movement may offer the current optimal method for improving motor function through action observation.

  12. [Effect of pulse magnetic field on distribution of neuronal action potential].

    Science.gov (United States)

    Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling

    2014-08-25

    The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.

  13. Running Reduces Uncontrollable Stress-Evoked Serotonin and Potentiates Stress-Evoked Dopamine Concentrations in the Rat Dorsal Striatum.

    Directory of Open Access Journals (Sweden)

    Peter J Clark

    Full Text Available Accumulating evidence from both the human and animal literature indicates that exercise reduces the negative consequences of stress. The neurobiological etiology for this stress protection, however, is not completely understood. Our lab reported that voluntary wheel running protects rats from expressing depression-like instrumental learning deficits on the shuttle box escape task after exposure to unpredictable and inescapable tail shocks (uncontrollable stress. Impaired escape behavior is a result of stress-sensitized serotonin (5-HT neuron activity in the dorsal raphe (DRN and subsequent excessive release of 5-HT into the dorsal striatum following exposure to a comparatively mild stressor. However, the possible mechanisms by which exercise prevents stress-induced escape deficits are not well characterized. The purpose of this experiment was to test the hypothesis that exercise blunts the stress-evoked release of 5-HT in the dorsal striatum. Changes to dopamine (DA levels were also examined, since striatal DA signaling is critical for instrumental learning and can be influenced by changes to 5-HT activity. Adult male F344 rats, housed with or without running wheels for 6 weeks, were either exposed to tail shock or remained undisturbed in laboratory cages. Twenty-four hours later, microdialysis was performed in the medial (DMS and lateral (DLS dorsal striatum to collect extracellular 5-HT and DA before, during, and following 2 mild foot shocks. We report wheel running prevents foot shock-induced elevation of extracellular 5-HT and potentiates DA concentrations in both the DMS and DLS approximately 24 h following exposure to uncontrollable stress. These data may provide a possible mechanism by which exercise prevents depression-like instrumental learning deficits following exposure to acute stress.

  14. Interaural difference values of vestibular evoked myogenic.

    Directory of Open Access Journals (Sweden)

    Marziyeh Moallemi

    2015-01-01

    Full Text Available Migraine is a neurologic disease, which often is associated with a unilateral headache. Vestibular abnormalities are common in migraine. Vestibular evoked myogenic potentials (VEMPs assess otolith function in particular functional integrity of the saccule and the inferior vestibular nerve. We used VEMP to evaluate if the migraine headache can affect VEMP asymmetry parameters. A total of 25 patients with migraine (22 females and 3 males who were diagnosed according to the criteria of IHS-1988 were enrolled in this cross-sectional study. Control group consisted of 26 healthy participants (18 female and 8 male, without neurotological symptoms and history of migraine. The short tone burst (95 dB nHL, 500 Hz was presented to ears. VEMP was recorded with surface electromyography over the contracted ipsilateral sternocleidomastoid (SCM muscle. Although current results showed that the amplitude ratio is greater in migraine patients than normal group, there was no statistical difference between two groups in mean asymmetry parameters of VEMP. Asymmetry measurements in vestibular evoked myogenic potentials probably are not indicators of unilateral deficient in saccular pathways of migraine patients.

  15. Effect of Elevated Intracranial Pressure on Amplitudes and Frequency Tuning of Ocular Vestibular Evoked Myogenic Potentials Elicited by Bone-Conducted Vibration.

    Science.gov (United States)

    Gürkov, Robert; Speierer, Guillaume; Wittwer, Luis; Kalla, Roger

    Recently, it could be demonstrated that an increased intracranial pressure causes a modulation of the air conducted sound evoked ocular vestibular evoked myogenic potential (oVEMP). The mechanism for this modulation is not resolved and may depend on a change of either receptor excitability or sound energy transmission. oVEMPs were elicited in 18 healthy subjects with a minishaker delivering 500 and 1000 Hz tone bursts, in supine and tilted positions. The study could confirm the frequency tuning of oVEMP. However, at neither stimulus frequency could a modulating effect of increased intracranial pressure be observed. These data suggest that the observed modulation of the oVEMP response by an increased intracranial pressure is primarily due to the effect of an increased intralabyrinthine pressure onto the stiffness of the inner ear contents and the middle ear-inner ear junction. Future studies on the effect of intracranial pressure on oVEMP should use air-conducted sound and not bone-conducted vibration.

  16. Intraoperative facial motor evoked potentials monitoring with transcranial electrical stimulation for preservation of facial nerve function in patients with large acoustic neuroma

    Institute of Scientific and Technical Information of China (English)

    LIU Bai-yun; TIAN Yong-ji; LIU Wen; LIU Shu-ling; QIAO Hui; ZHANG Jun-ting; JIA Gui-jun

    2007-01-01

    Background Although various monitoring techniques have been used routinely in the treatment of the lesions in the skull base, iatrogenic facial paresis or paralysis remains a significant clinical problem. The aim of this study was to investigate the effect of intraoperative facial motor evoked potentials monitoring with transcranial electrical stimulation on preservation of facial nerve function.Method From January to November 2005, 19 patients with large acoustic neuroma were treated using intraoperative facial motor evoked potentials monitoring with transcranial electrical stimulation (TCEMEP) for preservation of facial nerve function. The relationship between the decrease of MEP amplitude after tumor removal and the postoperative function of the facial nerve was analyzed.Results MEP amplitude decreased more than 75% in 11 patients, of which 6 presented significant facial paralysis (H-B grade 3), and 5 had mild facial paralysis (H-B grade 2). In the other 8 patients, whose MEP amplitude decreased less than 75%, 1 experienced significant facial paralysis, 5 had mild facial paralysis, and 2 were normal.Conclusions Intraoperative TCEMEP can be used to predict postoperative function of the facial nerve. The decreased MEP amplitude above 75 % is an alarm point for possible severe facial paralysis.

  17. High frequency oscillations evoked by peripheral magnetic stimulation.

    Science.gov (United States)

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  18. Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.

    Science.gov (United States)

    Muñoz, Fabián; Fuentealba, Pablo

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.

  19. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  20. A change in the parameters of P300 evoked potentials in relation to the degree of exacerbation of pain syndrome

    Directory of Open Access Journals (Sweden)

    A P Rachin

    2012-01-01

    Full Text Available In chronic pain, the state of suprasegmental brain structures (the cortex, limbic system, truncodiencephalic structures, which form the motivational-affective and cognitive components of pain behavior, actively affects pain afferentation as well. The purpose of the study was to comparatively analyze the parameters and topographic distribution of P300 cognitive evoked potential in patients with lower back pain. Sixty patients aged 22 to 60 years were examined. The authors made their clinical and neurological examinations, collected medical history data, and assessed back pain intensity by a visual analog scale. The findings were compared with the parameters of cognitive evoked potentials (the separating of P300 to count; keystroke in the recognition of significant stimuli; elaboration of a verbal and nonverbal visual stimulation protocol, by using emotionally significant stimuli. The processes of recognition and differentiation, those of directed attention, and the rate of information processing slowed down in patients with different stages of pain syndrome. The P300 separating procedure using the emotionally significant stimuli allows one to assess the specific features of chronization of pain syndromes and the presence of pain memory in the central nervous system of such patients. The estimation of P300 parameters over time or during treatment are of particular value for the optimization and evaluation of its efficiency.

  1. Noninvasive scalp recording of cortical auditory evoked potentials in the alert macaque monkey.

    Science.gov (United States)

    Itoh, Kosuke; Nejime, Masafumi; Konoike, Naho; Nakada, Tsutomu; Nakamura, Katsuki

    2015-09-01

    Scalp-recorded evoked potentials (EP) provide researchers and clinicians with irreplaceable means for recording stimulus-related neural activities in the human brain, due to its high temporal resolution, handiness, and, perhaps more importantly, non-invasiveness. This work recorded the scalp cortical auditory EP (CAEP) in unanesthetized monkeys by using methods that are essentially identical to those applied to humans. Young adult rhesus monkeys (Macaca mulatta, 5-7 years old) were seated in a monkey chair, and their head movements were partially restricted by polystyrene blocks and tension poles placed around their head. Individual electrodes were fixated on their scalp using collodion according to the 10-20 system. Pure tone stimuli were presented while electroencephalograms were recorded from up to nineteen channels, including an electrooculogram channel. In all monkeys (n = 3), the recorded CAEP comprised a series of positive and negative deflections, labeled here as macaque P1 (mP1), macaque N1 (mN1), macaque P2 (mP2), and macaque N2 (mN2), and these transient responses to sound onset were followed by a sustained potential that continued for the duration of the sound, labeled the macaque sustained potential (mSP). mP1, mN2 and mSP were the prominent responses, and they had maximal amplitudes over frontal/central midline electrode sites, consistent with generators in auditory cortices. The study represents the first noninvasive scalp recording of CAEP in alert rhesus monkeys, to our knowledge. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons.

    Science.gov (United States)

    Kimm, Tilia; Khaliq, Zayd M; Bean, Bruce P

    2015-12-16

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency-current (f-I) relationship, whereas BK channel inhibition had little effect on the f-I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f-I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both

  3. Brain evoked potentials to noxious sural nerve stimulation in sciatalgic patients.

    Science.gov (United States)

    Willer, J C; De Broucker, T; Barranquero, A; Kahn, M F

    1987-07-01

    In sciatalgic patients and before any treatment, the goal of this work was to compare the amplitude of the late component (N150-P220) of the brain evoked potential (BEP) between resting pain-free conditions and a neurological induced pain produced by the Lasègue manoeuvre. The study was carried out with 8 inpatients affected with a unilateral sciatica resulting from an X-ray identified dorsal root compression from discal origin. The sural nerve was electrically stimulated at the ankle level while BEPs were recorded monopolarly from the vertex. The stimulus intensity eliciting a liminal nociceptive reflex response in a knee-flexor muscle associated with a liminal pain was selected for this study. Both normal and affected side were alternatively stimulated during several conditions of controls and of Lasègue's manoeuvres performed on the normal and on the affected side. Results show that the Lasègue manoeuvre performed on the affected side induced a significant increase in the amplitude of N150-P220; performed on the normal side, this same manoeuvre resulted in a significant decrease of the N150-P220 amplitude. These variations were observed whatever was the side (normal or affected) under sural nerve stimulation. The possible neural mechanisms of these changes and clinical implications of these data are then discussed.

  4. Test-retest reliability of infant event related potentials evoked by faces.

    Science.gov (United States)

    Munsters, N M; van Ravenswaaij, H; van den Boomen, C; Kemner, C

    2017-04-05

    Reliable measures are required to draw meaningful conclusions regarding developmental changes in longitudinal studies. Little is known, however, about the test-retest reliability of face-sensitive event related potentials (ERPs), a frequently used neural measure in infants. The aim of the current study is to investigate the test-retest reliability of ERPs typically evoked by faces in 9-10 month-old infants. The infants (N=31) were presented with neutral, fearful and happy faces that contained only the lower or higher spatial frequency information. They were tested twice within two weeks. The present results show that the test-retest reliability of the face-sensitive ERP components is moderate (P400 and Nc) to substantial (N290). However, there is low test-retest reliability for the effects of the specific experimental manipulations (i.e. emotion and spatial frequency) on the face-sensitive ERPs. To conclude, in infants the face-sensitive ERP components (i.e. N290, P400 and Nc) show adequate test-retest reliability, but not the effects of emotion and spatial frequency on these ERP components. We propose that further research focuses on investigating elements that might increase the test-retest reliability, as adequate test-retest reliability is necessary to draw meaningful conclusions on individual developmental trajectories of the face-sensitive ERPs in infants. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Tibial nerve somatosensory evoked potentials in dogs with degenerative lumbosacral stenosis.

    Science.gov (United States)

    Meij, Björn P; Suwankong, Niyada; van den Brom, Walter E; Venker-van Haagen, Anjop J; Hazewinkel, Herman A W

    2006-02-01

    To determine somatosensory evoked potentials (SEPs) in dogs with degenerative lumbosacral stenosis (DLS) and in healthy dogs. Clinical and experimental study. Dogs with DLS (n = 21) and 11 clinically normal dogs, age, and weight matched. Under anesthesia, the tibial nerve was stimulated at the caudolateral aspect of the stifle, and lumbar SEP (LSEP) were recorded percutaneously from S1 to T13 at each interspinous space. Cortical SEP (CSEP) were recorded from the scalp. LSEP were identified as the N1-P1 (latency 3-6 ms) and N2-P2 (latency 7-13 ms) wave complexes in the recordings of dogs with DLS and control dogs. Latency of N1-P1 increased and that of N2-P2 decreased as the active recording electrode was moved cranially from S1 to T13. Compared with controls, latencies were significantly delayed in DLS dogs: .8 ms for N1-P1 and 1.7 ms for the N2-P2 complex. CSEP were not different between groups. Surface needle recording of tibial nerve SEP can be used to monitor somatosensory nerve function of pelvic limbs in dogs. In dogs with DLS, the latency of LSEP, but not of CSEP, is prolonged compared with normal dogs. In dogs with lumbosacral pain from DLS, the cauda equina compression is sufficient to affect LSEP at the lumbar level.

  6. A MISO-ARX-Based Method for Single-Trial Evoked Potential Extraction

    Directory of Open Access Journals (Sweden)

    Nannan Yu

    2017-01-01

    Full Text Available In this paper, we propose a novel method for solving the single-trial evoked potential (EP estimation problem. In this method, the single-trial EP is considered as a complex containing many components, which may originate from different functional brain sites; these components can be distinguished according to their respective latencies and amplitudes and are extracted simultaneously by multiple-input single-output autoregressive modeling with exogenous input (MISO-ARX. The extraction process is performed in three stages: first, we use a reference EP as a template and decompose it into a set of components, which serve as subtemplates for the remaining steps. Then, a dictionary is constructed with these subtemplates, and EPs are preliminarily extracted by sparse coding in order to roughly estimate the latency of each component. Finally, the single-trial measurement is parametrically modeled by MISO-ARX while characterizing spontaneous electroencephalographic activity as an autoregression model driven by white noise and with each component of the EP modeled by autoregressive-moving-average filtering of the subtemplates. Once optimized, all components of the EP can be extracted. Compared with ARX, our method has greater tracking capabilities of specific components of the EP complex as each component is modeled individually in MISO-ARX. We provide exhaustive experimental results to show the effectiveness and feasibility of our method.

  7. Social interaction enhances motor resonance for observed human actions.

    Science.gov (United States)

    Hogeveen, Jeremy; Obhi, Sukhvinder S

    2012-04-25

    Understanding the neural basis of social behavior has become an important goal for cognitive neuroscience and a key aim is to link neural processes observed in the laboratory to more naturalistic social behaviors in real-world contexts. Although it is accepted that mirror mechanisms contribute to the occurrence of motor resonance (MR) and are common to action execution, observation, and imitation, questions remain about mirror (and MR) involvement in real social behavior and in processing nonhuman actions. To determine whether social interaction primes the MR system, groups of participants engaged or did not engage in a social interaction before observing human or robotic actions. During observation, MR was assessed via motor-evoked potentials elicited with transcranial magnetic stimulation. Compared with participants who did not engage in a prior social interaction, participants who engaged in the social interaction showed a significant increase in MR for human actions. In contrast, social interaction did not increase MR for robot actions. Thus, naturalistic social interaction and laboratory action observation tasks appear to involve common MR mechanisms, and recent experience tunes the system to particular agent types.

  8. Visual Evoked Potential to Assess Retinopathy in Gestational Diabetes Mellitus.

    Science.gov (United States)

    Hari Kumar, K V S; Ahmad, F M H; Sood, Sandeep; Mansingh, Sudhir

    2016-04-01

    We evaluated for early retinopathy using the visual evoked potential (VEP) in patients with gestational diabetes mellitus (GDM) and type 2 diabetes mellitus during pregnancy. All patients with GDM and type 2 diabetes seen between June and October of 2014 were included in this cross-sectional, observational study. Patients with secondary diabetes, ocular or major illness were excluded from the study. VEP was recorded in both eyes to derive prominent positive peak latency (P100), amplitude and initial negative deflection (N75) latency. The data were compared with 10 gestational age-matched controls with normal glucose tolerance. Appropriate statistical methods were used for comparison among the 3 groups. The study participants (40 with GDM, 10 with type 2 diabetes, 10 with normal glucose tolerance) had a median (25th to 75th interquartile range) age of 26 (24.3, 30) years, a gestational age of 24.5 (21, 27) weeks and weights of 66.8 (63.4, 71.5) kg. The P100 latencies were comparable among the 3 groups (p=0.0577). However, patients with any diabetes (GDM and type 2 diabetes) had prolonged P100 latencies (p=0.0139) and low P100 amplitudes (p=0.0391) in comparison to controls. P100 latency showed a direct correlation with hyperglycemia (p=0.0118). Our data showed that VEP abnormalities are detectable even in the short-term hyperglycemia of GDM and type 2 diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  9. The DBI action, higher-derivative supergravity, and flattening inflaton potentials

    International Nuclear Information System (INIS)

    Bielleman, Sjoerd; Ibáñez, Luis E.; Pedro, Francisco G.; Valenzuela, Irene; Wieck, Clemens

    2016-01-01

    In string theory compactifications it is common to find an effective Lagrangian for the scalar fields with a non-canonical kinetic term. We study the effective action of the scalar position moduli of Type II Dp-branes. In many instances the kinetic terms are in fact modified by a term proportional to the scalar potential itself. This can be linked to the appearance of higher-dimensional supersymmetric operators correcting the Kähler potential. We identify the supersymmetric dimension-eight operators describing the α"′ corrections captured by the D-brane Dirac-Born-Infeld action. Our analysis then allows an embedding of the D-brane moduli effective action into an N=1 supergravity formulation. The effects of the potential-dependent kinetic terms may be very important if one of the scalars is the inflaton, since they lead to a flattening of the scalar potential. We analyze this flattening effect in detail and compute its impact on the CMB observables for single-field inflation with monomial potentials.

