WorldWideScience

Sample records for actinium-225 self-immolative tumor-targeted

  1. THE PSYCHOLOGY OF SELF-IMMOLATION IN INDIA

    OpenAIRE

    Mahla, V.P.; Bhargava, S. C.; Dogra, R.; S. Shome

    1992-01-01

    Four cases of attempted self immolation were investigated. The psychiatric evaluation was done according to DSM- III-R criteria. The findings are discussed with reference to the psychological and socio-cultural perspectives.

  2. Self-immolation and the exchange of self and others

    DEFF Research Database (Denmark)

    Sobisch, Jan-Ulrich

    2012-01-01

    On the recent self-immolations as a form of Tibetan protest, the Dalai Lama's statement on it, and its relation to some doctrinal aspects such as karma and the bodhisattvas' ability to exchange of Self and other.......On the recent self-immolations as a form of Tibetan protest, the Dalai Lama's statement on it, and its relation to some doctrinal aspects such as karma and the bodhisattvas' ability to exchange of Self and other....

  3. Self-immolation in Iran, risk factors and prevention strategies

    Directory of Open Access Journals (Sweden)

    Shahram Mami

    2015-04-01

    Full Text Available Background: approximately 1,500 to 2,000 people die due to self-immolation every year in Iran. This phenomenon is more pronounced in young women who comprise an active and reproductive segment of the population which can lead to numerous negative consequences in the individual, family, and community. However, since self-immolation is a preventable public health issue, the healthcare system is required to take seriously into account. Methods: In this narrative review, several online databases, including PubMed, PsycINFO, Google Scholar, ISI, Scopus as well as offline resources, including textbooks and theses were searched for the published information about the risk and protective factors of self-immolation. An attempt was made to analyze and identify the epidemiologic patterns and prevention strategies of this phenomenon briefly. Results: Our review revealed that the phenomenon of self-immolation is particularly frequent among young women in Iran and adjustment disorder is the most common risk factor for self-immolation. Conclusion: This study shows that self-immolation is a significant health problem in some parts of Iran, suggesting that the health care system and authorities should be more attentive to this public health challenge. Furthermore, low-cost precautionary and preventive measures including counseling services can manage this phenomenon and should be of high priority for health officials.

  4. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    International Nuclear Information System (INIS)

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces ∼100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 GeV protons

  5. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  6. Self-immolation and its adverse life-events risk factors: results from an Iranian population

    Directory of Open Access Journals (Sweden)

    Alireza Ahmadi

    2015-01-01

    Full Text Available Abstract: Background: Despite considerable loss of life by deliberate self-burning in low and middle-income countries, few scholars have examined psychiatric factors such as adverse life events that may be related to self-immolation. Methods: This case-control study investigated adverse life-events as risk factors for self-immolation patients admitted to a burn center serving the western region of Iran. Variables inves-tigated included the following adverse life-events: unplanned pregnancy, infertility, homelessness, financial hardship, problems with friends, intimate relationship break-up , school or university failure, anxiety about school/university performance, problems at work, personal history of suicide attempts, family history of suicide attempts, individual history of mental disorders, and malignant disease. Results: Financial hardship (OR=3.35, 95% CI=1.19-9.90, intimate relationship break-up (OR=5.45, 95% CI=1.20-11.99, and personal history of suicide attempts (OR=7.00, 95% CI=1.38-35.48 were associated with increased risk of self-immolation. Conclusions: This study suggests that financial hardship, intimate relationship break-ups, and personal history of suicide attempts are risk factors for self-immolation. Other variables studied did not play a role as individually protective or risk factors for self-immolation. Further study is needed to substantiate findings of this study and direct research toward tailoring culturally sensitive, empirically-supported interventions for prevention of self-immolation.

  7. What factors play a role in preventing self-immolation?Results from a case-control study in Iran

    Directory of Open Access Journals (Sweden)

    Hosein Karim

    2015-07-01

    Full Text Available Abstract: Background: To investigate factors related to prevention of self-immolation in west of Iran. Methods: In a case-control study, 30 consecutive cases of deliberate self-inflicted burns admitted to the regional burn center (Imam Khomeini hospital in Kermanshah province, Iran were compared with controls selected from the community and matched by sex, age,district-county of residence, and rural vs urban living environment. The following characteristics relevant to preventing self immolation were collected from all cases and controls: main domestic fuel used in the household, awareness about complications of burn injuries, and use of counseling services. Results: Descriptive analyses revealed that kerosene was the main domestic fuel in the household for 83% of cases. Not surprisingly, the main means of self-immolation in 93% of the patients was kerosene, with other fuels such as petrol and domestic gas used in remaining cases. The majority of cases and controls were aware of the potential complications of burn injuries. Use of counseling services was more common in controls. Conclusions: All three aspects of preventing self-immolation – having kerosene and other fuels in the home, being aware of the complications of burn injuries, and using counseling services were present in both the cases and controls. This suggests a large portion of residents in rural Iran are potential self-immolation victims. Increasing preventive strategies may reduce risk of suicide by self-immolation.

  8. Epidemiology of Self-Immolation in the North-West of Iran

    OpenAIRE

    2005-01-01

    Aim: This study was carried out to investigate the incidence, time trend, influencing factors and survival of self-immolation in the North-West of Iran. Methods: In this research, medical records of ninety eight cases who attempted suicide by selfimmolation between 1998 and 2003 were studied. Data collected included age, weight, sex, marital status, date of burn, length of stay in the hospital, body surface burned (in percent), external cause of death, psychiatric diagnosis of patients, and o...

  9. Chiral, J-Aggregate-Forming Dyes for Alternative Signal Modulation Mechanisms in Self-Immolative Enzyme-Activatable Optical Probes.

    Science.gov (United States)

    Sloniec-Myszk, Jagoda; Resch-Genger, Ute; Hennig, Andreas

    2016-02-11

    Enzyme-activatable optical probes are important for future advances in cancer imaging, but may easily suffer from low signal-to-background ratios unless not optimized. To address this shortcoming, numerous mechanisms to modulate the fluorescence signal have been explored. We report herein newly synthesized probes based on self-immolative linkers containing chiral J-aggregate-forming dyes. Signal modulation by formation of chiral J-aggregates is yet unexplored in optical enzyme probe design. The comprehensive characterization of the probes by absorption, CD, fluorescence, and time-resolved fluorescence spectroscopy revealed dye-dye interactions not observed for the free dyes in solution as well as dye-protein interactions with the enzyme. This suggested that J-aggregate formation is challenging to achieve with current probe design and that interactions of the dyes with the enzyme may interfere with achieving high signal-to-background ratios. The detailed understanding of the interactions provided herein provides valuable guidelines for the future design of similar probes.

  10. A study of suicide and attempted suicide by self-immolation in an Irish psychiatric population: an increasing problem.

    LENUS (Irish Health Repository)

    O'Donoghue, J M

    2012-02-03

    In the Western World self-immolation is an uncommon but dramatic method of attempting suicide. In-patients who attempt suicide by fire-setting tend to be female with severe psychopathology. In a previous study from the South of Ireland, seven cases from a psychiatric and prison population were identified in a five year period from 1984 to 1989. This would represent an annual rate of 1.07 per cent of burns treated in the burns unit at Cork University Hospital. In this study 12 cases were identified for the years 1994 and 1995. This represents an increase of 3.5 per cent from 1.07 to 4.6 per cent of all burns treated at the same institution. Ten of these patients had a previous psychiatric history and eight of them were resident on a psychiatric ward when they committed the act. Seven of the patients were found to have a high degree of suicide intent of whom four died of their injuries, which gives a mortality rate for this group of 33 per cent. Effective prevention policies are necessary if this increasing problem is to be curtailed.

  11. The Methylene Alkoxy Carbamate Self-Immolative Unit: Utilization for the Targeted Delivery of Alcohol-Containing Payloads with Antibody-Drug Conjugates.

    Science.gov (United States)

    Kolakowski, Robert V; Haelsig, Karl T; Emmerton, Kim K; Leiske, Chris I; Miyamoto, Jamie B; Cochran, Julia H; Lyon, Robert P; Senter, Peter D; Jeffrey, Scott C

    2016-07-01

    A strategy for the conjugation of alcohol-containing payloads to antibodies has been developed and involves the methylene alkoxy carbamate (MAC) self-immolative unit. A series of MAC β-glucuronide model constructs were prepared to evaluate stability and enzymatic release, and the results demonstrated high stability at physiological pH in a substitution-dependent manner. All the MAC model compounds efficiently released alcohol drug surrogates under the action of β-glucuronidase. To assess the MAC technology for ADCs, the potent microtubule-disrupting agent auristatin E (AE) was incorporated through the norephedrine alcohol. Conjugation of the MAC β-glucuronide AE drug linker to the anti-CD30 antibody cAC10, and an IgG control antibody, gave potent and immunologically specific activities in vitro and in vivo. These studies validate the MAC self-immolative unit for alcohol-containing payloads within ADCs, a class that has not been widely exploited. PMID:27198854

  12. 樋口一叶小说《自焚》中的母女命运解读%An Analysis of the Mother and Daughter’s Destinies in Self-immolation

    Institute of Scientific and Technical Information of China (English)

    石玉芳

    2014-01-01

    《自焚》是樋口一叶生前最后完成的作品,该作品通过描写母女两代人不幸的婚姻,来说明在封建道德伦理及资本主义金钱关系下,女性仅仅是婚姻买卖中的商品,她们的不幸命运及生存困境具有普遍性和延续性。%Self-immolation,the last work by Higuchi,describes the mother and daughter’s unfortunate marriages and shows that in the social context of feudal ethics and capitalism,women,regarded as com-modity in marriage,have to suffer from universal and traditional destinies.

  13. Stimulus-responsive nanopreparations for tumor targeting.

    Science.gov (United States)

    Zhu, Lin; Torchilin, Vladimir P

    2013-01-01

    Nanopreparations such as liposomes, micelles, polymeric and inorganic nanoparticles, and small molecule/nucleic acid/protein conjugates have demonstrated various advantages over "naked" therapeutic molecules. These nanopreparations can be further engineered with functional moieties to improve their performance in terms of circulation longevity, targetability, enhanced intracellular penetration, carrier-mediated enhanced visualization, and stimuli-sensitivity. The idea of application of a stimulus-sensitive drug or imaging agent delivery system for tumor targeting is based on the significant abnormalities in the tumor microenvironment and its cells, such as an acidic pH, altered redox potential, up-regulated proteins and hyperthermia. These internal conditions as well as external stimuli, such as magnetic field, ultrasound and light, can be used to modify the behavior of the nanopreparations that control drug release, improve drug internalization, control the intracellular drug fate and even allow for certain physical interactions, resulting in an enhanced tumor targeting and antitumor effect. This article provides a critical view of current stimulus-sensitive drug delivery strategies and possible future directions in tumor targeting with primary focus on the combined use of stimulus-sensitivity with other strategies in the same nanopreparation, including multifunctional nanopreparations and theranostics. PMID:22869005

  14. High efficiency diffusion molecular retention tumor targeting.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Here we introduce diffusion molecular retention (DMR tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding and RAD (control probes were synthesized bearing DOTA (for (111 In(3+, a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111In] RGD and [(111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.. The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide, which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.

  15. Production of actinium-225 for alpha particle mediated radioimmunotherapy.

    Science.gov (United States)

    Boll, Rose A; Malkemus, Dairin; Mirzadeh, Saed

    2005-05-01

    The initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the alpha emitter (213)Bi in killing cancer cells. Bismuth-213 is obtained from a radionuclide generator system from decay of 10-days (225)Ac parent. Recent pre-clinical studies have also shown the potential application of both (213)Bi, and the (225)Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. This paper describes our five years of experience in production of (225)Ac in partial support of the on-going clinical trials. A four-step chemical process, consisting of both anion and cation exchange chromatography, is utilized for routine separation of carrier-free (225)Ac from a mixture of (228)Th, (229)Th and (232)Th. The separation of Ra and Ac from Th is achieved using the marcoporous anion exchange resin MP1 in 8M HNO(3) media. Two sequential MP1/NO(3) columns provide a separation factor of approximately 10(6) for Ra and Ac from Th. The separation of Ac from Ra is accomplished on a low cross-linking cation exchange resin AG50-X4 using 1.2M HNO(3) as eluant. Two sequential AG50/NO(3) columns provide a separation factor of approximately 10(2) for Ac from Ra. A 60-day processing schedule has been adopted in order to reduce the processing cost and to provide the highest levels of (225)Ac possible. Over an 8-week campaign, a total of approximately 100 mCi of (225)Ac (approximately 80% of the theoretical yield) is shipped in 5-6 batches, with the first batch typically consisting of approximately 50 mCi. After the initial separation and purification of Ac, the Ra pool is re-processed on a bi-weekly schedule or as needed to provide smaller batches of (225)Ac. The averaged radioisotopic purity of the (225)Ac was 99.6 +/- 0.7% with a (225)Ra content of < or =0.6%, and an average (229)Th content of (4(-4)(+5)) x 10(-5)%.

  16. Tumor targeting using liposomal antineoplastic drugs

    Directory of Open Access Journals (Sweden)

    Jörg Huwyler

    2008-03-01

    Full Text Available Jörg Huwyler1, Jürgen Drewe2, Stephan Krähenbühl21University of Applied Sciences Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland; 2Department of Research and Division of Clinical Pharmacology, University Hospital Basel, Basel, SwitzerlandAbstract: During the last years, liposomes (microparticulate phospholipid vesicles have beenused with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of application include lipid-based formulations to enhance the solubility of poorly soluble antitumordrugs, the use of pegylated liposomes for passive targeting of solid tumors as well as vector-conjugated liposomal carriers for active targeting of tumor tissue. Such formulation and drug targeting strategies enhance the effectiveness of anticancer chemotherapy and reduce at the same time the risk of toxic side-effects. The present article reviews the principles of different liposomal technologies and discusses current trends in this field of research.Keywords: tumor targeting, antineoplastic drugs, liposomes, pegylation, steric stabilization, immunoliposomes

  17. Intricacies for Posttranslational Tumor-Targeted Cytokine Gene Therapy

    Directory of Open Access Journals (Sweden)

    Jeffry Cutrera

    2013-01-01

    Full Text Available The safest and most effective cytokine therapies require the favorable accumulation of the cytokine in the tumor environment. While direct treatment into the neoplasm is ideal, systemic tumor-targeted therapies will be more feasible. Electroporation-mediated transfection of cytokine plasmid DNA including a tumor-targeting peptide-encoding sequence is one method for obtaining a tumor-targeted cytokine produced by the tumor-bearing patient’s tissues. Here, the impact on efficacy of the location of targeting peptide, choice of targeting peptide, tumor histotype, and cytokine utilization are studied in multiple syngeneic murine tumor models. Within the same tumor model, the location of the targeting peptide could either improve or reduce the antitumor effect of interleukin (IL12 gene treatments, yet in other tumor models the tumor-targeted IL12 plasmid DNAs were equally effective regardless of the peptide location. Similarly, the same targeting peptide that enhances IL12 therapies in one model fails to improve the effect of either IL15 or PF4 for inhibiting tumor growth in the same model. These interesting and sometimes contrasting results highlight both the efficacy and personalization of tumor-targeted cytokine gene therapies while exposing important aspects of these same therapies which must be considered before progressing into approved treatment options.

  18. Macrocyclic Chelator Assembled RGD Multimers for Tumor Targeting

    OpenAIRE

    Zhang, Xiaofen; Liu, Hongguang; Miao, Zheng; Kimura, Richard; Fan, Feiyue; Cheng, Zhen

    2011-01-01

    Macrocyclic chelators have been extensively used for complexation of metal ions. A widely used chelator, DOTA, has been explored as a molecular platform to assemble multiple bioactive peptides in this paper. The multivalent DOTA-peptide bioconjugates demonstrate promising tumor targeting ability.

  19. Tumor-Targeting Salmonella typhimurium A1-R: An Overview.

    Science.gov (United States)

    Hoffman, Robert M

    2016-01-01

    The present chapter reviews the development of the tumor-targeting amino-acid auxotrophic strain S. typhimurium A1 and the in vivo selection and characterization of the high-tumor-targeting strain S. typhimurium A1-R. Efficacy of S. typhimurium A1-R in nude-mouse models of prostate, breast, pancreatic, and ovarian cancer, as well as sarcoma and glioma in orthotopic mouse models is described. Also reviewed is efficacy of S. typhimurium A1-R targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma, breast-cancer brain metastasis, and experimental breast-cancer bone metastasis in orthotopic mouse models. The efficacy of S. typhimurium A1-R on pancreatic cancer stem cells, on pancreatic cancer in combination with anti-angiogenic agents, as well as on cervical cancer, soft-tissue sarcoma, and pancreatic cancer patient-derived orthotopic xenograft (PDOX) mouse models, is also described.

  20. Current trends in the use of liposomes for tumor targeting.

    Science.gov (United States)

    Deshpande, Pranali P; Biswas, Swati; Torchilin, Vladimir P

    2013-09-01

    The use of liposomes for drug delivery began early in the history of pharmaceutical nanocarriers. These nanosized, lipid bilayered vesicles have become popular as drug delivery systems owing to their efficiency, biocompatibility, nonimmunogenicity, enhanced solubility of chemotherapeutic agents and their ability to encapsulate a wide array of drugs. Passive and ligand-mediated active targeting promote tumor specificity with diminished adverse off-target effects. The current field of liposomes focuses on both clinical and diagnostic applications. Recent efforts have concentrated on the development of multifunctional liposomes that target cells and cellular organelles with a single delivery system. This review discusses the recent advances in liposome research in tumor targeting. PMID:23914966

  1. Tumor targeting of radiolabeled antibodies using HYNIC chelate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Sup; Chung, Wee Sup; Woo, Kwang Sun; Choi, Tae Hyun; Chung, Hye Kyung; Lee, Myung Jin; Kim, So Yeon; Jung, Jae Ho; Choi, Chang Woon; Lim, Sang Moo [KIRAMS, Seoul (Korea, Republic of); Darwati, Siti [National Nuclear Energy Agency, Tangerang (Indonesia)

    2004-07-01

    There is an increasing interest in the use of labeled antibodies for diagnosis of cancers as well as for therapy. Various radiolabeling methods have been used in order to obtain better tumor specific targeting for detection and therapy. It was generally used to tumor targeted immunotherapy and immunodetection that lym-1, mouse monoclonal antibody, was specific binding to surface antigen of Raji. The 3E8 antibody was produced from humanized anti-TAG-72 monoclonal antibody (AKA) by amino acid change in 95-99 residues of heavy chain complementary determinant regions (HCDRs) 3 using phage displayed library technology. In this study, we are investigating the usefulness of HYNIC chelate as a bifunctional chelating agent in radioimmunodetecton of tumor. Two types of antibodies, Lym-1 and 3E8, were used for the conjugation with HYNIC chelate. Lym-1 and 3E8 are specific antibodies to surface antigen of Non-Hogkin's lymphoma and TAG-72 antigen of colorectal carcinoma, respectively. We prepare HYNIC-antibody conjugates, determine radiolabeling yield with {sup 99m}Tc and evaluate tumor targeting in tumor bearing nude mice model.

  2. Multifunctional TK-VLPs nanocarrier for tumor-targeted delivery.

    Science.gov (United States)

    Ren, Yachao; Mu, Yu; Jiang, Lei; Yu, Hui; Yang, Shuman; Zhang, Yu; Wang, Jianzhong; Zhang, Hua; Sun, Hunan; Xiao, Cuihong; Peng, Haisheng; Zhou, Yulong; Lu, Weiyue

    2016-04-11

    Virus-like particles (VLPs) have been exploited for various biomedical applications, such as the monitoring, prevention, diagnosis and therapy of disease. In this study, a novel multifunctional VLPs nanocarrier (TK-VLPs) was prepared and used for tumor-targeted delivery. The SPR and cell uptake results indicated that the TK peptide is a "bi-functional ligand" with high affinity for Caco-2, HRT-18 and HUVEC cells through the integrin α6β1 and integrin αvβ3 receptors. The results of the direct immunofluorescence, SDS-PAGE and western blot assays demonstrated that the TK-VLPs were successfully prepared using the baculovirus expression system. Confocal laser scanning microscopy and the flow cytometry analysis validated that the TK-VLPs could target to Caco-2, HRT-18 and HUVEC cells. An in vivo study further confirmed that the TK-VLPs could target and efficiently deliver fluorescein to tumor cells and the tumor vasculature in mice bearing subcutaneous tumors. TK-VLPs-DOX displayed a uniform, spherical shape and an average size of approximately 28nm. The results of the cell uptake and cytotoxicity assays indicated that TK-VLPs-DOX could enhance the selectivity for colorectal cancer cells. Together, our studies provide strong evidence that TK-VLPs could target colon tumor cells and tumor angiogenesis with enhanced permeability and retention effects, suggesting that the TK-VLPs are a multifunctional nanocarrier with potential applications in a colon tumor-targeted drug delivery system. PMID:26915810

  3. Tumor targeting of HPMA copolymer conjugates containing sulfadiazine groups

    Institute of Scientific and Technical Information of China (English)

    Jian Chao Yuan; Xiao Li Xie; Xian Wu Zeng; Hong Yun Guo; Cheng Ping Miao

    2012-01-01

    To develop new tumor targeting macromolecular conjugates,poly(HPMA)-SD-APMA-DTPA (HPMA:N-(2-hydroxypropyl)-methacrylamide; APMA:N-(3-aminopropyl)methacrylamide; DTPA:diethylenetriarninepentaacetic acid; SD:sulfadiazine) was synthesized and characterized.The poly(HPMA)-SD-DTPA conjugates were radiolabeled with the radionuclide 99mTc and tested for uptake by cultured H22 cells in vitro.DTPA-99mTc (radiotracer 1) and poly(HPMA)-DTPA-99mTc (radiotracer 2) were also synthesized and characterized for comparison.The uptake of poly(HPMA)-SD-DTPA-99mTc (radiotracer 3,34.76%) was significantly higher than that of poly(HPMA)-DTPA-99mTc (16.40%),indicating that uptake of the poly(HPMA)-SD-DTPA-99mT was active binding.The uptake of poly(HPMA)-DTPA-99mTc was significantly higher than that of DTPA-99mTc (2.98%),suggesting that uptake of the poly(HPMA)-DTPA-99mT was passive binding.The data suggest thin the poly(HPMA)-SD-APMA-DTPA conjugates might be useful as tumor targeting macromolecular conjugates.

  4. Gold Nanorod Bioconjugates for Active Tumor Targeting and Photothermal Therapy

    Directory of Open Access Journals (Sweden)

    Hadiyah N. Green

    2011-01-01

    Full Text Available The mastery of active tumor targeting is a great challenge in near infrared photothermal therapy (NIRPTT. To improve efficiency for targeted treatment of malignant tumors, we modify the technique of conjugating gold nanoparticles to tumor-specific antibodies. Polyethylene glycol-coated (PEGylated gold nanorods (GNRs were fabricated and conjugated to an anti-EGFR antibody. We characterized the conjugation efficiency of the GNRs by comparing the efficiency of antibody binding and the photothermal effect of the GNRs before and after conjugation. We demonstrate that the binding efficiency of the antibodies conjugated to the PEGylated GNRs is comparable to the binding efficiency of the unmodified antibodies and 33.9% greater than PEGylated antibody-GNR conjugates as reported by Liao and Hafner (2005. In addition, cell death by NIRPTT was sufficient to kill nearly 90% of tumor cells, which is comparable to NIRPTT with GNRs alone confirming that NIRPTT using GNRs is not compromised by conjugation of GNRs to antibodies.

  5. Tumor Targeting and Drug Delivery by Anthrax Toxin.

    Science.gov (United States)

    Bachran, Christopher; Leppla, Stephen H

    2016-01-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery. PMID:27376328

  6. New method for large scale production of medically applicable Actinium-225 and Radium-223

    International Nuclear Information System (INIS)

    Alpha-emitters (211At, 212Bi, 213Bi, 223Ra, 225Ac) are promising for targeted radiotherapy of cancer. Only two alpha decays near a cell membrane result in 50% death of cancer cell and only a single decay inside the cell is required for this. 225Ac may be used either directly or as a mother radionuclide in 213Bi isotope generator. Production of 225Ac is provided by three main suppliers - Institute for Transuranium Elements in Germany, Oak Ridge National Laboratory in USA and Institute of Physics and Power Engineering in Obninsk, Russia. The current worldwide production of 225Ac is approximately 1.7 Ci per year that corresponds to only 100-200 patients that could be treated annually. The common approach for 225Ac production is separation from mother 229Th or irradiation of 226Ra with protons in a cyclotron. Both the methods have some practical limitations to be applied routinely. 225Ac can be also produced by irradiation of natural thorium with medium energy protons . Cumulative cross sections of 225Ac, 227Ac, 227Th, 228Th formations have been obtained recently. Thorium targets (1-9 g) were irradiated by 114-91 MeV proton beam (1-50 μA) at INR linear accelerator. After dissolution in 8 M HNO3 + 0.004 M HF thorium was removed by double LLX by HDEHP in toluene (1:1). Ac and REE were pre-concentrated and separated from Ra and most fission products by DGA-Resin (Triskem). After washing out by 0.01 M HNO3 Ac was separated from REE by TRU Resin (Triskem) in 3 M HNO3 media. About 6 mCi 225Ac were separated in hot cell with chemical yield 85%. The method may be upscaled for production of Ci amounts of the radionuclide. The main impurity is 227Ac (0.1% at the EOB) but it does not hinder 225Ac from being used for medical 225Ac/213Bi generators. (author)

  7. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy.

    Science.gov (United States)

    Li, Donghai; Choi, Hyunchul; Cho, Sunghoon; Jeong, Semi; Jin, Zhen; Lee, Cheong; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2015-08-01

    In this paper, we propose a new concept for a hybrid actuated microrobot for tumor-targeting therapy. For drug delivery in tumor therapy, various electromagnetic actuated microrobot systems have been studied. In addition, bacteria-based microrobot (so-called bacteriobot), which use tumor targeting and the therapeutic function of the bacteria, has also been proposed for solid tumor therapy. Compared with bacteriobot, electromagnetic actuated microrobot has larger driving force and locomotive controllability due to their position recognition and magnetic field control. However, because electromagnetic actuated microrobot does not have self-tumor targeting, they need to be controlled by an external magnetic field. In contrast, the bacteriobot uses tumor targeting and the bacteria's own motility, and can exhibit self-targeting performance at solid tumors. However, because the propulsion forces of the bacteria are too small, it is very difficult for bacteriobot to track a tumor in a vessel with a large bloodstream. Therefore, we propose a hybrid actuated microrobot combined with electromagnetic actuation in large blood vessels with a macro range and bacterial actuation in small vessels with a micro range. In addition, the proposed microrobot consists of biodegradable and biocompatible microbeads in which the drugs and magnetic particles can be encapsulated; the bacteria can be attached to the surface of the microbeads and propel the microrobot. We carried out macro-manipulation of the hybrid actuated microrobot along a desired path through electromagnetic field control and the micro-manipulation of the hybrid actuated microrobot toward a chemical attractant through the chemotaxis of the bacteria. For the validation of the hybrid actuation of the microrobot, we fabricated a hydrogel microfluidic channel that can generate a chemical gradient. Finally, we evaluated the motility performance of the hybrid actuated microrobot in the hydrogel microfluidic channel. We expect

  8. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy.

    Science.gov (United States)

    Li, Donghai; Choi, Hyunchul; Cho, Sunghoon; Jeong, Semi; Jin, Zhen; Lee, Cheong; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2015-08-01

    In this paper, we propose a new concept for a hybrid actuated microrobot for tumor-targeting therapy. For drug delivery in tumor therapy, various electromagnetic actuated microrobot systems have been studied. In addition, bacteria-based microrobot (so-called bacteriobot), which use tumor targeting and the therapeutic function of the bacteria, has also been proposed for solid tumor therapy. Compared with bacteriobot, electromagnetic actuated microrobot has larger driving force and locomotive controllability due to their position recognition and magnetic field control. However, because electromagnetic actuated microrobot does not have self-tumor targeting, they need to be controlled by an external magnetic field. In contrast, the bacteriobot uses tumor targeting and the bacteria's own motility, and can exhibit self-targeting performance at solid tumors. However, because the propulsion forces of the bacteria are too small, it is very difficult for bacteriobot to track a tumor in a vessel with a large bloodstream. Therefore, we propose a hybrid actuated microrobot combined with electromagnetic actuation in large blood vessels with a macro range and bacterial actuation in small vessels with a micro range. In addition, the proposed microrobot consists of biodegradable and biocompatible microbeads in which the drugs and magnetic particles can be encapsulated; the bacteria can be attached to the surface of the microbeads and propel the microrobot. We carried out macro-manipulation of the hybrid actuated microrobot along a desired path through electromagnetic field control and the micro-manipulation of the hybrid actuated microrobot toward a chemical attractant through the chemotaxis of the bacteria. For the validation of the hybrid actuation of the microrobot, we fabricated a hydrogel microfluidic channel that can generate a chemical gradient. Finally, we evaluated the motility performance of the hybrid actuated microrobot in the hydrogel microfluidic channel. We expect

  9. Programmed activation of cancer cell apoptosis: A tumor-targeted phototherapeutic topoisomerase I inhibitor

    OpenAIRE

    Weon Sup Shin; Jiyou Han; Rajesh Kumar; Gyung Gyu Lee; Sessler, Jonathan L.; Jong-Hoon Kim; Jong Seung Kim

    2016-01-01

    We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38—a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a ...

  10. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    OpenAIRE

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Peter J Nelson; Bruns, Christiane J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associa...

  11. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy

    Directory of Open Access Journals (Sweden)

    Puvanakrishnan P

    2012-03-01

    Full Text Available Priyaveena Puvanakrishnan1, Jaesook Park1, Deyali Chatterjee2, Sunil Krishnan2, James W Tunnell11Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; 2The UT MD Anderson Cancer Center, Houston, TX, USAAbstract: Gold nanoparticles (GNPs have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle’s geometric properties (eg, size and dosing strategy (eg, number and amount of injections. The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs and gold nanorods (GNRs for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.Keywords: gold nanorods, gold nanoshells, tumor targeting

  12. Modulation of Hydrogel Nanoparticle Intracellular Trafficking by Multivalent Surface Engineering with Tumor Targeting Peptide†

    OpenAIRE

    Karamchand, Leshern; Kim, Gwangseong; Wang, Shouyan; Hah, Hoe Jin; Ray, Aniruddha; Jiddou, Ruba; Lee, Yong-Eun Koo; Philbert, Martin A.; Kopelman, Raoul

    2013-01-01

    Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP’s binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-i...

  13. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    OpenAIRE

    Hosoya, Hitomi; Andrey S Dobroff; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R.; Dogra, Prashant; Melancon, Marites P.; Stafford, R. Jason

    2016-01-01

    The main goal in the emerging field of cancer nanomedicine is to generate, standardize, and produce multifunctional carriers designed to improve the response of drugs against tumors. Here we report the design, development, and preclinical validation of a ligand-directed bioinorganic platform that integrates tumor targeting, receptor-mediated cell internalization, photon-to-heat conversion, and drug delivery. This enabling hydrogel-based technology can accommodate a broad variety of ligands, n...

  14. Multifunctional Micellar Nanocarriers for Tumor-Targeted Delivery of Hydrophobic Drugs.

    Science.gov (United States)

    Dai, Zhi; Tu, Ying; Zhu, Lin

    2016-06-01

    Poor water solubility, low tumor specificity, insufficient cell internalization, and drug resistance are typical among chemotherapy drugs. In this study, the multifunctional micellar nanocarriers containing the PEG2k-pp-PE, a matrix metalloproteinase 2 (MMP2)-labile self-assembling block copolymer, and the TAT-PEG1k-PE, a cell penetrating moiety, were developed for tumor-targeted delivery of hydrophobic drugs. The functional polymers and their nanocarriers were characterized in terms of their size, zeta potential, micelle formation capability, drug loading and release, cellular uptake, and anticancer activity. After the MMP2-mediated cleavage, the protective long chain PEG (PEG2k) was deshielded and the cell penetrating peptide (TAT) was exposed for the enhanced tumor targeting and cellular penetration. In the in vitro studies, the multifunctional nanocarriers showed the improved cellular uptake and anticancer activity in various cancer cells including both drug sensitive and resistant cells, compared to their nonsensitive counterparts and conventional polymeric micelles. Furthermore, the PEG2k-pp-PE and its containing micelles were found to possess the capability to reverse the P-glycoprotein-mediated multidrug resistance. Our results suggested that the multifunctional micellar nanocarriers would be a promising tumor-targeted drug delivery platform, applicable for the MMP2 up-regulated cancers. PMID:27319214

  15. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    Science.gov (United States)

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  16. Bioreducible BPEI-SS-PEG-cNGR polymer as a tumor targeted nonviral gene carrier.

    Science.gov (United States)

    Son, Sejin; Singha, Kaushik; Kim, Won Jong

    2010-08-01

    The work demonstrated development of multifunctional gene carrier which has incorporated reducible moiety, tumor targeting ligands as well as PEG to achieve efficient release of pDNA, enhanced tumor-specificity and long circulation, respectively. In our successful one-pot synthesis of multifunctional polymer, low molecular weight branched polyethylenimine (BPEI) was thiolated with propylene sulfide, and mixed with alpha-Maleimide-omega-N-hydroxysuccinimide ester polyethylene glycol (MAL-PEG-NHS, MW: 5000), and cyclic NGR peptide. The structural elucidation of the cNGR conjugated reducible BPEI containing disulfide bond (BPEI-SS-PEG-cNGR), was done by NMR and GPC study. Complex formation as well as reducible property of the polymer was confirmed by gel retardation assay. In order to achieve efficient tumor targeting, we have used cNGR peptide which is known to bind to CD13 overexpressed in neovasculature endothelial cells. Tumor target-specificity of polymer was established by carrying out competitive inhibition assay with free cNGR peptide. Cellular uptake of polymers was evaluated by confocal laser scanning microscope (CLSM). Finally, addition of free cNGR and buthionine sulfoximine (BSO) reduced transfection efficiency synergistically, which implied that multifunctional polymer-mediated gene transfection took place tumor-specifically and via GSH-dependent pathway.

  17. Cholesterol-modified poly(lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery.

    Science.gov (United States)

    Lee, Jeong-Jun; Lee, Song Yi; Park, Ju-Hwan; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-07-25

    Poly(lactide-co-glycolide)-cholesterol (PLGA-C)-based nanoparticles (NPs) were developed for the tumor-targeted delivery of curcumin (CUR). PLGA-C/CUR NPs with ∼200nm mean diameter, narrow size distribution, and neutral zeta potential were fabricated by a modified emulsification-solvent evaporation method. The existence of cholesterol moiety in PLGA-C copolymer was confirmed by proton nuclear magnetic resonance ((1)H NMR) analysis. In vitro stability of developed NPs after 24h incubation was confirmed in phosphate buffered saline (PBS) and serum media. Sustained (∼6days) and pH-responsive drug release profiles from PLGA-C NPs were presented. Blank PLGA and PLGA-C NPs exhibited a negligible cytotoxicity in Hep-2 (human laryngeal carcinoma) cells in the tested concentration range. According to the results of flow cytometry and confocal laser scanning microscopy (CLSM) studies, PLGA-C NPs presented an improved cellular accumulation efficiency, compared to PLGA NPs, in Hep-2 cells. Enhanced in vivo tumor targetability of PLGA-C NPs, compared to PLGA NPs, in Hep-2 tumor-xenografted mouse model was also verified by a real-time near-infrared fluorescence (NIRF) imaging study. Developed PLGA-C NPs may be a candidate of efficient and biocompatible nanosystems for tumor-targeted drug delivery and cancer imaging. PMID:27286639

  18. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    Science.gov (United States)

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407

  19. Correction: Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy.

    Science.gov (United States)

    Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun

    2016-07-01

    Correction for 'Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy' by Kyoung Sub Kim, et al., Nanoscale, 2016, DOI: 10.1039/c6nr02273a. PMID:27300478

  20. Correction: Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy

    Science.gov (United States)

    Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun

    2016-06-01

    Correction for `Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy' by Kyoung Sub Kim, et al., Nanoscale, 2016, DOI: 10.1039/c6nr02273a.

  1. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent

    Directory of Open Access Journals (Sweden)

    Hou L

    2015-07-01

    Full Text Available Lin Hou,* Huijuan Zhang,* Yating Wang, Lili Wang, Xiaomin Yang, Zhenzhong ZhangSchool of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China*These authors contributed equally to this workAbstract: A tumor-targeting carrier, hyaluronic acid (HA-functionalized single-walled carbon nanotubes (SWCNTs, was explored to deliver magnetic resonance imaging (MRI contrast agents (CAs targeting to the tumor cells specifically. In this system, HA surface modification for SWCNTs was simply accomplished by amidation process and could make this nanomaterial highly hydrophilic. Cellular uptake was performed to evaluate the intracellular transport capabilities of HA-SWCNTs for tumor cells and the uptake rank was HA-SWCNTs> SWCNTs owing to the presence of HA, which was also evidenced by flow cytometry. The safety evaluation of this MRI CAs was investigated in vitro and in vivo. It revealed that HA-SWCNTs could stand as a biocompatible nanocarrier and gadolinium (Gd/HA-SWCNTs demonstrated almost no toxicity compared with free GdCl3. Moreover, GdCl3 bearing HA-SWCNTs could significantly increase the circulation time for MRI. Finally, to investigate the MRI contrast enhancing capabilities of Gd/HA-SWCNTs, T1-weighted MR images of tumor-bearing mice were acquired. The results suggested Gd/HA-SWCNTs had the highest tumor-targeting efficiency and T1-relaxivity enhancement, indicating HA-SWCNTs could be developed as a tumor-targeting carrier to deliver the CAs, GdCl3, for the identifiable diagnosis of tumor.Keywords: gadolinium, magnetic resonance, SWCNTs, hyaluronic acid, contrast agent

  2. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.

    Science.gov (United States)

    Puvanakrishnan, Priyaveena; Park, Jaesook; Chatterjee, Deyali; Krishnan, Sunil; Tunnell, James W

    2012-01-01

    Gold nanoparticles (GNPs) have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle's geometric properties (eg, size) and dosing strategy (eg, number and amount of injections). The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs) and gold nanorods (GNRs) for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability. PMID:22419872

  3. Purification of radium-226 for the manufacturing of actinium-225 in a cyclotron for alpha-immunotherapy; Radium-Aufreinigung zur Herstellung von Actinium-225 am Zyklotron fuer die Alpha-Immuntherapie

    Energy Technology Data Exchange (ETDEWEB)

    Marx, Sebastian Markus

    2014-09-23

    The thesis describes the development of methods for the purification of Ra-226. The objective was to obtain the radionuclide in the quality that is needed to be used as starting material in the manufacturing process for Ac-225 via proton-irradiated Ra-226. The radionuclide has been gained efficiently out of huge excesses of impurities. The high purity of the obtained radium affords its use as staring material in a pharmaceutical manufacturing process.

  4. Liposomal Tumor Targeting in Drug Delivery Utilizing MMP-2- and MMP-9-Binding Ligands

    Directory of Open Access Journals (Sweden)

    Oula Penate Medina

    2011-01-01

    Full Text Available Nanotechnology offers an alternative to conventional treatment options by enabling different drug delivery and controlled-release delivery strategies. Liposomes being especially biodegradable and in most cases essentially nontoxic offer a versatile platform for several different delivery approaches that can potentially enhance the delivery and targeting of therapies to tumors. Liposomes penetrate tumors spontaneously as a result of fenestrated blood vessels within tumors, leading to known enhanced permeability and subsequent drug retention effects. In addition, liposomes can be used to carry radioactive moieties, such as radiotracers, which can be bound at multiple locations within liposomes, making them attractive carriers for molecular imaging applications. Phage display is a technique that can deliver various high-affinity and selectivity peptides to different targets. In this study, gelatinase-binding peptides, found by phage display, were attached to liposomes by covalent peptide-PEG-PE anchor creating a targeted drug delivery vehicle. Gelatinases as extracellular targets for tumor targeting offer a viable alternative for tumor targeting. Our findings show that targeted drug delivery is more efficient than non-targeted drug delivery.

  5. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-12-01

    Full Text Available Yue Zhang,1 Bin Zhang,1 Fei Liu,1,2 Jianwen Luo,1,3 Jing Bai1 1Department of Biomedical Engineering, School of Medicine, 2Tsinghua-Peking Center for Life Sciences, 3Center for Biomedical Imaging Research, Tsinghua University, Beijing, People's Republic of China Abstract: Dual-modality imaging combines the complementary advantages of different modalities, and offers the prospect of improved preclinical research. The combination of fluorescence imaging and magnetic resonance imaging (MRI provides cross-validated information and direct comparison between these modalities. Here, we report on the application of a novel tumor-targeted, dual-labeled nanoparticle (NP, utilizing iron oxide as the MRI contrast agent and near infrared (NIR dye Cy5.5 as the fluorescent agent. Results of in vitro experiments verified the specificity of the NP to tumor cells. In vivo tumor targeting and uptake of the NPs in a mouse model were visualized by fluorescence and MR imaging collected at different time points. Quantitative analysis was carried out to evaluate the efficacy of MRI contrast enhancement. Furthermore, tomographic images were also acquired using both imaging modalities and cross-validated information of tumor location and size between these two modalities was revealed. The results demonstrate that the use of dual-labeled NPs can facilitate the dual-modal detection of tumors, information cross-validation, and direct comparison by combing fluorescence molecular tomography (FMT and MRI. Keywords: dual-modality, fluorescence molecular tomography (FMT, magnetic resonance imaging (MRI, nanoparticle

  6. Electrosprayed nanocomposites based on hyaluronic acid derivative and Soluplus for tumor-targeted drug delivery.

    Science.gov (United States)

    Lee, Song Yi; Lee, Jeong-Jun; Park, Ju-Hwan; Lee, Jae-Young; Ko, Seung-Hak; Shim, Jae-Seong; Lee, Jongkook; Heo, Moon Young; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-09-01

    Nanocomposite (NC) based on hyaluronic acid-ceramide (HACE) and Soluplus (SP) was fabricated by electrospraying for the tumor-targeted delivery of resveratrol (RSV). Amphiphilic property of both HACE and SP has been used to entrap RSV in the internal cavity of NC. Electrospraying with established experimental conditions produced HACE/SP/RSV NC with 230nm mean diameter, narrow size distribution, negative zeta potential, and >80% drug entrapment efficiency. Sustained and pH-dependent drug release profiles were observed in drug release test. Cellular uptake efficiency of HACE/SP NC was higher than that of SP NC, mainly based on HA-CD44 receptor interaction, in MDA-MB-231 (CD44 receptor-positive human breast cancer) cells. Selective tumor targetability of HACE/SP NC, compared to SP NC, was also confirmed in MDA-MB-231 tumor-xenograted mouse model using a near-infrared fluorescence (NIRF) imaging. According to the results of pharmacokinetic study in rats, decreased in vivo clearance and increased half-life of RSV in NC group, compared to drug solution group, were shown. Given that these experimental results, developed HACE/SP NC can be a promising theranostic nanosystem for CD44 receptor-expressed cancers. PMID:27208440

  7. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J; O' Donoghue, J A; Humm, J L [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Jaggi, J S [Bristol-Myers Squibb, Plainsboro, NJ (United States); Ruan, S; Larson, S M [Nuclear Medicine Service Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); McDevitt, M; Scheinberg, D A, E-mail: schwarj1@mskcc.org [Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065 (United States)

    2011-02-07

    Clinical therapeutic studies using {sup 225}Ac-labeled antibodies have begun. Of major concern is renal toxicity that may result from the three alpha-emitting progeny generated following the decay of {sup 225}Ac. The purpose of this study was to determine the amount of {sup 225}Ac and non-equilibrium progeny in the mouse kidney after the injection of {sup 225}Ac-huM195 antibody and examine the dosimetric consequences. Groups of mice were sacrificed at 24, 96 and 144 h after injection with {sup 225}Ac-huM195 antibody and kidneys excised. One kidney was used for gamma ray spectroscopic measurements by a high-purity germanium (HPGe) detector. The second kidney was used to generate frozen tissue sections which were examined by digital autoradiography (DAR). Two measurements were performed on each kidney specimen: (1) immediately post-resection and (2) after sufficient time for any non-equilibrium excess {sup 213}Bi to decay completely. Comparison of these measurements enabled estimation of the amount of excess {sup 213}Bi reaching the kidney ({gamma}-ray spectroscopy) and its sub-regional distribution (DAR). The average absorbed dose to whole kidney, determined by spectroscopy, was 0.77 (SD 0.21) Gy kBq{sup -1}, of which 0.46 (SD 0.16) Gy kBq{sup -1} (i.e. 60%) was due to non-equilibrium excess {sup 213}Bi. The relative contributions to renal cortex and medulla were determined by DAR. The estimated dose to the cortex from non-equilibrium excess {sup 213}Bi (0.31 (SD 0.11) Gy kBq{sup -1}) represented {approx}46% of the total. For the medulla the dose contribution from excess {sup 213}Bi (0.81 (SD 0.28) Gy kBq{sup -1}) was {approx}80% of the total. Based on these estimates, for human patients we project a kidney-absorbed dose of 0.28 Gy MBq{sup -1} following administration of {sup 225}Ac-huM195 with non-equilibrium excess {sup 213}Bi responsible for approximately 60% of the total. Methods to reduce renal accumulation of radioactive progeny appear to be necessary for the success of {sup 225}Ac radioimmunotherapy.

  8. In situ crosslinked smart polypeptide nanoparticles for multistage responsive tumor-targeted drug delivery

    Science.gov (United States)

    Yi, Huqiang; Liu, Peng; Sheng, Nan; Gong, Ping; Ma, Yifan; Cai, Lintao

    2016-03-01

    Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible zeta potential around -30 mV at pH 7.4, but switched to +15 mV at pH 5.0. Moreover, FD-NPs effectively loaded DOX with a loading capacity at 15.7 wt%. At pH 7.4, only 24.5% DOX was released within 60 h. However, at pH 5.0, the presence of 10 mM DTT dramatically accelerated DOX release with over 90% of DOX released within 10 h. Although the FD-NPs only enhanced DOX uptake in FA receptor positive (FR+) cancer cells at pH 7.4, a weak acidic condition promoted FD-NP-facilitated DOX uptake in both FR+ HeLa and FR- A549 cells, as well as significantly improving cellular binding and end/lysosomal escape. In vivo studies in a HeLa cancer model demonstrated that the charge-reversible FD-NPs delivered DOX into tumors more effectively than charge-irreversible nanoparticles. Hence, these multistage responsive FD-NPs would serve as highly efficient drug vectors for targeted cancer chemotherapy.Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible

  9. Programmed activation of cancer cell apoptosis: A tumor-targeted phototherapeutic topoisomerase I inhibitor

    Science.gov (United States)

    Shin, Weon Sup; Han, Jiyou; Kumar, Rajesh; Lee, Gyung Gyu; Sessler, Jonathan L.; Kim, Jong-Hoon; Kim, Jong Seung

    2016-07-01

    We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38—a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a cancer targeting unit (biotin). Upon light activation in cancer cells, PT-1 interferes with DNA re-ligation, diminishes the expression of topoisomerase I, and enhances the expression of inter alia mitochondrial apoptotic genes, death receptors, and caspase enzymes, inducing DNA damage and eventually leading to apoptosis. In vitro and in vivo studies showed significant inhibition of cancer growth and the hybrid system PT-1 thus shows promise as a programmed photo-therapeutic (“phototheranostic”).

  10. Multifunctional nanosheets based on folic acid modified manganese oxide for tumor-targeting theranostic application

    Science.gov (United States)

    Hao, Yongwei; Wang, Lei; Zhang, Bingxiang; Zhao, Hongjuan; Niu, Mengya; Hu, Yujie; Zheng, Cuixia; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun

    2016-01-01

    It is highly desirable to develop smart nanocarriers with stimuli-responsive drug-releasing and diagnostic-imaging functions for cancer theranostics. Herein, we develop a reduction and pH dual-responsive tumor theranostic platform based on degradable manganese dioxide (MnO2) nanosheets. The MnO2 nanosheets with a size of 20-60 nm were first synthesized and modified with (3-Aminopropyl) trimethoxysilane (APTMS) to get amine-functionalized MnO2, and then functionalized by NH2-PEG2000-COOH (PEG). The tumor-targeting group, folic acid (FA), was finally conjugated with the PEGylated MnO2 nanosheets. Then, doxorubicin (DOX), a chemotherapeutic agent, was loaded onto the modified nanosheets through a physical adsorption, which was designated as MnO2-PEG-FA/DOX. The prepared MnO2-PEG-FA/DOX nanosheets with good biocompatibility can not only efficiently deliver DOX to tumor cells in vitro and in vivo, leading to enhanced anti-tumor efficiency, but can also respond to a slightly acidic environment and high concentration of reduced glutathione (GSH), which caused degradation of MnO2 into manganese ions enabling magnetic resonance imaging (MRI). The longitudinal relaxation rate r 1 was 2.26 mM-1 s-1 at pH 5.0 containing 2 mM GSH. These reduction and pH dual-responsive biodegradable nanosheets combining efficient MRI and chemotherapy provide a novel and promising platform for tumor-targeting theranostic application.

  11. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting

    Directory of Open Access Journals (Sweden)

    Destito Giuseppe

    2006-02-01

    Full Text Available Abstract Specific targeting of tumor cells is an important goal for the design of nanotherapeutics for the treatment of cancer. Recently, viruses have been explored as nano-containers for specific targeting applications, however these systems typically require modification of the virus surface using chemical or genetic means to achieve tumor-specific delivery. Interestingly, there exists a subset of viruses with natural affinity for receptors on tumor cells that could be exploited for nanotechnology applications. For example, the canine parvovirus (CPV utilizes transferrin receptors (TfRs for binding and cell entry into canine as well as human cells. TfRs are over-expressed by a variety of tumor cells and are widely being investigated for tumor-targeted drug delivery. We explored whether the natural tropism of CPV to TfRs could be harnessed for targeting tumor cells. Towards this goal, CPV virus-like particles (VLPs produced by expression of the CPV-VP2 capsid protein in a baculovirus expression system were examined for attachment of small molecules and delivery to tumor cells. Structural modeling suggested that six lysines per VP2 subunit are presumably addressable for bioconjugation on the CPV capsid exterior. Between 45 and 100 of the possible 360 lysines/particle could be routinely derivatized with dye molecules depending on the conjugation conditions. Dye conjugation also demonstrated that the CPV-VLPs could withstand conditions for chemical modification on lysines. Attachment of fluorescent dyes neither impaired binding to the TfRs nor affected internalization of the 26 nm-sized VLPs into several human tumor cell lines. CPV-VLPs therefore exhibit highly favorable characteristics for development as a novel nanomaterial for tumor targeting.

  12. Screening tumor-targeting bacteriophage particles by pre-clearing phage display

    International Nuclear Information System (INIS)

    Phage display technique provides a powerful approach for the discovery of new tumor-specific peptides. However, the peptides isolated through this technique usually did not possess high tumor-specific property. A pre-clearing step was introduced to increase the efficiency of biopanning by removal of particles that could interact with ubiquitously expressed cellular receptors in the non-target organs. The randomized Ph. D-CX7C phage library (Phage III) was first pre-cleared in normal mice to reduce vasculature- or organ-targeting phages to get the pre-cleared phage library, and then the tumor-targeting bacteriophage particles (Phage I) were screened from pre-clearing phage library in S180 tumor-bearing mice.The biodistribution results of 99mTc-labeled phages in mice bearing S180 tumor show that the uptake of 99mTc-labeled Phage I in tumor is high but low in normal organs, and the tumor-to-liver and tumor-to-spleen ratios of 99mTc-labeled Phage I are higher than those of 99mTc-labeled Phage II (tumor-specific phages screened from the original CX7C library) and Phage III (unscreened phages from the original CX7C library). It indicates that the yield of tumor-targeting bacteriophage particles could be improved and the non-specific binding in organs becomes weak. Consequently, the pre-clearing phage display method could improve the yield of positive hits by reducing the non-target organ accumulation of bacteriophage particles. (authors)

  13. Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating.

    Science.gov (United States)

    Mei, Ling; Zhang, Qianyu; Yang, Yuting; He, Qin; Gao, Huile

    2014-10-20

    Delivering chemotherapeutics by nanoparticles into tumor was influenced by at least two factors: specific targeting and highly efficient penetrating of the nanoparticles. In this study, two targeting ligands, angiopep-2 and activatable cell penetrating peptide (ACP), were functionalized onto nanoparticles for tumor targeting delivery. In this system, angiopep-2 is a ligand of low-density lipoprotein receptor-related protein-1 (LRP1) which was highly expressed on tumor cells, and the ACP was constructed by the conjugation of RRRRRRRR (R8) with EEEEEEEE through a matrix metalloproteinase-2 (MMP-2) sensitive linker, enabling the ACP with tumor microenvironment-responsive cell penetrating property. 4h incubation of ACP with MMP-2 leads to over 80% cleavage of ACP, demonstrating ACP indeed possessed MMP-2 responsive property. The constructed dual targeting nanoparticles (AnACNPs) were approximately 110 nm with a polydispersity index of 0.231. In vitro, ACP modification and angiopep-2 modification could both enhance the U-87 MG cell uptake because of the high expression of MMP-2 and LRP-1 on C6 cells. AnACNPs showed higher uptake level than the single ligand modified nanoparticles. The uptake of all particles was time- and concentration-dependent and endosomes were involved. In vivo, AnACNPs showed best tumor targeting efficiency. The distribution of AnACNPs in tumor was higher than all the other particles. After microvessel staining with anti-CD31 antibody, the fluorescent distribution demonstrated AnACNPs could distribute in the whole tumor with the highest intensity. In conclusion, a novel drug delivery system was developed for enhanced tumor dual targeting and elevated cell internalization.

  14. Innovations that influence the pharmacology of monoclonal antibody guided tumor targeting

    Energy Technology Data Exchange (ETDEWEB)

    Schlom, J.; Hand, P.H.; Greiner, J.W.; Colcher, D.; Shrivastav, S.; Carrasquillo, J.A.; Reynolds, J.C.; Larson, S.M.; Raubitschek, A. (National Cancer Institute, NIH, Bethesda, MD (USA))

    1990-02-01

    Tumor targeting by monoclonal antibodies (MAbs) can be enhanced by (a) increasing the percentage of injected dose taken up by the tumor and/or (b) increasing the tumor:nontumor ratios. Several groups have demonstrated that one can increase tumor to nontumor ratios by the use of antibody fragments or the administration of second antibodies. Several other modalities are also possible: (a) the use of recombinant interferons to up-regulate the expression of specific tumor associated antigens such as carcinoembryonic antigen or TAG-72 on the surface of carcinoma cells and thus increase MAb tumor binding has proved successful in both in vitro and in vivo studies; (b) the intracavitary administration of MAbs. Recent studies have demonstrated that when radiolabeled B72.3 is administered i.p. to patients with carcinoma of the peritoneal cavity, it localizes tumor masses with greater efficiency than does concurrent i.v. administered antibody. Studies involving the comparative pharmacology of intracavitary administration of radiolabeled MAb in patients and several animal models will be discussed; (c) it has been reported that prior exposure of hepatoma to external beam radiation will increase radiolabeled MAb tumor targeting. We and others have not been able to duplicate this phenomenon with a human colon cancer xenograft model and radiolabeled MAbs to two different colon carcinoma associated antigens. The possible reasons for these differences will be discussed; (d) the cloning and expression of recombinant MAbs with human constant regions and subsequent size modification constructs will also undoubtedly alter the pharmacology of MAb tumor binding in both diagnostic and therapeutic applications. 66 references.

  15. Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles

    Directory of Open Access Journals (Sweden)

    Rangger C

    2013-12-01

    Full Text Available Christine Rangger,1 Anna Helbok,1 Jane Sosabowski,2 Christian Kremser,3 Gottfried Koehler,4 Ruth Prassl,5,6 Fritz Andreae,7 Irene J Virgolini,1 Elisabeth von Guggenberg,1 Clemens Decristoforo11Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria; 2Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK; 3Department of Radiology, Innsbruck Medical University, Innsbruck, 4Department of Computational and Structural Biology, Max Perutz Laboratories, University of Vienna, Wien, 5Institute of Biophysics, Medical University of Graz, Graz, 6Ludwig Boltzmann Institute for Lung Vascular Research, 7piCHEM Research and Development, Graz, AustriaBackground: The significant progress in nanotechnology provides a wide spectrum of nanosized material for various applications, including tumor targeting and molecular imaging. The aim of this study was to evaluate multifunctional liposomal nanoparticles for targeting approaches and detection of tumors using different imaging modalities. The concept of dual-targeting was tested in vitro and in vivo using liposomes derivatized with an arginine-glycine-aspartic acid (RGD peptide binding to αvβ3 integrin receptors and a substance P peptide binding to neurokinin-1 receptors.Methods: For liposome preparation, lipids, polyethylene glycol building blocks, DTPA-derivatized lipids for radiolabeling, lipid-based RGD and substance P building blocks and imaging labels were combined in defined molar ratios. Liposomes were characterized by photon correlation spectroscopy and zeta potential measurements, and in vitro binding properties were tested using fluorescence microscopy. Standardized protocols for radiolabeling were developed to perform biodistribution and micro-single photon emission computed tomography/computed tomography (SPECT/CT studies in nude mice bearing glioblastoma and/or melanoma tumor xenografts. Additionally, an initial magnetic resonance

  16. Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide

    Science.gov (United States)

    Karamchand, Leshern; Kim, Gwangseong; Wang, Shouyan; Hah, Hoe Jin; Ray, Aniruddha; Jiddou, Ruba; Koo Lee, Yong-Eun; Philbert, Martin A.; Kopelman, Raoul

    2013-10-01

    Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers.Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers. Electronic supplementary information (ESI) available: Effect of Potassium depletion on F3 peptide subcellular localization, MTT

  17. Tumor-targeted intracellular delivery of anticancer drugs through the mannose-6-phosphate/insulin-like growth factor II receptor

    NARCIS (Netherlands)

    Prakash, Jai; Beljaars, Leonie; Harapanahalli, Akshay K.; Zeinstra-Smith, Mieke; de Jager-Krikken, Alie; Hessing, Martin; Steen, Herman; Poelstra, Klaas

    2010-01-01

    Tumor-targeting of anticancer drugs is an interesting approach for the treatment of cancer since chemotherapies possess several adverse effects. In the present study, we propose a novel strategy to deliver anticancer drugs to the tumor cells through the mannose-6-phosphate/insulin-like growth factor

  18. A Salmonella Typhimurium mutant strain capable of RNAi delivery: higher tumor-targeting and lower toxicity.

    Science.gov (United States)

    Cheng, Xiawei; Zhang, Xiaoxin; Zhou, Yuqiang; Zhang, Chunmei; Hua, Zi-Chun

    2014-08-01

    Bacteria are highly versatile and useful tools that could deliver short interfering RNA. In this study, a phoP/phoQ double-deleted Salmonella Typhimurium named VNP(PhoP/Q(-)) based on the genetic background of VNP20009. The biological safety and function of VNP(PhoP/Q(-)) were also analyzed. Our study revealed the following results: (1) VNP(PhoP/Q(-)) exhibited lower titers in tumor-free livers and spleens than VNP20009, (2) The survival of VNP(PhoP/Q(-)) in macrophages and 4T1 tumor cells was significantly reduced compared with that of VNP20009, (3) The tumor-targeting ability of VNP(PhoP/Q(-)) was significantly enhanced compared with that of VNP20009, and the anticancer effects of VNP(pPhoP/Q(-)) and VNP20009 on tumor-bearing mice were similar, (4) VNP(PhoP/Q(-)) could release an shRNA-expressing plasmid and express the EGFP reporter gene in tumor tissue. Therefore, VNP(PhoP/Q(-)) exhibited a better safety level in tumor-free mice and elicited an anti-tumor effect on tumor-bearing mice. Moreover, VNP(PhoP/Q(-)) could release an shRNA-expressing plasmid into the cytoplasm of host cells to silence targeted genes.

  19. Monte Carlo simulations of dose distributions with necrotic tumor targeted radioimmunotherapy

    International Nuclear Information System (INIS)

    Radio-resistant hypoxic tumor cells are significant contributors to the locoregional recurrences and distant metastases that mark failure of radiotherapy. Due to restricted tissue oxygenation, chronically hypoxic tumor cells frequently become necrotic and thus there is often an association between chronically hypoxic and necrotic tumor regions. This simulation study is the first in a series to determine the feasibility of hypoxic cell killing after first targeting adjacent areas of necrosis with either an α- or β-emitting radioimmunoconjugate. - Highlights: • A representative necrotic tumor geometry was created in the Geant4 Monte Carlo toolkit. • Custom designed particle tracking was performed allowing for separation of deposited doses from different decay particles. • Post-processing of the data included relative biological effectiveness of the different decay particles and effects of cell oxygenation. • Physical and equivalent doses resulting from 177Lu and 212Pb were compared by means of dose maps and dose profiles. • 212Pb appears to be a promising isotope for necrotic tumor targeted α-therapy and will be pursued in future in vivo studies

  20. Matrix Metalloprotease 2-Responsive Multifunctional Liposomal Nanocarrier for Enhanced Tumor Targeting

    Science.gov (United States)

    Zhu, Lin; Kate, Pooja; Torchilin, Vladimir P.

    2012-01-01

    A novel “smart” multifunctional drug delivery system was successfully developed to respond to the up-regulated matrix metalloprotease 2 (MMP2) in the tumor microenvironment and improve cancer cell-specific delivery of loaded drugs. The system represents a surface-functionalized liposomal nanocarrier, for which two functional polyethylene glycol (PEG)-lipid conjugates were synthesized and characterized. The functionalized liposome was further modified with the tumor cell-specific anti-nucleosome monoclonal antibody (mAb 2C5). In the resulting system, several drug delivery strategies were combined in the same nanocarrier in a simple way and coordinated in an optimal fashion. The functions of the nanocarrier include: i) the hydrophilic and flexible long PEG chains to prevent nanocarrier non-specific interactions and prolong its circulation time; ii) a nanoscale size of the system that allows for its passive tumor targeting via the enhanced permeability and retention (EPR) effect; iii) a mAb 2C5 to allow for the specific targeting of tumor cells; iv) a matrix metalloprotease 2-sensitive bond between PEG and lipid that undergoes cleavage in the tumor by the highly expressed extracellular MMP2 for the removal of PEG chains; v) The cell-penetrating peptide (TATp) triggering of the enhanced intracellular delivery of the system after long-chain PEG removal and exposure of the previously hidden surface-attached TATp. It is shown that such a design can enhance the targetability and internalization of nanocarriers in cancer cells. PMID:22409425

  1. Analysis and modeling of localized heat generation by tumor-targeted nanoparticles (Monte Carlo methods)

    Science.gov (United States)

    Sanattalab, Ehsan; SalmanOgli, Ahmad; Piskin, Erhan

    2016-04-01

    We investigated the tumor-targeted nanoparticles that influence heat generation. We suppose that all nanoparticles are fully functionalized and can find the target using active targeting methods. Unlike the commonly used methods, such as chemotherapy and radiotherapy, the treatment procedure proposed in this study is purely noninvasive, which is considered to be a significant merit. It is found that the localized heat generation due to targeted nanoparticles is significantly higher than other areas. By engineering the optical properties of nanoparticles, including scattering, absorption coefficients, and asymmetry factor (cosine scattering angle), the heat generated in the tumor's area reaches to such critical state that can burn the targeted tumor. The amount of heat generated by inserting smart agents, due to the surface Plasmon resonance, will be remarkably high. The light-matter interactions and trajectory of incident photon upon targeted tissues are simulated by MIE theory and Monte Carlo method, respectively. Monte Carlo method is a statistical one by which we can accurately probe the photon trajectories into a simulation area.

  2. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    Science.gov (United States)

    Ding, Hong; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Wu, Fang; Zhao, Lingling; Law, Wing-Cheung; Zhao, Weiwei; Ji, Wei; Liu, Liwei; Bergey, Earl J.; Prasad, Paras N.

    2011-04-01

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l - 1. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the αvβ3 integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  3. Histological study on side effects and tumor targeting of a block copolymer micelle on rats.

    Science.gov (United States)

    Kawaguchi, Takanori; Honda, Takashi; Nishihara, Masamichi; Yamamoto, Tatsuhiro; Yokoyama, Masayuki

    2009-06-19

    Histological examinations were performed with polymeric micelle-injected rats for evaluations of possible toxicities of polymeric micelle carriers. Weight of major organs as well as body weight of rats was measured after multiple intravenous injections of polymeric micelles forming from poly(ethylene glycol)-b-poly(aspartate) block copolymer. No pathological toxic side effects were observed at two different doses, followed only by activation of the mononuclear phagocyte system (MPS) in the spleen, liver, lung, bone marrow, and lymph node. This finding confirms the absence of--or the very low level of--in vivo toxicity of the polymeric micelle carriers that were reported in previous animal experiments and clinical results. Then, immunohistochemical analyses with a biotinylated polymeric micelle confirmed specific accumulation of the micelle in the MPS. The immunohistochemical analyses also revealed, first, very rapid and specific accumulation of the micelle in the vasculatures of tumor capsule of rat ascites hepatoma AH109A, and second, the micelle's scanty infiltration into tumor parenchyma. This finding suggests a unique tumor-accumulation mechanism that is very different from simple EPR effect-based tumor targeting.

  4. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery

    Science.gov (United States)

    Gao, Jie; Xie, Cao; Zhang, Mingfei; Wei, Xiaoli; Yan, Zhiqiang; Ren, Yachao; Ying, Man; Lu, Weiyue

    2016-03-01

    Melittin, the major component of the European bee venom, is a potential anticancer candidate due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, especially when applied through intravenous administration. The polyethylene glycol-stabilized lipid disk is a novel type of nanocarrier, and the rim of lipid disks has a high affinity to amphiphilic peptides. In our study, a c(RGDyK) modified lipid disk was developed as a tumor targeted drug delivery system for melittin. Cryo-TEM was used to confirm the shape and size of lipid disks with or without c(RGDyK) modification. In vitro and in vivo hemolysis analyses revealed that the hemolysis effect significantly decreased after melittin associated with lipid disks. Importantly, the results of our in vivo biodistribution and tumor growth inhibitory experiments showed that c(RGDyK) modification increased the distribution of lipid disks in the tumor and the anticancer efficacy of melittin loaded lipid disks. Thus, we successfully achieved a targeted drug delivery system for melittin and other amphiphilic peptides with a good therapeutic effect and low side effects.

  5. Synthesis and Evaluation of Folate-Conjugated Phenanthraquinones for Tumor-Targeted Oxidative Chemotherapy

    Science.gov (United States)

    Kumar, Ajay; Chelvam, Venkatesh; Sakkarapalayam, Mahalingam; Li, Guo; Sanchez-Cruz, Pedro; Piñero, Natasha S.; Low, Philip S.; Alegria, Antonio E.

    2016-01-01

    Almost all cells are easily killed by exposure to potent oxidants. Indeed, major pathogen defense mechanisms in both animal and plant kingdoms involve production of an oxidative burst, where host defense cells show an invading pathogen with reactive oxygen species (ROS). Although cancer cells can be similarly killed by ROS, development of oxidant-producing chemotherapies has been limited by their inherent nonspecificity and potential toxicity to healthy cells. In this paper, we describe the targeting of an ROS-generating molecule selectively to tumor cells using folate as the tumor-targeting ligand. For this purpose, we exploit the ability of 9,10-phenanthraquinone (PHQ) to enhance the continuous generation of H2O2 in the presence of ascorbic acid to establish a constitutive source of ROS within the tumor mass. We report here that incubation of folate receptor-expressing KB cells in culture with folate-PHQ plus ascorbate results in the death of the cancer cells with an IC50 of ~10 nM (folate-PHQ). We also demonstrate that a cleavable spacer linking folate to PHQ is significantly inferior to a noncleavable spacer, in contrast to most other folate-targeted therapeutic agents. Unfortunately, no evidence for folate-PHQ mediated tumor regression in murine tumor models is obtained, suggesting that unanticipated impediments to generation of cytotoxic quantities of ROS in vivo are encountered. Possible mechanisms and potential solutions to these unanticipated results are offered. PMID:27066312

  6. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles.

    Science.gov (United States)

    Giarra, Simona; Serri, Carla; Russo, Luisa; Zeppetelli, Stefania; De Rosa, Giuseppe; Borzacchiello, Assunta; Biondi, Marco; Ambrosio, Luigi; Mayol, Laura

    2016-04-20

    The arrangement of tumor targeting hyaluronic acid (HA) moieties on irinotecan (IRIN)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) has been directed by means of a gradient of lipophilicity between the oil and water phases of the emulsion used to produce the NPs. PLGA constitutes the NP bulk while HA is superficially exposed, with amphiphilic poloxamers acting as a bridge between PLGA and HA. Differential scanning calorimetry, zeta potential analyses and ELISA tests were employed to support the hypothesis of polymer assembly in NP formulations. The presence of flexible HA chains on NP surface enhances NP size stability over time due to an increased electrostatic repulsion between NPs and a higher degree of hydration of the device surface. IRIN in vitro release kinetics can be sustained up to 7-13 days. In vitro biologic studies indicated that HA-containing NPs were more toxic than bare PLGA NPs against CD44-overexpressing breast carcinoma cells (HS578T), therefore indicating their ability to target CD44 receptor.

  7. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    International Nuclear Information System (INIS)

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l-1. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the αvβ3 integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  8. Identification of a New Peptide for Fibrosarcoma Tumor Targeting and Imaging In Vivo

    Directory of Open Access Journals (Sweden)

    Chia-Che Wu

    2010-01-01

    Full Text Available A 12-mer amino acid peptide SATTHYRLQAAN, denominated TK4, was isolated from a phage-display library with fibrosarcoma tumor-binding activity. In vivo biodistribution analysis of TK4-displaying phage showed a significant increased phage titer in implanted tumor up to 10-fold in comparison with normal tissues after systemic administration in mouse. Competition assay confirmed that the binding of TK4-phage to tumor cells depends on the TK4 peptide. Intravenous injection of 131I-labeled synthetic TK4 peptide in mice showed a tumor retention of 3.3% and 2.7% ID/g at 1- and 4-hour postinjection, respectively. Tumor-to-muscle ratio was 1.1, 5.7, and 3.2 at 1-, 4-, and 24-hour, respectively, and tumors were imaged on a digital γ-camera at 4-hour postinjection. The present data suggest that TK4 holds promise as a lead structure for tumor targeting, and it could be further applied in the development of diagnostic or therapeutic agent.

  9. A Novel Preparation Method for Camptothecin (CPT Loaded Folic Acid Conjugated Dextran Tumor-Targeted Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhiqiang Sun

    2011-06-01

    Full Text Available In this study, folic-dextran-camptothecin (Fa-DEX-CPT tumor-targeted nanoparticles were produced with a supercritical antisolvent (SAS technique by using dimethyl sulfoxide (DMSO as a solvent and carbon dioxide as an antisolvent. A factorial design was used to reveal the effect of various process parameters on the mean particle size (MPS and morphology of the particles formed. Under the optimum operation conditions, Fa-DEX-CPT nanoparticles with a MPS of 182.21 nm were obtained. Drug encapsulation efficiency and loading efficiency were 62.13% and 36.12%, respectively. It was found that the concentrations of the camptothecin (CPT and dextran solution had a major influence upon morphology and shape of the final product. In addition, the samples were characterized by Scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, Differential scanning calorimetry (DSC and X-ray diffraction (XRD with the purpose of developing a suitable targeted drug delivery system for cancer chemotherapy.

  10. Green design "bioinspired disassembly-reassembly strategy" applied for improved tumor-targeted anticancer drug delivery.