  10. Gender differences in binaural speech-evoked auditory brainstem response: are they clinically significant?

    Science.gov (United States)

    Jalaei, Bahram; Azmi, Mohd Hafiz Afifi Mohd; Zakaria, Mohd Normani

    2018-05-17

    Binaurally evoked auditory evoked potentials have good diagnostic values when testing subjects with central auditory deficits. The literature on speech-evoked auditory brainstem response evoked by binaural stimulation is in fact limited. Gender disparities in speech-evoked auditory brainstem response results have been consistently noted but the magnitude of gender difference has not been reported. The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations. A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally. While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes. The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  11. Bi-phasic activation of the primary motor cortex by pain and its relation to pain-evoked potentials - an exploratory study.

    Science.gov (United States)

    Kisler, Lee-Bareket; Weissman-Fogel, Irit; Sinai, Alon; Sprecher, Elliot; Chistyakov, Andrei V; Shamay-Tsoory, Simone; Moscovitz, Nadav; Granovsky, Yelena

    2017-06-15

    The primary motor cortex (M1) is a known target for brain stimulation aimed at pain alleviation in chronic pain patients, yet the mechanisms through which analgesia occurs, and the exact pain-motor interrelations are not fully understood. We used noxious contact heat evoked potentials (CHEPs) and cortical source analysis to further explore the relevance of M1 in pain processing. Twenty-four healthy young females received brief noxious heat stimuli to their left non-dominant volar forearm, simultaneously with CHEPs recordings. Thereafter, the pain-evoked activity of M1 and a control area in the occipital cortex (OC) was analyzed and estimated using sLORETA (standardized low-resolution brain electromagnetic tomography). This analysis revealed two phases of M1 pain-evoked activation (phase 1: the peak at 261.5±25.7ms; phase 2: the peak at 381.3±28.3ms). Canonical correlations revealed that M1, but not the OC, was the main factor contributing to the relation with the CHEPs components. In detail, the activity magnitude of M1 first and second phases was related to the N2 and P2 amplitude, respectively. The latency of the second phase was associated with both N2 and P2 latencies. In relation to pain, the latency of M1's first activity phase was positively correlated with pain ratings, suggesting pain interference to synchronized activity in M1. Our results confirm the established relevance of the primary motor cortex to pain processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Reconstruction of action potential of repolarization in patients with congenital long-QT syndrome

    International Nuclear Information System (INIS)

    Kandori, Akihiko; Shimizu, Wataru; Yokokawa, Miki; Kamakura, Shiro; Miyatake, Kunio; Murakami, Masahiro; Miyashita, Tsuyoshi; Ogata, Kuniomi; Tsukada, Keiji

    2004-01-01

    A method for reconstructing an action potential during the repolarization period was developed. This method uses a current distribution-plotted as a current-arrow map (CAM)-calculated using magnetocardiogram (MCG) signals. The current arrows are summarized during the QRS complex period and subtracted during the ST-T wave period in order to reconstruct the action-potential waveform. To ensure the similarity between a real action potential and the reconstructed action potential using CAM, a monophasic action potential (MAP) and an MCG of the same patient with type-I long-QT syndrome were measured. Although the MAP had one notch that was associated with early afterdepolarization (EAD), the reconstructed action potential had two large and small notches. The small notch timing agreed with the occurrence of the EAD in the MAP. On the other hand, the initiation time of an abnormal current distribution coincides with the appearance timing of the first large notch, and its end time coincides with that of the second small notch. These results suggest that a simple reconstruction method using a CAM based on MCG data can provide a similar action-potential waveform to a MAP waveform without having to introduce a catheter

  13. Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters

    Science.gov (United States)

    Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S. S.; Wainer, Irving W.; Cheer, Joseph F.; Frost, Douglas O.; Huang, Xi-Ping

    2016-01-01

    Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID

  14. Effect of an educational game on university students' learning about action potentials.

    Science.gov (United States)

    Luchi, Kelly Cristina Gaviao; Montrezor, Luís Henrique; Marcondes, Fernanda K

    2017-06-01

    The aim of this study was to evaluate the effect of an educational game that is used for teaching the mechanisms of the action potentials in cell membranes. The game was composed of pieces representing the intracellular and extracellular environments, ions, ion channels, and the Na + -K + -ATPase pump. During the game activity, the students arranged the pieces to demonstrate how the ions move through the membrane in a resting state and during an action potential, linking the ion movement with a graph of the action potential. To test the effect of the game activity on student understanding, first-year dental students were given the game to play at different times in a series of classes teaching resting membrane potential and action potentials. In all experiments, students who played the game performed better in assessments. According to 98% of the students, the game supported the learning process. The data confirm the students' perception, indicating that the educational game improved their understanding about action potentials. Copyright © 2017 the American Physiological Society.

  15. [Visual evoked potentials produced by monocular flash stimuli in the cerebral cortex of the rabbit. I. Typography].

    Science.gov (United States)

    Pérez-Cobo, J C; Ruiz-Beramendi, M; Pérez-Arroyo, M

    1990-12-01

    The visually evoked potentials in the hemisphere contralateral to the stimulated eye in rabbit, can be described topographically as follows. While a positive wave (P1) begins forming in the anterior zones and in the V I binocular zone, the N0 wave, at times very large, is produced in a more occipital zone, which corresponds to the visual streak. Immediately afterwards, the positivity, P1, practically invades the whole of the hemisphere. After this, the N1 wave which is produced in the most posterior parts of the V I, begins forming. The whole phenomenon comes to an end when the P2 wave is generated in the most occipital zones.

  16. Evoked emotions predict food choice.

    Science.gov (United States)

    Dalenberg, Jelle R; Gutjar, Swetlana; Ter Horst, Gert J; de Graaf, Kees; Renken, Remco J; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well scores from emotion-profiling methods predict actual food choice and/or consumption. To test this, we proposed to decompose emotion scores into valence and arousal scores using Principal Component Analysis (PCA) and apply Multinomial Logit Models (MLM) to estimate food choice using liking, valence, and arousal as possible predictors. For this analysis, we used an existing data set comprised of liking and food-evoked emotions scores from 123 participants, who rated 7 unlabeled breakfast drinks. Liking scores were measured using a 100-mm visual analogue scale, while food-evoked emotions were measured using 2 existing emotion-profiling methods: a verbal and a non-verbal method (EsSense Profile and PrEmo, respectively). After 7 days, participants were asked to choose 1 breakfast drink from the experiment to consume during breakfast in a simulated restaurant environment. Cross validation showed that we were able to correctly predict individualized food choice (1 out of 7 products) for over 50% of the participants. This number increased to nearly 80% when looking at the top 2 candidates. Model comparisons showed that evoked emotions better predict food choice than perceived liking alone. However, the strongest predictive strength was achieved by the combination of evoked emotions and liking. Furthermore we showed that non-verbal food-evoked emotion scores more accurately predict food choice than verbal food-evoked emotions scores.

  17. Asymmetry of magnetic motor evoked potentials recorded in calf muscles of the dominant and non-dominant lower extremity.

    Science.gov (United States)

    Olex-Zarychta, Dorota; Koprowski, Robert; Sobota, Grzegorz; Wróbel, Zygmunt

    2009-08-07

    The aim of the study was to determine the applicability of magnetic stimulation and magnetic motor evoked potentials (MEPs) in motor asymmetry studies by obtaining quantitative and qualitative measures of efferent activity during low intensity magnetic stimulation of the dominant and non-dominant lower extremities. Magnetic stimulation of the tibial nerve in the popliteal fossa was performed in 10 healthy male right-handed and right-footed young adults. Responses were recorded from the lateral head of the gastrocnemius muscles of the right and left lower extremities. Response characteristics (duration, onset latency, amplitude) were analyzed in relation to the functional dominance of the limbs and in relation to the direction of the current in the magnetic coil by use of the Wilcoxon pair sequence test. The CCW direction of coil current was related to reduced amplitudes of recorded MEPs. Greater amplitudes of evoked potentials were recorded in the non-dominant extremity, both in the CW and CCW coil current directions, with the statistical significance of this effect (p=0.005). No differences in duration of response were found in the CW current direction, while in CCW the time of the left-side response was prolonged (p=0.01). In the non-dominant extremity longer onset latencies were recorded in both current directions, but only for the CW direction the side asymmetries showed a statistical significance of p=0.005. In the dominant extremity the stimulation correlated with stronger paresthesias, especially using the CCW direction of coil current. The results indicate that low intensity magnetic stimulation may be useful in quantitative and qualitative research into the motor asymmetry.

  18. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential.

    Science.gov (United States)

    Brumberg, Jonathan S; Nguyen, Anh; Pitt, Kevin M; Lorenz, Sean D

    2018-01-31

    We investigated how overt visual attention and oculomotor control influence successful use of a visual feedback brain-computer interface (BCI) for accessing augmentative and alternative communication (AAC) devices in a heterogeneous population of individuals with profound neuromotor impairments. BCIs are often tested within a single patient population limiting generalization of results. This study focuses on examining individual sensory abilities with an eye toward possible interface adaptations to improve device performance. Five individuals with a range of neuromotor disorders participated in four-choice BCI control task involving the steady state visually evoked potential. The BCI graphical interface was designed to simulate a commercial AAC device to examine whether an integrated device could be used successfully by individuals with neuromotor impairment. All participants were able to interact with the BCI and highest performance was found for participants able to employ an overt visual attention strategy. For participants with visual deficits to due to impaired oculomotor control, effective performance increased after accounting for mismatches between the graphical layout and participant visual capabilities. As BCIs are translated from research environments to clinical applications, the assessment of BCI-related skills will help facilitate proper device selection and provide individuals who use BCI the greatest likelihood of immediate and long term communicative success. Overall, our results indicate that adaptations can be an effective strategy to reduce barriers and increase access to BCI technology. These efforts should be directed by comprehensive assessments for matching individuals to the most appropriate device to support their complex communication needs. Implications for Rehabilitation Brain computer interfaces using the steady state visually evoked potential can be integrated with an augmentative and alternative communication device to provide access

  19. Inducing repetitive action potential firing in neurons via synthesized photoresponsive nanoscale cellular prostheses.

    Science.gov (United States)

    Lu, Siyuan; Madhukar, Anupam

    2013-02-01

    Recently we reported an analysis that examined the potential of synthesized photovoltaic functional abiotic nanosystems (PVFANs) to modulate membrane potential and activate action potential firing in neurons. Here we extend the analysis to delineate the requirements on the electronic energy levels and the attendant photophysical properties of the PVFANs to induce repetitive action potential under continuous light, a capability essential for the proposed potential application of PVFANs as retinal cellular prostheses to compensate for loss of photoreceptors. We find that repetitive action potential firing demands two basic characteristics in the electronic response of the PVFANs: an exponential dependence of the PVFAN excited state decay rate on the membrane potential and a three-state system such that, following photon absorption, the electron decay from the excited state to the ground state is via intermediate state(s) whose lifetime is comparable to the refractory time following an action potential. In this study, the potential of synthetic photovoltaic functional abiotic nanosystems (PVFANs) is examined under continuous light to modulate membrane potential and activate action potential firing in neurons with the proposed potential application of PVFANs as retinal cellular prostheses. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. A phantom axon setup for validating models of action potential recordings.

    Science.gov (United States)

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %.

  1. Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.

    Science.gov (United States)

    Chen, Y-H; Lin, P-L; Wong, R-W; Wu, Y-T; Hsu, H-Y; Tsai, M-C; Lin, M-J; Hsu, Y-C; Lin, C-H

    2012-10-25

    Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in

  2. Profiles in fibromyalgia: algometry, auditory evoked potentials and clinical characterization of different subtypes.

    Science.gov (United States)

    Triñanes, Yolanda; González-Villar, Alberto; Gómez-Perretta, Claudio; Carrillo-de-la-Peña, María T

    2014-11-01

    The heterogeneity found in fibromyalgia (FM) patients has led to the investigation of disease subgroups, mainly based on clinical features. The aim of this study was to test the hypothesis that clinical FM subgroups are associated with different underlying pathophysiological mechanisms. Sixty-three FM patients were classified in type I or type II, according to the Fibromyalgia Impact Questionnaire (FIQ), and in mild/moderate versus severe FM, according to the severity of three cardinal symptoms considered in the American College of Rheumatology (ACR) 2010 criteria (unrefreshed sleep, cognitive problems and fatigue). To validate the subgroups obtained by these two classifications, we calculated the area under the receiver operating characteristic curves for various clinical variables and for two potential biomarkers of FM: Response to experimental pressure pain (algometry) and the amplitude/intensity slopes of the auditory evoked potentials (AEPs) obtained to stimuli of increasing intensity. The variables that best discriminated type I versus type II were those related to depression, while the indices of clinical or experimental pain (threshold or tolerance) did not significantly differ between them. The variables that best discriminated the mild/moderate versus severe subgroups were those related to the algometry. The AEPs did not allow discrimination among the generated subsets. The FIQ-based classification allows the identification of subgroups that differ in psychological distress, while the index based on the ACR 2010 criteria seems to be useful to characterize the severity of FM mainly based on hyperalgesia. The incorporation of potential biomarkers to generate or validate classification criteria is crucial to advance in the knowledge of FM and in the understanding of pathophysiological pathways.

  3. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-06-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. Multifocal visual evoked potentials for quantifying optic nerve dysfunction in patients with optic disc drusen

    DEFF Research Database (Denmark)

    Malmqvist, Lasse; de Santiago, Luis; Boquete, Luciano

    2017-01-01

    and 22 control subjects were examined. Mean amplitude, mean inner ring (IR) amplitude (0.87-5.67° of visual field) and mean outer ring amplitude (5.68-24° of visual field) were calculated using signal-to-noise ratio (SNR) and peak-to-peak analysis. Monocular latency was calculated using second peak......PURPOSE: To explore the applicability of multifocal visual evoked potentials (mfVEPs) for research and clinical diagnosis in patients with optic disc drusen (ODD). This is the first assessment of mfVEP amplitude in patients with ODD. METHODS: MfVEP amplitude and latency from 33 patients with ODD......, full eye and IR. In the control group, SNR intersubject variability was 17.6% and second peak latency intersubject variability was 2.8%. CONCLUSION: Decreased mfVEP amplitude in patients with ODD suggests a direct mechanical compression of the optic nerve axons. Our results suggest that mfVEP amplitude...

  5. Visual evoked potentials show strong positive association with intracranial pressure in patients with cryptococcal meningitis

    Directory of Open Access Journals (Sweden)

    Marcelo Adriano da Cunha Silva Vieira

    2015-04-01

    Full Text Available Objective : To verify the relationship between intracranial pressure and flash visual evoked potentials (F-VEP in patients with cryptococcal meningitis. Method The sample included adults diagnosed with cryptococcal meningitis admitted at a reference hospital for infectious diseases. The patients were subjected to F-VEP tests shortly before lumbar puncture. The Pearson’s linear correlation coefficient was calculated and the linear regression analysis was performed. Results : Eighteen individuals were subjected to a total of 69 lumbar punctures preceded by F-VEP tests. At the first lumbar puncture performed in each patient, N2 latency exhibited a strong positive correlation with intracranial pressure (r = 0.83; CI = 0.60 - 0.94; p < 0.0001. The direction of this relationship was maintained in subsequent punctures. Conclusion : The intracranial pressure measured by spinal tap manometry showed strong positive association with the N2 latency F-VEP in patients with cryptococcal meningitis.

  6. The action of chlorphenesin carbamate on the frog spinal cord.

    Science.gov (United States)

    Aihara, H; Kurachi, M; Nakane, S; Sasajima, M; Ohzeki, M

    1980-02-01

    Studies were carried out to elucidate the mechanism of action of chlorphenesin carbamate (CPC) and to compare the effect of the drug with that of mephenesin on the isolated bullfrog spinal cord. Ventral and dorsal root potentials were recorded by means of the sucrose-gap method. CPC caused marked hyperpolarizations and depressed spontaneous activities in both of the primary afferent terminals (PAT) and motoneurons (MN). These hyperpolarizations were observed even in high-Mg2+ and Ca2+-free Ringer's solution, suggesting that CPC has direct actions on PAT and MN. Various reflex potentials (dorsal and ventral root potentials elicited by stimulating dorsal and ventral root, respectively) tended to be depressed by CPC as well as by mephenesin. Excitatory amino acids (L-aspartic acid and L-glutamic acid) caused marked depolarizations in PAT and MN, and increased the firing rate in MN. CPC did not modify the depolarization but abolished the motoneuron firing induced by these amino acids. However, mephenesin reduced both the depolarization and the motoneuron firing. The dorsal and ventral root potentials evoked by tetanic stimulation (40 Hz) of the dorsal root were depressed by the drugs. These results indicate that CPC has an apparent depressing action on the spinal neuron, and this action may be ascribed to the slight hyperpolarization and/or the prolongation of refractory period.

  7. Low-intensity repetitive magnetic stimulation lowers action potential threshold and increases spike firing in layer 5 pyramidal neurons in vitro.

    Science.gov (United States)

    Tang, Alexander D; Hong, Ivan; Boddington, Laura J; Garrett, Andrew R; Etherington, Sarah; Reynolds, John N J; Rodger, Jennifer

    2016-10-29

    Repetitive transcranial magnetic stimulation (rTMS) has become a popular method of modulating neural plasticity in humans. Clinically, rTMS is delivered at high intensities to modulate neuronal excitability. While the high-intensity magnetic field can be targeted to stimulate specific cortical regions, areas adjacent to the targeted area receive stimulation at a lower intensity and may contribute to the overall plasticity induced by rTMS. We have previously shown that low-intensity rTMS induces molecular and structural plasticity in vivo, but the effects on membrane properties and neural excitability have not been investigated. Here we investigated the acute effect of low-intensity repetitive magnetic stimulation (LI-rMS) on neuronal excitability and potential changes on the passive and active electrophysiological properties of layer 5 pyramidal neurons in vitro. Whole-cell current clamp recordings were made at baseline prior to subthreshold LI-rMS (600 pulses of iTBS, n=9 cells from 7 animals) or sham (n=10 cells from 9 animals), immediately after stimulation, as well as 10 and 20min post-stimulation. Our results show that LI-rMS does not alter passive membrane properties (resting membrane potential and input resistance) but hyperpolarises action potential threshold and increases evoked spike-firing frequency. Increases in spike firing frequency were present throughout the 20min post-stimulation whereas action potential (AP) threshold hyperpolarization was present immediately after stimulation and at 20min post-stimulation. These results provide evidence that LI-rMS alters neuronal excitability of excitatory neurons. We suggest that regions outside the targeted region of high-intensity rTMS are susceptible to neuromodulation and may contribute to rTMS-induced plasticity. Copyright © 2016 IBRO. All rights reserved.

  8. Characterization of music-evoked autobiographical memories.

    Science.gov (United States)

    Janata, Petr; Tomic, Stefan T; Rakowski, Sonja K

    2007-11-01

    Despite music's prominence in Western society and its importance to individuals in their daily lives, very little is known about the memories and emotions that are often evoked when hearing a piece of music from one's past. We examined the content of music-evoked autobiographical memories (MEAMs) using a novel approach for selecting stimuli from a large corpus of popular music, in both laboratory and online settings. A set of questionnaires probed the cognitive and affective properties of the evoked memories. On average, 30% of the song presentations evoked autobiographical memories, and the majority of songs also evoked various emotions, primarily positive, that were felt strongly. The third most common emotion was nostalgia. Analyses of written memory reports found both general and specific levels of autobiographical knowledge to be represented, and several social and situational contexts for memory formation were common across many memories. The findings indicate that excerpts of popular music serve as potent stimuli for studying the structure of autobiographical memories.

  9. Do not resonate with actions: sentence polarity modulates cortico-spinal excitability during action-related sentence reading.

    Directory of Open Access Journals (Sweden)

    Marco Tullio Liuzza

    Full Text Available BACKGROUND: Theories of embodied language suggest that the motor system is differentially called into action when processing motor-related versus abstract content words or sentences. It has been recently shown that processing negative polarity action-related sentences modulates neural activity of premotor and motor cortices. METHODS AND FINDINGS: We sought to determine whether reading negative polarity sentences brought about differential modulation of cortico-spinal motor excitability depending on processing hand-action related or abstract sentences. Facilitatory paired-pulses Transcranial Magnetic Stimulation (pp-TMS was applied to the primary motor representation of the right-hand and the recorded amplitude of induced motor-evoked potentials (MEP was used to index M1 activity during passive reading of either hand-action related or abstract content sentences presented in both negative and affirmative polarity. Results showed that the cortico-spinal excitability was affected by sentence polarity only in the hand-action related condition. Indeed, in keeping with previous TMS studies, reading positive polarity, hand action-related sentences suppressed cortico-spinal reactivity. This effect was absent when reading hand action-related negative polarity sentences. Moreover, no modulation of cortico-spinal reactivity was associated with either negative or positive polarity abstract sentences. CONCLUSIONS: Our results indicate that grammatical cues prompting motor negation reduce the cortico-spinal suppression associated with affirmative action sentences reading and thus suggest that motor simulative processes underlying the embodiment may involve even syntactic features of language.

  10. Comparison of effectiveness between cork-screw and peg-screw electrodes for transcranial motor evoked potential monitoring using the finite element method.

    Science.gov (United States)

    Tomio, Ryosuke; Akiyama, Takenori; Ohira, Takayuki; Yoshida, Kazunari

    2016-01-01

    Intraoperative monitoring of motor evoked potentials by transcranial electric stimulation is popular in neurosurgery for monitoring motor function preservation. Some authors have reported that the peg-screw electrodes screwed into the skull can more effectively conduct current to the brain compared to subdermal cork-screw electrodes screwed into the skin. The aim of this study was to investigate the influence of electrode design on transcranial motor evoked potential monitoring. We estimated differences in effectiveness between the cork-screw electrode, peg-screw electrode, and cortical electrode to produce electric fields in the brain. We used the finite element method to visualize electric fields in the brain generated by transcranial electric stimulation using realistic three-dimensional head models developed from T1-weighted images. Surfaces from five layers of the head were separated as accurately as possible. We created the "cork-screws model," "1 peg-screw model," "peg-screws model," and "cortical electrode model". Electric fields in the brain radially diffused from the brain surface at a maximum just below the electrodes in coronal sections. The coronal sections and surface views of the brain showed higher electric field distributions under the peg-screw compared to the cork-screw. An extremely high electric field was observed under cortical electrodes. Our main finding was that the intensity of electric fields in the brain are higher in the peg-screw model than the cork-screw model.

  11. Electrophysiological actions of GABAB agonists and antagonists in rat dorso-lateral septal neurones in vitro.

    Science.gov (United States)

    Bon, C; Galvan, M

    1996-06-01

    1. The actions of GABAB-receptor agonists and antagonists on rat dorso-lateral septal neurones in vitro were recorded with intracellular microelectrodes. 2. In the presence of 1 microM tetrodotoxin to prevent indirect neuronal effects caused by action potential-dependent neurotransmitter release, bath application of baclofen (0.1-30 microM) or SK&F 97541 (0.01-3 microM) evoked concentration-dependent hyperpolarizations which reversed close to the potassium equilibrium potential; the EC50S were 0.55 and 0.05 microM, respectively. No significant desensitization was observed during prolonged agonist exposure (dorso-lateral septal nucleus express conventional GABAB receptors, which are involved in the generation of slow inhibitory postsynaptic potentials. CGP 55845A is the most potent GABAB receptor antagonist described in this brain area.

  12. Dynamic causal modeling of touch-evoked potentials in the rubber hand illusion.

    Science.gov (United States)

    Zeller, Daniel; Friston, Karl J; Classen, Joseph

    2016-09-01

    The neural substrate of bodily ownership can be disclosed by the rubber hand illusion (RHI); namely, the illusory self-attribution of an artificial hand that is induced by synchronous tactile stimulation of the subject's hand that is hidden from view. Previous studies have pointed to the premotor cortex (PMC) as a pivotal area in such illusions. To investigate the effective connectivity between - and within - sensory and premotor areas involved in bodily perceptions, we used dynamic causal modeling of touch-evoked responses in 13 healthy subjects. Each subject's right hand was stroked while viewing their own hand ("REAL"), or an artificial hand presented in an anatomically plausible ("CONGRUENT") or implausible ("INCONGRUENT") position. Bayesian model comparison revealed strong evidence for a differential involvement of the PMC in the generation of touch-evoked responses under the three conditions, confirming a crucial role of PMC in bodily self-attribution. In brief, the extrinsic (forward) connection from left occipital cortex to left PMC was stronger for CONGRUENT and INCONGRUENT as compared to REAL, reflecting the augmentation of bottom-up visual input when multisensory integration is challenged. Crucially, intrinsic connectivity in the primary somatosensory cortex (S1) was attenuated in the CONGRUENT condition, during the illusory percept. These findings support predictive coding models of the functional architecture of multisensory integration (and attenuation) in bodily perceptual experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Triangulation of the monophasic action potential causes flattening of the electrocardiographic T-wave

    DEFF Research Database (Denmark)

    Bhuiyan, Tanveer Ahmed; Graff, Claus; Thomsen, Morten Bækgaard

    2012-01-01

    of the action potential under the effect of the IKr blocker sertindole and associated these changes to concurrent changes in the morphology of electrocardiographic T-waves in dogs. We show that, under the effect of sertindole, the peak changes in the morphology of action potentials occur at time points similar......It has been proposed that triangulation on the cardiac action potential manifests as a broadened, more flat and notched T-wave on the ECG but to what extent such morphology characteristics are indicative of triangulation is more unclear. In this paper, we have analyzed the morphological changes...... to those observed for the peak changes in T-wave morphology on the ECG. We further show that the association between action potential shape and ECG shape is dose-dependent and most prominent at the time corresponding to phase 3 of the action potential....

  14. A neural basis for the visual sense of number and its development: A steady-state visual evoked potential study in children and adults

    Directory of Open Access Journals (Sweden)

    Joonkoo Park

    2018-04-01

    Full Text Available While recent studies in adults have demonstrated the existence of a neural mechanism for a visual sense of number, little is known about its development and whether such a mechanism exists at young ages. In the current study, I introduce a novel steady-state visual evoked potential (SSVEP technique to objectively quantify early visual cortical sensitivity to numerical and non-numerical magnitudes of a dot array. I then examine this neural sensitivity to numerical magnitude in children between three and ten years of age and in college students. Children overall exhibit strong SSVEP sensitivity to numerical magnitude in the right occipital sites with negligible SSVEP sensitivity to non-numerical magnitudes, the pattern similar to what is observed in adults. However, a closer examination of age differences reveals that this selective neural sensitivity to numerical magnitude, which is close to absent in three-year-olds, increases steadily as a function of age, while there is virtually no neural sensitivity to other non-numerical magnitudes across these ages. These results demonstrate the emergence of a neural mechanism underlying direct perception of numerosity across early and middle childhood and provide a potential neural mechanistic explanation for the development of humans’ primitive, non-verbal ability to comprehend number. Keywords: Numerosity, Steady-state visual evoked potential, Child development, Visual cortex, Approximate number system

  15. Let us take action against radon

    International Nuclear Information System (INIS)

    Vignaud, Pierre; Mercat, Francois

    2015-01-01

    The Limousin region, because of its geological characteristics, is one of the most concerned by the presence of radon. A first article evokes actions undertaken in two local communities of this region to detect radon presence in dwellings with notably a free distribution of thousand measurement kits. A second article presents this radioactive gas, explains why it is such a matter of concern, and what risks for health are. The third article describes how the measurement kit is used to perform a complete diagnosis: it comprises three dose measurement devices, an information document, and a questionnaire. The presidents of the both involved local communities explain their commitment. A map indicates places where people can get the measurement kits. The next article presents what will be done after the measurement programme. An article briefly evokes the radon issue and actions undertaken in Canada. In an interview two experts indicate how they will support inhabitants in their remediation actions. An article briefly describes what to do in case of a strong presence of radon in a house

  16. Prolonged action potential duration in cardiac ablation of PDK1 mice.

    Science.gov (United States)

    Han, Zhonglin; Jiang, Yu; Yang, Zhongzhou; Cao, Kejiang; Wang, Dao W

    2015-01-01

    The involvement of the AGC protein kinase family in regulating arrhythmia has drawn considerable attention, but the underlying mechanisms are still not clear. The aim of this study is to explore the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1), one of upstream protein kinases of the AGC protein kinase family, in the pathogenesis of dysregulated electrophysiological basis. PDK1(F/F) αMHC-Cre mice and PDK1(F/F) mice were divided into experiment group and control group. Using patch clamping technology, we explored action potential duration in both groups, and investigated the functions of transient outward potassium channel and L-type Ca(2+) channel to explain the abnormal action potential duration. Significant prolongation action potential duration was found in mice with PDK1 deletion. Further, the peak current of transient outward potassium current and L-type Ca(2+) current were decreased by 84% and 49% respectively. In addition, dysregulation of channel kinetics lead to action potential duration prolongation further. In conclusion, we have demonstrated that PDK1 participates in action potential prolongation in cardiac ablation of PDK1 mice. This effect is likely to be mediated largely through downregulation of transient outward potassium current. These findings indicate the modulation of the PDK1 pathway could provide a new mechanism for abnormal electrophysiological basis.

  17. Ocular vestibular evoked myogenic potentials to vertex low frequency vibration as a diagnostic test for superior canal dehiscence.

    Science.gov (United States)

    Verrecchia, Luca; Westin, Magnus; Duan, Maoli; Brantberg, Krister

    2016-04-01

    To explore ocular vestibular evoked myogenic potentials (oVEMP) to low-frequency vertex vibration (125 Hz) as a diagnostic test for superior canal dehiscence (SCD) syndrome. The oVEMP using 125 Hz single cycle bone-conducted vertex vibration were tested in 15 patients with unilateral superior canal dehiscence (SCD) syndrome, 15 healthy controls and in 20 patients with unilateral vestibular loss due to vestibular neuritis. Amplitude, amplitude asymmetry ratio, latency and interaural latency difference were parameters of interest. The oVEMP amplitude was significantly larger in SCD patients when affected sides (53 μVolts) were compared to non-affected (17.2 μVolts) or compared to healthy controls (13.6 μVolts). Amplitude larger than 33.8 μVolts separates effectively the SCD ears from the healthy ones with sensitivity of 87% and specificity of 93%. The other three parameters showed an overlap between affected SCD ears and non-affected as well as between SCD ears and those in the two control groups. oVEMP amplitude distinguishes SCD ears from healthy ones using low-frequency vibration stimuli at vertex. Amplitude analysis of oVEMP evoked by low-frequency vertex bone vibration stimulation is an additional indicator of SCD syndrome and might serve for diagnosing SCD patients with coexistent conductive middle ear problems. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. A lower limb exoskeleton control system based on steady state visual evoked potentials

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2015-10-01

    Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

  19. Laser-evoked coloration in polymers

    International Nuclear Information System (INIS)

    Zheng, H.Y.; Rosseinsky, David; Lim, G.C.

    2005-01-01

    Laser-evoked coloration in polymers has long been a major aim of polymer technology for potential applications in product surface decoration, marking personalised images and logos. However, the coloration results reported so far were mostly attributed to laser-induced thermal-chemical reactions. The laser-irradiated areas are characterized with grooves due to material removal. Furthermore, only single color was laser-induced in any given polymer matrix. To induce multiple colors in a given polymer matrix with no apparent surface material removal is most desirable and challenging and may be achieved through laser-induced photo-chemical reactions. However, little public information is available at present. We report that two colors of red and green have been produced on an initially transparent CPV/PVA samples through UV laser-induced photo-chemical reactions. This is believed the first observation of laser-induced multiple-colors in the given polymer matrix. It is believed that the colorants underwent photo-effected electron transfer with suitable electron donors from the polymers to change from colorless bipyridilium Bipm 2+ to the colored Bipm + species. The discovery may lead to new approaches to the development of laser-evoked multiple coloration in polymers

  20. Occipital lobe lesions result in a displacement of magnetoencephalography visual evoked field dipoles.

    Science.gov (United States)

    Pang, Elizabeth W; Chu, Bill H W; Otsubo, Hiroshi

    2014-10-01

    The pattern-reversal visual evoked potential measured electrically from scalp electrodes is known to be decreased, or absent, in patients with occipital lobe lesions. We questioned whether the measurement and source analysis of the neuromagnetic visual evoked field (VEF) might offer additional information regarding visual cortex relative to the occipital lesion. We retrospectively examined 12 children (6-18 years) with occipital lesions on MRI, who underwent magnetoencephalography and ophthalmology as part of their presurgical assessment. Binocular half-field pattern-reversal VEFs were obtained in a 151-channel whole-head magnetoencephalography. Data were averaged and dipole source analyses were performed for each half-field stimulation. A significant lateral shift (P occipital lesions. Magnetoencephalography may be useful as a screening test of visual function in young patients. We discuss potential explanations for this lateral shift and emphasize the utility of adding the magnetoencephalography pattern-reversal visual evoked field protocol to the neurologic work-up.

  1. Fiber Optic Detection of Action Potentials in Axons

    National Research Council Canada - National Science Library

    Smela, Elisabeth

    2006-01-01

    In prior exploratory research, we had designed a fiber optic sensor utilizing a long period Bragg grating for the purpose of detecting action potentials in axons optically, through a change in index...

  2. TRH regulates action potential shape in cerebral cortex pyramidal neurons.

    Science.gov (United States)

    Rodríguez-Molina, Víctor; Patiño, Javier; Vargas, Yamili; Sánchez-Jaramillo, Edith; Joseph-Bravo, Patricia; Charli, Jean-Louis

    2014-07-07

    Thyrotropin releasing hormone (TRH) is a neuropeptide with a wide neural distribution and a variety of functions. It modulates neuronal electrophysiological properties, including resting membrane potential, as well as excitatory postsynaptic potential and spike frequencies. We explored, with whole-cell patch clamp, TRH effect on action potential shape in pyramidal neurons of the sensorimotor cortex. TRH reduced spike and after hyperpolarization amplitudes, and increased spike half-width. The effect varied with dose, time and cortical layer. In layer V, 0.5µM of TRH induced a small increase in spike half-width, while 1 and 5µM induced a strong but transient change in spike half-width, and amplitude; after hyperpolarization amplitude was modified at 5µM of TRH. Cortical layers III and VI neurons responded intensely to 0.5µM TRH; layer II neurons response was small. The effect of 1µM TRH on action potential shape in layer V neurons was blocked by G-protein inhibition. Inhibition of the activity of the TRH-degrading enzyme pyroglutamyl peptidase II (PPII) reproduced the effect of TRH, with enhanced spike half-width. Many cortical PPII mRNA+ cells were VGLUT1 mRNA+, and some GAD mRNA+. These data show that TRH regulates action potential shape in pyramidal cortical neurons, and are consistent with the hypothesis that PPII controls its action in this region. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Objective quantification of the tinnitus decompensation by synchronization measures of auditory evoked single sweeps.