    Science.gov (United States)

    Wang, Ruoning; Gu, Xiaochen; Zhou, Jianping; Shen, Lingjia; Yin, Lifang; Hua, Peiying; Ding, Yang

    2016-08-10

    In this study, a simple and green approach 'bioinspired disassembly-reassembly strategy' was employed to reconstitute lipoprotein nanoparticles (RLNs) using whole-components of endogenous ones (contained dehydrated human lipids and native apolipoproteins). These RLNs were engineered to mimic the configuration and properties of natural lipoproteins for efficient drug delivery. In testing therapeutic targeting to microtubules, paclitaxel (PTX) was reassembled into RLNs to achieve improved targeted anti-carcinoma treatment and minimize adverse effects, demonstrating ultimately more applicable than HDL-like particles which are based on exogenous lipid sources. We have characterized that apolipoprotein-decoration of PTX-loaded RLNs (RLNs-PTX) led to favoring uniformly dispersed distribution, increasing PTX-encapsulation with a sustained-release pattern, while enhancing biostability during blood circulation. The innate biological RLNs induced efficient intracellular trafficking of cargos in situ via multi-targeting mechanisms, including scavenger receptor class B type I (SR-BI)-mediated direct transmembrane delivery, as well as other lipoprotein-receptors associated endocytic pathways. The resulting anticancer treatment from RLNs-PTX was demonstrated a half-maximal inhibitory concentration of 0.20μg/mL, cell apoptosis of 18.04% 24h post-incubation mainly arresting G2/M cell cycle in vitro, and tumor weight inhibition of 70.51% in vivo. Collectively, green-step assembly-based RLNs provided an efficient strategy for mediating tumor-targeted accumulation of PTX and enhanced anticancer efficacy. PMID:27238442

  11. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer

    Science.gov (United States)

    Kos, Petra; Lächelt, Ulrich; Herrmann, Annika; Mickler, Frauke Martina; Döblinger, Markus; He, Dongsheng; Krhač Levačić, Ana; Morys, Stephan; Bräuchle, Christoph; Wagner, Ernst

    2015-03-01

    Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor.Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing

  12. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Leppla, Stephen H., E-mail: sleppla@niaid.nih.gov [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  13. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    Energy Technology Data Exchange (ETDEWEB)

    Ding Hong; Yong, Ken-Tye; Roy, Indrajit; Hu Rui; Zhao Lingling; Law, Wing-Cheung; Ji Wei; Liu Liwei; Bergey, Earl J; Prasad, Paras N [Department of Chemistry, Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Wu Fang [Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Zhao Weiwei, E-mail: bergeye@buffalo.edu, E-mail: pnprasad@buffalo.edu [Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY 14215 (United States)

    2011-04-22

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l{sup -1}. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the {alpha}{sub v{beta}3} integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  14. Complement bound to tumor target cells enhances their sensitivity to macrophage-mediated killing

    Energy Technology Data Exchange (ETDEWEB)

    Bara, S.; Lint, T.F.

    1986-03-05

    Tumor cells are known to be susceptible to destruction by a variety of immune effector mechanisms including complement (C) and activated macrophages (M theta). The authors have chosen to study the interaction of these two effector systems by examining the effects of bound mouse C on the antibody-independent M theta-mediated lysis of the P815 mouse mastocytoma cell line. Hemolytically active normal mouse serum (NMS) was used to deposit C on tumor targets by an alternative pathway mechanism in the absence of added antibody. C3 was quantitated on the P815 cells by a cellular enzyme-linked immunosorbant assay. C. parvum-activated macrophages produced tumor cytolysis which was measured in a serum-free 16 hour /sup 51/Cr-release assay. Target cells which had been incubated with NMS for 30 min at 37/sup 0/C demonstrated a 30% increase in specific /sup 51/Cr-release at a 1:1 effector to target (E:T) ratio, as compared to targets incubated with heat-inactivated (56/sup 0/C, 30 min) NMS. The treatment of target cells with NMS alone did not cause lysis. At higher E:T ratios specific /sup 51/Cr-release approached a maximum level which was not increased further by C treatment of the target cells. However, at low E:T ratios, NMS increased the specific /sup 51/Cr-release in a dose-dependent fashion; this increase was abrogated by 10 mM EDTA. The kinetics of lysis of C-treated P815 cells by activated M theta does not differ from that of control P815 cells. These results indicate that target-bound C may enhance M theta-mediated killing of tumor cells.

  15. Construction, expression and tumor targeting of a single-chain Fv against human colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jin Fang; Hong-Bin Jin; Jin-Dan Song

    2003-01-01

    AIM: A single-chain antibody fragment, ND-1scFv, against human colorectal carcinoma was constructed and expressed in E.coli, and its biodistribution and pharmacokinetic properties were studied in mice bearing tumor.METHODS: VH and VL genes were amplified from hybridoma cell IC-2, secreting monoclonal antibody ND-1, by RT-PCR,and connected by linker (Gly4Ser)3 to form scFv gene, which was cloned into expression vector pET 28a(+) and finally expressed in E.coli. The expressed product ND-1scFv was purified by metal affinity chromatography using Ni-NTA, its purity and biological activity were determined using SDSPAGE and ELISA. ND-1scFv was labeled with 99mTc, and then injected into mice bearing colorectal carcinoma xenograft for phamacokinetic study in vivo.RESULTS: SDS-PAGE analysis showed that the relative molecular weight of recombinant protein was 30kDa with purity of 94%. ELIAS assay revealed that ND-1scFv retained the immunoactivity of parent mAb, being capable of binding specifically to human colorectal carcinoma cell line expressing associated antigen. Radiolabeled ND-1scFv exhibited rapid tumor targeting, with specific distribution in mice bearing colorectal carcinoma xenograft observed as early as 1 h following injection. In vivo pharmacokinetic studies also demonstrated that ND-1scFv had very rapid plasma clearance (T1/2α of 5.7 min, T1/2β of 2.6 h).CONCLUSION: ND-1scFv shows significant immunoactivity,and better pharmacokinetic and biodistribution characteristics compared with intact mAbs, demonstrating the possibility as a carrier for tumor-imaging.

  16. RGD-modified pH-sensitive liposomes for docetaxel tumor targeting.

    Science.gov (United States)

    Chang, Minglu; Lu, Shanshan; Zhang, Fang; Zuo, Tiantian; Guan, Yuanyuan; Wei, Ting; Shao, Wei; Lin, Guimei

    2015-05-01

    Phosphatidylethanolamine-based pH-sensitive liposomes of various compositions have been described as efficient systems for delivery of therapeutic molecules into tumor cells. The aim of this work was to develop a drug delivery system based on pH-sensitive liposomes (PLPs) that were modified with arginine-glycine-aspartic acid (RGD) peptide to enhance the effectiveness of docetaxel treatment. Docetaxel/coumarin-6 loaded PLPs were prepared by the thin-film dispersion method and characterized in detail, including by particle size, polydispersity, zeta potential and drug encapsulation efficiency. In vitro studies using MCF-7, HepG2and A549 cells were employed to investigate cytotoxicity and cellular uptake of the drug solution or docetaxel/coumarin-6 loaded PLPs. The accumulation of 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-labeled liposomes in vivo was studied through tumor section imaging of xenograft mouse models of MCF-7 24h after intravenous administration. The particle size of the non-coated or RGD modified PLPs ranged between 146 and 129nm. Drug release in vitro was modestly prolonged and had good pH sensitivity. In the in vitro study, RGD-coated PLPs showed higher cytotoxicity and cellular uptake relative to non-coated ones. The results of the in vivo study showed that RGD-coated PLPs had higher fluorescence, which suggested a more efficient accumulation than normal PLPs in tumors. In conclusion, these results confirmed RGD-modified PLPs as a potential drug delivery system to achieve controlled release and tumor targeting. PMID:25851582

  17. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    International Nuclear Information System (INIS)

    Highlights: ► Non-infectious and protease-deficient Bacillus anthracis protein expression system. ► Successful expression and purification of a tumor-targeted fusion protein drug. ► Very low endotoxin contamination of purified protein. ► Efficient protein secretion simplifies purification. ► Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  18. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yong Jin; Ko, In Ok [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Tae-Jeong; Chang, Yongmin [Institute of Biomedical Engineering, Kyungpook National University, Daegu (Korea, Republic of); Lim, Sang Moo [Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kyeong Min [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jung Young, E-mail: jykim@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.

  19. Preparation and imaging study of tumor-targeting MRI contrast agent based on Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    The detection and diagnosis of early hypoxic tumor is the key for successful cancer therapy, which remains a challenge for radiologists because contrast agents could hardly reach it. Herein, a tumor-targeting MRI contrast agent was prepared by conjugating the small-molecule inhibitor of carbonic anhydrase (CA IX) that is overexpressed in hypoxic tumor, mafenide, onto the surface of Fe3O4 magnetic nanoparticles (MNPs) to improve the sensitivity of MRI for early tumor diagnosis. The tumor-targeting MNP (Fe3O4-SO2NH2) showed enhanced MRI contrasting performance both in vitro and in vivo in comparison with the non-targeting control, which made it a promising contrast agent for the detection and diagnosis of early hypoxic tumor. (author)

  20. MMP2-Sensitive PEG-Lipid Copolymers: A New Type of Tumor-Targeted P-Glycoprotein Inhibitor.

    Science.gov (United States)

    Dai, Zhi; Yao, Qing; Zhu, Lin

    2016-05-25

    Low tumor targetability and multidrug resistance (MDR) are two major impediments to the success of cancer treatments. Nanomaterials which possess high tumor targetability and the ability to reverse the MDR are rare. This report describes a new type of self-assembling polyethylene glycol-phosphoethanolamine-based copolymers (PEG-pp-PE) which showed both the matrix metalloproteinase 2 (MMP2)-sensitive tumor-targeted drug delivery and ability to inhibit the P-glycoprotein (P-gp)-mediated drug efflux. In this study, we synthesized a series of the homologous analogues of PEG-pp-PE copolymers and investigated the influence of their structures, including PEG lengths and peptide linkers, on the drug efflux, and identified the underlying mechanisms. We found that the whole structure (PEG-peptide-lipid) rather than any parts of the copolymers was key for the P-gp inhibition and a delicate balance between the hydrophilic and lipophilic segments of the PEG-pp-PE copolymers was needed for better modulating the P-gp-mediated drug efflux. The best copolymer, PEG2k-pp-PE, showed even higher P-gp inhibition effect than the d-α-tocopherol polyethylene glycol 1000 succinate (TPGS1k). We also found that the P-gp inhibition capability of PEG-pp-PE copolymers was highly associated with the P-gp down-regulation, the increase in the plasma membrane fluidity, and the inhibition of the P-gp ATPase activity. Besides, the excellent physicochemical properties, high drug loading, MMP2-dependent drug release, and improved drug efficacy in the MDR cancer cells suggested that the PEG-pp-PE copolymers might have great potential for building tumor-targeted drug delivery systems for treating drug-resistant cancers. PMID:27145021

  1. Tumor-targeting Salmonella typhimurium A1-R prevents experimental human breast cancer bone metastasis in nude mice

    OpenAIRE

    Miwa, Shinji; Yano, Shuya; Zhang, Yong; Matsumoto, Yasunori; Uehara, Fuminari; Yamamoto, Mako; Hiroshima, Yukihiko; Kimura, Hiroaki; Hayashi, Katsuhiro; Yamamoto, Norio; Bouvet, Michael; Tsuchiya, Hiroyuki; Hoffman, Robert M.; Ming ZHAO

    2014-01-01

    Bone metastasis is a lethal and morbid late stage of breast cancer that is currently treatment resistant. More effective mouse models and treatment are necessary. High bone-metastatic variants of human breast cancer cells were selected in nude mice by cardiac injection. After cardiac injection of a high bone-metastatic variant of breast cancer, all untreated mice had bone metastases compared to only 20% with parental cells. Treatment with tumor-targeting Salmonella typhimurium A1-R completely...

  2. Chemical gas-generating nanoparticles for tumor-targeted ultrasound imaging and ultrasound-triggered drug delivery.

    Science.gov (United States)

    Min, Hyun Su; Son, Sejin; You, Dong Gil; Lee, Tae Woong; Lee, Jangwook; Lee, Sangmin; Yhee, Ji Young; Lee, Jaeyoung; Han, Moon Hee; Park, Jae Hyung; Kim, Sun Hwa; Choi, Kuiwon; Park, Kinam; Kim, Kwangmeyung; Kwon, Ick Chan

    2016-11-01

    Although there is great versatility of ultrasound (US) technologies in the real clinical field, one main technical challenge is the compromising of high quality of echo properties and size engineering of ultrasound contrast agents (UCAs); a high echo property is offset by reducing particle size. Herein, a new strategy for overcoming the dilemma by devising chemical gas (CO2) generating carbonate copolymer nanoparticles (Gas-NPs), which are clearly distinguished from the conventional gas-encapsulated micro-sized UCAs. More importantly, Gas-NPs could be readily engineered to strengthen the desirable in vivo physicochemical properties for nano-sized drug carriers with higher tumor targeting ability, as well as the high quality of echo properties for tumor-targeted US imaging. In tumor-bearing mice, anticancer drug-loaded Gas-NPs showed the desirable theranostic functions for US-triggered drug delivery, even after i.v. injection. In this regard, and as demonstrated in the aforementioned study, our technology could serve a highly effective platform in building theranostic UCAs with great sophistication and therapeutic applicability in tumor-targeted US imaging and US-triggered drug delivery. PMID:27619240

  3. The Interplay of Antigen Affinity, Internalization, and Pharmacokinetics on CD44-Positive Tumor Targeting of Monoclonal Antibodies.

    Science.gov (United States)

    Glatt, Dylan M; Beckford Vera, Denis R; Parrott, Matthew C; Luft, J Christopher; Benhabbour, S Rahima; Mumper, Russell J

    2016-06-01

    Monoclonal antibodies (mAbs) offer promise as effective tumor targeting and drug delivery agents for cancer therapy. However, comparative biological and clinical characteristics of mAbs targeting the same tumor-associated antigen (TAA) often differ widely. This study examined the characteristics of mAbs that impact tumor targeting using a panel of mAb clones specific to the cancer-associated cell-surface receptor and cancer stem cell marker CD44. CD44 mAbs were screened for cell-surface binding, antigen affinity, internalization, and CD44-mediated tumor uptake by CD44-positive A549 cells. It was hypothesized that high-affinity, rapidly internalizing CD44 mAbs would result in high tumor uptake and prolonged tumor retention. Although high-affinity clones rapidly bound and were internalized by A549 cells in vitro, an intermediate-affinity clone demonstrated significantly greater tumor uptake and retention than high-affinity clones in vivo. Systemic exposure, rather than high antigen affinity or rapid internalization, best associated with tumor targeting of CD44 mAbs in A549 tumor-bearing mice. PMID:27079967

  4. In Vivo Bio-distribution and Efficient Tumor Targeting of Gelatin/Silica Nanoparticles for Gene Delivery

    Science.gov (United States)

    Zhao, Xueqin; Wang, Jun; Tao, SiJie; Ye, Ting; Kong, Xiangdong; Ren, Lei

    2016-04-01

    The non-viral gene delivery system is an attractive alternative to cancer therapy. The clinical success of non-viral gene delivery is hampered by transfection efficiency and tumor targeting, which can be individually overcome by addition of functional modules such as cell penetration or targeting. Here, we first engineered the multifunctional gelatin/silica (GS) nanovectors with separately controllable modules, including tumor-targeting aptamer AGRO100, membrane-destabilizing peptide HA2, and polyethylene glycol (PEG), and then studied their bio-distribution and in vivo transfection efficiencies by contrast resonance imaging (CRI). The results suggest that the sizes and zeta potentials of multifunctional gelatin/silica nanovectors were 203-217 nm and 2-8 mV, respectively. Functional GS-PEG nanoparticles mainly accumulated in the liver and tumor, with the lowest uptake by the heart and brain. Moreover, the synergistic effects of tumor-targeting aptamer AGRO100 and fusogenic peptide HA2 promoted the efficient cellular internalization in the tumor site. More importantly, the combined use of AGRO100 and PEG enhanced tumor gene expression specificity and effectively reduced toxicity in reticuloendothelial system (RES) organs after intravenous injection. Additionally, low accumulation of GS-PEG was observed in the heart tissues with high gene expression levels, which could provide opportunities for non-invasive gene therapy.

  5. In Vivo Bio-distribution and Efficient Tumor Targeting of Gelatin/Silica Nanoparticles for Gene Delivery.

    Science.gov (United States)

    Zhao, Xueqin; Wang, Jun; Tao, SiJie; Ye, Ting; Kong, Xiangdong; Ren, Lei

    2016-12-01

    The non-viral gene delivery system is an attractive alternative to cancer therapy. The clinical success of non-viral gene delivery is hampered by transfection efficiency and tumor targeting, which can be individually overcome by addition of functional modules such as cell penetration or targeting. Here, we first engineered the multifunctional gelatin/silica (GS) nanovectors with separately controllable modules, including tumor-targeting aptamer AGRO100, membrane-destabilizing peptide HA2, and polyethylene glycol (PEG), and then studied their bio-distribution and in vivo transfection efficiencies by contrast resonance imaging (CRI). The results suggest that the sizes and zeta potentials of multifunctional gelatin/silica nanovectors were 203-217 nm and 2-8 mV, respectively. Functional GS-PEG nanoparticles mainly accumulated in the liver and tumor, with the lowest uptake by the heart and brain. Moreover, the synergistic effects of tumor-targeting aptamer AGRO100 and fusogenic peptide HA2 promoted the efficient cellular internalization in the tumor site. More importantly, the combined use of AGRO100 and PEG enhanced tumor gene expression specificity and effectively reduced toxicity in reticuloendothelial system (RES) organs after intravenous injection. Additionally, low accumulation of GS-PEG was observed in the heart tissues with high gene expression levels, which could provide opportunities for non-invasive gene therapy. PMID:27071682

  6. Tumor targeting profiling of hyaluronan-coated lipid based-nanoparticles

    Science.gov (United States)

    Mizrahy, Shoshy; Goldsmith, Meir; Leviatan-Ben-Arye, Shani; Kisin-Finfer, Einat; Redy, Orit; Srinivasan, Srimeenakshi; Shabat, Doron; Godin, Biana; Peer, Dan

    2014-03-01

    Hyaluronan (HA), a naturally occurring high Mw (HMw) glycosaminoglycan, has been shown to play crucial roles in cell growth, embryonic development, healing processes, inflammation, and tumor development and progression. Low Mw (LMw, Hyaluronan (HA), a naturally occurring high Mw (HMw) glycosaminoglycan, has been shown to play crucial roles in cell growth, embryonic development, healing processes, inflammation, and tumor development and progression. Low Mw (LMw, <10 kDa) HA has been reported to provoke inflammatory responses, such as induction of cytokines, chemokines, reactive nitrogen species and growth factors. Herein, we prepared and characterized two types of HA coated (LMw and HMw) lipid-based targeted and stabilized nanoparticles (tsNPs) and tested their binding to tumor cells expressing the HA receptor (CD44), systemic immunotoxicity, and biodistribution in tumor bearing mice. In vitro, the Mw of the surface anchored HA had a significant influence on the affinity towards CD44 on B16F10 murine melanoma cells. LMw HA-tsNPs exhibited weak binding, while binding of tsNPs coated with HMw HA was characterized by high binding. Both types of tsNPs had no measured effect on cytokine induction in vivo following intravenous administration to healthy C57BL/6 mice suggesting no immune activation. HMw HA-tsNPs showed enhanced circulation time and tumor targeting specificity, mainly by accumulating in the tumor and its vicinity compared with LMw HA-tsNPs. Finally, we show that methotrexate (MTX), a drug commonly used in cancer chemotherapy, entrapped in HMw HA-tsNPs slowly diffused from the particles with a half-life of 13.75 days, and improved the therapeutic outcome in a murine B16F10 melanoma model compared with NPs suggesting an active cellular targeting beyond the Enhanced Permeability and Retention (EPR) effect. Taken together, these findings have major implications for the use of high molecular weight HA in nanomedicine as a selective and safe active cellular

  7. Preparation, characterization, in vivo pharmacokinetics, and biodistribution of polymeric micellar dimethoxycurcumin for tumor targeting

    Directory of Open Access Journals (Sweden)

    Liu H

    2015-10-01

    increased and prolonged by intravenously administering DMC-loaded micelles when compared with the same dose of free DMC dissolved in dimethyl sulfoxide. Furthermore, in vivo distribution results from tumor-bearing nude mice demonstrated that this micellar formulation significantly changed the biodistribution profile of DMC and increased drug accumulation in tumors. Therefore, the polymeric micellar formulation of DMC, based on the amphiphilic block copolymer, mPEG-PCL-Phe(Boc, could provide a desirable method for delivering DMC, especially for applications in cancer therapy. Keywords: dimethoxycurcumin, polymeric micelles, characterization, pharmacokinetic profile, biodistribution, tumor targeting 

  8. RGD-modified poly(D,L-lactic acid nanoparticles enhance tumor targeting of oridonin

    Directory of Open Access Journals (Sweden)

    Xu J

    2012-01-01

    -PLA-NPs or ORI solution. Consistent with these observations, ORI-PLA-RGD-NPs showed greater antitumor efficacy than ORI-PLA-RGD-NPs or ORI solution, as reflected by the decreased tumor growth and the prolonged survival time of mice bearing H22 tumors.Conclusion: The tumor-targeting efficiency and subsequent antitumor efficacy of ORI is increased by incorporation into ORI-PLA-RGD-NPs.Keywords: ORI, antitumor activity, RGD, poly(D,L-lactic acid, nanoparticles

  9. Bilayered near-infrared fluorescent nanoparticles based on low molecular weight PEI for tumor-targeted in vivo imaging

    International Nuclear Information System (INIS)

    To improve the tumor fluorescent imaging results in vivo, bilayered nanoparticles encapsulating a lipophilic near-infrared (NIR) fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotri-carbocyanine iodide (DiR) were prepared using low molecular weight stearic acid-grafted polyethyleneimine and hyaluronic acid (DiR-PgSHA nanoparticles), which were investigated as a novel NIR fluorescent nano-probe for in vivo tumor-targeted optical imaging. These nanoparticles were characterized by transmission electron microscopy (TEM), infrared (IR) spectra, UV-visual absorption, and fluorescent emission spectra. Their cytotoxicity in vitro and hepatotoxicity in vivo were tested by MTT assay and histological study, respectively. In vivo NIR fluorescence imaging of the DiR-PgSHA nanoparticles was performed using a Carestream imaging system. The DiR-PgSHA nanoparticles were sphere shaped with a diameter of approximately 50 nm according to the TEM images. The DiR-PgSHA nanoparticles had a low cytotoxicity in vitro according to the MTT assay and low hepatotoxicity in vivo as determined in histological studies. The fluorescent emission of DiR-PgSHA nanoparticles was stable in pH values of 5–9 in solution, with only slight blue-shifts of the emission maxima at the basic pH range. The DiR-PgSHA nanoparticles exhibited a substantial tumor-targeting ability in the optical imaging with the use of tumor-bearing mice. These results demonstrated that the DiR-PgSHA nanoparticle is an excellent biocompatible nano-probe for in vivo tumor-targeted NIR fluorescence imaging with a potential for clinical applications

  10. Tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier for targeted intracellular delivery of paclitaxel.

    Science.gov (United States)

    Chen, Conghui; Hu, Haiyang; Qiao, Mingxi; Zhao, Xiuli; Wang, Yinjie; Chen, Kang; Guo, Xiong; Chen, Dawei

    2015-03-01

    In the present study, we constructed a tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier containing paclitaxel (FA-BSA-LC/DOPE-PTX), by adding 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and oleic acid as pH-sensitive components into the formulation of lipid core and then coating with folic acid modified bovine serum albumin (FA-BSA) for tumor targeting activity. In vitro drug release study demonstrated that paclitaxel (PTX) was released from FA-BSA-LC/DOPE in a pH-dependent manner. The vitro cytotoxicity assays showed that all the blank nanocarriers were nontoxic. However, MTT assay showed that FA-BSA-LC/DOPE-PTX was highly cytotoxic. Cellular uptake experiments analyzed with flow cytometry and laser scan confocal microscope (LSCM) revealed that FA-BSA-LC/DOPE was taken up in great amount via folate receptor-mediated endocytosis and pH-sensitive release of drug to cytoplasm. Furthermore, the study of intracellular drug release behavior demonstrated that the FA-BSA-LC/DOPE escaped from lysosomes and released drug into cytoplasm. The in vivo targeting activity showed that the nanocarrier selectively targeted tumor and had long residence time for BSA layer increased the stability in blood. Moreover, FA-BSA-LC/DOPE-PTX produced very marked anti-tumor activity in tumor-bearing mice in vivo. Therefore, FA-BSA-LC/DOPE as biocompatible, tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier is a promising system for effective intracellular delivery of PTX to tumor.

  11. Bilayered near-infrared fluorescent nanoparticles based on low molecular weight PEI for tumor-targeted in vivo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Li, Ke [Xi’an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology (China); Xu, Liang [The University of Kansas, Department of Molecular Biosciences (United States); Wu, Daocheng, E-mail: wudaocheng@mail.xjtu.edu.cn [Xi’an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology (China)

    2014-12-15

    To improve the tumor fluorescent imaging results in vivo, bilayered nanoparticles encapsulating a lipophilic near-infrared (NIR) fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotri-carbocyanine iodide (DiR) were prepared using low molecular weight stearic acid-grafted polyethyleneimine and hyaluronic acid (DiR-PgSHA nanoparticles), which were investigated as a novel NIR fluorescent nano-probe for in vivo tumor-targeted optical imaging. These nanoparticles were characterized by transmission electron microscopy (TEM), infrared (IR) spectra, UV-visual absorption, and fluorescent emission spectra. Their cytotoxicity in vitro and hepatotoxicity in vivo were tested by MTT assay and histological study, respectively. In vivo NIR fluorescence imaging of the DiR-PgSHA nanoparticles was performed using a Carestream imaging system. The DiR-PgSHA nanoparticles were sphere shaped with a diameter of approximately 50 nm according to the TEM images. The DiR-PgSHA nanoparticles had a low cytotoxicity in vitro according to the MTT assay and low hepatotoxicity in vivo as determined in histological studies. The fluorescent emission of DiR-PgSHA nanoparticles was stable in pH values of 5–9 in solution, with only slight blue-shifts of the emission maxima at the basic pH range. The DiR-PgSHA nanoparticles exhibited a substantial tumor-targeting ability in the optical imaging with the use of tumor-bearing mice. These results demonstrated that the DiR-PgSHA nanoparticle is an excellent biocompatible nano-probe for in vivo tumor-targeted NIR fluorescence imaging with a potential for clinical applications.

  12. Dual actions of albumin packaging and tumor targeting enhance the antitumor efficacy and reduce the cardiotoxicity of doxorubicin in vivo

    Directory of Open Access Journals (Sweden)

    Zheng K

    2015-08-01

    Full Text Available Ke Zheng,1 Rui Li,2 Xiaolei Zhou,2 Ping Hu,2 Yaxin Zhang,2 Yunmei Huang,3 Zhuo Chen,2 Mingdong Huang2 1College of Chemistry, Fuzhou University, Fuzhou, People’s Republic of China; 2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People’s Republic of China; 3Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China Abstract: Doxorubicin (DOX is an effective chemotherapy drug used to treat different types of cancers. However, DOX has severe side effects, especially life-threatening cardiotoxicity. We herein report a new approach to reduce the toxicity of DOX by embedding DOX inside human serum albumin (HSA. HSA is further fused by a molecular biology technique with a tumor-targeting agent, amino-terminal fragment of urokinase (ATF. ATF binds with a high affinity to urokinase receptor, which is a cell-surface receptor overexpressed in many types of tumors. The as-prepared macromolecule complex (ATF–HSA:DOX was not as cytotoxic as free DOX to cells in vitro, and was mainly localized in cell cytosol in contrast to DOX that was localized in cell nuclei. However, in tumor-bearing mice, ATF–HSA:DOX was demonstrated to have an enhanced tumor-targeting and antitumor efficacy compared with free DOX. More importantly, histopathological examinations of the hearts from the mice treated with ATF–HSA:DOX showed a significantly reduced cardiotoxicity compared with hearts from mice treated with free DOX. These results demonstrate the feasibility of this approach in reducing the cardiotoxicity of DOX while strengthening its antitumor efficacy. Such a tumor-targeted albumin packaging strategy can also be applied to other antitumor drugs. Keywords: amino-terminal fragment of urokinase, urokinase receptor, drug carrier, human serum albumin, doxorubicin, cytotoxicity

  13. Preparation and bioevaluation of a 99mTc-labeled chlorambucil analog as a tumor targeting agent

    International Nuclear Information System (INIS)

    Chlorambucil belongs to a group of nitrogen mustards which are used for the treatment of variety of cancers. Hence, a chlorambucil derivative has been radiolabeled with [99mTc(CO)3(H2O)3]+ core and its efficacy as a tumor targeting agent has been evaluated. Radiochemical yield of the complex was >98% as observed by HPLC. The in vitro studies in MCF-7 breast cancer cells showed about 30% inhibition of the radiolabeled complex in presence of the cold chlorambucil derivative. Biodistribution studies in Swiss mice bearing fibrosarcoma tumor showed an uptake of 3.2±0.3% ID/g at 3 h.p.i.

  14. Multiple cues on the physiochemical, mesenchymal, and intracellular trafficking interactions with nanocarriers to maximize tumor target efficiency

    Directory of Open Access Journals (Sweden)

    Kim SW

    2015-06-01

    Full Text Available Sang-Woo Kim, Dongwoo Khang Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea Abstract: Over the past 60 years, numerous medical strategies have been employed to overcome neoplasms. In fact, with the exception of lung, bronchial, and pancreatic cancers, the 5-year survival rate of most cancers currently exceeds 70%. However, the quality of life of patients during chemotherapy remains unsatisfactory despite the increase in survival rate. The side effects of current chemotherapies stem from poor target efficiency at tumor sites due to the uncontrolled biodistribution of anticancer agents (ie, conventional or current approved nanodrugs. This review discusses the effective physiochemical factors for determining biodistribution of nanocarriers and, ultimately, increasing tumor-targeting probability by avoiding the reticuloendothelial system. Second, stem cell-conjugated nanotherapeutics was addressed to maximize the tumor searching ability and to inhibit tumor growth. Lastly, physicochemical material properties of anticancer nanodrugs were discussed for targeting cellular organelles with modulation of drug-release time. A better understanding of suggested topics will increase the tumor-targeting ability of anticancer drugs and, ultimately, promote the quality of life of cancer patients during chemotherapy. Keywords: cancer, anticancer nanodrugs, mesenchymal stem cell, intracellular trafficking

  15. Cytotoxicity, tumor targeting and PET imaging of sub-5 nm KGdF4 multifunctional rare earth nanoparticles

    Science.gov (United States)

    Cao, Xinmin; Cao, Fengwen; Xiong, Liqin; Yang, Yang; Cao, Tianye; Cai, Xi; Hai, Wangxi; Li, Biao; Guo, Yixiao; Zhang, Yimin; Li, Fuyou

    2015-08-01

    Ultrasmall sub-5 nm KGdF4 rare earth nanoparticles were synthesized as multifunctional probes for fluorescent, magnetic, and radionuclide imaging. The cytotoxicity of these nanoparticles in human glioblastoma U87MG and human non-small cell lung carcinoma H1299 cells was evaluated, and their application for in vitro and in vivo tumor targeted imaging has also been demonstrated.Ultrasmall sub-5 nm KGdF4 rare earth nanoparticles were synthesized as multifunctional probes for fluorescent, magnetic, and radionuclide imaging. The cytotoxicity of these nanoparticles in human glioblastoma U87MG and human non-small cell lung carcinoma H1299 cells was evaluated, and their application for in vitro and in vivo tumor targeted imaging has also been demonstrated. Electronic supplementary information (ESI) available: Details of the experimental section as well as EDXA, XRD, zeta potential, FTIR, TGA, stability, TEM, Z scanning, ICP-MS, and MicroPET/CT images. See DOI: 10.1039/c5nr03374h

  16. Multiple cues on the physiochemical, mesenchymal, and intracellular trafficking interactions with nanocarriers to maximize tumor target efficiency.

    Science.gov (United States)

    Kim, Sang-Woo; Khang, Dongwoo

    2015-01-01

    Over the past 60 years, numerous medical strategies have been employed to overcome neoplasms. In fact, with the exception of lung, bronchial, and pancreatic cancers, the 5-year survival rate of most cancers currently exceeds 70%. However, the quality of life of patients during chemotherapy remains unsatisfactory despite the increase in survival rate. The side effects of current chemotherapies stem from poor target efficiency at tumor sites due to the uncontrolled biodistribution of anticancer agents (ie, conventional or current approved nanodrugs). This review discusses the effective physiochemical factors for determining biodistribution of nanocarriers and, ultimately, increasing tumor-targeting probability by avoiding the reticuloendothelial system. Second, stem cell-conjugated nanotherapeutics was addressed to maximize the tumor searching ability and to inhibit tumor growth. Lastly, physicochemical material properties of anticancer nanodrugs were discussed for targeting cellular organelles with modulation of drug-release time. A better understanding of suggested topics will increase the tumor-targeting ability of anticancer drugs and, ultimately, promote the quality of life of cancer patients during chemotherapy. PMID:26124658

  17. Self-assembled micelles of amphiphilic poly(L-phenylalanine-b-poly(L-serine polypeptides for tumor-targeted delivery

    Directory of Open Access Journals (Sweden)

    Zhao ZM

    2014-12-01

    Full Text Available Ziming Zhao,1,2,* Yu Wang,1,2,* Jin Han,1,2 Keli Wang,1 Dan Yang,1,2 Yihua Yang,1,2 Qian Du,1,2 Yuanjian Song,3 Xiaoxing Yin1,2 1Department of Pharmacy, 2Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, 3Department of Basic Medical Sciences, Xuzhou Medical College, Xuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: The aim of this work was to design, synthesize, and characterize self-assembled micelles based on polypeptides as a potential antitumor drug carrier. Amphiphilic poly(L-phenylalanine-b-poly(L-serine (PFS polypeptides were obtained through the polymerization of N-carboxyanhydride. As a novel hydrophilic segment, poly(L-serine was utilized to enhance tumor targeting due to a large demand of tumors for serine. PFS could self-assemble into micelles with an average diameter of 110–240 nm and a slightly negative charge. PFS polypeptides adopted random coil in pH 7.4 phosphate-buffered saline and could partly transform to a-helix induced by trifluoroethanol. PFS micelles with a low critical micelle concentration of 4.0 µg mL-1 were stable in pH 5–9 buffers and serum albumin solution. PFS micelles had a loading capacity of 3.8% for coumarin-6 and exhibited a sustained drug release. Coumarin-6 loaded rhodamine B isothiocyanate-labeled PFS micelles were incubated with Huh-7 tumor cells to study the correlation between drugs and carriers during endocytosis. The uptake of drugs was consistent with the micelles, illustrating that the intracellular transport of drugs highly depended on the micelles. PFS micelles diffused in whole cytoplasm while coumarin-6 assumed localized distribution, suggesting that the micelles could release the loaded drugs in particular areas. The internalization mechanism of PFS micelles was involved with clathrin-mediated endocytosis and macropinocytosis. Excess serine inhibited the uptake of PFS micelles, which demonstrated that serine receptors played

  18. Fullerene (C60)-based tumor-targeting nanoparticles with "off-on" state for enhanced treatment of cancer.

    Science.gov (United States)

    Shi, Jinjin; Wang, Binghua; Wang, Lei; Lu, Tingting; Fu, Yu; Zhang, Hongling; Zhang, Zhenzhong

    2016-08-10

    The traditional drug delivery systems always suffer from the unexpected drug release during circulation and the sluggish release of drug in target site. To address the problem, an "off-on" type drug delivery system with precise control was developed in this study. Doxorubicin (DOX) was covalently conjugated to fullerene (C60) nanoaggregates via a reactive oxygen species (ROS)-sensitive thioketal linker (C60-DOX NPs), and then the hydrophilic shell (Distearoyl-sn-glycero-3-phosphoethanolamine-PEG-CNGRCK2HK3HK11, DSPE-PEG-NGR) was attached to the outer surface of C60-DOX, giving it (C60-DOX-NGR NP) excellent stability in physiological solutions and active tumor-targeting capacity. C60-DOX-NGR NPs were able to entrap DOX efficiently even at acidic environment (pH5.5) when they were "off" state. In sharp contrast, when the NPs were "on" state, a large number of ROS were generated by C60, leading to the breaking of ROS-sensitive linker, thereby enabling the burst release of DOX. The "off" or "on" state of C60-DOX-NGR NPs could be precisely remote-controlled by a 532nm laser (at a low power density) with a high spatial/temporal resolution. In the in vivo and in vitro studies, the C60-based drug delivery system with "off-on" state exhibited a high antitumor efficacy and a low toxicity to normal tissues due to its tumor-targeting ability, remote-controlled drug release property and combined therapeutic effect (photodynamic therapy combined with chemotherapy). PMID:27276066

  19. The effect of polyethylene glycol spacer chain length on the tumor-targeting potential of folate-modified PPI dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Shrikant [Dr. Hari Singh Gour University, Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences (India); Tekade, Rakesh K., E-mail: rakeshtekade@yahoo.com [University of Hawai' i at Hilo, College of Pharmacy (United States); Kesharwani, Prashant, E-mail: prashant_pharmacy04@rediffmail.com; Jain, Narendra K., E-mail: jnarendr@yahoo.co.in [Dr. Hari Singh Gour University, Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences (India)

    2013-05-15

    The objective of the present investigation was to assess the tumor-targeting potential of ligand-spacer-engineered poly (propylene imine) (PPI) dendrimers as nanoscale drug delivery units for site-specific delivery of a model anticancer agent, docetaxel (DTX). PPI dendrimers were engineered by direct and indirect conjugation of folic acid (FA) via different types of polyethylene glycols (PEGs) [Mw (molecular weight): 1,000, 4,000, 6,000, 7,500] as spacers. The synthesized nanoconjugates (PPIFA, PPIP1FA, PPIP4FA, PPIP6FA, and PPIP7.5FA) were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance ({sup 1}H-NMR) and transmission electron microscopic (TEM) studies. Nanoconjugates were evaluated for entrapment, in vitro drug release (under various pH conditions) and hemolytic studies. Cell uptake and cytotoxicity studies were performed on human malignant cell lines (MCF-7) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide [MTT] assay. This debut study explored the effect of PEG spacer length on the targeting potential of folate-conjugated 5.0 G PPI dendrimer. DTX entrapment and in vitro drug release from nanoconjugates augmented, and hemolytic toxicity of nanoconjugates slashed with the molecular weight of PEGs. Further, nanoconjugates with PEG 4000 displayed highest tumor-targeting potential as compared to other spacer conjugated nanoconjugates due to optimized steric hindrance and receptor mediated endocytosis among other PEGs. This work is expected to shed new light on the role of spacer chain length in targeting potential of folate-anchored dendrimer.Graphical Abstract.

  20. VALIDATION OF NEUROTENSIN TETRA-BRANCHED PEPTIDES AS TUMOR TARGETING AGENTS IN PANCREAS, COLON AND BLADDER CARCINOMA

    Directory of Open Access Journals (Sweden)

    N. Ravenni

    2012-05-01

    Full Text Available The identification of new tumor targeting agents, which might allow either cancer cell tracing or ther- apy, is a crucial issue in cancer research. Membrane receptors for endogenous peptides such as neu- rotensin, somatostatin, bombesin and many others are over-expressed in different human cancers and could therefore be targeted as tumor-specific antigens. In the meantime the extremely short half-life of pep- tides impeded their development for effective pep- tide-based tumor targeting strategies. We synthesized tetra-branched neurotensin peptides (NT4, which ensure extremely long half-life main- taining peptide specificity and increasing avidity through multimeric binding. Moreover this bio-syn- thetical strategy allows a considerable modularity of peptides through the conjugation of different func- tional unit, such as fluorophore, radioactive moieties or chemotherapeutic drugs. Aim of our studies is to validate NT4 for cancer cell tracing in different human tumors. In this view we use fluorophore-conjugated NT4 to discriminate be- tween tumor and healthy tissue obtained by surgical samples from pancreas, colon and bladder carcinoma. Peptide binding on tumor and healthy biopsies was measured in each patient by quantitative analysis of confocal microscopy images. These results show a considerable difference in fluorescence emission be- tween healthy and tumor samples in colon, pancreas and bladder cancer, opening the way to the develop- ment of NT4 as selective diagnostic tools for these pathologies. Moreover our peptides can be conju- gated with different chemotherapeutic moieties in order to allow the selective killing of tumor cells.

  1. Peptide-Mediated Tumor Targeting by a Degradable Nano Gene Delivery Vector Based on Pluronic-Modified Polyethylenimine

    Science.gov (United States)

    Wu, Zhaoyong; Zhan, Shuyu; Fan, Wei; Ding, Xueying; Wu, Xin; Zhang, Wei; Fu, Yinghua; Huang, Yueyan; Huang, Xuan; Chen, Rubing; Li, Mingjuan; Xu, Ningyin; Zheng, Yongxia; Ding, Baoyue

    2016-03-01

    Polyethylenimine (PEI) is considered to be a promising non-viral gene delivery vector. To solve the toxicity versus efficacy and tumor-targeting challenges of PEI used as gene delivery vector, we constructed a novel non-viral vector DR5-TAT-modified Pluronic-PEI (Pluronic-PEI-DR5-TAT), which was based on the attachment of low-molecular-weight polyethylenimine (LMW-PEI) to the amphiphilic polymer Pluronic to prepare Pluronic-modified LMW-PEI (Pluronic-PEI). This was then conjugated to a multifunctional peptide containing a cell-penetrating peptide (TAT) and a synthetic peptide that would bind to DR5—a receptor that is overexpressed in cancer cells. The vector showed controlled degradation, favorable DNA condensation and protection performance. The Pluronic-PEI-DR5-TAT/DNA complexes at an N/P ratio of 15:1 were spherical nanoparticles of 122 ± 11.6 nm and a zeta potential of about 22 ± 2.8 mV. In vitro biological characterization results indicated that Pluronic-PEI-DR5-TAT/DNA complexes had a higher specificity for the DR5 receptor and were taken up more efficiently by tumor cells than normal cells, compared to complexes formed with PEI 25 kDa or Pluronic-PEI. Thus, the novel complexes showed much lower cytotoxicity to normal cells and higher gene transfection efficiency in tumor cells than that exhibited by PEI 25 kDa and Pluronic-PEI. In summary, our novel, degradable non-viral tumor-targeting vector is a promising candidate for use in gene therapy.

  2. Robust PEGylated hyaluronic acid nanoparticles as the carrier of doxorubicin: mineralization and its effect on tumor targetability in vivo.

    Science.gov (United States)

    Han, Hwa Seung; Lee, Jungmin; Kim, Hyun Ryoung; Chae, Su Young; Kim, Minwoo; Saravanakumar, Gurusamy; Yoon, Hong Yeol; You, Dong Gil; Ko, Hyewon; Kim, Kwangmeyung; Kwon, Ick Chan; Park, Jae Chan; Park, Jae Hyung

    2013-06-10

    The in vivo stability and tumor targetability of self-assembled polymeric nanoparticles are crucial for effective drug delivery. In this study, to develop biostable nanoparticles with high tumor targetability, poly(ethylene glycol)-conjugated hyaluronic acid nanoparticles (PEG-HANPs) were mineralized through controlled deposition of inorganic calcium and phosphate ions on the nanoparticular shell via a sequential addition method. The resulting nanoparticles (M-PEG-HANPs) had a smaller size (153.7±4.5nm) than bare PEG-HANPs (265.1±9.5nm), implying that mineralization allows the formation of compact nanoparticles. Interestingly, when the mineralized nanoparticles were exposed to acidic buffer conditions (nanoparticles. For bare PEG-HANPs, DOX was released in a sustained manner and its release rate was not dependent on the pH of the solution. On the other hand, DOX release from M-PEG-HANPs was pH-dependent: i.e. DOX was slowly released from nanoparticles under physiological condition (pH7.4), whereas its release rates were much higher at mildly acidic environments (in vivo biodistribution study, it was found that M-PEG-HANPs could reach the tumor site more effectively than bare PEG-HANPs. The antitumor efficacy of DOX-loaded nanoparticles was evaluated after systemic administration into the tumor-bearing mice. Of the samples tested, the most effective antitumor efficacy was observed for DOX-loaded M-PEG-HANPs. Overall, these results suggest that M-PEG-HANPs could be a promising carrier for an anticancer drug.

  3. Peptide-Mediated Tumor Targeting by a Degradable Nano Gene Delivery Vector Based on Pluronic-Modified Polyethylenimine.

    Science.gov (United States)

    Wu, Zhaoyong; Zhan, Shuyu; Fan, Wei; Ding, Xueying; Wu, Xin; Zhang, Wei; Fu, Yinghua; Huang, Yueyan; Huang, Xuan; Chen, Rubing; Li, Mingjuan; Xu, Ningyin; Zheng, Yongxia; Ding, Baoyue

    2016-12-01

    Polyethylenimine (PEI) is considered to be a promising non-viral gene delivery vector. To solve the toxicity versus efficacy and tumor-targeting challenges of PEI used as gene delivery vector, we constructed a novel non-viral vector DR5-TAT-modified Pluronic-PEI (Pluronic-PEI-DR5-TAT), which was based on the attachment of low-molecular-weight polyethylenimine (LMW-PEI) to the amphiphilic polymer Pluronic to prepare Pluronic-modified LMW-PEI (Pluronic-PEI). This was then conjugated to a multifunctional peptide containing a cell-penetrating peptide (TAT) and a synthetic peptide that would bind to DR5-a receptor that is overexpressed in cancer cells. The vector showed controlled degradation, favorable DNA condensation and protection performance. The Pluronic-PEI-DR5-TAT/DNA complexes at an N/P ratio of 15:1 were spherical nanoparticles of 122 ± 11.6 nm and a zeta potential of about 22 ± 2.8 mV. In vitro biological characterization results indicated that Pluronic-PEI-DR5-TAT/DNA complexes had a higher specificity for the DR5 receptor and were taken up more efficiently by tumor cells than normal cells, compared to complexes formed with PEI 25 kDa or Pluronic-PEI. Thus, the novel complexes showed much lower cytotoxicity to normal cells and higher gene transfection efficiency in tumor cells than that exhibited by PEI 25 kDa and Pluronic-PEI. In summary, our novel, degradable non-viral tumor-targeting vector is a promising candidate for use in gene therapy. PMID:26932761

  4. Dosimetric evaluation of a moving tumor target in intensity-modulated radiation therapy (IMRT) for lung cancer patients

    Science.gov (United States)

    Kim, Sung Kyu; Kang, Min Kyu; Yea, Ji Woon; Oh, Se An

    2013-07-01

    Immobilization plays an important role in intensity-modulated radiation therapy (IMRT). The application of IMRT in lung cancer patients is very difficult due to the movement of the tumor target. Patient setup in radiation treatment demands high accuracy because IMRT employs a treatment size of a 1mm pixel unit. Hence, quality assurance of the dose delivered to patients must be at its highest. The radiation dose was evaluated for breathing rates of 9, 14, and 18 breaths per minute (bpm) for tumor targets moving up and down by 1.0 cm and 1.5 cm. The dose of the moving planned target volume (PTV) was measured by using a thermo-luminescent dosimeter (TLD) and Gafchromic™ EBT film. The measurement points were 1.0 cm away from the top, the bottom and the left and the right sides of the PTV center. The evaluated dose differences ranged from 94.2 to 103.8%, from 94.4 to 105.4%, and from 90.7 to 108.5% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.0 cm. The mean values of the doses were 101.4, 99.9, and 99.5% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.0 cm. Meanwhile, the evaluated dose differences ranged from 93.6 to 105.8%, from 95.9 to 111.5%, and from 96.2 to 111.7% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.5 cm. The mean values of the doses were 102.3, 103.4, and 103.1% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.5 cm. Therefore, we suggest that IMRT can be used in the treatment of lung cancer patients with vertical target movements within the range of 1.0 to 1.5 cm.

  5. Identification and Characterization of a Suite of Tumor Targeting Peptides for Non-Small Cell Lung Cancer

    Science.gov (United States)

    McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.

    2014-03-01

    Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071-40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands.

  6. Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models.

    Science.gov (United States)

    Toneri, Makoto; Miwa, Shinji; Zhang, Yong; Hu, Cameron; Yano, Shuya; Matsumoto, Yasunori; Bouvet, Michael; Nakanishi, Hayao; Hoffman, Robert M; Zhao, Ming

    2015-10-13

    Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting.

  7. Breast Tumor Targetable Fe3O4 Embedded Thermo-Responsive Nanoparticles for Radiofrequency Assisted Drug Delivery.

    Science.gov (United States)

    Rejinold, N Sanoj; Thomas, Reju George; Muthiah, Muthunarayanan; Lee, Hwa Jeongong; Jeong, Yong Yeon; Park, In-kyu; Jayakumar, R

    2016-01-01

    Non-invasive radiofrequency (RF) frequency may be utilized as an energy source to activate thermo-responsive nanoparticles for the controlled local delivery of drugs to cancer cells. Herein, we demonstrate that 180 ± 20 nm sized curcumin encapsulated chitosan-graft-poly(N-vinyl caprolactam) nanoparticles containing iron oxide nanoparticles (Fe3O4-CRC-TRC-NPs) were selectively internalized in cancer cells in vivo. Using an RF treatment at 80 watts for 2 min, Fe3O4-CRC-TRC-NPs, dissipated heat energy of 42 degrees C, which is the lower critical solution temperature (LCST) of the chitosan-graft-poly(N-vinyl caprolactam), causing controlled curcumin release and apoptosis to cultured 4T1 breast cancer cells. Further, the tumor localization studies on orthotopic breast cancer model revealed that Fe3O4-CRC-TRC-NPs selectively accumulated at the primary tumor as confirmed by in vivo live imaging followed by ex vivo tissue imaging and HPLC studies. These initial results strongly support the development of RF assisted drug delivery from nanoparticles for improved tumor targeting for breast cancer treatment. PMID:27301171

  8. Tumor-Targeted Nanomedicines

    Science.gov (United States)

    ElBayoumi, Tamer A.; Torchilin, Vladimir P.

    2009-01-01

    Purpose The efficacy of drug delivery systems can be enhanced by making them target-specific via the attachment of various ligands. We attempted to enhance tumor accumulation and therapeutic effect of doxorubicin-loaded long-circulating PEGylated liposomes (Doxil®, ALZA Corp.) by coupling to their surface the anti-cancer monoclonal antibody 2C5 (mAb 2C5) with nuclesome (NS)-restricted activity, that can recognize the surface of various tumor but not normal cells and specifically targets pharmaceutical carriers to tumor cells in vitro and in vivo. Following earlier in vitro results with various cancer cell lines, the mAb 2C5-liposomes were studied in vivo vs. plain and non-specific IgG-liposomes. Experimental design Antibody coupling to Doxil® was performed via the “post-insertion” technique. Using 111In-labeled liposomes, the tissue biodistribution and pharmacokinetic profile were studied, as well as their accumulation in tumors in mice was followed by the whole-body γ-scintigraphic imaging. Therapeutic efficacy of mAb 2C5-targeted Doxil® vs. non-specific IgG-modified and original Doxil® controls was followed by registering live tumor growth and determining tumor weights upon mice sacrifice. Results mAb2C5 antibody-targeted liposomes demonstrate enhanced accumulation in tumors, and the in vivo therapeutic activity of the mAb 2C5-Doxil® treatment was found to be significantly superior, resulting in final tumor weights of only 25-40% compared to all Doxil® control treatments, when tested against the subcutaneous primary murine tumors of 4T1 and C26 and human PC3 tumor in nude mice. Conclusions Our results demonstrate the remarkable capability of 2C5-targeted Doxil® to specifically deliver its cargo into various tumors significantly increasing the efficacy of therapy. PMID:19276264

  9. Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy

    Science.gov (United States)

    Qiu, Chong; Wei, Wei; Sun, Jing; Zhang, Hai-Tao; Ding, Jing-Song; Wang, Jian-Cheng; Zhang, Qiang

    2016-06-01

    In this study, hyaluronan (HA)-functionalized calcium phosphate nanoparticles (CaP-AHA/siRNA NPs) were developed for an injectable and targetable delivery of siRNA, which were prepared by coating the alendronate-hyaluronan graft polymer (AHA) around the surface of calcium phosphate-siRNA co-precipitates. The prepared CaP-AHA/siRNA NPs had a uniform spherical core-shell morphology with an approximate size of 170 nm and zeta potential of -12 mV. The coating of hydrophilic HA improved the physical stability of nanoparticles over one month due to the strong interactions between phosphonate and calcium. In vitro experiments demonstrated that the negatively charged CaP-AHA/siRNA NPs could effectively deliver EGFR-targeted siRNA into A549 cells through CD44-mediated endocytosis and significantly down-regulate the level of EGFR expression. Also, the internalized CaP-AHA/siRNA NPs exhibited a pH-responsive release of siRNA, indicating that the acidification of lysosomes probably facilitated the disassembling of nanoparticles and the resultant ions sharply increased the inner osmotic pressure and thus expedited the release of siRNA from late lysosomes into the cytoplasm. Furthermore, in vivo tumor therapy demonstrated that high accumulation of CaP-AHA/siEGFR NPs in tumor led to a significant tumor growth inhibition with a specific EGFR gene silencing effect after intravenous administration in nude mice xenografted with A549 tumor, along with a negligible body weight loss. These results suggested that the CaP-AHA/siRNA NPs could be an effective and safe systemic siRNA delivery system for a RNAi-based tumor targeted therapy strategy.In this study, hyaluronan (HA)-functionalized calcium phosphate nanoparticles (CaP-AHA/siRNA NPs) were developed for an injectable and targetable delivery of siRNA, which were prepared by coating the alendronate-hyaluronan graft polymer (AHA) around the surface of calcium phosphate-siRNA co-precipitates. The prepared CaP-AHA/siRNA NPs had a uniform

  10. Tumor targeting and SPECT imaging properties of an {sup 111}In-labeled galectin-3 binding peptide in prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Deutscher, Susan L. [Department of Biochemistry, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Research Division, Harry S. Truman Veterans Hospital, Columbia, MO 65201 (United States); Figueroa, Said D. [Research Division, Harry S. Truman Veterans Hospital, Columbia, MO 65201 (United States); Kumar, Senthil R. [Department of Biochemistry, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States)], E-mail: kumars@missouri.edu

    2009-02-15

    Introduction: Galectin-3 (gal-3) is a carbohydrate binding protein that has been implicated in cell adhesion, tumor invasion and metastasis. The objective of this study was to evaluate the tumor targeting and imaging properties of a gal-3 binding peptide selected by phage display in a mouse model of metastatic human prostate carcinoma expressing gal-3. Methods: A gal-3 binding peptide, ANTPCGPYTHDCPVKR, was synthesized with a Gly-Ser-Gly (GSG) spacer and 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) and then radiolabeled with {sup 111}In. The in vitro cell binding properties of {sup 111}In-DOTA-(GSG)-ANTPCGPYTHDCPVKR were determined in metastatic human PC3-M prostate carcinoma cells. The pharmacokinetics and single-photon emission computed tomographic (SPECT/CT) imaging with the radiolabeled peptide were evaluated in SCID mice bearing human PC3-M prostate carcinoma tumor xenografts. Results: The radiolabeled peptide bound with a 50% inhibitory concentration of 191{+-}10.2 nM to cultured PC3-M prostate carcinoma cells. In vivo tumor uptake and retention coupled with fast whole-body clearance of the peptide were demonstrated in PC3-M tumor-bearing SCID mice. The tumor uptake rates of the radiolabeled peptide were 1.27{+-}0.10%ID/g at 30 min, 0.82{+-}0.15%ID/g at 1 h and 0.57{+-}0.09%ID/g at 2 h. MicroSPECT/CT studies revealed good tumor uptake of {sup 111}In-DOTA-(GSG)-ANTPCGPYTHDCPVKR 2 h postinjection, while uptake in normal organs was low, with the exception of the kidneys. Conclusions: In vitro cell binding along with tumor uptake of {sup 111}In-DOTA-(GSG)-ANTPCGPYTHDCPVKR in PC3-M human prostate carcinoma tumor-bearing SCID mice suggests the potential of this peptide as a radiopharmaceutical for imaging of gal-3-expressing prostate tumors.

  11. Tumor-targeting, pH-sensitive nanoparticles for docetaxel delivery to drug-resistant cancer cells

    Directory of Open Access Journals (Sweden)

    Tran TH

    2015-08-01

    Full Text Available Tuan Hiep Tran,1 Thiruganesh Ramasamy,1 Ju Yeon Choi,1 Hanh Thuy Nguyen,1 Thanh Tung Pham,1 Jee-Heon Jeong,1 Sae Kwang Ku,2 Han-Gon Choi,3 Chul Soon Yong,1 Jong Oh Kim11College of Pharmacy, Yeungnam University, Dae-Dong, 2College of Korean Medicine, Daegu Haany University, Gyeongsan, 3College of Pharmacy, Hanyang University, Hanyangdaehak-ro, Sangnok-gu, Ansan, South KoreaAbstract: The attachment of polyethylene glycol (PEG increases the circulation time of drug-containing nanoparticles; however, this also negatively affects cellular uptake. To overcome this problem, unique lipid polymer hybrid (LPH nanoparticles were developed with a pH-responsive PEG layer that detached prior to cell uptake. Docetaxel (DTX was incorporated into the lipid core of the nanoparticles, which was then shielded with the pH-responsive block co-polymer polyethylene glycol-b-polyaspartic acid (PEG-b-PAsp using a modified emulsion method. The optimized LPH nanoparticles were ~200 nm and had a narrow size distribution. Drug release from DTX-loaded LPH (DTX-LPH nanoparticles was pH-sensitive, which is beneficial for tumor targeting. More importantly, DTX-LPH nanoparticles were able to effectively induce apoptosis in cancer cells. The negative surface charge and PEG shell of vehicle remarkably enhanced the blood circulation and physiological activity of DTX-LPH nanoparticles compared with that of free DTX. The nanoparticles were also found to reduce the size of tumors in tumor-bearing xenograft mice. The in vivo anticancer effect of DTX-LPH nanoparticles was further confirmed by the elevated levels of caspase-3 and poly ADP ribose polymerase found in the tumors after treatment. Thus, the results suggest that this novel LPH system could be an effective new treatment for cancer.Keywords: docetaxel, polyaspartic acid, drug delivery systems, antitumor, pH-sensitive

  12. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    Science.gov (United States)

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment. PMID:20879980

  13. Anti-EGFR-iRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency

    Directory of Open Access Journals (Sweden)

    Bian X

    2016-05-01

    Full Text Available Xinyu Bian,* Puyuan Wu,* Huizi Sha, Hanqing Qian, Qing Wang, Lei Cheng, Yang Yang, Mi Yang, Baorui LiuComprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China*These authors contributed equally to this workAbstract: In this study, we report a novel kind of targeting with paclitaxel (PTX-loaded silk fibroin nanoparticles conjugated with iRGD–EGFR nanobody recombinant protein (anti-EGFR-iRGD. The new nanoparticles (called A-PTX-SF-NPs were prepared using the carbodiimide-mediated coupling procedure and their characteristics were evaluated. The cellular cytotoxicity and cellular uptake of A-PTX-SF-NPs were also investigated. The results in vivo suggested that NPs conjugated with the recombinant protein exhibited more targeting and anti-neoplastic property in cells with high EGFR expression. In the in vivo antitumor efficacy assay, the A-PTX-SF-NPs group showed slower tumor growth and smaller tumor volumes than PTX-SF-NPs in a HeLa xenograft mouse model. A real-time near-infrared fluorescence imaging study showed that A-PTX-SF-NPs could target the tumor more effectively. These results suggest that the anticancer activity and tumor targeting of A-PTX-SF-NPs were superior to those of PTX-SF-NPs and may have the potential to be used for targeted delivery for tumor therapies. Keywords: EGFR, nanobody, iRGD, recombinant protein, targeting drug carriers, antitumor efficiency

  14. Nanoprobes for two-photon excitation time-resolved imaging of living animals: In situ analysis of tumor-targeting dynamics of nanocarriers.

    Science.gov (United States)

    Yang, Wen; Fu, Li-Min; Wen, Xue; Liu, Ying; Tian, Ye; Liu, Yu-Chen; Han, Rong-Cheng; Gao, Zhi-Yue; Wang, Tian-En; Sha, Yin-Lin; Jiang, Yu-Qiang; Wang, Yuan; Zhang, Jian-Ping

    2016-09-01

    Great challenges remain in the noninvasive luminescence imaging analysis of tumor-targeting dynamics of nanocarriers in living animals which is of significance for the development of anti-cancer nanomedicine. In this work, luminescent nanoparticles Eu(tta)3bpt@SMA (dav = 15 nm), which exhibited good water dispersion stability and high yields of red Eu-luminescence under near-infrared two-photon excitation, were prepared by a modified microfluidic mixing method in the absence of surfactants. Tumor-targeting agents, Arg-Gly-Asp-D-Phe-Lys (cRGD) polypeptide or transferrin (Tf), were then anchored on the nanoparticle surfaces to form the desired nanocarriers Eu@SMA-RGD or Eu@SMA-Tf. The tumor-targeting processes of the prepared nanocarriers in intact living mice were analyzed on a home-built two-photon excitation time-resolved (TPE-TR) imaging apparatus having a wide view filed. The TPE-TR strategy could effectively suppress the interference from biological autofluorescence, which allowed the targeted domains to be visualized with a high signal-to-noise ratio. It was found that the tumor-tissue trapping efficacy of Eu@SMA-RGD was much higher than that of Eu@SMA-Tf, and the desorption process from the tumor tissues of Eu@SMA-RGD was slower than that of Eu@SMA-Tf. The methods developed in this work pave a way to investigate the in vivo tumor-targeting dynamics of nanocarriers by noninvasive luminescence imaging of living animals. PMID:27258485

  15. 分子成像与肿瘤靶向治疗%Molecular imaging and tumor targeted therapy

    Institute of Scientific and Technical Information of China (English)

    孙夕林; 韩兆国; 吴泳仪; 申宝忠

    2016-01-01

    肿瘤关键分子靶点的异常表达(表达水平和表达状态)与分子靶向治疗反应、治疗效果及预后密切相关。因此,精准评价肿瘤关键分子表达水平和表达状态,无论在肿瘤分子靶向治疗开展前、过程中以及治疗后均显得尤为关键。分子成像可以无创、实时而全面地对肿瘤关键靶点的表达水平及表达状态进行定性、定量研究,对筛选优势人群、指导治疗、判断预后具有重大意义。本文简述基于不同分子探针的分子成像技术在肿瘤靶向治疗过程中的应用,对比分析分子成像在靶向治疗中的价值,以期有益于新型治疗策略的开发。%The abnormal expression (level and status) of the key molecular targets of tumors is related to molecular targeted therapy response, effect, and prognosis. Therefore, the expression level and status of key molecular targets of tumors must be accurately evalu-ated, regardless of the status before, during, and after receiving targeted therapy. Molecular imaging is a non-invasive method used for qualitative and quantitative research on key molecular targets of tumor in vivo and in real-time. This technique is also employed to screen treatment beneficiaries, guide therapy, and evaluate prognosis. This paper reviews the application progress of molecular imag-ing using various probes in cancer targeted therapy. The clinical value of molecular imaging in tumor targeted therapy is further ana-lyzed to promote the development of novel targeted therapy for tumors.

  16. Photodynamic therapy of a 2-methoxyestradiol tumor-targeting drug delivery system mediated by Asn-Gly-Arg in breast cancer

    Directory of Open Access Journals (Sweden)

    Shi J

    2013-04-01

    Full Text Available Jinjin Shi, Zhenzhen Wang, Lei Wang, Honghong Wang, Lulu Li, Xiaoyuan Yu, Jing Zhang, Rou Ma, Zhenzhong ZhangSchool of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of ChinaAbstract: Fullerene (C60 has shown great potential in drug delivery. In this study we exploited modified fullerene (diadduct malonic acid-fullerene-Asn-Gly-Arg peptide [DMA-C60-NGR] as an antitumor drug carrier in order to build a new tumor-targeting drug delivery system. We also investigated the synergistic enhancement of cancer therapy using photodynamic therapy (PDT induced by DMA-C60-NGR and 2-methoxyestradiol (2ME. Cytotoxicity tests indicated that DMA-C60-NGR had no obvious toxicity, while our drug delivery system (DMA-C60-2ME-NGR had a high inhibition effect on MCF-7 cells compared to free 2ME. The tumor-targeting drug delivery system could efficiently cross cell membranes, and illumination induced the generation of intracellular reactive oxygen species and DNA damage. Furthermore, DMA-C60-2ME-NGR with irradiation had the highest inhibition effect on MCF-7 cells compared to the other groups. DMA-C60-NGR combined with 2ME showed a good synergistic photosensitization effect for inhibiting the growth of MCF-7 cells, demonstrating that DMA-C60-2ME-NGR may be promising for high treatment efficacy with minimal side effects in future therapy.Keywords: fullerene, drug delivery system, photodynamic therapy, tumor targeting

  17. Efficacy of Tumor-Targeting Salmonella A1-R on a Melanoma Patient-Derived Orthotopic Xenograft (PDOX) Nude-Mouse Model

    Science.gov (United States)

    Yamamoto, Mako; Zhao, Ming; Hiroshima, Yukihiko; Zhang, Yong; Shurell, Elizabeth; Eilber, Fritz C.; Bouvet, Michael; Noda, Makoto; Hoffman, Robert M.

    2016-01-01

    Tumor-targeting Salmonella enterica serovar Typhimurium A1-R (Salmonella A1-R) had strong efficacy on a melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. GFP-expressing Salmonella A1-R highly and selectively colonized the PDOX melanoma and significantly suppressed tumor growth (p = 0.021). The combination of Salmonella A1-R and cisplatinum (CDDP), both at low-dose, also significantly suppressed the growth of the melanoma PDOX (P = 0.001). Salmonella A1-R has future clinical potential for combination chemotherapy with CDDP of melanoma, a highly-recalcitrant cancer. PMID:27500926

  18. pH-Responsive Tumor-Targetable Theranostic Nanovectors Based on Core Crosslinked (CCL Micelles with Fluorescence and Magnetic Resonance (MR Dual Imaging Modalities and Drug Delivery Performance

    Directory of Open Access Journals (Sweden)

    Sidan Tian

    2016-06-01

    Full Text Available The development of novel theranostic nanovectors is of particular interest in treating formidable diseases (e.g., cancers. Herein, we report a new tumor-targetable theranostic agent based on core crosslinked (CCL micelles, possessing tumor targetable moieties and fluorescence and magnetic resonance (MR dual imaging modalities. An azide-terminated diblock copolymer, N3-POEGMA-b-P(DPA-co-GMA, was synthesized via consecutive atom transfer radical polymerization (ATRP, where OEGMA, DPA, and GMA are oligo(ethylene glycolmethyl ether methacrylate, 2-(diisopropylaminoethyl methacrylate, and glycidyl methacrylate, respectively. The resulting diblock copolymer was further functionalized with DOTA(Gd (DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakisacetic acid or benzaldehyde moieties via copper(I-catalyzed alkyne-azide cycloaddition (CuAAC chemistry, resulting in the formation of DOTA(Gd-POEGMA-b-P(DPA-co-GMA and benzaldehyde-POEGMA-b-P(DPA-co-GMA copolymers. The resultant block copolymers co-assembled into mixed micelles at neutral pH in the presence of tetrakis[4-(2-mercaptoethoxyphenyl]ethylene (TPE-4SH, which underwent spontaneous crosslinking reactions with GMA residues embedded within the micellar cores, simultaneously switching on TPE fluorescence due to the restriction of intramolecular rotation. Moreover, camptothecin (CPT was encapsulated into the crosslinked cores at neutral pH, and tumor-targeting pH low insertion peptide (pHLIP, sequence: AEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG moieties were attached to the coronas through the Schiff base chemistry, yielding a theranostic nanovector with fluorescence and MR dual imaging modalities and tumor-targeting capability. The nanovectors can be efficiently taken up by A549 cells, as monitored by TPE fluorescence. After internalization, intracellular acidic pH triggered the release of loaded CPT, killing cancer cells in a selective manner. On the other hand, the nanovectors labeled with DOTA

  19. 钆类造影剂用于肿瘤靶向性成像%Gadolinium-Based Contrast Agents for Tumor Targeting Imaging

    Institute of Scientific and Technical Information of China (English)

    沈爱军; 董海青; 温惠云; 徐梦; 李永勇; 王培军

    2011-01-01

    Magnetic resonance imaging (MRI) is an important technique of medical imaging for the tumor diagnosis, due to its high spatial and temporal resolutions and excellent soft tissue contrast, especially after the usage of various contrast agents. However, the current contrast agents for MRI, such as Gd-DTPA-BMA, Gd-DOTA etc. ,are all small molecules, which are associated with the intrinsic drawbacks such as nonspecificity for the interesting tissue,rapid excretion in vivo. To address the above questions, the novel specific MRI contrast agents with high efficiency and low toxicity are thus becoming research hot spots in both material and medical fields. In this review, particular attention is paid on the recent progress of gadolinium-based MRI contrast agents for tumor targeting imaging by summarizing the relevant research papers. Both passive and active approach for tumor targeting imaging are involved in this review. The synthesis, principle and determined factors of MRI contrast agents for tumor targeting imaging and their in vitro or in vivo effects on the interesting tissue are discussed.%核磁共振成像(MRI)是肿瘤诊断的重要手段,特别是各种造影剂的使用加速了临床应用范围.目前临床MRI检查所用各类造影剂如Gd-DTPA-BMA、Gd-DOTA等均为小分子造影剂,存在组织特异性低、体内停留时间短等缺点.构建具有组织特异性的新一代高效、低毒MRI造影剂成为材料界、医学界的研究热点之一.本文在综合最新文献的研究基础之上,重点关注含钆类造影剂在肿瘤靶向成像中的应用及发展.

  20. Coupling of a bifunctional peptide R13 to OTMCS-PEI copolymer as a gene vector increases transfection efficiency and tumor targeting

    Directory of Open Access Journals (Sweden)

    Lv H

    2014-03-01

    Full Text Available Hui Lv,1,* Qing Zhu,1,* Kewu Liu,2 Manman Zhu,1 Wenfang Zhao,1 Yuan Mao,1 Kehai Liu1 1Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China; 2Heilongjiang Forest By-Product and Speciality Institute, Mudanjiang, People's Republic of China *These authors contributed equally to this work Background: A degradable polyethylenimine (PEI derivative coupled to a bifunctional peptide R13 was developed to solve the transfection efficiency versus cytotoxicity and tumor-targeting problems of PEI when used as a gene vector. Methods: We crossed-linked low molecular weight PEI with N-octyl-N-quaternary chitosan (OTMCS to synthesize a degradable PEI derivative (OTMCS-PEI, and then used a bifunctional peptide, RGDC-Tat (49–57 called R13 to modify OTMCS-PEI so as to prepare a new gene vector, OTMCS-PEI-R13. This new gene vector was characterized by various physicochemical methods. Its cytotoxicity and gene transfection efficiency were also determined both in vitro and in vivo. Results: The vector showed controlled degradation and excellent buffering capacity. The particle size of the OTMCS-PEI-R13/DNA complexes was around 150–250 nm and the zeta potential ranged from 10 mV to 30 mV. The polymer could protect plasmid DNA from being digested by DNase I at a concentration of 23.5 U DNase I/µg DNA. Further, the polymer was resistant to dissociation induced by 50% fetal bovine serum and 400 µg/mL sodium heparin. Compared with PEI 25 kDa, the OTMCS-PEI-R13/DNA complexes showed higher transfection efficiency both in vitro and in vivo. Further, compared with OTMCS-PEI, distribution of OTMCS-PEI-R13 at tumor sites was markedly enhanced, indicating the tumor-targeting specificity of R13. Conclusion: OTMCS-PEI-R13 could be a potential candidate as a safe and efficient gene delivery carrier for gene therapy. Keywords: nonviral gene vector, polyethylenimine, R13, transfection efficiency

  1. Separation of effector cells mediating antibody-dependent cellular cytotoxicity (ADC) to erythrocyte targets from those mediating ADC to tumor targets.

    Science.gov (United States)

    Pollack, S B; Nelson, K; Grausz, J D

    1976-04-01

    Murine spleen cells mediate antibody-dependent cellular cytotoxicity (ADC) both to erythrocyte targets in a 51Cr release assay and to syngeneic tumor targets in a microcytotoxicity assay. The effector cells active in the two ADC assays can be separated by passage of the spleen cells through columns of Sephadex G-10 at 37 degrees C. Cells mediating ADC to sarcoma cells did not adhere to the G-10 and were recovered in the column effluent. These nonadherent cells were not cytotoxic to antibody-coated chicken red blood cells. Spleen cells which mediated ADC in a 51Cr release assay to the red cell targets adhered to G-10. Adherent effector cells could subsequently be recovered from the columns by elution with 5 X 10(-4) M EDTA. PMID:815438

  2. Adjuvant treatment with tumor-targeting Salmonella typhimurium A1-R reduces recurrence and increases survival after liver metastasis resection in an orthotopic nude mouse model.