    Science.gov (United States)

    Strauss, Daniel J; Delb, Wolfgang; D'Amelio, Roberto; Low, Yin Fen; Falkai, Peter

    2008-02-01

    Large-scale neural correlates of the tinnitus decompensation might be used for an objective evaluation of therapies and neurofeedback based therapeutic approaches. In this study, we try to identify large-scale neural correlates of the tinnitus decompensation using wavelet phase stability criteria of single sweep sequences of late auditory evoked potentials as synchronization stability measure. The extracted measure provided an objective quantification of the tinnitus decompensation and allowed for a reliable discrimination between a group of compensated and decompensated tinnitus patients. We provide an interpretation for our results by a neural model of top-down projections based on the Jastreboff tinnitus model combined with the adaptive resonance theory which has not been applied to model tinnitus so far. Using this model, our stability measure of evoked potentials can be linked to the focus of attention on the tinnitus signal. It is concluded that the wavelet phase stability of late auditory evoked potential single sweeps might be used as objective tinnitus decompensation measure and can be interpreted in the framework of the Jastreboff tinnitus model and adaptive resonance theory.

  4. The interaction between felt touch and tactile consequences of observed actions: an action-based somatosensory congruency paradigm.

    Science.gov (United States)

    Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel

    2016-07-01

    Action observation leads to a representation of both the motor aspect of an observed action (motor simulation) and its somatosensory consequences (action-based somatosensory simulation) in the observer's brain. In the current electroencephalography-study, we investigated the neuronal interplay of action-based somatosensory simulation and felt touch. We presented index or middle finger tapping movements of a human or a wooden hand, while simultaneously presenting 'tap-like' tactile sensations to either the corresponding or non-corresponding fingertip of the participant. We focused on an early stage of somatosensory processing [P50, N100 and N140 sensory evoked potentials (SEPs)] and on a later stage of higher-order processing (P3-complex). The results revealed an interaction effect of animacy and congruency in the early P50 SEP and an animacy effect in the N100/N140 SEPs. In the P3-complex, we found an interaction effect indicating that the influence of congruency was larger in the human than in the wooden hand. We argue that the P3-complex may reflect higher-order self-other distinction by signaling simulated action-based touch that does not match own tactile information. As such, the action-based somatosensory congruency paradigm might help understand higher-order social processes from a somatosensory point of view. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Membrane, action, and oscillatory potentials in simulated protocells

    Science.gov (United States)

    Syren, R. M.; Fox, S. W.; Przybylski, A. T.; Stratten, W. P.

    1982-01-01

    Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KCl) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells.

  6. The anti-influenza drug oseltamivir evokes hypothermia in mice through dopamine D2 receptor activation via central actions

    Directory of Open Access Journals (Sweden)

    Akihiro Fukushima

    2018-01-01

    Full Text Available Oseltamivir has a hypothermic effect in mice when injected intraperitoneally (i.p. and intracerebroventricularly (i.c.v.. Here we show that the hypothermia evoked by i.c.v.-oseltamivir is inhibited by non-selective dopamine receptor antagonists (sulpiride and haloperidol and the D2-selective antagonist L-741,626, but not by D1/D5-selective and D3-selective antagonists (SCH-23390 and SB-277011-A, respectively. The hypothermic effect of i.p.-administered oseltamivir was not inhibited by sulpiride, haloperidol, L-741,626 and SCH-23390. In addition, neither sulpiride, haloperidol nor SCH-23390 blocked hypothermia evoked by i.c.v.-administered oseltamivir carboxylate (a hydrolyzed metabolite of oseltamivir. These results suggest that oseltamivir in the brain induces hypothermia through activation of dopamine D2 receptors.

  7. Introducing the Action Potential to Psychology Students

    Science.gov (United States)

    Simon-Dack, Stephanie L.

    2014-01-01

    For this simple active learning technique for teaching, students are assigned "roles" and act out the process of the action potential (AP), including the firing threshold, ion-specific channels for ions to enter and leave the cell, diffusion, and the refractory period. Pre-post test results indicated that students demonstrated increased…

  8. Perturbation analysis of spontaneous action potential initiation by stochastic ion channels

    KAUST Repository

    Keener, James P.

    2011-07-01

    A stochastic interpretation of spontaneous action potential initiation is developed for the Morris-Lecar equations. Initiation of a spontaneous action potential can be interpreted as the escape from one of the wells of a double well potential, and we develop an asymptotic approximation of the mean exit time using a recently developed quasistationary perturbation method. Using the fact that the activating ionic channel\\'s random openings and closings are fast relative to other processes, we derive an accurate estimate for the mean time to fire an action potential (MFT), which is valid for a below-threshold applied current. Previous studies have found that for above-threshold applied current, where there is only a single stable fixed point, a diffusion approximation can be used. We also explore why different diffusion approximation techniques fail to estimate the MFT. © 2011 American Physical Society.

  9. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential.

    Science.gov (United States)

    Eickenscheidt, Max; Zeck, Günther

    2014-06-01

    The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.

  10. Efeitos do potencial de ação neural sobre a percepção de fala em usuários de implante coclear Influence of evoked compound action potential on speech perception in cochlear implant users

    Directory of Open Access Journals (Sweden)

    Mariana Cardoso Guedes

    2007-08-01

    Full Text Available O Potencial de Ação Composto Evocado Eletricamente reflete a atividade do nervo auditivo, podendo ser registrado através dos eletrodos do implante coclear. A determinação dos elementos neurais estimuláveis pode contribuir para explicar a variabilidade de desempenho entre indivíduos implantados. OBJETIVO: Comparar o desempenho nos testes de percepção da fala entre pacientes que apresentaram e que não apresentaram potencial de ação composto evocado eletricamente no momento intra-operatório. MATERIAL E MÉTODO: Estudo prospectivo no qual 100 indivíduos usuários do implante coclear Nucleus 24 foram divididos em dois grupos de acordo com a presença ou ausência do potencial de ação intra-operatório. Após 6 meses de uso do dispositivo, os resultados dos testes de percepção de fala foram comparados entre os grupos. RESULTADOS: O potencial foi observado em 72% dos pacientes. A percepção no teste de frases em formato aberto foi melhor nos indivíduos com presença de potencial (média 82,8% contra 41,0%, p = 0,005. Houve associação entre ausência do potencial e etiologia da surdez por meningite. CONCLUSÃO: Ausência de potencial neural intraoperatório esteve associada ao pior desempenho na percepção da fala e à etiologia da surdez por meningite. Por outro lado, a presença do potencial de ação intraoperatório sugere ótimo prognóstico.Electrically Evoked Compound Action Potential is a measure of synchronous cochlear nerve fibers activity elicited by electrical stimulation of the cochlear implant. The electrophysiological nerve responses may contribute to explain the variability in individual performance of cochlear implant recipients. AIM: To compare speech perception tests’ performances of cochlear implant users according to the presence or absence of intraoperative neural telemetry responses. MATERIAL AND METHOD: Prospective study design with 100 "Nucleus 24" cochlear implant users divided in two groups according

  11. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin

    Science.gov (United States)

    Grabauskas, Gintautas; Wu, Xiaoyin; Lu, Yuanxu; Heldsinger, Andrea; Song, Il; Zhou, Shi-Yi; Owyang, Chung

    2015-01-01

    Abstract Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K+ conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a–Gαi–PI3K–Erk1/2–KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Key points Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological

  12. Relationship between vitamin D deficiency and visually evoked potentials in multiple sclerosis.

    Science.gov (United States)

    López-Méndez, P; Sosa-Henríquez, M; Ruiz-Pérez, Á

    2016-05-01

    To evaluate the possible relationship between serum 25-OH vitamin D levels and visually evoked potentials (VEP) in patients with multiple sclerosis (MS), residents in the south zone of Gran Canaria. The study included 49 patients with MS, on whom 25-OH-vitamin D was determined, along with VEP, and a neurological examination to determine incapacity. Clinical variables, such as a history of optic neuritis were recorded. The mean value of 25-OH-vitamin D of the patients was 28.1±9.5ng/ml. The VEP latency was 119.1±23.2ms and the amplitude, 8.5±4.4 μV. Patients with a higher 25-OH-vitamin D had a greater number of outbreaks in the year prior to the study (P=.049), and those with vitamin D deficiency and previous optic neuritis showed no reduction in the amplitude of the VEP (P=.006). Patients with vitamin D deficiency have lower clinical activity of the MS and show no axonal involvement in VEP after having suffered optic neuritis. These relationships, although statistically significant, do not seem clinically plausible, thus new studies are needed to try and confirm this possible relationship. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Auditory evoked potentials: predicting speech therapy outcomes in children with phonological disorders

    Directory of Open Access Journals (Sweden)

    Renata Aparecida Leite

    2014-03-01

    Full Text Available OBJECTIVES: This study investigated whether neurophysiologic responses (auditory evoked potentials differ between typically developed children and children with phonological disorders and whether these responses are modified in children with phonological disorders after speech therapy. METHODS: The participants included 24 typically developing children (Control Group, mean age: eight years and ten months and 23 children clinically diagnosed with phonological disorders (Study Group, mean age: eight years and eleven months. Additionally, 12 study group children were enrolled in speech therapy (Study Group 1, and 11 were not enrolled in speech therapy (Study Group 2. The subjects were submitted to the following procedures: conventional audiological, auditory brainstem response, auditory middle-latency response, and P300 assessments. All participants presented with normal hearing thresholds. The study group 1 subjects were reassessed after 12 speech therapy sessions, and the study group 2 subjects were reassessed 3 months after the initial assessment. Electrophysiological results were compared between the groups. RESULTS: Latency differences were observed between the groups (the control and study groups regarding the auditory brainstem response and the P300 tests. Additionally, the P300 responses improved in the study group 1 children after speech therapy. CONCLUSION: The findings suggest that children with phonological disorders have impaired auditory brainstem and cortical region pathways that may benefit from speech therapy.

  14. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location.

    Science.gov (United States)

    Crago, Patrick E; Makowski, Nathaniel S

    2014-10-01

    Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.

  15. Determination of cable parameters in skeletal muscle fibres during repetitive firing of action potentials

    Science.gov (United States)

    Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm

    2014-01-01

    Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl− and KATP K+ ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450–1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above −20 mV. PMID:25128573

  16. A comparison of myogenic motor evoked responses to electrical and magnetic transcranial stimulation during nitrous oxide/opioid anesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Koelman, J. H.; Ongerboer de Visser, B. W.

    1999-01-01

    Transcranial motor evoked potentials (tc-MEPs) are used to monitor spinal cord integrity intraoperatively. We compared myogenic motor evoked responses with electrical and magnetic transcranial stimuli during nitrous oxide/opioid anesthesia. In 11 patients undergoing spinal surgery, anesthesia was

  17. The role of Magnetic Resonance Imaging and Visual Evoked ...

    African Journals Online (AJOL)

    Introduction: To report our experience in management of patients with optic neuritis. The effects of brain magnetic resonance imaging and visual evoked potential on management were investigated. Methods: This is a four years clinical trial that included patients presenting with first attack of optic neuritis older than 16 years ...

  18. Sensory disturbance, CT, and somatosensory evoked potentials in thalamic hemorrhages

    International Nuclear Information System (INIS)

    Koga, Hisanobu; Miyazaki, Takayoshi; Miyazaki, Hisaya

    1985-01-01

    Thalamic hemorrhages often lead to sensory disturbances. However, no effective method for the evaluation of their prognoses has yet been clinically utilized. The somatosensory evoked potential (SEP) has been reported as an effective method, but it remains controversial. A CT scan is eminently suitable for determining the size and position of the hemorrhage. However, the correlation between the localization of the hematoma on the CT scan and the sensory distrubance has not been investigated fully. The authors selected 20 cases with the chronic stage of a thalamic hemorrhage. Each one was clinically evaluated as to sensory disturbance; they were then classified into the following five groups: Group 1: no sensory deficit (3 cases); Group 2: complete recovery from initial deficit (2 cases); Group 3: mild hypesthesia (5 cases); Group 4: severe hypesthesia (5 cases), and Group 5: paresthesia or dysesthesia (5 cases). Also, the CT scan was investigated with regard to the localization of the hematoma and the SEP. We could thus find a characteristic pattern in each group. The results may be summarized as follows. 1. The correlation between the degree of the sensory disturbance and the size and expansion of the hematoma was clearly detected. Especially, the most severe sensory disturbance was found in the hematoma extending to the lateral nuclear and ventral nuclear regions. 2. In Group 1 and 2, each SEP component (N 1 N 2 N 3 ) was shown to be normal. In Group 3, SEP components could be detected, but not completely. In Group 4, no components at all could be found. 3. In Group 5, all cases were small hematoma localized in the lateral nuclear region of the thalamus, while the N 3 components were prolonged on the SEP findings. The authors demonstrate the results and discuss the correlation between the sensory disturbance and the CT or SEP findings. (author)

  19. The Performance and Observation of Action Shape Future Behaviour

    Science.gov (United States)

    Welsh, Timothy N.; McDougall, Laura M.; Weeks, Daniel J.

    2009-01-01

    The observation of other people's actions plays an important role in shaping the perceptual, cognitive, and motor processes of the observer. It has been suggested that these social influences occur because the observation of action evokes a representation of that response in the observer and that these codes are subsequently accessed by other…

  20. Consensus on the use of neurophysiological tests in the intensive care unit (ICU): electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG)

    DEFF Research Database (Denmark)

    Guørit, J.M.; Amantini, A.; Amodio, P.

    2009-01-01

    STUDY AIM: To provide a consensus of European leading authorities about the optimal use of clinical neurophysiological (CN) tests (electroencephalogram [EEG]; evoked potentials [EP]; electroneuromyography [ENMG]) in the intensive care unit (ICU) and, particularly, about the way to make these tests...... contribution to all other experts. A complete consensus has been reached when submitting the manuscript. RESULTS: What the group considered as the best classification systems for EEG and EP abnormalities in the ICU is first presented. CN tests are useful for diagnosis (epilepsy, brain death, and neuromuscular...

  1. Maturation of the auditory system in clinically normal puppies as reflected by the brain stem auditory-evoked potential wave V latency-intensity curve and rarefaction-condensation differential potentials.

    Science.gov (United States)

    Poncelet, L C; Coppens, A G; Meuris, S I; Deltenre, P F

    2000-11-01

    To evaluate auditory maturation in puppies. Ten clinically normal Beagle puppies. Puppies were examined repeatedly from days 11 to 36 after birth (8 measurements). Click-evoked brain stem auditory-evoked potentials (BAEP) were obtained in response to rarefaction and condensation click stimuli from 90 dB normal hearing level to wave V threshold, using steps of 10 dB. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation differential potential (RCDP). Steps of 5 dB were used to determine thresholds of RCDP and wave V. Slope of the low-intensity segment of the wave V latency-intensity curve was calculated. The intensity range at which RCDP could not be recorded (ie, pre-RCDP range) was calculated by subtracting the threshold of wave V from threshold of RCDP RESULTS: Slope of the wave V latency-intensity curve low-intensity segment evolved with age, changing from (mean +/- SD) -90.8 +/- 41.6 to -27.8 +/- 4.1 micros/dB. Similar results were obtained from days 23 through 36. The pre-RCDP range diminished as puppies became older, decreasing from 40.0 +/- 7.5 to 20.5 +/- 6.4 dB. Changes in slope of the latency-intensity curve with age suggest enlargement of the audible range of frequencies toward high frequencies up to the third week after birth. Decrease in the pre-RCDP range may indicate an increase of the audible range of frequencies toward low frequencies. Age-related reference values will assist clinicians in detecting hearing loss in puppies.

  2. Effects of mastication on human somatosensory processing: A study using somatosensory-evoked potentials.

    Science.gov (United States)

    Nakata, Hiroki; Aoki, Mai; Sakamoto, Kiwako

    2017-04-01

    The aim of the present study was to investigate the effects of mastication on somatosensory processing using somatosensory-evoked potentials (SEPs). Fourteen healthy subjects received a median nerve stimulation at the right wrist under two conditions: Mastication and Control. SEPs were recorded in five sessions for approximately seven minutes: Pre, Post 1, 2, 3, and 4. Subjects were asked to chew gum for five minutes after one session in Mastication. Control included the same five sessions. The amplitudes and latencies of P14, N20, P25, N35, P45, and N60 components at C3', frontal N30 component at Fz, and P100 and N140 components at Pz were analyzed. The amplitude of P45-N60 was significantly smaller at Post 1, 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P25 was significantly longer at Post 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P100 was significantly longer at Post 2 than at Pre in Control, but not in Mastication. These results suggest the significant effects of mastication on the neural activity of human somatosensory processing. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  3. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding.

    Science.gov (United States)

    Wittevrongel, Benjamin; Van Wolputte, Elia; Van Hulle, Marc M

    2017-11-08

    When encoding visual targets using various lagged versions of a pseudorandom binary sequence of luminance changes, the EEG signal recorded over the viewer's occipital pole exhibits so-called code-modulated visual evoked potentials (cVEPs), the phase lags of which can be tied to these targets. The cVEP paradigm has enjoyed interest in the brain-computer interfacing (BCI) community for the reported high information transfer rates (ITR, in bits/min). In this study, we introduce a novel decoding algorithm based on spatiotemporal beamforming, and show that this algorithm is able to accurately identify the gazed target. Especially for a small number of repetitions of the coding sequence, our beamforming approach significantly outperforms an optimised support vector machine (SVM)-based classifier, which is considered state-of-the-art in cVEP-based BCI. In addition to the traditional 60 Hz stimulus presentation rate for the coding sequence, we also explore the 120 Hz rate, and show that the latter enables faster communication, with a maximal median ITR of 172.87 bits/min. Finally, we also report on a transition effect in the EEG signal following the onset of the stimulus sequence, and recommend to exclude the first 150 ms of the trials from decoding when relying on a single presentation of the stimulus sequence.