    Science.gov (United States)

    Murakami, Takashi; Hiroshima, Yukihiko; Zhao, Ming; Zhang, Yong; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2015-12-01

    Colon cancer liver metastasis is often the lethal aspect of this disease. Well-isolated metastases are candidates for surgical resection, but recurrence is common. Better adjuvant treatment is therefore needed to reduce or prevent recurrence. In the present study, HT-29 human colon cancer cells expressing red fluorescent protein (RFP) were used to establish liver metastases in nude mice. Mice with a single liver metastasis were randomized into bright-light surgery (BLS) or the combination of BLS and adjuvant treatment with tumor-targeting S. typhimurium A1-R. Residual tumor fluorescence after BLS was clearly visualized at high magnification by fluorescence imaging. Adjuvant treatment with S. typhimurium A1-R was highly effective to increase survival and disease-free survival after BLS of liver metastasis. The results suggest the future clinical potential of adjuvant S. typhimurium A1-R treatment after liver metastasis resection.

  3. Therapeutic efficacy of tumor-targeting Salmonella typhimurium A1-R on human colorectal cancer liver metastasis in orthotopic nude-mouse models.

    Science.gov (United States)

    Murakami, Takashi; Hiroshima, Yukihiko; Zhao, Ming; Zhang, Yong; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2015-10-13

    Liver metastasis is the most frequent cause of death from colon and other cancers. Generally, liver metastasis is recalcitrant to treatment. The aim of this study is to determine the efficacy of tumor-targeting Salmonella typhimurium A1-R on liver metastasis in orthotopic mouse models. HT-29 human colon cancer cells expressing red fluorescent protein (RFP) were used in the present study. S. typhimurium A1-R infected HT-29 cells in a time-dependent manner, inhibiting cancer-cell proliferation in vitro. S. typhimurium A1-R promoted tumor necrosis and inhibited tumor growth in a subcutaneous tumor mouse model of HT-29-RFP. In orthotopic mouse models, S. typhimurium A1-R targeted liver metastases and significantly reduced their growth. The results of this study demonstrate the future clinical potential of S. typhimurium A1-R targeting of liver metastasis.

  4. 新生血管靶向肽NGR与肿瘤靶向治疗%Relationship between neovasculature homing motif NGR and tumor targeted therapy

    Institute of Scientific and Technical Information of China (English)

    冯飞雪; 夏海滨

    2011-01-01

    NGR (Asn-Gly-Arg) motif exploited by phage display can selectively recognize neovasculature by its binding to an endothelium-associated form of aminopeptidase N (CD13).NGR peptides can be used for ligand-directed targeted delivery of various drugs and viral vectors to tumors or to other tissues with an angiogenesis process.NGR can convert to isoaspartateglycine-arginine (isoDGR) by asparagine deamidation, isoDGR is a ligand for αvβ3 integrin, which could be used as a new targeting peptide of tumor neovasculature for the study of tumor targeted therapy.The paper reviews the structural and functional properties of the NGR motif and its application in tumor targeted therapy.%NGR(Asn-Gly-Arg)是通过噬菌体展示技术筛选出来的能够和肿瘤新生血管特异结合的三肽模体,可以通过内皮细胞上的氨肽酶N(aminopeptidase N,亦称CD13)与新生血管发生特异性的结合.NGR多肽可以将多种药物分子和病毒载体靶向运输到肿瘤或者进行血管再生的组织中.NGR模体上的天冬酰胺脱酰胺后生成异天冬氨酸-甘氨酸-精氨酸异构体(iso DGR).isoDGR是整联蛋αvβ3的配体,可以作为一种新的肿瘤新生血管靶向肽用于肿瘤靶向治疗的研究.本文主要对NGR模体的结构和功能以及其在肿瘤靶向治疗中的应用作一综述.

  5. Synthesis and characterization of ZnS:Mn/ZnS core/shell nanoparticles for tumor targeting and imaging in vivo.

    Science.gov (United States)

    Yu, Zhangsen; Ma, Xiying; Yu, Bin; Pan, Yuefang; Liu, Zhaogang

    2013-08-01

    Fluorescence imaging technique has been used for imaging of biological cells and tissues in vivo. The Cd-free luminescent quantum dots conjugating with a cancer targeting ligand has been taken as a promising biocompatibility and low cytotoxicity system for targeted cancer imaging. This work reports the synthesis of fluorescent-doped core/shell quantum dots of water-soluble manganese-doped zinc sulfide. Quantum dots of manganese-doped zinc sulfide were prepared by nucleation doping strategy, with 3-mercaptopropionic acid as stabilizer at 90 in aqueous solution. The manganese-doped zinc sulfide nanoparticles exhibit strong orange fluorescence under UV irradiation, resistance to photo-bleaching, and low-cytotoxicity to HeLa cells. The structure and optical properties of nanoparticles were characterized by scanning electron microscope, X-ray diffraction, dynamic light scattering, and photoluminescence emission spectroscopy. Manganese-doped zinc sulfide nanoparticles conjugated with folic acid using 2,2'-(ethylenedioxy)-bis-(ethylamine) as the linker. The covalent binding of both 2,2'-(ethylenedioxy)-bis-(ethylamine) and folic acid on the surface of manganese-doped zinc sulfide nanoparticles probed by Fourier transform infrared spectroscopy detection. Furthermore, in vitro cytotoxicity assessment of manganese-doped zinc sulfide-folic acid probes use HeLa cells. The obtained fluorescent probes (manganese-doped zinc sulfide) were used for tumor targeting and imaging in vivo. The manganese-doped zinc sulfide-folic acid fluorescent probes which targeting the tumor cells in the body of nude mouse tumor model would emit orange fluorescence, when exposed to a 365 nm lamp. We investigate the biodistribution of the manganese-doped zinc sulfide-folic acid fluorescent probes in tumor mouse model by measuring zinc concentration in tissues. These studies demonstrate the practicality of manganese-doped zinc sulfide-folic acid fluorescent probes as promising platform for tumor

  6. Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells.

    Science.gov (United States)

    Wang, Xueqin; Tu, Miaomiao; Tian, Baoming; Yi, Yanjie; Wei, ZhenZhen; Wei, Fang

    2016-11-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs), utilized as carriers are attractive materials widely applied in biomedical fields, but target-specific SPIO NPs with lower toxicity and excellent biocompatibility are still lacking for intracellular visualization in human brain tumor diagnosis and therapy. Herein, bovine serum albumin (BSA) coated superparamagnetic iron oxide, i.e. γ-Fe2O3 nanoparticles (BSA-SPIO NPs), are synthesized. Tumor-specific ligand folic acid (FA) is then conjugated onto BSA-SPIO NPs to fabricate tumor-targeted NPs, FA-BSA-SPIO NPs as a contrast agent for MRI imaging. The FA-BSA-SPIO NPs are also labeled with fluorescein isothiocyanate (FITC) for intracellular visualization after cellular uptake and internalization by glioma U251 cells. The biological effects of the FA-BSA-SPIO NPs are investigated in human brain tumor U251 cells in detail. These results show that the prepared FA-BSA-SPIO NPs display undetectable cytotoxicity, excellent biocompatibility, and potent cellular uptake. Moreover, the study shows that the made FA-BSA-SPIO NPs are effectively internalized for MRI imaging and intracellular visualization after FITC labeling in the targeted U251 cells. Therefore, the present study demonstrates that the fabricated FITC-FA-BSA-SPIO NPs hold promising perspectives by providing a dual-modal imaging as non-toxic and target-specific vehicles in human brain tumor treatment in future.

  7. One-pot synthesized aptamer-functionalized CdTe:Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo.

    Science.gov (United States)

    Zhang, Cuiling; Ji, Xinghu; Zhang, Yuan; Zhou, Guohua; Ke, Xianliang; Wang, Hanzhong; Tinnefeld, Philip; He, Zhike

    2013-06-18

    High quality and facile DNA functionalized quantum dots (QDs) as efficient fluorescence nanomaterials are of great significance for bioimaging both in vitro and in vivo applications. Herein, we offer a strategy to synthesize DNA-functionalized Zn(2+) doped CdTe QDs (DNA-QDs) through a facile one-pot hydrothermal route. DNA is directly attached to the surface of QDs. The as-prepared QDs exhibit small size (3.85 ± 0.53 nm), high quantum yield (up to 80.5%), and excellent photostability. In addition, the toxicity of QDs has dropped considerably because of the Zn-doping and the existence of DNA. Furthermore, DNA has been designed as an aptamer specific for mucin 1 overexpressed in many cancer cells including lung adenocarcinoma. The aptamer-functionalized Zn(2+) doped CdTe QDs (aptamer-QDs) have been successfully applied in active tumor-targeted imaging in vitro and in vivo. A universal design of DNA for synthesis of Zn(2+) doped CdTe QDs could be extended to other target sequences. Owing to the abilities of specific recognition and the simple synthesis route, the applications of QDs will potentially be extended to biosensing and bioimaging. PMID:23682757

  8. Tetrameric far-red fluorescent protein as a scaffold to assemble an octavalent peptide nanoprobe for enhanced tumor targeting and intracellular uptake in vivo.

    Science.gov (United States)

    Luo, Haiming; Yang, Jie; Jin, Honglin; Huang, Chuan; Fu, Jianwei; Yang, Fei; Gong, Hui; Zeng, Shaoqun; Luo, Qingming; Zhang, Zhihong

    2011-06-01

    Relatively weak tumor affinities and short retention time in vivo hinder the application of targeting peptides in tumor molecular imaging. Multivalent strategies based on various scaffolds have been utilized to improve the ability of peptide-receptor binding or extend the clearance time of peptide-based probes. Here, we use a tetrameric far-red fluorescent protein (tfRFP) as a scaffold to create a self-assembled octavalent peptide fluorescent nanoprobe (Octa-FNP) using a genetic engineering approach. The multiligand connecting, fluorophore labeling and nanostructure formation of Octa-FNP were performed in one step. In vitro studies showed Octa-FNP is a 10-nm fluorescent probe with excellent serum stability. Cellular uptake of Octa-FNP by human nasopharyngeal cancer 5-8F cells is 15-fold of tetravalent probe, ∼80-fold of monovalent probe and ∼600-fold of nulvalent tfRFP. In vivo enhanced tumor targeting and intracellular uptake of Octa-FNP were confirmed using optical imaging and Western blot analysis. It achieved extremely high contrast of Octa-FNP signal between tumor tissue and normal organs, especially seldom Octa-FNP detected in liver and spleen. Owing to easy preparation, precise structural and functional control, and multivalent effect, Octa-FNP provides a powerful tool for tumor optical molecular imaging and evaluating the targeting ability of numerous peptides in vivo.

  9. Recombinant antibodies and tumor targeting

    OpenAIRE

    Sheikholvaezin, Ali

    2006-01-01

    Different antibody derived constructs are rapidly advancing as putative tools for treatment of malignant diseases. Antibody engineering has added significant new technologies to modify size, affinities, solubility, stability and biodistribution properties for immunoconjugates. In the present thesis, the aim was to increase our knowledge on how new recombinant antibodies could be tailored to optimize localization to experimental tumors in mice. One hybridoma, producing the monoclonal antibody ...

  10. Efficient and Tumor Targeted siRNA Delivery by Polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol).

    Science.gov (United States)

    Liu, Li; Zheng, Mengyao; Librizzi, Damiano; Renette, Thomas; Merkel, Olivia M; Kissel, Thomas

    2016-01-01

    Efficient delivery of functional nucleic acids into specific cells or tissues is still a challenge for gene therapy and largely depends on targeted delivery strategies. The folate receptor (FR) is known to be overexpressed extracellularly on a variety of human cancers and is therefore an outstanding gate for tumor-targeted Trojan horse-like delivery of therapeutics. In this study, an amphiphilic and biodegradable ternary copolymer conjugated with folate as ligand, polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol) was synthesized and evaluated for targeted siRNA delivery via folate-FR recognition. The amphiphilic character of similar polymers was shown previously to support endosomal release of endocytosed nanocarriers and to promote formation of long circulating micelles. The obtained PEI-PCL-PEG-Fol exhibited less cytotoxicity in comparison with the corresponding ternary copolymer without folate (PEI-PCL-PEG) and with unmodified PEI25kDa. Stable micelle-like polyplexes with hydrodynamic diameters about 100 nm were found to have a zeta potential of +8.6 mV, which was lower than that of micelleplexes without folate-conjugation (+13-16 mV). Nonetheless, increased cellular uptake and in vitro gene knockdown of PEI-PCL-PEG-Fol/siRNA micelleplexes were observed in SKOV-3 cells, an FR overexpressing cell line, in comparison with the nonfolate-conjugated ones. Moreover, PEI-PCL-PEG-Fol/siRNA micelleplexes exhibited excellent stability in vivo during the analysis of 120 min and a longer circulation half life than hyPEI25kDa/siRNA polyplexes. Most interestingly, the targeted delivery system yielded 17% deposition of the i.v. injected siRNA per gram in the tumor after 24 h due to the effective folate targeting and the prolonged circulation. PMID:26641134

  11. Tumor Targeting and Pharmacokinetics of a Near-Infrared Fluorescent-Labeled δ-Opioid Receptor Antagonist Agent, Dmt-Tic-Cy5.

    Science.gov (United States)

    Huynh, Amanda Shanks; Estrella, Veronica; Stark, Valerie E; Cohen, Allison S; Chen, Tingan; Casagni, Todd J; Josan, Jatinder S; Lloyd, Mark C; Johnson, Joseph; Kim, Jongphil; Hruby, Victor J; Vagner, Josef; Morse, David L

    2016-02-01

    Fluorescence molecular imaging can be employed for the development of novel cancer targeting agents. Herein, we investigated the pharmacokinetics (PK) and cellular uptake of Dmt-Tic-Cy5, a delta-opioid receptor (δOR) antagonist-fluorescent dye conjugate, as a tumor-targeting molecular imaging agent. δOR expression is observed normally in the CNS, and pathologically in some tumors, including lung liver and breast cancers. In vitro, in vivo, and ex vivo experiments were conducted to image and quantify the fluorescence signal associated with Dmt-Tic-Cy5 over time using in vitro and intravital fluorescence microscopy and small animal fluorescence imaging of tumor-bearing mice. We observed specific retention of Dmt-Tic-Cy5 in tumors with maximum uptake in δOR-expressing positive tumors at 3 h and observable persistence for >96 h; clearance from δOR nonexpressing negative tumors by 6 h; and systemic clearance from normal organs by 24 h. Live-cell and intravital fluorescence microscopy demonstrated that Dmt-Tic-Cy5 had sustained cell-surface binding lasting at least 24 h with gradual internalization over the initial 6 h following administration. Dmt-Tic-Cy5 is a δOR-targeted agent that exhibits long-lasting and specific signal in δOR-expressing tumors, is rapidly cleared from systemic circulation, and is not retained in non-δOR-expressing tissues. Hence, Dmt-Tic-Cy5 has potential as a fluorescent tumor imaging agent.

  12. Tumor Targeting and Pharmacokinetics of a Near-Infrared Fluorescent-Labeled δ-Opioid Receptor Antagonist Agent, Dmt-Tic-Cy5.

    Science.gov (United States)

    Huynh, Amanda Shanks; Estrella, Veronica; Stark, Valerie E; Cohen, Allison S; Chen, Tingan; Casagni, Todd J; Josan, Jatinder S; Lloyd, Mark C; Johnson, Joseph; Kim, Jongphil; Hruby, Victor J; Vagner, Josef; Morse, David L

    2016-02-01

    Fluorescence molecular imaging can be employed for the development of novel cancer targeting agents. Herein, we investigated the pharmacokinetics (PK) and cellular uptake of Dmt-Tic-Cy5, a delta-opioid receptor (δOR) antagonist-fluorescent dye conjugate, as a tumor-targeting molecular imaging agent. δOR expression is observed normally in the CNS, and pathologically in some tumors, including lung liver and breast cancers. In vitro, in vivo, and ex vivo experiments were conducted to image and quantify the fluorescence signal associated with Dmt-Tic-Cy5 over time using in vitro and intravital fluorescence microscopy and small animal fluorescence imaging of tumor-bearing mice. We observed specific retention of Dmt-Tic-Cy5 in tumors with maximum uptake in δOR-expressing positive tumors at 3 h and observable persistence for >96 h; clearance from δOR nonexpressing negative tumors by 6 h; and systemic clearance from normal organs by 24 h. Live-cell and intravital fluorescence microscopy demonstrated that Dmt-Tic-Cy5 had sustained cell-surface binding lasting at least 24 h with gradual internalization over the initial 6 h following administration. Dmt-Tic-Cy5 is a δOR-targeted agent that exhibits long-lasting and specific signal in δOR-expressing tumors, is rapidly cleared from systemic circulation, and is not retained in non-δOR-expressing tissues. Hence, Dmt-Tic-Cy5 has potential as a fluorescent tumor imaging agent. PMID:26713599

  13. Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated core-shell nanoparticles.

    Science.gov (United States)

    Wei, Lin; Guo, Xi-Ying; Yang, Ting; Yu, Min-Zhi; Chen, Da-Wei; Wang, Jian-Cheng

    2016-08-20

    Treatment of brain tumor remains a great challenge worldwide. Development of a stable, safe, and effective siRNA delivery system which is able to cross the impermeable blood-brain barrier (BBB) and target glioma cells is necessary. This study aims to investigate the therapeutic effects of intravenous administration of T7 peptide modified core-shell nanoparticles (named T7-LPC/siRNA NPs) on brain tumors. Layer-by-layer assembling of protamine/chondroitin sulfate/siRNA/cationic liposomes followed by T7 peptide modification has been carried out in order to obtain a targeted siRNA delivery system. In vitro cellular uptake experiments demonstrated a higher intracellular fluorescence intensity of siRNA in brain microvascular endothelial cells (BMVECs) and U87 glioma cells when treated with T7-LPC/siRNA NPs compared with PEG-LPC/siRNA NPs. In the co-culture model of BMVECs and U87 cells, a significant down-regulation of EGFR protein expression occurred in the U87 glioma cells after treatment with the T7-LPC/siEGFR NPs. Moreover, the T7-LPC/siRNA NPs had an advantage in penetrating into a deep region of the tumor spheroid compared with PEG-LPC/siRNA NPs. In vivo imaging revealed that T7-LPC/siRNA NPs accumulated more specifically in brain tumor tissues than the non-targeted NPs. Also, in vivo tumor therapy experiments demonstrated that the longest survival period along with the greatest downregulation of EGFR expression in tumor tissues was observed in mice with an intracranial U87 glioma treated with T7-LPC/siEGFR NPs compared with mice receiving other formulations. Therefore, we believe that these transferrin receptor-mediated core-shell nanoparticles are an important potential siRNA delivery system for brain tumor-targeted therapy.

  14. Tumor-Targeting Salmonella typhimurium A1-R in Combination with Trastuzumab Eradicates HER-2-Positive Cervical Cancer Cells in Patient-Derived Mouse Models.

    Directory of Open Access Journals (Sweden)

    Yukihiko Hiroshima

    Full Text Available We have previously developed mouse models of HER-2-positive cervical cancer. Tumors in nude mice had histological structures similar to the original tumor and were stained by anti-HER-2 antibody in the same pattern as the patient's cancer. We have also previously developed tumor-targeting Salmonella typhimurium A1-R and have demonstrated its efficacy against patient-derived tumor mouse models, both alone and in combination. In the current study, we determined the efficacy of S. typhimurium A1-R in combination with trastuzumab on a patient-cancer nude-mouse model of HER-2 positive cervical cancer. Mice were randomized to 5 groups and treated as follows: (1 no treatment; (2 carboplatinum (30 mg/kg, ip, weekly, 5 weeks; (3 trastuzumab (20 mg/kg, ip, weekly, 5 weeks; (4 S. typhimurium A1-R (5 × 107 CFU/body, ip, weekly, 5 weeks; (5 S. typhimurium A1-R (5 × 107 CFU/body, ip, weekly, 5 weeks + trastuzumab (20 mg/kg, ip, weekly, 5 weeks. All regimens had significant efficacy compared to the untreated mice. The relative tumor volume of S. typhimurium A1-R + trastuzumab-treated mice was smaller compared to trastuzumab alone (p = 0.007 and S. typhimurium A1-R alone (p = 0.039. No significant body weight loss was found compared to the no treatment group except for carboplatinum-treated mice (p = 0.021. Upon histological examination, viable tumor cells were not detected, and replaced by stromal cells in the tumors treated with S. typhimurium A1-R + trastuzumab. The results of the present study suggest that S. typhimurium A1-R and trastuzumab in combination are highly effective against HER-2-expressing cervical cancer.

  15. Improving the MR Imaging Sensitivity of Upconversion Nanoparticles by an Internal and External Incorporation of the Gd(3+) Strategy for in Vivo Tumor-Targeted Imaging.

    Science.gov (United States)

    Du, Hongli; Yu, Jiani; Guo, Dongcai; Yang, Weitao; Wang, Jun; Zhang, Bingbo

    2016-02-01

    toxicity. It could therefore be concluded, with improved MR imaging sensitivity by an internal and external incorporation of Gd(3+) strategy, that UCNPs-H@BSA·DTPA(Gd) presents great potential as an alternative in tumor-targeted MR imaging.

  16. Improving the MR Imaging Sensitivity of Upconversion Nanoparticles by an Internal and External Incorporation of the Gd(3+) Strategy for in Vivo Tumor-Targeted Imaging.

    Science.gov (United States)

    Du, Hongli; Yu, Jiani; Guo, Dongcai; Yang, Weitao; Wang, Jun; Zhang, Bingbo

    2016-02-01

    toxicity. It could therefore be concluded, with improved MR imaging sensitivity by an internal and external incorporation of Gd(3+) strategy, that UCNPs-H@BSA·DTPA(Gd) presents great potential as an alternative in tumor-targeted MR imaging. PMID:26740341

  17. The tumor targeted superantigen ABR-217620 selectively engages TRBV7-9 and exploits TCR-pMHC affinity mimicry in mediating T cell cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Gunnar Hedlund

    Full Text Available The T lymphocytes are the most important effector cells in immunotherapy of cancer. The conceptual objective for developing the tumor targeted superantigen (TTS ABR-217620 (naptumomab estafenatox, 5T4Fab-SEA/E-120, now in phase 3 studies for advanced renal cell cancer, was to selectively coat tumor cells with cytotoxic T lymphocytes (CTL target structures functionally similar to natural CTL pMHC target molecules. Here we present data showing that the molecular basis for the anti-tumor activity by ABR-217620 resides in the distinct interaction between the T cell receptor β variable (TRBV 7-9 and the engineered superantigen (Sag SEA/E-120 in the fusion protein bound to the 5T4 antigen on tumor cells. Multimeric but not monomeric ABR-217620 selectively stains TRBV7-9 expressing T lymphocytes from human peripheral blood similar to antigen specific staining of T cells with pMHC tetramers. SEA/E-120 selectively activates TRBV7-9 expressing T lymphocytes resulting in expansion of the subset. ABR-217620 selectively triggers TRBV7-9 expressing cytotoxic T lymphocytes to kill 5T4 positive tumor cells. Furthermore, ABR-217620 activates TRBV7-9 expressing T cell line cells in the presence of cell- and bead-bound 5T4 tumor antigen. Surface plasmon resonance analysis revealed that ABR-217620 binds to 5T4 with high affinity, to TRBV7-9 with low affinity and to MHC class II with very low affinity. The T lymphocyte engagement by ABR-217620 is constituted by displaying high affinity binding to the tumor cells (KD approximately 1 nM and with the mimicry of natural productive immune TCR-pMHC contact using affinities of around 1 µM. This difference in kinetics between the two components of the ABR-217620 fusion protein will bias the binding towards the 5T4 target antigen, efficiently activating T-cells via SEA/E-120 only when presented by the tumor cells.

  18. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Ding Y

    2015-10-01

    Full Text Available Yuan Ding,1,* Dan Sun,1,* Gui-Ling Wang,1 Hong-Ge Yang,1 Hai-Feng Xu,1 Jian-Hua Chen,2 Ying Xie,1,3 Zhi-Qiang Wang4 1Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 2School of Medicine, Jianghan University, Wuhan, 3State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People’s Republic of China; 4Department of Chemistry and Biochemistry, Kent State University Geauga, Burton, OH, USA *These authors contributed equally to this work Abstract: Cell-penetrating peptides (CPPs as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into

  19. In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Hsieh WJ

    2012-06-01

    sections of tumor tissues stained for the iron constituent of the NPs with Prussian blue revealed a strong blue reaction in the tumors of anti-VEGF-NP-treated mice, but only a weak reaction in mice injected with NPs. In both groups, at all time points, Prussian blue-stained liver and spleen sections showed only light staining, while stained cells were rarely detected in kidney and lung sections. Transmission electron microscopy showed that many more electron-dense particles were present in endothelial cells, tumor cells, and extracellular matrix in tumor tissues in mice injected with anti-VEGF-NPs than in NP-injected mice.Conclusion: These results demonstrated in vivo tumor targeting and efficient accumulation of anti-VEGF-NPs in tumor tissues after systemic delivery in a colon cancer model, showing that anti-VEGF-NPs have potential for use as a molecular-targeted tumor imaging agent in vivo.Keywords: nanoparticles, vascular endothelial growth factor, colon tumor, magnetic resonance imaging, transmission electron microscopy

  20. 用于肿瘤靶向性MRI对比剂双亲性超顺磁复合物的制备%Preparation of amphiphilic superparamagnetic composite particles with tumor targeted MRI contrast agent

    Institute of Scientific and Technical Information of China (English)

    顾隽珩; 张庆云; 张伟; 杨新林

    2014-01-01

    BACKGROUND:Superparamagnetic iron oxide nanoparticles (Fe3O4 NPs) have been widely used in MRI. It is vital to prepare the superparamagnetic MRI contrast agent with high stability, biocompatibility and tumor targeting in order to prevent the aggregation of Fe 3 O 4 NPs and realize the high-precision diagnose of tumor. OBJECTIVE:To prepare the amphiphilic superparamagnetic composite particles with tumor targeting mediated by folate receptor. METHODS:The stable amphiphilic superparamagnetic composite particles with tumor targeting function were prepared by coating the Fe3O4 NPs with a Pluronic F127-folic acid conjugate, which was synthesized via an esterification reaction between the carboxyl group of the tumor targeting molecule, folic acid and the hydroxyl group of an amphiphilic triblock copolymer, Pluronic F127. The resultant Pluronic F127-folic acid-Fe3O4 composite particles were characterized by transmission electron microscopy, Fourier transform infrared-spectra, UV-vis absorption spectra, thermal gravimetric analysis, vibrating sample magnetometer and T2-weighted imaging. WST assay was used to characterize their cytotoxicity preliminarily. RESULTS AND CONCLUSION:The Pluronic F127-folic acid conjugates were prepared via esterification reaction. Then Fe 3 O 4 NPs were wrapped with Pluronic F127-folic acid to result in the superparamagnetic composite particles with wel dispersion and biocompatibility. The size of most superparamagnetic composite particles was less than 200 nm and the size of Fe 3 O 4 core was 10-20 nm from the observation of transmission electron microscopy. The results from the Fourier transform infrared-spectra and UV-vis absorption spectroscop confirmed that folic acid molecules were modified on the surface of the superparamagnetic composite particles successful y. The mass ratio of Pluronic F127-folic acid conjugate was determined by thermal gravimetric analysis as 27.2 wt%in the resultant Pluronic F127-folic acid-Fe 3 O 4 composite

  1. The development of PET/CT in determining gross tumor target volume of esophageal carcinoma in precise radiotherapy%PET/CT确定食管癌大体靶区的研究进展

    Institute of Scientific and Technical Information of China (English)

    张炜; 宋轶鹏; 姜翠芳

    2014-01-01

    随着功能影像及分子影像的发展,PET/CT逐渐成为辅助制定肿瘤最佳精确放疗计划的成像方式.许多研究支持18 F-FDG PET/CT用于精确放疗中食管癌的靶区勾画,然而18F-FDGPET/CT在食管癌靶区勾画中的有效性尚需进一步研究.该文主要对18F-FDG PET/CT用于食管癌原发病灶、区域转移淋巴结GTV勾画的应用价值及有效性等方面的研究进行综述.%As the development of functional and molecular imaging,PET/CT gradually becomes one of methods in optimizing cancer radiotherapy treatment planning.Currently,numerous hospitals routinely use 18F-FDG PET/CT for the delineation of target volume in esophageal carcinoma (EC).However,the validity of 18F-FDG PET/CT in the delineation of target volume for EC is limited and needs further clinical validation.This review focuses on the value and validity of 18F-FDG PET/CT in the delineation of gross tumor target volume of EC primary lesions and regional lymph nodes.

  2. Tumor targeting using liposomal antineoplastic drugs

    OpenAIRE

    Jörg Huwyler; Jürgen Drewe; Stephan Krähenbühl

    2008-01-01

    Jörg Huwyler1, Jürgen Drewe2, Stephan Krähenbühl21University of Applied Sciences Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland; 2Department of Research and Division of Clinical Pharmacology, University Hospital Basel, Basel, SwitzerlandAbstract: During the last years, liposomes (microparticulate phospholipid vesicles) have beenused with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of applicatio...

  3. Stimulus-responsive nanopreparations for tumor targeting

    OpenAIRE

    ZHU, LIN; Torchilin, Vladimir P.

    2013-01-01

    Nanopreparations such as liposomes, micelles, polymeric and inorganic nanoparticles, and small molecule/nucleic acid/protein conjugates have demonstrated various advantages versus “naked” therapeutic molecules. These nanopreparations can be further engineered with functional moieties to improve their performance in terms of circulation longevity, targetability, enhanced intracellular penetration; carrier-mediated enhanced visualization, and stimuli-sensitivity. The idea of application of a st...

  4. Carbohydrate plasma expanders for passive tumor targeting

    DEFF Research Database (Denmark)

    Hoffmann, Stefan; Caysa, Henrike; Kuntsche, Judith;

    2013-01-01

    inexpensive synthesis, constant availability, a good safety profile, biodegradability and the long clinical use as plasma expanders. Three polymers have been tested for cytotoxicity and cytokine activation in cell cultures and conjugated with a near-infrared fluorescent dye: hydroxyethyl starches (HES 200 k...

  5. 新型染料IR-808靶向肿瘤近红外荧光成像的体内研究%Tumor targeting study of new dye IR-808 by near-infrared fluorescence imaging in vivo

    Institute of Scientific and Technical Information of China (English)

    田迎; 孙晶; 王建东; 卢光明

    2012-01-01

    目的 探讨近红外荧光染料IR-808在移植瘤动物模型中特异性的肿瘤靶向示踪作用.方法 建立人肺癌细胞系NCI-H460、结肠癌细胞系HCT-116及鼠源肝癌细胞系Hepa 1-6皮下移植瘤裸小鼠模型,未接种癌细胞的裸小鼠作对照.尾静脉注射同等剂量染料IR-808,分别在不同时间点对裸小鼠正常组织及肿瘤组织进行近红外荧光成像,追踪染料在裸小鼠体内的分布,评价其肿瘤靶向作用.结果 在未接种的裸小鼠体内,IR-808染料首先在肝脏、心脏聚集,随后信号减弱,48h后基本代谢排出体外;在荷瘤裸小鼠模型体内,IR-808染料注入24h后开始靶向肿瘤,72h后荧光信号仍很稳定;取荷瘤裸小鼠组织进行近红外荧光成像,发现仅肿瘤组织有信号,其他组织无信号.全部实验小鼠状态良好,未见明显毒性反应.结论 近红外荧光染料IR-808能特异性靶向肿瘤成像,且信号稳定,无明显毒性,具有重要的应用前景.%Objective To study the tumor targeting properties of near-infrared ( NIR) fluorescence dye IR-808 in tumor xeno-grafts by in vivo optical imaging system. Methods Human lung cancer cell line( NCI-H460) , human colon cancer cell line(HCT-116) and murine hepatoma cancer cell line ( Hepa 1-6) were established as subcutaneous tumor xenograft models by injection into BAIB/C-nu/nu female nude mice with 3 X 106 ( NCI-H460 and HCT-116) and 2 X 105 ( Hepa 1-6). Meanwhile, mice that had not been injected with cancer cells were used as control. Normal and tumor tissues were subjected to NIR imaging at different time points after iv injection of IR-808 at the same dose. The distribution and tumor targeting effect of the dye were observed successively in vivo. Results The preferential organs for uptake and retention of the dye were liver and heart in normal mice and the dye was basically excreted after 4Sh. The NIR signal started to condense in tumor at 24h after dye injection and was still stable

  6. 核酸适体靶向红荧烯有机纳米探针用于肿瘤成像研究%Aptamer-Functionalized Rubrene-Nanoprobes for Tumor-Targeted Imaging

    Institute of Scientific and Technical Information of China (English)

    李传胜; 吴亚运; 姜涛; 张鹏飞; 龚萍; 蔡林涛

    2016-01-01

    Over the past twenty years, the morbidity and mortality of tumor in our country was increasing. If the the cancer could be detected at early stages, targeting therapy would be performed which contribute to improve the cure rate of cancer. With the development of nanotechnology, nanomaterials used in early diagnosis of cancer imaging and treatment have aroused wide concern. A kind of organic fluorescent nanoprobes based on aptamer for tumor-targeted imaging with rapid, simple synthetic process was developed in this research. The nanoprobes not only exhibit excellent targeting function but also have good biocompatibility and stability, and provide a powerful tool for further tumor diagnosis and treatment.%近二十年来,肿瘤在我国的发生率和死亡率呈现不断增高的趋势。若能早期发现癌变位点并及时对其进行靶向治疗,将有助于提高癌症的治愈率。伴随着纳米技术的发展,用于癌症早期诊断成像和治疗的纳米材料的开发也得到了人们的广泛关注。文章介绍了一种基于核酸适体靶向肿瘤细胞的有机荧光纳米探针,其制备过程快速简便,所制得的纳米颗粒不仅表现出优异的靶向能力,而且具有良好的生物相容性和稳定性,该研究为肿瘤的靶向诊疗提供了有力工具。

  7. Process optimization for the preparation of oligomycin-loaded folate-conjugated chitosan nanoparticles as a tumor-targeted drug delivery system using a two-level factorial design method

    Directory of Open Access Journals (Sweden)

    Zu Y

    2011-12-01

    Full Text Available Yuangang Zu, Qi Zhao, Xiuhua Zhao, Shuchong Zu, Li MengKey Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, ChinaAbstract: Oligomycin-A (Oli-A, an anticancer drug, was loaded to the folate (FA-conjugated chitosan as a tumor-targeted drug delivery system for the purpose of overcoming the nonspecific targeting characteristics and the hydrophobicity of the compound. The two-level factorial design (2-LFD was applied to modeling the preparation process, which was composed of five independent variables, namely FA-conjugated chitosan (FA-CS concentration, Oli-A concentration, sodium tripolyphosphate (TPP concentration, the mass ratio of FA-CS to TPP, and crosslinking time. The mean particle size (MPS and the drug loading rate (DLR of the resulting Oli-loaded FA-CS nanoparticles (FA-Oli-CSNPs were used as response variables. The interactive effects of the five independent variables on the response variables were studied. The characteristics of the nanoparticles, such as amount of FA conjugation, drug entrapment rate (DER, DLR, surface morphology, and release kinetics properties in vitro were investigated. The FA-Oli-CSNPs with MPS of 182.6 nm, DER of 17.3%, DLR of 58.5%, and zeta potential (ZP of 24.6 mV were obtained under optimum conditions. The amount of FA conjugation was 45.9 mg/g chitosan. The FA-Oli-CSNPs showed sustained-release characteristics for 576 hours in vitro. The results indicated that FA-Oli-CSNPs obtained as a targeted drug delivery system could be effective in the therapy of leukemia in the future.Keywords: oligomycin-A, chitosan, folate, targeted drug delivery system, nanoparticles, two-level factorial design

  8. 3,2'-Dimethyl-4-aminobiphenyl-DNA adduct formation in tumor target and nontarget organs of rapid and slow acetylator Syrian hamsters cogenic at the NAT2 locus.

    Science.gov (United States)

    Feng, Y; Jiang, W; Deitz, A C; Hein, D W

    1996-10-01

    DNA adduct formation is an important step in initiation of the carcinogenic process. 3,2'-Dimethyl-4-aminobiphenyl (DMABP) is a well-documented multiorgan carcinogenic aromatic amine in rodents. In the present study, DMABP-DNA adduct levels were measured in rapid (Bio. 82.73/H-Pat(r)) and slow (Bio. 82.73/H-Pat(s)) acetylator Syrian hamsters congenic at the NAT2 locus following a single injection of 33 or 100 mg/kg body wt DMABP. Two DNA adducts, N-(deoxyguanosin-8-yl)-DMABP and 5-(deoxyguanosin-N2-yl)-DMABP, were identified and quantitated by 32P-postlabeling assay. After injection of 33 mg/kg, DMABP-DNA adducts were detected in urinary bladder at 6, 18, 24, and 48 hr with adduct levels increasing up to 48 hr postinjection. DMABP-DNA adducts were not detected in liver, colon, and heart. After injection of 100 mg/kg, DMABP-DNA adducts were detected in urinary bladder, liver, prostate, colon, and heart at 48 hr postinjection. DMABP-DNA adduct levels were significantly higher in urinary bladder (primary tumor target organ) than in the other organs of both rapid and slow acetylator congenic hamsters. N-(deoxyguanosin-8-yl)-DMABP levels were significantly higher in liver and prostate than in colon and heart of rapid and slow acetylator congenic hamsters, whereas 5-(deoxyguanosin-N2-yl)-DMABP levels were significantly higher in prostate than in colon and heart of rapid and slow acetylator congenic hamsters. DMABP-DNA adduct levels in each tissue examined did not differ significantly between rapid and slow acetylator hamsters following either 33 or 100 mg/kg injection. The tissue-dependent differences in DMABP-DNA adduct levels observed in the Syrian hamster differ from those reported in the rat and are consistent with previous studies that show DMABP induces primarily urinary bladder tumors in the Syrian hamster. PMID:8887447

  9. LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging.

    Science.gov (United States)

    Roy, Kislay; Kanwar, Rupinder K; Kanwar, Jagat R

    2015-12-01

    , survivin splice variant (survivin 2B) and other anti-apoptotic proteins Bad, Bcl-2 and XIAP. Apart from the promising anti-cancer efficacy and the exceptional tumor targeting ability observed by multimodal imaging using near-infrared (NIR) imaging, magnetic resonance imaging (MRI) and computerized tomographic (CT) techniques, these NCs also maintained the immunomodulatory benefits of bLf as they were able to increase the RBC, hemoglobin, iron calcium and zinc levels in mice. PMID:26318819

  10. WE-G-BRE-07: Proton Therapy Enhanced by Tumor-Targeting Gold Nanoparticles: A Pilot in Vivo Experiment at The Proton Therapy Center at MD Anderson Cancer Center

    International Nuclear Information System (INIS)

    Purpose: Assess tumor-growth delay and survival in a mouse model of prostate cancer treated with tumor-targeting gold nanoparticles (AuNPs) and proton therapy. Methods: We first examined the accumulation of targeting nanoparticles within prostate tumors by imaging AuNPs with ultrasound-guided photoacoustics at 24h after the intravenous administration of goserelin-conjugated AuNPs (gAuNP) in three mice. Nanoparticles were also imaged at the cellular level with TEM in PC3 cells incubated with gAuNP for 24h. Pegylated AuNPs (pAuNP) were also imaged in vivo and in vitro for comparison. PC3 cells were then implanted subcutaneously in nude mice; 51mice with 8–10mm tumors were included. AuNPs were injected intravenously at 0.2%w/w final gold concentration 24h before irradiation. A special jig was designed to facilitate tumor irradiation perpendicular to the proton beam. Proton energy was set to 180MeV, the radiation field was 18×18cm2, and 9cm or 13.5cm thick solid-water compensators were used to position the tumors at either the beam entrance (BE) or the SOBP. Physical doses of 5Gy were delivered to all tumors on a patient beam line at MD Anderson's Proton Therapy Center. Results: The photoacoustic experiment reveled that our nanoparticles leak from the tumor-feeding vasculature and accumulate within the tumor volume over time. Additionally, TEM images showed gAuNP are internalized in cancer cells, accumulating within the cytoplasm, whereas pAuNP are not. Tumor-growth was delayed by 11 or 32days in mice receiving gAuNP irradiated at the BE or the SOBP, relative to proton radiation alone. Survival curves (ongoing experiment) reveal that gAuNPs improved survival by 36% or 74% for tumors irradiated at the BE or SOBP. Conclusion: These important, albeit preliminary, in vivo findings reveal nanoparticles to be potent sensitizers to proton therapy. Further, conjugation of AuNPs to tumor-specific antigens that promote enhanced cellular internalization improved both

  11. WE-G-BRE-07: Proton Therapy Enhanced by Tumor-Targeting Gold Nanoparticles: A Pilot in Vivo Experiment at The Proton Therapy Center at MD Anderson Cancer Center

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, T; Grant, J; Wolfe, A; Gillin, M; Krishnan, S [MD Anderson Cancer Ctr., Houston, TX (United States)

    2014-06-15

    Purpose: Assess tumor-growth delay and survival in a mouse model of prostate cancer treated with tumor-targeting gold nanoparticles (AuNPs) and proton therapy. Methods: We first examined the accumulation of targeting nanoparticles within prostate tumors by imaging AuNPs with ultrasound-guided photoacoustics at 24h after the intravenous administration of goserelin-conjugated AuNPs (gAuNP) in three mice. Nanoparticles were also imaged at the cellular level with TEM in PC3 cells incubated with gAuNP for 24h. Pegylated AuNPs (pAuNP) were also imaged in vivo and in vitro for comparison. PC3 cells were then implanted subcutaneously in nude mice; 51mice with 8–10mm tumors were included. AuNPs were injected intravenously at 0.2%w/w final gold concentration 24h before irradiation. A special jig was designed to facilitate tumor irradiation perpendicular to the proton beam. Proton energy was set to 180MeV, the radiation field was 18×18cm{sup 2}, and 9cm or 13.5cm thick solid-water compensators were used to position the tumors at either the beam entrance (BE) or the SOBP. Physical doses of 5Gy were delivered to all tumors on a patient beam line at MD Anderson's Proton Therapy Center. Results: The photoacoustic experiment reveled that our nanoparticles leak from the tumor-feeding vasculature and accumulate within the tumor volume over time. Additionally, TEM images showed gAuNP are internalized in cancer cells, accumulating within the cytoplasm, whereas pAuNP are not. Tumor-growth was delayed by 11 or 32days in mice receiving gAuNP irradiated at the BE or the SOBP, relative to proton radiation alone. Survival curves (ongoing experiment) reveal that gAuNPs improved survival by 36% or 74% for tumors irradiated at the BE or SOBP. Conclusion: These important, albeit preliminary, in vivo findings reveal nanoparticles to be potent sensitizers to proton therapy. Further, conjugation of AuNPs to tumor-specific antigens that promote enhanced cellular internalization improved

  12. CT/MRI融合图像在盆腔肿瘤放疗靶区勾画中的应用%Application of CT/MRI Image Fusion in the Delineating of the Gross Tumor Target Volumes in the Radiotherapy for Pelvic Cavity Tumor

    Institute of Scientific and Technical Information of China (English)

    张海南; 汤日杰; 张书旭; 蔡霜

    2011-01-01

    Objective To study the value of application of CT/MRI image fusion in the delineating of the gross tumor target volumes in the radiotherapy for pelvic tumor in the middle-aged and elderly patients. Methods Nineteen patients suffering from pelvic tumor underwent CT and MRI examination within one week.All CT and MRI images were manually transported to the Nucletron PLATO Radiation Treatment Planning System(V 8.0, Philips medical corporation), and CT/MRI images were processed for image fusion.The experienced radiotherapeutic physicians delineated and analyzed the target volume of CT and MRI images, and gross tumor target volume of the CT/MR image fusion. Results The gross tumor target volume of the CT/MR image fusion relative the target volume of CT increased 6.29%,and relative MRI raised 11.84%,CT/MRI image fusion is superior to single CT and MRI image in the delineation of the gross tumor target volume, which was verified by test. Conclusion The technology of CT/MR image fusion can help to confirm target volume for pelvic tumor which will improve the accuracy in demarcating of the gross tumor target volume of pelvic cavity tumor, and promote the diagnosis and treatment of pelvic cavity tumor.%目的 探讨CT/MRI融合图像在中老年盆腔肿瘤放疗靶区(GTV)勾画中的应用价值.方法 19例盆腔肿瘤患者均在1周内分别进行CT、MRI异机非同步扫描.全部CT和MRI图像手工配准后传送至飞利浦公司的PINNACLE V8.0放射治疗计划系统,并进行图像融合.由有经验的放疗科医师对CT靶区、MRI靶区及CT与MR融合图像肿瘤靶区(GTV)进行勾画及评价分析.结果 GTVFUSION相对GTVCT提高了6.29%、相对GTVMRI提高了11.84%,融合图像对GTV的勾画明显优于单独CT图像或MRI图像.结论 CT/MRI图像融合技术有利于盆腔肿瘤靶区的确定,提高了临床对盆腔肿瘤靶区(GTV)勾画的准确率,利于患者的诊治.

  13. Study on tumor targeting ability of neovessel-targeted PEGylated liposomes%靶向长循环脂质体造影剂体内外靶向性研究

    Institute of Scientific and Technical Information of China (English)

    宋胤; 李玮; 孟淑燕; 唐亮; 周蔚; 周彩存

    2011-01-01

    目的 通过测定肿瘤新生血管靶向的长循环脂质体造影剂与体外细胞的结合能力及在其体内的代谢、分布情况,研究其对肿瘤的靶向能力.方法 薄膜超声法制备包裁核磁共振造影剂钆喷酸葡胺注射液(Gd-DTPA)的靶向神经纤毛蛋白-1受体的长循环脂质体造影剂(T-PEG-Gd-LP)和非靶向的长循环脂质体造影剂(NT-PEG-Gd-LP),并观察测定物理性质.实验共设3组,游离组Gd-DTPA、非靶向组NT-PEG-Gd-LP和靶向组T-PEG-Gd-LP,分别测定与人脐静脉内皮细胞(HUVECs)和人肺腺癌细胞(A549 cells)的结合能力及注射荷瘤裸鼠模型后的血液和各组织器官中的钆含量.结果 靶向组T-PEG-Gd-LP与细胞的结合能力优于其他组别(P<0.05).与游离组Gd-DTPA相比,NT-PEG-Gd-LP和T-PEG-Gd-LP在血中的清除速率明显减慢,肿瘤、肝、脾、肌肉组织中的药物含量明显增加,心、肺、肾组织中明显降低.与非靶向组卜rr-PEG-Gd-LP相比,靶向组T-PEG.Gd-LP在肿瘤组织中的药物含量显著增加.结论 肿瘤新生血管靶向的长循环脂质体造影剂在体外结合和体内分布情况都表现出良好的肿瘤靶向性.%Objective To design and prepare neovessel-targeted PEGylated liposomes and to analyze the tumor targeting ability by evaluating its cell binding capacity in vitro and its metabolism and tissue distribution in vivo.Methods Targeting neuropilin-1 receptor PEGylated Gadopentetate Dimeglumine liposomes(T-PEG-Gd-LP) and non-targeting PEGylated Gadopentetate Dimeglumine liposomes ( NT-PEGGd-LP) , both containing magnetic resonance ultrasound contrast agent Gd-DTPA, were prepared by thin film dispersion sonication methods and their physical properties were observed.Experiments were conducted and classified into three groups: Gd-DTPA group, NT-PEG-Gd-LP group and T-PEG-Gd-LP group.The binding capacity of these three agents with HUVECs and A549 cells were determined.The content of Gd in blood and tissues or

  14. Development of a new breathing control system of tumor target for precision radiotherapy%新型精确放射治疗肿瘤靶区呼吸控制系统的研制

    Institute of Scientific and Technical Information of China (English)

    麦海涛; 岑铨华; 李成毅

    2016-01-01

    目的:在实施精确放射治疗过程中,随呼吸运动而运动的人体器官要达到一定的精度较为困难。许多胸腹部器官均会伴随呼吸运动产生一定程度的偏移,需对偏移通过各种方法进行补偿。根据临床实际需求,研制出一套新型精确放射治疗中肿瘤靶区呼吸控制系统。方法:基于现有主动呼吸控制系统的组成结构与思路,研制由气囊、控制箱、患者手柄开关、电脑、控制箱、气囊自动控制器、呼吸传感器及通讯工具等构成的新型精确放射治疗中肿瘤靶区呼吸控制系统,选用Pneumotach型的PowerCube肺功能的呼吸传感器,运用C++高级编程语言编写呼吸控制系统的软件程序。结果:可较好地帮助患者进行呼吸控制,减少肺部肿瘤随人体呼吸运动而发生偏移,提高治疗准确性。结论:该系统集弥散、振荡及通气等功能于一体,可实现在现有仪器上进行改装,达到放射治疗中肿瘤靶区呼吸控制的设计目的,并成功用于临床。%Objective:It is more difficult to conduct precision radiotherapy for organs of the human body with the respiratory movement. It is necessary to compensate a certain degree of deviation which is produced by many thoracic and abdominal organs with breathing exercises. To develop a new breathing control system of tumor target for precision radiotherapy is the practical demand in hospital.Methods: According to the current active breathing control system, there are gasbag, control box, handle switch for the patients, computer, automatic gasbag controller, respiratory sensor and communication tools. The Pneumotach PowerCube pulmonary function respiratory sensor and C++ high level programming language were selected to program the breathing control system.Results: The system could make patients conduct respiratory control better, reduce the deviation of pulmonary tumor caused by respiratory movement and improve the

  15. Phenylalanine-coupled solid lipid nanoparticles for brain tumor targeting

    Energy Technology Data Exchange (ETDEWEB)

    Kharya, Parul; Jain, Ashish; Gulbake, Arvind; Shilpi, Satish; Jain, Ankit; Hurkat, Pooja [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India); Majumdar, Subrata [Bose Institute, Division of Molecular Medicine (India); Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2013-11-15

    The purpose of this study is to investigate the targeting potential of amino acid (phenylalanine)-coupled solid lipid nanoparticles (SLN) loaded with ionically complexed doxorubicin HCl (Dox). Ionic complexation was used to enhance the loading efficiency and release characteristics of water soluble form of Dox. l-Type amino acid transporters (LAT1) are highly expressed on blood brain barrier as well as on many brain cancer cells, thus targeting LAT1 using phenylalanine improved anticancer activity of prepared nanocarrier. The phenylalanine-coupled SLN were characterized by fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, particle size, zeta potential, entrapment efficiency and in vitro release. The particle size of the resulting SLN was found to be in the range of 163.3 ± 5.2 to 113.0 ± 2.6 nm, with a slightly negative surface charge. In ex vivo study on C6 glioma cell lines, the cellular cytotoxicity of the SLN was highly increased when coupled with phenylalanine. In addition, stealthing sheath of PEG present on the surface of the SLN enhanced the cellular uptake of the SLN on C6 glioma cell line. Results of biodistribution and fluorescence studies clearly revealed that phenylalanine-coupled SLN could deliver high amount of drug into the brain tumor cells and showed the brain-targeting potential.

  16. Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting

    OpenAIRE

    Federico Perche; Torchilin, Vladimir P.

    2013-01-01

    Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long b...

  17. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting.

    Science.gov (United States)

    Perche, Federico; Torchilin, Vladimir P

    2013-01-01

    Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor's vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies. PMID:23533772

  18. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Hossein, E-mail: hosseinkhani@yahoo.com [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Chen Yiru [National Yang-Ming University, Department of Biomedical Engineering (China); He Wenjie; Hong Poda [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Yu, Dah-Shyong [Nanomedicine Research Center, National Defense Medical Center (China); Domb, Abraham J. [Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem (Israel)

    2013-01-15

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe{sup 2+} solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  19. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    International Nuclear Information System (INIS)

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe2+ solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  20. Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting

    Directory of Open Access Journals (Sweden)

    Federico Perche

    2013-01-01

    Full Text Available Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor’s vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies.

  1. The development of somatostatin analogues mediated tumor targeting and therapy

    International Nuclear Information System (INIS)

    Radionuclide labelled somatostatin analogues have been widely used in the detection of neuro-endocrine tumors. Till now, most of somatostatin analogues only have high affinity to somatostatin receptor 2 (SSTR2), further clinical applications was limitted. A new generation of somatostatin analogues such as 1, 4, 7, 10-tetraazacyclodocecane-N, N', N'', N''' -tetaraacetic acid-Na 13- octertide (DOTA-NOC) etc, binding to somatostatin receptors not only SSTR2 but other subtypes has been used mainly in preclinical study. In this review, we discussed these new somatostatin analogues, chelating agent, and their new labelled compounds, these new radionuclide labelled somatostatin analogues may hold great promise for the receptor-mediated tumor imaging and treatments. (authors)

  2. Preliminary Study on Cleavable PEG and TAT Co-Modified Liposomes Used in Tumor Targeting%可断裂聚乙二醇和穿膜肽共修饰脂质体肿瘤靶向作用初步研究

    Institute of Scientific and Technical Information of China (English)

    石志蓉; 肖羽君

    2014-01-01

    目的:探讨可断裂药用聚乙二醇(PEG)和穿膜肽(TAT)共修饰脂质体用于肿瘤靶向的效果及机制。方法使用薄膜分散-超声法制备可断裂PEG和TAT共修饰脂质体,并观察其对体外培养肝癌细胞株和正常肝细胞株的穿膜效果、细胞靶向性及对细胞活性的影响。结果由质谱鉴定结果可见,合成的共修饰脂质体杂质较少,相对分子质量约为3622.4,纯度约为96.1%,图像表现为主峰峰面积较高;白色光、荧光及重叠后,观察组均可见胞内红色细胞大量分布,且集中于胞质内;不同质量浓度的共修饰脂质体对SMMC-7721细胞生物学活性与对照组比较,无明显差异。结论可断裂PEG和TAT共修饰脂质体的稳定性较高,制备工艺便捷,具备良好的药物承载性和安全性,且存在良好的细胞内外传递潜能,肿瘤靶向性极佳,具有巨大的临床应用前景,值得进一步研究。%Objective To investigate the effect and mechanism of the cleavable medicinal polyethylene glycol ( PEG ) and membrane pene-trating peptide ( TAT ) co-modified liposomes used in tumor targeting. Methods The film dispersion ultrasonic method was adopted for preparing the cleavable PEG and TAT co-modified liposomes, and their transmembrane effect on the in vitro liver cancer cell lines and normal liver cell line, cell targeting and influence on the cell activity were observed. Results The mass spectrometric identification results were visible, the synthetic co-modified liposomes had less impurities, their relative molecular mass was about 3 622. 4 with the purity of 96. 1%, the image showed the higher peak area;on the white light, fluorescence and after overlap, large distributed intracellular red cell mass in the observation group could be seen and were concentrated in the cytoplasm;compared with the control group, different concentrations of co-modified liposomes for the biological activity of SMMC-7721

  3. Synthesis and Evaluation of GnRHa-paclitaxel Tumor-targeting Conjugates%促性腺激素释放激素类似物-紫杉醇靶向抗肿瘤缀合物的合成及评价

    Institute of Scientific and Technical Information of China (English)

    马永涛; 冯思良; 王晨宏; 周宁; 刘克良

    2014-01-01

    Tumor targeting can be achieved by combining a chemotherapeutic agent with a targeting moiety, which recognizes tumor-specific or highly expressed receptors on cancer cells. GnRH receptor is over-ex-pressed on various tumor cells but is barely expressed in healthy visceral organs which makes it possible to use GnRH analogues( GnRHa) as the targeting moieties to deliver cytotoxic agents. Two conjugates were synthe-sized by incorporating paclitaxel( PTX) into GnRH analogue which was synthesized in the solid phase, the conjugation of PTX with GnRH analogs was performed by thio-ether bond and disulfide bond as a linker. The purity of the conjugates was analyzed by high performance liquid chromatography( HPLC) and the structures of the conjugates were confirmed by high resolution mass spectrum ( HRMS ) . The resulting conjugates 1 and 2 both preserved the cytotoxic activity of PTX and also retained the high binding affinity of the peptide hormone portion of the conjugates. The high affinity indicated that the conjugates might be specifically delivered to tumor tissues or cells via endocytosis mediated by GnRH receptor. The results showed that more than 50%prototypes of conjugate 1 remained with incubating in human serum for 24 h which indicating a favorable sta-bility.%以促性腺激素释放激素类似物( GnRHa)为靶向配体,以紫杉醇为抗癌因子,分别以硫醚键和二硫键为连接臂,设计合成了2个靶向抗肿瘤缀合物。研究了缀合物的肿瘤细胞增殖抑制活性和GnRH受体结合活性,结果表明,2个缀合物均具有较强的抗肿瘤活性和GnRH受体亲和力;另外,血浆稳定性实验结果显示,以硫醚键偶联的缀合物1在血浆中孵育24 h,原型保留仍在50%以上,具有较高的稳定性。

  4. A tumor targeted therapy study of PcDNA-sTRAIL combined with 131I-angiostatin on lewis lung garcinoma nude mice%131I-血管抑素联合PcDNA-sTRAIL在荷瘤小鼠模型肿瘤靶向治疗的研究

    Institute of Scientific and Technical Information of China (English)

    张弦; 田琼; 魏龙晓; 周润锁; 徐海峰; 袁梦辉

    2012-01-01

    Objective :To build PcDNA-sTRAIL eukaryolic expression vector and amplify, purify it. Then observe the joint sntitumor effect of the PcDNA-sTRAIL combined with '" I -AS in Lewis Lung Carcinoma nude mice Methods ■ Through the PCR amplification and directional cloning technology to build PcDN A-sTR AIL eukaryotic express carrier, me '" 1 to mark AS. The mark rate could reach 85 'A and exhibit good in vitro stability. After successfully constructed a tumor-burdened nude mice model, then we got a tumor-burdened mice SPECT imaging. Next, we completed a tumor targeted therapy study of restructuring PcON A-sTRAIL combined with '" I -AS. Result the overage volume of tumor in the PcDNA-sTRAIL and '" I-AS combined treatment group is smaller the other single treated groups. Conclusion ?Thi* research firstly suggested the combined treatment of inhibiting tumor angiogenesis effect, promoting the tumor cell apoptosis effect, and radiation treatment to fight cancer. We expect we could not only take full advantages of the three methods, but also provide powerful experimental evidences for combination treatment of radionuclide and the immune therapy.%目的:构建PcDNA-sTRAIL真核表达载体并进行扩增、纯化,采用131I标记血管抑素(AS)并完成了PcDNA-sTRAIL与131I-AS在荷瘤裸鼠体内的联合抑瘤试验.方法;通过PCR扩增和定向克隆技术成功构建PcDNA-sTRAIL真核表达载体,采用131I标记血管抑素,标记率达85%且体外稳定性好,成功构建了荷瘤裸鼠模型,并进行了荷瘤小鼠联合治疗后SPECT显像和病理结果,完成PcDNA-sTRAIL与131I-AS在荷瘤裸鼠体内的联合抑瘤试验.结果:荷瘤小鼠PcDNA-sTRAIL与131I-AS联合用药治疗期间肿瘤平均体积较其他单独治疗组增长缓慢.结论:本研究将抑制肿瘤血管生成、促肿瘤细胞凋亡和放射性核素的内照射三重作用相结合并用于抗肿瘤治疗,期望不仅能充分发挥三者的优势,又能为核素内照射与免疫

  5. The Blazing Horror of Now

    DEFF Research Database (Denmark)

    Warner, Cameron David

    2012-01-01

    On following posts on Tibetan self-immolation on Facebook and the sense that our normal academic tools of analysis fail to give us the sense that we can derive significant meaning.......On following posts on Tibetan self-immolation on Facebook and the sense that our normal academic tools of analysis fail to give us the sense that we can derive significant meaning....

  6. Capsid modification of adeno-associated virus and tumor targeting gene therapy

    Institute of Scientific and Technical Information of China (English)

    XU ZengHu; ZHOU XiuMei; SHI WenFang; QIAN QiJun

    2008-01-01

    Targeting is critical for successful tumor gene therapy. The adeno-associated virus (AAV) has aroused wide concern due to its excellent advantages over other viral vectors in gene therapy. AAV has a broad infection spectrum, which also results in poor specificity towards tissues or cells and low transduction efficiency. Therefore, it is imperative to improve target and transduction efficiency in AAV-mediated gene therapy. Up to now, researchers have developed many strategies to modify AAV capsids for improving targeting or retargeting only desired cells. These strategies include not only traditional chemical modification, phage display technology, modification of AAV capsid genome, chimeric vectors and so on, but also many novel strategies involved in marker rescue strategy, direct evolution of capsid proteins, direct display random peptides on AAV capsid, AAVP (AAV-Phage), and etc. This review will summarize the advances of researches on the capsid modification of AAV to target malignant cells.

  7. Liposomes containing alkylated methotrexate analogues for phospholipase A(2) mediated tumor targeted drug delivery

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars; Jensen, Simon Skøde;

    2009-01-01

    Two lipophilic methotrexate analogues have been synthesized and evaluated for cytotoxicity against KATO III and HT-29 human colon cancer cells. Both analogues contained a C-16-alkyl chain attached to the gamma-carboxylic acid and one of the analogues had an additional benzyl group attached to the...... tightly anchored to the liposomal carrier. Also, the developed DSC-assay for Studying the anchoring stability of alkylated drugs will be a useful tool in the development of liposomal drug delivery Systems....... of the MTX-liposomes against KATO III and HT-29 cancer cells was found to be independent of sPLA(2) hydrolysis, indicating that the alkylated MTX-analogue was available for cancer cell uptake even in the absence of liposome hydrolysis. Using a DSC based method for assessing the anchoring stability...... of alkylated compounds in liposomes, it was demonstrated that the MTX-analogue partitioned into the water phase and thereby became available for cell uptake. It was concluded that liposomes containing alkylated MTX-analogues show promise as a drug delivery system, although the MTX-analogue needs to be more...

  8. VEGF₁₂₁-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system.

    Science.gov (United States)

    Goel, Shreya; Chen, Feng; Hong, Hao; Valdovinos, Hector F; Hernandez, Reinier; Shi, Sixiang; Barnhart, Todd E; Cai, Weibo

    2014-12-10

    The vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) signaling cascade plays a critical role in tumor angiogenesis and metastasis and has been correlated with several poorly prognostic cancers such as malignant gliomas. Although a number of anti-VEGFR therapies have been conceived, inefficient drug administration still limits their therapeutic efficacy and raises concerns of potential side effects. In the present work, we propose the use of uniform mesoporous silica nanoparticles (MSNs) for VEGFR targeted positron emission tomography imaging and delivery of the anti-VEGFR drug (i.e., sunitinib) in human glioblastoma (U87MG) bearing murine models. MSNs were synthesized, characterized and modified with polyethylene glycol, anti-VEGFR ligand VEGF121 and radioisotope (64)Cu, followed by extensive in vitro, in vivo and ex vivo studies. Our results demonstrated that a significantly higher amount of sunitinib could be delivered to the U87MG tumor by targeting VEGFR when compared with the non-targeted counterparts. The as-developed VEGF121-conjugated MSN could become another attractive nanoplatform for the design of future theranostic nanomedicine.

  9. Tumor Targeting Potential of Lipid-Based Nano-Pharmaceuticals (LNPs)

    Science.gov (United States)

    Gupta, Kshitij; Yavlovich, Amichai; Puri, Anu; Blumenthal, Robert

    2013-09-01

    Nanoparticle-mediated targeted drug delivery has become the modality of interest for cancer/tumor therapy as it reduces the undesirable delivery to normal cells and improves efficacy of the pharmaceuticals. Among all the nanosystems, lipid-based nano-pharmaceuticals (LNPs) have been most extensively studied for cancer therapy. Doxil formulation was the first LNP that has been approved for cancer treatment. When conjugated with ligands, LNPs can be targeted to tumor cells. This chapter focuses on the targeting potential of LNPs for cancer therapy. We will discuss the advantages of enhanced permeability and retention (EPR) effect (passive targeting) for preferential tumor accumulation of LNPs, the importance of pegylation to avoid reticulo-endothelial system uptake and active targeting strategies using various targeting ligands that can be coupled to the LNP surface to target the tumor region (tumor cells/tumor vasculature). Targeted LNPs show higher binding affinity, greater intracellular localization and thereby increased cancer cell killing in comparison to non targeted LNPs. However, contrasting reports exist that pose challenges to the notion that targeted LNPs are advantageous. Recent trends have also demonstrated the concept of dual targeting that simultaneously homes LNPs to receptors on the tumor cells and biomarkers expressed on the tumor vasculature. In addition, targeting with multiple ligands on the LNPs has also been explored. These approaches may prove to be a better answer for next generation of LNPs for delivery of anti-cancer agents. However, more extensive studies are required to get their clinical approval in anti-cancer therapy.

  10. To serve and protect: Enzyme inhibitors as radiopeptide escorts promote tumor targeting

    NARCIS (Netherlands)

    B.A. Nock (Berthold); T. Maina (Theodosia); E.P. Krenning (Eric); M. de Jong (Marcel)

    2014-01-01

    textabstractRadiolabeled octreotide analogs are most successfully being applied today in clinical cancer imaging and treatment. Propagation of this paradigm to other radiopeptide families has been greatly hampered by the inherent poor metabolic stability of systemically administered peptide analogs.

  11. Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles

    OpenAIRE

    Rangger C; Helbok A; Sosabowski J; Kremser C; Koehler G; Prassl R; Andreae F; Virgolini IJ; von Guggenberg E; Decristoforo C

    2013-01-01

    Christine Rangger,1 Anna Helbok,1 Jane Sosabowski,2 Christian Kremser,3 Gottfried Koehler,4 Ruth Prassl,5,6 Fritz Andreae,7 Irene J Virgolini,1 Elisabeth von Guggenberg,1 Clemens Decristoforo11Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria; 2Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK; 3Department of Radiology, Innsbruck Medical University, Innsbruck, 4Department of Computational and Structural Biology, M...

  12. Dual-function synthetic peptide derived from BMP4 for highly efficient tumor targeting and antiangiogenesis

    Directory of Open Access Journals (Sweden)

    Choi SH

    2016-09-01

    Full Text Available Suk Hyun Choi,1,* Jue Yeon Lee,2,* Jin Sook Suh,1 Yoon Shin Park,3 Chong Pyoung Chung,2 Yoon Jeong Park1 1Department of Dental Regenerative Biotechnology, Dental Research Institute, 2Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC, School of Dentistry, Seoul National University, Seoul, 3Department in Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea *These authors contributed equally to this work Abstract: Angiogenesis plays a critical role in the growth and metastasis of cancer, and growth factors released from cancer promote blood-vessel formation in the tumor microenvironment. The angiogenesis is accelerated via interactions of growth factors with the high-affinity receptors on cancer cells. In particular, heparan sulfate proteoglycans (HSPGs on the surface of cancer cells have been shown to be important in many aspects of determining a tumor’s phenotype and development. Specifically, the regulation of the interactions between HSPGs and growth factors results in changes in tumor progression. A peptide with heparin-binding (HBP activity has been developed and synthesized to inhibit tumor growth via the prevention of angiogenesis. We hypothesized that HBP could inhibit the interaction of growth factors and HSPGs on the surface of cancer cells, decrease paracrine signaling in endothelial cells (ECs, and finally decrease angiogenesis in the tumor microenvironment. In this study, we found that HBP had antiangiogenic effects in vitro and in vivo. The conditioned media obtained from a breast cancer cell line treated with HBP were used to culture human umbilical vein ECs (HUVECs to evaluate the antiangiogenic effect of HBP on ECs. HBP effectively inhibited the migration, invasion, and tube formation of HUVECs in vitro. In addition, the expressions of angiogenesis-mediating factors, including ERK, FAK, and Akt, were considerably decreased. HBP also decreased the levels of invasive factors, including MMP2 and MMP9, secreted by the HUVECs. We demonstrated significant suppression of tumor growth in a breast cancer xenograft model and enhanced distribution of HBP at the site of tumors. Taken together, our results show that HBP has antiangiogenic effects on ECs, and suggest that it may serve as a potential antitumor agent through control of the tumor microenvironment. Keywords: heparin-binding peptide, HBP, antiangiogenesis, heparan sulfate proteoglycans, HSPGs, endothelial cells, breast cancer xenograft, tumor microenvironment

  13. Tumor-targeted boron-containing amino acids and their related compounds. Synthesis and biological activity

    International Nuclear Information System (INIS)

    In a series of our synthetic studies on boron-containing amino acids and their related compounds for BNCT (Boron Neutron Capture Therapy), p-boronophenylalanine (BPA), p-boronophenylserine (BPS), o-carboranylmethyl-3-hydroxytyrosine (CMHT) and their derivatives were designed and synthesized by using of isocyano compounds as a starting material. Two water-soluble amino alcohols, BPA-OH and BPS-OH, were prepared by the reduction of the corresponding N-formyl amino esters. On the other hand, CMHTA, an amide derivative of CMHT, was synthesized by an aldol-type condensation of isocyanoacetamide with 4-(o-carboranylmethyloxy)benz aldehyde as a key reaction. The relative tumor cell (human glioma T98G) killing effect of nBPS-OH, nBPA-OH and CMHTA against 10BPA was 0.7, 1.0 and 4.9, respectively. The uptake of CMHTA by the tumor cell increased with increasing cultivation time. (J.P.N.)

  14. MRI-visible liposome nanovehicles for potential tumor-targeted delivery of multimodal therapies

    Science.gov (United States)

    Ren, Lili; Chen, Shizhen; Li, Haidong; Zhang, Zhiying; Ye, Chaohui; Liu, Maili; Zhou, Xin

    2015-07-01

    Real-time diagnosis and monitoring of disease development, and therapeutic responses to treatment, are possible by theranostic magnetic resonance imaging (MRI). Here we report the synthesis of a multifunctional liposome, which contains Gd-DOTA (an MRI probe), paclitaxel and c(RGDyk) (a targeted peptide). This nanoparticle overcame the insolubility of paclitaxel, reduced the side effects of FDA-approved formulation of PTX-Cre (Taxol®) and improved drug delivery efficiency to the tumor. c(RGDyk) modification greatly enhanced the cytotoxicity of the drug in tumor cells A549. The T1 relaxivity in tumor cells treated with the targeted liposome formulation was increased 16-fold when compared with the non-targeted group. In vivo, the tumors in mice were visualized using T1-weighted imaging after administration of the liposome. Also the tumor growth could be inhibited well after the treatment. Fluorescence images in vitro and ex vivo also showed the targeting effect of this liposome in tumor cells, indicating that this nanovehicle could limit the off-target side effects of anticancer drugs and contrast agents. These findings lay the foundation for further tumor inhibition study and application of this delivery vehicle in cancer therapy settings.

  15. Structural and Enzymatic Analysis of Tumor-Targeted Antifolates That Inhibit Glycinamide Ribonucleotide Formyltransferase.

    Science.gov (United States)

    Deis, Siobhan M; Doshi, Arpit; Hou, Zhanjun; Matherly, Larry H; Gangjee, Aleem; Dann, Charles E

    2016-08-16

    Pemetrexed and methotrexate are antifolates used for cancer chemotherapy and inflammatory diseases. These agents have toxic side effects resulting, in part, from nonspecific cellular transport by the reduced folate carrier (RFC), a ubiquitously expressed facilitative transporter. We previously described 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with modifications of the side chain linker and aromatic ring that are poor substrates for RFC but are efficiently transported via folate receptors (FRs) and the proton-coupled folate transporter (PCFT). These targeted antifolates are cytotoxic in vitro toward FR- and PCFT-expressing tumor cells and in vivo with human tumor xenografts in immune-compromised mice, reflecting selective cellular uptake. Antitumor efficacy is due to inhibition of glycinamide ribonucleotide (GAR) formyltransferase (GARFTase) activity in de novo synthesis of purine nucleotides. This study used purified human GARFTase (formyltransferase domain) to assess in vitro inhibition by eight novel thieno- and pyrrolo[2,3-d]pyrimidine antifolates. Seven analogues (AGF23, AGF71, AGF94, AGF117, AGF118, AGF145, and AGF147) inhibited GARFTase with Ki values in the low- to mid-nanomolar concentration range, whereas AGF50 inhibited GARFTase with micromolar potency similar to that of PMX. On the basis of crystal structures of ternary complexes with GARFTase, β-GAR, and the monoglutamyl antifolates, differences in inhibitory potencies correlated well with antifolate binding and the positions of the terminal carboxylates. Our data provide a mechanistic basis for differences in inhibitory potencies between these novel antifolates and a framework for future structure-based drug design. These analogues could be more efficacious than clinically used antifolates, reflecting their selective cellular uptake by FRs and PCFT and potent GARFTase inhibition. PMID:27439469

  16. Direct solid-phase synthesis of octreotide conjugates: precursors for use as tumor-targeted radiopharmaceuticals.

    Science.gov (United States)

    Hsieh, H P; Wu, Y T; Chen, S T; Wang, K T

    1999-09-01

    Somatostatin analogues, such as octreotide, are useful for the visualization and treatment of tumors. Unfortunately, these compounds were produced synthetically using complex and inefficient procedures. Here, we describe a novel approach for the synthesis of octreotide and its analogues using p-carboxybenzaldehyde to anchor Fmoc-threoninol to solid phase resins. The reaction of the two hydroxyl groups of Fmoc-threoninol with p-carboxybenzaldehyde was catalyzed with p-toluenesulphonic acid in chloroform using a Dean-Stark apparatus to form Fmoc-threoninol p-carboxybenzacetal in 91% yield. The Fmoc-threoninol p-carboxybenzacetal acted as an Fmoc-amino acid derivative and the carboxyl group of Fmoc-threoninol p-carboxybenzacetal was coupled to an amine-resin via a DCC coupling reaction. The synthesis of protected octreotide and its conjugates were carried out in their entirety using a conventional Fmoc protocol and an autosynthesizer. The acetal was stable during the stepwise elongation of each Fmoc-amino acid as shown by the averaged coupling yield (> 95%). Octreotide (74 to 78% yield) and five conjugated derivatives were synthesized with high yields using this procedure, including three radiotherapy octreotides (62 to 75% yield) and two cellular markers (72 to 76% yield). This novel approach provides a strategy for the rapid and efficient large-scale synthesis of octreotide and its analogues for radiopharmaceutical and tagged conjugates.

  17. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    John C. Leach

    2016-03-01

    Full Text Available The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA, was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells.

  18. OUR APPROACH TOWARDS DEVELOPING A SPECIFIC TUMOR-TARGETED MRI CONTRAST AGENT FOR THE BRAIN

    NARCIS (Netherlands)

    GO, KG; BULTE, JWM; DELEY, L; THE, TH; KAMMAN, RL; HULSTAERT, CE; BLAAUW, EH; MA, LD

    1993-01-01

    This review presents various aspects of the technological development, and their assessment in the design of a contrast agent for MRI, tailored to visualise tumours in the brain. First, it was demonstrated that magnetite as a contrast agent exhibited a much stronger relaxivity than gadolinium. The p

  19. Use of novel metalloporphyrins as imageable tumor-targeting agents for radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Michiko; Slatkin, Daniel N.

    2005-10-04

    The present invention covers halogenated derivatives of boronated phorphyrins containing multiple carborane cages having the formula ##STR1## which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies including, but not limited to, boron neutron-capture therapy and photodynamic therapy. The present invention also covers methods for using these halogenated derivatives of boronated porphyrins in tumor imaging and cancer treatment.

  20. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis.

    Science.gov (United States)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J; Liu, Shihui; Leppla, Stephen H

    2013-01-01

    Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein. PMID:23200832

  1. Recombinant Expression and Purification of a Tumor-Targeted Toxin in Bacillus anthracis

    OpenAIRE

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui; Leppla, Stephen H.

    2012-01-01

    Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple pr...

  2. Tumor-Targeting Co-Delivery of Drug and Gene from Temperature-Triggered Micelles.

    Science.gov (United States)

    Seo, Seog-Jin; Lee, Seon-Young; Choi, Seong-Jun; Kim, Hae-Won

    2015-09-01

    Co-delivery strategy using multifunctional nanocarriers is an attractive option for the synergistic and enhanced effects in cancer treatment, but one system integrating multiple functions for controlled release at the target is still challenging. Herein, this study shows the synthesis and characterization of our stimulus-responsive co-delivery system for the controlled release into tumors, which is composed of polyethylenimine (PEI)-linked Pluronic F127 (PF127) and folic acid (FA), called PF127-PEI-FA. PF127-PEI-FA system facilitated drug loading and gene complex formation, and showed controlled release behaviors in response to hitting temperature to hyperthermia. PF127-PEI-FA system was demonstrated to be biocompatible and showed receptor-mediated gene delivery. The results of our multifunctional nanocarrier system that enabled co-delivery suggest a promising potential for controlled drug release at targeted areas. However, further in-depth studies on the use of therapeutic drugs and genes in multiple cell types and the animal response are required. PMID:25990042

  3. Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging

    Science.gov (United States)

    Xu, Cheng; Shi, Sixiang; Feng, Liangzhu; Chen, Feng; Graves, Stephen A.; Ehlerding, Emily B.; Goel, Shreya; Sun, Haiyan; England, Christopher G.; Nickles, Robert J.; Liu, Zhuang; Wang, Taihong; Cai, Weibo

    2016-06-01

    Polyethylene glycol (PEG) surface modification is one of the most widely used approaches to improve the solubility of inorganic nanoparticles, prevent their aggregation and prolong their in vivo blood circulation half-life. Herein, we developed double-PEGylated biocompatible reduced graphene oxide nanosheets anchored with iron oxide nanoparticles (RGO-IONP-1stPEG-2ndPEG). The nanoconjugates exhibited a prolonged blood circulation half-life (~27.7 h) and remarkable tumor accumulation (>11 %ID g-1) via an enhanced permeability and retention (EPR) effect. Due to the strong near-infrared absorbance and superparamagnetism of RGO-IONP-1stPEG-2ndPEG, multimodality imaging combining positron emission tomography (PET) imaging with magnetic resonance imaging (MRI) and photoacoustic (PA) imaging was successfully achieved. The promising results suggest the great potential of these nanoconjugates for multi-dimensional and more accurate tumor diagnosis and therapy in the future.

  4. Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery.

    Science.gov (United States)

    Wang, Christine E; Stayton, Patrick S; Pun, Suzie H; Convertine, Anthony J

    2015-12-10

    The development of drug delivery systems based on well-defined polymer nanostructures could lead to significant improvements in the treatment of cancer. The design of these therapeutic nanosystems must account for numerous systemic and circulation obstacles as well as the specific pathophysiology of the tumor. Nanoparticle size and surface charge must also be carefully selected in order to maintain long circulation times, allow tumor penetration, and avoid clearance by the reticuloendothelial system (RES). Targeting ligands such as vitamins, peptides, and antibodies can improve the accumulation of nanoparticle-based therapies in tumor tissue but must be optimized to allow for intratumoral penetration. In this review, we will highlight factors influencing the design of nanoparticle therapies as well as the development of modern controlled "living" polymerization techniques (e.g. ATRP, RAFT, ROMP) that are leading to the creation of sophisticated new polymer architectures with discrete spatially-defined functional modules. These innovative materials (e.g. star polymers, polymer brushes, macrocyclic polymers, and hyperbranched polymers) combine many of the desirable properties of traditional nanoparticle therapies while substantially reducing or eliminating the need for complex formulations.

  5. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin

    Directory of Open Access Journals (Sweden)

    Liu R

    2015-05-01

    Full Text Available Ran Liu,1,2 Yonglu Wang,1,3 Xueming Li,3 Wen Bao,1,2 Guohua Xia,1,2 Wei Chen,3 Jian Cheng,1,2 Yuanlong Xu,3 Liting Guo,1,2 Baoan Chen1,21Department of Hematology (Key Department of Jiangsu Medicine, Zhongda Hospital, Medical School, 2Faculty of Oncology, Medical School, Southeast University, 3College of Pharmacy, Nanjing University of Technology, Nanjing, People’s Republic of China Abstract: To increase the encapsulation of hydrophilic antitumor agent daunorubicin (DNR and multidrug resistance reversal agent tetrandrine (Tet in the drug delivery system of nanoparticles (NPs, a functional copolymer NP composed of poly(lactic-co-glycolic acid (PLGA, poly-l-lysine (PLL, and polyethylene glycol (PEG was synthesized and then loaded with DNR and Tet simultaneously to construct DNR/Tet–PLGA–PLL–PEG-NPs using a modified double-emulsion solvent evaporation/diffusion method. And to increase the targeted antitumor effect, DNR/Tet–PLGA–PLL–PEG-NPs were further modified with transferrin (Tf due to its specific binding to Tf receptors (TfR, which is highly expressed on the surface of tumor cells. In this study, the influence of the diversity of formulation parameters was investigated systematically, such as drug loading, mean particle size, molecular weight, the concentration of PLGA–PLL–PEG–Tf, volume ratio of acetone to dichloromethane, the concentration of polyvinyl alcohol (PVA in the external aqueous phase, the volume ratio of the internal aqueous phase to the external aqueous phase, and the type of surfactants in the internal aqueous phase. Meanwhile, its possible effect on cell viability was evaluated. Our results showed that the regular spherical DNR/Tet–PLGA–PLL–PEG–Tf-NPs with a smooth surface, a relatively low polydispersity index, and a diameter of 213.0±12.0 nm could be produced. The encapsulation efficiency was 70.23%±1.91% for DNR and 86.5%±0.70% for Tet, the moderate drug loading was 3.63%±0.15% for DNR and 4.27%±0.13% for Tet. Notably, the accumulated release of DNR and Tet could be sustained over 1 week, and the Tf content was 2.18%±0.04%. In cell viability tests, DNR/Tet–PLGA–PLL–PEG–Tf-NPs could inhibit the proliferation of K562/ADR cells in a dose-dependent manner, and the half maximal inhibitory concentration value (total drug of DNR/Tet–PLGA–PLL–PEG–Tf-NPs was lower than that of DNR, a mixture of DNR and Tet, and DNR/Tet–PLGA–PLL–PEG-NPs. These results clearly indicate that the PLGA–PLL–PEG formulation is a potential drug delivery system for hydrophilic and hydrophobic drugs, and that Tf modification may increase its targeting properties. Keywords: PLGA, PLL, PEG, daunorubicin, tetrandrine

  6. Improved tumor targeting of radiolabeled RGD peptides using rapid dose fractionation.

    NARCIS (Netherlands)

    Janssen, M.; Frielink, C.; Dijkgraaf, I.; Oyen, W.J.G.; Edwards, D.S.; Liu, S.; Rajopadhye, M.; Massuger, L.F.A.G.; Corstens, F.H.M.; Boerman, O.C.

    2004-01-01

    Arginine-glycine-aspartic acid (RGD) peptides preferentially bind to alphavbeta3 integrin, an integrin expressed on newly formed endothelial cells and on various tumor cells. When labeled with beta-emitting radionuclides, these peptides can be used for peptide-receptor radionuclide therapy of malign

  7. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

    OpenAIRE

    Leach, John C.; Andrew Wang; Kaiming Ye; Sha Jin

    2016-01-01

    The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antig...

  8. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

    Science.gov (United States)

    Leach, John C.; Wang, Andrew; Ye, Kaiming; Jin, Sha

    2016-01-01

    The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA), was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox) was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells. PMID:26985893

  9. System for recovery of daughter isotopes from a source material

    Science.gov (United States)

    Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Lewis, Leroy C [Idaho Falls, ID; Henscheid, Joseph P [Idaho Falls, ID

    2009-08-04

    A method of separating isotopes from a mixture containing at least two isotopes in a solution is disclosed. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material containing thorium-229 and thorium-232, and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the thorium iodate precipitate. The thorium iodate precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid, which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. A system for producing an actinium-225/bismuth-213 product is also disclosed.

  10. The geopolitics of politico-religious protest in Eastern Tibet

    NARCIS (Netherlands)

    A.M. Fischer (Andrew Martín)

    2012-01-01

    textabstractIt is clear that the recent wave of self-immolations and protests taking place in southern Amdo and northern Kham in eastern Tibet is a reflection of an extreme form of defiance in response to an increasingly repressive atmosphere. The atmosphere is epitomized by the intensification of p

  11. Teenage Suicide in Zimbabwe.

    Science.gov (United States)

    Lester, David; Wilson, C.

    1990-01-01

    The teenage suicide rate in Zimbabwe did not change much during the 1970s, though the rate rose for female teenagers. Female teenagers used poison as a method of suicide more often than did adults, and self-immolation had increased in frequency among young women by the mid-1980s. (Author)

  12. Adenovirus tumor targeting and hepatic untargeting by a coxsackie/adenovirus receptor ectodomain anti-carcinoembryonic antigen bispecific adapter.

    Science.gov (United States)

    Li, Hua-Jung; Everts, Maaike; Pereboeva, Larisa; Komarova, Svetlana; Idan, Anat; Curiel, David T; Herschman, Harvey R

    2007-06-01

    Adenovirus vectors have a number of advantages for gene therapy. However, because of their lack of tumor tropism and their preference for liver infection following systemic administration, they cannot be used for systemic attack on metastatic disease. Many epithelial tumors (e.g., colon, lung, and breast) express carcinoembryonic antigen (CEA). To block the natural hepatic tropism of adenovirus and to "retarget" the virus to CEA-expressing tumors, we used a bispecific adapter protein (sCAR-MFE), which fuses the ectodomain of the coxsackie/adenovirus receptor (sCAR) with a single-chain anti-CEA antibody (MFE-23). sCAR-MFE untargets adenovirus-directed luciferase transgene expression in the liver by >90% following systemic vector administration. Moreover, sCAR-MFE can "retarget" adenovirus to CEA-positive epithelial tumor cells in cell culture, in s.c. tumor grafts, and in hepatic tumor grafts. The sCAR-MFE bispecific adapter should, therefore, be a powerful agent to retarget adenovirus vectors to epithelial tumor metastases.

  13. Salmonella typhimurium A1-R tumor targeting in immunocompetent mice is enhanced by a traditional Chinese medicine herbal mixture.

    Science.gov (United States)

    Zhang, Yong; Zhang, Nan; Su, Shibing; Hoffman, Robert M; Zhao, Ming

    2013-05-01

    We have developed a bacterial cancer therapy strategy using the genetically-engineered strain Salmonella typhimurium A1-R (A1-R). A1-R is auxotrophic for leu and arg which attenuates bacterial growth in normal tissue but allows high tumor virulence. A1-R is effective against metastatic human and murine cancer cell lines in clinically-relevant nude-mouse models. However, A1-R treatment of tumors in immunocompetent mouse models with high doses is limited by toxicity. The current study evaluated a traditional Chinese medicine (TCM) herbal mixture in combination with A1-R therapy in a syngeneic metastatic immunocompetent mouse model of highly aggressive lung cancer. In a model of Lewis lung carcinoma, the combination of a TCM herbal mixture and S. typhimurium A1-R enabled bacteria to be safely administered at the large dose of 2 × 10(7) colony forming units once a week i.v. with increased treatment efficacy and reduced toxicity compared to monotherapy with A1-R. The herbal mixture prevented body weight loss, spleen weight gain and liver infection by A1-R, as well as hemorrhagic lesions on the skin, liver, and spleen, all observed with A1-R monotherapy. The results of the present study suggest that the combination of A1-R and TCM has important potential for therapy of highly aggressive types of cancer, including those which are resistant to standard therapy.

  14. A novel combination of TRAIL and doxorubicin enhances antitumor effect based on passive tumor-targeting of liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Guo Liangran; Fan Li; Ren Jinfeng; Pang Zhiqing; Ren Yulong; Li Jingwei; Jiang Xinguo [Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai (China); Wen Ziyi, E-mail: xgjiang@shmu.edu.cn [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang (China)

    2011-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a novel anticancer agent for non-small cell lung cancer (NSCLC). However, approximately half of NSCLC cell lines are highly resistant to TRAIL. Doxorubicin (DOX) can sensitize NSCLC cells to TRAIL-induced apoptosis, indicating the possibility of combination therapy. Unfortunately, the therapeutic effect of a DOX and TRAIL combination is limited by multiple factors including the short serum half-life of TRAIL, poor compliance and application difficulty in the clinic, chronic DOX-induced cardiac toxicity, and the multidrug resistance (MDR) property of NSCLC cells. To solve such problems, we developed the combination of TRAIL liposomes (TRAIL-LP) and DOX liposomes (DOX-LP). An in vitro cytotoxicity study indicated that DOX-LP sensitized the NSCLC cell line A-549 to TRAIL-LP-induced apoptosis. Furthermore, this combination therapy of TRAIL-LP and DOX-LP displayed a stronger antitumor effect on NSCLC in xenografted mice when compared with free drugs or liposomal drugs alone. Therefore, the TRAIL-LP and DOX-LP combination therapy has excellent potential to become a new therapeutic approach for patients with advanced NSCLC.

  15. Co-Encapsulation of Doxorubicin With Galactoxyloglucan Nanoparticles for Intracellular Tumor-Targeted Delivery in Murine Ascites and Solid Tumors

    Directory of Open Access Journals (Sweden)

    Manu M. Joseph

    2014-10-01

    Full Text Available Doxorubicin (Dox treatment is limited by severe toxicity and frequent episodes of treatment failure. To minimize adverse events and improve drug delivery efficiently and specifically in cancer cells, encapsulation of Dox with naturally obtained galactoxyloglucan polysaccharide (PST001, isolated from Tamarindus indica was attempted. Thus formed PST-Dox nanoparticles induced apoptosis and exhibited significant cytotoxicity in murine ascites cell lines, Dalton’s lymphoma ascites and Ehrlich’s ascites carcinoma. The mechanism contributing to the augmented cytotoxicity of nanoconjugates at lower doses was validated by measuring the Dox intracellular uptake in human colon, leukemic and breast cancer cell lines. PST-Dox nanoparticles showed rapid internalization of Dox into cancer cells within a short period of incubation. Further, in vivo efficacy was tested in comparison to the parent counterparts - PST001 and Dox, in ascites and solid tumor syngraft mice models. Treatment of ascites tumors with PST-Dox nanoparticles significantly reduced the tumor volume, viable tumor cell count, and increased survival and percentage life span in the early, established and prophylactic phases of the disease. Administration of nanoparticles through intratumoral route delivered more robust antitumor response than the intraperitoneal route in solid malignancies. Thus, the results indicate that PST-Dox nanoparticles have greater potential compared to the Dox as targeted drug delivery nanocarriers for loco regional cancer chemotherapy applications.

  16. Polyethylene glycol-conjugated chondroitin sulfate A derivative nanoparticles for tumor-targeted delivery of anticancer drugs.

    Science.gov (United States)

    Lee, Jae-Young; Park, Ju-Hwan; Lee, Jeong-Jun; Lee, Song Yi; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

    2016-10-20

    Polyethylene glycol (PEG)-decorated chondroitin sulfate A-deoxycholic acid (CSD) nanoparticles (NPs) were fabricated for the selective delivery of doxorubicin (DOX) to ovarian cancer. CSD-PEG was synthesized via amide bond formation between the NH2 group of methoxypolyethylene glycol amine and the COOH group of CSD. CSD-PEG/DOX NPs with a 247nm mean diameter, negative zeta potential, and >90% drug encapsulation efficiency were prepared. Sustained and pH-dependent DOX release profiles from CSD-PEG NPs were observed in dissolution tests. Endocytosis of NPs by SKOV-3 cells (CD44 receptor-positive human ovarian cancer cells), based on the CSA-CD44 receptor interaction, was determined by flow cytometry and confocal laser scanning microscopy (CLSM) studies. PEGylation of NPs also resulted in reduced drug clearance (CL) in vivo and improved relative bioavailability, compared to non-PEGylated NPs, as determined by the pharmacokinetic study performed after intravenous administration in rats. Developed CSD-PEG NPs can be a promising delivery vehicle for the therapy of CD44 receptor-expressing ovarian cancers. PMID:27474544

  17. Tumor targeting using {sup 67}Ga-DOTA-Bz-folate - investigations of methods to improve the tissue distribution of radiofolates

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Cristina, E-mail: cristina.mueller@psi.ch [Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Vlahov, Iontcho R.; Santhapuram, Hari Krishna R.; Leamon, Christopher P. [Endocyte Inc., West Lafayette, IN 47906 (United States); Schibli, Roger [Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland)

    2011-07-15

    Introduction: Use of folic acid radioconjugates for folate receptor (FR) targeting is a promising strategy for imaging purposes as well as for potential therapy of cancer and inflammatory diseases due to the frequent FR overexpression found on cancer cells and activated macrophages. Herein, we report on preclinical results using a novel DOTA-Bz-EDA-folate conjugate radiolabeled with [{sup 67}Ga]-gallium. Methods: DOTA-Bz-EDA-folate was prepared by conjugation of ethylenediamine-({gamma})-folate with 2-(p-isothiocyanobenzyl)-DOTA. Radiolabeling was carried out with {sup 67}GaCl{sub 3} according to standard procedures. Biodistribution studies of the tracer were performed in mice bearing FR-positive KB tumor xenografts. The effects on radiofolate biodistribution with coadministered renal uptake-blocking amino acids, diuretic agents, antifolates as well as different routes of administration were likewise investigated. Supportive imaging studies were performed using a small-animal single photon emission computed tomography (SPECT)/CT scanner. Results: {sup 67}Ga-DOTA-Bz-EDA-folate showed a high and specific accumulation in tumors (6.30%{+-}0.75% ID/g, 1 h pi and 6.08%{+-}0.89% ID/g, 4 h pi). Nonspecific radioactivity uptake in nontargeted tissues was negligible, but significant accumulation was found in FR-positive kidneys, which resulted in unfavorably low tumor-to-kidney ratios (<0.1). Coadministered amino acids or diuretics did not effectively reduce renal accumulation; in contrast, predosed pemetrexed did significantly reduce kidney uptake (<29% of control values). The SPECT/CT studies confirmed the excellent tumor-to-background contrast of {sup 67}Ga-radiofolate and the favorable reduction in kidney uptake (with improved imaging quality) resulting from pemetrexed administration. Conclusion: Conventional methods to reduce kidney uptake of radiofolates fail. However, the novel {sup 67}Ga-radiolabeled DOTA-Bz-EDA-folate can effectively be used to image FR-positive cancer and potentially inflammatory diseases. Due to its rapid blood clearance properties, this tracer is also a promising candidate for positron emission tomography imaging if radiolabeled with the short-lived [{sup 68}Ga]-gallium radionuclide.

  18. Folate-decorated chitosan/doxorubicin poly(butyl)cyanoacrylate nanoparticles for tumor-targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jinghua [Xiangya Hospital, Central South University, Hepatobiliary and Enteric Surgery Research Center (China); Liu Mujun [Central South University, School of Biological Science and Technology (China); Zhang Yangde; Zhao Jinfeng; Pan Yifeng [Xiangya Hospital, Central South University, Hepatobiliary and Enteric Surgery Research Center (China); Yang Xiyun, E-mail: bax_2007@126.com [Central South University, School of Metallurgical Science and Engineering (China)

    2012-03-15

    A novel chitosan coated poly(butyl cyanoacrylate) (PBCA) nanoparticles loaded doxorubicin (DOX) were synthesized and then conjugated with folic acid to produce a folate-targeted drug carrier for tumor-specific drug delivery. Prepared nanoparticles were surface modified by folate for targeting cancer cells, which is confirmed by FTIR spectroscopy and characterized for shape, size, and zeta potential measurements. The size and zeta potential of prepared DOX-PBCA nanoparticles (DOX-PBCA NPs) were almost 174 {+-} 8.23 nm and +23.14 {+-} 4.25 mV, respectively with 46.8 {+-} 3.32% encapsulation capacity. The transmission electron microscopy study revealed that preparation allowed the formation of spherical nanometric and homogeneous. Fluorescent microscopy imaging and flow cytometry analysis revealed that DOX-PBCA NPs were endocytosed into MCF-7 cells through the interaction with overexpressed folate receptors on the surface of the cancer cells. The results demonstrate that folate-conjugated DOX-PBCA NPs drug delivery system could provide increased therapeutic benefit by delivering the encapsulated drug to the folate receptor positive cancer cells.

  19. Transferrin-PEG-PE modified dexamethasone conjugated cationic lipid carrier mediated gene delivery system for tumor-targeted transfection

    Directory of Open Access Journals (Sweden)

    Wang W

    2012-05-01

    Full Text Available Wei Wang,1 Fang Zhou,2 Linfu Ge,2 Ximin Liu,2 Fansheng Kong21Department of Chinese Medicine Integrated Traditional Chinese Medicine and Western Medicine, General Hospital of Ji’nan Command, Ji’nan, China; 2Department of Hematology, General Hospital of Ji’nan Command, Ji’nan, ChinaBackground: The main barriers to non-viral gene delivery include cellular and nuclear membranes. As such, the aim of this study was to develop a type of vector that can target cells through receptor-mediated pathways and by using nuclear localization signal (NLS to increase the nuclear uptake of genetic materials.Methods: A dexamethasone (Dexa-conjugated lipid was synthesized as the material of the solid lipid nanoparticles (SLNs, and transferrin (Tf was linked onto polyethylene glycol-phosphatidylethanolamine (PEG-PE to obtain Tf-PEG-PE ligands for the surface modification of the carriers. The in vitro transfection efficiency of the novel modified vectors was evaluated in human hepatoma carcinoma cell lines, and in vivo effects were observed in an animal model.Results: Tf-PEG-PE modified SLNs/enhanced green fluorescence protein plasmid (pEGFP had a particle size of 222 nm and a gene loading quantity of 90%. Tf-PEG-PE-modified SLNs/pEGFP (Tf-SLNs/pEGFP displayed remarkably higher transfection efficiency than non-modified SLNs/pEGFP and the vectors not containing Dexa, both in vitro and in vivo.Conclusion: It can be concluded that Tf and Dexa could function as an excellent active targeting ligand to improve the cell targeting and nuclear targeting ability of the carriers, and the resulting nanomedicine could be a promising active targeting drug/gene delivery system.Keywords: gene delivery, active targeting, transferrin-PEG-PE, dexamethasone conjugated lipid, nuclear localization

  20. Development of drug loaded nanoparticles for tumor targeting. Part 1: synthesis, characterization, and biological evaluation in 2D cell cultures

    Science.gov (United States)

    El-Dakdouki, Mohammad H.; Puré, Ellen; Huang, Xuefei

    2013-04-01

    Nanoparticles (NPs) are being extensively studied as carriers for drug delivery, but they often have limited penetration inside tumors. We envision that by targeting an endocytic receptor on the cell surface, the uptake of NPs can be significantly enhanced through receptor mediated endocytosis. In addition, if the receptor is recycled to the cell surface, the NP cargo can be transported out of the cells, which is then taken up by neighboring cells thus enhancing solid tumor penetration. To validate our hypothesis, in the first of two articles, we report the synthesis of doxorubicin (DOX)-loaded, hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44, a receptor expressed on the cancer cell surface. HA was conjugated onto amine-functionalized SNPs prepared through an oil-water microemulsion method. The immobilization of the cytotoxic drug DOX was achieved through an acid sensitive hydrazone linkage. The NPs were fully characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements, thermogravimetric analysis (TGA), UV-vis absorbance, and nuclear magnetic resonance (NMR). Initial biological evaluation experiments demonstrated that compared to ligand-free SNPs, the uptake of HA-SNPs by the CD44-expressing SKOV-3 ovarian cancer cells was significantly enhanced when evaluated in the 2D monolayer cell culture. Mechanistic studies suggested that cellular uptake of HA-SNPs was mainly through CD44 mediated endocytosis. HA-SNPs with immobilized DOX were endocytosed efficiently by the SKOV-3 cells as well. The enhanced tumor penetration and drug delivery properties of HA-SNPs will be evaluated in 3D tumor models in the subsequent paper.Nanoparticles (NPs) are being extensively studied as carriers for drug delivery, but they often have limited penetration inside tumors. We envision that by targeting an endocytic receptor on the cell surface, the uptake of NPs can be significantly enhanced through receptor mediated endocytosis. In addition, if the receptor is recycled to the cell surface, the NP cargo can be transported out of the cells, which is then taken up by neighboring cells thus enhancing solid tumor penetration. To validate our hypothesis, in the first of two articles, we report the synthesis of doxorubicin (DOX)-loaded, hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44, a receptor expressed on the cancer cell surface. HA was conjugated onto amine-functionalized SNPs prepared through an oil-water microemulsion method. The immobilization of the cytotoxic drug DOX was achieved through an acid sensitive hydrazone linkage. The NPs were fully characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements, thermogravimetric analysis (TGA), UV-vis absorbance, and nuclear magnetic resonance (NMR). Initial biological evaluation experiments demonstrated that compared to ligand-free SNPs, the uptake of HA-SNPs by the CD44-expressing SKOV-3 ovarian cancer cells was significantly enhanced when evaluated in the 2D monolayer cell culture. Mechanistic studies suggested that cellular uptake of HA-SNPs was mainly through CD44 mediated endocytosis. HA-SNPs with immobilized DOX were endocytosed efficiently by the SKOV-3 cells as well. The enhanced tumor penetration and drug delivery properties of HA-SNPs will be evaluated in 3D tumor models in the subsequent paper. Electronic supplementary information (ESI) available: Detailed experimental procedures for the synthesis and characterization of nanoparticles, confocal studies, flow cytometry, and supporting figures and tables. See DOI: 10.1039/c3nr33777d

  1. Doxorubicin/gold-loaded core/shell nanoparticles for combination therapy to treat cancer through the enhanced tumor targeting.

    Science.gov (United States)

    Kim, Kyungim; Oh, Keun Sang; Park, Dal Yong; Lee, Jae Young; Lee, Beom Suk; Kim, In San; Kim, Kwangmeyung; Kwon, Ick Chan; Sang, Yoon Kim; Yuk, Soon Hong

    2016-04-28

    A combination therapy consisting of radiotherapy and chemotherapy is performed using the core/shell nanoparticles (NPs) containing gold NPs and doxorubicin (DOX). Gold NPs in the core/shell NPs were utilized as a radiosensitizer. To examine the morphology and size distribution of the core/shell NPs, transmittance electron microscopy and dynamic light scattering were used. The in vitro release behavior, cellular uptake and toxicity were also observed to verify the functionality of the core/shell NPs as a nanocarrier. To demonstrate the advantage of the core/shell NPs over traditional gold NPs reported in the combination therapy, we evaluated the accumulation behavior of the core/shell NPs at the tumor site using the biodistribution. Antitumor efficacy was observed with and without radiation to evaluate the role of gold NPs as a radiosensitizer.

  2. Preparation of folate-conjugated starch nanoparticles and its application to tumor-targeted drug delivery vector

    Institute of Scientific and Technical Information of China (English)

    XIAO Suyao; TONG Chunyi; LIU Xuanming; YU Danmi; LIU Qiaoling; XUE Changgang; TANG Dongyin; ZHAO Lijian

    2006-01-01

    Anion starch nanoparticles (StNP) were prepared in water-in-oil microemulsion. Folate modified with PEG was conjugated to the surface of StNP to obtain the folate-conjugated starch nanoparticles (FA-PEG/StNP). The average diameter of FA-PEG/StNP determined by AFM and Zeta-Sizer apparatus was about 130 nm. Doxorubicin (DOX)-loaded FA-PEG/StNP was obtained via infiltrating combination.The result of UV spectrophotometer showed that the saturation concentration of DOX-loaded FA-PEG/StNP was 28 μg/mg, which was effective for the controlled release of anticancer drug DOX. The cell experiments showed that the Lc50 of DOX-loaded FA-PEG/StNP and DOX-loaded StNP was higher than that of DOX, which indicates that FA-PEG/StNP and StNP can decrease the toxicity of DOX; while the lethal rate of DOX-loaded FA-PEG/StNP was 3 times that of DOX-loaded StNP with the same quantity of DOX, which indicates that FA in FA-PEG/StNP is effective for improving the targeting function of nanoparticles, thus enhancing the inhibition effect of anticancer drug to cancer cell. This work demonstrates that the FA-PEG/StNP system is a potentially useful system for the targeted delivery of anticancer drug DOX.

  3. Synthesis and characterization of superparamagnetic CoFe2O4/MWCNT hybrids for tumor-targeted therapy.

    Science.gov (United States)

    Sun, Chuanyu; Liu, Yong; Ding, Weihong; Gou, Yuancheng; Xu, Ke; Xia, Guowei; Ding, Qiang

    2013-01-01

    Owing to their great potentialities of carbon nanotubes (CNTs)-based magnetic nano-composites, numerous applications of them have been found in nanotechnology, integrated functional system, and in medicine. Herein, nearly monodisperse CoFe2O4 nanoparticles have been deposited on multi-walled carbon nanotubes (MWCNTs) by high-temperature hydrolysis and inorganic polymerization of ionic Co(II) and Fe(III) salts and MWCNTs in a polyol solution. X-ray diffraction, energy-dispersive X-ray spectrometry and transmission electron microscopy were used to characterize the final products. The average size of CoFe2O4 nanoparticles and their coverage density on MWCNTs can be adjusted to some extent by altering the reaction parameters. A proposed formation mechanism of the magnetic hybrids is presented. Magnetic measurements showed that the hybrids were superparamagnetic at room temperature and their saturation magnetization could be fine tuned by changing the loading of CoFe2O4 nanoparticles on the MWCNTs.

  4. Polymer-Based Prodrugs: Improving Tumor Targeting and the Solubility of Small Molecule Drugs in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Sonja Dragojevic

    2015-12-01

    Full Text Available The majority of anticancer drugs have poor aqueous solubility, produce adverse effects in healthy tissue, and thus impose major limitations on both clinical efficacy and therapeutic safety of cancer chemotherapy. To help circumvent problems associated with solubility, most cancer drugs are now formulated with co-solubilizers. However, these agents often also introduce severe side effects, thereby restricting effective treatment and patient quality of life. A promising approach to addressing problems in anticancer drug solubility and selectivity is their conjugation with polymeric carriers to form polymer-based prodrugs. These polymer-based prodrugs are macromolecular carriers, designed to increase the aqueous solubility of antitumor drugs, can enhance bioavailability. Additionally, polymer-based prodrugs approach exploits unique features of tumor physiology to passively facilitate intratumoral accumulation, and so improve chemodrug pharmacokinetics and pharmacological properties. This review introduces basic concepts of polymer-based prodrugs, provides an overview of currently emerging synthetic, natural, and genetically engineered polymers that now deliver anticancer drugs in preclinical or clinical trials, and highlights their major anticipated applications in anticancer therapies.

  5. Transferrin-PEG-PE modified dexamethasone conjugated cationic lipid carrier mediated gene delivery system for tumor-targeted transfection

    Science.gov (United States)

    Wang, Wei; Zhou, Fang; Ge, Linfu; Liu, Ximin; Kong, Fansheng

    2012-01-01

    Background The main barriers to non-viral gene delivery include cellular and nuclear membranes. As such, the aim of this study was to develop a type of vector that can target cells through receptor-mediated pathways and by using nuclear localization signal (NLS) to increase the nuclear uptake of genetic materials. Methods A dexamethasone (Dexa)-conjugated lipid was synthesized as the material of the solid lipid nanoparticles (SLNs), and transferrin (Tf) was linked onto polyethylene glycol-phosphatidylethanolamine (PEG-PE) to obtain Tf-PEG-PE ligands for the surface modification of the carriers. The in vitro transfection efficiency of the novel modified vectors was evaluated in human hepatoma carcinoma cell lines, and in vivo effects were observed in an animal model. Results Tf-PEG-PE modified SLNs/enhanced green fluorescence protein plasmid (pEGFP) had a particle size of 222 nm and a gene loading quantity of 90%. Tf-PEG-PE-modified SLNs/pEGFP (Tf-SLNs/pEGFP) displayed remarkably higher transfection efficiency than non-modified SLNs/pEGFP and the vectors not containing Dexa, both in vitro and in vivo. Conclusion It can be concluded that Tf and Dexa could function as an excellent active targeting ligand to improve the cell targeting and nuclear targeting ability of the carriers, and the resulting nanomedicine could be a promising active targeting drug/gene delivery system. PMID:22679364

  6. Fabrication and evaluation of tumor-targeted positive MRI contrast agent based on ultrasmall MnO nanoparticles.

    Science.gov (United States)

    Huang, Haitao; Yue, Tao; Xu, Ke; Golzarian, Jafar; Yu, Jiahui; Huang, Jin

    2015-07-01

    Gd(III) chelate is currently used as positive magnetic resonance imaging (MRI) contrast agent in clinical diagnosis, but generally induces the risk of nephrogenic systemic fibrosis (NSF) due to the dissociated Gd(3+) from Gd(III) chelates. To develop a novel positive MRI contrast agent with low toxicity and high sensitivity, ultrasmall MnO nanoparticles were PEGylated via catechol-Mn chelation and conjugated with cRGD as active targeting function to tumor. Particularly, the MnO nanoparticles with a size of ca. 5nm were modified by α,β-poly(aspartic acid)-based graft polymer containing PEG and DOPA moieties and, meanwhile, conjugated with cRGD to produce the contrast agent with a size of ca. 100nm and a longitudinal relaxivity (r1) of 10.2mM(-1)S(-1). Such nanoscaled contrast agent integrated passive- and active-targeting function to tumor, and its efficient accumulation behavior in tumor was verified by in vivo distribution study. At the same time, the PEG moiety played a role of hydrophilic coating to improve the biocompatibility and stability under storing and physiological conditions, and especially might guarantee enough circulation time in blood. Moreover, in vivo MRI revealed a good and long-term effect of enhancing MRI signal for as-fabricated contrast agent while cell viability assay proved its acceptable cytotoxicity for MRI application. On the whole, the as-fabricated PEGylated and cRGD-functionalized contrast agent based on ultrasmall MnO nanoparticles showed a great potential to the T1-weighted MRI diagnosis of tumor.

  7. Synthesis and characterization of superparamagnetic CoFe2O4/MWCNT hybrids for tumor-targeted therapy.

    Science.gov (United States)

    Sun, Chuanyu; Liu, Yong; Ding, Weihong; Gou, Yuancheng; Xu, Ke; Xia, Guowei; Ding, Qiang

    2013-01-01

    Owing to their great potentialities of carbon nanotubes (CNTs)-based magnetic nano-composites, numerous applications of them have been found in nanotechnology, integrated functional system, and in medicine. Herein, nearly monodisperse CoFe2O4 nanoparticles have been deposited on multi-walled carbon nanotubes (MWCNTs) by high-temperature hydrolysis and inorganic polymerization of ionic Co(II) and Fe(III) salts and MWCNTs in a polyol solution. X-ray diffraction, energy-dispersive X-ray spectrometry and transmission electron microscopy were used to characterize the final products. The average size of CoFe2O4 nanoparticles and their coverage density on MWCNTs can be adjusted to some extent by altering the reaction parameters. A proposed formation mechanism of the magnetic hybrids is presented. Magnetic measurements showed that the hybrids were superparamagnetic at room temperature and their saturation magnetization could be fine tuned by changing the loading of CoFe2O4 nanoparticles on the MWCNTs. PMID:23646722

  8. Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery vehicles for enhanced tumor targeting.

    Science.gov (United States)

    Lv, Yongjiu; Hao, Lan; Hu, Wenjing; Ran, Ya; Bai, Yan; Zhang, Liangke

    2016-01-01

    This study fabricated novel multifunctional pH-sensitive nanoparticles loaded into microbubbles (PNP-MB) with the combined advantages of two excellent drug delivery vehicles, namely, pH-sensitive nanoparticles and microbubbles. As an antitumor drug, resveratrol (RES) was loaded into acetylated β-cyclodextrin nanoparticles (RES-PNP). The drug-loaded nanoparticles were then encapsulated into the internal space of the microbubbles. The characterization and morphology of this vehicle were investigated through dynamic light scattering and confocal laser scanning microscopy, respectively. In vitro drug release was performed to investigate the pH sensitivity of RES-PNP. The antitumor property of RES-loaded PNP-MB (RES-PNP-MB) was also analyzed in vivo to evaluate the antitumor effect of RES-PNP-MB. Results suggested that PNP exhibited pH sensitivity, and was successfully encapsulated into the microbubbles. RES-PNP-MB exhibit effective tumor growth suppressing in vivo. Therefore, such drug delivery vehicle should be of great attention in tumor therapy. PMID:27378018

  9. Preparation and functional characterization of tumor-targeted folic acid-chitosan conjugated nanoparticles loaded with mitoxantrone

    Institute of Scientific and Technical Information of China (English)

    王炜; 童春义; 刘星言; 李涛; 刘斌; 熊炜

    2015-01-01

    Folic acid conjugated chitosan was prepared by cross-linking reaction with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), and then used as a template to prepare folic acid-chitosan (FA-CS) conjugated nanoparticles and load mitoxantrone nanoparticles (FA-CSNP/MTX). Drug dissolution testing, CCK-8 method, and confocal microscopy were used to detect their controlled-release capability in different situations and the specific uptake by HONE1 cells. The experimental results show that the nanoparticles have uniform size distribution of 48−58 nm. The highest encapsulation rate of the particles on mitoxantrone hydrochloride (MTX) is (77.5±1.9)%, and the drug loading efficiency is (18.4±0.4)%. The sustained release effect, cell growth inhibition activity and targeting effect of the FA-CS/MTX nanoparticles are good in artificial gastric fluid and intestinal fluid. It is demonstrated that the FA-CSNP system is a potentially useful system for the targeted delivery of anticancer drug MTX.

  10. Theranostic Tumor Targeted Nanoparticles Combining Drug Delivery with Dual Near Infrared and (19)F Magnetic Resonance Imaging Modalities

    DEFF Research Database (Denmark)

    Vu-Quang, Hieu; Vinding, Mads Sloth; Nielsen, Thomas;

    2016-01-01

    enhanced uptake of nanoparticles via folate receptors expressed on human nasopharyngeal epidermal carcinoma (KB) cells. In vivo, higher MRI and fluorescence signals were obtained from tumors with (19)F MRI and NIR, respectively, using folate-receptor-targeted nanoparticles compared with non-targeted...

  11. Clinical study on the changes of the tumor target volume and organs at risk in helical tomotherapy for nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    LU Na; FENG Lin-chun; CAI Bo-ning; HOU Jun; WANG Yun-lai; XIE Chuan-bin

    2012-01-01

    Background Helical tomotherapy (HT) is a new image-guided intensity-modulated radiation therapy (IMRT).The aim of this study was to evaluate the changes in the target volume and organs at risk (OARs) of patients with nasopharyngeal carcinoma (NPC) during helical tomotherapy.Methods Forty-three patients with NPC and treated via HT from March 2008 to January 2010 were reviewed retrospectively.Repeated CT scanning and plan adaptation were conducted at the 20th fraction during radiotherapy.The volumetric differences between the two scans were evaluated for nasopharyngeal tumor and retro- pharyngeal lymph nodes (GTVnx),neck lymph nodes (GTVnd),and parotid glands,as well as the axial diameter of the head.Results The median interval between the two scans was 25 days (23-28 days).The volumetric decrease in GTVnx was 30.1% (median,29.8%) and in GTVnd 41.6% (median,45.9%).The variation in the GTVnd volume was correlated with the weight loss of the patient.The volume of the left parotid gland decreased by 35.5% (median,33.4%) and of the right parotid glands decreased by 36.8% (median,33.5%).The axial diameter of the head decreased by 9.39% (median,9.1%).Conclusions The target volume and OARs of patients with NPC varied considerably during HT.These changes may have potential dosimetric effects on the target volume and/or OARs and influence the clinical outcome.Repeated CT scanning and replanning during the HT for NPC patients with a large target volume or an obvious weight loss are recommended.

  12. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy

    Science.gov (United States)

    Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun

    2016-06-01

    Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser irradiation. The AHP@MNPs can target tumors via CD44 receptor-mediated endocytosis, which have enhanced tumor therapeutic effects through photodynamic/hyperthermia-combined treatment without any drugs. We successfully detected tumors implanted in mice via magnetic resonance imaging and optical imaging. Furthermore, we demonstrated the photodynamic/hyperthermia-combined therapeutic efficacy of AHP@MNPs with synergistically enhanced efficacy against cancer.Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser irradiation. The AHP@MNPs can target tumors via CD44 receptor-mediated endocytosis, which have enhanced tumor therapeutic effects through photodynamic/hyperthermia-combined treatment without any drugs. We successfully detected tumors implanted in mice via magnetic resonance imaging and optical imaging. Furthermore, we demonstrated the photodynamic/hyperthermia-combined therapeutic efficacy of AHP@MNPs with synergistically enhanced efficacy against cancer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02273a

  13. Multifunctional nanosheets based on hyaluronic acid modified graphene oxide for tumor-targeting chemo-photothermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Lin; Feng, Qianhua; Wang, Yating; Zhang, Huijuan; Jiang, Guixiang; Yang, Xiaomin; Ren, Junxiao; Zhu, Xiali; Shi, Yuyang; Zhang, Zhenzhong, E-mail: zhangzz-pharm@163.com [Zhengzhou University, School of Pharmaceutical Sciences (China)

    2015-03-15

    Graphene oxide (GO) with strong optical absorption in the near-infrared (NIR) region has shown great potential both in photothermal therapy and drug delivery. In this work, hyaluronic acid (HA)-functionalized GO (HA-GO) was successfully synthesized and controlled loading of mitoxantrone (MIT) onto HA-GO via π–π stacking interaction was investigated. The results revealed that drug-loaded nanosheets with high loading efficiency of 45 wt% exhibited pH-sensitive responses to tumor environment. Owing to the receptor-mediated endocytosis, cellular uptake analysis of HA-GO showed enhanced internalization. In vivo optical imaging test demonstrated that HA-GO nanosheets could enhance the targeting ability and residence time in tumor site. Moreover, the anti-tumor activity of free MIT, MIT/GO, and MIT/HA-GO in combination with NIR laser was investigated using human MCF-7 cells. In vitro cytotoxicity study revealed that HA-GO could stand as a biocompatible nanocarrier and MIT/HA-GO demonstrated remarkably higher toxicity than free MIT and MIT/GO, with IC{sub 50} of 0.79 µg ml{sup −1}. Tumor cell-killing potency was enhanced when MIT/HA-GO were combined with NIR irradiation, and the IC{sub 50} of MIT/HA-GO plus laser irradiation was 0.38 µg ml{sup −1}. In vivo, MIT/HA-GO plus NIR laser irradiation with the tumor growth inhibition of 93.52 % displayed greater anti-tumor effect compared with free MIT and MIT/GO with or without laser irradiation. Therefore, the MIT/HA-GO nanosheets may potentially be useful for further development of synergistic cancer therapy.

  14. Tumor targeting using 67Ga-DOTA-Bz-folate - investigations of methods to improve the tissue distribution of radiofolates

    International Nuclear Information System (INIS)

    Introduction: Use of folic acid radioconjugates for folate receptor (FR) targeting is a promising strategy for imaging purposes as well as for potential therapy of cancer and inflammatory diseases due to the frequent FR overexpression found on cancer cells and activated macrophages. Herein, we report on preclinical results using a novel DOTA-Bz-EDA-folate conjugate radiolabeled with [67Ga]-gallium. Methods: DOTA-Bz-EDA-folate was prepared by conjugation of ethylenediamine-(γ)-folate with 2-(p-isothiocyanobenzyl)-DOTA. Radiolabeling was carried out with 67GaCl3 according to standard procedures. Biodistribution studies of the tracer were performed in mice bearing FR-positive KB tumor xenografts. The effects on radiofolate biodistribution with coadministered renal uptake-blocking amino acids, diuretic agents, antifolates as well as different routes of administration were likewise investigated. Supportive imaging studies were performed using a small-animal single photon emission computed tomography (SPECT)/CT scanner. Results: 67Ga-DOTA-Bz-EDA-folate showed a high and specific accumulation in tumors (6.30%±0.75% ID/g, 1 h pi and 6.08%±0.89% ID/g, 4 h pi). Nonspecific radioactivity uptake in nontargeted tissues was negligible, but significant accumulation was found in FR-positive kidneys, which resulted in unfavorably low tumor-to-kidney ratios (67Ga-radiofolate and the favorable reduction in kidney uptake (with improved imaging quality) resulting from pemetrexed administration. Conclusion: Conventional methods to reduce kidney uptake of radiofolates fail. However, the novel 67Ga-radiolabeled DOTA-Bz-EDA-folate can effectively be used to image FR-positive cancer and potentially inflammatory diseases. Due to its rapid blood clearance properties, this tracer is also a promising candidate for positron emission tomography imaging if radiolabeled with the short-lived [68Ga]-gallium radionuclide.

  15. Development of peritoneal tumor-targeting vector by in vivo screening with a random peptide-displaying adenovirus library.

    Directory of Open Access Journals (Sweden)

    Takeshi Nishimoto

    Full Text Available The targeting of gene transfer at the cell-entry level is one of the most attractive challenges in vector development. However, attempts to redirect adenovirus vectors to alternative receptors by engineering the capsid-coding region have shown limited success, because the proper targeting ligands on the cells of interest are generally unknown. To overcome this limitation, we have constructed a random peptide library displayed on the adenoviral fiber knob, and have successfully selected targeted vectors by screening the library on cancer cell lines in vitro. The infection of targeted vectors was considered to be mediated by specific receptors on target cells. However, the expression levels and kinds of cell surface receptors may be substantially different between in vitro culture and in vivo tumor tissue. Here, we screened the peptide display-adenovirus library in the peritoneal dissemination model of AsPC-1 pancreatic cancer cells. The vector displaying a selected peptide (PFWSGAV showed higher infectivity in the AsPC-1 peritoneal tumors but not in organs and other peritoneal tumors as compared with a non-targeted vector. Furthermore, the infectivity of the PFWSGAV-displaying vector for AsPC-1 peritoneal tumors was significantly higher than that of a vector displaying a peptide selected by in vitro screening, indicating the usefulness of in vivo screening in exploring the targeting vectors. This vector-screening system can facilitate the development of targeted adenovirus vectors for a variety of applications in medicine.

  16. Synthesis and Preliminary Biological Evaluation of High-drug Load Paclitaxel-Antibody Conjugates for Tumor-targeted Chemotherapy1

    OpenAIRE

    Quiles, Sherly; Raisch, Kevin P.; Sanford, Leisa L.; Bonner, James A.; Safavy, Ahmad

    2010-01-01

    The goal of this study was to design paclitaxel (PTX)-monoclonal antibody (MAb) prodrug conjugates (PTXMAbs) with the ability to deliver therapeutically significant doses of the drug to the tumor while avoiding the previously observed solubility limitations of conjugates with PTX : MAb molar ratios of >3. New PTX conjugates were synthesized using the discrete poly(ethylene glycol) (dPEG) as linkers. These compounds, PTX-L-Lys[(dPEG12)3-dPEG4]-dPEG6-NHS (9a and 9b, for L=GL or SX, respectively...

  17. Multiple cues on the physiochemical, mesenchymal, and intracellular trafficking interactions with nanocarriers to maximize tumor target efficiency

    OpenAIRE

    Kim SW; Khang D

    2015-01-01

    Sang-Woo Kim, Dongwoo Khang Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea Abstract: Over the past 60 years, numerous medical strategies have been employed to overcome neoplasms. In fact, with the exception of lung, bronchial, and pancreatic cancers, the 5-year survival rate of most cancers currently exceeds 70%. However, the quality of life of patients during chemotherapy remains unsatisfactory despite the increase in ...

  18. Polymer-Based Prodrugs: Improving Tumor Targeting and the Solubility of Small Molecule Drugs in Cancer Therapy.

    Science.gov (United States)

    Dragojevic, Sonja; Ryu, Jung Su; Raucher, Drazen

    2015-12-04

    The majority of anticancer drugs have poor aqueous solubility, produce adverse effects in healthy tissue, and thus impose major limitations on both clinical efficacy and therapeutic safety of cancer chemotherapy. To help circumvent problems associated with solubility, most cancer drugs are now formulated with co-solubilizers. However, these agents often also introduce severe side effects, thereby restricting effective treatment and patient quality of life. A promising approach to addressing problems in anticancer drug solubility and selectivity is their conjugation with polymeric carriers to form polymer-based prodrugs. These polymer-based prodrugs are macromolecular carriers, designed to increase the aqueous solubility of antitumor drugs, can enhance bioavailability. Additionally, polymer-based prodrugs approach exploits unique features of tumor physiology to passively facilitate intratumoral accumulation, and so improve chemodrug pharmacokinetics and pharmacological properties. This review introduces basic concepts of polymer-based prodrugs, provides an overview of currently emerging synthetic, natural, and genetically engineered polymers that now deliver anticancer drugs in preclinical or clinical trials, and highlights their major anticipated applications in anticancer therapies.

  19. Neuroendocrine tumor targeting: study of novel gallium-labeled somatostatin radiopeptides in a rat pancreatic tumor model.

    Science.gov (United States)

    Froidevaux, Sylvie; Eberle, Alex N; Christe, Martine; Sumanovski, Lazar; Heppeler, Axel; Schmitt, Jörg S; Eisenwiener, Klaus; Beglinger, Christoph; Mäcke, Helmut R

    2002-04-20

    Somatostatin analogs labeled with radionuclides are of considerable interest in the diagnosis and therapy of SSTR-expressing tumors, such as gastroenteropancreatic, small cell lung, breast and frequently nervous system tumors. In view of the favorable physical characteristics of the Ga isotopes (67)Ga and (68)Ga, enabling conventional tumor scintigraphy, PET and possibly internal radiotherapy, we focused on the development of a Ga-labeled somatostatin analog suitable for targeting SSTR-expressing tumors. For this purpose, 3 somatostatin analogs, OC, TOC and TATE were conjugated to the metal chelator DOTA and labeled with the radiometals (111)In, (90)Y and (67)Ga. They were then evaluated for their performance in the AR4-2J pancreatic tumor model by testing SSTR2-binding affinity, internalization/externalization in isolated cells and biodistribution in tumor-bearing nude mice. Surprisingly, we found that, compared to (111)In or (90)Y, labeling with (67)Ga considerably improved the biologic performance of the tested somatostatin analogs with respect to SSTR2 affinity and tissue distribution. (67)Ga-labeled DOTA-somatostatin analogs were rapidly excreted from nontarget tissues, leading to excellent tumor-to-nontarget tissue uptake ratios. Of interest for radiotherapeutic application, [(67)Ga]DOTATOC was strongly internalized by AR4-2J cells. Furthermore, our results suggest a link between the radioligand charge and its kidney retention. The excellent tumor selectivity of Ga-DOTA somatostatin analogs together with the different applications of Ga in nuclear oncology suggests that Ga-DOTA somatostatin analogs will become an important tool in the management of SSTR-positive tumors.

  20. Light-Induced Hydrogel Based on Tumor-Targeting Mesoporous Silica Nanoparticles as a Theranostic Platform for Sustained Cancer Treatment.

    Science.gov (United States)

    Chen, Xin; Liu, Zhongning; Parker, Stephen G; Zhang, Xiaojin; Gooding, J Justin; Ru, Yanyan; Liu, Yuhong; Zhou, Yongsheng

    2016-06-29

    Herein, we report a facile fabrication of a polymer (azobenzene and α-cyclodextrin-functionalized hyaluronic acid) and gold nanobipyramids (AuNBs) conjugated mesoporous silica nanoparticles (MSNs) to be used as an injectable drug delivery system for sustained cancer treatment. Because of the specific affinity between the hyaluronic acid (HA) on MSNs and the CD44 antigen overexpressed on tumor cells, the MSNs can selectively attach to tumor cells. The nanocomposite material then exploits thermoresponsive interactions between α-cyclodextrin and azobenzene, and the photothermal properties of gold nanobipyramids, to in situ self-assemble into a hydrogel under near-infrared (NIR) radiation. Upon gelation, the drug (doxorubicin)-loaded MSNs carriers were enclosed in the HA network of the hydrogel, whereas further degradation of the HA in the hydrogel due to the upregulation of hyaluronidase (HAase) around the tumor tissue will result in the release of MSNs from the hydrogel, which can then be taken by tumor cells and deliver their drug to the cell nuclei. This design is able to provide a microenvironment with rich anticancer drugs in, and around, the tumor tissue for time periods long enough to prevent the recrudescence of the disease. The extra efficacy that this strategy affords builds upon the capabilities of conventional therapies. PMID:27265514

  1. Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery vehicles for enhanced tumor targeting

    Science.gov (United States)

    Lv, Yongjiu; Hao, Lan; Hu, Wenjing; Ran, Ya; Bai, Yan; Zhang, Liangke

    2016-01-01

    This study fabricated novel multifunctional pH-sensitive nanoparticles loaded into microbubbles (PNP-MB) with the combined advantages of two excellent drug delivery vehicles, namely, pH-sensitive nanoparticles and microbubbles. As an antitumor drug, resveratrol (RES) was loaded into acetylated β-cyclodextrin nanoparticles (RES-PNP). The drug-loaded nanoparticles were then encapsulated into the internal space of the microbubbles. The characterization and morphology of this vehicle were investigated through dynamic light scattering and confocal laser scanning microscopy, respectively. In vitro drug release was performed to investigate the pH sensitivity of RES-PNP. The antitumor property of RES-loaded PNP-MB (RES-PNP-MB) was also analyzed in vivo to evaluate the antitumor effect of RES-PNP-MB. Results suggested that PNP exhibited pH sensitivity, and was successfully encapsulated into the microbubbles. RES-PNP-MB exhibit effective tumor growth suppressing in vivo. Therefore, such drug delivery vehicle should be of great attention in tumor therapy. PMID:27378018

  2. Aminated β-Cyclodextrin-Modified-Carboxylated Magnetic Cobalt/Nanocellulose Composite for Tumor-Targeted Gene Delivery

    Directory of Open Access Journals (Sweden)

    Thayyath Sreenivasan Anirudhan

    2014-01-01

    Full Text Available Gene therapy is a new kind of medicine, which uses genes as drugs in order to treat life threatening diseases. In the present work, a nonviral vector, aminated β-cyclodextrin-modified-carboxylated magnetic cobalt/nanocellulose composite (ACDC-Co/NCC, was synthesized for efficient transfection of genes into tumour cells. The synthesized ACDC-Co/NCC was characterized by means of FTIR, XRD, SEM, and ESR techniques. DNA condensing ability of ACDC-Co/NCC was found to be increased with increase in amount of ACDC-Co/NCC and 84.9% of DNA (1.0 μg/mL inclusion was observed with 6.0 μg/mL of ACDC-Co/NCC. The cytotoxicity of ACDC-Co/NCC was observed to be minimal, even at higher concentration, with respect to the model transfecting agent, poly(ethyleneimine (PEI. 88.2% of the gene was transfected at high dose of DNA, as indicated by the highest luciferase expression. These results indicated that ACDC-Co/NCC might be a promising candidate for gene delivery with the characteristics of good biocompatibility, potential biodegradability, minimal cytotoxicity, and relatively high gene transfection efficiency.

  3. Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery vehicles for enhanced tumor targeting.

    Science.gov (United States)

    Lv, Yongjiu; Hao, Lan; Hu, Wenjing; Ran, Ya; Bai, Yan; Zhang, Liangke

    2016-01-01

    This study fabricated novel multifunctional pH-sensitive nanoparticles loaded into microbubbles (PNP-MB) with the combined advantages of two excellent drug delivery vehicles, namely, pH-sensitive nanoparticles and microbubbles. As an antitumor drug, resveratrol (RES) was loaded into acetylated β-cyclodextrin nanoparticles (RES-PNP). The drug-loaded nanoparticles were then encapsulated into the internal space of the microbubbles. The characterization and morphology of this vehicle were investigated through dynamic light scattering and confocal laser scanning microscopy, respectively. In vitro drug release was performed to investigate the pH sensitivity of RES-PNP. The antitumor property of RES-loaded PNP-MB (RES-PNP-MB) was also analyzed in vivo to evaluate the antitumor effect of RES-PNP-MB. Results suggested that PNP exhibited pH sensitivity, and was successfully encapsulated into the microbubbles. RES-PNP-MB exhibit effective tumor growth suppressing in vivo. Therefore, such drug delivery vehicle should be of great attention in tumor therapy.

  4. Aminated β-Cyclodextrin-Modified-Carboxylated Magnetic Cobalt/Nanocellulose Composite for Tumor-Targeted Gene Delivery

    OpenAIRE

    Thayyath Sreenivasan Anirudhan; Sylaja Raveendran Rejeena

    2014-01-01

    Gene therapy is a new kind of medicine, which uses genes as drugs in order to treat life threatening diseases. In the present work, a nonviral vector, aminated β-cyclodextrin-modified-carboxylated magnetic cobalt/nanocellulose composite (ACDC-Co/NCC), was synthesized for efficient transfection of genes into tumour cells. The synthesized ACDC-Co/NCC was characterized by means of FTIR, XRD, SEM, and ESR techniques. DNA condensing ability of ACDC-Co/NCC was found to be increased with increase in...

  5. Tumor Microenvironment and Tumor Targeting Therapy%肿瘤微环境与肿瘤的靶向治疗

    Institute of Scientific and Technical Information of China (English)

    李骥; 齐宪荣

    2014-01-01

    肿瘤微环境是肿瘤细胞赖以生存和发展的物质基础,肿瘤微环境和肿瘤细胞是一个相互依存、相互促进的整体。肿瘤微环境具有低氧、低pH、高间质液压的生理特性,其中存在着多种基质细胞、调控因子和蛋白酶等物质,为肿瘤的发生、发展、侵袭、转移、抵抗药物治疗和免疫反应等提供必要的物质基础。因此靶向肿瘤微环境的治疗策略成为治疗肿瘤的新思路,利用肿瘤微环境中的靶点和生理特性,靶向药物和靶向制剂能够更好地聚集在肿瘤部位,呈现出更好的治疗效果。%Tumor microenvironment is the basis for the tumor cels to survive and develop. It is clear that tumor cels are in close interaction with the extracelular matrix and with stromal cels in the tumor microenvironment. The tumor microenvironment has characteristics of low oxygen, low pH, high interstitial fluid pressure. The tumor microenvironment composed of immune cells, angiogenic vascular cels, lymphatic endothelial cels, cancer associated ifbroblastic cels and the complex molecular components. These components may promote tumor formation and metastasis mainly via angiogenesis induction, suppression of immune surveilance and immune response, and breeding tumor stem cels. Targeting therapy at tumor microenvironment has several characters, such as strong effect, low toxicity and broad anti-tumor spectrum. The tumor stroma can be modulated, or re-educated to allow better delivery of chemotherapeutic drugs or enhance the efifciency of therapy.

  6. A smart tumor targeting peptide-drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells.

    Science.gov (United States)

    Song, Qin; Chuan, Xingxing; Chen, Binlong; He, Bing; Zhang, Hua; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang

    2016-06-01

    Doxorubicin (DOX) is a potent anticancer drug for the treatment of tumors, but the poor specificity and multi-drug resistance (MDR) on tumor cells have restricted its application. Here, a pH and reduction-responsive peptide-drug conjugate (PDC), pHLIP-SS-DOX, was synthesized to overcome these drawbacks. pH low insertion peptide (pHLIP) is a cell penetrating peptide (CPP) with pH-dependent transmembrane ability. And because of the unique cell membrane insertion pattern, it might reverse the MDR. The cellular uptake study showed that on both drug-sensitive MCF-7 and drug-resistant MCF-7/Adr cells, pHLIP-SS-DOX obviously facilitated the uptake of DOX at pH 6.0 and the uptake level on MCF-7/Adr cells was similar with that on MCF-7 cells, indicating that pHLIP-SS-DOX had the ability to target acidic tumor cells and reverse MDR. In vitro cytotoxicity study mediated by GSH-OEt demonstrated that the cytotoxic effect of pHLIP-SS-DOX was reduction responsive, with obvious cytotoxicity at pH 6.0; while it had poor cytotoxicity at pH 7.4, no matter with or without GSH-OEt pretreatment. This illustrated that pHLIP could deliver DOX into tumor cells with acidic microenvironment specifically and could not deliver drugs into normal cells with neutral microenvironment. In summary, pHLIP-SS-DOX is a promising strategy to target drugs to tumors and provides a possibility to overcome MDR.

  7. Mixed PEG-PE/Vitamin E Tumor-Targeted Immunomicelles as Carriers for Poorly Soluble Anti-Cancer Drugs: Improved Drug Solubilization and Enhanced In Vitro Cytotoxicity

    OpenAIRE

    Sawant, Rupa R.; Sawant, Rishikesh M.; Torchilin, Vladimir P.

    2008-01-01

    Two poorly soluble, potent anticancer drugs, paclitaxel and camptothecin, were successfully solubilized by mixed micelles of polyethylene glycol-phosphatidyl ethanolamine (PEG-PE) and vitamin E. Drug containing micelles were additionally modified with anti-nucleosome monoclonal antibody 2C5 (mAb 2C5), which can specifically bring micelles to tumor cells in vitro. The optimized micelles had an average size of about 13-to-22 nm and the immuno-modification of micelles did not significantly chang...

  8. Development of drug loaded nanoparticles for tumor targeting. Part 2: Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models

    Science.gov (United States)

    El-Dakdouki, Mohammad H.; Puré, Ellen; Huang, Xuefei

    2013-04-01

    We report that receptor mediated transcytosis can be utilized to facilitate tumor penetration by drug loaded nanoparticles (NPs). We synthesized hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44 expressed on the cancer cell surface. Although prior studies have primarily focused on CD44 mediated endocytosis to facilitate cellular uptake of HA-NPs by cancer cells, we discovered that, once internalized, the HA-SNPs could be transported out of the cells with their cargo. The exported NPs could be taken up by neighboring cells. This enabled the HA-SNPs to penetrate deeper inside tumors and reach a much greater number of tumor cells in 3D tumor models, presumably through tandem cycles of CD44 mediated endocytosis and exocytosis. When doxorubicin (DOX) was loaded onto the NPs, better penetration of multilayered tumor cells was observed with much improved cytotoxicities against both drug sensitive and drug resistant cancer spheroids compared to the free drug. Thus, targeting receptors such as CD44 that can readily undergo recycling between the cell surface and interior of the cells can become a useful strategy to enhance the tumor penetration potential of NPs and the efficiency of drug delivery through receptor mediated transcytosis.We report that receptor mediated transcytosis can be utilized to facilitate tumor penetration by drug loaded nanoparticles (NPs). We synthesized hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44 expressed on the cancer cell surface. Although prior studies have primarily focused on CD44 mediated endocytosis to facilitate cellular uptake of HA-NPs by cancer cells, we discovered that, once internalized, the HA-SNPs could be transported out of the cells with their cargo. The exported NPs could be taken up by neighboring cells. This enabled the HA-SNPs to penetrate deeper inside tumors and reach a much greater number of tumor cells in 3D tumor models, presumably through tandem cycles of CD44 mediated endocytosis and exocytosis. When doxorubicin (DOX) was loaded onto the NPs, better penetration of multilayered tumor cells was observed with much improved cytotoxicities against both drug sensitive and drug resistant cancer spheroids compared to the free drug. Thus, targeting receptors such as CD44 that can readily undergo recycling between the cell surface and interior of the cells can become a useful strategy to enhance the tumor penetration potential of NPs and the efficiency of drug delivery through receptor mediated transcytosis. Electronic supplementary information (ESI) available: Detailed experimental procedures on spheroid preparation; SEM sample processing; NPs uptake by flow cytometry; and supporting Figures and Tables. See DOI: 10.1039/c3nr90022c

  9. Design and Fabrication of Multifunctional Sericin Nanoparticles for Tumor Targeting and pH-Responsive Subcellular Delivery of Cancer Chemotherapy Drugs.

    Science.gov (United States)

    Huang, Lei; Tao, Kaixiong; Liu, Jia; Qi, Chao; Xu, Luming; Chang, Panpan; Gao, Jinbo; Shuai, Xiaoming; Wang, Guobin; Wang, Zheng; Wang, Lin

    2016-03-01

    The severe cytotoxicity of cancer chemotherapy drugs limits their clinical applications. Various protein-based nanoparticles with good biocompatibility have been developed for chemotherapy drug delivery in hope of reducing drugs' side effects. Sericin, a natural protein from silk, has no immunogenicity and possesses diverse bioactivities that have prompted sericin's application studies. However, the potential of sericin as a multifunctional nanoscale vehicle for cancer therapy have not been fully explored. Here we report the successful fabrication and characterization of folate-conjugated sericin nanoparticles with cancer-targeting capability for pH-responsive release of doxorubicin (these nanoparticles are termed "FA-SND"). DOX is covalently linked to sericin through pH-sensitive hydrazone bonds that render a pH-triggered release property. The hydrophobicity of DOX and the hydrophilicity of sericin promote the self-assembly of sericin-DOX (SND) nanoconjugates. Folate (FA) is then covalently grafted to SND nanoconjugates as a binding unit for actively targeting cancer cells that overexpress folate receptors. Our characterization study shows that FA-SND nanoparticles exhibit negative surface charges that would reduce nonspecific clearance by circulation. These nanoparticles possess good cytotoxicity and hemocompatibiliy. Acidic environment (pH 5.0) triggers effective DOX release from FA-SND, 5-fold higher than does a neutral condition (pH 7.4). Further, FA-SND nanoparticles specifically target folate-receptor-rich KB cells, and endocytosed into lysosomes, an acidic organelle. The acidic microenvironment of lysosomes promotes a rapid release of DOX to nuclei, producing cancer specific chemo-cytotoxicity. Thus, FA-mediated cancer targeting and lysosomal-acidity promoting DOX release, two sequentially-occurring cellular events triggered by the designed components of FA-SND, form the basis for FA-SND to achieve its localized and intracellular chemo-cytotoxicity. Together, this study suggests that these FA-SND nanoparticles may be a potentially effective carrier particularly useful for delivering hydrophobic chemotherapeutic agents for treating cancers with high-level expression of folate receptors. PMID:26855027

  10. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model.

    Science.gov (United States)

    Choi, Goeun; Piao, Huiyan; Alothman, Zeid A; Vinu, Ajayan; Yun, Chae-Ok; Choy, Jin-Ho

    2016-01-01

    Methotrexate (MTX), an anticancer agent, was successfully intercalated into the anionic clay, layered double hydroxides to form a new nanohybrid drug. The coprecipitation and subsequent hydrothermal method were used to prepare chemically, structurally, and morphologically well-defined two-dimensional drug-clay nanohybrid. The resulting two-dimensional drug-clay nanohybrid showed excellent colloidal stability not only in deionized water but also in an electrolyte solution of Dulbecco's Modified Eagle's Medium with 10% fetal bovine serum, in which the average particle size in colloid and the polydispersity index were determined to be around 100 and 0.250 nm, respectively. The targeting property of the nanohybrid drug was confirmed by evaluating the tumor-to-blood and tumor-to-liver ratios of the MTX with anionic clay carrier, and these ratios were compared to those of free MTX in the C33A orthotopic cervical cancer model. The biodistribution studies indicated that the mice treated with the former showed 3.5-fold higher tumor-to-liver ratio and fivefold higher tumor-to-blood ratio of MTX than those treated with the latter at 30 minutes postinjection.

  11. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model

    Directory of Open Access Journals (Sweden)

    Choi G

    2016-01-01

    Full Text Available Goeun Choi,1 Huiyan Piao,1 Zeid A Alothman,2 Ajayan Vinu,3 Chae-Ok Yun,4 Jin-Ho Choy1 1Center for Intelligent Nano-Bio Materials, Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Korea; 2Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia; 3Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia; 4Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea Abstract: Methotrexate (MTX, an anticancer agent, was successfully intercalated into the anionic clay, layered double hydroxides to form a new nanohybrid drug. The coprecipitation and subsequent hydrothermal method were used to prepare chemically, structurally, and morphologically well-defined two-dimensional drug-clay nanohybrid. The resulting two-dimensional drug-clay nanohybrid showed excellent colloidal stability not only in deionized water but also in an electrolyte solution of Dulbecco’s Modified Eagle’s Medium with 10% fetal bovine serum, in which the average particle size in colloid and the polydispersity index were determined to be around 100 and 0.250 nm, respectively. The targeting property of the nanohybrid drug was confirmed by evaluating the tumor-to-blood and tumor-to-liver ratios of the MTX with anionic clay carrier, and these ratios were compared to those of free MTX in the C33A orthotopic cervical cancer model. The biodistribution studies indicated that the mice treated with the former showed 3.5-fold higher tumor-to-liver ratio and fivefold higher tumor-to-blood ratio of MTX than those treated with the latter at 30 minutes postinjection. Keywords: anionic clay, biodistribution, cervical cancer, colloidal stability, layered double hydroxide, methotrexate 

  12. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunmao; Ding, Chao; Kong, Minjian [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Dong, Aiqiang, E-mail: dr_dongaiqiang@sina.com [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Qian, Jianfang; Jiang, Daming; Shen, Zhonghua [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the lipofection group. In vivo IGF-1R specific-shRNA by lipofection inhibited IGF-1R protein by an average of 43.8 {+-} 5.3%; that by liposomal magnetofection inhibited IGF-1R protein by 43.4 {+-} 5.7%, 56.3 {+-} 9.6%, and 72.2 {+-} 6.8%, at 24, 48, and 72 h, respectively, after pGFPshIGF-1R injection. Our findings indicate that liposomal magnetofection may be a promising method that allows the targeting of gene therapy to lung cancer.

  13. Mixed PEG-PE/Vitamin E Tumor-Targeted Immunomicelles as Carriers for Poorly Soluble Anti-Cancer Drugs: Improved Drug Solubilization and Enhanced In Vitro Cytotoxicity

    Science.gov (United States)

    Sawant, Rupa R.; Sawant, Rishikesh M.; Torchilin, Vladimir P.