  4. Rosewood oil induces sedation and inhibits compound action potential in rodents.

    Science.gov (United States)

    de Almeida, Reinaldo Nóbrega; Araújo, Demétrius Antonio Machado; Gonçalves, Juan Carlos Ramos; Montenegro, Fabrícia Costa; de Sousa, Damião Pergentino; Leite, José Roberto; Mattei, Rita; Benedito, Marco Antonio Campana; de Carvalho, José Gilberto Barbosa; Cruz, Jader Santos; Maia, José Guilherme Soares

    2009-07-30

    Aniba rosaeodora is an aromatic plant which has been used in Brazil folk medicine due to its sedative effect. Therefore, the purpose of the present study was to evaluate the sedative effect of linalool-rich rosewood oil in mice. In addition we sought to investigate the linalool-rich oil effects on the isolated nerve using the single sucrose-gap technique. Sedative effect was determined by measuring the potentiation of the pentobarbital-induced sleeping time. The compound action potential amplitude was evaluated as a way to detect changes in excitability of the isolated nerve. The results showed that administration of rosewood oil at the doses of 200 and 300 mg/kg significantly decreased latency and increased the duration of sleeping time. On the other hand, the dose of 100 mg/kg potentiated significantly the pentobarbital action decreasing pentobarbital latency time and increasing pentobarbital sleeping time. In addition, the effect of linalool-rich rosewood oil on the isolated nerve of the rat was also investigated through the single sucrose-gap technique. The amplitude of the action potential decreased almost 100% when it was incubated for 30 min at 100 microg/ml. From this study, it is suggested a sedative effect of linalool-rich rosewood oil that could, at least in part, be explained by the reduction in action potential amplitude that provokes a decrease in neuronal excitability.

  5. Changes in contractile properties and action potentials of motor units in the rat medial gastrocnemius muscle during maturation.

    Science.gov (United States)

    Dobrzynska, Z; Celichowski, J

    2016-02-01

    The early phase of development of muscles stops following the disappearance of embryonic and neonatal myosin and the elimination of polyneuronal innervation of muscle fibres with the formation of motor units (MUs), but later the muscle mass still considerably increases. It is unknown whether the three types are visible among newly formed MUs soon after the early postnatal period and whether their proportion is similar to that in adult muscle. Moreover, the processes responsible for MU-force regulation by changes in motoneuronal firing rate as well as properties of motor unit action potentials (MUAPs) during maturation are unknown. Three groups of Wistar rats were investigated - 1 month old, 2 months old and the adult, 9 months old. The basic contractile properties and action potentials of MUs in the medial gastrocnemius (MG) muscle were analysed. The three types of MUs were distinguishable in all age groups, but higher proportion of slow MUs was noticed in young rats (29%, 18% and 11% in 1, 2 and 9 months rats, respectively). The fatigue index for fast fatigable MUs in 1 month old rats was about 2 times higher than in 9 months old rats. The twitch time parameters of fast MUs were shortened during the maturation; for these units, the force-frequency curves in young rats were shifted towards lower frequencies, which suggested that fast motoneurons of young animals generate lower firing rates. Higher twitch-to-tetanus ratios noted for the three MU types in young rats suggested the smaller role of rate coding in force regulation processes, and the higher role of MU recruitment in young rats. No significant differences in MUAP parameters between two groups of young and adult animals were observed. Concluding, the maturation process evokes deeper changes in fast MUs than in slow ones.

  6. Improving Cardiac Action Potential Measurements: 2D and 3D Cell Culture.

    Science.gov (United States)

    Daily, Neil J; Yin, Yue; Kemanli, Pinar; Ip, Brian; Wakatsuki, Tetsuro

    2015-11-01

    Progress in the development of assays for measuring cardiac action potential is crucial for the discovery of drugs for treating cardiac disease and assessing cardiotoxicity. Recently, high-throughput methods for assessing action potential using induced pluripotent stem cell (iPSC) derived cardiomyocytes in both two-dimensional monolayer cultures and three-dimensional tissues have been developed. We describe an improved method for assessing cardiac action potential using an ultra-fast cost-effective plate reader with commercially available dyes. Our methods improve dramatically the detection of the fluorescence signal from these dyes and make way for the development of more high-throughput methods for cardiac drug discovery and cardiotoxicity.

  7. Controlling a stream of paranoia evoking events in a virtual reality environment.

    Science.gov (United States)

    Isnanda, Reza Giga; Brinkman, Willem-Paul; Veling, Wim; van der Gaag, Mark; Neerincx, Mark

    2014-01-01

    Although virtual reality exposure has been reported as a method to induce paranoid thought, little is known about mechanisms to control specific virtual stressors. This paper reports on a study that examines the effect of controlling the stream of potential paranoia evoking events in a virtual restaurant world. A 2-by-2 experiment with a non-clinical group (n = 24) was conducted with as two within-subject factors: (1) the cycle time (short/long) for when the computer considers activation of a paranoia evoking event and (2) the probability that a paranoia-evoking event (low/high) would be triggered at the completion of a cycle. The results showed a significant main effect for the probability factor and two-way interaction effect with the cycle time factor on the number of paranoid comments participants made and their self-reported anxiety.

  8. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite

    DEFF Research Database (Denmark)

    Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M

    2002-01-01

    recordings with computational modeling to analyze action-potential initiation and propagation in the primary dendrite. In response to depolarizing current injection or distal olfactory nerve input, fast Na(+) action potentials were recorded along the entire length of the primary dendritic trunk. With weak......-to-moderate olfactory nerve input, an action potential was initiated near the soma and then back-propagated into the primary dendrite. As olfactory nerve input increased, the initiation site suddenly shifted to the distal primary dendrite. Multi-compartmental modeling indicated that this abrupt shift of the spike......-initiation site reflected an independent thresholding mechanism in the distal dendrite. When strong olfactory nerve excitation was paired with strong inhibition to the mitral cell basal secondary dendrites, a small fast prepotential was recorded at the soma, which indicated that an action potential was initiated...

  9. Ionic channels underlying the ventricular action potential in zebrafish embryo.

    Science.gov (United States)

    Alday, Aintzane; Alonso, Hiart; Gallego, Monica; Urrutia, Janire; Letamendia, Ainhoa; Callol, Carles; Casis, Oscar

    2014-06-01

    Over the last years zebrafish has become a popular model in the study of cardiac physiology, pathology and pharmacology. Recently, the application of the 3Rs regulation and the characteristics of the embryo have reduced the use of adult zebrafish use in many studies. However, the zebrafish embryo cardiac physiology is poorly characterized since most works have used indirect techniques and direct recordings of cardiac action potential and ionic currents are scarce. In order to optimize the zebrafish embryo model, we used electrophysiological, pharmacological and immunofluorescence tools to identify the characteristics and the ionic channels involved in the ventricular action potentials of zebrafish embryos. The application of Na(+) or T-type Ca(+2) channel blockers eliminated the cardiac electrical activity, indicating that the action potential upstroke depends on Na(+) and T-type Ca(+2) currents. The plateau phase depends on L-type Ca(+2) channels since it is abolished by specific blockade. The direct channel blockade indicates that the action potential repolarization and diastolic potential depends on ERG K(+) channels. The presence in the embryonic heart of the Nav1.5, Cav1.2, Cav3.2 and ERG channels was also confirmed by immunofluorescence, while the absence of effect of specific blockers and immunostaining indicate that two K(+) repolarizing currents present in human heart, Ito and IKs, are absent in the embryonic zebrafish heart. Our results describe the ionic channels present and its role in the zebrafish embryo heart and support the use of zebrafish embryos to study human diseases and their use for drug testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Decoupling Action Potential Bias from Cortical Local Field Potentials

    Directory of Open Access Journals (Sweden)

    Stephen V. David

    2010-01-01

    Full Text Available Neurophysiologists have recently become interested in studying neuronal population activity through local field potential (LFP recordings during experiments that also record the activity of single neurons. This experimental approach differs from early LFP studies because it uses high impendence electrodes that can also isolate single neuron activity. A possible complication for such studies is that the synaptic potentials and action potentials of the small subset of isolated neurons may contribute disproportionately to the LFP signal, biasing activity in the larger nearby neuronal population to appear synchronous and cotuned with these neurons. To address this problem, we used linear filtering techniques to remove features correlated with spike events from LFP recordings. This filtering procedure can be applied for well-isolated single units or multiunit activity. We illustrate the effects of this correction in simulation and on spike data recorded from primary auditory cortex. We find that local spiking activity can explain a significant portion of LFP power at most recording sites and demonstrate that removing the spike-correlated component can affect measurements of auditory tuning of the LFP.

  11. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    Science.gov (United States)

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  12. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  13. Identification enhancement of auditory evoked potentials in EEG by epoch concatenation and temporal decorrelation.

    Science.gov (United States)

    Zavala-Fernandez, H; Orglmeister, R; Trahms, L; Sander, T H

    2012-12-01

    Event-related potentials (ERP) recorded by electroencephalography (EEG) are brain responses following an external stimulus, e.g., a sound or an image. They are used in fundamental cognitive research and neurological and psychiatric clinical research. ERPs are weaker than spontaneous brain activity and therefore it is difficult or even impossible to identify an ERP in the brain activity following an individual stimulus. For this reason, a blind source separation method relying on statistical information is proposed for the isolation of ERP after auditory stimulation. In this paper it is suggested to integrate epoch concatenation into the popular temporal decorrelation algorithm SOBI/TDSEP relying on time shifted correlations. With the proposed epoch concatenation temporal decorrelation (ecTD) algorithm a component representing the auditory evoked potential (AEP) is found in electroencephalographic data from an auditory stimulation experiment lasting 3min. The ecTD result is compared with the averaged AEP and it is superior to the result from the SOBI/TDSEP algorithm. Furthermore the ecTD processing leads to significant increases in the signal-to-noise ratio (shape SNR) of the AEP and reduces the computation time by 50% if compared to the SOBI/TDSEP calculation. It can be concluded that data concatenation in combination with temporal decorrelation is useful for isolating and improving the properties of an AEP especially in a short duration stimulation experiment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses

    NARCIS (Netherlands)

    Journee, H. -L.; Polak, H. E.; De Kleuver, M.

    2007-01-01

    Introduction. - In spite of the use of multipulse, transcranial electrical stimulation (TES) is still insufficient in a subgroup of patients to elicit motor-evoked potentials during intraoperative neurophysiological monitoring (IONM). Classic facilitation methods used in awake patients are precluded

  15. Premature infants display increased noxious-evoked neuronal activity in the brain compared to healthy age-matched term-born infants.

    Science.gov (United States)

    Slater, Rebeccah; Fabrizi, Lorenzo; Worley, Alan; Meek, Judith; Boyd, Stewart; Fitzgerald, Maria

    2010-08-15

    This study demonstrates that infants who are born prematurely and who have experienced at least 40days of intensive or special care have increased brain neuronal responses to noxious stimuli compared to healthy newborns at the same postmenstrual age. We have measured evoked potentials generated by noxious clinically-essential heel lances in infants born at term (8 infants; born 37-40weeks) and in infants born prematurely (7 infants; born 24-32weeks) who had reached the same postmenstrual age (mean age at time of heel lance 39.2+/-1.2weeks). These noxious-evoked potentials are clearly distinguishable from shorter latency potentials evoked by non-noxious tactile sensory stimulation. While the shorter latency touch potentials are not dependent on the age of the infant at birth, the noxious-evoked potentials are significantly larger in prematurely-born infants. This enhancement is not associated with specific brain lesions but reflects a functional change in pain processing in the brain that is likely to underlie previously reported changes in pain sensitivity in older ex-preterm children. Our ability to quantify and measure experience-dependent changes in infant cortical pain processing will allow us to develop a more rational approach to pain management in neonatal intensive care. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Beyond the evoked/intrinsic neural process dichotomy

    Directory of Open Access Journals (Sweden)

    Taylor Bolt

    2018-03-01

    Full Text Available Contemporary functional neuroimaging research has increasingly focused on characterization of intrinsic or “spontaneous” brain activity. Analysis of intrinsic activity is often contrasted with analysis of task-evoked activity that has traditionally been the focus of cognitive neuroscience. But does this evoked/intrinsic dichotomy adequately characterize human brain function? Based on empirical data demonstrating a close functional interdependence between intrinsic and task-evoked activity, we argue that the dichotomy between intrinsic and task-evoked activity as unobserved contributions to brain activity is artificial. We present an alternative picture of brain function in which the brain’s spatiotemporal dynamics do not consist of separable intrinsic and task-evoked components, but reflect the enaction of a system of mutual constraints to move the brain into and out of task-appropriate functional configurations. According to this alternative picture, cognitive neuroscientists are tasked with describing both the temporal trajectory of brain activity patterns across time, and the modulation of this trajectory by task states, without separating this process into intrinsic and task-evoked components. We argue that this alternative picture of brain function is best captured in a novel explanatory framework called enabling constraint. Overall, these insights call for a reconceptualization of functional brain activity, and should drive future methodological and empirical efforts.

  17. A fast Na+/Ca2+-based action potential in a marine diatom.

    Directory of Open Access Journals (Sweden)

    Alison R Taylor

    Full Text Available BACKGROUND: Electrical impulses in animals play essential roles in co-ordinating an array of physiological functions including movement, secretion, environmental sensing and development. Underpinning many of these electrical signals is a fast Na+-based action potential that has been fully characterised only in cells associated with the neuromuscular systems of multicellular animals. Such rapid action potentials are thought to have evolved with the first metazoans, with cnidarians being the earliest representatives. The present study demonstrates that a unicellular protist, the marine diatom Odontella sinensis, can also generate a fast Na+/Ca2+ based action potential that has remarkably similar biophysical and pharmacological properties to invertebrates and vertebrate cardiac and skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: The kinetic, ionic and pharmacological properties of the rapid diatom action potential were examined using single electrode current and voltage clamp techniques. Overall, the characteristics of the fast diatom currents most closely resemble those of vertebrate and invertebrate muscle Na+/Ca2+ currents. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration of voltage-activated Na+ channels and the capacity to generate fast Na+-based action potentials in a unicellular photosynthetic organism. The biophysical and pharmacological characteristics together with the presence of a voltage activated Na+/Ca2+ channel homologue in the recently sequenced genome of the diatom Thalassiosira pseudonana, provides direct evidence supporting the hypothesis that this rapid signalling mechanism arose in ancestral unicellular eukaryotes and has been retained in at least two phylogenetically distant lineages of eukaryotes; opisthokonts and the stramenopiles. The functional role of the fast animal-like action potential in diatoms remains to be elucidated but is likely involved in rapid environmental sensing of these widespread and

  18. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    Science.gov (United States)

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  19. Roux-en-Y gastric bypass augments the feeding responses evoked by gastrin releasing peptides

    Science.gov (United States)

    Washington, Martha C.; Mhalhal, Thaer R.; Berger, Tanisha Johnson-Rouse Jose; Heath, John; Seeley, Randy; Sayegh, Ayman I.

    2016-01-01

    Background Roux-en-Y gastric bypass (RYGB) is the most effective method for the treatment of obesity and metabolic disease Roux-en-Y gastric bypass (RYGB) may reduce body weight by altering the feeding responses evoked by the short term satiety peptides. Materials and Methods Here, we measured meal size (MS, chow), intermeal interval (IMI) length and satiety ratio (SR, IMI/MS; food consumed per a unit of time) by the small and the large forms of gastrin releasing peptide (GRP) in rats, GRP-10 and GRP-29 (0, 0.1, 0.5 nmol/kg) infused in the celiac artery (CA, supplies stomach and upper duodenum) and the cranial mesenteric artery (CMA, supplies small and large intestine) in a RYGB rat model. Results GRP-10 reduced MS, prolonged the IMI and increased the SR only in the RYGB group, whereas GRP-29 evoked these responses by both routes and in both groups. Conclusion The RYGB procedure augments the feeding responses evoked by exogenous GRP, possibly by decreasing total food intake, increasing latency to the first meal, decreasing number of meals or altering the sites of action regulating MS and IMI length by the two peptides. PMID:27884350

  20. [Visual evoked potentials in management of amblyopia in children].

    Science.gov (United States)

    Gromová, M; Gerinec, A

    2010-11-01

    The authors want to point out the possibility of using the visual evoked potentials (VEP) in the diagnostic process of amblyopia, especially in preverbal children. We also researched the possibility of screening for amblyopia with VEP in young patients with anisometropia without strabismus being present, especially those who come from affected families. The authors followed changes in the course of an occlusion therapy and suggest that VEP could be used to predict a success of the amblyopia therapy. We analyzed group of 45 pediatric patients ages 2-10 years who were investigated in years 2006-2009 at Pediatric Ophthalmology Department of Children University Hospital in Bratislava with amblyopia. This group was compared with a control group of 25 healthy children. The cause of amblyopia in a majority of children (29 patients) was hyperopic anisometropia, 13 children had hyperopic isometropia, 3 patients had myopia over -3D. These causes in 22 children were combined with strabismus. The monocular pattern of VEP was evaluated in all patients. In cooperative children (25) we also evaluated binocular pattern of VEP. 18 patients with amblyopia had a second VEP evaluation done during the occlusion therapy, among those were 23 amblyopic eyes. The time frame from the first VEP evaluation to the second VEP evaluation was 1-11 months, average 5,1 months. The material was statistically evaluated. Our study showed statistically significant prolongation of the latency of both P and N2 waves (p = 0.01) in children with amblyopia.This can be used in diagnostic process of amblyopia in preverbal children as well as in the screening for amblyopia. We also followed changes during the occlusion therapy and we discovered persistent prolongation of the latency of the P wave and also changes in the amplitudes (p = 0.05) During repeated measurements and with applied therapy one can follow the dynamics of amblyopia, course of therapy by VEP changes. Results of our research suggest a great

  1. Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices

    International Nuclear Information System (INIS)

    Eells, J.T.; Dubocovich, M.L.