    2008-01-01

    Two poorly soluble, potent anticancer drugs, paclitaxel and camptothecin, were successfully solubilized by mixed micelles of polyethylene glycol-phosphatidyl ethanolamine (PEG-PE) and vitamin E. Drug containing micelles were additionally modified with anti-nucleosome monoclonal antibody 2C5 (mAb 2C5), which can specifically bring micelles to tumor cells in vitro. The optimized micelles had an average size of about 13-to-22 nm and the immuno-modification of micelles did not significantly change it. The solubilization of both drugs by the mixed micelles was more efficient than by micelles made of PEG-PE alone. Solubilization of camptothecin in micelles prevented also the hydrolysis of active lactone form of the drug to inactive carboxylate form. Drug loaded mixed micelles and mAb 2C5-immunomicelles demonstrated significantly higher in vitro cytotoxicity than free drug against various cancer cell lines. PMID:18583114

  14. Sortase-catalyzed in vitro functionalization of a HER2-specific recombinant Fab for tumor targeting of the plant cytotoxin gelonin

    OpenAIRE

    Kornberger, Petra; Skerra, Arne

    2013-01-01

    We report on the preparation of a new type of immunotoxin via in vitro ligation of the αHer2 antigen binding fragment (Fab) of the clinically-validated antibody trastuzumab to the plant toxin gelonin, employing catalysis by the bacterial enzyme sortase A (SrtA). The αHer2 Fab was fused with the extended SrtA recognition motif LPET↓GLEH6 at the C-terminus of its heavy chain, thereby preventing interference with antigen binding, while the toxin was equipped with a Gly2 sequence at its N-terminu...

  15. Sortase-catalyzed in vitro functionalization of a HER2-specific recombinant Fab for tumor targeting of the plant cytotoxin gelonin

    Science.gov (United States)

    Kornberger, Petra; Skerra, Arne

    2014-01-01

    We report on the preparation of a new type of immunotoxin via in vitro ligation of the αHer2 antigen binding fragment (Fab) of the clinically-validated antibody trastuzumab to the plant toxin gelonin, employing catalysis by the bacterial enzyme sortase A (SrtA). The αHer2 Fab was fused with the extended SrtA recognition motif LPET↓GLEH6 at the C-terminus of its heavy chain, thereby preventing interference with antigen binding, while the toxin was equipped with a Gly2 sequence at its N-terminus, distant to the catalytically active site in the C-terminal region. Site-specific in vitro transpeptidation led to a novel antibody-toxin conjugate wherein gelonin had effectively replaced the Fc region of a conventional (monomerized) immunoglobulin. After optimization of reaction conditions and incubation time, the resulting Fab-Gelonin ligation product was purified to homogeneity in a two-step procedure by means of Strep-Tactin affinity chromatography—utilizing the Strep-tag II appended to gelonin—and size exclusion chromatography. Binding activity of the immunotoxin for the Her2 ectodomain was indistinguishable from the unligated Fab as measured by real-time surface plasmon resonance spectroscopy. Specific cytotoxic potency of Fab-Gelonin was demonstrated against two Her2-positive cell lines, resulting in EC50 values of ~1 nM or lower, indicating a 1000-fold enhanced cell-killing activity compared with gelonin itself. Thus, our strategy provides a convenient route to the modular construction of functional immunotoxins from Fabs of established tumor-specific antibodies with gelonin or related proteotoxins, also avoiding the elevated biosafety levels that would be mandatory for the direct biotechnological preparation of corresponding fusion proteins. PMID:24492291

  16. Clinical-scale laser-based scanning and processing of live cells: selective photothermal killing of fluorescent tumor targets for autologous stem cell transplantation

    Science.gov (United States)

    Koller, Manfred R.; Hanania, Elie G.; Eisfeld, Timothy; O'Neal, Robert A.; Khovananth, Kevin M.; Palsson, Bernhard O.

    2001-04-01

    High-dose chemotherapy, followed by autologous hematopoietic stem cell (HSC) transplantation, is widely used for the treatment of cancer. However, contaminating tumor cells within HSC harvests continue to be of major concern since re-infused tumor cells have proven to contribute to disease relapse. Many tumor purging methods have been evaluated, but all leave detectable tumor cells in the transplant and result in significant loss of HSCs. These shortcomings cause engraftment delays and compromise the therapeutic value of purging. A novel approach integrating automated scanning cytometry, image analysis, and selective laser-induced killing of labeled cells within a cell mixture is described here. Non-Hodgkin's lymphoma (NHL) cells were spiked into cell mixtures, and fluorochrome-conjugated antibodies were used to label tumor cells within the mixture. Cells were then allowed to settle on a surface, and as the surface was scanned with a fluorescence excitation source, a laser pulse was fired at every detected tumor cell using high-speed beam steering mirrors. Tumor cells were selectively killed with little effect on adjacent non-target cells, demonstrating the feasibility of this automated cell processing approach. This technology has many potential research and clinical applications, one example of which is tumor cell purging for autologous HSC transplantation.

  17. Construction of expressing vectors including melanoma differentiation-associated gene-7 (mda-7 fused with the RGD sequences for better tumor targeting

    Directory of Open Access Journals (Sweden)

    Mahboobeh Khodadad

    2015-08-01

    Conclusion: Theoretically RGD tagged mda-7 would be able to induce apoptosis with more specificity and stronger than the standard one, therefore, these new constructs may have the potential for further researches.

  18. Radiolabeled gastrins in CCK2R-positive tumor targeting: Toward improved diagnostic efficacy via in situ enzyme-inhibition approaches

    OpenAIRE

    Kaloudi, Katerina

    2016-01-01

    markdownabstractIn this thesis, several novel radiolabeled gastrin analogs were developed preclinically in vitro as well as in vivo in animal models. In addition, the effect of in situ enzyme inhibition on metabolic stability and tumor uptake of the same gastrin radioligands was investigated.

  19. Dosimetric impact of inter-observer variability for 3D conformal radiotherapy and volumetric modulated arc therapy: the rectal tumor target definition case

    International Nuclear Information System (INIS)

    To assess the dosimetric effect induced by inter-observer variability in target definition for 3D-conformal RT (3DCRT) and volumetric modulated arc therapy by RapidArc (RA) techniques for rectal cancer treatment. Ten patients with rectal cancer subjected to neo-adjuvant RT were randomly selected from the internal database. Four radiation oncologists independently contoured the clinical target volume (CTV) in blind mode. Planning target volume (PTV) was defined as CTV + 7 mm in the three directions. Afterwards, shared guidelines between radiation oncologists were introduced to give general criteria for the contouring of rectal target and the four radiation oncologists defined new CTV following the guidelines. For each patient, six intersections (I) and unions (U) volumes were calculated coupling the contours of the various oncologists. This was repeated for the contours drawn after the guidelines. Agreement Index (AI = I/U) was calculated pre and post guidelines. Two RT plans (one with 3DCRT technique using 3–4 fields and one with RA using a single modulated arc) were optimized on each radiation oncologist’s PTV. For each plan the PTV volume receiving at least 95% of the prescribed dose (PTV V95%) was calculated for both target and non-target PTVs. The inter-operator AI pre-guidelines was 0.57 and was increased up to 0.69 post-guidelines. The maximum volume difference between the various CTV couples, drawn for each patient, passed from 380 ± 147 cm3 to 137 ± 83 cm3 after the introduction of guidelines. The mean percentage for the non-target PTV V95% was 93.7 ± 9.2% before and 96.6 ± 4.9%after the introduction of guidelines for the 3DCRT, for RA the increase was more relevant, passing from 86.5 ± 13.8% (pre) to 94.5 ± 7.5% (post). The OARs were maximally spared with VMAT technique while the variability between pre and post guidelines was not relevant in both techniques. The contouring inter-observer variability has dosimetric effects in the PTV coverage. The introduction of guidelines increases the dosimetric consistency for both techniques, with greater improvements for RA technique

  20. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model.

    Science.gov (United States)

    Choi, Goeun; Piao, Huiyan; Alothman, Zeid A; Vinu, Ajayan; Yun, Chae-Ok; Choy, Jin-Ho

    2016-01-01

    Methotrexate (MTX), an anticancer agent, was successfully intercalated into the anionic clay, layered double hydroxides to form a new nanohybrid drug. The coprecipitation and subsequent hydrothermal method were used to prepare chemically, structurally, and morphologically well-defined two-dimensional drug-clay nanohybrid. The resulting two-dimensional drug-clay nanohybrid showed excellent colloidal stability not only in deionized water but also in an electrolyte solution of Dulbecco's Modified Eagle's Medium with 10% fetal bovine serum, in which the average particle size in colloid and the polydispersity index were determined to be around 100 and 0.250 nm, respectively. The targeting property of the nanohybrid drug was confirmed by evaluating the tumor-to-blood and tumor-to-liver ratios of the MTX with anionic clay carrier, and these ratios were compared to those of free MTX in the C33A orthotopic cervical cancer model. The biodistribution studies indicated that the mice treated with the former showed 3.5-fold higher tumor-to-liver ratio and fivefold higher tumor-to-blood ratio of MTX than those treated with the latter at 30 minutes postinjection. PMID:26855572

  1. Synthesis of Zn-Cu-In-S/ZnS Core/Shell Quantum Dots with Inhibited Blue-Shift Photoluminescence and Applications for Tumor Targeted Bioimaging

    Directory of Open Access Journals (Sweden)

    Weisheng Guo, Na chen, Yu Tu, Chunhong Dong, Bingbo Zhang, Chunhong Hu, Jin Chang

    2013-01-01

    Full Text Available A facile strategy is reported here for synthesis of Zn-Cu-In-S/ZnS (ZCIS/ZnS core/shell QDs to address the synthetic issues that the unexpected blue-shift of CuInS2-based nanocrystals. In this strategy, Zn2+ ions are intentionally employed for the synthesis of alloyed ZCIS core QDs before ZnS shell coating, which contributes to the reduced blue-shift in photoluminescence (PL emission. The experimental results demonstrate this elaborate facile strategy is effective for the reduction of blue-shift during shell growth. Particularly, a hypothesis is proposed and proved for explanation of this effective strategy. Namely, both cation exchange inhibition and ions accumulation are involved during the synthesis of ZCIS/ZnS QDs. Furthermore, the obtained near infrared (NIR ZCIS/ZnS QDs are transferred into aqueous phase by a polymer coating technique and coupled with cyclic Arg-Gly-Asp peptide (cRGD peptides. After confirmation of biocompability by cytotoxicity test on normal 3T3 cells, these QDs are injected via tail vein into nude mice bearing U87 MG tumor. The result indicates that the signals detected in the tumor region are much more distinguishing injected with ZCIS/ZnS-cRGD QDs than that injected with ZCIS/ZnS QDs.

  2. Synthesis of Zn-Cu-In-S/ZnS Core/Shell Quantum Dots with Inhibited Blue-Shift Photoluminescence and Applications for Tumor Targeted Bioimaging

    OpenAIRE

    Weisheng Guo, Na chen, Yu Tu, Chunhong Dong, Bingbo Zhang, Chunhong Hu, Jin Chang

    2013-01-01

    A facile strategy is reported here for synthesis of Zn-Cu-In-S/ZnS (ZCIS/ZnS) core/shell QDs to address the synthetic issues that the unexpected blue-shift of CuInS2-based nanocrystals. In this strategy, Zn2+ ions are intentionally employed for the synthesis of alloyed ZCIS core QDs before ZnS shell coating, which contributes to the reduced blue-shift in photoluminescence (PL) emission. The experimental results demonstrate this elaborate facile strategy is effective for the reduction of blue-...

  3. Somatostatin Receptor-Mediated Tumor-Targeting Nanocarriers Based on Octreotide-PEG Conjugated Nanographene Oxide for Combined Chemo and Photothermal Therapy.

    Science.gov (United States)

    Zhang, Xuyuan; Yang, Chongyin; Zhou, Jianping; Huo, Meirong

    2016-07-01

    Nano-sized in vivo active targeting drug delivery systems have been developed to a high anti-tumor efficacy strategy against certain cancer-cells-specific. Graphene based nanocarriers with unique physical and chemical properties have shown significant potentials in this aspect. Here, octreotide (OCT), an efficient biotarget molecule, is conjugated to PEGylated nanographene oxide (NGO) drug carriers for the first time. The obtained NGO-PEG-OCT complex shows low toxicity and excellent stability in vivo and is able to achieve somatostatin receptor-mediated tumor-specific targeting delivery. Owing to the high loading efficiency and accurate targeting delivery of anti-cancer drug doxorubicin (DOX), our DOX loaded NGO-PEG-OCT complex offers a remarkably improved cancer-cell-specific cellular uptake, chemo-cytotoxicity, and decreased systemic toxicity compared to free DOX or NGO-PEG. More importantly, due to its strong near-infrared absorption, the NGO-PEG-OCT complex further enhances efficient photothermal ablation of tumors, delivering combined chemo and photothermal therapeutic effect against cancer cells. PMID:27244649

  4. Tumor-targeted delivery of a C-terminally truncated FADD (N-FADD) significantly suppresses the B16F10 melanoma via enhancing apoptosis

    Science.gov (United States)

    Yang, Yun-Wen; Zhang, Chun-Mei; Huang, Xian-Jie; Zhang, Xiao-Xin; Zhang, Lin-Kai; Li, Jia-Huang; Hua, Zi-Chun

    2016-01-01

    Fas-associated protein with death domain (FADD), a pivotal adaptor protein transmitting apoptotic signals, is indispensable for the induction of extrinsic apoptosis. However, overexpression of FADD can form large, filamentous aggregates, termed death effector filaments (DEFs) by self-association and initiate apoptosis independent of receptor cross-linking. A mutant of FADD, which is truncated of the C-terminal tail (m-FADD, 182–205 aa) named N-FADD (m-FADD, 1–181 aa), can dramatically up-regulate the strength of FADD self-association and increase apoptosis. In this study, it was found that over-expression of FADD or N-FADD caused apoptosis of B16F10 cells in vitro, even more, N-FADD showed a more potent apoptotic effect than FADD. Meanwhile, Attenuated Salmonella Typhimurium strain VNP20009 was engineered to express FADD or N-FADD under the control of a hypoxia-induced NirB promoter and each named VNP-pN-FADD and VNP-pN-N-FADD. The results showed both VNP-pN-FADD and VNP-pN-N-FADD delayed tumor growth in B16F10 mice model, while VNP-pN-N-FADD suppressed melanoma growth more significantly than VNP-pN-FADD. Additionally, VNP-pN-FADD and VNP-pN-N-FADD induced apoptosis of tumor cells by activating caspase-dependent apoptotic pathway. Our results show that N-FADD is a more potent apoptotic inducer and VNP20009-mediated targeted expression of N-FADD provides a possible cancer gene therapeutic approach for the treatment of melanoma. PMID:27767039

  5. Sortase-catalyzed in vitro functionalization of a HER2-specific recombinant Fab for tumor targeting of the plant cytotoxin gelonin.

    Science.gov (United States)

    Kornberger, Petra; Skerra, Arne

    2014-01-01

    We report on the preparation of a new type of immunotoxin via in vitro ligation of the αHer2 antigen binding fragment (Fab) of the clinically-validated antibody trastuzumab to the plant toxin gelonin, employing catalysis by the bacterial enzyme sortase A (SrtA). The αHer2 Fab was fused with the extended SrtA recognition motif LPET↓GLEH 6 at the C-terminus of its heavy chain, thereby preventing interference with antigen binding, while the toxin was equipped with a Gly 2 sequence at its N-terminus, distant to the catalytically active site in the C-terminal region. Site-specific in vitro transpeptidation led to a novel antibody-toxin conjugate wherein gelonin had effectively replaced the Fc region of a conventional (monomerized) immunoglobulin. After optimization of reaction conditions and incubation time, the resulting Fab-Gelonin ligation product was purified to homogeneity in a two-step procedure by means of Strep-Tactin affinity chromatography--utilizing the Strep-tag II appended to gelonin--and size exclusion chromatography. Binding activity of the immunotoxin for the Her2 ectodomain was indistinguishable from the unligated Fab as measured by real-time surface plasmon resonance spectroscopy. Specific cytotoxic potency of Fab-Gelonin was demonstrated against two Her2-positive cell lines, resulting in EC 50 values of ~1 nM or lower, indicating a 1000-fold enhanced cell-killing activity compared with gelonin itself. Thus, our strategy provides a convenient route to the modular construction of functional immunotoxins from Fabs of established tumor-specific antibodies with gelonin or related proteotoxins, also avoiding the elevated biosafety levels that would be mandatory for the direct biotechnological preparation of corresponding fusion proteins.

  6. PET-based compartmental modeling of {sup 124}I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zanzonico, Pat; O' Donoghue, Joseph A.; Humm, John L. [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Carrasquillo, Jorge A.; Pandit-Taskar, Neeta; Ruan, Shutian; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Smith-Jones, Peter [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Stony Brook School of Medicine, Departments of Psychiatry and Radiology, Stony Brook, NY (United States); Divgi, Chaitanya [Columbia University Medical Center, New York, NY (United States); Scott, Andrew M. [La Trobe University, Olivia Newton-John Cancer Research Institute, Melbourne (Australia); Kemeny, Nancy E.; Wong, Douglas; Scheinberg, David [Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY (United States); Fong, Yuman [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States); City of Hope, Department of Surgery, Duarte, CA (United States); Ritter, Gerd; Jungbluth, Achem; Old, Lloyd J. [Memorial Sloan Kettering Cancer Center, Ludwig Institute for Cancer Research, New York, NY (United States)

    2015-10-15

    The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the ''best-fit'' parameters and model-derived quantities for optimizing biodistribution of intravenously injected {sup 124}I-labeled antitumor antibodies. As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as ''A33'') were performed in 11 colorectal cancer patients. Serial whole-body PET scans of {sup 124}I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. Excellent agreement was observed between fitted and measured parameters of tumor uptake, ''off-target'' uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting ''best-fit'' nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived. (orig.)

  7. An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo

    Science.gov (United States)

    Gayam, Srivardhan Reddy; Venkatesan, Parthiban; Sung, Yi-Ming; Sung, Shuo-Yuan; Hu, Shang-Hsiu; Hsu, Hsin-Yun; Wu, Shu-Pao

    2016-06-01

    The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material.The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material. Electronic supplementary information (ESI) available: Synthesis and characterization of the functional molecules and MSNPs is available in the ESI. See DOI: 10.1039/c6nr03525f

  8. Enhanced in vivo antitumor efficacy of dual-functional peptide-modified docetaxel nanoparticles through tumor targeting and Hsp90 inhibition.

    Science.gov (United States)

    Jiang, Yao; Yang, Nan; Zhang, Huifeng; Sun, Bo; Hou, Chunying; Ji, Chao; Zheng, Ji; Liu, Yanyong; Zuo, Pingping

    2016-01-10

    Although conventional anticancer drugs exhibit excellent efficacy, serious adverse effects and/or even toxicity have occurred due to their nonselectivity. Moreover, active targeting approaches have not consistently led to successful outcomes. Ligands that simultaneously possess targeting capability and exert a strong influence on intracellular signaling cascades may be expected to improve the therapeutic efficacy of active targeting nanoparticulate carriers. In this study, we screened a targeting peptide, LPLTPLP, which specifically bound to non-small cell lung cancer (NSCLC) specimens in vitro. Surprisingly, this peptide inhibited the expression of Hsp90 and induced apoptosis by preventing autophagy in A549 cells treated with docetaxel. The results suggested that this peptide might be used as a promising dual-functional ligand for cancer treatment. Based on these findings, we designed and developed a novel active targeting delivery system by modifying docetaxel nanoparticles (DNP) with the dual-functional ligand LPLTPLP. We consistently demonstrated that the cellular uptake of nanoparticles (NPs) was significantly enhanced in vitro. Furthermore, the targeting NPs exhibited significantly improved antitumor efficacy and biodistribution compared with nontargeting nanodrug and free docetaxel. These findings demonstrate the feasibility of dual-functional NPs for efficient anticancer therapy.

  9. Monitoring Tumor Targeting and Treatment Effects of IRDye 800CW and GX1-Conjugated Polylactic Acid Nanoparticles Encapsulating Endostar on Glioma by Optical Molecular Imaging.

    Science.gov (United States)

    Li, Yaqian; Du, Yang; Liu, Xia; Zhang, Qian; Jing, Lijia; Liang, Xiaolong; Chi, Chongwei; Dai, Zhifei; Tian, Jie

    2015-01-01

    Molecular imaging used in cancer diagnosis and therapeutic response monitoring is important for glioblastoma (GBM) research. Antiangiogenic therapy currently is one of the emerging approaches for GBM treatment. In this study, a multifunctional nanoparticle was fabricated that can facilitate the fluorescence imaging of tumor and deliver a therapeutic agent to the tumor region in vivo and therefore possesses broad application in cancer diagnosis and treatment. This particle was polylactic acid (PLA) nanoparticles encapsulating Endostar, which was further conjugated with GX1 peptide and the near-infrared (NIR) dye IRDye 800CW (IGPNE). We demonstrated noninvasive angiogenesis targeting and therapy of IGPNE on U87MG xenografts in vivo using dual-modality optical molecular imaging including NIR fluorescence molecular imaging (FMI) and bioluminescence imaging (BLI). The NIR FMI results demonstrated that IGPNE had more accumulation to the tumor site compared to free IRDye 800CW. To further evaluate the antitumor treatment efficacy of IGPNE, BLI and immunohistochemistry analysis were performed on tumor-bearing mice. With the aid of molecular imaging, the results confirmed that IGPNE enhanced antitumor treatment efficacy compared to free Endostar. In conclusion, IGPNE realizes real-time imaging of U87MG tumors and improves the antiangiogenic therapeutic efficacy in vivo.

  10. Self-Assembled Polymeric Micelles Based on Hyaluronic Acid-g-Poly(d,l-lactide-co-glycolide Copolymer for Tumor Targeting

    Directory of Open Access Journals (Sweden)

    Gyung Mo Son

    2014-09-01

    Full Text Available Graft copolymer composed hyaluronic acid (HA and poly(d,l-lactide-co-glycolide (PLGA (HAgLG was synthesized for antitumor targeting via CD44 receptor of tumor cells. The carboxylic end of PLGA was conjugated with hexamethylenediamine (HMDA to have amine end group in the end of chain (PLGA-amine. PLGA-amine was coupled with carboxylic acid of HA. Self-assembled polymeric micelles of HAgLG have spherical morphologies and their sizes were around 50–200 nm. Doxorubicin (DOX-incorporated polymeric micelles were prepared by dialysis procedure. DOX was released over 4 days and its release rate was accelerated by the tumoric enzyme hyaluronidase. To assess targetability of polymeric micelles, CD44-positive HepG2 cells were employed treated with fluorescein isothiocyanate (FITC-labeled polymeric micelles. HepG2 cells strongly expressed green fluorescence at the cell membrane and cytosol. However, internalization of polymeric micelles were significantly decreased when free HA was pretreated to block the CD44 receptor. Furthermore, the CD44-specific anticancer activity of HAgLG polymeric micelles was confirmed using CD44-negative CT26 cells and CD44-positive HepG2 cells. These results indicated that polymeric micelles of HaLG polymeric micelles have targetability against CD44 receptor of tumor cells. We suggest HAgLG polymeric micelles as a promising candidate for specific drug targeting.

  11. Two-year hospital records of burns from a referral center in Western Iran: March 2010-March 2012

    Directory of Open Access Journals (Sweden)

    Touraj Ahmadijouybari

    2014-01-01

    Full Text Available Abstract: Background: Burns are among the most common injuries affecting a great number of people worldwide annually. In Iran, especially in its western region and in Kermanshah province, burns have a relatively high incidence. The present study was aimed at investigating epidemiological characteristics in Western Iran. Methods: Within a cross-sectional study, the data on all patients attending the Burns Center at Imam Khomeini Hospital (Kermanshah, Iran during 2010-2011 and 2011-2012 (24 months were collected. Then, age, gender, cause of burns, total body surface area, and time of the occurrence were extracted from the hospital records. The data were analyzed using the SPSS statistical package (Version 19, for Windows. We used chi-squared test when we compared the categorical responses between two or more groups. For comparing means between two groups we used t-test. In addition, trends were investigated using linear regression. Results: Overall 13 248 people were referred to the Burns Center at Imam Khomeini Hospital (Kermanshah, Iran during the period of study, including 328 cases of self-immolation. The mean age of the patients was 27±19 years and 29±13 years for unintentional burns and self-immolation respectively. Out of the total number of unintentional cases, 6 519 (50.5% were men, while the corresponding percentage of men among the self-immolation cases was 16.6% (p less than 0.001. Trends in the number of cases were cyclic, with the highest and lowest number of burns cases being in March and May. Overall, hot liquids and flammable materials were the two most important causes of unintentional burns. However, flammable materials were the main cause of burns among self-immolation cases. During hospital admission, 168 (51% self-immolation victims and 43 (0.33% unintentional burn victims died. Conclusions: While major preventive measures are not adequately used in developing countries, burns and their burden can be significantly reduced

  12. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues

    OpenAIRE

    Rong, Lei; Zhang, Chi; Lei, Qi; HU, MING-MING; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-01-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change...

  13. Triggered Drug Release from an Antibody-Drug Conjugate Using Fast "Click-to-Release" Chemistry in Mice.

    Science.gov (United States)

    Rossin, Raffaella; van Duijnhoven, Sander M J; Ten Hoeve, Wolter; Janssen, Henk M; Kleijn, Laurens H J; Hoeben, Freek J M; Versteegen, Ron M; Robillard, Marc S

    2016-07-20

    The use of a bioorthogonal reaction for the selective cleavage of tumor-bound antibody-drug conjugates (ADCs) would represent a powerful new tool for ADC therapy, as it would not rely on the currently used intracellular biological activation mechanisms, thereby expanding the scope to noninternalizing cancer targets. Here we report that the recently developed inverse-electron-demand Diels-Alder pyridazine elimination reaction can provoke rapid and self-immolative release of doxorubicin from an ADC in vitro and in tumor-bearing mice. PMID:27306828

  14. Paediatric suicidal burns: A growing concern.

    Science.gov (United States)

    Segu, Smitha; Tataria, Rachana

    2016-06-01

    An alarming rise in rates of paediatric population committing self-immolation acts is a growing social and medical problem. In recent times there seems to be a rising concern in paediatric population. A study was conducted at a government tertiary care burn centre over 5 years in paediatric age group of peer pressure leaving them vulnerable. A multidisciplinary care involving medical, psychological and social support is required. Identifying children at risk and proper counselling and support can form an important strategy at prevention rather than cure. PMID:26803366

  15. Process for radioisotope recovery and system for implementing same

    Science.gov (United States)

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2007-01-02

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  16. Tumor-targeted delivery of IL-2 by NKG2D leads to accumulation of antigen-specific CD8+ T cells in the tumor loci and enhanced anti-tumor effects.

    Directory of Open Access Journals (Sweden)

    Tae Heung Kang

    Full Text Available Interleukin-2 (IL-2 has been shown to promote tumor-specific T-cell proliferation and differentiation but systemic administration of IL-2 results in significant toxicity. Therefore, a strategy that can specifically deliver IL-2 to the tumor location may alleviate concerns of toxicity. Because NKG2D ligands have been shown to be highly expressed in many cancer cells but not in healthy cells, we reason that a chimeric protein consisting of NKG2D linked to IL-2 will lead to the specific targeting of IL-2 to the tumor location. Therefore, we created chimeric proteins consisting of NKG2D linked to Gaussia luciferase (GLuc; a marker protein or IL-2 to form NKG2D-Fc-GLuc and NKG2D-Fc-IL2, respectively. We demonstrated that NKG2D linked to GLuc was able to deliver GLuc to the tumor location in vivo. Furthermore, we showed that TC-1 tumor-bearing mice intramuscularly injected with DNA encoding NKG2D-Fc-IL2, followed by electroporation, exhibited an increased number of luciferase-expressing E7-specific CD8+ T cells at the tumor location. More importantly, treatment with the DNA construct encoding NKG2D-Fc-IL2 significantly enhanced the therapeutic anti-tumor effects generated by intradermal vaccination with therapeutic HPV DNA in tumor-bearing mice. Therefore, by linking NKG2D to IL2, we are able to specifically deliver IL-2 to the tumor location, enhancing antigen-specific T-cell immune response and controlling tumor growth. Our approach represents a platform technology to specifically deliver proteins of interest to tumor loci.

  17. 基因重组间充质干细胞作为肿瘤靶向细胞载体的研究进展%Research progress of gene recombinant mesenchymal stem cells as tumor targeting delivery vehicles

    Institute of Scientific and Technical Information of China (English)

    张添源; 胡瑜兰; 梁文权; 高建青

    2013-01-01

    近年来,基因肿瘤靶向传递系统受到广泛关注.通过这一靶向传递系统可以提高治疗基因对肿瘤组织的选择性,进而提高基因治疗的成功率和减少相应的副作用等.因此,研究设计新型基因靶向传递载体己成为当前的研究热点.研究表明,间充质干细胞(MSCs)具有向肿瘤部位迁移的能力,这使得MSCs有望成为一种全新而高效的肿瘤靶向传递载体.本文对MSCs作为一种肿瘤基因治疗靶向载体的可行性进行了综述,并提出了有关这方面基因治疗的挑战和思考.

  18. Consumption of vitamin B6 reduces colonic damage and protein expression of HSP70 and HO-1, the anti-tumor targets, in rats exposed to 1,2-dimethylhydrazine

    OpenAIRE

    KAYASHIMA, TOMOKO; Tanaka, Kenta; OKAZAKI, YUKAKO; Matsubara, Kiminori; Yanaka, Noriyuki; Kato, Norihisa

    2011-01-01

    Mounting evidence indicates that vitamin B6 is a protective factor for colon cancer. Elevations in colonic damage, cell proliferation and heat shock proteins (HSPs, molecular chaperones) have been suggested to be associated with colon carcinogenesis. This study was performed to examine the effect of dietary levels of vitamin B6 (1, 7 or 35 mg pyridoxine HCl/kg diet) for 22 weeks on colon damage, epithelial cell proliferation and expression of HSPs in rats exposed to 1,2-dimethylhydrazine (DMH...

  19. Research Progress in Polymeric Micelles with Tumor-Targeting in Chemotherapy%聚合物胶束结合靶向在肿瘤化疗中的研究进展

    Institute of Scientific and Technical Information of China (English)

    王晓君; 丁辉; 刘新利; 张松

    2012-01-01

    肿瘤研究的一个主要方向是开发高效无毒副作用的药物载体系统。聚合物胶束由内部可装载难溶性药物的疏水内核,外部能提高体内运输作用的亲水外壳组成,粒径一般为10~100nm左右。这种粒径范围的载药体系既能逃脱肾脏的排泄清除,又能躲避内皮网状系统的吞噬,延长药物在血液中的循环时间。聚合物胶束结合肿瘤靶向在化疗方面的应用,能够有效改善化疗药物的水溶性,提高化疗药物的利用率和抗肿瘤活性,降低对机体正常细胞组织的毒副作用,克服多药耐药性问题,进而极大地提高了肿瘤化疗效果和促进了肿瘤化疗的发展进步。本文着重综述聚合物胶束在化疗药物载药与靶向策略方面的研究现状与进展。%A major field in cancer research is to develop carriers that can deliver drugs into targeted region effectively without side effects. Polymeric micelles (PMs) are core-shell structure with diameters of 10-100nm (suitable size with a narrow distribution could avoid rapid renal excretion and entrapment by the reticuloendothelial system), which are self-assembled with good biodegradable and biocompatible polymer to form hydrophobic core and hydrophilic shell in an aqueous media. The preparation of PMs with stimuli-responsive block copolymers and modification of target molecules on PMs' surface could significantly improve the performance of the drug-loaded, enhance drug utilization and anti-tumor activity, reduce the normal tissue toxicity and solve the problem of multi-drug resistance, and thus contribute significantly to the development and progress of chemotherapy. Here we review some of the promising analog of targeting strategies that are under development for drug delivery. This review describes the preparation of polymeric micelles and the targeted modification which greatly enhance the effect of chemotherapy.

  20. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate) and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate.

    Science.gov (United States)

    Abbad, Sarra; Wang, Cheng; Waddad, Ayman Yahia; Lv, Huixia; Zhou, Jianping

    2015-01-01

    Herein, we describe the preparation of a targeted cellular delivery system for morin hydrate (MH), based on a low-molecular-weight hyaluronic acid-poly(butyl cyanoacrylate) (HA-PBCA) block copolymer. In order to enhance the therapeutic effect of MH, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was mixed with HA-PBCA during the preparation process. The MH-loaded HA-PBCA "plain" nanoparticle (MH-PNs) and HA-PBCA/TPGS "mixed" nanoparticles (MH-MNs) were concomitantly characterized in terms of loading efficiency, particle size, zeta potential, critical aggregation concentration, and morphology. The obtained MH-PNs and MH-MNs exhibited a spherical morphology with a negative zeta potential and a particle size less than 200 nm, favorable for drug targeting. Remarkably, the addition of TPGS resulted in about 1.6-fold increase in drug-loading. The in vitro cell viability experiment revealed that MH-MNs enhanced the cytotoxicity of MH in A549 cells compared with MH solution and MH-PNs. Furthermore, blank MNs containing TPGS exhibited selective cytotoxic effects against cancer cells without diminishing the viability of normal cells. In addition, the cellular uptake study indicated that MNs resulted in 2.28-fold higher cellular uptake than that of PNs, in A549 cells. The CD44 receptor competitive inhibition and the internalization pathway studies suggested that the internalization mechanism of the nanoparticles was mediated mainly by the CD44 receptors through a clathrin-dependent endocytic pathway. More importantly, MH-MNs exhibited a higher in vivo antitumor potency and induced more tumor cell apoptosis than did MH-PNs, following intravenous administration to S180 tumor-bearing mice. Overall, the results imply that the developed nanoparticles are promising vehicles for the targeted delivery of lipophilic anticancer drugs.

  1. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate

    Directory of Open Access Journals (Sweden)

    Abbad S

    2015-01-01

    Full Text Available Sarra Abbad,1,2 Cheng Wang,1 Ayman Yahia Waddad,1 Huixia Lv,1 Jianping Zhou11Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China; 2Department of Pharmacy, Abou Bekr Belkaid University, Tlemcen, AlgeriaAbstract: Herein, we describe the preparation of a targeted cellular delivery system for morin hydrate (MH, based on a low-molecular-weight hyaluronic acid-poly(butyl cyanoacrylate (HA-PBCA block copolymer. In order to enhance the therapeutic effect of MH, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS was mixed with HA-PBCA during the preparation process. The MH-loaded HA-PBCA “plain” nanoparticle (MH-PNs and HA-PBCA/TPGS “mixed” nanoparticles (MH-MNs were concomitantly characterized in terms of loading efficiency, particle size, zeta potential, critical aggregation concentration, and morphology. The obtained MH-PNs and MH-MNs exhibited a spherical morphology with a negative zeta potential and a particle size less than 200 nm, favorable for drug targeting. Remarkably, the addition of TPGS resulted in about 1.6-fold increase in drug-loading. The in vitro cell viability experiment revealed that MH-MNs enhanced the cytotoxicity of MH in A549 cells compared with MH solution and MH-PNs. Furthermore, blank MNs containing TPGS exhibited selective cytotoxic effects against cancer cells without diminishing the viability of normal cells. In addition, the cellular uptake study indicated that MNs resulted in 2.28-fold higher cellular uptake than that of PNs, in A549 cells. The CD44 receptor competitive inhibition and the internalization pathway studies suggested that the internalization mechanism of the nanoparticles was mediated mainly by the CD44 receptors through a clathrin-dependent endocytic pathway. More importantly, MH-MNs exhibited a higher in vivo antitumor potency and induced more tumor cell apoptosis than did MH-PNs, following intravenous administration to S180 tumor-bearing mice. Overall, the results imply that the developed nanoparticles are promising vehicles for the targeted delivery of lipophilic anticancer drugs.Keywords: anti-tumor effect, hyaluronic acid, TPGS, morin hydrate, nanoparticles

  2. Synthesis and anti-HIV evaluation of hybrid-type prodrugs conjugating HIV integrase inhibitors with d4t by self-cleavable spacers containing an amino acid residue.

    Science.gov (United States)

    Fossey, Christine; Huynh, Ngoc-Trinh; Vu, Anh-Hoang; Vidu, Anamaria; Zarafu, Irina; Laduree, Daniel; Schmidt, Sylvie; Laumond, Geraldine; Aubertin, Anne-Marie

    2007-10-01

    In an attempt to combine the anti-HIV inhibitory capacity of reverse transcriptase (RT) inhibitors (NRTIs) and integrase (IN) inhibitors (INIs), several heterodimer analogues of the previously reported [d4T]-PABC-[INI] and [d4T]-OABC-[INI] prototypes have been prepared. In these novel series, we wished to extend our results to conjugates which incorporated an enzymatically labile aminoacid unit (L-alanine) connected to d4T through a self-immolative para- or ortho-aminobenzyl carbonate (PABC or OABC) spacer. Among the novel heterodimers, several derivatives show a potent anti-HIV-1 activity, which proved comparable to that of the [L-708,906]-PABC-[d4T] Heterodimer A prototype. However, although the compounds proved inhibitory to HIV-1, they were less potent than the parent compounds from which they were derived. PMID:18035829

  3. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues

    Science.gov (United States)

    Rong, Lei; Zhang, Chi; Lei, Qi; Hu, Ming-Ming; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-01-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change due to the excellent two-photon excitation property, which permits the facile detection of inflammation produced H2O2 and offers chance to monitor the inflammatory stages in diseased cells.

  4. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues.

    Science.gov (United States)

    Rong, Lei; Zhang, Chi; Lei, Qi; Hu, Ming-Ming; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-12-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change due to the excellent two-photon excitation property, which permits the facile detection of inflammation produced H2O2 and offers chance to monitor the inflammatory stages in diseased cells.

  5. Synthesis and anti-HIV evaluation of hybrid-type prodrugs conjugating HIV integrase inhibitors with d4t by self-cleavable spacers containing an amino acid residue.

    Science.gov (United States)

    Fossey, Christine; Huynh, Ngoc-Trinh; Vu, Anh-Hoang; Vidu, Anamaria; Zarafu, Irina; Laduree, Daniel; Schmidt, Sylvie; Laumond, Geraldine; Aubertin, Anne-Marie

    2007-10-01

    In an attempt to combine the anti-HIV inhibitory capacity of reverse transcriptase (RT) inhibitors (NRTIs) and integrase (IN) inhibitors (INIs), several heterodimer analogues of the previously reported [d4T]-PABC-[INI] and [d4T]-OABC-[INI] prototypes have been prepared. In these novel series, we wished to extend our results to conjugates which incorporated an enzymatically labile aminoacid unit (L-alanine) connected to d4T through a self-immolative para- or ortho-aminobenzyl carbonate (PABC or OABC) spacer. Among the novel heterodimers, several derivatives show a potent anti-HIV-1 activity, which proved comparable to that of the [L-708,906]-PABC-[d4T] Heterodimer A prototype. However, although the compounds proved inhibitory to HIV-1, they were less potent than the parent compounds from which they were derived.

  6. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues.

    Science.gov (United States)

    Rong, Lei; Zhang, Chi; Lei, Qi; Hu, Ming-Ming; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-12-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change due to the excellent two-photon excitation property, which permits the facile detection of inflammation produced H2O2 and offers chance to monitor the inflammatory stages in diseased cells. PMID:27482463

  7. Spectroscopic and computational investigation of actinium coordination chemistry

    Science.gov (United States)

    Ferrier, Maryline G.; Batista, Enrique R.; Berg, John M.; Birnbaum, Eva R.; Cross, Justin N.; Engle, Jonathan W.; La Pierre, Henry S.; Kozimor, Stosh A.; Lezama Pacheco, Juan S.; Stein, Benjamin W.; Stieber, S. Chantal E.; Wilson, Justin J.

    2016-08-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac-Cl and Ac-OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1- ligands (3.2+/-1.1) than AmIII (0.8+/-0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour.

  8. Spectroscopic and computational investigation of actinium coordination chemistry

    Science.gov (United States)

    Ferrier, Maryline G.; Batista, Enrique R.; Berg, John M.; Birnbaum, Eva R.; Cross, Justin N.; Engle, Jonathan W.; La Pierre, Henry S.; Kozimor, Stosh A.; Lezama Pacheco, Juan S.; Stein, Benjamin W.; Stieber, S. Chantal E.; Wilson, Justin J.

    2016-01-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac–Cl and Ac–OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1– ligands (3.2±1.1) than AmIII (0.8±0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour. PMID:27531582

  9. Tumor Immunotargeting Using Innovative Radionuclides

    Directory of Open Access Journals (Sweden)

    Françoise Kraeber-Bodéré

    2015-02-01

    Full Text Available This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality.

  10. Tumor immunotargeting using innovative radionuclides.

    Science.gov (United States)

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  11. Spectroscopic and computational investigation of actinium coordination chemistry.

    Science.gov (United States)

    Ferrier, Maryline G; Batista, Enrique R; Berg, John M; Birnbaum, Eva R; Cross, Justin N; Engle, Jonathan W; La Pierre, Henry S; Kozimor, Stosh A; Lezama Pacheco, Juan S; Stein, Benjamin W; Stieber, S Chantal E; Wilson, Justin J

    2016-01-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, Ac(III) reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac-Cl and Ac-OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between Ac(III) and Am(III) in HCl solutions indicate Ac(III) coordinates more inner-sphere Cl(1-) ligands (3.2±1.1) than Am(III) (0.8±0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique Ac(III) chemical behaviour. PMID:27531582

  12. 叶酸偶联牛血清白蛋白负载卡铂和紫杉醇肿瘤靶向纳米粒制备、表征及体外释放性能评价%Preparation, Characterization and Evaluation of in vitro Release of Folate-Conjugated Carboplatin and Paclitaxel-loaded Bovine Serum Albumin Tumor-targeting Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    单常; 祖元刚; 赵修华; 桑梅

    2013-01-01

    Paclitaxel under the trade name Taxol,is a natural compounds isolated and purified from the trees of the Taxus (Taxaceae L.) belonging to taxus (Taxus L.).Paclitaxel and carboplatin are anti-cancer drugs currently with high clinical utility rates,which often used in combination on the clinical treatment of different types of cancer.Coupling folic acid in bovine serum albumin as a drug carrier,surface coating using nanoparticle and solvent technology,folate-targeted carboplatin-paclitaxel albumin nanoparticles were prepared,and the in vitro release properties of targeted drug were studied.Research results are as follows:the mean grain size of carboplatin-paclitaxel albumin nanoparticles was 199.4 nm,the zeta electric potential was-30.90 mV; the envelope rates were 91.4% for carboplatin and 56.1% for paclitaxel,respectively; the drug loading capacity was 21%.It was proven that within 12 h a good stability was maintained through the reconstitution of the facarboplatin-paclitaxel albumin nanoparticles.In addition,the folic acid-carboplatin-paclitaxel albumin nanoparticles showed an evident slow-release effect as compared with the carboplatin and paclitaxel original powder,the in vitro release time was up to 120 h.%紫杉醇(Paclitaxel,商品名Taxol)是一种在红豆杉科(Taxaceae L.)红豆杉属(Taxus L.)生长缓慢的常绿乔木中分离提取的天然化合物.卡铂和紫杉醇均是目前临床上使用率很高的抗肿瘤药物,并在临床上经常配伍使用治疗不同的癌症.本研究以叶酸偶联的牛血清白蛋白作为药物载体,采用去溶剂技术制备了叶酸靶向卡铂—紫杉醇的白蛋白纳米粒,并研究了靶向制剂体外释放性质.研究结果表明:卡铂—紫杉醇白蛋白纳米粒平均粒径为199.4 nm,Zeta电位为-30.90 mV.卡铂包封率为91.4%;紫杉醇包封率为56.1%,药物总载药量为21%.其冻干粉复溶12h后各项数据未发生较大变化,说明其具有良好的稳定性.体外释放结果表明叶酸—卡铂—紫杉醇白蛋白纳米粒与卡铂和紫杉醇原粉比较具有明显的缓释效果,体外释药时间可达120 h.

  13. 靶向治疗用Fe3O4及其白蛋白包被磁性纳米粒子的制备%Preparation Fe3O4 Nanoparticles and HAS-Coated Magnetite Nanoparticals for Tumor Target Therapy

    Institute of Scientific and Technical Information of China (English)

    谭家驹; 张春富; 冯彦林; 曹金全; 曹本洪; 尹端; 汪勇先

    2003-01-01

    目的制备用于肿瘤靶向治疗的Fe3O4及其白蛋白包被的磁性纳米粒子.方法采用部分还原法制备Fe3O4纳米粒子,通过微乳化方法制备了白蛋白包被的Fe3O4磁性纳米颗粒.结果Fe3O4粒径为10nm左右,X-射线粉末衍射分析显示Fe3O4纳米磁性微粒是典型的尖晶石构型;白蛋白包被的磁性纳米粒子直径在200nm左右.结论Fe3O4及其白蛋白包被的磁性纳米粒子适于用于肿瘤靶向治疗的进一步研究.%Objective:To prepare Fe3O4 magnetite nanoparticles and HSA- coated magnetite particles for the purpose of regional target therapy. Methods: To adopt partial reduction method to prepare the Fe3O4 nanoparticles:100 ml 0.01 mol/L Na2SO3 was added dropwise into 100 ml 0.06 mol/LFeCl3 solution under nitrogen gas flow.10%(V%) ammonia was added dropwise with rapid stirring until pH of the reaction solution reach 8. Heated at 70℃ with water bath for 15 min. Preparation of HAS- coated magnetite particles:To use microemulsion approach,with oleic acid as oil phase, mixture of HSA and magnetite solution as water phase and sp- 85 as emulsion agent.Results: Fe3O4 magnetite particles with about 10 nm in diameter and X - ray power diffraction show that the nanoparticles is γ- Fe2O3. HAS- coated Fe3O4 magnetite nanoparticles is characterized by TEM with diameter no more than 200 nm. Conclusions: Fe3O4 magnetite nanoparticles and HSA - coated magnetite particles is suitable for researching of regional target therapy.

  14. Epidermal growth factor receptor and its signal transduction pathway in tumor-targeting therapy with Chinese and Western medicines%表皮生长因子受体及其信号转导通路与中西药肿瘤靶向治疗

    Institute of Scientific and Technical Information of China (English)

    郑展; 徐振晔

    2005-01-01

    表皮生长因子受体(epidermal growth factor receptor,EGFR)属于Ⅰ型受体酪氨酸激酶(receptor tyrosine kinase,RTK),是原癌基因ErbB1(HER1)的表达产物。EGFR广泛分布于哺乳动物的上皮细胞膜上,其信号可介导细胞的生长、增殖、分化、黏附、移动等生命现象。

  15. Astatine-211 Pathway from Radiochemistry to Clinical Investigation

    International Nuclear Information System (INIS)

    Particularly in clinical settings where tumour burden is low and cancers are located in close proximity to essential normal tissue structures, α-particle emitting radionuclides can offer significant advantages for targeted radionuclide therapy. One of the first alpha emitters to be evaluated for this purpose is the 7.2-h half-life radiohalogen Astatine-211 (211At). From a commercialization-potential perspective 211At, is less appealing than the longer half-life alpha particle emitters Radium-223, Actinium-225 and Thorium-227, which have become the focus of many laboratories. However, if methods for providing a better supply of 211At could be developed, this alpha emitter would be the radionuclide of choice for many potential therapeutic applications. With regard to the production of 211At, this can be readily be accomplished by bombarding natural bismuth targets with 28−29.5 MeV alpha particles via the 209Bi(α,2n)211At reaction. The goal is to utilize an alpha particle beam energy that provides the required balance for maximizing 211At production while minimizing creation of 210At, which is problematic because of its 138.4-day half life alpha-particle emitting daughter, 210Po. For most intended clinical applications, alpha particle beam energy of about 29 MeV offers the best compromise between maximizing yield and providing 211At with sufficient radionuclidic purity for clinical use. Clinically relevant levels of 211At have been produced at several institutions using both internal and external cyclotron targets

  16. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization.

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh Jaggi

    Full Text Available BACKGROUND: Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. METHODOLOGY AND PRINCIPAL FINDINGS: Actinium-225 ((225Ac-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225Ac-E4G10 therapy. CONCLUSIONS: The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy.

  17. Trends of Suicidal Poisoning In Ahmedabad (Retrospective Study

    Directory of Open Access Journals (Sweden)

    Kartik Prajapati

    2012-07-01

    Full Text Available The suicide rate in India is 10.3. In the last three decades, the suicide rate has increased by 43% but the male female ratio has been stable at 1.4: 1. Majority (71% of suicide in India are by persons below the age of 44 years which imposes a huge social, emotional and economic burden. Several studies reveal that suicidal behaviours are much more prevalent than what is officially reported. (1 Poisoning, hanging and self immolation (particularly women were the methods to commit suicide. Physical and mental illness, disturbed interpersonal relationships and economic difficulties were the major reasons for suicide. The vulnerable population was found to be women, students, farmers etc. A social and public health response in addition to a mental health response is crucial to prevent suicidal behaviour in India.The present study was undertaken in the department of Forensic Medicine & Toxicology of Smt NHL MMC at Ahmedabad (Gujarat to know the pattern of Suicidal poisoning. Total 130 cases of death due to Suicidal poisoning were selected for this Retrospective study, which were brought to us for postmortem examination during the span of two year (From May 2007 to April 2009. Our study revealed that most of the victims of fatal poisoning were Hindus, married males of middle socio-economic status who died due to self ingestion of some poison

  18. The Arab Spring: A Simple Compartmental Model for the Dynamics of a Revolution

    CERN Document Server

    Lang, John

    2012-01-01

    The self-immolation of Mohamed Bouazizi on December 17, 2011 in the small Tunisian city of Sidi Bouzid, set off a sequence of events culminating in the revolutions of the Arab Spring. It is widely believed that the Internet and social media played a critical role in the growth and success of protests that led to the downfall of the regimes in Egypt and Tunisia. However, the precise mechanisms by which these new media affected the course of events remain unclear. We introduce a simple compartmental model for the dynamics of a revolution in a dictatorial regime such as Tunisia or Egypt which takes into account the role of the Internet and social media. An elementary mathematical analysis of the model identifies four main parameter regions: stable police state, meta-stable police state, unstable police state, and failed state. We illustrate how these regions capture, at least qualitatively, a wide range of scenarios observed in the context of revolutionary movements by considering the revolutions in Tunisia and ...

  19. A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity.

    Science.gov (United States)

    Huang, Yanyu; Huang, Wei; Chan, Leung; Zhou, Binwei; Chen, Tianfeng

    2016-10-01

    The use of metal complexes in cancer treatment is hampered by the insufficient accumulation in tumor regions and observable systemic toxicity due to their nonspecificity in vivo. Herein we present a cancer-targeted DNA origami as biocompatible nanocarrier of metal complexes to achieve advanced antitumor effect. The formation of unique tetrahedral nanostructure of DNA cages effectively enhances the interaction between ruthenium polypyridyl complexes (RuPOP) and the cages, thus increasing the drug loading efficacy. Conjugation of biotin to the DNA-based nanosystem (Bio-cage@Ru) enhances its specific cellular uptake, drug retention and cytotoxicity against HepG2 cells. Different from free RuPOP and the cage itself, Bio-cage@Ru translocates to cell nucleus after internalization, where it undergoes self-immolative cleavage in response to DNases, leading to triggered drug release and induction of ROS-mediated cell apoptosis. Moreover, in the nude mice model, the nanosystem specifically accumulates in tumor sites, thus exhibits satisfactory in vivo antitumor efficacy, and alleviates the damage of liver, kidney, lung and heart function of nude mice induced by RuPOP and tumor xenografts. Collectively, this study demonstrates a strategy for construction of biocompatible and cancer-targeted DNA origami with enhanced anticancer efficacy and reduced toxicity for next-generation cancer therapy. PMID:27388944

  20. IM Normae: A Second T Pyx? (Abstract)

    Science.gov (United States)

    Patterson, J.; Monard, B.; Warhurst, P.; Myers, G.

    2015-12-01

    (Abstract only) T Pyx is the Galaxy's most famous recurrent nova, erupting to magnitude 6 about every 20 years. For nova hunters and variable-star observers generally, it should be quite easy to discover stars with similar properties. There are probably half a million CVs out to the distance of T Pyx, and most have an underlying structure similar to that of T Pyx: low-mass secondary, fairly massive white dwarf, short orbital period. But of these half million stars, there is no second T Pyx. The star is unique in another way: its orbital period is increasing on a timescale of 300,000 years. Like the proverbial bat out of hell. A 2002 nova eruption nominated a second star for this elite club: IM Nor, a short-orbital-period (2.5 hours) star which previously erupted in 1920. We began a program of time-series photometry to track the shallow eclipses—to test for orbital period change, the other signature of T Pyx resemblance. By 2015 we found this effect: Porb increases on a timescale of 2 million years. Thus, the two stars appear to be blowing themselves apart on a timescale of roughly a million years. This could explain why the stars are so rare: because they are rapidly self-immolating. And that could happen because the classical-nova outburst overwhelms the low-mass secondaries that live in short-period CVs—leading to unstable mass transfer which quickly evaporates the secondary. This implies that all short-Porb classical novae should be "recurrent" (erupting on a timescale of decades). Greater attention to CP Pup (1942), RW UMi (1956), GQ Mus (1983), and V Per (1887) is definitely warranted.

  1. Mathematics and Humor: John Allen Paulos and the Numeracy Crusade

    Directory of Open Access Journals (Sweden)

    Paul H. Grawe

    2015-07-01

    Full Text Available John Allen Paulos at minimum gave the Numeracy movement a name through his book Innumeracy: Mathematical Illiteracy and Its Consequences. What may not be so obvious was Paulos’ strong interest in the relationship between mathematics and mathematicians on the one hand and humor and stand-up-comedian joke structures on the other. Innumeracy itself could be seen as a typically mathematical Gotcha joke on American culture generally. In this perspective, a Minnesotan acculturated to Minnesota-Nice Humor of Self-Immolation Proclivities (SImP looks at the more raw-boned, take-no-prisoners humor style Paulos outlined in Mathematics and Humor and implemented in Innumeracy. Despite the difference in humor styles, there is much to applaud in Paulos’ analysis of the relationship between certain types of humor and professional interests of mathematicians in Mathematics and Humor. Much humor relies on the sense of incongruity which Paulos’ claims to be central to all humor and key to mathematical reductio ad absurdum. Mathematics is rightfully famous for a sense of combinatorial playfulness in its most elegant proofs, as humor often relies on clashing combinations of word play. And a great range of mathematical lore is best understood within a concept of a sudden drop from one sense of certainty to another (essentially a Gotcha on the audience. Innumeracy repeatedly exemplifies Gotchas on the great unwashed and unmathematical majority. Extensive empirical evidence over the last quarter century allows us to synthesize these Paulos observations into the idea that inculcated mathematical humor has strong propensities to complex Intellectual, Advocate, and Crusader humor forms. However, the Paulos humors do not include the Sympathetic Pain humor form, the inclusion of which may increase teaching effectiveness.

  2. Engineering Intracellular Delivery Nanocarriers and Nanoreactors from Oxidation-Responsive Polymersomes via Synchronized Bilayer Cross-Linking and Permeabilizing Inside Live Cells.

    Science.gov (United States)

    Deng, Zhengyu; Qian, Yinfeng; Yu, Yongqiang; Liu, Guhuan; Hu, Jinming; Zhang, Guoying; Liu, Shiyong

    2016-08-24

    Reactive oxygen species (ROS) and oxidative stress are implicated in various physiological and pathological processes, and this feature provides a vital biochemical basis for designing novel therapeutic and diagnostic nanomedicines. Among them, oxidation-responsive micelles and vesicles (polymersomes) of amphiphilic block copolymers have been extensively explored; however, in previous works, oxidation by ROS including H2O2 exclusively leads to microstructural destruction of polymeric assemblies. For oxidation-responsive polymersomes, fast release of encapsulated hydrophilic drugs and bioactive macromolecules will occur upon microstructural disintegration. Under certain application circumstances, this does not meet design requirements for sustained-release drug nanocarriers and long-acting in vivo nanoreactors. Also note that conventional polymersomes possess thick hydrophobic bilayers and compromised membrane permeability, rendering them as ineffective nanocarriers and nanoreactors. We herein report the fabrication of oxidation-responsive multifunctional polymersomes exhibiting intracellular milieu-triggered vesicle bilayer cross-linking, permeability switching, and enhanced imaging/drug release features. Mitochondria-targeted H2O2 reactive polymersomes were obtained through the self-assembly of amphiphilic block copolymers containing arylboronate ester-capped self-immolative side linkages in the hydrophobic block, followed by surface functionalization with targeting peptides. Upon cellular uptake, intracellular H2O2 triggers cascade decaging reactions and generates primary amine moieties; prominent amidation reaction then occurs within hydrophobic bilayer membranes, resulting in concurrent cross-linking and hydrophobic-to-hydrophilic transition of polymersome bilayers inside live cells. This process was further utilized to achieve integrated functions such as sustained drug release, (combination) chemotherapy monitored by fluorescence and magnetic resonance (MR

  3. Suicide Methods in Asia: Implications in Suicide Prevention

    Directory of Open Access Journals (Sweden)

    Paul S. F. Yip

    2012-03-01

    Full Text Available As the largest continent in the World, Asia accounts for about 60% of World suicides. Preventing suicide by restricting access to suicide methods is one of the few evidence-based suicide prevention strategies. However, there has been a lack of systematic exploration of suicide methods in Asian countries. To amend this shortage, the current review examines the leading suicide methods in different Asian countries, their trend, their age- and sex- specific characteristics, and their implications for suicide prevention. In total, 42 articles with leading suicide methods data in 17 Asian countries/regions were retrieved. The epidemiologic characteristics and recent trends of common suicide methods reflect specific socio-cultural, economic, and religious situations in the region. Common suicide methods shift with the introduction of technologies and constructions, and have specific age- or sex-characteristics that may render the restriction of suicide methods not equally effective for all sex and age sub-groups. Charcoal burning, pesticide poisoning, native plant poisoning, self-immolation, and jumping are all prominent examples. In the information society, suicide prevention that focuses on suicide methods must monitor and control the innovation and spread of knowledge and practices of suicide “technologies”. It may be more cost-effective to design safety into technologies as a way of suicide prevention while there is no rash of suicides yet by the new technologies. Further research on suicide methods is important for public health approaches to suicide prevention with sensitivity to socio-cultural, economic, and religious factors in different countries.

  4. Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer.

    Directory of Open Access Journals (Sweden)

    Ankita eKothari

    2013-12-01

    Full Text Available The filamentous, non-heterocystous cyanobacterium Lyngbya aestuarii is an important contributor to marine intertidal microbial mats system worldwide. The recent isolate L. aestuarii BL J, is an unusually powerful hydrogen producer. Here we report a morphological, ultrastructural and genomic characterization of this strain to set the basis for future systems studies and applications of this organism. The filaments contain circa 17 μm wide trichomes, composed of stacked disk-like short cells (2 μm long, encased in a prominent, laminated exopolysaccharide sheath. Cellular division occurs by transversal centripetal growth of cross-walls, where several rounds of division proceed simultaneously. Filament division occurs by cell self-immolation of one or groups of cells (necridial cells at the breakage point. Short, sheath-less, motile filaments (hormogonia are also formed. Morphologically and phylogenetically L. aestuarii belongs to a clade of important cyanobacteria that include members of the marine Trichodesmiun and Hydrocoleum genera, as well as terrestrial Microcoleus vaginatus strains, and alkalyphilic strains of Arthrospira. A draft genome of strain BL J was compared to those of other cyanobacteria in order to ascertain some of its ecological constraints and biotechnological potential. The genome had an average GC content of 41.1 %. Of the 6.87 Mb sequenced, 6.44 Mb was present as large contigs (>10,000 bp. It contained 6515 putative protein-encoding genes, of which, 43 % encode proteins of known functional role, 26 % corresponded to proteins with domain or family assignments, 19.6 % encode conserved hypothetical proteins, and 11.3 % encode apparently unique hypothetical proteins. The strain’s genome reveals its adaptations to a life of exposure to intense solar radiation and desiccation. It likely employs the storage compounds, glycogen and cyanophycin but no polyhydroxyalkanoates, and can produce the osmolytes, trehalose and glycine

  5. DNA double strand breaks as predictor of efficacy of the alpha-particle emitter Ac-225 and the electron emitter Lu-177 for somatostatin receptor targeted radiotherapy.

    Directory of Open Access Journals (Sweden)

    Franziska Graf

    Full Text Available RATIONALE: Key biologic effects of the alpha-particle emitter Actinium-225 in comparison to the beta-particle emitter Lutetium-177 labeled somatostatin-analogue DOTATOC in vitro and in vivo were studied to evaluate the significance of γH2AX-foci formation. METHODS: To determine the relative biological effectiveness (RBE between the two isotopes (as - biological consequence of different ionisation-densities along a particle-track, somatostatin expressing AR42J cells were incubated with Ac-225-DOTATOC and Lu-177-DOTATOC up to 48 h and viability was analyzed using the MTT assay. DNA double strand breaks (DSB were quantified by immunofluorescence staining of γH2AX-foci. Cell cycle was analyzed by flow cytometry. In vivo uptake of both radiolabeled somatostatin-analogues into subcutaneously growing AR42J tumors and the number of cells displaying γH2AX-foci were measured. Therapeutic efficacy was assayed by monitoring tumor growth after treatment with activities estimated from in vitro cytotoxicity. RESULTS: Ac-225-DOTATOC resulted in ED50 values of 14 kBq/ml after 48 h, whereas Lu-177-DOTATOC displayed ED50 values of 10 MBq/ml. The number of DSB grew with increasing concentration of Ac-225-DOTATOC and similarly with Lu-177-DOTATOC when applying a factor of 700-fold higher activity compared to Ac-225. Already 24 h after incubation with 2.5-10 kBq/ml, Ac-225-DOTATOC cell-cycle studies showed up to a 60% increase in the percentage of tumor cells in G2/M phase. After 72 h an apoptotic subG1 peak was also detectable. Tumor uptake for both radio peptides at 48 h was identical (7.5%ID/g, though the overall number of cells with γH2AX-foci was higher in tumors treated with 48 kBq Ac-225-DOTATOC compared to tumors treated with 30 MBq Lu-177-DOTATOC (35% vs. 21%. Tumors with a volume of 0.34 ml reached delayed exponential tumor growth after 25 days (44 kBq Ac-225-DOTATOC and after 21 days (34 MBq Lu-177-DOTATOC. CONCLUSION: γH2AX-foci formation, triggered

  6. TRASH TO TREASURE: CONVERTING COLD WAR LEGACY WASTE INTO WEAPONS AGAINST CANCER

    International Nuclear Information System (INIS)

    As part of its commitment to clean up Cold War legacy sites, the U.S. Department of Energy (DOE) has initiated an exciting and unique project to dispose of its inventory of uranium-233 (233U) stored at Oak Ridge National Laboratory (ORNL), and extract isotopes that show great promise in the treatment of deadly cancers. In addition to increasing the supply of potentially useful medical isotopes, the project will rid DOE of a nuclear concern and cut surveillance and security costs. For more than 30 years, DOE's ORNL has stored over 1,200 containers of fissile 233U, originally produced for several defense-related projects, including a pilot study that looked at using 233U as a commercial reactor fuel. This uranium, designated as special nuclear material, requires expensive security, safety, and environmental controls. It has been stored at an ORNL facility, Building 3019A, that dates back to the Manhattan Project. Down-blending the material to a safer form, rather than continuing to store it, will eliminate a $15 million a year financial liability for the DOE and increase the supply of medical isotopes by 5,700 percent. During the down-blending process, thorium-229 (229Th) will be extracted. The thorium will then be used to extract actinium-225 (225Ac), which will ultimately supply its progeny, bismuth-213 (213Bi), for on-going cancer research. The research includes Phase II clinical trials for the treatment of acute myelogenous leukemia at Sloan-Kettering Memorial Cancer Center in New York, as well as other serious cancers of the lungs, pancreas, and kidneys using a technique known as alpha-particle radioimmunotherapy. Alpha-particle radioimmunotherapy is based on the emission of alpha particles by radionuclides. 213Bi is attached to a monoclonal antibody that targets specific cells. The bismuth then delivers a high-powered but short-range radiation dose, effectively killing the cancerous cells but sparing the surrounding tissue. Production of the actinium and

  7. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Alessandro Ruggiero

    2010-09-01

    imaging. Near-infrared three-dimensional fluorescent-mediated tomography was used to image the LS174T tumor model, collect antibody-alone PK data, and calculate the number of copies of VE-cad epitope per cell. All of these studies were performed as a single administration of construct and were found to be safe and well tolerated by the murine model. These data have implications that support further imaging and radiotherapy studies using a SWCNT-based platform and focusing on the tumor vessels as the target.Keywords: actinium-225 (225Ac, zirconium-89 (89Zr, angiogenesis, vascular endothelial-cadherin, radioimmunotherapy (RIT, radioimmunoPET

  8. TRASH TO TREASURE: CONVERTING COLD WAR LEGACY WASTE INTO WEAPONS AGAINST CANCER

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, R.G.; Lacy, N.H.; Butz, T.R.; Brandon, N.E.

    2004-10-06

    As part of its commitment to clean up Cold War legacy sites, the U.S. Department of Energy (DOE) has initiated an exciting and unique project to dispose of its inventory of uranium-233 (233U) stored at Oak Ridge National Laboratory (ORNL), and extract isotopes that show great promise in the treatment of deadly cancers. In addition to increasing the supply of potentially useful medical isotopes, the project will rid DOE of a nuclear concern and cut surveillance and security costs. For more than 30 years, DOE's ORNL has stored over 1,200 containers of fissile 233U, originally produced for several defense-related projects, including a pilot study that looked at using 233U as a commercial reactor fuel. This uranium, designated as special nuclear material, requires expensive security, safety, and environmental controls. It has been stored at an ORNL facility, Building 3019A, that dates back to the Manhattan Project. Down-blending the material to a safer form, rather than continuing to store it, will eliminate a $15 million a year financial liability for the DOE and increase the supply of medical isotopes by 5,700 percent. During the down-blending process, thorium-229 (229Th) will be extracted. The thorium will then be used to extract actinium-225 (225Ac), which will ultimately supply its progeny, bismuth-213 (213Bi), for on-going cancer research. The research includes Phase II clinical trials for the treatment of acute myelogenous leukemia at Sloan-Kettering Memorial Cancer Center in New York, as well as other serious cancers of the lungs, pancreas, and kidneys using a technique known as alpha-particle radioimmunotherapy. Alpha-particle radioimmunotherapy is based on the emission of alpha particles by radionuclides. 213Bi is attached to a monoclonal antibody that targets specific cells. The bismuth then delivers a high-powered but short-range radiation dose, effectively killing the cancerous cells but sparing the surrounding tissue. Production of the actinium and

  9. Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs.

    Science.gov (United States)

    Zhu, Lin; Perche, Federico; Wang, Tao; Torchilin, Vladimir P

    2014-04-01

    Co-delivery of hydrophilic siRNA and hydrophobic drugs is one of the major challenges for nanomaterial-based medicine. Here, we present a simple but multifunctional micellar platform constructed by a matrix metalloproteinase 2 (MMP2)-sensitive copolymer (PEG-pp-PEI-PE) via self-assembly for tumor-targeted siRNA and drug co-delivery. The micellar nanocarrier possesses several key features for siRNA and drug delivery, including (i) excellent stability; (ii) efficient siRNA condensation by PEI; (iii) hydrophobic drug solubilization in the lipid "core"; (iv) passive tumor targeting via the enhanced permeability and retention (EPR) effect; (v) tumor targeting triggered by the up-regulated tumoral MMP2; and (vi) enhanced cell internalization after MMP2-activated exposure of the previously hidden PEI. These cooperative functions ensure the improved tumor targetability, enhanced tumor cell internalization, and synergistic antitumor activity of co-loaded siRNA and drug. PMID:24529391

  10. Applications of High Intensity Proton Accelerators

    Science.gov (United States)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  11. Media Mobilization, Demolition-Resistant Families, and Contentious Politics.Reanalysis of the Event of Yihuang%媒介动员、钉子户与抗争政治 宜黄事件再分析

    Institute of Scientific and Technical Information of China (English)

    吕德文

    2012-01-01

    宜黄事件具有某种标志性意义,它颠覆了当代中国抗争政治的刻板印象,创造了一个新的抗争政治类型。宜黄事件原本是一个普通的钉子户抗争事件,在进入媒体的视野之前,它只是底层政治的一部分,当事人采用的基本上属于"弱者的武器"的方式,并且是地方性的、特殊的和双轨的,显著性和协同性都不高。由于媒介动员将政策的内在张力呈现于公众视野,钉子户利用这一政治机遇结构,不断创新了抗争表演,从而使宜黄事件发生了规模转变和极化,最终使事件发展成为一场要求保护弱势群体利益,发动制度变革的专业化社会运动的一部分,宜黄事件也就具有了普适性的、模式化的和自主的特征。宜黄事件的遣散是因为钉子户和媒体的抗争目标出现了竞争,而并非明确的适度制度化所致,这是当代中国国家建设中"反体制"的体制重建的一部分。%The contention event of Yihuang in September, 2010 is of great significance because it has changed the contention routine in contemporary China by adopting a new type of contentious politics. Before it became the media focus, Yihuang event was just another ordinary occurrence of residents resisting demolition of their houses, a part of the subaltern politics. The main contention strategies taken by the families under the order to move typically including negotiation with the local government in charge of demolition, intercepting visits to appeal, and seeking media attention. These are "weapons of the weak", parochial, local-specific, and bifurcated~ therefore, of low salience and poor coordination, usually unsuccessful to achieve contention objectives. This time, the Zhong family adopted an extreme contention means of self-immolation. Since the occurrence of this event, the large-scale involvement of the media has presented the inherent tension of policies to the public, and the demolition

  12. Mechanism for Clastogenic Activity of Naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Bruce A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-24

    Naphthalene incubations form DNA adducts in vitro in a dose dependent manner in both mouse and rat tissues. Rodent tissue incubations with naphthalene indicate that naphthalene forms as many DNA adducts as Benzo(a)pyrene, a known DNA binding carcinogen. The mouse airway has the greatest number of DNA adducts, corresponding to the higher metabolic activation of naphthalene in this location. Both rat tissues, the rat olfactory (tumor target) and the airways (non-tumor target), have similar levels of NA-DNA adducts, indicating that short term measures of initial adduct formation do not directly correlate with sites of tumor formation in the NTP bioassays.

  13. Mechanism for Clastogenic Activity of Naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Bruce A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    Naphthalene incubations form DNA adducts in vitro in a dose dependent manner in both mouse and rat tissues. Rodent tissue incubations with naphthalene indicate that naphthalene forms as many DNA adducts as Benzo(a)pyrene, a known DNA binding carcinogen. The mouse airway has the greatest number of DNA adducts, corresponding to the higher metabolic activation of naphthalene in this location. Both rat tissues, the rat olfactory (tumor target) and the airways (non-tumor target), have similar levels of NA-DNA adducts, indicating that short term measures of initial adduct formation do not directly correlate with sites of tumor formation in the NTP bioassays.

  14. Cisplatin Loaded Hyaluronic Acid Modified TiO2 Nanoparticles for Neoadjuvant Chemotherapy of Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Enling Liu

    2015-01-01

    Full Text Available Novel tumor-targeting titanium dioxide (TiO2 nanoparticles modified with hyaluronic acid (HA were developed to explore the feasibility of exploiting the pH-responsive drug release property of TiO2 and the tumor-targeting ability of HA to construct a tumor-targeting cisplatin (CDDP delivery system (HA-TiO2 for potential neoadjuvant chemotherapy of ovarian cancer. The experimental results indicated that CDDP release from the HA-TiO2 nanoparticles was significantly accelerated by decreasing pH from 7.4 to 5.0, which is of particular benefit to cancer therapy. CDDP-loaded HA-TiO2 nanoparticles increased the accumulation of CDDP in A2780 ovarian cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo real-time imaging assay revealed that HA-TiO2 nanoparticles possessed preferable tumor-targeting ability which might potentially minimize the toxic side effects of CDDP in clinical application.