    1988-01-01

    The effects of the synthetic pyrethroid insecticide fenvalerate ([R,S]-alpha-cyano-3-phenoxybenzyl[R,S]-2-(4-chlorophenyl)-3- methylbutyrate) on neurotransmitter release in rabbit brain slices were investigated. Fenvalerate evoked a calcium-dependent release of [ 3 H]dopamine and [ 3 H]acetylcholine from rabbit striatal slices that was concentration-dependent and specific for the toxic stereoisomer of the insecticide. The release of [ 3 H]dopamine and [ 3 H]acetylcholine by fenvalerate was modulated by D2 dopamine receptor activation and antagonized completely by the sodium channel blocker, tetrodotoxin. These findings are consistent with an action of fenvalerate on the voltage-dependent sodium channels of the presynaptic membrane resulting in membrane depolarization, and the release of dopamine and acetylcholine by a calcium-dependent exocytotic process. In contrast to results obtained in striatal slices, fenvalerate did not elicit the release of [ 3 H]norepinephrine or [ 3 H]acetylcholine from rabbit hippocampal slices indicative of regional differences in sensitivity to type II pyrethroid actions

  2. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena [Turku University Central Hospital, Department of Paediatrics, Turku (Finland); Parkkola, Riitta [Turku University Central Hospital, Department of Radiology and Turku PET Centre, Turku (Finland); Johansson, Reijo [Turku University Central Hospital, Department of Otorhinolaryngology, Turku (Finland); Jaeaeskelaeinen, Satu K. [Turku University Central Hospital, Department of Clinical Neurophysiology, Turku (Finland); Kujari, Harry [Turku University Central Hospital, Department of Pathology, Turku (Finland); Haataja, Leena [Turku University Central Hospital, Department of Paediatric Neurology, Turku (Finland)

    2009-08-15

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  3. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    International Nuclear Information System (INIS)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena; Parkkola, Riitta; Johansson, Reijo; Jaeaeskelaeinen, Satu K.; Kujari, Harry; Haataja, Leena

    2009-01-01

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  4. [A wireless smart home system based on brain-computer interface of steady state visual evoked potential].

    Science.gov (United States)

    Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang

    2014-10-01

    Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.

  5. Effect of thoracic epidural etidocaine 1.5% on somatosensory evoked potentials, cortisol and glucose during cholecystectomy

    DEFF Research Database (Denmark)

    Dahl, J B; Rosenberg, J; Kehlet, H

    1992-01-01

    The effect of thoracic (T7-8) epidural etidocaine 1.5%, 9 ml, and continuous per- and postoperative epidural infusion of etidocaine 1.5%, 4 ml/h, on early (less than 500 ms) somatosensory evoked potentials (SEPs), and cortisol and glucose in plasma during cholecystectomy, was examined in ten...... stimulation at the L1, T10 or T6 dermatomal level (P greater than 0.09). SEPs were abolished in only two patients at T6, and no patient had SEPs abolished at T10 or L1. The plasma concentrations of cortisol and glucose were significantly increased 20 min after surgical incision and remained increased...... throughout the study. No correlation was found between the block-induced decrease in the peak-to-peak amplitude at T6 or T10 and increase in plasma cortisol, except for a negative correlation at T10 and the initial increase in cortisol (Rs = 0.72, P = 0.03). In conclusion, thoracic epidural administration...

  6. A Parametric Computational Model of the Action Potential of Pacemaker Cells.

    Science.gov (United States)

    Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L

    2018-01-01

    A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.

  7. Mechanisms of hydrogen sulfide (H2S) action on synaptic transmission at the mouse neuromuscular junction.

    Science.gov (United States)

    Gerasimova, E; Lebedeva, J; Yakovlev, A; Zefirov, A; Giniatullin, R; Sitdikova, G

    2015-09-10

    Hydrogen sulfide (H2S) is a widespread gasotransmitter also known as a powerful neuroprotective agent in the central nervous system. However, the action of H2S in peripheral synapses is much less studied. In the current project we studied the modulatory effects of the H2S donor sodium hydrosulfide (NaHS) on synaptic transmission in the mouse neuromuscular junction using microelectrode technique. Using focal recordings of presynaptic response and evoked transmitter release we have shown that NaHS (300 μM) increased evoked end-plate currents (EPCs) without changes of presynaptic waveforms which indicated the absence of NaHS effects on sodium and potassium currents of motor nerve endings. Using intracellular recordings it was shown that NaHS increased the frequency of miniature end-plate potentials (MEPPs) without changing their amplitudes indicating a pure presynaptic effect. Furthermore, NaHS increased the amplitude of end-plate potentials (EPPs) without influencing the resting membrane potential of muscle fibers. L-cysteine, a substrate of H2S synthesis induced, similar to NaHS, an increase of EPC amplitudes whereas inhibitors of H2S synthesis (β-cyano-L-alanine and aminooxyacetic acid) had the opposite effect. Inhibition of adenylate cyclase using MDL 12,330A hydrochloride (MDL 12,330A) or elevation of cAMP level with 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (pCPT-cAMP) completely prevented the facilitatory action of NaHS indicating involvement of the cAMP signaling cascade. The facilitatory effect of NaHS was significantly diminished when intracellular calcium (Ca(2+)) was buffered by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid acetoxymethyl ester (EGTA-AM). Activation of ryanodine receptors by caffeine or ryanodine increased acetylcholine release and prevented further action of NaHS on transmitter release, likely due to

  8. Waking action of ursodeoxycholic acid (UDCA involves histamine and GABAA receptor block.

    Directory of Open Access Journals (Sweden)

    Yevgenij Yanovsky

    Full Text Available Since ancient times ursodeoxycholic acid (UDCA, a constituent of bile, is used against gallstone formation and cholestasis. A neuroprotective action of UDCA was demonstrated recently in models of Alzheimer's disease and retinal degeneration. The mechanisms of UDCA action in the nervous system are poorly understood. We show now that UDCA promotes wakefulness during the active period of the day, lacking this activity in histamine-deficient mice. In cultured hypothalamic neurons UDCA did not affect firing rate but synchronized the firing, an effect abolished by the GABA(AR antagonist gabazine. In histaminergic neurons recorded in slices UDCA reduced amplitude and duration of spontaneous and evoked IPSCs. In acutely isolated histaminergic neurons UDCA inhibited GABA-evoked currents and sIPSCs starting at 10 µM (IC(50 = 70 µM and did not affect NMDA- and AMPA-receptor mediated currents at 100 µM. Recombinant GABA(A receptors composed of α1, β1-3 and γ2L subunits expressed in HEK293 cells displayed a sensitivity to UDCA similar to that of native GABA(A receptors. The mutation α1V256S, known to reduce the inhibitory action of pregnenolone sulphate, reduced the potency of UDCA. The mutation α1Q241L, which abolishes GABA(AR potentiation by several neurosteroids, had no effect on GABA(AR inhibition by UDCA. In conclusion, UDCA enhances alertness through disinhibition, at least partially of the histaminergic system via GABA(A receptors.

  9. The dynamic allocation of attention to emotion: simultaneous and independent evidence from the late positive potential and steady state visual evoked potentials.

    Science.gov (United States)

    Hajcak, Greg; MacNamara, Annmarie; Foti, Dan; Ferri, Jamie; Keil, Andreas

    2013-03-01

    Emotional stimuli capture and hold attention without explicit instruction. The late positive potential (LPP) component of the event related potential can be used to track motivated attention toward emotional stimuli, and is larger for emotional compared to neutral pictures. In the frequency domain, the steady state visual evoked potential (ssVEP) has also been used to track attention to stimuli flickering at a particular frequency. Like the LPP, the ssVEP is also larger for emotional compared to neutral pictures. Prior work suggests that both the LPP and ssVEP are sensitive to "top-down" manipulations of attention, however the LPP and ssVEP have not previously been examined using the same attentional manipulation in the same participants. In the present study, LPP and ssVEP amplitudes were simultaneously elicited by unpleasant and neutral pictures. Partway through picture presentation, participants' attention was directed toward an arousing or non-arousing region of unpleasant pictures. In line with prior work, the LPP was reduced when attention was directed toward non-arousing compared to arousing regions of unpleasant pictures; similar results were observed for the ssVEP. Thus, both electrocortical measures index affective salience and are sensitive to directed (here: spatial) attention. Variation in the LPP and ssVEP was unrelated, suggesting that these measures are not redundant with each other and may capture different neurophysiological aspects of affective stimulus processing and attention. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Cell-type-dependent action potentials and voltage-gated currents in mouse fungiform taste buds.

    Science.gov (United States)

    Kimura, Kenji; Ohtubo, Yoshitaka; Tateno, Katsumi; Takeuchi, Keita; Kumazawa, Takashi; Yoshii, Kiyonori

    2014-01-01

    Taste receptor cells fire action potentials in response to taste substances to trigger non-exocytotic neurotransmitter release in type II cells and exocytotic release in type III cells. We investigated possible differences between these action potentials fired by mouse taste receptor cells using in situ whole-cell recordings, and subsequently we identified their cell types immunologically with cell-type markers, an IP3 receptor (IP3 R3) for type II cells and a SNARE protein (SNAP-25) for type III cells. Cells not immunoreactive to these antibodies were examined as non-IRCs. Here, we show that type II cells and type III cells fire action potentials using different ionic mechanisms, and that non-IRCs also fire action potentials with either of the ionic mechanisms. The width of action potentials was significantly narrower and their afterhyperpolarization was deeper in type III cells than in type II cells. Na(+) current density was similar in type II cells and type III cells, but it was significantly smaller in non-IRCs than in the others. Although outwardly rectifying current density was similar between type II cells and type III cells, tetraethylammonium (TEA) preferentially suppressed the density in type III cells and the majority of non-IRCs. Our mathematical model revealed that the shape of action potentials depended on the ratio of TEA-sensitive current density and TEA-insensitive current one. The action potentials of type II cells and type III cells under physiological conditions are discussed. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    Science.gov (United States)

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  12. The loudness dependence of auditory evoked potentials (LDAEP as an indicator of serotonergic dysfunction in patients with predominant schizophrenic negative symptoms.

    Directory of Open Access Journals (Sweden)

    Christine Wyss

    Full Text Available Besides the influence of dopaminergic neurotransmission on negative symptoms in schizophrenia, there is evidence that alterations of serotonin (5-HT system functioning also play a crucial role in the pathophysiology of these disabling symptoms. From post mortem and genetic studies on patients with negative symptoms a 5-HT dysfunction is documented. In addition atypical neuroleptics and some antidepressants improve negative symptoms via serotonergic action. So far no research has been done to directly clarify the association between the serotonergic functioning and the extent of negative symptoms. Therefore, we examined the status of brain 5-HT level in negative symptoms in schizophrenia by means of the loudness dependence of auditory evoked potentials (LDAEP. The LDAEP provides a well established and non-invasive in vivo marker of the central 5-HT activity. We investigated 13 patients with schizophrenia with predominant negative symptoms treated with atypical neuroleptics and 13 healthy age and gender matched controls with a 32-channel EEG. The LDAEP of the N1/P2 component was evaluated by dipole source analysis and single electrode estimation at Cz. Psychopathological parameters, nicotine use and medication were assessed to control for additional influencing factors. Schizophrenic patients showed significantly higher LDAEP in both hemispheres than controls. Furthermore, the LDAEP in the right hemisphere in patients was related to higher scores in scales assessing negative symptoms. A relationship with positive symptoms was not found. These data might suggest a diminished central serotonergic neurotransmission in patients with predominant negative symptoms.

  13. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.

    Science.gov (United States)

    Casale, Amanda E; Foust, Amanda J; Bal, Thierry; McCormick, David A

    2015-11-25

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main

  14. Re-modeling Chara action potential: II. The action potential form under salinity stress

    Directory of Open Access Journals (Sweden)

    Mary Jane Beilby

    2017-04-01

    Full Text Available In part I we established Thiel-Beilby model of the Chara action potential (AP. In part II the AP is investigated in detail at the time of saline stress. Even very short exposure of salt-sensitive Chara cells to artificial pond water with 50 mM NaCl (Saline APW modified the AP threshold and drastically altered the AP form. Detailed modeling of 14 saline APs from 3 cells established that both the Ca2+ pump and the Ca2+ channels on internal stores seem to be affected, with the changes sometimes cancelling and sometimes re-enforcing each other, leading to APs with long durations and very complex forms. The exposure to salinity offers further insights into AP mechanism and suggests future experiments. The prolonged APs lead to greater loss of chloride and potassium ions, compounding the effects of saline stress.

  15. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    Science.gov (United States)

    Huys, Raoul; Jirsa, Viktor K.; Darokhan, Ziauddin; Valentiniene, Sonata; Roland, Per E.

    2016-01-01

    Neurons in the primary visual cortex spontaneously spike even when there are no visual stimuli. It is unknown whether the spiking evoked by visual stimuli is just a modification of the spontaneous ongoing cortical spiking dynamics or whether the spontaneous spiking state disappears and is replaced by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization is that it avoids the need for a system reorganization following visual stimulation, and impedes the transition of spontaneous spiking to evoked spiking and the propagation of spontaneous spiking from layer 4 to layers 2–3. PMID:26778982

  16. Music-evoked emotions in schizophrenia.

    Science.gov (United States)

    Abe, Daijyu; Arai, Makoto; Itokawa, Masanari

    2017-07-01

    Previous studies have reported that people with schizophrenia have impaired musical abilities. Here we developed a simple music-based assay to assess patient's ability to associate a minor chord with sadness. We further characterize correlations between impaired musical responses and psychiatric symptoms. We exposed participants sequentially to two sets of sound stimuli, first a C-major progression and chord, and second a C-minor progression and chord. Participants were asked which stimulus they associated with sadness, the first set, the second set, or neither. The severity of psychiatric symptoms was assessed using the Positive and Negative Syndrome Scale (PANSS). Study participants were 29 patients diagnosed with schizophrenia and 29 healthy volunteers matched in age, gender and musical background. 37.9% (95% confidence interval [CI]:19.1-56.7) of patients with schizophrenia associated the minor chord set as sad, compared with 97.9% (95%CI: 89.5-103.6) of controls. Four patients were diagnosed with treatment-resistant schizophrenia, and all four failed to associate the minor chord with sadness. Patients who did not recognize minor chords as sad had significantly higher scores on all PANSS subscales. A simple test allows music-evoked emotions to be assessed in schizophrenia patient, and may show potential relationships between music-evoked emotions and psychiatric symptoms. Copyright © 2016. Published by Elsevier B.V.

  17. Long-latency TMS-evoked potentials during motor execution and inhibition

    Directory of Open Access Journals (Sweden)

    Kentaro eYamanaka

    2013-11-01

    Full Text Available Transcranial magnetic stimulation (TMS has often been used in conjunction with electroencephalography (EEG, which is effective for the direct demonstration of cortical reactivity and corticocortical connectivity during cognitive tasks through the spatio-temporal pattern of long-latency TMS-evoked potentials (TEPs. However, it remains unclear what pattern is associated with the inhibition of a planned motor response. Therefore, we performed TMS-EEG recording during a go/stop task, in which participants were instructed to click a computer mouse with a right index finger when an indicator that was moving with a constant velocity reached a target (go trial or to avoid the click when the indicator randomly stopped just before it reached the target (stop trial. Single-pulse TMS to the left (contralateral or right (ipsilateral motor cortex was applied 500 ms before or just at the target time. TEPs related to motor execution and inhibition were obtained by subtractions between averaged EEG waveforms with and without TMS. As a result, in TEPs induced by both contralateral and ipsilateral TMS, small oscillations were followed by a prominent negative deflection around the TMS site peaking at approximately 100 ms post-TMS (N100, and a less pronounced later positive component (LPC over the broad areas that was centered at the midline-central site in both go and stop trials. However, compared to the pattern in go and stop trials with TMS at 500 ms before the target time, N100 and LPC were differently modulated in the go and stop trials with TMS just at the target time. The amplitudes of both N100 and LPC decreased in go trials, while the amplitude of LPC decreased and the latency of LPC was delayed in both go and stop trials. These results suggested that TMS-induced neuronal reactions in the motor cortex and subsequent their propagation to surrounding cortical areas might change functionally according to task demand when executing and inhibiting a motor

  18. The motor evoked potential in aids and HAM/TSP State of the evidence El potencial evocado motor en SIDA y HAM/PET

    Directory of Open Access Journals (Sweden)

    Fidias E. Leon-Sarmiento

    2009-12-01

    Full Text Available OBJECTIVE: We aimed to better understand the involvement of the corticospinal tract, assessed by non-invasive transcranial stimulation, in order to determine the actual involvement of the motor system in patients with HAM/TSP and AIDS. METHOD: An exhaustive MEDLINE search for the period of 1985 to 2008 for all articles cross-referenced for "HTLV-I, HTLV-II, HTLV-III and HIV, HIV1, HIV2, evoked potential, motor evoked potential, high voltage electrical stimulation, transcranial magnetic stimulation, magnetic stimulation, corticomotor physiology, motor pathways, acquired immunodeficiency syndrome, AIDS, SIDA, tropical spastic paraparesis, HTLV-I-associated myelopathy, HAM, TSP, and HAM/TSP" were selected and analysed. RESULTS: Eighteen papers published in English, Spanish, Portuguese, French and Japanese were identified. Only the central motor conduction time has been analyzed in seropositive patients to human retroviruses. The investigations done on HAM/TSP support the involvement of the pyramidal tract mainly at lower levels, following a centripetal pattern; in AIDS, such an involvement seems to be more prominent at brain levels following a centrifugal pattern. CONCLUSION: The central motor conduction time abnormalities and involvement differences of the corticospinal tract of patients with AIDS and HAM/TSP dissected here would allow to re-orient early neurorehabilitation measures in these retroviruses-associated neurodegenerative disorders. Besides this, more sophisticated and sensitive non-invasive corticospinal stimulation measures that detect early changes in thalamocortical-basal ganglia circuitry will be needed in both clinically established as well as asymptomatic patients at times when the fastest corticospinal fibers remain uninvolved.OBJETIVO: Investigar el compromiso del tracto piramidal, evaluado por estimulación trascranial no invasiva, en pacientes afectados por SIDA y HAM/TSP. MÉTODO: Se realizó una búsqueda en la base de

  19. The efficiency of simultaneous binaural ocular vestibular evoked myogenic potentials: a comparative study with monaural acoustic stimulation in healthy subjects.

    Science.gov (United States)

    Kim, Min-Beom; Ban, Jae Ho

    2012-12-01

    To evaluate the test-retest reliability and convenience of simultaneous binaural acoustic-evoked ocular vestibular evoked myogenic potentials (oVEMP). Thirteen healthy subjects with no history of ear diseases participated in this study. All subjects underwent oVEMP test with both separated monaural acoustic stimulation and simultaneous binaural acoustic stimulation. For evaluating test-retest reliability, three repetitive sessions were performed in each ear for calculating the intraclass correlation coefficient (ICC) for both monaural and binaural tests. We analyzed data from the biphasic n1-p1 complex, such as latency of peak, inter-peak amplitude, and asymmetric ratio of amplitude in both ears. Finally, we checked the total time required to complete each test for evaluating test convenience. No significant difference was observed in amplitude and asymmetric ratio in comparison between monaural and binaural oVEMP. However, latency was slightly delayed in binaural oVEMP. In test-retest reliability analysis, binaural oVEMP showed excellent ICC values ranging from 0.68 to 0.98 in latency, asymmetric ratio, and inter-peak amplitude. Additionally, the test time was shorter in binaural than monaural oVEMP. oVEMP elicited from binaural acoustic stimulation yields similar satisfactory results as monaural stimulation. Further, excellent test-retest reliability and shorter test time were achieved in binaural than in monaural oVEMP.

  20. The reproducibility of binocular pattern reversal visual evoked potentials: a single subject design.

    Science.gov (United States)

    Mellow, Tessa B; Liasis, Alki; Lyons, Ruth; Thompson, Dorothy A

    2011-06-01

    This study aimed to investigate the within-participant variability over time of both amplitude and peak latency measures of pattern reversal visual evoked potentials (pVEPs). As a large number of factors are known to contribute to the variability of the pVEPs (such as fixation instability and drowsiness), testing was conducted in controlled conditions with two co-operative participants. PVEPs were recorded during 24 sessions, over an eight-week period using the same equipment and recording settings. The participants viewed a plasma monitor binocularly from a distance of 1 meter. High contrast (97%), black and white checks of side subtense 50', 25', and 12.5' pattern reversed 3/s in a 28 degree test field. The different sized checks were presented in a pseudo-random order. Three runs, each of 100 trials, were acquired to each stimulus from an active electrode placed at Oz referred to aFz. The amplitude of N80-P100 and the latency of P100 were measured. P100 amplitude and latency were stable across sessions and did not depend upon the order of check size presentation. As expected, variation in amplitude was greater than peak latency. The coefficients of variation for different check sizes and participants were 9-14% for pVEP amplitude, but only 1-2% for P100 latency.

  1. The effect of water immersion on short-latency somatosensory evoked potentials in human

    Directory of Open Access Journals (Sweden)

    Sato Daisuke

    2012-01-01

    Full Text Available Abstract Background Water immersion therapy is used to treat a variety of cardiovascular, respiratory, and orthopedic conditions. It can also benefit some neurological patients, although little is known about the effects of water immersion on neural activity, including somatosensory processing. To this end, we examined the effect of water immersion on short-latency somatosensory evoked potentials (SEPs elicited by median nerve stimuli. Short-latency SEP recordings were obtained for ten healthy male volunteers at rest in or out of water at 30°C. Recordings were obtained from nine scalp electrodes according to the 10-20 system. The right median nerve at the wrist was electrically stimulated with the stimulus duration of 0.2 ms at 3 Hz. The intensity of the stimulus was fixed at approximately three times the sensory threshold. Results Water immersion significantly reduced the amplitudes of the short-latency SEP components P25 and P45 measured from electrodes over the parietal region and the P45 measured by central region. Conclusions Water immersion reduced short-latency SEP components known to originate in several cortical areas. Attenuation of short-latency SEPs suggests that water immersion influences the cortical processing of somatosensory inputs. Modulation of cortical processing may contribute to the beneficial effects of aquatic therapy. Trial Registration UMIN-CTR (UMIN000006492

  2. Motor-evoked potential amplitudes elicited by transcranial magnetic stimulation do not differentiate between patients and normal controls.

    Science.gov (United States)

    Grunhaus, Leon; Polak, Dana; Amiaz, Revital; Dannon, Pinhas N

    2003-12-01

    Transcranial magnetic stimulation (TMS) applied over the motor cortex depolarizes neurons and leads to motor-evoked potentials (MEP). To assess cortico-spinal excitability we compared the motor threshold (MT) and the averaged MEP amplitude generated by TMS in patients with major depression (MD) and matched controls. Nineteen patients, who where participants in a protocol comparing the antidepressant effects of rTMS with those of ECT, and thirteen age- and gender-matched normal controls were studied. MT was similar between patients and normal controls. The MEP amplitude response was significantly increased by rTMS, however, the magnitude of the response was similar in patients and normal controls. Correlations between the averaged MEP amplitude and age revealed that older subjects demonstrated significantly lower responses at all time-points. We conclude that cortico-spinal excitability is increased following rTMS, however, differences between patients and normal controls were not apparent with the paradigm used.

  3. Action potential bursts in central snail neurons elicited by paeonol: roles of ionic currents

    Science.gov (United States)

    Chen, Yi-hung; Lin, Pei-lin; Hsu, Hui-yu; Wu, Ya-ting; Yang, Han-yin; Lu, Dah-yuu; Huang, Shiang-suo; Hsieh, Ching-liang; Lin, Jaung-geng

    2010-01-01

    Aim: To investigate the effects of 2′-hydroxy-4′-methoxyacetophenone (paeonol) on the electrophysiological behavior of a central neuron (right parietal 4; RP4) of the giant African snail (Achatina fulica Ferussac). Methods: Intracellular recordings and the two-electrode voltage clamp method were used to study the effects of paeonol on the RP4 neuron. Results: The RP4 neuron generated spontaneous action potentials. Bath application of paeonol at a concentration of ≥500 μmol/L reversibly elicited action potential bursts in a concentration-dependent manner. Immersing the neurons in Co2+-substituted Ca2+-free solution did not block paeonol-elicited bursting. Pretreatment with the protein kinase A (PKA) inhibitor KT-5720 or the protein kinase C (PKC) inhibitor Ro 31-8220 did not affect the action potential bursts. Voltage-clamp studies revealed that paeonol at a concentration of 500 μmol/L had no remarkable effects on the total inward currents, whereas paeonol decreased the delayed rectifying K+ current (IKD) and the fast-inactivating K+ current (IA). Application of 4-aminopyridine (4-AP 5 mmol/L), an inhibitor of IA, or charybdotoxin 250 nmol/L, an inhibitor of the Ca2+-activated K+ current (IK(Ca)), failed to elicit action potential bursts, whereas tetraethylammonium chloride (TEA 50 mmol/L), an IKD blocker, successfully elicited action potential bursts. At a lower concentration of 5 mmol/L, TEA facilitated the induction of action potential bursts elicited by paeonol. Conclusion: Paeonol elicited a bursting firing pattern of action potentials in the RP4 neuron and this activity relates closely to the inhibitory effects of paeonol on the IKD. PMID:21042287

  4. Brain-immune interaction accompanying odor-evoked autobiographic memory.

    Science.gov (United States)

    Matsunaga, Masahiro; Bai, Yu; Yamakawa, Kaori; Toyama, Asako; Kashiwagi, Mitsuyoshi; Fukuda, Kazuyuki; Oshida, Akiko; Sanada, Kazue; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Sadato, Norihiro; Ohira, Hideki

    2013-01-01

    The phenomenon in which a certain smell evokes a specific memory is known as the Proust phenomenon. Odor-evoked autobiographic memories are more emotional than those elicited by other sensory stimuli. The results of our previous study indicated that odor-evoked autobiographic memory accompanied by positive emotions has remarkable effects on various psychological and physiological activities, including the secretion of cytokines, which are immune-signaling molecules that modulate systemic inflammation. In this study, we aimed to clarify the neural substrates associated with the interaction between odor-evoked autobiographic memory and peripheral circulating cytokines. We recruited healthy male and female volunteers and investigated the association between brain responses and the concentration of several cytokines in the plasma by using positron emission tomography (PET) recordings when an autographic memory was evoked in participants by asking them to smell an odor that was nostalgic to them. Participants experienced positive emotions and autobiographic memories when nostalgic odors were presented to them. The levels of peripheral proinflammatory cytokines, such as the tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), were significantly reduced after experiencing odor-evoked autobiographic memory. Subtraction analysis of PET images indicated that the medial orbitofrontal cortex (mOFC) and precuneus/posterior cingulate cortex (PCC) were significantly activated during experiences of odor-evoked autobiographic memory. Furthermore, a correlation analysis indicated that activities of the mOFC and precuneus/PCC were negatively correlated with IFN-γ concentration. These results indicate that the neural networks including the precuneus/PCC and mOFC might regulate the secretion of peripheral proinflammatory cytokines during the experience of odor-evoked autobiographic memories accompanied with positive emotions.

  5. Brain–Immune Interaction Accompanying Odor-Evoked Autobiographic Memory

    Science.gov (United States)

    Matsunaga, Masahiro; Bai, Yu; Yamakawa, Kaori; Toyama, Asako; Kashiwagi, Mitsuyoshi; Fukuda, Kazuyuki; Oshida, Akiko; Sanada, Kazue; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Sadato, Norihiro; Ohira, Hideki

    2013-01-01

    The phenomenon in which a certain smell evokes a specific memory is known as the Proust phenomenon. Odor-evoked autobiographic memories are more emotional than those elicited by other sensory stimuli. The results of our previous study indicated that odor-evoked autobiographic memory accompanied by positive emotions has remarkable effects on various psychological and physiological activities, including the secretion of cytokines, which are immune-signaling molecules that modulate systemic inflammation. In this study, we aimed to clarify the neural substrates associated with the interaction between odor-evoked autobiographic memory and peripheral circulating cytokines. We recruited healthy male and female volunteers and investigated the association between brain responses and the concentration of several cytokines in the plasma by using positron emission tomography (PET) recordings when an autographic memory was evoked in participants by asking them to smell an odor that was nostalgic to them. Participants experienced positive emotions and autobiographic memories when nostalgic odors were presented to them. The levels of peripheral proinflammatory cytokines, such as the tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), were significantly reduced after experiencing odor-evoked autobiographic memory. Subtraction analysis of PET images indicated that the medial orbitofrontal cortex (mOFC) and precuneus/posterior cingulate cortex (PCC) were significantly activated during experiences of odor-evoked autobiographic memory. Furthermore, a correlation analysis indicated that activities of the mOFC and precuneus/PCC were negatively correlated with IFN-γ concentration. These results indicate that the neural networks including the precuneus/PCC and mOFC might regulate the secretion of peripheral proinflammatory cytokines during the experience of odor-evoked autobiographic memories accompanied with positive emotions. PMID:23977312

  6. Brain-immune interaction accompanying odor-evoked autobiographic memory.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available The phenomenon in which a certain smell evokes a specific memory is known as the Proust phenomenon. Odor-evoked autobiographic memories are more emotional than those elicited by other sensory stimuli. The results of our previous study indicated that odor-evoked autobiographic memory accompanied by positive emotions has remarkable effects on various psychological and physiological activities, including the secretion of cytokines, which are immune-signaling molecules that modulate systemic inflammation. In this study, we aimed to clarify the neural substrates associated with the interaction between odor-evoked autobiographic memory and peripheral circulating cytokines. We recruited healthy male and female volunteers and investigated the association between brain responses and the concentration of several cytokines in the plasma by using positron emission tomography (PET recordings when an autographic memory was evoked in participants by asking them to smell an odor that was nostalgic to them. Participants experienced positive emotions and autobiographic memories when nostalgic odors were presented to them. The levels of peripheral proinflammatory cytokines, such as the tumor necrosis factor-α (TNF-α and interferon-γ (IFN-γ, were significantly reduced after experiencing odor-evoked autobiographic memory. Subtraction analysis of PET images indicated that the medial orbitofrontal cortex (mOFC and precuneus/posterior cingulate cortex (PCC were significantly activated during experiences of odor-evoked autobiographic memory. Furthermore, a correlation analysis indicated that activities of the mOFC and precuneus/PCC were negatively correlated with IFN-γ concentration. These results indicate that the neural networks including the precuneus/PCC and mOFC might regulate the secretion of peripheral proinflammatory cytokines during the experience of odor-evoked autobiographic memories accompanied with positive emotions.

  7. Osmotic and Salt Stresses Modulate Spontaneous and Glutamate-Induced Action Potentials and Distinguish between Growth and Circumnutation in Helianthus annuus Seedlings

    Directory of Open Access Journals (Sweden)

    Maria Stolarz

    2017-10-01

    Full Text Available Action potentials (APs, i.e., long-distance electrical signals, and circumnutations (CN, i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0–500 mOsm were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs propagating basipetally and acropetally with a velocity of 12–20 cm min−1 were observed. The number of SAPs increased 2–3 times (7–10 SAPs 24 h−1plant−1 in the mild salt stress (160 mOsm NaCl and KCl, compared to the control and strong salt stress (3–4 SAPs 24 h−1 plant−1 in the control and 300 mOsm KCl and NaCl. Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3–24 APs transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN.

  8. Somatosensory evoked potentials assess the efficacy of circumcision for premature ejaculation.

    Science.gov (United States)

    Xia, J-D; Jiang, H-S; Zhu, L-L; Zhang, Z; Chen, H; Dai, Y-T

    2016-07-01

    To assess the efficacy and mechanism of circumcision in the treatment of premature ejaculation (PE) with redundant prepuce, we enrolled a total of 81 PE patients who received circumcision. The patients' ejaculatory ability and sexual performances were evaluated before and after circumcision by using questionnaires (Intravaginal ejaculation latency time (IELT), Chinese Index of PE with 5 questions (CIPE-5) and International Index of Erectile function- 5 (IIEF-5)). Furthermore, somatosensory evoked potentials (SEPs) including dorsal nerve (DNSEP) and glans penis (GPSEP) of the patients were also measured. The mean IELTs of preoperation and post operation were 1.10±0.55 and 2.48±2.03 min, respectively (PIELT after operation was 2.16 min, compared with the baseline 1.07 min before the operation, the fold increase of the IELT was 2.02. Compared with the uncircumcised status, scores of CIPE-5 showed a significant increase after circumcision (P<0.001). The mean latencies (and amplitudes) of GPSEP and DNSEP were 38.1±4.0 ms (3.0±1.9 uV) and 40.5±3.4 ms (2.8±1.6 uV) before circumcision, respectively; and 42.8±3.3 ms (2.8±1.6 uV) and 40.5±4.1 ms (2.4±1.2 uV) in the follow-up end point after circumcision. Only the latencies of GPSEP showed significant prolongation before and after circumcision (P<0.001). The ejaculation time improvement after circumcision is so small, and equal to placebo response, therefore it could not be interpreted as a therapeutic method in men with PE.