  15. Connexin 43 Gene Therapy Delivered by Polymer-Modified Salmonella in Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Wei-Kuang Wang

    2014-04-01

    Full Text Available The use of preferentially tumor-targeting bacteria as vectors is one of the most innovative approaches for the treatment of cancer. This method is based on the observation that some obligate or facultative anaerobic bacteria are capable of selectively multiplying in tumors and inhibiting their growth. Previously, we found that the tumor-targeting efficiency of Salmonella could be modulated by modifying the immune response to these bacteria by coating them with poly(allylamine hydrochloride (PAH, and these organisms are designated PAH-S.C. (S. choleraesuis. PAH can provide a useful platform for the chemical modification of Salmonella, perhaps by allowing a therapeutic gene to bind to tumor-targeting Salmonella. This study aimed to investigate the benefits of the use of PAH-S.C. for gene delivery. To evaluate this modulation, the invasion activity and gene transfer of DNA-PAH-S.C. were measured in vitro and in vivo. Treatment with PAH-S.C. carrying a tumor suppressor gene (connexin 43 resulted in inhibition of tumor growth, which suggested that tumor-targeted gene therapy using PAH-S.C. carrying a therapeutic gene could exert antitumor activities. This technique represents a promising strategy for the treatment of tumors.

  16. Quantitative Evaluation of Bioorthogonal Chemistries for Surface Functionalization of Nanoparticles

    DEFF Research Database (Denmark)

    Feldborg, Lise Nørkjær; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2012-01-01

    in solution and often not high-yielding. In addition, the conjugation efficiency is often challenging to characterize and therefore not addressed in many reports. We present here an investigation of PEGylated liposomes functionalized with a neuroendocrine tumor targeting peptide (TATE), synthesized...

  17. Serum-stable quantum dot--protein hybrid nanocapsules for optical bio-imaging

    Science.gov (United States)

    Lee, Jeong Yu; Nam, Dong Heon; Oh, Mi Hwa; Kim, Youngsun; Choi, Hyung Seok; Jeon, Duk Young; Beum Park, Chan; Nam, Yoon Sung

    2014-05-01

    We introduce shell cross-linked protein/quantum dot (QD) hybrid nanocapsules as a serum-stable systemic delivery nanocarrier for tumor-targeted in vivo bio-imaging applications. Highly luminescent, heavy-metal-free Cu0.3InS2/ZnS (CIS/ZnS) core-shell QDs are synthesized and mixed with amine-reactive six-armed poly(ethylene glycol) (PEG) in dichloromethane. Emulsification in an aqueous solution containing human serum albumin (HSA) results in shell cross-linked nanocapsules incorporating CIS/ZnS QDs, exhibiting high luminescence and excellent dispersion stability in a serum-containing medium. Folic acid is introduced as a tumor-targeting ligand. The feasibility of tumor-targeted in vivo bio-imaging is demonstrated by measuring the fluorescence intensity of several major organs and tumor tissue after an intravenous tail vein injection of the nanocapsules into nude mice. The cytotoxicity of the QD-loaded HSA-PEG nanocapsules is also examined in several types of cells. Our results show that the cellular uptake of the QDs is critical for cytotoxicity. Moreover, a significantly lower level of cell death is observed in the CIS/ZnS QDs compared to nanocapsules loaded with cadmium-based QDs. This study suggests that the systemic tumor targeting of heavy-metal-free QDs using shell cross-linked HSA-PEG hybrid nanocapsules is a promising route for in vivo tumor diagnosis with reduced non-specific toxicity.

  18. Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide.

    NARCIS (Netherlands)

    Dijkgraaf, I.; Liu, S.; Kruijtzer, J.A.; Soede, A.C.; Oyen, W.J.G.; Liskamp, R.M.; Corstens, F.H.M.; Boerman, O.C.

    2007-01-01

    INTRODUCTION: Due to the selective expression of the alpha(v)beta3 integrin in tumors, radiolabeled arginine-glycine-aspartic acid (RGD) peptides are attractive candidates for tumor targeting. Minor modifications of these peptides could have a major impact on in vivo characteristics. In this study,

  19. Preparation and Preliminary Biological Evaluation of c-Gluc-Lys([Al18F]NOTA)-TOCA

    Institute of Scientific and Technical Information of China (English)

    GUO; Fei-hu; SHI; Cui-yan; WEN; Kai; LIANG; Ji-xin; DU; Jin

    2013-01-01

    18F labeled somatostatin analogues that bind to the somatostatin receptors(SSTR)on some tumor cells with high specific affinity hold great potential for diagnostic imaging.After glycosylationmodification,the pharmacokinetic properties of somatostatin analogues were significantly optimized,the hepatobiliary uptakes were reduced,and tumor-targeting were improved.In order to explore a novel PET

  20. High Turnover of Tissue Factor Enables Efficient Intracellular Delivery of Antibody-Drug Conjugates

    DEFF Research Database (Denmark)

    de Goeij, Bart E.C.G.; Satijn, D.; Freitag, C. M.;

    2015-01-01

    Antibody-drug conjugates (ADC) are emerging as powerful cancer treatments that combine antibody-mediated tumor targeting with the potent cytotoxic activity of toxins. We recently reported the development of a novel ADC that delivers the cytotoxic payload monomethyl auristatin E (MMAE) to tumor ce...

  1. An Adenovirus Vector Incorporating Carbohydrate Binding Domains Utilizes Glycans for Gene Transfer

    NARCIS (Netherlands)

    Kim, Julius W.; Glasgow, Joel N.; Nakayama, Masaharu; Ak, Ferhat; Ugai, Hideyo; Curiel, David T.

    2013-01-01

    Background: Vectors based on human adenovirus serotype 5 (HAdV-5) continue to show promise as delivery vehicles for cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector localization, highlighting the need for tumor-targeted gene

  2. Manganese dioxide nanosheets-based redox/pH-responsive drug delivery system for cancer theranostic application.

    Science.gov (United States)

    Hao, Yongwei; Wang, Lei; Zhang, Bingxiang; Li, Dong; Meng, Dehui; Shi, Jinjin; Zhang, Hongling; Zhang, Zhenzhong; Zhang, Yun

    2016-01-01

    The aim of this study was to construct redox- and pH-responsive degradable manganese dioxide (MnO2) nanosheets for cancer theranostic application. The small MnO2 nanosheets were synthesized, and then functionalized by hyaluronic acid (HA), demonstrating excellent stability and tumor-targeting ability. Cisplatin (cis-diamminedichloroplatinum [CDDP]) was absorbed by the nanosheets through a physical action, which was designed as MnO2/HA/CDDP. The prepared MnO2/HA/CDDP formulation was able to efficiently deliver CDDP to tumor cells in vitro and in vivo, resulting in improved therapeutic efficiency. Subsequently, they were triggered by lower pH and higher level of reduced glutathione to generate Mn(2+), enabling magnetic resonance imaging. The smart multifunctional system combining efficient magnetic resonance imaging and chemotherapy has the potential to be used as a tumor-targeting theranostic nanomedicine. PMID:27199556

  3. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology

    Directory of Open Access Journals (Sweden)

    Jinbin Liu

    2013-12-01

    Full Text Available While inorganic nanoparticles (NPs with tunable and diverse material properties open up unprecedented opportunities for novel biomedical technologies, translating these NPs into clinical practices has been severely hampered by the toxicity induced by their nonspecific accumulation in healthy tissues/organs. In the past few years, the emergence of renal clearable inorganic NPs has made it possible to address this long-term challenge. This review summarizes size, shape, surface chemistry and biodegradation considerations in the design of renal clearable inorganic NPs and their strengths over conventional non-renal clearable NPs and small-molecule contrast agents in tumor targeting. Finally, some materials chemistry challenges in the development of renal clearable inorganic NPs and their biomedical implications beyond tumor targeting are discussed.

  4. T1-Weighted MR imaging of liver tumor by gadolinium-encapsulated glycol chitosan nanoparticles without non-specific toxicity in normal tissues

    Science.gov (United States)

    Na, Jin Hee; Lee, Sangmin; Koo, Heebeom; Han, Hyounkoo; Lee, Kyung Eun; Han, Seung Jin; Choi, Seung Hong; Kim, Hyuncheol; Lee, Seulki; Kwon, Ick Chan; Choi, Kuiwon; Kim, Kwangmeyung

    2016-05-01

    Herein, we have synthesized Gd(iii)-encapsulated glycol chitosan nanoparticles (Gd(iii)-CNPs) for tumor-targeted T1-weighted magnetic resonance (MR) imaging. The T1 contrast agent, Gd(iii), was successfully encapsulated into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-modified CNPs to form stable Gd(iii)-encapsulated CNPs (Gd(iii)-CNPs) with an average particle size of approximately 280 nm. The stable nanoparticle structure of Gd(iii)-CNPs is beneficial for liver tumor accumulation by the enhanced permeation and retention (EPR) effect. Moreover, the amine groups on the surface of Gd(iii)-CNPs could be protonated and could induce fast cellular uptake at acidic pH in tumor tissue. To assay the tumor-targeting ability of Cy5.5-labeled Gd(iii)-CNPs, near-infrared fluorescence (NIRF) imaging and MR imaging were used in a liver tumor model as well as a subcutaneous tumor model. Cy5.5-labeled Gd(iii)-CNPs generated highly intense fluorescence and T1 MR signals in tumor tissues after intravenous injection, while DOTAREM®, the commercialized control MR contrast agent, showed very low tumor-targeting efficiency on MR images. Furthermore, damaged tissues were found in the livers and kidneys of mice injected with DOTAREM®, but there were no obvious adverse effects with Gd(iii)-CNPs. Taken together, these results demonstrate the superiority of Gd(iii)-CNPs as a tumor-targeting T1 MR agent.Herein, we have synthesized Gd(iii)-encapsulated glycol chitosan nanoparticles (Gd(iii)-CNPs) for tumor-targeted T1-weighted magnetic resonance (MR) imaging. The T1 contrast agent, Gd(iii), was successfully encapsulated into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-modified CNPs to form stable Gd(iii)-encapsulated CNPs (Gd(iii)-CNPs) with an average particle size of approximately 280 nm. The stable nanoparticle structure of Gd(iii)-CNPs is beneficial for liver tumor accumulation by the enhanced permeation and retention (EPR) effect. Moreover, the

  5. Photodynamic therapy of tumors with pyropheophorbide-a-loaded polyethylene glycol–poly(lactic-co-glycolic acid) nanoparticles

    Science.gov (United States)

    Liu, Hui; Zhao, Mei; Wang, Jin; Pang, Mingpei; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan; Hong, Zhangyong

    2016-01-01

    Photodynamic therapy (PDT) has many advantages in treating cancers, but the lack of ideal photosensitizers continues to be a major limitation restricting the clinical utility of PDT. This study aimed to overcome this obstacle by generating pyropheophorbide-a-loaded polyethylene glycol–poly(lactic-co-glycolic acid) nanoparticles (NPs) for efficient tumor-targeted PDT. The fabricated NPs were efficiently internalized in the mitochondrion by cancer cells, and they efficiently killed cancer cells in a dose-dependent manner when activated with light. Systemically delivered NPs were highly enriched in tumor sites, and completely ablated the tumors in a xenograft KB tumor mouse model when illuminated with 680 nm light (156 mW/cm2, 10 minutes). The results suggested that this tumor-specific NP-delivery system for pyropheophorbide-a has the potential to be used in tumor-targeted PDT. PMID:27729788

  6. Gold Nanoshells: Combined Near Infrared Photothermal Therapy and Chemotherapy Using Gold Nanoshells Coated Liposomes to Enhance Antitumor Effect (Small 30/2016).

    Science.gov (United States)

    Luo, Liyao; Bian, Yanhong; Liu, Yanping; Zhang, Xuwu; Wang, Meili; Xing, Shanshan; Li, Lei; Gao, Dawei

    2016-08-01

    Gold nanoshell coated oleanolic acid liposomes mediating by chitosan (GNOLs), are designed and successfully synthesized for the first time by D. Gao and co-workers on page number 4103. An excellent near infrared (NIR) photothermal effect, pH-responsive drug controlled release and tumor targeting properties are demonstrated. By combining NIR photothermal therapy and chemotherapy, the smart drug delivery system exhibits a superior antitumor property in vitro and in vivo. PMID:27492497

  7. Drug delivery with carbon nanotubes for in vivo cancer treatment

    OpenAIRE

    Liu, Zhuang; Chen, Kai; Davis, Corrine; Sherlock, Sarah; Cao, Qizhen; Chen, Xiaoyuan; Dai, Hongjie

    2008-01-01

    Chemically functionalized single-walled carbon nanotubes (SWNTs) have shown promise in tumor targeted accumulation in mice and exhibit biocompatibility, excretion and little toxicity. Here, we demonstrate in-vivo SWNT drug delivery for tumor suppression in mice. We conjugate paclitaxel (PTX), a widely used cancer chemotherapy drug to branched polyethylene-glycol (PEG) chains on SWNTs via a cleavable ester bond to obtain a water soluble SWNT-paclitaxel conjugate (SWNT-PTX). SWNT-PTX affords hi...

  8. Synthesis and characterization of HPMA copolymer-5-FU conjugates

    Institute of Scientific and Technical Information of China (English)

    Fang Yuan; Fu Chen; Qing Yu Xiang; Xuan Qin; Zhi Rong Zhang; Yuan Huang

    2008-01-01

    N-(2-Hydroxypropyl)methacrylamide copolymer-5-fluorouracil (PHPMA-FU)conjugates were synthesized by a novel and simplified synthetic mute,and characterized by UV,FTIR and HPLC analyses.The conjugated content of 5-fluorouracil (5-FU)was 3.41 ± 0.07 wt%.The stabilities of PHPMA-FU conjugates under different conditions were studied.The results showed that HPMA copolymer was a potential carrier for tumor-targeting delivery of 5-FU.

  9. Solubilization of Poorly Soluble PDT Agent, Meso-tetraphenylporphin, in Plain or Immunotargeted PEG-PE Micelles Results in Dramatically Improved Cancer Cell Killing in Vitro

    OpenAIRE

    Roby, Aruna; Erdogan, Suna; Torchilin, Vladimir P.

    2005-01-01

    Poorly soluble photodynamic therapy (PDT) agent, meso-tetratphenylporphine (TPP), was effectively solubilized using non-targeted and tumor-targeted polymeric micelles prepared of polyethylene glycol/phosphatidyl ethanolamine conjugate (PEG-PE). Encapsulation of TPP into PEG-PE-based micelles and immunomicelles (bearing an anti-cancer monoclonal 2C5 antibody) resulted in significantly improved anticancer effects of the drug at PDT conditions against murine (LLC, B16) and human (MCF-7, BT20) ca...

  10. Paclitaxel-loaded PEG-PE-based micellar nanopreparations targeted with tumor specific landscape phage fusion protein enhance apoptosis and efficiently reduce tumors

    OpenAIRE

    Tao WANG; Yang, Shenghong; Mei, Leslie A.; Parmar, Chirag K.; Gillespie, James W.; Praveen, Kulkarni P.; Petrenko, Valery A.; Torchilin, Vladimir P.

    2014-01-01

    In an effort to improve the therapeutic index of cancer chemotherapy, we developed an advanced nanopreparation based on the combination of landscape phage display to obtain new targeting ligands with micellar nanoparticles for tumor targeting of water insoluble neoplastic agents. With paclitaxel as a drug, this self-assembled nanopreparation composed of MCF-7-specific phage protein and polyethylene glycol phosphatidyl ethanolamine (PEG- PE) micelles showed selective toxicity to target cancer ...

  11. Efficient Rejoining of DNA Double-Strand Breaks despite Increased Cell-Killing Effectiveness following Spread-Out Bragg Peak Carbon-Ion Irradiation

    OpenAIRE

    Averbeck, Nicole B.; Topsch, Jana; Scholz, Michael; Kraft-Weyrather, Wilma; Durante, Marco; Taucher-Scholz, Gisela

    2016-01-01

    Radiotherapy of solid tumors with charged particles holds several advantages in comparison to photon therapy; among them conformal dose distribution in the tumor, improved sparing of tumor-surrounding healthy tissue, and an increased relative biological effectiveness (RBE) in the tumor target volume in the case of ions heavier than protons. A crucial factor of the biological effects is DNA damage, of which DNA double-strand breaks (DSBs) are the most deleterious. The reparability of these les...

  12. Galactose as Broad Ligand for Multiple Tumor Imaging and Therapy.

    Science.gov (United States)

    Ma, Yuxiang; Chen, Haiyan; Su, Shanyuhan; Wang, Tong; Zhang, Congying; Fida, Guissi; Cui, Sisi; Zhao, Juan; Gu, Yueqing

    2015-01-01

    Galactose residues could be specifically recognized by the asialoglycoprotein receptor (ASGPR) which is highly exhibited on liver tissues. However, ASGPR has not been widely investigated on different tumor cell lines except for hepatoma carcinoma cells, which motivates us to investigate the possibility of galactose serving as a board tumor ligand. In this study, a galactose (Gal)-based probe conjugated with fluorescence dye MPA (Gal-MPA) was constructed for the evaluation of tumor affinities/targeted ability on different tumor cell lines. In the vitro cell study, it was indicated that the fluorescence probe Gal-MPA displayed higher cell affinity to tumor cells (HepG2, MCF-7 and A549) than that of the normal liver cells l02. In the vivo dynamic study of Gal-MPA in tumor-bearing mice (HepG2, MCF-7, A549, HCT116, U87, MDA-MB-231 and S180), it was shown that its high tumor targeted ability with the maximal tumor/normal tissue ratio reached up to 6.8. Meanwhile, the fast tumor-targeted ability within 2 hours and long retention on tumor site up to 120 hours were observed. Our results demonstrated that galactose should be a promising broad ligand for multiple tumor imaging and targeted therapy. Subsequently, Gal was covalently conjugated to doxorubicin (DOX) to form prodrug Gal-DOX for tumor targeted therapy. The therapeutic results of Gal-DOX than DOX being better suggested that galactosylated prodrugs might have the prospective potential in tumor targeted therapy.

  13. Application of phage display technology in targeted therapy of breast cancer

    Institute of Scientific and Technical Information of China (English)

    Mian Kong; Junye Wang; Baojiang Li

    2013-01-01

    Phage display is a technology of gene expression and screening, it is widely used in the fields of defining antigenepitopes, signal transduction, genetic treatment, parasites research and tumor targeted therapy. Breast cancer is the mostcommon cancer in women, we can obtain peptides specially associated with breast cancer by using phage display technology,and this method has great potential in early diagnosis of breast cancer and development new targeted drugs.

  14. An unusual role of folate in the self-assembly of heparin-folate conjugates into nanoparticles

    Science.gov (United States)

    Wang, Jianquan; Ma, Daoshuang; Lu, Qian; Wu, Shaoxiong; Lee, Gee Young; Lane, Lucas A.; Li, Bin; Quan, Li; Wang, Yiqing; Nie, Shuming

    2015-09-01

    Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging.Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging. Electronic supplementary information (ESI) available: NMR spectra and fluorescent images of HF-488 with cancer

  15. Tumor lysis syndrome: A clinical review

    OpenAIRE

    Mirrakhimov, Aibek E.; Voore, Prakruthi; Khan, Maliha; Alaa M. Ali

    2015-01-01

    Tumor lysis syndrome is an oncometabolic emergency resulting from rapid cell death. Tumor lysis syndrome can occur as a consequence of tumor targeted therapy or spontaneously. Clinicians should stratify every hospitalized cancer patient and especially those receiving chemotherapy for the risk of tumor lysis syndrome. Several aspects of prevention include adequate hydration, use of uric acid lowering therapies, use of phosphate binders and minimization of potassium intake. Patients at high ris...

  16. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery

    OpenAIRE

    Zu Y; Meng L; Zhao X; Ge Y.; Yu X.; Zhang Y; Deng Y

    2013-01-01

    Yuangang Zu, Li Meng, Xiuhua Zhao, Yunlong Ge, Xinyang Yu, Yin Zhang, Yiping Deng Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, People’s Republic of China Introduction: The livertaxis of glycyrrhizic acid-conjugated bovine serum albumin (GL-BSA) has been reported in the literature. Now, in this paper, we describe a novel type of drug-targeted delivery system containing 10-hydroxycamptothecin (HCPT) with liver tumor targeting. ...

  17. Thiol antioxidant-functionalized CdSe/ZnS quantum dots: Synthesis, Characterization, Cytotoxicity

    OpenAIRE

    Zheng, Hong; Mortensen, Luke J.; DeLouise, Lisa A.

    2013-01-01

    Nanotechnology is a growing industry with wide ranging applications in consumer product and technology development. In the biomedical field, nanoparticles are finding increasing use as imaging agents for biomolecular labeling and tumor targeting. The nanoparticle physiochemical properties must be tailored for the specific application but chemical and physical stability in the biological milieu (no oxidation, aggregation, agglomeration or toxicity) are often required. Nanoparticles used for bi...

  18. Targeted focal therapy for prostate cancer: a review of the literature

    OpenAIRE

    Sullivan, Kathryn F.; Crawford, E. David

    2009-01-01

    Improvements in prostate cancer diagnosis and treatment have resulted in a decreasing age-adjusted death rate. But improved diagnostic tools have not delivered a proportionate decrease in mortality, primarily because physicians now are diagnosing – and treating – more clinically insignificant tumors. Targeted focal therapy (TFT) uses three dimensional (3D) mapping biopsies to guide cryotherapy so that it targets lesions themselves while sparing surrounding healthy tissues, thereby avoiding si...

  19. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors

    OpenAIRE

    Ginj, Mihaela; Zhang, Hanwen; Waser, Beatrice; Cescato, Renzo; Wild, Damian; Wang, Xuejuan; Erchegyi, Judit; Rivier, Jean; Mäcke, Helmut R.; Reubi, Jean Claude

    2006-01-01

    Targeting neuroendocrine tumors expressing somatostatin receptor subtypes (sst) with radiolabeled somatostatin agonists is an established diagnostic and therapeutic approach in oncology. While agonists readily internalize into tumor cells, permitting accumulation of radioactivity, radiolabeled antagonists do not, and they have not been considered for tumor targeting. The macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was coupled to two potent somatostatin...

  20. The efects of low-dose ionizing radiation on angiogenesis

    OpenAIRE

    Oliveira, Inês Sofia Batista Vala Silva de, 1981-

    2011-01-01

    Tese de doutoramento, Biologia (Biologia Celular), Universidade de Lisboa, Faculdade de Ciências, 2011 Angiogenesis is the formation of new blood vessels from pre‐existing ones. This process is regulated by a balance between pro‐ and anti‐angiogenic molecules and is derailed in various diseases, such as cancer. Radiotherapy is a commonly‐used treatment for cancer. However, recent studies suggest that ionizing radiation (IR) doses delivered inside the tumor target volume during fractionated...

  1. Cellular Uptake of Drug Nanocrystals

    OpenAIRE

    Seybold, Alexandra R; Li, Tonglei; Chen, Yan

    2014-01-01

    Systemic toxicity and poor solubility of existing chemotherapeutic drugs piqued an interest in the use of nanocrystals for chemotherapy. To increase cytotoxicity, surface coating of nanocrystals is of interest to enhance tumor targeting and reduce treatment toxicity. As such, we tested in this project various coated paclitaxel nanocrystals on cancer cells for determining the efficacy of surface coating. An IC50 assay was chosen to determine the cytotoxicity of surface-coated paclitaxel nanocr...

  2. Myeloid-derived suppressor cells as a Trojan horse

    OpenAIRE

    Pan, Ping-Ying; Chen, Hui-Ming; Chen, Shu-Hsia

    2013-01-01

    We have recently demonstrated that oncolytic vesicular stomatitis viruses can be efficiently and selectively delivered to neoplastic lesions by myeloid-derived suppressor cells (MDSCs). Importantly, the loading of viruses onto MDSCs inhibited their immunosuppressive properties and endowed them with immunostimulatory and tumoricidal functions. Our study demonstrates the potential use of MDSCs as a Trojan horse for the tumor-targeted delivery of various anticancer therapeutics.

  3. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety.

    Science.gov (United States)

    Zhu, Lin; Wang, Tao; Perche, Federico; Taigind, Anton; Torchilin, Vladimir P

    2013-10-15

    In response to the challenges of cancer chemotherapeutics, including poor physicochemical properties, low tumor targeting, insufficient tumor cell internalization/bioavailability, and side effects, we developed a unique tumor-targeted micellar drug-delivery platform. Using paclitaxel as a model therapeutic, a nanopreparation composed of a matrix metalloproteinase 2 (MMP2)-sensitive self-assembly PEG 2000-paclitaxel conjugate (as a prodrug and MMP 2-sensitive moiety), transactivating transcriptional activator peptide-PEG1000-phosphoethanolamine (PE) (a cell-penetrating enhancer), and PEG1000-PE (a nanocarrier building block) was prepared. Several major drug delivery strategies, including self-assembly, PEGylation, the enhanced permeability and retention effect, stimulus sensitivity, a cell-penetrating moiety, and the concept of prodrug, were used in design of this nanoparticle in a collaborative manner. The nanopreparation allowed superior cell internalization, cytotoxicity, tumor targeting, and antitumor efficacy in vitro and in vivo over its nonsensitive counterpart, free paclitaxel and conventional micelles. This uniquely engineered nanoparticle has potential for effective intracellular delivery of drug into cancer cells. PMID:24062440

  4. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Kory L. Alderson

    2011-01-01

    Full Text Available Natural killer (NK cells are powerful effector cells that can be directed to eliminate tumor cells through tumor-targeted monoclonal antibodies (mAbs. Some tumor-targeted mAbs have been successfully applied in the clinic and are included in the standard of care for certain malignancies. Strategies to augment the antitumor response by NK cells have led to an increased understanding of how to improve their effector responses. Next-generation reagents, such as molecularly modified mAbs and mAb-cytokine fusion proteins (immunocytokines, ICs designed to augment NK-mediated killing, are showing promise in preclinical and some clinical settings. Continued research into the antitumor effects induced by NK cells and tumor-targeted mAbs suggests that additional intrinsic and extrinsic factors may influence the antitumor response. Therefore more research is needed that focuses on evaluating which NK cell and tumor criteria are best predictive of a clinical response and which combination immunotherapy regimens to pursue for distinct clinical settings.

  5. Avidin-biotin interaction mediated peptide assemblies as efficient gene delivery vectors for cancer therapy.

    Science.gov (United States)

    Qu, Wei; Chen, Wei-Hai; Kuang, Ying; Zeng, Xuan; Cheng, Si-Xue; Zhou, Xiang; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2013-01-01

    Gene therapy offers a bright future for the treatment of cancers. One of the research highlights focuses on smart gene delivery vectors with good biocompatibility and tumor-targeting ability. Here, a novel gene vector self-assembled through avidin-biotin interaction with optimized targeting functionality, biotinylated tumor-targeting peptide/avidin/biotinylated cell-penetrating peptide (TAC), was designed and prepared to mediate the in vitro and in vivo delivery of p53 gene. TAC exhibited efficient DNA-binding ability and low cytotoxicity. In in vitro transfection assay, TAC/p53 complexes showed higher transfection efficiency and expression amount of p53 protein in MCF-7 cells as compared with 293T and HeLa cells, primarily due to the specific recognition between tumor-targeting peptides and receptors on MCF-7 cells. Additionally, by in situ administration of TAC/p53 complexes into tumor-bearing mice, the expression of p53 gene was obviously upregulated in tumor cells, and the tumor growth was significantly suppressed. This study provides an alternative and unique strategy to assemble functionalized peptides, and the novel self-assembled vector TAC developed is a promising gene vector for cancer therapy.

  6. Human platelets repurposed as vehicles for in vivo imaging of myeloma xenotransplants

    Science.gov (United States)

    Dai, Lu; Gu, Ning; Chen, Bao-An; Marriott, Gerard

    2016-01-01

    Human platelets were identified in tumors by Trousseau in 1865, although their roles in tumor microenvironments have only recently attracted the attention of cancer researchers. In this study we exploit and enhance platelet interactions in tumor microenvironments by introducing tumor-targeting and imaging functions. The first step in repurposing human platelets as vehicles for tumor-targeting was to inhibit platelet-aggregation by cytoplasmic-loading of kabiramide (KabC), a potent inhibitor of actin polymerization and membrane protrusion. KabC-Platelets can accumulate high levels of other membrane-permeable cytoxins and probes, including epidoxorubicin, carboxyfluorescein di-ester and chlorin-e6. Finally, mild reaction conditions were developed to couple tumor-targeting proteins and antibodies to KabC-platelets. Fluorescence microscopy studies showed KabC-platelets, surface-coupled with transferrin and Cy5, bind specifically to RPMI8226 and K562 cells, both of which over-express the transferrin receptor. Repurposed platelets circulate for upto 9-days a feature that increases their chance of interacting with target cells. KabC-platelets, surface-coupled with transferrin and Cy7, or chlorin-e6, and injected in immuno-compromised mice were shown to accumulate specifically in sub-cutaneous and intra-cranial myeloma xenotransplants. The high-contrast, in vivo fluorescence images recorded from repurposed platelets within early-stage myeloma is a consequence in part of their large size (φ∼2μm), which allows them to transport 100 to 1000-times more targeting-protein and probe molecules respectively. Human platelets can be configured with a plurality of therapeutic and targeting antibodies to help stage tumor environments for an immunotherapy, or with combinations of therapeutic antibodies and therapeutic agents to target and treat cardiovascular and neurologic diseases. PMID:27049725

  7. Human platelets repurposed as vehicles for in vivo imaging of myeloma xenotransplants.

    Science.gov (United States)

    Dai, Lu; Gu, Ning; Chen, Bao-An; Marriott, Gerard

    2016-04-19

    Human platelets were identified in tumors by Trousseau in 1865, although their roles in tumor microenvironments have only recently attracted the attention of cancer researchers. In this study we exploit and enhance platelet interactions in tumor microenvironments by introducing tumor-targeting and imaging functions. The first step in repurposing human platelets as vehicles for tumor-targeting was to inhibit platelet-aggregation by cytoplasmic-loading of kabiramide (KabC), a potent inhibitor of actin polymerization and membrane protrusion. KabC-Platelets can accumulate high levels of other membrane-permeable cytoxins and probes, including epidoxorubicin, carboxyfluorescein di-ester and chlorin-e6. Finally, mild reaction conditions were developed to couple tumor-targeting proteins and antibodies to KabC-platelets. Fluorescence microscopy studies showed KabC-platelets, surface-coupled with transferrin and Cy5, bind specifically to RPMI8226 and K562 cells, both of which over-express the transferrin receptor. Repurposed platelets circulate for upto 9-days a feature that increases their chance of interacting with target cells. KabC-platelets, surface-coupled with transferrin and Cy7, or chlorin-e6, and injected in immuno-compromised mice were shown to accumulate specifically in sub-cutaneous and intra-cranial myeloma xenotransplants. The high-contrast, in vivo fluorescence images recorded from repurposed platelets within early-stage myeloma is a consequence in part of their large size (φ~2µm), which allows them to transport 100 to 1000-times more targeting-protein and probe molecules respectively. Human platelets can be configured with a plurality of therapeutic and targeting antibodies to help stage tumor environments for an immunotherapy, or with combinations of therapeutic antibodies and therapeutic agents to target and treat cardiovascular and neurologic diseases.

  8. Multi-small molecule conjugations as new targeted delivery carriers for tumor therapy

    Directory of Open Access Journals (Sweden)

    Shan L

    2015-09-01

    Full Text Available Lingling Shan,1 Ming Liu,2 Chao Wu,1 Liang Zhao,1 Siwen Li,3 Lisheng Xu,1 Wengen Cao,1 Guizhen Gao,1 Yueqing Gu3 1Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People’s Republic of China; 2Department of Biology, University of South Dakota, Vermillion, SD, USA; 3Department of Biomedical Engineering, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China Abstract: In response to the challenges of cancer chemotherapeutics, including poor physicochemical properties, low tumor targeting ability, and harmful side effects, we developed a new tumor-targeted multi-small molecule drug delivery platform. Using paclitaxel (PTX as a model therapeutic, we prepared two prodrugs, ie, folic acid-fluorescein-5(6-isothiocyanate-arginine-paclitaxel (FA-FITC-Arg-PTX and folic acid-5-aminofluorescein-glutamic-paclitaxel (FA-5AF-Glu-PTX, composed of folic acid (FA, target, amino acids (Arg or Glu, linker, and fluorescent dye (fluorescein in vitro or near-infrared fluorescent dye in vivo in order to better understand the mechanism of PTX prodrug targeting. In vitro and acute toxicity studies demonstrated the low toxicity of the prodrug formulations compared with the free drug. In vitro and in vivo studies indicated that folate receptor-mediated uptake of PTX-conjugated multi-small molecule carriers induced high antitumor activity. Notably, compared with free PTX and with PTX-loaded macromolecular carriers from our previous study, this multi-small molecule-conjugated strategy improved the water solubility, loading rate, targeting ability, antitumor activity, and toxicity profile of PTX. These results support the use of multi-small molecules as tumor-targeting drug delivery systems. Keywords: multi-small molecules, paclitaxel, prodrugs, targeting, tumor therapy

  9. Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-β-cyclodextrin nanocarrier

    Directory of Open Access Journals (Sweden)

    Li JM

    2015-04-01

    Full Text Available Jin-Ming Li, Wei Zhang, Hua Su, Yuan-Yuan Wang, Cai-Ping Tan, Liang-Nian Ji, Zong-Wan Mao MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China Abstract: Systemic administration of chemotherapy for cancer often faces drug resistance, limiting its applications in cancer therapy. In this study, we developed a simple multifunctional nanocarrier based on polyethylenimine (PEI to codeliver doxorubicin (DOX and BCL2 small interfering RNA (siRNA for overcoming multidrug resistance (MDR and enhancing apoptosis in MCF-7/Adr cancer cells by combining chemotherapy and RNA interference (RNAi therapy. The low-molecular-weight branch PEI was used to conjugate hydroxypropyl-β-cyclodextrin (HP-β-CD and folic acid (FA, forming the codelivery nanocarrier (FA-HP-β-CD-PEI to encapsulate DOX with the cavity HP-β-CD and bind siRNA with the positive charge of PEI for tumor-targeting codelivering drugs. The drug-loaded nanocomplexes (FA-HP-β-CD-PEI/DOX/siRNA showed uniform size distribution, high cellular uptake, and significant gene suppression of BCL2, displaying the potential of overcoming MDR for enhancing the effect of anticancer drugs. Furthermore, the nanocomplexes achieved significant cell apoptosis through a mechanism of downregulating the antiapoptotic protein BCL2, resulted in improving therapeutic efficacy of the coadministered DOX by tumor targeting and RNA interference. Our study indicated that combined RNAi therapy and chemotherapy using our functional codelivery nanocarrier could overcome MDR and enhance apoptosis in MDR cancer cells for a potential application in treating MDR cancers. Keywords: tumor targeting, codelivery, doxorubicin, BCL2 siRNA, overcome multidrug resistance

  10. Preparation of bufalin-loaded pluronic polyetherimide nanoparticles, cellular uptake, distribution, and effect on colorectal cancer

    Directory of Open Access Journals (Sweden)

    Hu Q

    2014-08-01

    Full Text Available Qiang Hu,1,3,* Bo Liang,2,* Ying Sun,4 Xiao-Ling Guo,2,* Yi-Jie Bao,2 Dong-Hao Xie,3 Ming Zhou,3 You-Rong Duan,4 Pei-Hao Yin,2 Zhi-Hai Peng11Department of Hepatobiliary Surgery, Qianfoshan Hospital, Shandong University, Jinan, 2Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 3Department of General Surgery, Dahua Hospital, 4State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China*These authors contributed equally to this workAbstract: A large number of studies have shown that bufalin can have a significant antitumor effect in a variety of tumors. However, because of toxicity, insolubility in water, fast metabolism, short half-life, and other shortcomings, its application is limited in cancer therapy. In this study, we explored the anti-metastatic role of bufalin-loaded pluronic polyetherimide nanoparticles on HCT116 colon cancer-bearing mice. Nanoparticle size, shape, drug loading, encapsulation efficiency, and in vitro drug release were studied. Also, cellular uptake of nanoparticles, in vivo tumor targeting, and tumor metastasis were studied. The nanoparticles had a particle size of about 60 nm and an encapsulation efficiency of 75.71%, by weight. The in vitro release data showed that free bufalin was released faster than bufalin-loaded pluronic polyetherimide nanoparticles, and almost 80% of free bufalin was released after 32 hours. Nanoparticles had an even size distribution, were stable, and had a slow release and a tumor-targeting effect. Bufalin-loaded pluronic polyetherimide nanoparticles can significantly inhibit the growth and metastasis of colorectal cancer.Keywords: colon cancer, nanoparticles, tumor target, bufalin

  11. Bitargeted microemulsions based on coix seed ingredients for enhanced hepatic tumor delivery and synergistic therapy.

    Science.gov (United States)

    Qu, Ding; Sun, Wenjie; Liu, Mingjian; Liu, Yuping; Zhou, Jing; Chen, Yan

    2016-04-30

    A hepatic tumor bitargeted microemulsions drug delivery system using coix seed oil and coix seed polysaccharide (CP) acting as anticancer components, as well as functional excipients, was developed for enhanced tumor-specific accumulation by CP-mediated enhancement on passive tumor targeting and modification of galactose stearate (tumor-targeted ligand). In the physicochemical characteristics studies, galactose stearate-modified coix seed multicomponent microemulsions containing 30% CP (w%) (Gal-C-MEs) had a well-defined spherical shape with a small size (47.63 ± 1.41 nm), a narrow polydispersity index (PDI, 0.101 ± 0.002), and a nearly neutral surface charge (-4.37 ± 1.76 mV). The half-maximal inhibitory concentration (IC50) of Gal-C-MEs against HepG2 cells was 70.2 μg/mL, which decreased by 1.8-fold in comparison with that of coix seed multicomponent microemulsions (C-MEs). The fluorescence intensity of fluorescein isothiocyanate (FITC)-loaded Gal-C-MEs (FITC-Gal-C-MEs) internalized by HepG2 cells was 1.8-fold higher than that of FITC-loaded C-MEs (FIT C-C-MEs), but the cellular uptake of the latter became reduce by 1.6-fold when the weight ratio of CP decreased up to 10%. In the cell apoptosis studies, C-MEs (containing 30% CP) did not show a significant difference with Gal-C-MEs, but exhibited 3.3-fold and 1.5-fold increase relative to C-MEs containing 10% CP and 20% CP, respectively. In the in vivo tumor targeting studies, Cy5-loaded Gal-C-MEs (Cy5-Gal-C-MEs), notably distributed in the tumor sites and still found even at 48 h post-administration, displayed the strongest capability of tumor tissue accumulation and retention among all the test groups. Most importantly, Gal-C-MEs had stronger inhibition of tumor growth, prolonged survival time and more effectively tumor cell apoptosis induction in comparison with C-MEs containing different amounts of CP, which further confirmed that a certain amount of CP and tumor-targeted ligand were of great importance to

  12. SURVIVIN AND TUMOR

    Institute of Scientific and Technical Information of China (English)

    宋文哲; 宋燕; 叶剑桥; 邱东涛

    2003-01-01

    As a new member of IAP (inhibitors of apoptosis protein) family, survivin has potent anti-apoptotic activities, and involves in the mitosis and angiogenesis. Researches have demonstrated that surviving is a tumor-specific anti-apoptotic factor, expressed in fetal tissues, and common human cancers, while not in normal, terminally differentiated adult tissues. The overexpression of survivin in tumor tissues is correlated with poor prognosis of the patients. Survivin can be used as a prognostic factor and a new target in tumor targeting therapy.

  13. Liposomal cancer therapy: exploiting tumor characteristics

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars

    2010-01-01

    Importance of the field: More than 10 million people worldwide are diagnosed with cancer each year, and the development of effective cancer treatments is consequently of great significance. Cancer therapy is unfortunately hampered by severe dose-limiting side effects that reduce the efficacy...... an overview of current strategies for improving the different stages of liposomal cancer therapy, which involve transporting drug-loaded liposomes through the bloodstream, increasing tumor accumulation, and improving drug release and cancer cell uptake after accumulation at the tumor target site. What...... of new liposomal drug delivery systems that better exploit tumor characteristic features is likely to result in more efficacious cancer treatments....

  14. Aminopeptidase N/CD13 targeting fluorescent probes: synthesis and application to tumor cell imaging.

    Science.gov (United States)

    Zhang, Zhouen; Harada, Hiroshi; Tanabe, Kazuhito; Hatta, Hiroshi; Hiraoka, Masahiro; Nishimoto, Sei-ichi

    2005-11-01

    A family of fluorescein-peptide conjugates (CNP1-3) for aminopeptidase N (APN/CD13) targeting fluorescent probes were designed and synthesized. Among the three conjugates, CNP1 bearing tumor-homing cyclic peptide CNGRC, could selectively label APN/CD13 over-expressing on the surface of tumor cells of HT-1080, as identified by means of fluorescent microscopic cell imaging. CNP1 was shown to be a promising fluorescent probe applicable to tumor-targeting molecular imaging. PMID:15885853

  15. Multifunctional Nucleic Acids for Tumor Cell Treatment

    DEFF Research Database (Denmark)

    Pofahl, Monika; Wengel, Jesper; Mayer, Günter

    2014-01-01

    We report on a multifunctional nucleic acid, termed AptamiR, composed of an aptamer domain and an antimiR domain. This composition mediates cell specific delivery of antimiR molecules for silencing of endogenous micro RNA. The introduced multifunctional molecule preserves cell targeting, anti......-proliferative and antimiR function in one 37-nucleotide nucleic acid molecule. It inhibits cancer cell growth and induces gene expression that is pathologically damped by an oncomir. These findings will have a strong impact on future developments regarding aptamer- and antimiR-related applications for tumor targeting...

  16. Nano-oncologicals new targeting and delivery approaches

    CERN Document Server

    Alonso, Maria Jose

    2014-01-01

    This authoritative volume focuses on emerging technologies in cancer nano medicine, characterized by their multi-functionality and potential to address simultaneously diverse issues of clinical relevance in the treatment of cancer. The book consists of sixteen chapters divided into six sections: 1) Biological Barriers in Cancer; 2) Tumor Targeting; 3) Targeting the Immune System; 4) Gene Therapy; 5) Nano theranostics and 6) Translational Aspects of Nano-Oncologicals. The volume starts with an introduction describing the biological barriers associated with cancer therapy and highlighting ways

  17. Biodistribution and Dosimetry of 177Lu-tetulomab, a New Radioimmunoconjugate for Treatment of Non-Hodgkin Lymphoma

    OpenAIRE

    Repetto-Llamazares, Ada H. V.; Larsen, Roy H.; Mollatt, Camilla; Lassmann, Michael; Dahle, Jostein

    2013-01-01

    The biodistribution of the anti-CD37 radioimmunoconjugate 177Lu-tetraxetan-tetulomab (177Lu-DOTA-HH1) was evaluated. Biodistribution of 177Lu-tetraxetan-tetulomab was compared with 177Lu-tetraxetan-rituximab and free 177Lu in nude mice implanted with Daudi lymphoma xenografts. The data showed that 177Lu-tetulomab had a relevant stability and tumor targeting properties in the human lymphoma model. The half-life of 177Lu allowed significant tumor to normal tissue ratios to be obtained indicatin...

  18. Low-Molecular Weight Polyethylenimine Modified with Pluronic 123 and RGD- or Chimeric RGD-NLS Peptide: Characteristics and Transfection Efficacy of Their Complexes with Plasmid DNA

    OpenAIRE

    Jing Hu; Wenfang Zhao; Kehai Liu; Qian Yu; Yuan Mao; Zeyu Lu; Yaguang Zhang; Manman Zhu

    2016-01-01

    To solve the problem of transfection efficiency vs. cytotoxicity and tumor-targeting ability when polyethylenimine (PEI) was used as a nonviral gene delivery vector, new degradable PEI polymers were synthesized via cross-linking low-molecular-weight PEI with Pluronic P123 and then further coupled with a targeting peptide R4 (RGD) and a bifunctional R11 (RGD-NLS), which were termed as P123-PEI-R4 and P123-PEI-R11, respectively. Agarose gel electrophoresis showed that both P123-PEI-R4 and P123-...

  19. Near-Infrared Imaging of Adoptive Immune Cell Therapy in Breast Cancer Model Using Cell Membrane Labeling

    OpenAIRE

    Youniss, Fatma M.; Gobalakrishnan Sundaresan; Graham, Laura J.; Li Wang; Berry, Collin R.; Dewkar, Gajanan K.; Purnima Jose; Bear, Harry D; Jamal Zweit

    2014-01-01

    The overall objective of this study is to non-invasively image and assess tumor targeting and retention of directly labeled T-lymphocytes following their adoptive transfer in mice. T-lymphocytes obtained from draining lymph nodes of 4T1 (murine breast cancer cell) sensitized BALB/C mice were activated in-vitro with Bryostatin/Ionomycin for 18 hours, and were grown in the presence of Interleukin-2 for 6 days. T-lymphocytes were then directly labeled with 1,1-dioctadecyltetramethyl indotricarbo...

  20. Oncolytic Adenoviruses in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Ramon Alemany

    2014-02-01

    Full Text Available The therapeutic use of viruses against cancer has been revived during the last two decades. Oncolytic viruses replicate and spread inside tumors, amplifying their cytotoxicity and simultaneously reversing the tumor immune suppression. Among different viruses, recombinant adenoviruses designed to replicate selectively in tumor cells have been clinically tested by intratumoral or systemic administration. Limited efficacy has been associated to poor tumor targeting, intratumoral spread, and virocentric immune responses. A deeper understanding of these three barriers will be required to design more effective oncolytic adenoviruses that, alone or combined with chemotherapy or immunotherapy, may become tools for oncologists.

  1. A novel Indium-111-labeled gonadotropin-releasing hormone peptide for human prostate cancer imaging

    OpenAIRE

    Guo, Haixun; Gallazzi, Fabio; Sklar, Larry A.; Miao, Yubin

    2011-01-01

    The purpose of this study was to evaluate the tumor targeting and imaging properties of a novel 111In-labeled gonadotropin-releasing hormone (GnRH) peptide {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-Ahx-(d-Lys6-GnRH1)} for human prostate cancer. The biodistribution and tumor imaging properties of 111In-DOTA-Ahx-(d-Lys6-GnRH1) were determined in DU145 human prostate cancer-xenografted nude mice. 111In-DOTA-Ahx-(d-Lys6-GnRH1) exhibited rapid tumor uptake (1.27 ± 0.40 %ID/g...

  2. Genetic toxicology of folpet and captan.

    Science.gov (United States)

    Arce, Gail T; Gordon, Elliot B; Cohen, Samuel M; Singh, Pramila

    2010-07-01

    Folpet and captan are fungicides whose genotoxicity depends on their chemical reaction with thiols. Multiple mutagenicity tests have been conducted on these compounds due to their positive activity in vitro and their association with gastrointestinal tumors in mice. A review of the collective data shows that these compounds have in vitro mutagenic activity but are not genotoxic in vivo. This dichotomy is primarily due to the rapid degradation of folpet and captan in the presence of thiol-rich matrices typically found in vivo. Genotoxicity has not been found in the duodenum, the mouse tumor target tissue. It is concluded that folpet like captan presents an unlikely risk of genotoxic effects in humans.

  3. From Diagnosis to Treatment: Clinical Applications of Nanotechnology in Thoracic Surgery.

    Science.gov (United States)

    Digesu, Christopher S; Hofferberth, Sophie C; Grinstaff, Mark W; Colson, Yolonda L

    2016-05-01

    Nanotechnology is an emerging field with potential as an adjunct to cancer therapy, particularly thoracic surgery. Therapy can be delivered to tumors in a more targeted fashion, with less systemic toxicity. Nanoparticles may aid in diagnosis, preoperative characterization, and intraoperative localization of thoracic tumors and their lymphatics. Focused research into nanotechnology's ability to deliver both diagnostics and therapeutics has led to the development of nanotheranostics, which promises to improve the treatment of thoracic malignancies through enhanced tumor targeting, controlled drug delivery, and therapeutic monitoring. This article reviews nanoplatforms, their unique properties, and the potential for clinical application in thoracic surgery. PMID:27112260

  4. Combination of Single-Photon Emission Computed Tomography and Magnetic Resonance Imaging to Track ¹¹¹In-Oxine-Labeled Human Mesenchymal Stem Cells in Neuroblastoma-Bearing Mice

    OpenAIRE

    Cussó, Lorena; Mirones, Isabel; Peña-Zalbidea, Santiago; García-Vázquez, Verónica; García-Castro, Javier; Desco, Manuel

    2014-01-01

    Homing is an inherent, complex, multistep process performed by cells such as human bone marrow mesenchymal stem cells (hMSCs) to travel from a distant location to inflamed or damaged tissue and tumors. This ability of hMSCs has been exploited as a tumor-targeting strategy in cell-based cancer therapy. The purpose of this study was to investigate the applicability of ¹¹¹In-oxine for tracking hMSCs in vivo by combining single-photon emission computed tomography (SPECT) and magnetic resonance im...

  5. Final Report: 8th International Symposium on Neutron Capture Therapy (NCT) for Cancer, May 15, 1998 - May 15, 1999

    International Nuclear Information System (INIS)

    The 8th International Symposium on Neutron Capture Therapy for Cancer (8th ISNCTC) was held in La Jolla, CA on Sept. 13-18, 1998. This biennial meeting of the International Society for Neutron Capture Therapy (ISNCT) was hosted by Society President M.F. Hawthorne (UCLA Dept. of Chemistry and Biochemistry). The Symposium brought together scientists (300 registrants from 21 countries) from diverse fields to report the latest developments in NCT. Topics of the 275 papers presented (30 plenary lectures, 81 oral presentations, and 164 posters) included the physics of neutron sources, chemistry of tumor-targeting agents, dosimetry, radiobiological studies, and clinical applications

  6. Preliminary study of the internal margin of the gross tumor volume in thoracic esophageal cancer

    International Nuclear Information System (INIS)

    Purpose. - To measure the displacement of the tumor of the gross tumor volume (GTV) of thoracic esophageal cancer in the calm states of end-inspiration and end-expiration for determining the internal margin of the GTV (IGTV). Methods. - Twenty-two patients with thoracic esophageal cancer who were unable to undergo surgery were identified in our hospital. The patients received radiotherapy. By using 16-slice spiral computed tomography (CT), we acquired the calm states of end-inspiration and end-expiration. The displacement and volume changes in tumor target volume were measured, and the changes were analyzed to determine if these were associated with the tidal volume and the location and length of the target volume V. In the end, we analyzed the displacement of tumor target volume and calculated the internal margin of the GTV by empirical formula. Results. - The average tidal volume was 463.6 ml. The average GTV at end-inspiration was 33.3 ml and at end-expiration was 33.35 ml. Three was not any significant between two groups (T -0.034, P > 0.05). The IGTV (X-axis direction) was 3.09 mm for the right sector and 4.08 mm for the left border; the IGTV (Z-axis direction) was 3.96 mm for the anterior border and 2.83 mm for the posterior border; and the IGTV (Y-axis direction) was 7.31 mm for the upper boundary (head direction) and 10.16 mm for the lower boundary (feet direction). The motion of the GTV showed no significant correlation with the tidal volume of patients and the length of the tumor, but in relation to the tumor location, the displacement of the lower thoracic and the middle thoracic target volumes occurred in the direction of the anterior and right, which were not significantly different (T = 0.859, 0.229, P > 0.05) The significant differences were observed for the other directions (P < 0.05). Conclusions. - Because of respiratory and organ movements, the displacement of the tumor target volume was different in all directions. Therefore, we recommend that

  7. Synthesis and characterization of near IR fluorescent albumin nanoparticles for optical detection of colon cancer

    International Nuclear Information System (INIS)

    Near IR (NIR) fluorescent human serum albumin (HSA) nanoparticles hold great promise as contrast agents for tumor diagnosis. HSA nanoparticles are considered to be biocompatible, non-toxic and non-immunogenic. In addition, NIR fluorescence properties of these nanoparticles are important for in vivo tumor diagnostics, with low autofluorescence and relatively deep penetration of NIR irradiation due to low absorption of biomatrices. The present study describes the synthesis of new NIR fluorescent HSA nanoparticles, by entrapment of a NIR fluorescent dye within the HSA nanoparticles, which also significantly increases the photostability of the dye. Tumor-targeting ligands such as peanut agglutinin (PNA) and anti-carcinoembryonic antigen antibodies (anti-CEA) were covalently conjugated to the NIR fluorescent albumin nanoparticles, increasing the potential fluorescent signal in tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent HSA nanoparticles was demonstrated in a chicken embryo model and a rat model. In future work we also plan to encapsulate cancer drugs such as doxorubicin within the NIR fluorescent HSA nanoparticles for both colon cancer imaging and therapy. - Highlights: ► Near IR human serum albumin nanoparticles were synthesized and characterized. ► Nanoparticles were shown to be physically and chemically stable and photostable. ► Tumor-targeting ligands were covalently conjugated to the nanoparticles. ► Specific colon cancer tumor detection was demonstrated in chicken-embryo and rat models.

  8. Nano/microparticles and ultrasound contrast agents

    Institute of Scientific and Technical Information of China (English)

    Shu-Guang; Zheng; Hui-Xiong; Xu; Hang-Rong; Chen

    2013-01-01

    Microbubbles have been used for many years now in clinical practice as contrast agents in ultrasound imaging.Recently,their therapeutic applications have also attracted more attention.However,the short circulation time(minutes)and relatively large size(two to ten micrometers)of currently used commercial microbubbles do not allow effective extravasation into tumor tissue,preventing efficient tumor targeting.Fortunately,more multifunctional and theranostic nanoparticles with some special advantages over the traditional microbubbles have been widely investigated and explored for biomedical applications.The way to synthesize an ideal ultrasound contrast agent based on nanoparticles in order to achieve an expected effect on contrast imaging is a key technique.Currently a number of nanomaterials,including liposomes,polymers,micelles,dendrimers,emulsions,quantum dots,solid nanoparticles etc.,have already been applied to pre or clinical trials.Multifunctional and theranostic nanoparticles with some special advantages,such as the tumor-targeted(passive or active),multi-mode contrast agents(magnetic resonance imaging,ultrasonography or fluorescence),carrier or enhancer of drug delivery,and combined chemo or thermal therapy etc.,are rapidly gaining popularity and have shown a promising application in the field of cancer treatment.In this mini review,the trends and the advances of multifunctional and theranostic nanoparticles are briefly discussed.

  9. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment

    Directory of Open Access Journals (Sweden)

    Shi J

    2013-07-01

    Full Text Available Jinjin Shi,* Rourou Ma,* Lei Wang, Jing Zhang, Ruiyuan Liu, Lulu Li, Yan Liu, Lin Hou, Xiaoyuan Yu, Jun Gao, Zhenzhong Zhang School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China*These authors contributed equally to this workAbstract: Carbon nanotubes (CNTs have shown great potential in both photothermal therapy and drug delivery. In this study, a CNT derivative, hyaluronic acid-derivatized CNTs (HA-CNTs with high aqueous solubility, neutral pH, and tumor-targeting activity, were synthesized and characterized, and then a new photodynamic therapy agent, hematoporphyrin monomethyl ether (HMME, was adsorbed onto the functionalized CNTs to develop HMME-HA-CNTs. Tumor growth inhibition was investigated both in vivo and in vitro by a combination of photothermal therapy and photodynamic therapy using HMME-HA-CNTs. The ability of HMME-HA-CNT nanoparticles to combine local specific photodynamic therapy with external near-infrared photothermal therapy significantly improved the therapeutic efficacy of cancer treatment. Compared with photodynamic therapy or photothermal therapy alone, the combined treatment demonstrated a synergistic effect, resulting in higher therapeutic efficacy without obvious toxic effects to normal organs. Overall, it was demonstrated that HMME-HA-CNTs could be successfully applied to photodynamic therapy and photothermal therapy simultaneously in future tumor therapy.Keywords: photodynamic therapy, photothermal therapy, HA-derivatized carbon nanotubes, tumor targeting, synergistic effect, hematoporphyrin monomethyl ether

  10. Selecting Targets for Tumor Imaging: An Overview of Cancer-Associated Membrane Proteins

    Science.gov (United States)

    Boonstra, Martin C.; de Geus, Susanna W.L.; Prevoo, Hendrica A.J.M.; Hawinkels, Lukas J.A.C.; van de Velde, Cornelis J.H.; Kuppen, Peter J.K.; Vahrmeijer, Alexander L.; Sier, Cornelis F.M.

    2016-01-01

    Tumor targeting is a booming business: The global therapeutic monoclonal antibody market accounted for more than $78 billion in 2012 and is expanding exponentially. Tumors can be targeted with an extensive arsenal of monoclonal antibodies, ligand proteins, peptides, RNAs, and small molecules. In addition to therapeutic targeting, some of these compounds can also be applied for tumor visualization before or during surgery, after conjugation with radionuclides and/or near-infrared fluorescent dyes. The majority of these tumor-targeting compounds are directed against cell membrane-bound proteins. Various categories of targetable membrane-bound proteins, such as anchoring proteins, receptors, enzymes, and transporter proteins, exist. The functions and biological characteristics of these proteins determine their location and distribution on the cell membrane, making them more, or less, accessible, and therefore, it is important to understand these features. In this review, we evaluate the characteristics of cancer-associated membrane proteins and discuss their overall usability for cancer targeting, especially focusing on imaging applications.

  11. Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy

    International Nuclear Information System (INIS)

    The proposed research focuses on the design criteria for a Compton Camera with high spatial resolution and sensitivity, operating at high gamma energies and its possible application for molecular imaging. This application is mainly on the detection and visualization of the pharmacokinetics of tumor targeting substances specific for particular cancer sites. Expected high resolution (< 0.5 mm) permits monitoring the pharmacokinetics of labeled gene constructs in vivo in small animals with a human tumor xenograft which is one of the first steps in evaluating the potential utility of a candidate gene. The additional benefit of high sensitivity detection will be improved cancer treatment strategies in patients based on the use of specific molecules binding to cancer sites for early detection of tumors and identifying metastasis, monitoring drug delivery and radionuclide therapy for optimum cell killing at the tumor site. This new technology can provide high resolution, high sensitivity imaging of a wide range of gamma energies and will significantly extend the range of radiotracers that can be investigated and used clinically. The small and compact construction of the proposed camera system allows flexible application which will be particularly useful for monitoring residual tumor around the resection site during surgery. It is also envisaged as able to test the performance of new drug/gene-based therapies in vitro and in vivo for tumor targeting efficacy using automatic large scale screening methods

  12. Bovine milk-derived exosomes for drug delivery.

    Science.gov (United States)

    Munagala, Radha; Aqil, Farrukh; Jeyabalan, Jeyaprakash; Gupta, Ramesh C

    2016-02-01

    Exosomes are biological nanovesicles that are involved in cell-cell communication via the functionally-active cargo (such as miRNA, mRNA, DNA and proteins). Because of their nanosize, exosomes are explored as nanodevices for the development of new therapeutic applications. However, bulk, safe and cost-effective production of exosomes is not available. Here, we show that bovine milk can serve as a scalable source of exosomes that can act as a carrier for chemotherapeutic/chemopreventive agents. Drug-loaded exosomes showed significantly higher efficacy compared to free drug in cell culture studies and against lung tumor xenografts in vivo. Moreover, tumor targeting ligands such as folate increased cancer-cell targeting of the exosomes resulting in enhanced tumor reduction. Milk exosomes exhibited cross-species tolerance with no adverse immune and inflammatory response. Thus, we show the versatility of milk exosomes with respect to the cargo it can carry and ability to achieve tumor targetability. This is the first report to identify a biocompatible and cost-effective means of exosomes to enhance oral bioavailability, improve efficacy and safety of drugs.

  13. CT/FMT dual-model imaging of breast cancer based on peptide-lipid nanoparticles

    Science.gov (United States)

    Xu, Guoqiang; Lin, Qiaoya; Lian, Lichao; Qian, Yuan; Lu, Lisen; Zhang, Zhihong

    2016-03-01

    Breast cancer is one of the most harmful cancers in human. Its early diagnosis is expected to improve the patients' survival rate. X-ray computed tomography (CT) has been widely used in tumor detection for obtaining three-dimentional information. Fluorescence Molecular Tomography (FMT) imaging combined with near-infrared fluorescent dyes provides a powerful tool for the acquisition of molecular biodistribution information in deep tissues. Thus, the combination of CT and FMT imaging modalities allows us to better differentiate diseased tissues from normal tissues. Here we developed a tumor-targeting nanoparticle for dual-modality imaging based on a biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier. By incorporation of CT contrast agents (iodinated oil) and far-infrared fluorescent dyes (DiR-BOA) into the hydrophobic core of HPPS, we obtained the FMT and CT signals simultaneously. Increased accumulation of the nanoparticles in the tumor lesions was achieved through the effect of the tumor-targeting peptide on the surface of nanoparticle. It resulted in excellent contrast between lesions and normal tissues. Together, the abilities to sensitively separate the lesions from adjacent normal tissues with the aid of a FMT/CT dual-model imaging approach make the targeting nanoparticles a useful tool for the diagnostics of breast cancer.

  14. Synthesis and characterization of near IR fluorescent albumin nanoparticles for optical detection of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Sarit; Pellach, Michal [Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900 (Israel); Kam, Yossi [Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120 (Israel); Grinberg, Igor; Corem-Salkmon, Enav [Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900 (Israel); Rubinstein, Abraham [Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120 (Israel); Margel, Shlomo, E-mail: shlomo.margel@mail.biu.ac.il [Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2013-03-01

    Near IR (NIR) fluorescent human serum albumin (HSA) nanoparticles hold great promise as contrast agents for tumor diagnosis. HSA nanoparticles are considered to be biocompatible, non-toxic and non-immunogenic. In addition, NIR fluorescence properties of these nanoparticles are important for in vivo tumor diagnostics, with low autofluorescence and relatively deep penetration of NIR irradiation due to low absorption of biomatrices. The present study describes the synthesis of new NIR fluorescent HSA nanoparticles, by entrapment of a NIR fluorescent dye within the HSA nanoparticles, which also significantly increases the photostability of the dye. Tumor-targeting ligands such as peanut agglutinin (PNA) and anti-carcinoembryonic antigen antibodies (anti-CEA) were covalently conjugated to the NIR fluorescent albumin nanoparticles, increasing the potential fluorescent signal in tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent HSA nanoparticles was demonstrated in a chicken embryo model and a rat model. In future work we also plan to encapsulate cancer drugs such as doxorubicin within the NIR fluorescent HSA nanoparticles for both colon cancer imaging and therapy. - Highlights: Black-Right-Pointing-Pointer Near IR human serum albumin nanoparticles were synthesized and characterized. Black-Right-Pointing-Pointer Nanoparticles were shown to be physically and chemically stable and photostable. Black-Right-Pointing-Pointer Tumor-targeting ligands were covalently conjugated to the nanoparticles. Black-Right-Pointing-Pointer Specific colon cancer tumor detection was demonstrated in chicken-embryo and rat models.

  15. Layered Double Hydroxide Modified by PEGylated Hyaluronic Acid as a Hybrid Nanocarrier for Targeted Drug Delivery

    Institute of Scientific and Technical Information of China (English)

    董岸杰; 李雪; 王伟伟; 韩尚聪; 刘鉴锋; 刘金剑; 赵军强; 许舒欣; 邓联东

    2016-01-01

    In recent years, organic-inorganic hybrid nanocarriers are explored for effective drug delivery and pref-erable disease treatments. In this study, using 5-fluorouracil(5-FU)as electronegative model drug, a new type of organic-inorganic hybrid drug delivery system(LDH/HA-PEG/5-FU)was conceived and manufactured by the ad-sorption of PEGylated hyaluronic acid(HA-PEG)on the surface of layered double hydroxide(LDH, prepared via hydrothermal method)and the intercalation of 5-FU in the interlamination of LDH via ion exchange strategy. The drug loading amount of LDH/HA-PEG/5-FU achieved as high as 34.2%. LDH, LDH/5-FU and LDH/HA-PEG/5-FU were characterized by FT-IR, XRD, TGA, laser particle size analyzer and SEM. With the benefit of pH-degradable feature of LDH and enzyme-degradable feature of HA, LDH/HA-PEG/5-FU showed pH-degradable and enzyme-degradable capacity inin vitro drug release. Moreover, the drug carrier LDH/HA-PEG contained biocom-patible PEG and tumor-targeted HA, resulting in lower cytotoxicity and better endocytosis compared with LDHin vitro. It was suggested that the organic-inorganic hybrid drug delivery system, which was endowed with the proper-ties of controlled release, low toxicity and tumor-targeting delivery for ameliorative cancer therapy, was advisable and might be applied further to fulfill other treatments.

  16. Quantitative analysis of proton boron fusion therapy (PBFT) in various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joo-Young; Yoon, Do-Kun; Suh, Tae Suk [College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of)

    2015-05-15

    From the theoretical point of view, the PBFT has some strong advantages over currently existing radiotherapy methods. First, boron-based tumor targeting is required prior to performing the treatments such as boron-neutron capture therapy (BNCT). Tumor targeting should be performed before the BNCT by injecting the boronate compound. If boron is not taken up by the normal tissue, the normal tissue can be spared the irradiation by alpha particles. When boron uptake occurs in the target region, selective therapy is possible by neutron capture reaction of labeled boron particles in the target region. Likewise, when boron is distributed in the tumor region for the PBFT, the proposed method can represent a more critical discriminative therapy than either the BNCT or conventional particle therapy. In the conventional proton therapy, in order to deliver a dose to a tumor, the proton beam energy has to be adjusted along the tumor region (e.g., shape and depth). The proton therapy aims at delivering the maximal dose to the tumor by using protons only. In this study, the effectiveness of the PBFT with respect to several physical parameters was evaluated quantitatively by using Monte Carlo simulations. We confirmed that the PBFT can be used to perform critical discriminative therapy. Also, the results of our studies can be used for constructing the PFBT dose database that can be utilized in treatment planning systems (TPSs)

  17. Phenylboronic acid-sugar grafted polymer architecture as a dual stimuli-responsive gene carrier for targeted anti-angiogenic tumor therapy.

    Science.gov (United States)

    Kim, Jinhwan; Lee, Yeong Mi; Kim, Hyunwoo; Park, Dongsik; Kim, Jihoon; Kim, Won Jong

    2016-01-01

    We present a cationic polymer architecture composed of phenylboronic acid (PBA), sugar-installed polyethylenimine (PEI), and polyethylene glycol (PEG). The chemical bonding of PBA with the diol in the sugar enabled the crosslinking of low-molecular-weight (MW) PEI to form high-MW PEI, resulting in strong interaction with anionic DNA for gene delivery. Inside the cell, the binding of PBA and sugar was disrupted by either acidic endosomal pH or intracellular ATP, so gene payloads were released effectively. This dual stimuli-responsive gene release drove the polymer to deliver DNA for high transfection efficiency with low cytotoxicity. In addition, PBA moiety with PEGylation facilitated the binding of polymer/DNA polyplexes to sialylated glycoprotein which is overexpressed on the tumor cell membrane, and thus provided high tumor targeting ability. Therapeutic application of our polymer was demonstrated as an anti-angiogenic gene delivery agent for tumor growth inhibition. Our judicious designed polymer structure based on PBA provides enormous potential as a gene delivery agent for effective gene therapy by stimuli-responsiveness and tumor targeting.

  18. Gold Nanorods Conjugated with Doxorubicin and cRGD for Combined Anticancer Drug Delivery and PET Imaging

    Directory of Open Access Journals (Sweden)

    Yuling Xiao, Hao Hong, Vyara Z. Matson, Alireza Javadi, Wenjin Xu, Yunan Yang, Yin Zhang, Jonathan W. Engle, Robert J. Nickles, Weibo Cai, Douglas A. Steeber, Shaoqin Gong

    2012-01-01

    Full Text Available A multifunctional gold nanorod (GNR-based nanoplatform for targeted anticancer drug delivery and positron emission tomography (PET imaging of tumors was developed and characterized. An anti-cancer drug (i.e., doxorubicin (DOX was covalently conjugated onto PEGylated (PEG: polyethylene glycol GNR nanocarriers via a hydrazone bond to achieve pH-sensitive controlled drug release. Tumor-targeting ligands (i.e., the cyclo(Arg-Gly-Asp-D-Phe-Cys peptides, cRGD and 64Cu-chelators (i.e., 1,4,7-triazacyclononane-N, N', N''-triacetic acid (NOTA were conjugated onto the distal ends of the PEG arms to achieve active tumor-targeting and PET imaging, respectively. Based on flow cytometry analysis, cRGD-conjugated nanocarriers (i.e., GNR-DOX-cRGD exhibited a higher cellular uptake and cytotoxicity than non-targeted ones (i.e., GNR-DOX in vitro. However, GNR-DOX-cRGD and GNR-DOX nanocarriers had similar in vivo biodistribution according to in vivo PET imaging and biodistribution studies. Due to the unique optical properties of GNRs, this multifunctional GNR-based nanoplatform can potentially be optimized for combined cancer therapies (chemotherapy and photothermal therapy and multimodality imaging (PET, optical, X-ray computed tomography (CT, etc..

  19. Hybrid-Actuating Macrophage-Based Microrobots for Active Cancer Therapy.

    Science.gov (United States)

    Han, Jiwon; Zhen, Jin; Du Nguyen, Van; Go, Gwangjun; Choi, Youngjin; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-01-01

    Using macrophage recruitment in tumors, we develop active, transportable, cancer theragnostic macrophage-based microrobots as vector to deliver therapeutic agents to tumor regions. The macrophage-based microrobots contain docetaxel (DTX)-loaded poly-lactic-co-glycolic-acid (PLGA) nanoparticles (NPs) for chemotherapy and Fe3O4 magnetic NPs (MNPs) for active targeting using an electromagnetic actuation (EMA) system. And, the macrophage-based microrobots are synthesized through the phagocytosis of the drug NPs and MNPs in the macrophages. The anticancer effects of the microrobots on tumor cell lines (CT-26 and 4T1) are evaluated in vitro by cytotoxic assay. In addition, the active tumor targeting by the EMA system and macrophage recruitment, and the chemotherapeutic effect of the microrobots are evaluated using three-dimensional (3D) tumor spheroids. The microrobots exhibited clear cytotoxicity toward tumor cells, with a low survivability rate (<50%). The 3D tumor spheroid assay showed that the microrobots demonstrated hybrid actuation through active tumor targeting by the EMA system and infiltration into the tumor spheroid by macrophage recruitment, resulting in tumor cell death caused by the delivered antitumor drug. Thus, the active, transportable, macrophage-based theragnostic microrobots can be considered to be biocompatible vectors for cancer therapy. PMID:27346486

  20. Dual targeting and enhanced cytotoxicity to HER2-overexpressing tumors by immunoapoptotin-armored mesenchymal stem cells.

    Science.gov (United States)

    Cai, Yanhui; Xi, Yujing; Cao, Zhongyuan; Xiang, Geng; Ni, Qingrong; Zhang, Rui; Chang, Jing; Du, Xiao; Yang, Angang; Yan, Bo; Zhao, Jing

    2016-10-10

    Mesenchymal stem cells (MSCs) are promising vehicles for the delivery of anticancer agents in cancer therapy. However, the tumor targeting of loaded therapeutics is essential. Here, we explored a dual-targeting strategy to incorporate tumor-tropic MSC delivery with HER2-specific killing by the immunoapoptotin e23sFv-Fdt-tBid generated in our previous studies. The MSC engineering allowed simultaneous immunoapoptotin secretion and bioluminescence detection of the modified MSCs. Systemic administration of the immunoapoptotin-engineered MSCs was investigated in human HER2-reconstituted syngeneic mouse models of orthotopic and metastatic breast cancer, as well as in a xenograft nude mouse model of orthotopic gastric cancer. In vivo dual tumor targeting was confirmed by local accumulation of the bioluminescence-imaged MSCs and persistence of His-immunostained immunoapoptotins in tumor sites. The added tumor preference of MSC-secreted immunoapoptotins resulted in a significantly stronger antitumor effect compared with purified immunoapoptotins and Jurkat-delivered immunoapoptotins. This immunoapoptotin-armored MSC strategy provides a rationale for its use in extended malignancies by combining MSC mobility with redirected immunoapoptotins against a given tumor antigen. PMID:27473824

  1. Disulfide-stabilized single-chain antibody-targeted superantigen: Construction of a prokaryotic expression system and its functional analysis

    Institute of Scientific and Technical Information of China (English)

    Jian-Li Wang; Yu-Ling Zheng; Ru Ma; Bao-Li Wang; Ai-Guang Guo; Yong-Qiang Jiang

    2005-01-01

    AIM: To construct the expression vector of B3 (scdsFv)-SEA (D227A) and to identify its binding and cytotoxic ability to B3 antigen positive carcinoma cell lines.METHODS: This fusion protein was produced by a bacterial expression system in this study. It was expressed mainly in the inclusion body. The gene product was solubilized by guanidine hydrochloride, refolded by conventional dilution method, and purified using SP-sepharose cation chromatography.RESULTS: The expression vector B3 (scdsFv)-SEA-PETwas constructed, the expression product existed mainly in the inclusion body, the refolding product retained the binding ability of the single-chain antibody and had cytotoxic effect on HT-29 colon carcinoma cells. The stability assay showed that the resulting protein was stable at 37 ℃.CONCLUSION: This genetically engineered B3 (scdsFv)-SEA fusion protein has bifunction of tumor targeting and tumor cell killing and shows its promises as an effective reagent for tumor-targeted immunotherapy.

  2. Biotin-Conjugated Multilayer Poly [D,L-lactide-co-glycolide]-Lecithin-Polyethylene Glycol Nanoparticles for Targeted Delivery of Doxorubicin.

    Science.gov (United States)

    Dai, Yu; Xing, Han; Song, Fuling; Yang, Yue; Qiu, Zhixia; Lu, Xiaoyu; Liu, Qi; Ren, Shuangxia; Chen, Xijing; Li, Ning

    2016-09-01

    Multilayer nanoparticle combining the merits of liposome and polymer nanoparticle has been designed for the targeted delivery of doxorubicin (DOX) in cancer treatment. In this study, DOX-PLGA-lecithin-PEG-biotin nanoparticles (DOX-PLPB-NPs) were fabricated and functionalized with biotin for specific tumor targeting. Under the transmission electron microscopy observation, the lipid layer was found to be coated on the polymer core. The physical characteristics of PLPB-NPs were also evaluated. The confocal laser scanning microscopy confirmed the cellular uptake of nanoparticles and targeted delivery PLPB-NPs. The in vitro release experiment demonstrated a pH-depending release of DOX from drug-loaded PLPB-NPs. Cytotoxicity studies in HepG2 cells and in vivo antitumor experiment in tumor-bearing mice both proved DOX-PLPB-NPs showed the best inhibition effect of tumor proliferation. In biodistribution studies, DOX-PLPB-NPs showed a higher DOX concentration than free DOX and DOX-PLGA-lecithin-PEG nanoparticles (DOX-PLP-NPs) in tumor site, especially in 24 h, and the lowest DOX level in normal organs. The results were coincident with the strongest antitumor ability showed among in vivo antitumor experiment. Histopathology analysis demonstrated that DOX-PLPB-NPs exhibited the strongest antitumor ability and lowest cardiotoxicity. In brief, the PLPB-NPs were proved to be an efficient delivery system for tumor-targeting treatment. PMID:27209461

  3. Effect of introduction of chondroitin sulfate into polymer-peptide conjugate responding to intracellular signals

    Science.gov (United States)

    Tomiyama, Tetsuro; Toita, Riki; Kang, Jeong-Hun; Koga, Haruka; Shiosaki, Shujiro; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki

    2011-09-01

    We recently developed a novel tumor-targeted gene delivery system responding to hyperactivated intracellular signals. Polymeric carrier for gene delivery consists of hydrophilic neutral polymer as main chains and cationic peptide substrate for target enzyme as side chains, and was named polymer-peptide conjugate (PPC). Introduction of chondroitin sulfate (CS), which induces receptor-medicated endocytosis, into polymers mainly with a high cationic charge density such as polyethylenimine can increase tumor-targeted gene delivery. In the present study, we examined whether introduction of CS into PPC containing five cationic amino acids can increase gene expression in tumor cells. Size and zeta potential of plasmid DNA (pDNA)/PPC/CS complex were stability and gene regulation, compared with that of pDNA/PPC. Moreover, no difference in gene expression was identified between positive and negative polymer. These results were caused by fast disintegration of pDNA/PPC/CS complexes in the presence of serum. Thus, we suggest that introduction of negatively charged CS into polymers with a low charge density may lead to low stability and gene regulation of complexes.

  4. Self-assembled targeted nanoparticles based on transferrin-modified eight-arm-polyethylene glycol–dihydroartemisinin conjugate

    Science.gov (United States)

    Liu, Kefeng; Dai, Lin; Li, Chunxiao; Liu, Jing; Wang, Luying; Lei, Jiandu

    2016-07-01

    Poor delivery of insoluble anticancer drugs has so far precluded their clinical application. In this study, an efficient tumor targeted-nanoparticle delivery system, transferrin-eight-arm-polyethylene glycol–dihydroartemisinin nanoparticles (TF-8arm-PEG-DHA NPs) for the vehiculation of dihydroartemisinin (DHA) was first prepared and evaluated for its targeting efficiency and cytotoxicity in vitro and in vivo to Lewis lung carcinoma (LLC) cells, which overexpress transferrin receptors (TFRs). The synthesized TF-8arm-PEG–DHA NPs had high solubility (~102 fold of free DHA), relatively high drug loading (~10 wt% DHA), long circulating half-life and moderate particle size (~147 nm). The in vitro cytotoxicity and in vivo tumor growth inhibition studies in LLC-tumor bearing mice confirmed the enhanced efficacy of TF-modified 8arm-PEG-DHA NPs compared to free DHA and non-modified 8arm-PEG-DHA NPs. All these results together supported that the formulation developed in this work exhibited great potential as an effective tumor targeting delivery system for insoluble anticancer drugs.

  5. Pretargeted Positron Emission Tomography Imaging That Employs Supramolecular Nanoparticles with in Vivo Bioorthogonal Chemistry.

    Science.gov (United States)

    Hou, Shuang; Choi, Jin-Sil; Garcia, Mitch Andre; Xing, Yan; Chen, Kuan-Ju; Chen, Yi-Ming; Jiang, Ziyue K; Ro, Tracy; Wu, Lily; Stout, David B; Tomlinson, James S; Wang, Hao; Chen, Kai; Tseng, Hsian-Rong; Lin, Wei-Yu

    2016-01-26

    A pretargeted oncologic positron emission tomography (PET) imaging that leverages the power of supramolecular nanoparticles with in vivo bioorthogonal chemistry was demonstrated for the clinically relevant problem of tumor imaging. The advantages of this approach are that (i) the pharmacokinetics (PKs) of tumor-targeting and imaging agents can be independently altered via chemical alteration to achieve the desired in vivo performance and (ii) the interplay between the two PKs and other controllable variables confers a second layer of control toward improved PET imaging. In brief, we utilized supramolecular chemistry to synthesize tumor-targeting nanoparticles containing transcyclooctene (TCO, a bioorthogonal reactive motif), called TCO⊂SNPs. After the intravenous injection and subsequent concentration of the TCO⊂SNPs in the tumors of living mice, a small molecule containing both the complementary bioorthogonal motif (tetrazine, Tz) and a positron-emitting radioisotope ((64)Cu) was injected to react selectively and irreversibly to TCO. High-contrast PET imaging of the tumor mass was accomplished after the rapid clearance of the unreacted (64)Cu-Tz probe. Our nanoparticle approach encompasses a wider gamut of tumor types due to the use of EPR effects, which is a universal phenomenon for most solid tumors.

  6. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting

    Science.gov (United States)

    Jin, Zhu; Lv, Yaqi; Cao, Hui; Yao, Jing; Zhou, Jianping; He, Wei; Yin, Lifang

    2016-06-01

    Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy.

  7. Synthesis of dimeric cyclic RGD based near-infrared probe for in vivo tumor diagnosis

    Science.gov (United States)

    Cao, Jie; Wan, Shunan; Tian, Junmei; Chi, Xuemei; Du, Changli; Deng, Dawei; Chen, Wei R.; Gu, Yueqing

    2012-03-01

    Cell adhesion molecule integrin αvβ3 is an excellent target for tumor interventions because of its unique expression on the surface of several types of solid tumor cells and on almost all sprouting tumor vasculatures. In this manuscript, we describe the synthesis of near-infrared (NIR) fluorochrome ICG-Der-02-labeled dimeric cyclic RGD peptides (ICG-Der-02-c(RGDyK)2) for in vivo tumor integrin targeting. The optical properties and structure of the probe were intensively characterized. Afterwards, the integrin specificity of the fluorescent probe was tested in vitro for receptor binding assay and fluorescence microscopy and in vivo for subcutaneous MDA-MB-231 and U87MG tumor targeting. The results indicated that after labeling RGD peptide, the optical properties of ICG-Der-02 showed no obvious change. Besides, in vitro and in vivo tumor targeting experiment indicated that the ICG-Der-02-c(RGDyK)2 probe with high integrin affinity showed excellent tumor activity accumulation. Noninvasive NIR fluorescence imaging is able to detect tumor integrin expression based upon the highly potent RGD peptide probe.

  8. A bispecific peptide based near-infrared probe for in vivo tumor diagnosis

    Science.gov (United States)

    Ding, Li; Chen, Wei R.; Gu, Yueqing

    2013-02-01

    The epidermal growth factor receptor EGFR and HER2 are members of recepeter tyrosine kinase family. Overexpression of EGFR and HER2 has been observed in a variety of human tumors, making these receptors promising targets for tumor diagnosis. An affibody targeting HER2 and a nanobody targeting EGFR were reported before. In this Manuscript, we described an bispecific peptide combined with an affibody and a nanonbody through a linker―(G4S)3 . And the bispecific peptide was labeled with near-infrared (NIR) fluorochrome ICG-Der-02 for in vivo tumor EGFR and HER2 targeting. Afterwards, the EGFR and HER2 specificity of the fluorescent probe was tested in vitro for receptor binding assay and fluorescence microscopy and in vivo for subcutaneous MDA-MB-231 tumor targeting. The results indicated that the bispecific peptide had a high affinity to EGFR and HER2. Besides, in vitro and in vivo tumor targeting experiment indicated that the ICG-Der-02-( bispecific peptide) showed excellent tumor activity accumulation. Noninvasive NIR fluorescence imaging is able to detect tumor EGFR and HER2 expression based upon the highly potent bispecific peptide probe.

  9. Photosensitizer-Conjugated Human Serum Albumin Nanoparticles for Effective Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Hayoung Jeong, MyungSook Huh, So Jin Lee, Heebeom Koo, Ick Chan Kwon, Seo Young Jeong, Kwangmeyung Kim

    2011-01-01

    Full Text Available Photodynamic therapy (PDT is an emerging theranostic modality for various cancers and diseases. The focus of this study was the development of tumor-targeting albumin nanoparticles containing photosensitizers for efficient PDT. To produce tumor-targeting albumin nanoparticles, the hydrophobic photosensitizer, chlorin e6 (Ce6, was chemically conjugated to human serum albumin (HSA. The conjugates formed self-assembled nanoparticle structures with an average diameter of 88 nm under aqueous conditions. As expected, the Ce6-conjugated HSA nanoparticles (Ce6-HSA-NPs were nontoxic in their native state, but upon illumination with the appropriate wavelength of light, they produced singlet oxygen and damaged target tumor cells in a cell culture system. Importantly, when the nanoparticles were injected through the tail vein into tumor-bearing HT-29 mice, Ce6-HSA-NPs compared with free Ce6 revealed enhanced tumor-specific biodistribution and successful therapeutic results following laser irradiation. These results suggest that highly tumor-specific albumin nanoparticles have the potential to serve not only as efficient therapeutic agents, but also as photodynamic imaging (PDI reagents in cancer treatment.

  10. Influence of CT/MRI Fusion Image on Target Volume and 3-D Conformal Radiotherapy in Non-small Cell Lung Cancer with Brain Metastasis%CT/MRI诊断影像融合对非小细胞肺癌脑转移瘤靶区及三维适形治疗影响

    Institute of Scientific and Technical Information of China (English)

    杨金山; 魏永兵; 侯超; 李静; 朱瑞霞

    2014-01-01

    目的:比较CT图像和CT/MRI融合图像来源的肺癌脑转移肿瘤靶区,评价CT/MRI融合靶区容积应用于三维适形放射治疗时,对治疗剂量的影响。方法:将20例非小细胞肺癌脑转移患者的增强CT和MRI扫描的图像传送至图像处理工作站,在CT和CT/MRI融合图像上分别勾画GTV和周围重要的器官。每个病例分别在CT图像和CT/MRI融合图像都做1个三维适形放射治疗计划。肿瘤的处方剂量为60 Gy,比较2个治疗计划中肿瘤靶区的95%容积(D95)受照平均剂量、周围正常组织的5%容积(D5)受照平均剂量。结果:CT/MRI融合图像上的肿瘤靶区平均比CT上的肿瘤靶区大21.32%。用CT上勾画的靶区有一部分肿瘤处于低剂量区,CT/MRI融合图像上的靶区D95剂量分布较好,但在周围重要器官的剂量分布较高。结论:CT/MRI融合图像有助于靶区的确定,在三维适形放射治疗计划上的肿瘤靶区剂量分布足够,能提高靶区勾画的准确性,更利于精确放疗的实施。%Objective:To compare the CT images and CT/MRI images fusion sources of lung cancer with brain metastasis tumor target,and to evaluae the effects of dose for treatment on target volume CT/MRI fusion for three-dimensional conformal radiotherapy. Method:The enhancement CT and MRI scan image of 20 patients with brain metastases from non-small cell lung cancer was transfer to image processing workstation,GTV and surrounding vital organs on CT and CT/MRI images fusion was delineated respectively. A three-dimensional conformal radiotherapy plan was done in CT images and CT/MRI fusion images of ach case. Tumor prescription dose was 60 Gy. Compared the average dose of the 95%volume(D95)tumor target,the average dose of the 5%of the normal tissue around of the two treatment plans. Result:The tumor targets of the CT/MRI images fusion was greater than those of the CT tumor targets on average 21.32%. A part of the tumor was

  11. mRNA Transfection to Improve NK Cell Homing to Tumors.

    Science.gov (United States)

    Levy, Emily R; Carlsten, Mattias; Childs, Richard W

    2016-01-01

    The ability of natural killer (NK) cells to mediate antitumor effects following adoptive transfer is dependent on their capacity to traffic to the microenvironment where tumors reside. Recent studies have shown that cytokine-activated and ex vivo-expanded NK cells lack or express at low levels homing receptors required to achieve tissue-specific tumor targeting by cells administered intravenously. In this chapter, we describe a method to enhance NK cell homing toward specific chemoattractants expressed in secondary lymphoid tissues through genetic modification of NK cells using mRNA electroporation. The method described here is scalable, cGMP-compliant, and offers a strategy to bolster the efficacy of adoptive NK cell immunotherapy for the treatment of hematological malignancies in the clinic. PMID:27177670

  12. DARPins: a true alternative to antibodies.

    Science.gov (United States)

    Stumpp, Michael T; Amstutz, Patrick

    2007-03-01

    Designed ankyrin repeat proteins (DARPins) are a promising class of non-immunoglobulin proteins that can offer advantages over antibodies for target binding in drug discovery and drug development. DARPins have been successfully used, for example, for the inhibition of kinases, proteases and drug-exporting membrane proteins. DARPins specifically targeting the cancer marker HER2 have also been generated and were shown to function in both in vitro diagnostics and in vivo tumor targeting. DARPins are ideally suited for in vivo imaging or delivery of toxins or other therapeutic payloads because of their favorable molecular properties, including small size and high stability. The low-cost production in bacteria and the rapid generation of many target-specific DARPins make the DARPin approach useful for drug discovery. Additionally, DARPins can be easily generated in multispecific formats, offering the potential to target an effector DARPin to a specific organ or to target multiple receptors with one molecule composed of several DARPins.

  13. Synthesis of 4-(thiazol-2-ylamino)-benzenesulfonamides with carbonic anhydrase I, II and IX inhibitory activity and cytotoxic effects against breast cancer cell lines.

    Science.gov (United States)

    Abdel Gawad, Nagwa M; Amin, Noha H; Elsaadi, Mohammed T; Mohamed, Fatma M M; Angeli, Andrea; De Luca, Viviana; Capasso, Clemente; Supuran, Claudiu T

    2016-07-01

    A series of 4-(thiazol-2-ylamino)-benzenesulfonamides was synthesized and screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory and cytotoxic activity on human breast cancer cell line MCF-7. Human (h) CA isoforms I, II and IX were included in the study. The new sulfonamides showed excellent inhibition of all three isoforms, with KIs in the range of 0.84-702nM against hCA I, of 0.41-288nM against hCA II and of 5.6-29.2 against the tumor-associated hCA IX, a validated anti-tumor target, with a sulfonamide (SLC-0111) in Phase I clinical trials for the treatment of hypoxic, metastatic solid tumors overexpressing CA IX. The new compounds showed micromolar inhibition of growth efficacy against breast cancer MCF-7 cell lines. PMID:27234893

  14. The Platin-X series: activation, targeting, and delivery.

    Science.gov (United States)

    Basu, Uttara; Banik, Bhabatosh; Wen, Ru; Pathak, Rakesh K; Dhar, Shanta

    2016-08-16

    Anticancer platinum (Pt) complexes have long been considered to be one of the biggest success stories in the history of medicinal inorganic chemistry. Yet there remains the hunt for the "magic bullet" which can satisfy the requirements of an effective chemotherapeutic drug formulation. Pt(iv) complexes are kinetically more inert than the Pt(ii) congeners and offer the opportunity to append additional functional groups/ligands for prodrug activation, tumor targeting, or drug delivery. The ultimate aim of functionalization is to enhance the tumor selective action and attenuate systemic toxicity of the drugs. Moreover, an increase in cellular accumulation to surmount the resistance of the tumor against the drugs is also of paramount importance in drug development and discovery. In this review, we will address the attempts made in our lab to develop Pt(iv) prodrugs that can be activated and delivered using targeted nanotechnology-based delivery platforms. PMID:27493131

  15. Surface engineering of graphene-based nanomaterials for biomedical applications.

    Science.gov (United States)

    Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo

    2014-09-17

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

  16. Efficient Rejoining of DNA Double-Strand Breaks despite Increased Cell-Killing Effectiveness following Spread-Out Bragg Peak Carbon-Ion Irradiation.

    Science.gov (United States)

    Averbeck, Nicole B; Topsch, Jana; Scholz, Michael; Kraft-Weyrather, Wilma; Durante, Marco; Taucher-Scholz, Gisela

    2016-01-01

    Radiotherapy of solid tumors with charged particles holds several advantages in comparison to photon therapy; among them conformal dose distribution in the tumor, improved sparing of tumor-surrounding healthy tissue, and an increased relative biological effectiveness (RBE) in the tumor target volume in the case of ions heavier than protons. A crucial factor of the biological effects is DNA damage, of which DNA double-strand breaks (DSBs) are the most deleterious. The reparability of these lesions determines the cell survival after irradiation and thus the RBE. Interestingly, using phosphorylated H2AX as a DSB marker, our data in human fibroblasts revealed that after therapy-relevant spread-out Bragg peak irradiation with carbon ions DSBs are very efficiently rejoined, despite an increased RBE for cell survival. This suggests that misrepair plays an important role in the increased RBE of heavy-ion radiation. Possible sources of erroneous repair will be discussed. PMID:26904506

  17. Efficient rejoining of DNA double-strand breaks despite increased cell-killing effectiveness following spread-out Bragg peak carbon-ion irradiation

    Directory of Open Access Journals (Sweden)

    Nicole Bernadette Averbeck

    2016-02-01

    Full Text Available Radiotherapy of solid tumors with charged particles holds several advantages in comparison to photon therapy; among them conformal dose distribution in the tumor, improved sparing of tumor-surrounding healthy tissue, and an increased relative biological effectiveness (RBE in the tumor target-volume in the case of ions heavier than protons. A crucial factor of the biological effects is DNA damage, of which DNA double strand breaks (DSBs are the most deleterious. The reparability of these lesions determines the cell survival after irradiation and thus the RBE. Interestingly, using phosphorylated H2AX as a DSB marker, our data in human fibroblasts revealed that after therapy-relevant spread-out Bragg Peak irradiation with carbon ions DSBs are very efficiently rejoined, despite an increased RBE for cell survival. This suggests that misrepair plays an important role in the increased RBE of heavy-ion radiation. Possible sources of erroneous repair will be discussed.

  18. Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumor activity

    Science.gov (United States)

    Gong, Jun; Sachdev, Esha; Mita, Alain C; Mita, Monica M

    2016-01-01

    Reovirus is a double-stranded RNA virus with demonstrated oncolysis or preferential replication in cancer cells. The oncolytic properties of reovirus appear to be dependent, in part, on activated Ras signaling. In addition, Ras-transformation promotes reovirus oncolysis by affecting several steps of the viral life cycle. Reovirus-mediated immune responses can present barriers to tumor targeting, serve protective functions against reovirus systemic toxicity, and contribute to therapeutic efficacy through antitumor immune-mediated effects via innate and adaptive responses. Preclinical studies have demonstrated the broad anticancer activity of wild-type, unmodified type 3 Dearing strain reovirus (Reolysin®) across a spectrum of malignancies. The development of reovirus as an anticancer agent and available clinical data reported from 22 clinical trials will be reviewed. PMID:27019795

  19. Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumor activity.

    Science.gov (United States)

    Gong, Jun; Sachdev, Esha; Mita, Alain C; Mita, Monica M

    2016-03-26

    Reovirus is a double-stranded RNA virus with demonstrated oncolysis or preferential replication in cancer cells. The oncolytic properties of reovirus appear to be dependent, in part, on activated Ras signaling. In addition, Ras-transformation promotes reovirus oncolysis by affecting several steps of the viral life cycle. Reovirus-mediated immune responses can present barriers to tumor targeting, serve protective functions against reovirus systemic toxicity, and contribute to therapeutic efficacy through antitumor immune-mediated effects via innate and adaptive responses. Preclinical studies have demonstrated the broad anticancer activity of wild-type, unmodified type 3 Dearing strain reovirus (Reolysin(®)) across a spectrum of malignancies. The development of reovirus as an anticancer agent and available clinical data reported from 22 clinical trials will be reviewed.

  20. Application of hyaluronic acid in the novel drug delivery system for cancer therapy%透明质酸在肿瘤治疗药物新型给药系统中的应用

    Institute of Scientific and Technical Information of China (English)

    邱丽筠; 黄丽丽; 俞淑文

    2014-01-01

    Due to the good physical and chemical properties and tumor targeting ability, hyaluronic acid (HA) has been used as drug carriers or targeting ligand in the novel drug delivery system for cancer therapy, and become the new hot point in the field of cancer therapy. This review mainly introduced the application of HA in the novel drug delivery system.%透明质酸(hyaluronic acid, HA)因其良好的理化性质和肿瘤靶向性,已作为药物载体或者靶向因子应用于肿瘤治疗的新型给药系统中,并成为肿瘤治疗研究的热点。本文主要对HA在新型给药系统的应用进行介绍。

  1. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy.

    Science.gov (United States)

    Figueroa, Jose A; Reidy, Adair; Mirandola, Leonardo; Trotter, Kayley; Suvorava, Natallia; Figueroa, Alejandro; Konala, Venu; Aulakh, Amardeep; Littlefield, Lauren; Grizzi, Fabio; Rahman, Rakhshanda Layeequr; Jenkins, Marjorie R; Musgrove, Breeanna; Radhi, Saba; D'Cunha, Nicholas; D'Cunha, Luke N; Hermonat, Paul L; Cobos, Everardo; Chiriva-Internati, Maurizio

    2015-03-01

    Cancer immunotherapy comprises different therapeutic strategies that exploit the use of distinct components of the immune system, with the common goal of specifically targeting and eradicating neoplastic cells. These varied approaches include the use of specific monoclonal antibodies, checkpoint inhibitors, cytokines, therapeutic cancer vaccines and cellular anticancer strategies such as activated dendritic cell (DC) vaccines, tumor-infiltrating lymphocytes (TILs) and, more recently, genetically engineered T cells. Each one of these approaches has demonstrated promise, but their generalized success has been hindered by the paucity of specific tumor targets resulting in suboptimal tumor responses and unpredictable toxicities. This review will concentrate on recent advances on the use of engineered T cells for adoptive cellular immunotherapy (ACI) in cancer. PMID:25901860

  2. Barriers to drug delivery in solid tumors.

    Science.gov (United States)

    Sriraman, Shravan Kumar; Aryasomayajula, Bhawani; Torchilin, Vladimir P

    2014-01-01

    Over the last decade, significant progress has been made in the field of drug delivery. The advent of engineered nanoparticles has allowed us to circumvent the initial limitations to drug delivery such as pharmacokinetics and solubility. However, in spite of significant advances to tumor targeting, an effective treatment strategy for malignant tumors still remains elusive. Tumors possess distinct physiological features which allow them to resist traditional treatment approaches. This combined with the complexity of the biological system presents significant hurdles to the site-specific delivery of therapeutic drugs. One of the key features of engineered nanoparticles is that these can be tailored to execute specific functions. With this review, we hope to provide the reader with a clear understanding and knowledge of biological barriers and the methods to exploit these characteristics to design multifunctional nanocarriers, effect useful dosing regimens and subsequently improve therapeutic outcomes in the clinic. PMID:25068098

  3. Targeting of VX2 Rabbit Liver Tumor by Selective Delivery of 3-Bromopyruvate: A Biodistribution and Survival Study

    OpenAIRE

    Vali, Mustafa; Vossen, Josephina A.; Buijs, Manon; Engles, James M; Liapi, Eleni; Ventura, Veronica Prieto; Khwaja, Afsheen; Acha-Ngwodo, Obele; Shanmugasundaram, Ganapathy; Syed, Labiq; Wahl, Richard L.; Geschwind, Jean-Francois H

    2008-01-01

    The aim of this study was to determine the biodistribution and tumor targeting ability of 14C-labeled 3-bromopyruvate ([14C]3-BrPA) after i.a. and i.v. delivery in the VX2 rabbit model. In addition, we evaluated the effects of [14C]3-BrPA on tumor and healthy tissue glucose metabolism by determining 18F-deoxyglucose (FDG) uptake. Last, we determined the survival benefit of i.a. administered 3-BrPA. In total, 60 rabbits with VX2 liver tumor received either 1.75 mM [14C]3-BrPA i.a., 1.75 mM [14...

  4. Boron Drug Delivery via Encapsulated Magnetic Nanocomposites: A New Approach for BNCT in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Yinghuai Zhu

    2010-01-01

    Full Text Available Ortho-carborane cages have been successfully attached to modified magnetic nanoparticles via catalytic azide-alkyne cycloadditions between 1-R-2-butyl-Ortho-C2B10H10(R=Me,3;Ph,4 and propargyl group-enriched magnetic nanoparticles. A loading amount of 9.83 mmol boron atom/g starch-matrixed magnetic nanoparticles has been reached. The resulting nanocomposites have been found to be highly tumor-targeted vehicles under the influence of an external magnetic field (1.14T, yielding a high boron concentration of 51.4 μg/g tumor and ratios of around 10 : 1 tumor to normal tissues.

  5. Solid tumors provide niche-specific conditions that lead to preferential growth of Salmonella

    Science.gov (United States)

    Silva-Valenzuela, Cecilia A.; Desai, Prerak T.; Molina-Quiroz, Roberto C.; Pezoa, David; Zhang, Yong; Porwollik, Steffen; Zhao, Ming; Hoffman, Robert M.; Contreras, Inés; Santiviago, Carlos A.; McClelland, Michael

    2016-01-01

    Therapeutic attenuated strains of Salmonella Typhimurium target and eradicate tumors in mouse models. However, the mechanism of S. Typhimurium for tumor targeting is still poorly understood. We performed a high-throughput screening of single-gene deletion mutants of S. Typhimurium in an orthotopic, syngeneic murine mammary model of breast cancer. The mutants under selection in this system were classified into functional categories to identify bacterial processes involved in Salmonella accumulation within tumors. Niche-specific genes involved in preferential tumor colonization were identified and exemplars were confirmed by competitive infection assays. Our results show that the chemotaxis gene cheY and the motility genes motAB confer an advantage for colonization of Salmonella within orthotopic syngeneic breast tumors. In addition, eutC, a gene belonging to the ethanolamine metabolic pathway, also confers an advantage for Salmonella within tumors, perhaps by exploiting either ethanolamine or an alternative nutrient in the inflamed tumor environment. PMID:27145267

  6. Targeted tumor radiotherapy

    Directory of Open Access Journals (Sweden)

    Unak Perihan

    2002-01-01

    Full Text Available Targeted tumor radiotherapy is selectively delivery of curative doses of radiation to malignant sites. The aim of the targeted tumor radiotherapy is to use the radionuclides which have high LET particle emissions conjugated to appropriate carrier molecules. The radionuclides are selectively collected by tumor cells, depositing lethal doses to tumor cells while no admission occur to normal cells. In theory, targeted radiotherapy has several advantages over conventional radiotherapy since it allows a high radiation dose to be administered without causing normal tissue toxicity, although there are some limitations in the availability of appropriate targeting agents and in the calculations of administered doses. Therefore, for routine clinical applications more progress is still needed. In this article, the potential use of targeted tumor radiotherapy is briefly reviewed. More general aspects and considerations, such as potential radionuclides, mechanisms of tumor targeting was also outlined.

  7. Innovations in gold nanotechnology%金纳米技术应用的新进展

    Institute of Scientific and Technical Information of China (English)

    朱永楷; 岳发强

    2012-01-01

    概述了金纳米技术在医疗、环保、电子等领域的进展,分析了其应用技术前景,介绍了金的纳米微粒、纳米棒以及胶体在医疗诊断、靶位定向治疗癌症、车用催化剂、导电墨水等方面的研究和应用.%This paper reviews the application progresses and prospects of gold nanotechnology innovations in the areas of healthcare, environmental protection and electronic technology. This review outlined the innovative application of gold nanoparticles, gold nanorods, as well as gold colloids in diagnostics, tumor-targeting to treat cancerous tumors, autocatalysts, conductive inks, and others.

  8. Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?

    Science.gov (United States)

    Ljubimova, Julia Y.; Ding, Hui; Portilla-Arias, Jose; Patil, Rameshwar; Gangalum, Pallavi R.; Chesnokova, Alexandra; Inoue, Satoshi; Rekechenetskiy, Arthur; Nassoura, Tala; Black, Keith L.; Holler, Eggehard

    2014-01-01

    Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors. PMID:24962356

  9. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    Science.gov (United States)

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer. PMID:27287553

  10. Radiolabeled Peptides: Valuable Tools for the Detection and Treatment of Cancer

    Directory of Open Access Journals (Sweden)

    M. Fani, H. R. Maecke, S. M. Okarvi

    2012-01-01

    Full Text Available Human cancer cells overexpress many peptide receptors as molecular targets. Radiolabeled peptides that bind with high affinity and specificity to the receptors on tumor cells hold great potential for both diagnostic imaging and targeted radionuclide therapy. The advantage of solid-phase peptide synthesis, the availability of different chelating agents and prosthetic groups and bioconjugation techniques permit the facile preparation of a wide variety of peptide-based targeting molecules with diverse biological and tumor targeting properties. Some of these peptides, including somatostatin, bombesin, vasoactive intestinal peptide, gastrin, neurotensin, exendin and RGD are currently under investigation. It is anticipated that in the near future many of these peptides may find applications in nuclear oncology. This article presents recent developments in the field of small peptides, and their applications in the diagnosis and treatment of cancer.

  11. Tumor lysis syndrome: A clinical review.

    Science.gov (United States)

    Mirrakhimov, Aibek E; Voore, Prakruthi; Khan, Maliha; Ali, Alaa M

    2015-05-01

    Tumor lysis syndrome is an oncometabolic emergency resulting from rapid cell death. Tumor lysis syndrome can occur as a consequence of tumor targeted therapy or spontaneously. Clinicians should stratify every hospitalized cancer patient and especially those receiving chemotherapy for the risk of tumor lysis syndrome. Several aspects of prevention include adequate hydration, use of uric acid lowering therapies, use of phosphate binders and minimization of potassium intake. Patients at high risk for the development of tumor lysis syndrome should be monitored in the intensive care unit. Established tumor lysis syndrome should be treated in the intensive care unit by aggressive hydration, possible use of loop diuretics, possible use of phosphate binders, use of uric acid lowering agents and dialysis in refractory cases. PMID:25938028

  12. Targeted Drug Delivery in Pancreatic Cancer

    Science.gov (United States)

    Yu, Xianjun; Zhang, Yuqing; Chen, Changyi; Yao, Qizhi; Li, Min

    2009-01-01

    Effective drug delivery in pancreatic cancer treatment remains a major challenge. Because of the high resistance to chemo and radiation therapy, the overall survival rate for pancreatic cancer is extremely low. Recent advances in drug delivery systems hold great promise for improving cancer therapy. Using liposomes, nanoparticles, and carbon nanotubes to deliver cancer drugs and other therapeutic agents such as siRNA, suicide gene, oncolytic virus, small molecule inhibitor and antibody has been a success in recent pre-clinical trials. However, how to improve the specificity and stability of the delivered drug using ligand or antibody directed delivery represent a major problem. Therefore, developing novel, specific, tumor-targeted drug delivery systems is urgently needed for this terrible disease. This review summarizes the current progress on targeted drug delivery in pancreatic cancer, and provides important information on potential therapeutic targets for pancreatic cancer treatment. PMID:19853645

  13. Carcinoid of the ampulla of Vater: Morphologic features and clinical implications

    Institute of Scientific and Technical Information of China (English)

    George A Poultsides; Wayne AI Frederick

    2006-01-01

    Carcinoids involving the ampulla of Vater are rare lesions that may produce painless jaundice. The published data indicate that these tumors, in contrast to their midgut counterparts, metastasize in approximately half of cases irrespective of primary tumor size. Therefore,radical excision in the form of pancreaticoduodenectomy is recommended regardless of tumor size. As with other gastrointestinal carcinoid tumors, biological treatment with octreotide analogues can be applied to symptomatic patients. Tumor-targeted radioactive therapy is a newly emerging treatment option. We here report case of a carcinoid tumor of the ampulla of Vater presenting as painless jaundice in a 65-year old man and review the relevant literature, giving special attention to the morphologic features, clinical characteristics, and treatment modalities associated with this disease process.

  14. Comparative evaluation of in vitro parameters of tamoxifen citrate loaded poly(lactide-co-glycolide), poly(epsilon-caprolactone) and chitosan nanoparticles.

    Science.gov (United States)

    Cirpanli, Y; Yerlikaya, F; Ozturk, K; Erdogar, N; Launay, M; Gegu, C; Leturgez, T; Bilensoy, E; Calis, S; Capan, Y

    2010-12-01

    Tamoxifen (TAM), the clinical choice for the antiestrogen treatment of advanced or metastatic breast cancer, was formulated in nanoparticulate carrier systems in the form of poly(lactide-co-glycolide) (PLGA), poly-epsilon-caprolactone (PCL) and chitosan (CS) nanoparticles. The PLGA and PCL nanoparticles were prepared by a nanoprecipitation technique whereas the CS nanoparticles were prepared by the ionic gelation method. Mean particle sizes were under 260 nm for PLGA and PCL nanoparticles and around 400 nm for CS nanoparticles. Polydispersity indices were less than 0.4 for all formulations. Zeta potential values were positive for TAM loaded nanoparticles because of the positive charge of the drug. Drug loading values were significantly higher for PCL nanoparticles when compared to PLGA and CS nanoparticles. All nanoparticle formulations exhibited controlled release properties. These results indicate that TAM loaded PLGA, PCL and CS nanoparticles may provide promising carrier systems for tumor targeting. PMID:21284254

  15. Engineering CAR-T Cells: Design Concepts

    Science.gov (United States)

    Srivastava, Shivani; Riddell, Stanley R.

    2016-01-01

    Despite being empirically designed based on a simple understanding of TCR signaling, T cells engineered with chimeric antigen receptors (CARs) have been remarkably successful in treating patients with advanced refractory B cell malignancies. However, many challenges remain in improving the safety and efficacy of this therapy and extending it toward the treatment of epithelial cancers. Other aspects TCR signaling beyond those directly provided by CD3ζ and CD28 phosphorylation strongly influence a T cell’s ability to differentiate and acquire full effector functions. Here, we discuss how the principles of TCR recognition, including spatial constraints, Kon/Koff rates, and synapse formation, along with in-depth analysis of CAR signaling might be applied to develop safer and more effective synthetic tumor targeting receptors. PMID:26169254

  16. Tumor homing indocyanine green encapsulated micelles for near infrared and photoacoustic imaging of tumors.

    Science.gov (United States)

    Uthaman, Saji; Bom, Joon-suk; Kim, Hyeon Sik; John, Johnson V; Bom, Hee-Seung; Kim, Seon-Jong; Min, Jung-Joon; Kim, Il; Park, In-Kyu

    2016-05-01

    Photoacoustic imaging (PAI) is an emerging analytical modality that is under intense preclinical development for the early diagnosis of various medical conditions, including cancer. However, the lack of specific tumor targeting by various contrast agents used in PAI obstructs its clinical applications. In this study, we developed indocyanine green (ICG)-encapsulated micelles specific for the CD 44 receptor and used in near infrared and photoacoustic imaging of tumors. ICG was hydrophobically modified prior to loading into hyaluronic acid (HA)-based micelles utilized for CD 44 based-targeting. We investigated the physicochemical characteristics of prepared HA only and ICG-encapsulated HA micelles (HA-ICG micelles). After intravenous injection of tumor-bearing mice, the bio-distribution and in vivo photoacoustic images of ICG-encapsulated HA micelles accumulating in tumors were also investigated. Our study further encourages the application of this HA-ICG-based nano-platform as a tumor-specific contrast agent for PAI.

  17. 软组织肉瘤的靶向治疗进展%A review on the advance of individualized therapy targeting soft tissue sarcomas

    Institute of Scientific and Technical Information of China (English)

    任志午; 王国文

    2015-01-01

    Soft tissue sarcomas are malignant tumors derived from mesenchymal tissues and ectodermal neural tissues, with wide distribution and multi subtypes. Traditional treatment method of soft tissue sarcomas includes surgery, radiotherapy and chemotherapy. The treatment aims to control primary tumors and prevent the transfer of tumors. At present, molecular targeted drugs obtain positive effects in the treatment of common cancers such like non-small cell lung cancer, colorectal cancer, etc. Targeted therapeutic strategies suddenly become a new ifeld of cancer treatment. Antitumor drugs inhibit tumor growth by retarding tumor cell proliferation with the interference of tumor development and specific protein essential for the growth. Tumor-targeting drugs have fewer side effects and well tolerance. Currently, there are a variety of targeted drugs used in soft tissue sarcoma treatment. The individualized therapy provides different solutions according to the different tumor subtypes. It will be the future development trend of soft tissue sarcomas treatment.

  18. Proton therapy for pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Romaine; C; Nichols; Soon; Huh; Zuofeng; Li; Michael; Rutenberg

    2015-01-01

    Radiotherapy is commonly offered to patients with pancreatic malignancies although its ultimate utility is compromised since the pancreas is surrounded by exquisitely radiosensitive normal tissues, such as the duodenum, stomach, jejunum, liver, and kidneys. Proton radiotherapy can be used to create dose distributions that conform to tumor targets with significant normal tissue sparing. Because of this, protons appear to represent a superior modality for radiotherapy delivery to patients with unresectable tumors and those receiving postoperative radiotherapy. A particularly exciting opportunity for protons also exists for patients with resectable and marginally resectable disease. In this paper, we review the current literature on proton therapy for pancreatic cancer and discuss scenarios wherein the improvement in the therapeutic index with protons may have the potential to change the management paradigm for this malignancy.

  19. The impact of nuclear science on medicine

    CERN Document Server

    Kraft, G

    1999-01-01

    From the very beginning, i.e. from the discovery of the natural radioactivity by H. Becquerel and the production of radium by M. Curie, nuclear physics had a strong impact on medicine: Radioactive sources were immediately made use of in tumor therapy long before the action mechanisms of ionizing radiation were understood. The invention of the tracer technique by G. Hevesy opened a new field for the study of chemokinetics as well as for the in-vivo measurement of various organ functions. In the percutane tumor therapy hadrons like neutrons, pions, protons and heavier ions were tested. Presently, proton therapy is a great success and is spreading all over the world. The new techniques of target-conform treatment using heavy ions for an improved tumor targeting and control represent the latest great improvement of radiation tumor therapy.

  20. Ribosome-Inactivating Proteins: From Plant Defense to Tumor Attack

    Directory of Open Access Journals (Sweden)

    Maria Serena Fabbrini

    2010-11-01

    Full Text Available Ribosome-inactivating proteins (RIPs are EC3.2.32.22 N-glycosidases that recognize a universally conserved stem-loop structure in 23S/25S/28S rRNA, depurinating a single adenine (A4324 in rat and irreversibly blocking protein translation, leading finally to cell death of intoxicated mammalian cells. Ricin, the plant RIP prototype that comprises a catalytic A subunit linked to a galactose-binding lectin B subunit to allow cell surface binding and toxin entry in most mammalian cells, shows a potency in the picomolar range. The most promising way to exploit plant RIPs as weapons against cancer cells is either by designing molecules in which the toxic domains are linked to selective tumor targeting domains or directly delivered as suicide genes for cancer gene therapy. Here, we will provide a comprehensive picture of plant RIPs and discuss successful designs and features of chimeric molecules having therapeutic potential.

  1. Co-delivery of doxorubicin and siRNA using octreotide-conjugated gold nanorods for targeted neuroendocrine cancer therapy

    Science.gov (United States)

    Xiao, Yuling; Jaskula-Sztul, Renata; Javadi, Alireza; Xu, Wenjin; Eide, Jacob; Dammalapati, Ajitha; Kunnimalaiyaan, Muthusamy; Chen, Herbert; Gong, Shaoqin

    2012-10-01

    A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The Au NR was conjugated with (1) DOX, an anticancer drug, via a pH-labile hydrazone linkage to enable pH-controlled drug release, (2) polyarginine, a cationic polymer for complexing siRNA, and (3) octreotide (OCT), a tumor-targeting ligand, to specifically target NE cancer cells with overexpressed somatostatin receptors. The Au NR-based nanocarriers exhibited a uniform size distribution as well as pH-sensitive drug release. The OCT-conjugated Au NR-based nanocarriers (Au-DOX-OCT, targeted) exhibited a much higher cellular uptake in a human carcinoid cell line (BON cells) than non-targeted Au NR-based nanocarriers (Au-DOX) as measured by both flow cytometry and confocal laser scanning microscopy (CLSM). Moreover, Au-DOX-OCT-ASCL1 siRNA (Au-DOX-OCT complexed with ASCL1 siRNA) resulted in significantly higher gene silencing in NE cancer cells than Au-DOX-ASCL1 siRNA (non-targeted Au-DOX complexed with ASCL1 siRNA) as measured by an immunoblot analysis. Additionally, Au-DOX-OCT-ASCL1 siRNA was the most efficient nanocarrier at altering the NE phenotype of NE cancer cells and showed the strongest anti-proliferative effect. Thus, combined chemotherapy and RNA silencing using NE tumor-targeting Au NR-based nanocarriers could potentially enhance the therapeutic outcomes in treating NE cancers.A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The

  2. Ratiometric Fluorescent pH Probes Based on Glycopolymers.

    Science.gov (United States)

    Li, Zhiyun; Zhang, Pengshan; Lu, Wei; Peng, Lun; Zhao, Yun; Chen, Gaojian

    2016-09-01

    Effectively detecting pH changes plays a critical role in exploring cellular functions and determining physiological and pathological processes. A novel ratiometric pH probe based on a glycopolymer, armored with properties of serum-stability, tumor-targeting, and pH monitoring, is designed. Random copolymers of 2-(methacrylamido) glucopyranose and fluorescein O-methacrylate are first synthesized by reversible addition fragmentation chain transfer polymerization. Acryloxyethyl thiocarbamoyl rhodamine B is then attached to the polymer chain to prepare ratiometric fluorescent pH probes via a thiol-ene reaction. The synthesized polymeric probes are characterized by NMR, gel permeation chromatography, UV-vis spectroscopy, and transmission electron microscopy, and the fluorescence responses are examined in phosphate buffer at different pHs. The cytotoxicity and confocal imaging experiments of the probes are detected using HeLa cells, demonstrating a low toxicity and superior biocompatibility for detecting pH changes in bioapplications. PMID:27439338

  3. Linker Modification Strategies To Control the Prostate-Specific Membrane Antigen (PSMA)-Targeting and Pharmacokinetic Properties of DOTA-Conjugated PSMA Inhibitors.

    Science.gov (United States)

    Benešová, Martina; Bauder-Wüst, Ulrike; Schäfer, Martin; Klika, Karel D; Mier, Walter; Haberkorn, Uwe; Kopka, Klaus; Eder, Matthias

    2016-03-10

    Since prostate-specific membrane antigen (PSMA) is up-regulated in nearly all stages of prostate cancer (PCa), PSMA can be considered as a viable diagnostic biomarker and treatment target in PCa. This project is focused on the development and evaluation of a series of compounds directed against PSMA. The modifications to the linker are designed to improve the binding potential and pharmacokinetics for theranostic application. In addition, the results help to further elucidate the structure-activity relationships (SAR) of the resulting PSMA inhibitors. Both in vitro and in vivo experiments of 18 synthesized PSMA inhibitor variants showed that systematic chemical modification of the linker has a significant impact on the tumor-targeting and pharmacokinetic properties. This approach can lead to an improved management of patients suffering from recurrent prostate cancer by the use of one radiolabeling precursor, which can be radiolabeled either with (68)Ga for diagnosis or with (177)Lu or (225)Ac for therapy. PMID:26878194

  4. Targeted Shiga toxin-drug conjugates prepared via Cu-free click chemistry.

    Science.gov (United States)

    Kostova, Vesela; Dransart, Estelle; Azoulay, Michel; Brulle, Laura; Bai, Siau-Kun; Florent, Jean-Claude; Johannes, Ludger; Schmidt, Frédéric

    2015-11-15

    The main drawback of the anticancer chemotherapy consists in the lack of drug selectivity causing severe side effects. The targeted drug delivery appears to be a very promising strategy for controlling the biodistribution of the cytotoxic agent only on malignant tissues by linking it to tumor-targeting moiety. Here we exploit the natural characteristics of Shiga toxin B sub-unit (STxB) as targeting carrier on Gb3-positive cancer cells. Two cytotoxic conjugates STxB-doxorubicin (STxB-Doxo) and STxB-monomethyl auristatin F (STxB-MMAF) were synthesised using copper-free 'click' chemistry. Both conjugates were obtained in very high yield and demonstrated strong tumor inhibition activity in a nanomolar range on Gb3-positive cells.

  5. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles

    KAUST Repository

    Deng, Lin

    2012-01-01

    Tumor targetability and stimuli responsivity of drug delivery systems (DDS) are key factors in cancer therapy. Implementation of multifunctional DDS can afford targetability and responsivity at the same time. Herein, cholesterol molecules (Ch) were coupled to hyaluronic acid (HA) backbones to afford amphiphilic conjugates that can self-assemble into stable micelles. Doxorubicin (DOX), an anticancer drug, and superparamagnetic iron oxide (SPIO) nanoparticles (NPs), magnetic resonance imaging (MRI) contrast agents, were encapsulated by Ch-HA micelles and were selectively released in the presence of hyaluronidase (Hyals) enzyme. Cytotoxicity and cell uptake studies were done using three cancer cell lines (HeLa, HepG2 and MCF7) and one normal cell line (WI38). Higher Ch-HA micelles uptake was seen in cancer cells versus normal cells. Consequently, DOX release was elevated in cancer cells causing higher cytotoxicity and enhanced cell death. © 2012 The Royal Society of Chemistry.

  6. DARPins: a true alternative to antibodies.

    Science.gov (United States)

    Stumpp, Michael T; Amstutz, Patrick

    2007-03-01

    Designed ankyrin repeat proteins (DARPins) are a promising class of non-immunoglobulin proteins that can offer advantages over antibodies for target binding in drug discovery and drug development. DARPins have been successfully used, for example, for the inhibition of kinases, proteases and drug-exporting membrane proteins. DARPins specifically targeting the cancer marker HER2 have also been generated and were shown to function in both in vitro diagnostics and in vivo tumor targeting. DARPins are ideally suited for in vivo imaging or delivery of toxins or other therapeutic payloads because of their favorable molecular properties, including small size and high stability. The low-cost production in bacteria and the rapid generation of many target-specific DARPins make the DARPin approach useful for drug discovery. Additionally, DARPins can be easily generated in multispecific formats, offering the potential to target an effector DARPin to a specific organ or to target multiple receptors with one molecule composed of several DARPins. PMID:17436550

  7. Mycoplasma pneumoniae induces cytotoxic activity in guinea pig bronchoalveolar cells

    International Nuclear Information System (INIS)

    Precultured guinea pig alveolar macrophages (AM) and freshly harvested alveolar cells (FHAC) activated by interaction with Mycoplasma pneumoniae were cytotoxic for xenogeneic 75selenomethionine-labeled tumor target cells. Phagocytosis of whole opsonized or nonopsonized M. pneumoniae cells was more effective in eliciting cytotoxicity than uptake of sonicated microorganisms. The addition of living mycoplasma cells to the assay system enhanced the cytotoxic effect considerably. Target cells were significantly more susceptible to the cytotoxic action of phagocytes if they were coated with mycoplasma antigen or cocultured together with M. pneumoniae. The activation of the phagocytes could be inhibited by 2-deoxy-D-glucose but not by antimicrobial substances suppressing mycoplasma protein synthesis. It was accompanied by 51Cr release without detectable signs of cell damage. The supernatants of activated cells were cytotoxic for approximately 24 h. Inhibition, release, and cytotoxic activity indicate the necessity of an intact metabolism of the effector cells and suggest a secretion of cytotoxic substances

  8. Clinical guidance on the perioperative use of targeted agents in solid tumor oncology.

    Science.gov (United States)

    Mellor, James D; Cassumbhoy, Michelle; Jefford, Michael

    2011-06-01

    The use of targeted anti-cancer agents is increasing. It is common to utilize a multi-modal treatment approach towards solid tumors, often including surgical resection, and it has become apparent that some targeted agents can impair wound healing or cause an increased risk of perioperative complications. This article reviews targeted agents used in solid tumor oncology with an emphasis on clinically relevant details. Overall, the evidence of targeted agents causing surgical complications is limited. The greatest amount of evidence exists for bevacizumab causing perioperative complications, possibly due to its extended half-life. There are limited data for cetuximab, sorafenib and sunitinib and very little for other solid tumor targeted agents. Our findings suggest that there should be heightened pharmacovigilence around targeted agents with respect to perioperative complications and increased post-surgical support for patients to aid early detection of postoperative complications until definitive data become available. PMID:21585689

  9. GTV and CTV in radiation therapy of tumours of the oral cavity; Volume tumoral macroscopique et volume-cible anatomoclinique en radiotherapie. Tumeur de la cavite buccale

    Energy Technology Data Exchange (ETDEWEB)

    Bardet, E. [Centre Regional de Lutte Contre le Cancer Rene-Gauducheau, Service de Radiotherapie, 44 - Nantes (France); Piot, B.; Savary, V. [Centre Hospitalier Universitaire de Nantes, Service de Stomatologie, 44 - Nantes (France); Gayet, M. [Centre Hospitalier Universitaire de Nantes, Service de Radiologie, 44 - Nantes (France)

    2001-10-01

    Radiation therapy, either alone or combined with surgery is a cornerstone in the treatment of oral cavity tumors. Target volumes to be treated with external beam radiation must take under consideration the initial tumor location, providing information on satellites lymph nodes to be irradiated as well. Modern imaging, with emphasis on CT scan with injection, is now mandatory for a better analysis of initial lesions including both tumor location and invaded lymph nodes. Tumor volumes based on clinical examination and CT scan analysis might be divided in two groups. First, volumes susceptible to receive a prophylactic irradiation for an hypothetical microscopic spread (CTV) to be treated with a prophylactic dose; second, volumes including lesions visible clinically or on CT scan that should receive a higher radiation dose (GTV). Clinical tolerance will largely be depending upon radiation-induced mucositis, impairing food intake. Radiation techniques aiming at normal tissues preservation should be used, including devices allowing keeping an open mouth during radiation delivery. (authors)

  10. The use of heavy charged particles in the radiation therapy of tumors

    CERN Document Server

    Kraft, G

    1995-01-01

    Beams of heavy charged particles like carbon or oxygen ions represent the ultimate tool of external radiotherapy of deep-seated tumors.Small range and lateral scattering and the increase of the energy deposition with penetration depth are the physical basis for a more efficient tumor targeting. High biological efficiency in the tumor is the perequisite for a successful treatment of tumors radioresistant to sparsely ionizing radiation.The possibility to perform target-conform irradiation and to control the achieved actual distribution using PET techniques guarantees that biological highly efficient stopping particles can be restricted to the tumor volume only.Although the physical and radiobiological properties of ion beams are very favorable for therapy, the necessity to produce these particles in an accelerator has restricted the general application of heavy ions up to now.Presently, the heavy ion accelerator SIS at GSI is the only source of heavy ion beams sufficient in enrgy and intensity for therapy in Eu...

  11. Radioimmunodetection of cancer

    International Nuclear Information System (INIS)

    Intravenous administration of 150-300 μg of a radiolabelled, affinity-purified, goat IgG having 70% immunoreactivity against carcinoembryonic antigen to over 90 patients with a history of confirmed malignancy resulted in successful tumor imaging by external scintigraphy (radioimmunodetection) in about 90% of the primary and secondary tumor sites. In order to enhance tumor target radioactivity, computer-assisted scanning subtraction of non-target background radioactivity was accomplished. The immune scintigrams were negative in patients without demonstrable tumors, with tumors apparently devoid of carcinoembryonic antigen, or in cancer patients who received a radioactive normal goat IgG preparation. Circulating antigen levels up to 5,600 ng/ml did not hinder successful tumor imaging after injection of the [131 I]-labeled antibody. (Auth.)

  12. Generation and antitumor effects of an engineered and energized fusion protein VL-LDP-AE composed of single-domain antibody and lidamycin

    Institute of Scientific and Technical Information of China (English)

    MIAO QingFang; SHANG BoYang; OUYANG ZhiGang; LIU XiaoYun; ZHEN YongSu

    2007-01-01

    Type Ⅳ collagenase plays a pivotal role in invasion, metastasis and angiogenesis of tumor. Single domain antibodies are attractive as tumor-targeting vehicle because of their much smaller size compared with antibody molecules produced by conventional methods. Lidamycin (LDM) is a potent enediyne-containing antitumor antibiotic. In this study an engineered and energized fusion protein VL-LDP-AE composed of lidamycin and VL domain of mAb 3G11 directed against type Ⅳ collagenase was prepared using a novel two-step method. First a VL-LDP fusion protein was constructed by DNA recombination. Secondly VL-LDP-AE was obtained by molecular reconstitution. In MTT assay,VL-LDP-AE showed potent cytotoxicity to HT-1080 cells and KB cells with IC50 values of 8.55×10-12 and 1.70×10-11 mol/L, respectively. VL-LDP-AE showed antiangiogenic activity in chick chrorioallantoic membrane (CAM) assay and tube formation assay. In in vivo experiments, VL-LDP-AE was proved to be more effective than free LDM against the growth of subcutaneously transplanted hepatoma 22 in mice.Drugs were given intravenously on day 3 and 10 after tumor transplantation. Compared in terms of maximal tolerated doses, VL-LDP-AE at 0.25 mg/kg suppressed the tumor growth by 89.5%, LDM at 0.05mg/kg by 69.9%, and mitomycin at 1 mg/kg by 35%. Having a molecular weight of 25.2 kDa, VL-LDP-AE was much smaller than other reported antibody-based drugs. The results suggested that VL-LDP-AE would be a promising candidate for tumor targeting therapy. And the 2-step approach could serve as a new technology platform for making a series of highly potent engineered antibody-based drugs for a variety of cancers.

  13. Generation and antitumor effects of an engineered and energized fusion protein VL-LDP-AE composed of single-domain antibody and lidamycin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Type IV collagenase plays a pivotal role in invasion, metastasis and angiogenesis of tumor. Single domain antibodies are attractive as tumor-targeting vehicle because of their much smaller size com-pared with antibody molecules produced by conventional methods. Lidamycin (LDM) is a potent enediyne-containing antitumor antibiotic. In this study an engineered and energized fusion protein VL-LDP-AE composed of lidamycin and VL domain of mAb 3G11 directed against type IV collagenase was prepared using a novel two-step method. First a VL-LDP fusion protein was constructed by DNA recombination. Secondly VL-LDP-AE was obtained by molecular reconstitution. In MTT assay, VL-LDP-AE showed potent cytotoxicity to HT-1080 cells and KB cells with IC50 values of 8.55×10-12 and 1.70×10-11 mol/L, respectively. VL-LDP-AE showed antiangiogenic activity in chick chrorioallantoic membrane (CAM) assay and tube formation assay. In in vivo experiments, VL-LDP-AE was proved to be more effective than free LDM against the growth of subcutaneously transplanted hepatoma 22 in mice. Drugs were given intravenously on day 3 and 10 after tumor transplantation. Compared in terms of maximal tolerated doses, VL-LDP-AE at 0.25 mg/kg suppressed the tumor growth by 89.5%, LDM at 0.05 mg/kg by 69.9%, and mitomycin at 1 mg/kg by 35%. Having a molecular weight of 25.2 kDa, VL-LDP-AE was much smaller than other reported antibody-based drugs. The results suggested that VL-LDP-AE would be a promising candidate for tumor targeting therapy. And the 2-step approach could serve as a new technology platform for making a series of highly potent engineered antibody-based drugs for a variety of cancers.

  14. Construction of magnetic-carbon-quantum-dots-probe-labeled apoferritin nanocages for bioimaging and targeted therapy

    Science.gov (United States)

    Yao, Hanchun; Su, Li; Zeng, Man; Cao, Li; Zhao, Weiwei; Chen, Chengqun; Du, Bin; Zhou, Jie

    2016-01-01

    Carbon dots (CDs) are one of the most highlighted carbon-based materials for biological applications, such as optical imaging nanoprobes, which are used for labeling cells in cancer treatment mainly due to their biocompatibility and unique optical properties. In this study, gadolinium (Gd)-complex-containing CDs were obtained through a one-step microwave method to develop multimodal nanoprobes integrating the advantages of optical and magnetic imaging. The obtained Gd-CDs exhibited highly fluorescent properties with excellent water solubility and biological compatibility. Natural apoferritin (AFn) nanocages, an excellent drug delivery carrier, are hollow in structure, with their pH-dependent, unfolding–refolding process at pH 2.0 and 7.4. The chemotherapeutic drug doxorubicin (DOX) can be highly effective and encapsulated into AFn cavity. A widely used tumor-targeting molecule, folic acid (FA), functionalized the surface of AFn to obtain an active tumor targeting effect on MCF-7 cells and malignant tumors in mice models. In this study, an AFn nanocarrier encapsulating high concentration of DOX labeled with magnetic and fluorescent Gd-CDs probe was developed. Gd-CDs exhibited a unique green photoluminescence and almost no toxicity compared with free GdCl3. Furthermore, Gd-doped CDs significantly increased the circulation time and decreased the toxicity of Gd3+ in in vitro and in vivo magnetic resonance imaging, which demonstrated that the AFn nanocages labeled with Gd-CD compounds could serve as an excellent T1 contrast agent for magnetic resonance imaging. The self-assembling multifunctional Gd-CDs/AFn (DOX)/FA nanoparticles have a great potential for cancer theranostic applications. PMID:27660437

  15. Imaging targeted at tumor with {sup 188}Re-labeled VEGF{sub 189} exon 6-encoded peptide and effects of the transfecting truncated KDR gene in tumor-bearing nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Qin Zhexue; Li Qianwei; Liu Guangyuan; Luo Chaoxue; Xie Ganfeng; Zheng Lei [Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Huang Dingde [Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)], E-mail: huangdde@tmmu.edu.cn

    2009-07-15

    Introduction: Planar imaging of {sup 188}Re-labeled vascular endothelial growth factor (VEGF){sub 189} exon 6-encoded peptide (QKRKRKKSRYKS) with single photon emission computed tomography (SPECT) in tumor-bearing nude mice and effects of the transfecting truncated KDR gene on its imaging were investigated, so as to provide a basis for further applying the peptide to tumor-targeted radionuclide treatment. Methods: QKRKRKKSRYKS, coupling with mercaptoacetyltriglycine (MAG{sub 3}) chelator was labeled with {sup 188}Re; then in vivo distribution, planar imaging with SPECT and blocking experiment in tumor-bearing nude mice were analyzed. Recombinant adenovirus vectors carrying the truncated KDR gene were constructed to transfect tumor tissues to evaluate the effects of truncated KDR on the in vivo distribution and tumor planar imaging of {sup 188}Re-MAG{sub 3}-QKRKRKKSRYKS in tumor-bearing nude mice. Results: The labeled peptide exhibited a sound receptor binding activity. Planar imaging with SPECT demonstrated significant radioactivity accumulation in tumor 1 h after injection of the labeled peptide and disappearance of radioactivity 3 h later. Significant radioactivity accumulation was also observed in the liver, intestines and kidneys but was not obvious in other tissues. An hour after injection of the labeled peptide, the percentage of the injected radioactive dose per gram (%ID/g) of tumor and tumor/contralateral muscle tissues ratio were 1.98{+-}0.38 and 2.53{+-}0.33, respectively, and increased to 3.08{+-}0.84 and 3.61{+-}0.59 in the group transfected with the truncated KDR gene, respectively, and radioactivity accumulation in tumor with planar imaging also increased significantly in the transfection group. Conclusion: {sup 188}Re-MAG{sub 3}-QKRKRKKSRYKS can accumulate in tumor tissues, which could be increased by the transfection of truncated KDR gene. This study provides a basis for further applying the peptide to tumor targeted radionuclide imaging and

  16. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors.

    Science.gov (United States)

    Zhang, Yumin; Zhou, Junhui; Yang, Cuihong; Wang, Weiwei; Chu, Liping; Huang, Fan; Liu, Qiang; Deng, Liandong; Kong, Deling; Liu, Jianfeng; Liu, Jinjian

    2016-01-01

    Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur) delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM) with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM). Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against HeLa cells, which had a high level of glutathione. Meanwhile, the folate receptor-mediated drug delivery (FA-CCM-Cur) further enhanced the endocytosis and cytotoxicity. Ex vivo imaging studies showed that CCM-Cur and FA-CCM-Cur possessed higher tumor accumulation until 24 hours after injection. Concretely, FA-CCM-Cur exhibited the highest tumor accumulation with 1.7-fold of noncross-linked micelle Cur and 2.8-fold of free Cur. By combining cross-linking of the core with active tumor targeting of FA, we demonstrated a new and effective way to design nanocarriers for enhanced drug encapsulation, smart tumor responsiveness, and elevated tumor accumulation. PMID:27051287

  17. Expression and purification of recombinant ATF-mellitin, a new type fusion protein targeting ovarian cancer cells, in P. pastoris.

    Science.gov (United States)

    Su, Manman; Chang, Weiqin; Zhang, Kun; Cui, Manhua; Wu, Shuying; Xu, Tianmin

    2016-02-01

    Melittin is well known to possess cytolytic activity with wide-spectrum lytic properties and its potential use as an agent to treat several types of cancer has been tested. Due to the non-specific toxicity, melittin can impair not only cancer cells but also normal tissue. Thus, tumor-targeted toxins may be helpful for developing novel anticancer therapeutics. The urokinase-type plasminogen activator (uPA) plays a central role in tissue remodelling events occurring in normal physiology and in pathophysiology, including cancer invasion and metastasis. Heartening findings showed that uPA receptor is predominantly expressed on many types of cancer. Therefore, the amino-terminal fragment (ATF) of uPA which was able to identify and bond with cancer cells was used as the cell-targeting domain to make up tumor-targeted toxin in this study. In the present study, pPICZαC-ATF-melittin eukaryotic expression vector was successfully constructed. After transformed into P. pastoris and induced by methanol, rATF-mellitin was detected by SDS-PAGE and western blot analysis. After induction with methanol, the expression level of rATF-mellitin was 312 mg/l in 80-l fermentor. rATF‑mellitin was purified to >95% purity using SP Sepharose ion exchange chromatography and source™ 30 RPC with 67.2% recovery. Cell proliferation assay showed that rATF-melittin inhibited growth of SKOV3 cells and had no cytotoxicity effect on normal cells. For the first time, we established a stable and effective rATF-mellitin P. pastoris expression system to obtain a high level of expression of secreted rATF-mellitin which was purified by a highly efficient purification procedure. PMID:26718643

  18. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response

    Science.gov (United States)

    Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Dobrodumov, Anatolii V.; Marchenko, Yaroslav Y.; Margulis, Boris A.; Pitkin, Emil; Guzhova, Irina V.

    2015-08-01

    Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION-Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M2). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T2-weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION-Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M2 measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors.

  19. Generation and antitumor effects of an engineered and energized fusion protein VL-LDP-AE composed of single-domain antibody and lidamycin.

    Science.gov (United States)

    Miao, QingFang; Shang, BoYang; Ouyang, ZhiGang; Liu, XiaoYun; Zhen, YongSu

    2007-08-01

    Type IV collagenase plays a pivotal role in invasion, metastasis and angiogenesis of tumor. Single domain antibodies are attractive as tumor-targeting vehicle because of their much smaller size compared with antibody molecules produced by conventional methods. Lidamycin (LDM) is a potent enediyne-containing antitumor antibiotic. In this study an engineered and energized fusion protein VL-LDP-AE composed of lidamycin and VL domain of mAb 3G11 directed against type IV collagenase was prepared using a novel two-step method. First a VL-LDP fusion protein was constructed by DNA recombination. Secondly VL-LDP-AE was obtained by molecular reconstitution. In MTT assay, VL-LDP-AE showed potent cytotoxicity to HT-1080 cells and KB cells with IC(50) values of 8.55 x 10(-12) and 1.70 x 10(-11) mol/L, respectively. VL-LDP-AE showed antiangiogenic activity in chick chrorioallantoic membrane (CAM) assay and tube formation assay. In in vivo experiments, VL-LDP-AE was proved to be more effective than free LDM against the growth of subcutaneously transplanted hepatoma 22 in mice. Drugs were given intravenously on day 3 and 10 after tumor transplantation. Compared in terms of maximal tolerated doses, VL-LDP-AE at 0.25 mg/kg suppressed the tumor growth by 89.5%, LDM at 0.05 mg/kg by 69.9%, and mitomycin at 1 mg/kg by 35%. Having a molecular weight of 25.2 kDa, VL-LDP-AE was much smaller than other reported antibody-based drugs. The results suggested that VL-LDP-AE would be a promising candidate for tumor targeting therapy. And the 2-step approach could serve as a new technology platform for making a series of highly potent engineered antibody-based drugs for a variety of cancers. PMID:17653664

  20. Pre-Clinical Assessment of 177Lu-Labeled Trastuzumab Targeting HER2 for Treatment and Management of Cancer Patients with Disseminated Intraperitoneal Disease

    Science.gov (United States)

    Ray, Geoffrey L.; Baidoo, Kwamena E.; Keller, Lanea M. M.; Albert, Paul S.; Brechbiel, Martin W.; Milenic, Diane E.

    2011-01-01

    Studies from this laboratory have demonstrated the potential of targeting HER2 for therapeutic and imaging applications with medically relevant radionuclides. To expand the repertoire of trastuzumab as a radioimmunoconjugate (RIC) vector, use of 177Lu was investigated. The combination of a 6.7 d half-life, lower energy β−-emissions (500 keV max; 130 keV ave), and an imagable γ-emission make 177Lu an attractive candidate for radioimmunotherapy (RIT) regimens for treatment of larger tumor burdens not possible with α-particle radiation. Radiolabeling trastuzumab-CHX-A″-DTPA with 177Lu was efficient with a specific binding of 60.8 ± 6.8% with HER2 positive SKOV-3 cells. Direct quantitation of tumor targeting and normal tissue uptake was performed with athymic mice bearing subcutaneous and intraperitoneal LS-174T xenografts; a peak tumor %ID/g of 24.70 ± 10.29 (96 h) and 31.70 ± 16.20 (72 h), respectively, was obtained. Normal tissue uptake of the RIC was minimal. Tumor targeting was also demonstrated by γ-scintigraphy. A therapy study administeringescalating doses of 177Lu-trastuzumab to mice bearing three day LS-174T i.p. xenografts established the effective therapeutic dose of i.p. administered 177Lu-trastuzumab at 375 μCi with a median survival of 124.5 d while a median survival of 10 d was noted for the control (untreated) group. In conclusion, trastuzumab radiolabeled with 177Lu has potential for treatment of disseminated, HER2 positive, peritoneal disease. PMID:22229017

  1. Pre-Clinical Assessment of 177Lu-Labeled Trastuzumab Targeting HER2 for Treatment and Management of Cancer Patients with Disseminated Intraperitoneal Disease

    Directory of Open Access Journals (Sweden)

    Diane E. Milenic

    2011-12-01

    Full Text Available Studies from this laboratory have demonstrated the potential of targeting HER2 for therapeutic and imaging applications with medically relevant radionuclides. To expand the repertoire of trastuzumab as a radioimmunoconjugate (RIC vector, use of 177Lu was investigated. The combination of a 6.7 d half-life, lower energy β−-emissions (500 keV max; 130 keV ave, and an imagable γ-emission make 177Lu an attractive candidate for radioimmunotherapy (RIT regimens for treatment of larger tumor burdens not possible with α-particle radiation. Radiolabeling trastuzumab-CHX-A″-DTPA with 177Lu was efficient with a specific binding of 60.8 ± 6.8% with HER2 positive SKOV-3 cells. Direct quantitation of tumor targeting and normal tissue uptake was performed with athymic mice bearing subcutaneous and intraperitoneal LS-174T xenografts; a peak tumor %ID/g of 24.70 ± 10.29 (96 h and 31.70 ± 16.20 (72 h, respectively, was obtained. Normal tissue uptake of the RIC was minimal. Tumor targeting was also demonstrated by γ-scintigraphy. A therapy study administering escalating doses of 177Lu-trastuzumab to mice bearing three day LS-174T i.p. xenografts established the effective therapeutic dose of i.p. administered 177Lu-trastuzumab at 375 μCi with a median survival of 124.5 d while a median survival of 10 d was noted for the control (untreated group. In conclusion, trastuzumab radiolabeled with 177Lu has potential for treatment of disseminated, HER2 positive, peritoneal disease.

  2. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles.