  9. Usefulness of Intraoperative Monitoring of Visual Evoked Potentials in Transsphenoidal Surgery

    Science.gov (United States)

    KAMIO, Yoshinobu; SAKAI, Naoto; SAMESHIMA, Tetsuro; TAKAHASHI, Goro; KOIZUMI, Shinichiro; SUGIYAMA, Kenji; NAMBA, Hiroki

    2014-01-01

    Postoperative visual outcome is a major concern in transsphenoidal surgery (TSS). Intraoperative visual evoked potential (VEP) monitoring has been reported to have little usefulness in predicting postoperative visual outcome. To re-evaluate its usefulness, we adapted a high-power light-stimulating device with electroretinography (ERG) to ascertain retinal light stimulation. Intraoperative VEP monitoring was conducted in TSSs in 33 consecutive patients with sellar and parasellar tumors under total venous anesthesia. The detectability rates of N75, P100, and N135 were 94.0%, 85.0%, and 79.0%, respectively. The mean latencies and amplitudes of N75, P100, and N135 were 76.8 ± 6.4 msec and 4.6 ± 1.8 μV, 98.0 ± 8.6 msec and 5.0 ± 3.4 μV, and 122.1 ± 16.3 msec and 5.7 ± 2.8 μV, respectively. The amplitude was defined as the voltage difference from N75 to P100 or P100 to N135. The criterion for amplitude changes was defined as a > 50% increase or 50% decrease in amplitude compared to the control level. The surgeon was immediately alerted when the VEP changed beyond these thresholds, and the surgical manipulations were stopped until the VEP recovered. Among the 28 cases with evaluable VEP recordings, the VEP amplitudes were stable in 23 cases and transiently decreased in 4 cases. In these 4 cases, no postoperative vision deterioration was observed. One patient, whose VEP amplitude decreased without subsequent recovery, developed vision deterioration. Intraoperative VEP monitoring with ERG to ascertain retinal light stimulation by the new stimulus device was reliable and feasible in preserving visual function in patients undergoing TSS. PMID:25070017

  10. Caracterización de los potenciales evocados visuales en la retinopatía diabética Characterization of the visual evoked potentials in the diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Zaida Rosa Delgado Rizo

    2009-12-01

    Full Text Available INTRODUCCIÓN: El registro de los potenciales evocados visuales es muy útil para determinar lesiones en la vía visual, que en la diabetes mellitus se expresan mediante la retinopatía diabética y el daño del nervio óptico. OBJETIVOS: Caracterizar el compromiso del analizador visual en la diabetes mellitus mediante la determinación del daño de la vía visual a través de los potenciales evocados visuales; correlacionar el estado clínico de la vía visual, el control metabólico y el tiempo de la enfermedad con la alteración electrofisiológica de la diabetes mellitus. MÉTODOS: Se realizó un estudio acerca de los potenciales evocados visuales en diabetes mellitus tipos I y II INTRODUCTION: The recording of visual evoked potentials is very useful to determine visual lesions that in diabetes mellitus are expressed as diabetic retinopathy and damage of the optic nerve. OBJECTIVES: To characterize the involvement of the visual analyzer in diabetes mellitus through determining the damage to the visual path on the basis of visual evoked potentials; and also to correlate the clinical state of the visual path, the metabolic control and the length of the disease with the electrophysiological alteration of diabetes mellitus. METHODS: A study on the visual evoked potentials in type I and II diabetes mellitus under 15 years of evolution was conducted together with a cross-sectional analytical research of cases (n = 32 and healthy controls (n = 16.Latency and P100 amplitude of VEP in both eyes were ascertained and the retina was clinically studied to determine related diseases. RESULTS: Latency P100 104,68 ± 4,28 in GE y 97,5 ± 3,71 in GC (p = 0,089, amplitude P100 10,84 ± 2,45 in GE and 8,02 ±1,70 in GC (p = 0,673

  11. Potenciais evocados auditivos de tronco encefálico em usuários de crack e múltiplas drogas Auditory brainstem evoked potentials in crack and multiple drugs addicts

    Directory of Open Access Journals (Sweden)

    Loretta Fabianni Nigri

    2009-01-01

    Full Text Available OBJETIVO: Analisar os potenciais evocados auditivos de tronco encefálico em usuários de crack e múltiplas drogas, bem como levantar as possíveis queixas auditivas e de equilíbrio nesta população. MÉTODOS: Foram avaliados 40 usuários de drogas (20 com uso há mais de cinco anos e 20 há menos de cinco anos e 20 não usuários, do sexo masculino, com idades entre 19 e 46 anos, com limiares auditivos dentro da normalidade. RESULTADOS: Não houve diferenças significativas dos potenciais evocados auditivos de tronco encefálico dos usuários de drogas quando comparados ao grupo controle. CONCLUSÃO: Os potenciais evocados auditivos de tronco encefálico dos usuários de drogas não diferiram significantemente do grupo controle. As queixas apresentadas pelos usuários de drogas foram hiperacusia, alucinação auditiva, zumbido e alteração de equilíbrio.PURPOSE: To study the findings of auditory brainstem evoked potentials in crack and multiple drugs users, as well as to raise possible auditory and balance complaints in this population. METHODS: A total of 40 drugs addicts (20 who had been using drugs for over five years and 20 for less than five years and 20 non-users were evaluated. Subjects were all male, with ages ranging from 19 to 46 years, and had auditory thresholds within normal. RESULTS: No significant statistical differences were found regarding the auditory brainstem evoked potentials findings of the addicts group, when compared to the non-users. CONCLUSION: Auditory brainstem evoked potentials in crack and multiple drugs users did not differ significantly from the control group. Complaints presented by drugs addicts were hyperacusis, auditory hallucination, tinnitus and altered balance.

  12. Modelling in vivo action potential propagation along a giant axon.

    Science.gov (United States)

    George, Stuart; Foster, Jamie M; Richardson, Giles

    2015-01-01

    A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.

  13. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Reporting potential natural disasters and initial... Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose. The purpose of reporting potential natural disasters is to provide a systematic procedure for rapid reporting...

  14. Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain.

    Science.gov (United States)

    Colon, E; Legrain, V; Mouraux, A

    2012-10-01

    The periodic presentation of a sensory stimulus induces, at certain frequencies of stimulation, a sustained electroencephalographic response of corresponding frequency, known as steady-state evoked potentials (SS-EP). In visual, auditory and vibrotactile modalities, studies have shown that SS-EP reflect mainly activity originating from early, modality-specific sensory cortices. Furthermore, it has been shown that SS-EP have several advantages over the recording of transient event-related brain potentials (ERP), such as a high signal-to-noise ratio, a shorter time to obtain reliable signals, and the capacity to frequency-tag the cortical activity elicited by concurrently presented sensory stimuli. Recently, we showed that SS-EP can be elicited by the selective activation of skin nociceptors and that nociceptive SS-EP reflect the activity of a population of neurons that is spatially distinct from the somatotopically-organized population of neurons underlying vibrotactile SS-EP. Hence, the recording of SS-EP offers a unique opportunity to study the cortical representation of nociception and touch in humans, and to explore their potential crossmodal interactions. Here, (1) we review available methods to achieve the rapid periodic stimulation of somatosensory afferents required to elicit SS-EP, (2) review previous studies that have characterized vibrotactile and nociceptive SS-EP, (3) discuss the nature of the recorded signals and their relationship with transient event-related potentials and (4) outline future perspectives and potential clinical applications of this technique. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials.

    Science.gov (United States)

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component's power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics.

  16. Prognostic Value of Facial Nerve Antidromic Evoked Potentials in Bell Palsy: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Zhang WenHao

    2012-01-01

    Full Text Available To analyze the value of facial nerve antidromic evoked potentials (FNAEPs in predicting recovery from Bell palsy. Study Design. Retrospective study using electrodiagnostic data and medical chart review. Methods. A series of 46 patients with unilateral Bell palsy treated were included. According to taste test, 26 cases were associated with taste disorder (Group 1 and 20 cases were not (Group 2. Facial function was established clinically by the Stennert system after monthly follow-up. The result was evaluated with clinical recovery rate (CRR and FNAEP. FNAEPs were recorded at the posterior wall of the external auditory meatus of both sides. Results. Mean CRR of Group 1 and Group 2 was 61.63% and 75.50%. We discovered a statistical difference between two groups and also in the amplitude difference (AD of FNAEP. Mean ± SD of AD was −6.96% ± 12.66% in patients with excellent result, −27.67% ± 27.70% with good result, and −66.05% ± 31.76% with poor result. Conclusions. FNAEP should be monitored in patients with intratemporal facial palsy at the early stage. FNAEP at posterior wall of external auditory meatus was sensitive to detect signs of taste disorder. There was close relativity between FNAEPs and facial nerve recovery.

  17. Prognostic Value of Facial Nerve Antidromic Evoked Potentials in Bell Palsy: A Preliminary Study

    Science.gov (United States)

    WenHao, Zhang; Minjie, Chen; Chi, Yang; Weijie, Zhang

    2012-01-01

    To analyze the value of facial nerve antidromic evoked potentials (FNAEPs) in predicting recovery from Bell palsy. Study Design. Retrospective study using electrodiagnostic data and medical chart review. Methods. A series of 46 patients with unilateral Bell palsy treated were included. According to taste test, 26 cases were associated with taste disorder (Group 1) and 20 cases were not (Group 2). Facial function was established clinically by the Stennert system after monthly follow-up. The result was evaluated with clinical recovery rate (CRR) and FNAEP. FNAEPs were recorded at the posterior wall of the external auditory meatus of both sides. Results. Mean CRR of Group 1 and Group 2 was 61.63% and 75.50%. We discovered a statistical difference between two groups and also in the amplitude difference (AD) of FNAEP. Mean ± SD of AD was −6.96% ± 12.66% in patients with excellent result, −27.67% ± 27.70% with good result, and −66.05% ± 31.76% with poor result. Conclusions. FNAEP should be monitored in patients with intratemporal facial palsy at the early stage. FNAEP at posterior wall of external auditory meatus was sensitive to detect signs of taste disorder. There was close relativity between FNAEPs and facial nerve recovery. PMID:22164176

  18. Prognostic value of motor evoked potentials elicited by multipulse magnetic stimulation in a surgically induced transitory lesion of the supplementary motor area: a case report

    OpenAIRE

    Sala, F; Krzan, M; Jallo, G; Epstein, F; Deletis, V

    2000-01-01

    Surgery involving the supplementary motor area (SMA) places the patient at risk of transient motor deficit. To predict outcome in patients with early postoperative hypokinesis would be relevant to both the patient and the surgical team. A 15 year old girl with a large left thalamic tumour removed through a left transcallosal approach is described. Despite intraoperatively preserved muscle motor evoked potentials (mMEPs) from all limbs, elicited by multipulse electrical st...

  19. Use of the novel contact heat evoked potential stimulator (CHEPS for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts

    Directory of Open Access Journals (Sweden)

    Chizh Boris A

    2007-08-01

    Full Text Available Abstract Background The Contact Heat Evoked Potential Stimulator (CHEPS rapidly stimulates cutaneous small nerve fibres, and resulting evoked potentials can be recorded from the scalp. We have studied patients with symptoms of sensory neuropathy and controls using CHEPS, and validated the findings using other objective measures of small nerve fibres i.e. the histamine-induced skin flare response and intra-epidermal fibres (IEF, and also quantitative sensory testing (QST, a subjective measure. Methods In patients with symptoms of sensory neuropathy (n = 41 and healthy controls (n = 9 we performed clinical examination, QST (monofilament, vibration and thermal perception thresholds, nerve conduction studies, histamine-induced skin flares and CHEPS. Skin punch biopsies were immunostained using standard ABC immunoperoxidase for the nerve marker PGP 9.5 or the heat and capsaicin receptor TRPV1. Immunoreactive IEF were counted per length of tissue section and epidermal thickness recorded. Results Amplitudes of Aδ evoked potentials (μV following face, arm or leg stimulation were reduced in patients (e.g. for the leg: mean ± SEM – controls 11.7 ± 1.95, patients 3.63 ± 0.85, p = 0.0032. Patients showed reduced leg skin flare responses, which correlated with Aδ amplitudes (rs = 0.40, p = 0.010. In patient leg skin biopsies, PGP 9.5- and TRPV1-immunoreactive IEF were reduced and correlated with Aδ amplitudes (PGP 9.5, rs = 0.51, p = 0.0006; TRPV1, rs = 0.48, p = 0.0012. Conclusion CHEPS appears a sensitive measure, with abnormalities observed in some symptomatic patients who did not have significant IEF loss and/or QST abnormalities. Some of the latter patients may have early small fibre dysfunction or ion channelopathy. CHEPS provides a clinically practical, non-invasive and objective measure, and can be a useful additional tool for the assessment of sensory small fibre neuropathy. Although further evaluation is required, the technique shows

  20. Comparison of clinical, magnetic resonance and evoked potentials data in a case of valproic-acid-related hyperammonemic coma

    Energy Technology Data Exchange (ETDEWEB)

    Hantson, Philippe [Universite Catholique de Louvain, Department of Intensive Care, Cliniques Saint-Luc, Brussels (Belgium); Grandin, Cecile; Duprez, Thierry [Universite Catholique de Louvain, Department of Neuroradiology, Cliniques Saint-Luc, Brussels (Belgium); Nassogne, Marie-Cecile [Universite Catholique de Louvain, Department of Pediatric Neurology, Cliniques Saint-Luc, Brussels (Belgium); Guerit, Jean-Michel [Universite Catholique de Louvain, Laboratory of Neurophysiology, Cliniques Saint-Luc, Brussels (Belgium)

    2005-01-01

    Magnetic resonance (MR) multimodality evoked potentials (MEPs) and clinical findings were correlated in a 47-year-old epileptic man in whom parenteral valproic acid (VPA) therapy induced severe comatose hyperammonemic encephalopathy without biological signs of hepatotoxicity (or hepatocytic dysfunction). Although the plasma VPA level remained within a normal therapeutic range, the ammoniemia increased to a toxic peak level at 411 {mu}mol/l 24 h after symptom onset, requiring VPA therapy discontinuation. Brain MR monitoring demonstrated early cytotoxic edema evolving into delayed vasogenic edema and final brain atrophy. Concomitantly to abnormalities within the brainstem on MR images, an increase in brainstem conduction at MEPs and clinical disturbance of brainstem reflexes were observed at the initial phase of the disease course. Later, the resolution of the MR and MEPs abnormalities paralleled the clinical recovery of the reflexes. (orig.)

  1. Comparison of clinical, magnetic resonance and evoked potentials data in a case of valproic-acid-related hyperammonemic coma

    International Nuclear Information System (INIS)

    Hantson, Philippe; Grandin, Cecile; Duprez, Thierry; Nassogne, Marie-Cecile; Guerit, Jean-Michel

    2005-01-01

    Magnetic resonance (MR) multimodality evoked potentials (MEPs) and clinical findings were correlated in a 47-year-old epileptic man in whom parenteral valproic acid (VPA) therapy induced severe comatose hyperammonemic encephalopathy without biological signs of hepatotoxicity (or hepatocytic dysfunction). Although the plasma VPA level remained within a normal therapeutic range, the ammoniemia increased to a toxic peak level at 411 μmol/l 24 h after symptom onset, requiring VPA therapy discontinuation. Brain MR monitoring demonstrated early cytotoxic edema evolving into delayed vasogenic edema and final brain atrophy. Concomitantly to abnormalities within the brainstem on MR images, an increase in brainstem conduction at MEPs and clinical disturbance of brainstem reflexes were observed at the initial phase of the disease course. Later, the resolution of the MR and MEPs abnormalities paralleled the clinical recovery of the reflexes. (orig.)

  2. Understanding the Electrical Behavior of the Action Potential in Terms of Elementary Electrical Sources

    Science.gov (United States)

    Rodriguez-Falces, Javier

    2015-01-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However,…

  3. Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites

    Science.gov (United States)

    Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.

    2012-01-01

    Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413

  4. BRAINSTEM AUDITORY EVOKED POTENTIAL AS AN INDEX OF CNS DEMYELINATION IN GUILLAIN -BARRÉ SYNDROME (GBS

    Directory of Open Access Journals (Sweden)

    Smita Singh

    2016-01-01

    Full Text Available Background: Guillain-Barré Syndrome (GBS is an acute, frequently severe and fulminant polyradicular neuropathy that is autoimmune in nature. GBS manifest as rapidly evolving areflexic motor paralysis with or without sensory disturbances. It mainly involves peripheral nervous system and autonomic nervous system. There are rare evidences about the involvement of central nervous system (CNS in GBS. Aims: The main objective of the study was to assess the CNS involvement in GBS using the Brainstem Auditory Evoked Potential (BAEP. Methods & Material: The study was conducted in the clinical neurophysiology lab in the department of physiology, CSMMU Lucknow. Study group involved 26 subjects (n=26 having GBS and control group involved 30 normal subjects (n=30. BAEPS were recorded by Neuroperfect- EMG 2000 EMG/NCV/EPsytem. The data so obtained were subjected to analysis using Statistical Package for Social Sciences (SPSS Version 13.0. Results & Conclusions: There was significant increase in PIII & PV peak latencies and PI-PIII & PI-PV interpeak latencies in both left and right ear in the study group, which showed the CNS involvement in GBS which can be assessed using BAEP.

  5. Pattern evoked cortical potential topography and positron emission computed tomography in cases with homonymous quadrantanopsia

    International Nuclear Information System (INIS)

    Kakisu, Yonetsugu; Adachi-Usami, Emiko; Kuroda, Noriko; Kawamura, Mitsuru; Yamazaki, Toshiro.

    1985-01-01

    Pattern evoked cortical potentials (PVECPs) and positron emission computed tomography (PET) were studied in two cases with lower homonymous quadrantanopsia caused by occlusion or hemorrhages of the artery of the optic radiation. Using 15 O 2 and C 15 O 2 as a tracer, PET was performed at rest under opened eye stimulation on 6 cm and 8 cm transverse section above the orbito-meatal line. On OM-6 level where the visual cortex of right and left hemisphere received the upper visual field information, symmetrical images of 15 O 2 and C 15 O 2 uptake were found. However, they were lateralized at the non-affected hemisphere in the images of OM-8 level, which corresponded to the anatomical lesion. The PVECP topogram recorded to the stimulation of the right and left lower quadrant visual field was studied by a 16 channel recording system. The positive maxima at the peak latency of P100 were found only at the non-affected hemisphere. It was, thus, proved that PVECP topogram and PET findings could demonstrate the functional abnormalities of the visual cortex in accordance with visual field defect measured by subjective perimetry. (author)

  6. The correlation between evoked spinal cord potentials and magnetic resonance imaging before Surgery in cervical spondylotic myelopathy

    International Nuclear Information System (INIS)

    Akashi, Kosuke; Kanchiku, Tsukasa; Taguchi, Toshihiko; Kato, Yoshihiko; Imajo, Yasuaki; Suzuki, Hidenori

    2010-01-01

    The purpose of this study is to clarify the correlation between electrophysiological examination and MRI diagnosis. Twenty-four patients with cervical spondylotic myelopathy were examined with magnetic resonance imaging and evoked spinal cord potentials (ESCPs) before surgery. In all the patients, only the intervertebral level was symptomatic, as shown by ESCPs. ESCPs following median nerve stimul