    Science.gov (United States)

    Wu, Yang; Zhang, Yu; Zhang, Wei; Sun, Chunlong; Wu, Jianzhong; Tang, Jinhai

    2016-02-01

    Multidrug resistance (MDR) remains one of major limitation for the successful treatment of many cancers including breast cancer. Co-delivery of chemotherapeutic drugs and small interfering RNA (siRNA) has been developed because of its ability to generate synergistic anticancer effects via different mechanisms of action, to reverse MDR and increase the efficacy of chemotherapeutic drugs in cancer therapy. Herein, we employed a kind of efficient multifunctional tumor targeted nanomicelles (PECL3) for the co-delivery of hydrophobic anti-cancer drugs and siRNA. This kind of nanomicelles were constructed by folic acid (FA)-decorated PEG-b-(PCL-g-PEI)-b-PCL triblock copolymers, which were synthesized through "click chemistry" and "ring opening" polymerization. Driven by the "core-shell" structure and the electrostatic interaction, this triblock copolymer could efficiently encapsulate P-glycoprotein (P-gp) siRNA and doxorubicin (DOX). The obtained nanomicelles can prevent renal clearance, RNase degradation and aggregation in circulation. Compared to the non-specific delivery, these FA functionalized nanomicelles could efficiently deliver P-gp siRNA to reducing both P-gp expression levels and IC50 value of the DOX in DOX-resistant breast cancer cells (MCF-7/ADR). Additionally, in vivo results showed that DOX loaded PECL3 (D-PECL3) micelles could reduce toxicity of DOX on nontarget tissues and significantly inhibited MCF-7/ADR tumor growth through encapsulating DOX in the micelles and deliver them to target tumor region. Taken together, these results proof that PECL3 micelles could co-deliver siRNA and drug to inhibit MDR tumor growth. These results suggested that the co-delivery of DOX and siRNA in tumor-targeting nanomicelles could excite synergistic effect of gene therapy and chemotherapy, thus can efficiently reverse MDR cancer and kill the cancer cells. PMID:26655793

  3. Nanosized multifunctional liposomes for tumor diagnosis and molecular imaging by SPECT/CT.

    Science.gov (United States)

    Silindir, Mine; Erdoğan, Suna; Özer, A Yekta; Doğan, A Lale; Tuncel, Murat; Uğur, Ömer; Torchilin, Vladimir P

    2013-03-01

    Among currently used cancer imaging methods, nuclear medicine modalities provide metabolic information, whereas modalities in radiology provide anatomical information. However, different modalities, having different acquisition times in separate machines, decrease the specificity and accuracy of images. To solve this problem, hybrid imaging modalities were developed as a new era, especially in the cancer imaging field. With widespread usage of hybrid imaging modalities, specific contrast agents are essentially needed to use in both modalities, such as single-photon emission computed tomography/computed tomography (SPECT/CT). Liposomes are one of the most desirable drug delivery systems, depending on their suitable properties. The aim of this study was to develop a liposomal contrast agent for the diagnosis and molecular imaging of tumor by SPECT/CT. Liposomes were prepared nanosized, coated with polyethylene glycol to obtain long blood circulation, and modified with monoclonal antibody 2C5 for specific tumor targeting. Although DTPA-PE and DTPA-PLL-NGPE (polychelating amphilic polymers; PAPs) were loaded onto liposomes for stable radiolabeling for SPECT imaging, iopromide was encapsulated into liposomes for CT imaging. Liposomes [(DPPC:PEG(2000)-PE:Chol:DTPA-PE), (PL 90G:PEG(2000)-PE:Chol:DTPA-PE), (DPPC:PEG(2000)-PE:Chol:PAPs), (PL 90G:PEG(2000)-PE:Chol:PAPs), (60:0.9:39:0.1% mol ratio)] were characterized in terms of entrapment efficiency, particle size, physical stability, and release kinetics. Additionally, in vitro cell-binding studies were carried out on two tumor cell lines (MCF-7 and EL 4) by counting radioactivity. Tumor-specific antibody-modified liposomes were found to be effective multimodal contrast agents by designating almost 3-8 fold more uptake than nonmodified ones in different tumor cell lines. These results could be considered as an important step in the development of tumor-targeted SPECT/CT contrast agents for cancer imaging. PMID:23078019

  4. Advantage of highly immunoreactive monoclonal antibodies in radioimmunoscintigraphy for tumor detection, (2)

    International Nuclear Information System (INIS)

    There is theoretically a potential benefit in using a highly immunoreactive monoclonal antibody. The effect of immunoreactivity (IR) on the antibody biodistribution, however, has not yet been described in detail. Thus, this study was designed to investigate the effect of IR on the biodistribution in an animal model. The hydroxylapatite high performance liquid chromatography (HA-HPLC) system has been tested and confirmed to separate the F ab 96.5, an anti melanoma p97 antigen, into high and low IR fractions. 125I-F ab 96.5 preparations with a different IR were administered to groups of nude mice bearing FEM-XII human skin melanoma xenografts for biodistribution and imaging studies. The biodistribution data showed that the high IR antibody improved tumor targeting by increasing activity ratios of tumor to non tumor tissue; the mechanism for the increased tumor to non tumor ratios was increased tumor activity uptake and prolonged tumor activity retention with associated rapid clearance from the blood and non tumor sites. The imaging study visually supported the results obtained in the biodistribution study; the high IR antibody demonstrated better and earlier tumor delineation and the tumor to non tumor contrast continued to improve with time. In this model system, where the whole body clearance rate was the same for the high IR and low IR preparations, the overall antibody metabolism and excretion were not significantly dependent on IR. Therefore, the effect of IR is to alter the distribution of antibody between tumor and blood, with high IR having increased tumor activity and reduced blood activity (consequently reduced non tumor organ activity). This would also be beneficial for therapeutic use of radiolabeled antibodies, since high IR antibodies can minimize undesirable radiation exposure to normal organs. In conclusion, high IR antibodies are essential for optimal tumor targeting. (author)

  5. Preparation and In Vitro Evaluation of Antitumor Activity of TGFαL3-SEB as a Ligand-Targeted Superantigen.

    Science.gov (United States)

    Yousefi, Forough; Mousavi, Seyed Fazlollah; Siadat, Seyed Davar; Aslani, Mohammad Mehdi; Amani, Jafar; Rad, Hamid Sedighian; Fooladi, Abbas Ali Imani

    2016-04-01

    Tumor-targeted superantigens (TTSs) have been used to treat a variety of tumors in preclinical studies. The TTS utilizes the powerful T-cell activation strategy by means of staphylococcal enterotoxins (SEs) as superantigens (Sags) to target tumor cells. Monoclonal antibodies and tumor-related ligands have been used as targeting molecules of Sag. In this study, we assessed the antitumor potency of tumor-targeted superantigen (TTS) strategy to design and produce fusion protein as a new antitumor candidate. The third loop (L3) of transforming growth factor α (TGF-α) was genetically conjugated to staphylococcal enterotoxin type B (TGFαL3-SEB), and its in vitro antitumor activity against murine breast cancer cells (A431 cell line) was evaluated. We designed and prepared TGFαL3-SEB chimeric protein and evaluated superantigenic activity, binding property to cancer cells, overexpression of epidermal growth factor receptor (EGFR), and in vitro antitumor activities. Cloning of tgfαl3-seb was confirmed by colony-polymerase chain reaction, enzymatic digestion, and sequencing. The recombinant TGFαL3-SEB fusion protein with molecular weight of 31 kDa was expressed and confirmed by anti-His Western-blot analysis. The TGFαL3-SEB fusion protein attached to A431 cell line with proper affinity and induced dose-dependent cytotoxicity against EGFR-expressing cancer cells in vitro. The TGFαL3-SEB chimeric protein exhibited potent in vitro antitumor activity. Our findings indicated that TGFαL3-SEB may be a promising anticancer candidate in cancer immunotherapy, and further studies are required to explore its potential in vivo therapeutic applications. PMID:25759426

  6. Inhibition of Histone Deacetylation and DNA Methylation Improves Gene Expression Mediated by the Adeno-Associated Virus/Phage in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amin Hajitou

    2013-10-01

    Full Text Available Bacteriophage (phage, viruses that infect bacteria only, have become promising vectors for targeted systemic delivery of genes to cancer, although, with poor efficiency. We previously designed an improved phage vector by incorporating cis genetic elements of adeno-associated virus (AAV. This novel AAV/phage hybrid (AAVP specifically targeted systemic delivery of therapeutic genes into tumors. To advance the AAVP vector, we recently introduced the stress-inducible Grp78 tumor specific promoter and found that this dual tumor-targeted AAVP provides persistent gene expression, over time, in cancer cells compared to silenced gene expression from the CMV promoter in the parental AAVP. Herein, we investigated the effect of histone deacetylation and DNA methylation on AAVP-mediated gene expression in cancer cells and explored the effect of cell confluence state on AAVP gene expression efficacy. Using a combination of AAVP expressing the GFP reporter gene, flow cytometry, inhibitors of histone deacetylation, and DNA methylation, we have demonstrated that histone deacetylation and DNA methylation are associated with silencing of gene expression from the CMV promoter in the parental AAVP. Importantly, inhibitors of histone deacetylases boost gene expression in cancer cells from the Grp78 promoter in the dual tumor-targeted AAVP. However, cell confluence had no effect on AAVP-guided gene expression. Our findings prove that combination of histone deacetylase inhibitor drugs with the Grp78 promoter is an effective approach to improve AAVP-mediated gene expression in cancer cells and should be considered for AAVP-based clinical cancer gene therapy.

  7. Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy.

    Science.gov (United States)

    Chen, Dan; Li, Bowen; Cai, Songhua; Wang, Peng; Peng, Shuwen; Sheng, Yuanzhi; He, Yuanyuan; Gu, Yueqing; Chen, Haiyan

    2016-09-01

    Dual targeting towards both extracellular and intracellular receptors specific to tumor is a significant approach for cancer diagnosis and therapy. In the present study, a novel nano-platform (AuNC-cRGD-Apt) with dual targeting function was initially established by conjugating gold nanocluster (AuNC) with cyclic RGD (cRGD) that is specific to αvβ3integrins over-expressed on the surface of tumor tissues and aptamer AS1411 (Apt) that is of high affinity to nucleolin over-expressed in the cytoplasm and nucleus of tumor cells. Then, AuNC-cRGD-Apt was further functionalized with near infrared (NIR) fluorescence dye (MPA), giving a NIR fluorescent dual-targeting probe AuNC-MPA-cRGD-Apt. AuNC-MPA-cRGD-Apt displays low cytotoxicity and favorable tumor-targeting capability at both in vitro and in vivo level, suggesting its clinical potential for tumor imaging. Additionally, Doxorubicin (DOX), a widely used clinical chemotherapeutic drug that kill cancer cells by intercalating DNA in cellular nucleus, was immobilized onto AuNC-cRGD-Apt forming a pro-drug, AuNC-DOX-cRGD-Apt. The enhanced tumor affinity, deep tumor penetration and improved anti-tumor activity of this pro-drug were demonstrated in different tumor cell lines, tumor spheroid and tumor-bearing mouse models. Results in this study suggest not only the prospect of non-toxic AuNC modified with two targeting ligands for tumor targeted imaging, but also confirm the promising future of dual targeting AuNC as a core for the design of prodrug in the field of cancer therapy. PMID:27236844

  8. Optimizing the Delivery of Short-Lived Alpha Particle-Emitting Isotopes to Solid Tumors

    International Nuclear Information System (INIS)

    The underlying hypothesis of this project was that optimal alpha emitter-based radioimmunotherapy (RAIT) could be achieved by pairing the physical half-life of the radioisotope to the biological half-life of the targeting vehicle. The project had two specific aims. The first aim was to create and optimize the therapeutic efficacy of 211At-SAPS-C6.5 diabody conjugates. The second aim was to develop bispecific-targeting strategies that increase the specificity and efficacy of alpha-emitter-based RAIT. In the performance of the first aim, we created 211At-SAPS-C6.5 diabody conjugates that specifically targeted the HER2 tumor associated antigen. In evaluating these immunoconjugates we determined that they were capable of efficient tumor targeting and therapeutic efficacy of established human tumor xenografts growing in immunodeficient mice. We also determined that therapeutic doses were associated with late renal toxicity, likely due to the role of the kidneys in the systemic elimination o f these agents. We are currently performing more studies focused on better understanding the observed toxicity. In the second aim, we successfully generated bispecific single-chain Fv (bs-scFv) molecules that co-targeted HER2 and HER3 or HER2 and HER4. The in vitro kinetics and in vivo tumor-targeting properties of these molecules were evaluated. These studies revealed that the bs-scFv molecules selectively localized in vitro on tumor cells that expressed both antigens and were capable of effective tumor localization in in vivo studies

  9. Thiol antioxidant-functionalized CdSe/ZnS quantum dots: synthesis, characterization, cytotoxicity.

    Science.gov (United States)

    Zheng, Hong; Mortensen, Luke J; DeLouise, Lisa A

    2013-03-01

    Nanotechnology is a growing industry with wide ranging applications in consumer product and technology development. In the biomedical field, nanoparticles are finding increasing use as imaging agents for biomolecular labeling and tumor targeting. The nanoparticle physiochemical properties must be tailored for the specific application. For example, nanoparticle chemical and physical stability in the biological milieu (no oxidation, aggregation, agglomeration or toxicity) are often required. Nanoparticles used for biomolecular fluorescent imaging should also have high quantum yield (QY). The aim of this paper is to examine the QY, stability, and cell toxicity of a series of positive, negative and neutral surface charge quantum dot (QD) nanoparticles. Simple protocols are described to prepare water soluble QDs by modifying the surface with thiol containing antioxidant ligands and polymers keeping the QD core/shell composition constant. The ligands used to produce negatively charged QDs include glutathione (GSH), N-acetyl-L-cysteine (NAC), dihydrolipoic acid (DHLA), tiopronin (TP), bucilliamine (BUC), and mercaptosuccinic acid (MSA). Ligands used to produce positively charged QDs include cysteamine (CYS) and polyethylenimine (PEI). Dithiothreitol (DTT) was used to produce neutral charged QDs. Commercially available nonaqueous octadecylamine (ODA) capped QDs served as the starting material. Our results suggest that QD uptake and cytotoxicity are both dependent on surface ligand coating composition. The negative charged GSH coated QDs show superior performance exhibiting low cytotoxicity, high stability, high QY and therefore are best suited for bioimaging applications. PEI coated QD also show superior performance exhibiting high QY and stability. However, they are considerably more cytotoxic due to their high positive charge which is an advantageous property that can be exploited for gene transfection and/or tumor targeting applications. The synthetic procedures

  10. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response

    International Nuclear Information System (INIS)

    Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION–Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M2). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T2-weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION–Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M2 measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors. - Highlights: • Second-harmonic nonlinear magnetic response is used for biodistribution analysis. • NLR-M2 ensures high sensibility in detection of SPIONs in tissue. • SPION–Hsp70 conjugates effectively target the glioma

  11. Enhanced effect of photodynamic therapy in ovarian cancer using a nanoparticle drug delivery system.

    Science.gov (United States)

    Li, Zhao; Sun, Liping; Lu, Zaijun; Su, Xuantao; Yang, Qifeng; Qu, Xun; Li, Li; Song, Kun; Kong, Beihua

    2015-09-01

    Nanoparticles are promising novel drug delivery carriers that allow tumor targeting and controlled drug release. In the present study, we prepared poly butyl-cyanoacrylate nanoparticles (PBCA-NP) entrapped with hypocrellin B (HB) to improve the effect of photodynamic therapy (PDT) in ovarian cancer. An ovarian cancer ascites model using Fischer 344 rats and PBCA-NP entrapped with HB (HB-PBCA-NP) were formed successfully. The pharmacodynamic characteristics and biodistribution of the HB-PBCA-NP system were evaluated by comparison with HB dimethyl sulfoxide (HB-DMSO) and testing at various time-points following intraperitoneal drug administration. HB-PBCA-NP-based PDT combined with cytoreductive surgery was then administrated to the tumor-bearing animals. Kaplan-Meier survival analysis was performed to assess the therapeutic effect of the nanoparticle system. The serum HB concentration peaked 4 h after drug administration in the nanoparticle system, and 1 h with HB-DMSO. The peak exposure time of tumor tissues was also extended (4 vs. 2 h), and PBCA-NP remained present for much longer than HB-DMSO. Although PDT combined with surgery prolonged the survival time significantly compared with surgery alone (84 days, Panimals that received either HB-PBCA-NP- or HB-DMSO-based PDT after cytoreductive surgery (99 vs. 95 days, P=0.293). PBCA-NP exhibited potential advantages in controlled drug release and tumor targeting, which was beneficial for HB-based PDT. PDT combined with surgery prolonged the survival time, suggesting that this might be an alternative treatment option for ovarian cancer. PMID:26165140

  12. Applications of Nanocarriers with Tumor Molecular Targeted in Chemotherapy%纳米药物载体结合分子靶向在肿瘤化疗中的应用

    Institute of Scientific and Technical Information of China (English)

    丁辉; 张松; 刘新利

    2012-01-01

    纳米技术与肿瘤治疗中的化学疗法相结合具有广阔的应用前景,应用纳米技术设计药物载体递送化疗药物已经成为当前人类攻克肿瘤研究的一个重要手段。纳米药物载体与肿瘤靶向在化疗方面的应用,能够有效改善化疗药物水溶性和稳定性,提高药物利用率和抗肿瘤活性,降低对机体正常细胞组织的毒副作用,克服多药耐药性问题,进而提高肿瘤化疗效果和促进肿瘤化疗的发展进步。本文着重综述纳米药物载体系统及其靶向策略方面的研究现状与进展,并探讨纳米技术与化疗相结合攻克肿瘤的应用前景。%Nanotechnology has received considerable attention in the revolutionize tumor therapy especially chemotherapy. The nanocarriers of chemotherapeutic have become an important tool to overcome tumor. Drug delivery system and molecular tumor targeting based on nanotechnology can effectively improve the water solubility and stability, enhance drug utilization and anti-tumor activity, reduce the normal tissue toxicity and solve the problem of multi-drug resistance, and thus contribute significantly to the development and progress of chemotherapy. This review focuses on the research status quo and progress in nanocarriers of the drugs and the tumor targeting strategies. And the application prospect of nanotechnology in chemotherapy is investigated.

  13. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qingwen [Shanghai Chest Hospital, Shanghai 200433 (China); State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 (China); Jiang, Songmin [State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 (China); Han, Baohui [Shanghai Chest Hospital, Shanghai 200433 (China); Sun, Tongwen [Wuhan Junyu Innovation Pharmaceuticals, Inc., Wuhan 430079 (China); Li, Zhengnan; Zhao, Lina; Gao, Qiang [College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Sun, Jialin, E-mail: jialin_sun@126.com [Wuhan Junyu Innovation Pharmaceuticals, Inc., Wuhan 430079 (China)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  14. Generation and characterization of nanobodies targeting PSMA for molecular imaging of prostate cancer.

    Science.gov (United States)

    Evazalipour, Mehdi; D'Huyvetter, Matthias; Tehrani, Bahram Soltani; Abolhassani, Mohsen; Omidfar, Kobra; Abdoli, Shahriyar; Arezumand, Roghaye; Morovvati, Hamid; Lahoutte, Tony; Muyldermans, Serge; Devoogdt, Nick

    2014-01-01

    Nanobodies show attractive characteristics for tumor targeting in cancer diagnosis and therapy. A radiolabeled nanobody binding the prostate-specific membrane antigen (PSMA) could offer a noninvasive strategy to select prostate cancer patients eligible for PSMA-targeted therapies. We here describe the generation, production and in vivo evaluation of anti-PSMA nanobodies. Nanobodies were derived from heavy-chain-only antibodies, raised in immunized dromedaries. Binding characteristics were evaluated through ELISA and flow cytometry. Selected nanobodies were radiolabeled with (99m) Tc at their hexahistidine tail, after which cell binding capacity and internalization were evaluated on PSMA(pos) LNCaP and PSMA(neg) PC3 cell lines. In vivo tumor targeting was analyzed in both LNCaP and PC3 xenografted mice through SPECT/microCT and tissue sampling. A panel of 72 generated clones scored positive on ELISA, all contributing to three nanobody groups, of which group 3 dominated with 70 clones. ELISA and FACS analysis led to the selection of two dominant nanobodies. (99m) Tc-labeled PSMA6 and PSMA30 both showed specific binding on LNCAP cells, but not on PC3 cells. (99m) Tc-PSMA30 internalized significantly more in LNCaP cells compared to (99m) Tc-PSMA6. Higher absolute tumor uptake and tumor-to-normal organ ratios were observed for (99m) Tc-PSMA30 compared with (99m) Tc-PSMA6 and a (99m) Tc-control nanobody in LNCaP but not in PC3 tumor-bearing mice. PSMA30 nanobody has improved targeting characteristics both in vitro as well as in vivo compared with PSMA6 and the control nanobody, and was therefore selected as our in-house-developed lead compound for PSMA targeting.

  15. EXPERIENCE OF SUCCESSFUL ACNEFORM ERUPTIONS TREATMENT IN PATIENT WITH MULTIPLE MELANOMA

    Directory of Open Access Journals (Sweden)

    O. V. Minkina

    2016-01-01

    Full Text Available Objective: to describe the results of the joint monitoring and diversified treatment of oncologists and dermatologists those patient with multiple recurrent melanoma who received over a long period a targeted anti-cancer therapy, which was complicated by side-effect as widespread acneform rush, resistant to traditional treatment. Patient A., born in 1988, was followed up and got a treatment more than 2 years in oncology out-patient clinic diagnosed with “Melanoma of the front surface of the left leg T2bN0M0 IIA”. Subsequently, the patient was verified metastasis in the inginal lymph nodes, in the soft tissues of the hips, to liver. Acute adverse reaction has developed in a short time after getting the anti-tumor target therapy as generalized acneform rush and itching of the skin. Skin symptoms accompanied by pronounced psychological and emotional stress, therefore, dermatologists have been invited to provide additional medical assistance to this patient. Due to the fact that subsequent traditional anti-acne algorithms of topical and oral treatment was not such effective, there was made a decision to use an alternative supporting external therapy, which did not have similar examples of usage previously. Results. External application of tacrolimus ointment in combination with other drugs and then as a mono-therapy, allows us in a rather short period achieve a stable and pronounced regression of skin pathological lesions, to return to the previously cancelled initial drug dose of the anti-tumor target therapy, to change significantly components of the patient’s quality of life. Conclusion. The search for additional and alternative treatment approaches for similar patients, as in our case, remains relevant for specialists and patients themselves. This case is an example of alternative approach to the tacrolimus topical application in patient with drug-mediated acneform rush.

  16. A novel murine T-cell receptor targeting NY-ESO-1.

    Science.gov (United States)

    Rosati, Shannon F; Parkhurst, Maria R; Hong, Young; Zheng, Zhili; Feldman, Steven A; Rao, Mahadev; Abate-Daga, Daniel; Beard, Rachel E; Xu, Hui; Black, Mary A; Robbins, Paul F; Schrump, David A; Rosenberg, Steven A; Morgan, Richard A

    2014-04-01

    Cancer testis antigens, such as NY-ESO-1, are expressed in a variety of prevalent tumors and represent potential targets for T-cell receptor (TCR) gene therapy. DNA encoding a murine anti-NY-ESO-1 TCR gene (mTCR) was isolated from immunized HLA-A*0201 transgenic mice and inserted into a γ-retroviral vector. Two mTCR vectors were produced and used to transduce human PBL. Transduced cells were cocultured with tumor target cell lines and T2 cells pulsed with the NY-ESO-1 peptide, and assayed for cytokine release and cell lysis activity. The most active TCR construct was selected for production of a master cell bank for clinical use. mTCR-transduced PBL maintained TCR expression in short-term and long-term culture, ranging from 50% to 90% efficiency 7-11 days after stimulation and 46%-82% 10-20 days after restimulation. High levels of interferon-γ secretion were observed (1000-12000 pg/mL), in tumor coculture assays and recognition of peptide-pulsed cells was observed at 0.1 ng/mL, suggesting that the new mTCR had high avidity for antigen recognition. mTCR-transduced T cells also specifically lysed human tumor targets. In all assays, the mTCR was equivalent or better than the comparable human TCR. As the functional activity of TCR-transduced cells may be affected by the formation of mixed dimers, mTCRs, which are less likely to form mixed dimers with endogenous hTCRs, may be more effective in vivo. This new mTCR targeted to NY-ESO-1 represents a novel potential therapeutic option for adoptive cell-transfer therapy for a variety of malignancies.

  17. 局部晚期肺癌三维适型放射治疗和调强放射治疗的剂量学比较研究%COMPARATIVE DOSIMETRY STUDY OF 3DCRT AND IMRT FOR TREATMENT OF LOCAL ADVANCED LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    张慕娟; 周素珠; 汤亚莉; 丁春江; 陈沃培; 梁兵

    2015-01-01

    Objective To observe and analyze the tumor target sections and dose distribution of 3DCRT and IMRT in the treatment of local advanced non -small cell lung cancer (LANSCLC) and compare the advantages of the 2 treatment methods on dosimetry .Methods 52 patients with IIIa and IIIb stage non -small cell lung cancer were given both 3DCRT and IMRT.GTV, CTV, PTV and harmed trachea were sketched by CT .Dose of both treatment methods was 66Gy, and the criterion was that prescribed dose at least covered 95%PTV.Organ harmful doses were all within tolerable doses .Differences of tumor target section doses were compared according to dose distribution , conformity index and mean index of target section .Results Both groups got dose distributions satisfying criteria . PTV dose comparison of the 2 treatment methods showed that differences of mean dose and max dose group were sig -nificant (p0.05).Differences of CI and HI values were significant (p<0.05).Conclusion IMRT and 3DCRT can improve tumor target formability , but reduce uniformity .%目的:观察和分析局部晚期非小细胞肺癌三维适型放射治疗和动态多叶准直器调强放射治疗在肿瘤靶区和剂量分布,比较两种治疗方法在剂量学上的优势性。方法入选2012年7月~2013年7月就诊于我院的未手术的IIIa期和IIIb期非小细胞肺癌患者52例,按随机抽样法分为两组各26例,分别给予三维适型放射治疗(Three Dimensional Conformal Radiation Therapy ,3DCRT)和动态多叶准直器调强放射治疗(Intensity-modulated radiation therapy,IMRT),根据CT分别勾画大体肿瘤体积(Gross Tumor Volume,GTV)、临床靶体积( Clinical Target Volume ,CTV)、计划靶体积( Planning Target Volume ,PTV)和危害气管,两种治疗方法剂量均为66Gy,标准为处方剂量至少覆盖95%的PTV,危害器官剂量均在耐受剂量范围内,通过靶区等剂量分布、适型指数和均数指数等对比

  18. 叶酸受体介导的肿瘤靶向光学成像技术%Targeted Optical Imaging Technology on the Cancer Mediated Folate Receptor

    Institute of Scientific and Technical Information of China (English)

    费学宁; 刘丽娟; 朱森; 刘玉茹

    2011-01-01

    Folate receptor (FR) are up regulated in a broad spectrum of malignant tumors, including cancers of breast, ovary, endometrium, lung, kidney, colon, brain and myeloid cells of hematopoietic origin, while limited expression on normal cells. This over-expression of folate receptors on cancer tissues can be exploited to target folate-linked imaging agents specifically to FR-expressing tumor cells to realize the specific targeted optical imaging by linking folate to fluorescent probes using FR' s character of binding folate and folate conjugate with very high affinity . In this review,the schematic of folate fluorescence probe and its mechanism on the marking of tumor cells are introduced. Research and development of FR-mediated tumor targeting optical imaging technology in recent ten years such as the use of organic fluorescent dye, dye-doped nanoparticles, quantum dots (QDs), magnetic nanoparticles and multifunctional particles are summarized. The future prospects and challenges of the current tumor targeted optical imaging research are also proposed in this review. Some FR-mediated tumor targeting optical imaging technologies are shown to be very effective for sensitive cancer imaging with greater success in the cellular level, but most of the experiments are in vitro. There are several challenges in developing fluorescent probes for in vivo cancer imaging applications, such as, to develop NIR fluorescent agents and improve surface modifying technology.%叶酸受体(FR)在肿瘤细胞中都有过度表达,而在正常组织中保守表达,利用叶酸受体与叶酸及其类似物高亲合力结合的特性,将叶酸偶联荧光探针输送到肿瘤组织,从而实现肿瘤组织的特异性靶向光学成像。本文阐述了叶酸荧光探针的结构及其用于标记肿瘤细胞的作用机制,介绍了近十年来叶酸受体介导的肿瘤靶向光学成像技术,例如有机荧光染料,染料掺杂纳米颗粒,量子点,磁

  19. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response

    Energy Technology Data Exchange (ETDEWEB)

    Shevtsov, Maxim A., E-mail: shevtsov-max@mail.ru [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); A.L. Polenov Russian Research Scientific Institute of Neurosurgery, Mayakovsky str. 12, St. Petersburg 191014 (Russian Federation); Nikolaev, Boris P. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Ryzhov, Vyacheslav A. [Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina 188300 (Russian Federation); Yakovleva, Ludmila Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Dobrodumov, Anatolii V. [Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS), Bolshoi pr. 31, St. Petersburg 199004 (Russian Federation); Marchenko, Yaroslav Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Margulis, Boris A. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); Pitkin, Emil [The Wharton School, University of Pennsylvania, 3730 Walnut St., Philadelphia, PA 19104 (United States); Guzhova, Irina V. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation)

    2015-08-15

    Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION–Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M{sub 2}). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T{sub 2}-weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION–Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M{sub 2} measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors. - Highlights: • Second-harmonic nonlinear magnetic response is used for biodistribution analysis. • NLR-M{sub 2} ensures high sensibility in detection of SPIONs in tissue. • SPION–Hsp70 conjugates

  20. Reconstituted high density lipoprotein mediated targeted co-delivery of HZ08 and paclitaxel enhances the efficacy of paclitaxel in multidrug-resistant MCF-7 breast cancer cells.

    Science.gov (United States)

    Zhang, Fangrong; Wang, Xiaoyi; Xu, Xiangting; Li, Min; Zhou, Jianping; Wang, Wei

    2016-09-20

    In the past decades, reconstituted high density lipoprotein (rHDL) has been successfully developed as a drug carrier since the enhanced HDL-lipids uptake is demonstrated in several human cancers. In this paper, rHDL, for the first time, was utilized to co-encapsulate two hydrophobic drugs: an anticancer drug, paclitaxel (PTX), and a new reversal agent for P-gp (P-glycoprotein)-mediated multidrug resistance (MDR) of cancer, N-cyano-1-[(3,4-dimethoxyphenyl)methyl]-3,4-dihydro-6,7-dimethoxy-N'-octyl-2(1H)-isoquinoline-carboximidamide (HZ08). We proposed this drug co-delivery strategy to reverse PTX resistance. The study aimed to develop a biomimetic nanovector, reconstituted high density lipoprotein (rHDL), mediating targeted PTX-HZ08 delivery for cancer therapy. Using sodium cholate dialysis method, we successfully formulated dual-agent co-delivering rHDL nanoparticles (PTX-HZ08-rHDL NPs) with a typical spherical morphology, well-distributed size (~100nm), high drug encapsulation efficiency (approximately 90%), sustained drug release properties and exceptional stability even after storage for 1month or incubation in 10% fetal bovine serum (FBS) DMEM for up to 2days. Results demonstrated that PTX-HZ08-rHDL NPs significantly enhanced anticancer efficacy in vitro, including higher cytotoxicity and better ability to induce cell apoptosis against both PTX-sensitive and -resistant MCF-7 human breast cancer cell lines (MCF-7 and MCF-7/PTX cells). Mechanism studies demonstrated that these improvements could be correlated with increased cellular uptake of PTX mediated by scavenger receptor class B type I (SR-BI) as well as prolonged intracellular retention of PTX due to the HZ08 mediated drug-efflux inhibition. In addition, in vivo investigation showed that the PTX-HZ08-rHDL NPs were substantially safer, have higher tumor-targeted capacity and have stronger antitumor activity than the corresponding dosage of paclitaxel injection. These findings suggested that rHDL NPs could

  1. Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging

    Science.gov (United States)

    Lu, Yu-Chen; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2015-10-01

    The design and fabrication of multimodal imaging nanoparticles is of great importance in medical diagnosis. Here we report the fabrication of core-shell structured Zn2.94Ga1.96Ge2O10:Cr3+,Pr3+@TaOx@SiO2 nanoparticles for persistent luminescence and X-ray computed tomography (CT) imaging. Persistent luminescent nanoparticles Zn2.94Ga1.96Ge2O10:Cr3+,Pr3+ were used as the core to provide near-infrared luminescence, and a TaOx layer was grown on the core to serve as the contrast agent for CT. The tenuous outermost SiO2 shell was fabricated on the TaOx layer to gain high biocompatibility and to facilitate post-modification with tumor-targeting peptides. The fabricated core-shell structured nanoparticle shows intense near-infrared luminescence and the CT contrast effect. No obvious mutual interference was found in these two modalities, which ensures that each imaging modality merits could be brought in a full play. Furthermore, covalent bonding of cyclic-Asn-Gly-Arg peptides makes the core-shell structured nanoparticles promising for in vivo targeted imaging of tumor-bearing mice.The design and fabrication of multimodal imaging nanoparticles is of great importance in medical diagnosis. Here we report the fabrication of core-shell structured Zn2.94Ga1.96Ge2O10:Cr3+,Pr3+@TaOx@SiO2 nanoparticles for persistent luminescence and X-ray computed tomography (CT) imaging. Persistent luminescent nanoparticles Zn2.94Ga1.96Ge2O10:Cr3+,Pr3+ were used as the core to provide near-infrared luminescence, and a TaOx layer was grown on the core to serve as the contrast agent for CT. The tenuous outermost SiO2 shell was fabricated on the TaOx layer to gain high biocompatibility and to facilitate post-modification with tumor-targeting peptides. The fabricated core-shell structured nanoparticle shows intense near-infrared luminescence and the CT contrast effect. No obvious mutual interference was found in these two modalities, which ensures that each imaging modality merits could be brought

  2. Peptide targeting of adenoviral vectors to augment tumor gene transfer.

    Science.gov (United States)

    Ballard, E N; Trinh, V T; Hogg, R T; Gerard, R D

    2012-07-01

    Adenovirus serotype 5 remains one of the most promising vectors for delivering genetic material to cancer cells for imaging or therapy, but optimization of these agents to selectively promote tumor cell infection is needed to further their clinical development. Peptide sequences that bind to specific cell surface receptors have been inserted into adenoviral capsid proteins to improve tumor targeting, often in the background of mutations designed to ablate normal ligand:receptor interactions and thereby reduce off target effects and toxicities in non-target tissues. Different tumor types also express highly variable complements of cell surface receptors, so a customized targeting strategy using a particular peptide in the context of specific adenoviral mutations may be needed to achieve optimal efficacy. To further investigate peptide targeting strategies in adenoviral vectors, we used a set of peptide motifs originally isolated using phage display technology that evince tumor specificity in vivo. To demonstrate their abilities as targeting motifs, we genetically incorporated these peptides into a surface loop of the fiber capsid protein to construct targeted adenovirus vectors. We then systematically evaluated the ability of these peptide targeted vectors to infect several tumor cell types, both in vitro and in vivo, in a variety of mutational backgrounds designed to reduce CAR and/or HSG-mediated binding. Results from this study support previous observations that peptide insertions in the HI loop of the fiber knob domain are generally ineffective when used in combination with HSG detargeting mutations. The evidence also suggests that this strategy can attenuate other fiber knob interactions, such as CAR-mediated binding, and reduce overall viral infectivity. The insertion of peptides into fiber proved more effective for targeting tumor cell types expressing low levels of CAR receptor, as this strategy can partially compensate for the very low infectivity of wild

  3. Target volume delineation in individualized radiotherapy of non-surgical esophageal carcinoma%非手术食管癌个体化放疗的靶区勾画进展

    Institute of Scientific and Technical Information of China (English)

    营巧玲; 李前文; 杜云翔

    2014-01-01

    Individualized radiotherapy is the ideal model of radiation therapy, based on tailoring the treatment in a large num-ber of individual clinical, pathological and molecular genetic level. Two key problems exist in the implementation of individualized ra-diotherapy, one is how to identify and individually delineate the target volume of esophageal carcinoma, and the other is how to individ-ually implement the precise exposure. Due to technological advances and the renovation of equipment in radiotherapy for esophageal car-cinoma, the individualized implementation of the precise exposure has become possible. In recent years, with the advent of functional imaging, molecular imaging and other new technologies, it points out the future research direction of individualized tumor target volume delineation. This article reviewed the definition of the target volume in the individual radiotherapy of non-surgical esophageal carcinoma, which involves the application of new technologies such as anatomical imaging, functional imaging, hypoxia, molecular im-aging to individually identify and delineat the tumor target volume, including gross tumor volume, clinical tumor volume, planning tar-get volume, biological target volume and etc.%个体化放疗的实施取决于两个关键环节,首先是靶区的个体化识别和勾画,另一个是射线的个体化施照。由于放疗设备的更新和精确放疗技术的快速发展,实现射线个体化的精确施照成为可能。近年来,随着功能影像和分子显像等新技术的出现,指明了肿瘤个体化放疗靶区勾画的研究方向。本文对非手术食管癌患者个体化放疗的靶区勾画进行综述,内容涉及应用解剖影像、功能影像、乏氧和分子显像等新技术个体化识别和勾画非手术食管癌的放疗靶区,包括大体肿瘤靶区、临床靶区、计划靶区、生物靶区等。

  4. Near infrared light-actuated gold nanorods with cisplatin-polypeptide wrapping for targeted therapy of triple negative breast cancer

    Science.gov (United States)

    Feng, Bing; Xu, Zhiai; Zhou, Fangyuan; Yu, Haijun; Sun, Qianqian; Wang, Dangge; Tang, Zhaohui; Yu, Haiyang; Yin, Qi; Zhang, Zhiwen; Li, Yaping

    2015-09-01

    Despite considerable progress being made in breast cancer therapy, the complete eradication of highly aggressive triple negative breast cancer (TNBC) remains a notable challenge today. We herein report on the fabrication of novel gold nanorods (GNRs) with covalent cisplatin-polypeptide wrapping and folic acid (FA) conjugation (FA-GNR@Pt) for the targeted photothermal (PT) therapy and chemotherapy of TNBC. The FA-GNR@Pt hybrid nanoparticles are designed to integrate the photothermal conversion property of GNRs, the superior biocompatibility of polypeptide poly(l-glutamic acid) (PGA), the chemotoxicity of cisplatin, and the tumor targeting ability of FA into one single nanoplatform. In combination with localized near infrared (NIR) laser illumination, the resulting FA-GNR@Pt hybrid nanoparticles are able to significantly inhibit the growth of the TNBC tumor when administered systemically. In particular, they can extensively suppress the dissemination of TNBC cells from the primary tumor to the lung by eliminating the peripheral tumor blood vessels. Collectively, our studies demonstrate that the combined PT therapy and chemotherapy using cisplatin-loaded GNRs with FA conjugation might imply a promising strategy for targeted treatment of TNBC.Despite considerable progress being made in breast cancer therapy, the complete eradication of highly aggressive triple negative breast cancer (TNBC) remains a notable challenge today. We herein report on the fabrication of novel gold nanorods (GNRs) with covalent cisplatin-polypeptide wrapping and folic acid (FA) conjugation (FA-GNR@Pt) for the targeted photothermal (PT) therapy and chemotherapy of TNBC. The FA-GNR@Pt hybrid nanoparticles are designed to integrate the photothermal conversion property of GNRs, the superior biocompatibility of polypeptide poly(l-glutamic acid) (PGA), the chemotoxicity of cisplatin, and the tumor targeting ability of FA into one single nanoplatform. In combination with localized near infrared (NIR

  5. Construction of magnetic-carbon-quantum-dots-probe-labeled apoferritin nanocages for bioimaging and targeted therapy

    Directory of Open Access Journals (Sweden)

    Yao HC

    2016-09-01

    Full Text Available Hanchun Yao,1,2 Li Su,1 Man Zeng,1 Li Cao,1 Weiwei Zhao,1 Chengqun Chen,3 Bin Du,1,2 Jie Zhou1,2 1School of Pharmaceutical Sciences, Zhengzhou University, 2Collaborative Innovation Center of Drug Research and Safety Evaluation, Henan Province, 3Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China Abstract: Carbon dots (CDs are one of the most highlighted carbon-based materials for biological applications, such as optical imaging nanoprobes, which are used for labeling cells in cancer treatment mainly due to their biocompatibility and unique optical properties. In this study, gadolinium (Gd-complex-containing CDs were obtained through a one-step microwave method to develop multimodal nanoprobes integrating the advantages of optical and magnetic imaging. The obtained Gd-CDs exhibited highly fluorescent properties with excellent water solubility and biological compatibility. Natural apoferritin (AFn nanocages, an excellent drug delivery carrier, are hollow in structure, with their pH-dependent, unfolding–refolding process at pH 2.0 and 7.4. The chemotherapeutic drug doxorubicin (DOX can be highly effective and encapsulated into AFn cavity. A widely used tumor-targeting molecule, folic acid (FA, functionalized the surface of AFn to obtain an active tumor targeting effect on MCF-7 cells and malignant tumors in mice models. In this study, an AFn nanocarrier encapsulating high concentration of DOX labeled with magnetic and fluorescent Gd-CDs probe was developed. Gd-CDs exhibited a unique green photoluminescence and almost no toxicity compared with free GdCl3. Furthermore, Gd-doped CDs significantly increased the circulation time and decreased the toxicity of Gd3+ in in vitro and in vivo magnetic resonance imaging, which demonstrated that the AFn nanocages labeled with Gd-CD compounds could serve as an excellent T1 contrast agent for magnetic resonance imaging. The self

  6. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging.

    Directory of Open Access Journals (Sweden)

    Sarah J Moore

    Full Text Available BACKGROUND: Cystine-knot miniproteins, also known as knottins, have shown great potential as molecular scaffolds for the development of targeted therapeutics and diagnostic agents. For this purpose, previous protein engineering efforts have focused on knottins based on the Ecballium elaterium trypsin inhibitor (EETI from squash seeds, the Agouti-related protein (AgRP neuropeptide from mammals, or the Kalata B1 uterotonic peptide from plants. Here, we demonstrate that Agatoxin (AgTx, an ion channel inhibitor found in spider venom, can be used as a molecular scaffold to engineer knottins that bind with high-affinity to a tumor-associated integrin receptor. METHODOLOGY/PRINCIPAL FINDINGS: We used a rational loop-grafting approach to engineer AgTx variants that bound to αvβ3 integrin with affinities in the low nM range. We showed that a disulfide-constrained loop from AgRP, a structurally-related knottin, can be substituted into AgTx to confer its high affinity binding properties. In parallel, we identified amino acid mutations required for efficient in vitro folding of engineered integrin-binding AgTx variants. Molecular imaging was used to evaluate in vivo tumor targeting and biodistribution of an engineered AgTx knottin compared to integrin-binding knottins based on AgRP and EETI. Knottin peptides were chemically synthesized and conjugated to a near-infrared fluorescent dye. Integrin-binding AgTx, AgRP, and EETI knottins all generated high tumor imaging contrast in U87MG glioblastoma xenograft models. Interestingly, EETI-based knottins generated significantly lower non-specific kidney imaging signals compared to AgTx and AgRP-based knottins. CONCLUSIONS/SIGNIFICANCE: In this study, we demonstrate that AgTx, a knottin from spider venom, can be engineered to bind with high affinity to a tumor-associated receptor target. This work validates AgTx as a viable molecular scaffold for protein engineering, and further demonstrates the promise of using

  7. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-03-01

    Full Text Available Yumin Zhang,1,* Junhui Zhou,2,* Cuihong Yang,1 Weiwei Wang,3 Liping Chu,1 Fan Huang,1 Qiang Liu,1 Liandong Deng,2 Deling Kong,3 Jianfeng Liu,1 Jinjian Liu1 1Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, 2Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 3Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People’s Republic of China *These authors contributed equally in this work Abstract: Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM. Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against

  8. Imaging cancer using PET - the effect of the bifunctional chelator on the biodistribution of a {sup 64}Cu-labeled antibody

    Energy Technology Data Exchange (ETDEWEB)

    Dearling, Jason L.J., E-mail: jason.dearling@childrens.harvard.ed [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Voss, Stephan D. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Dunning, Patricia; Snay, Erin [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Fahey, Frederic [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Smith, Suzanne V. [Australian National Science and Technology Organisation (ANSTO), New Illawarra Road, PMB1, Menai, New South Wales 2234 (Australia); Huston, James S. [EMD Serono Research Center, 45A Middlesex Turnpike, Billerica, MA 01821-3936 (United States); Boston Biomedical Research Institute, Watertown, MA 02472-2899 (United States); Meares, Claude F. [Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5295 (United States); Treves, S. Ted; Packard, Alan B. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)

    2011-01-15

    Introduction: Use of copper radioisotopes in antibody radiolabeling is challenged by reported loss of the radionuclide from the bifunctional chelator used to label the protein. The objective of this study was to investigate the relationship between the thermodynamic stability of the {sup 64}Cu-complexes of five commonly used bifunctional chelators (BFCs) and the biodistribution of an antibody labeled with {sup 64}Cu using these chelators in tumor-bearing mice. Methods: The chelators [S-2-(aminobenzyl)1,4,7-triazacyclononane-1,4,7-triacetic acid (p-NH{sub 2}-Bn-NOTA): 6-[p-(bromoacetamido)benzyl]-1, 4, 8, 11-tetraazacyclotetradecane-N, N', N'', N'''-tetraacetic acid (BAT-6): S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododocane tetraacetic acid (p-NH{sub 2}-Bn-DOTA): 1,4,7,10-tetraazacyclododocane-N, N', N', N''-tetraacetic acid (DOTA): and 1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1, 8-diamine (SarAr)] were conjugated to the anti-GD2 antibody ch14.18, and the modified antibody was labeled with {sup 64}Cu and injected into mice bearing subcutaneous human melanoma tumors (M21) (n = 3-5 for each study). Biodistribution data were obtained from positron emission tomography images acquired at 1, 24 and 48 hours post-injection, and at 48 hours post-injection a full ex vivo biodistribution study was carried out. Results: The biodistribution, including tumor targeting, was similar for all the radioimmunoconjugates. At 48 h post-injection, the only statistically significant differences in radionuclide uptake (p < 0.05) were between blood, liver, spleen and kidney. For example, liver uptake of [{sup 64}Cu]ch14.18-p-NH{sub 2}-Bn-NOTA was 4.74 {+-} 0.77 per cent of the injected dose per gram of tissue (%ID/g), and for [{sup 64}Cu]ch14.18-SarAr was 8.06 {+-} 0.77 %ID/g. Differences in tumor targeting correlated with variations in tumor size rather than which BFC was used. Conclusions: The results of this

  9. Folate receptor-targeted liposomes loaded with a diacid metabolite of norcantharidin enhance antitumor potency for H22 hepatocellular carcinoma both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Liu MC

    2016-04-01

    Full Text Available Min-Chen Liu,1 Lin Liu,1 Xia-Rong Wang,1 Wu-Ping Shuai,2 Ying Hu,3 Min Han,1 Jian-Qing Gao1 1Institute of Pharmaceutics, College of Pharmaceutical Sciences, 2First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 3Zhejiang Pharmaceutical College, Ningbo, People’s Republic of China Abstract: The diacid metabolite of norcantharidin (DM-NCTD is clinically effective against hepatocellular carcinoma (HCC, but is limited by its short half-life and high incidence of adverse effects at high doses. We developed a DM-NCTD-loaded, folic acid (FA-modified, polyethylene glycolated (DM-NCTD/FA-PEG liposome system to enhance the targeting effect and antitumor potency for HCC at a moderate dose based on our previous study. The DM-NCTD/FA-PEG liposome system produced liposomes with regular spherical morphology, with mean particle size approximately 200 nm, and an encapsulation efficiency >80%. MTT cytotoxicity assays demonstrated that the DM-NCTD/FA-PEG liposomes showed significantly stronger cytotoxicity effects on the H22 hepatoma cell line than did PEG liposomes without the FA modification (P<0.01. We used liquid chromatography–mass spectrometry for determination of DM-NCTD in tissues and tumors, and found it to be sensitive, rapid, and reliable. In addition, the biodistribution study showed that DM-NCTD liposomes improved tumor-targeting efficiency, and DM-NCTD/FA-PEG liposomes exhibited the highest efficiency of the treatments (P<0.01. Meanwhile, the results indicated that although the active liposome group had an apparently increased tumor-targeting efficiency of DM-NCTD, the risk to the kidney was higher than in the normal liposome group. With regard to in vivo antitumor activity, DM-NCTD/FA-PEG liposomes inhibited tumors in H22 tumor-bearing mice better than either free DM-NCTD or DM-NCTD/PEG liposomes (P<0.01, and induced considerably more significant cellular apoptosis in the tumors, with no obvious toxicity to the tissues

  10. A new PET tracer specific for vascular endothelial growth factor receptor 2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Cai, Weibo; Chen, Kai; Li, Zi-Bo; Kashefi, Amir; He, Lina; Chen, Xiaoyuan [Stanford University School of Medicine, The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford, CA (United States)

    2007-12-15

    Noninvasive positron emission tomography (PET) imaging of vascular endothelial growth factor receptor 2 (VEGFR-2) expression could be a valuable tool for evaluation of patients with a variety of malignancies, and particularly for monitoring those undergoing antiangiogenic therapies that block VEGF/VEGFR-2 function. The aim of this study was to develop a VEGFR-2-specific PET tracer. The D63AE64AE67A mutant of VEGF{sub 121} (VEGF{sub DEE}) was generated by recombinant DNA technology. VEGF{sub 121} and VEGF{sub DEE} were purified and conjugated with DOTA for {sup 64}Cu labeling. The DOTA conjugates were tested in vitro for VEGFR-2 specificity and functional activity. In vivo tumor targeting efficacy and pharmacokinetics of {sup 64}Cu-labeled VEGF{sub 121} and VEGF{sub DEE} were compared using an orthotopic 4T1 murine breast tumor model. Blocking experiments, biodistribution studies, and immunofluorescence staining were carried out to confirm the noninvasive imaging results. Cell binding assay demonstrated that VEGF{sub DEE} had about 20-fold lower VEGFR-1 binding affinity and only slightly lower VEGFR-2 binding affinity as compared with VEGF{sub 121}. MicroPET imaging studies revealed that both {sup 64}Cu-DOTA-VEGF{sub 121} and {sup 64}Cu-DOTA-VEGF{sub DEE} had rapid and prominent activity accumulation in VEGFR-2-expressing 4T1 tumors. The renal uptake of {sup 64}Cu-DOTA-VEGF{sub DEE} was significantly lower than that of {sup 64}Cu-DOTA-VEGF{sub 121} as rodent kidneys expressed high levels of VEGFR-1 based on immunofluorescence staining. Blocking experiments and biodistribution studies confirmed the VEGFR specificity of {sup 64}Cu-DOTA-VEGF{sub DEE}. We have developed a VEGFR-2-specific PET tracer, {sup 64}Cu-DOTA-VEGF{sub DEE}. It has comparable tumor targeting efficacy to {sup 64}Cu-DOTA-VEGF{sub 121} but much reduced renal toxicity. This tracer may be translated into the clinic for imaging tumor angiogenesis and monitoring antiangiogenic treatment efficacy. (orig.)

  11. Self-assembled nanoparticles based on the c(RGDfk peptide for the delivery of siRNA targeting the VEGFR2 gene for tumor therapy

    Directory of Open Access Journals (Sweden)

    Liu L

    2014-07-01

    Full Text Available Li Liu,1 Xiaoxia Liu,1 Qian Xu,1 Ping Wu,2 Xialin Zuo,3 Jingjing Zhang,1 Houliang Deng,1 Zhuomin Wu,1 Aimin Ji1 1Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2Department of Pharmacy, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, People’s Republic of China; 3Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, People’s Republic of China Abstract: The clinical application of small interfering RNA (siRNA has been restricted by their poor intracellular uptake, low serum stability, and inability to target specific cells. During the last several decades, a great deal of effort has been devoted to exploring materials for siRNA delivery. In this study, biodegradable, tumor-targeted, self-assembled peptide nanoparticles consisting of cyclo(Arg–Gly–Asp–d–Phe–Lys-8–amino–3,6–dioxaoctanoic acid–β–maleimidopropionic acid (hereafter referred to as RPM were found to be an effective siRNA carrier both in vitro and in vivo. The nanoparticles were characterized based on transmission electron microscopy, circular dichroism spectra, and dynamic light scattering. In vitro analyses showed that the RPM/VEGFR2-siRNA exhibited negligible cytotoxicity and induced effective gene silencing. Delivery of the RPM/VEGFR2 (zebrafish-siRNA into zebrafish embryos resulted in inhibition of neovascularization. Administration of RPM/VEGFR2 (mouse-siRNA to tumor-bearing nude mice led to a significant inhibition of tumor growth, a marked reduction of vessels, and a downregulation of VEGFR2 (messenger RNA and protein in tumor tissue. Furthermore, the levels of IFN-α, IFN-γ, IL-12, and IL-6 in mouse serum, assayed via enzyme-linked immunosorbent assay, did not indicate any immunogenicity of the RPM/VEGFR2

  12. In vivo SPECT imaging of tumors by {sup 198,199}Au-labeled graphene oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fazaeli, Yousef [Nuclear Medicine Research Group, Agricultural, Medical and Industrial Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 31485-498, Karaj (Iran, Islamic Republic of); Akhavan, Omid, E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology (SUT), P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology (SUT), P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Rahighi, Reza [Department of Physics, Sharif University of Technology (SUT), P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Aboudzadeh, Mohammad Reza; Karimi, Elham; Afarideh, Hossein [Nuclear Medicine Research Group, Agricultural, Medical and Industrial Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)

    2014-12-01

    Graphene oxide (GO) sheets functionalized by aminopropylsilyl groups (8.0 wt.%) were labeled by {sup 198,199}Au nanoparticle radioisotopes (obtained through reduction of HAuCl{sub 4} in sodium citrate solution followed by thermal neutron irradiation) for fast in vivo targeting and SPECT imaging (high purity germanium-spectrometry) of tumors. Using instant thin layer chromatography method, the physicochemical properties of the amino-functionalized GO sheets labeled by {sup 198,199}Au NPs ({sup 198,199}Au@AF-GO) were found to be highly stable enough in organic phases, e.g. a human serum, to be reliably used in bioapplications. In vivo biodistribution of the {sup 198,199}Au@AF-GO composite was investigated in rats bearing fibrosarcoma tumor after various post-injection periods of time. The {sup 198,199}Au@AF-GO nanostructure exhibited a rapid as well as high tumor uptake (with uptake ratio of tumor to muscle of 167 after 4 h intravenous injection) that resulted in an efficient tumor targeting/imaging. Meantime, the low lipophilicity of the {sup 198,199}Au@AF-GO caused to its fast excretion (∼ 24 h) throughout the body by the kidneys (as also confirmed by the urinary tract). Because of the short half-life of {sup 198,199}Au radioisotopes, the {sup 198,199}Au@AF-GO with an excellent tumor targeting/imaging and fast washing out from the body can be suggested as one of the most effective and promising nanomaterials in nanotechnology-based cancer diagnosis and therapy. - Graphical abstract: Amino-functionalized graphene oxide sheets were labeled with radioactive gold nanoparticles as effective SPECT imaging and therapeutic agents. - Highlights: • GO sheets were functionalized by amino groups and labeled by Au NP radioisotopes. • Au@AF-GO nanocomposites were used for in vivo targeting and SPECT imaging of tumors. • In vivo biodistribution study showed high tumor uptake of the nanocomposites. • Low lipophilicity of the nanocomposite caused its fast excretion

  13. Synthesis and biological evaluation of potent {alpha}{sub v}{beta}{sub 3}-integrin receptor antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Ingrid [Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands) and Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht (Netherlands)]. E-mail: i.dijkgraaf@nucmed.umcn.nl; Kruijtzer, John A.W. [Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht (Netherlands); Frielink, Cathelijne [Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands); Soede, Annemieke C. [Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands); Hilbers, Hans W. [Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht (Netherlands); Oyen, Wim J.G. [Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands); Corstens, Frans H.M. [Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands); Liskamp, Rob M.J. [Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht (Netherlands); Boerman, Otto C. [Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands)

    2006-11-15

    Introduction: {alpha}{sub v}{beta}{sub 3} Integrin is expressed in sprouting endothelial cells in growing tumors, whereas it is absent in quiescent blood vessels. In addition, various tumor cell types express {alpha}{sub v}{beta}{sub 3} integrin. {alpha}{sub v}{beta}{sub 3} Integrin, a transmembrane heterodimeric protein, binds to the arginine-glycine-aspartic acid (RGD) amino acid sequence of extracellular matrix proteins such as vitronectin and plays a pivotal role in invasion, proliferation and metastasis. Due to the selective expression of {alpha}{sub v}{beta}{sub 3} integrin in tumors, radiolabeled RGD peptides and peptidomimetics are attractive candidates for tumor targeting. Methods: A cyclic RGD peptide, a peptoid-peptide hybrid, an all-peptoid and a peptidomimetic compound were synthesized, conjugated with 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA) and radiolabeled with {sup 111}In. Their in vitro and in vivo {alpha}{sub v}{beta}{sub 3}-binding characteristics were determined. Results: IC{sub 5} values were 236 nM for DOTA-E-c(RGDfK), 219 nM for DOTA-peptidomimetic, >10 mM for DOTA-all-peptoid and 9.25 mM for the peptoid-peptide hybrid DOTA-E-c(nRGDfK). {sup 111}In-labeled compounds, except for [{sup 111}In]DOTA-all-peptoid, showed specific uptake in human {alpha}{sub v}{beta}{sub 3}-expressing tumors xenografted in athymic mice. Tumor uptake for [{sup 111}In]DOTA-E-c(RGDfK) was 1.73{+-}0.4% ID/g (2 h postinjection) and that of [{sup 111}In]DOTA-peptidomimetic was 2.04{+-}0.3% ID/g. Tumor uptake for the peptoid-peptide hybrid [{sup 111}In]DOTA-E-c(nRGDfK) was markedly lower (0.45{+-}0.07% ID/g). The all-peptoid [{sup 111}In]DOTA-E-c(nRGnDnFnK) did not show specific uptake in tumors (0.11{+-}0.04% ID/g). Conclusions: The peptidomimetic compound and the cyclic RGD peptide have a high affinity for {alpha}{sub v}{beta}{sub 3} integrin, and these compounds have better tumor-targeting characteristics than the

  14. Degradable polyethylenimine derivate coupled to a bifunctional peptide R13 as a new gene-delivery vector

    Directory of Open Access Journals (Sweden)

    Liu K

    2012-02-01

    Full Text Available Kehai Liu1,2,*, Xiaoyu Wang1,*, Wei Fan1, Qing Zhu2, Jingya Yang2, Jing Gao3, Shen Gao1 1Department of Pharmaceutics, Shanghai Hospital, Second Military Medical University, 2Department of Biopharmaceutics, School of Food Science and Technology, Shanghai Ocean University, 3Department of Pharmaceutics, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China*The first two authors contributed equally to this workBackground: To solve the efficiency versus cytotoxicity and tumor-targeting problems of polyethylenimine (PEI used as a nonviral gene delivery vector, a degradable PEI derivate coupled to a bifunctional peptide R13 was developed.Methods: First, we synthesized a degradable PEI derivate by crosslinking low-molecular-weight PEI with pluronic P123, then used tumor-targeting peptide arginine-glycine-aspartate-cysteine (RGDC, in conjunction with the cell-penetrating peptide Tat (49–57, to yield a bifunctional peptide RGDC-Tat (49–57 named R13, which can improve cell selection and increase cellular uptake, and, lastly, adopted R13 to modify the PEI derivates so as to prepare a new polymeric gene vector (P123-PEI-R13. The new gene vector was characterized in terms of its chemical structure and biophysical parameters. We also investigated the specificity, cytotoxicity, and gene transfection efficiency of this vector in avß3-positive human cervical carcinoma Hela cells and murine melanoma B16 cells in vitro.Results: The vector showed controlled degradation, strong targeting specificity to avß3 receptor, and noncytotoxicity in Hela cells and B16 cells at higher doses, in contrast to PEI 25 KDa. The particle size of P123-PEI-R13/DNA complexes was around 100–250 nm, with proper zeta potential. The nanoparticles can protect plasmid DNA from being digested by DNase I at a concentration of 6 U DNase I/µg DNA. The nanoparticles were resistant to dissociation induced by 50% fetal bovine serum and 600 µg/mL sodium

  15. 不同表面修饰的Fe3O4纳米颗粒在体肿瘤成像研究%In vivo MR imaging of tumor by using Fe3O4 nanoparticles bearing with different surface ligand as contrast agent

    Institute of Scientific and Technical Information of China (English)

    乔瑞瑞; 刘侃; 贾兵; 曾剑峰; 欧阳汉; 王凡; 高明远

    2011-01-01

    Objective: To compare the contrast effect for MR imaging of tumor by using two types of Fe3O4 nanoparticles bearing with different surface ligands as tumor-targeting contrast agent.Methods: The tumor-targeting peptide c(RGDyK) was conjugated with Fe3O4 nanoparticles bearing with carboxylic groups by the conjugation reaction mediated by EDC and sulfo-NHS.Then, the conjugates were applied to in vivo detecting tumors in BALB/ c nude mice bearing U-87 MG human glioma cancer xenografts.Results and Conclusion: The two different types of Fe3O4 nanoparticles both can obtain obvious contrast effect, however, the best contrast images had to be acquired at different time.For particles bearing with PEG and oleyamine, the best contrast images can be acquired at 8 h after injection, while for particles bearing with PEG, it was 4 h after injection, which may be affected by the different surface charge of the Fe3O4 nanoparticles.%目的:比较两种不同表面修饰的Fe3O4纳米颗粒作为肿瘤探针进行在体磁共振成像(MRI)的区别.方法:采用两种不同表面修饰的Fe3O4作为磁共振造影剂,并利用其表面羧基与具有靶向识别肿瘤表面整合素受体(Integrin αvβ3)的c(RGDyK)多肽进行耦联,制备出具有肿瘤靶向性的磁共振分子探针.以荷人脑胶质瘤(U-87 MG)裸鼠为动物模型,进行体内MRI研究.结果与结论:两种纳米颗粒均能够产生明显的T2造影效果,表面为聚乙二醇及油胺共同修饰的纳米颗粒的最佳成像时间为注射药物后8 h,而只有聚乙二醇修饰的纳米颗粒的最佳成像时间为注射药物后4 h,导致两种纳米颗粒在成像时达到最佳成像效果的时间不同的原因在于其表面电荷的不同.

  16. Dendritic cells fused with different pancreatic carcinoma cells induce different T-cell responses

    Directory of Open Access Journals (Sweden)

    Andoh Y

    2013-01-01

    Full Text Available Yoshiaki Andoh,1,2 Naohiko Makino,2 Mitsunori Yamakawa11Department of Pathological Diagnostics, 2Department of Gastroenterology, Yamagata University School of Medicine, Yamagata, JapanBackground: It is unclear whether there are any differences in the induction of cytotoxic T lymphocytes (CTL and CD4+CD25high regulatory T-cells (Tregs among dendritic cells (DCs fused with different pancreatic carcinomas. The aim of this study was to compare the ability to induce cytotoxicity by human DCs fused with different human pancreatic carcinoma cell lines and to elucidate the causes of variable cytotoxicity among cell lines.Methods: Monocyte-derived DCs, which were generated from peripheral blood mononuclear cells (PBMCs, were fused with carcinoma cells such as Panc-1, KP-1NL, QGP-1, and KP-3L. The induction of CTL and Tregs, and cytokine profile of PBMCs stimulated by fused DCs were evaluated.Results: The cytotoxicity against tumor targets induced by PBMCs cocultured with DCs fused with QGP-1 (DC/QGP-1 was very low, even though PBMCs cocultured with DCs fused with other cell lines induced significant cytotoxicity against the respective tumor target. The factors causing this low cytotoxicity were subsequently investigated. DC/QGP-1 induced a significant expansion of Tregs in cocultured PBMCs compared with DC/KP-3L. The level of interleukin-10 secreted in the supernatants of PBMCs cocultured with DC/QGP-1 was increased significantly compared with that in DC/KP-3L. Downregulation of major histocompatibility complex class I expression and increased secretion of vascular endothelial growth factor were observed with QGP-1, as well as in the other cell lines.Conclusion: The present study demonstrated that the cytotoxicity induced by DCs fused with pancreatic cancer cell lines was different between each cell line, and that the reduced cytotoxicity of DC/QGP-1 might be related to the increased secretion of interleukin-10 and the extensive induction of Tregs

  17. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine

    2010-01-01

    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  18. Rapid Generation of In Vitro Multicellular Spheroids for the Study of Monoclonal Antibody Therapy

    Directory of Open Access Journals (Sweden)

    Yen T. Phung, Dario Barbone, V. Courtney Broaddus, Mitchell Ho

    2011-01-01

    Full Text Available Tumor microenvironments present significant barriers to penetration by antibodies and immunoconjugates and are difficult to study in vitro. Cells cultured as monolayers typically exhibit less resistance to therapy than those grown in vivo. Therefore, it is important to develop an alternative research model that better represents in vivo tumors. We have developed a protocol to produce multicellular spheroids, a simple and more relevant model of in vivo tumors that allows for further investigations of the microenvironmental effects on drug penetration and tumor cell killing. The protocol is used to produce in vitro three-dimensional tumor spheroids from established human cancer cell lines and primary cancer cells isolated from patients without the use of any extracellular components. To study the ability of tumor-targeting immunoconjugates to penetrate these tumor spheroids in vitro, we have used an immunotoxin targeting mesothelin, a surface protein expressed in malignant mesotheliomas. This method for producing consistent, reproducible 3D spheroids may allow for improved testing of novel monoclonal antibodies and other agents for their ability to penetrate solid tumors for cancer therapy.

  19. Modular Integration of Upconverting Nanocrystal-Dendrimer Composites for Folate Receptor-Specific NIR Imaging and Light-Triggered Drug Release.

    Science.gov (United States)

    Wong, Pamela T; Chen, Dexin; Tang, Shengzhuang; Yanik, Sean; Payne, Michael; Mukherjee, Jhindan; Coulter, Alexa; Tang, Kenny; Tao, Ke; Sun, Kang; Baker, James R; Choi, Seok Ki

    2015-12-01

    Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system.

  20. A Biomimic Reconstituted High-Density-Lipoprotein-Based Drug and p53 Gene Co-delivery System for Effective Antiangiogenesis Therapy of Bladder Cancer

    Science.gov (United States)

    Ouyang, Qiaohong; Duan, Zhongxiang; Jiao, Guangli; Lei, Jixiao

    2015-07-01

    A biomimic reconstituted high-density-lipoprotein-based drug and p53 gene co-delivery system (rHDL/CD-PEI/p53 complexes) was fabricated as a targeted co-delivery nanovector of drug and gene for potential bladder cancer therapy. Here, CD-PEI was utilized to effectively condense the p53 plasmid, to incorporate the plasmid into rHDL, and to act as an antitumor drug to suppress tumor angiogenesis. The rHDL/CD-PEI/p53 complexes exhibited desirable and homogenous particle size, neutral surface charge, and low cytotoxicity in vitro. The results of confocal laser scanning microscopy and flow cytometry confirmed that SR-BI-targeted function induced specific cytoplasmic delivery and high gene transfection efficiency in MBT-2 murine bladder cells. In addition, rHDL/CD-PEI/p53 complexes co-delivering CD and p53 gene achieved synergistic angiogenesis suppression by more effectively downregulating the expression of vascular endothelial growth factor (VEGF) messenger RNA (mRNA) and protein via different pathways in vitro. In vivo investigation on C3H/He mice bearing MBT-2 tumor xenografts revealed that rHDL/CD-PEI/p53 complexes possessed strong antitumor activity. These findings suggested that rHDL/CD-PEI/p53 complexes could be an ideal tumor-targeting system for simultaneous transfer of drug and gene, which might be a new promising strategy for effective bladder cancer therapy.

  1. Salmonella typhimurium strain SL7207 induces apoptosis and inhibits the growth of HepG2 hepatoma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Baowei Li

    2012-12-01

    Full Text Available Salmonella typhimurium is probably most extensively studied tumor-targeting bacteria and SL7207 is one of its attenuated strains. SL7207 was first made for bacterial vaccine development and its therapeutic efficacy and safety for hepatocellular carcinoma has not been characterized. In this study, the inhibitory ability of SL7207-lux on human hepatoma HepG2 cells was tested in vitro and in vivo. A bacterial luminescent gene cluster (lux CDABE was transfected into SL7207 to better monitor the invasion of the bacteria. The results show that SL7207-lux can rapidly enter HepG2 cells and localize in the cytoplasm. This invasion represses cell proliferation and induces apoptosis. In vivo real-time invasion studies showed that the bacteria gradually accumulate in the tumor. This enrichment was confirmed by anatomic observation at 5 days after inoculation. About 40% of tumor growth was inhibited by SL7207-lux at 34 days post-treatment without significant loss of body weight. The area of necrosis of tumor tissue was clearly increased in the treated group. Bacterial quantification showed that the number of colony-forming units per gram of bacteria within tumor tissue was approximately 1000-fold higher than that of liver and spleen. These data suggest that attenuated S. typhimurium strain SL7207 has potential for the treatment of cancers.

  2. Development of application technology of radiation-resistant microorganism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Lim, Sang Yong; Joe, Min Ho; Jung, Jin Woo; Jung, Sun Wook; Song, Du Sup; Choi, Young Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-02-15

    The scope of the project is divided into of three parts; (i) to define the survival strategy of radiation-resistant microbes, especially Deinococcus (ii) acquisition of gene resources encoding the novel protein and related with the production of functional materials (iii) development of control technology against radiation-resistant microbes. To this aim, first, the whole transcriptional response of the D. radiodurans strain haboring pprI mutation, which plays an important role in radiation resistance, was analyzed by cDNA microarray. The anti-oxidant activity of the major carotenoid of D. radiodurans, deinoxanthin, was analyzed and the strain was constructed, in which the gene necessary for bio- synthesis of deinoxanthin is deleted. The response to cadmium of D. radiodurans was also investigated through cDNA microarray analysis. Radiogenic therapy, one of the cancer treatments, is designed to use radiation-inducible gene for the treatment. To develop the gene-transfer vehicle for radiogenic therapy, we have investigated the virulence mechanism of Salmonella, which is tumor-targeting bacteria and studied the synergistic effect of some anti-cancer agents on radiation treatment for cancer. Finally, we confirmed that irradiation could decompose a fungus toxin, patulin, into various harmless by-products.

  3. Targeted Cancer Therapy Using Engineered Salmonella typhimurium

    Science.gov (United States)

    Zheng, Jin Hai

    2016-01-01

    Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy. PMID:27689027

  4. Luminescent probes for optical in vivo imaging

    Science.gov (United States)

    Texier, Isabelle; Josserand, Veronique; Garanger, Elisabeth; Razkin, Jesus; Jin, Zhaohui; Dumy, Pascal; Favrot, Marie; Boturyn, Didier; Coll, Jean-Luc

    2005-04-01

    Going along with instrumental development for small animal fluorescence in vivo imaging, we are developing molecular fluorescent probes, especially for tumor targeting. Several criteria have to be taken into account for the optimization of the luminescent label. It should be adapted to the in vivo imaging optical conditions : red-shifted absorption and emission, limited overlap between absorption and emission for a good signal filtering, optimized luminescence quantum yield, limited photo-bleaching. Moreover, the whole probe should fulfill the biological requirements for in vivo labeling : adapted blood-time circulation, biological conditions compatibility, low toxicity. We here demonstrate the ability of the imaging fluorescence set-up developed in LETI to image the bio-distribution of molecular probes on short times after injection. Targeting with Cy5 labeled holo-transferrin of subcutaneous TS/Apc (angiogenic murine breast carcinoma model) or IGROV1 (human ovarian cancer) tumors was achieved. Differences in the kinetics of the protein uptake by the tumors were evidenced. IGROV1 internal metastatic nodes implanted in the peritoneal cavity could be detected in nude mice. However, targeted metastatic nodes in lung cancer could only be imaged after dissection of the mouse. These results validate our fluorescence imaging set-up and the use of Cy5 as a luminescent label. New fluorescent probes based on this dye and a molecular delivery template (the RAFT molecule) can thus be envisioned.

  5. A Comparative Evaluation of Hydroxycamptothecin Drug Nanorods With and Without Methotrexate Prodrug Functionalization for Drug Delivery

    Science.gov (United States)

    Guo, Fuqiang; Fan, Zhongxiong; Yang, Jinbin; Li, Yang; Wang, Yange; Zhao, Hai; Xie, Liya; Hou, Zhenqing

    2016-08-01

    We developed a novel self-targeted multi-drug co-delivery system based on rod-shaped 10-hydroxycamptothecin (CPT) nanoanticancer drug (CPT NRs) followed by a surface functionalization with self-targeting PEGylated lipid-conjugated methotrexate (MTX) pro-anticancer drug. The self-targeting effect and in vitro cell viability of the MTX-PEG-CPT NRs on HeLa cells were demonstrated by comparative cellular uptake and MTT assay of the PEG-CPT NRs. In vitro studies showed the feasibility of using this high drug-loading MTX-PEG-CPT NRs in self-targeted drug delivery, controlled-/sustained-release, and synergistic cancer therapy. More importantly, this work would stimulate interest in the use of PEGylated lipid-conjugated MTX by introducing an early-phase tumor-targeting role and then driving a late-phase anticancer role for the highly convergent design of nanomulti-drug, which may advantageously offer a new and simple strategy for simultaneously targeting and treating FA receptor-overexpressing cancer cells.

  6. Sex Hormone Receptor Repertoire in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Gerald M. Higa

    2013-01-01

    Full Text Available Classification of breast cancer as endocrine sensitive, hormone dependent, or estrogen receptor (ER positive refers singularly to ERα. One of the oldest recognized tumor targets, disruption of ERα-mediated signaling, is believed to be the mechanistic mode of action for all hormonal interventions used in treating this disease. Whereas ERα is widely accepted as the single most important predictive factor (for response to endocrine therapy, the presence of the receptor in tumor cells is also of prognostic value. Even though the clinical relevance of the two other sex hormone receptors, namely, ERβ and the androgen receptor remains unclear, two discordant phenomena observed in hormone-dependent breast cancers could be causally related to ERβ-mediated effects and androgenic actions. Nonetheless, our understanding of regulatory molecules and resistance mechanisms remains incomplete, further compromising our ability to develop novel therapeutic strategies that could improve disease outcomes. This review focuses on the receptor-mediated actions of the sex hormones in breast cancer.

  7. Development of fluorous lipid-based nanobubbles for efficiently containing perfluoropropane.

    Science.gov (United States)

    Oda, Yusuke; Suzuki, Ryo; Mori, Tatsuya; Takahashi, Hideyo; Natsugari, Hideaki; Omata, Daiki; Unga, Johan; Uruga, Hitoshi; Sugii, Mutsumi; Kawakami, Shigeru; Higuchi, Yuriko; Yamashita, Fumiyoshi; Hashida, Mitsuru; Maruyama, Kazuo

    2015-06-20

    Nano-/microbubbles are expected not only to function as ultrasound contrast agents but also as ultrasound-triggered enhancers in gene and drug delivery. Notably, nanobubbles have the ability to pass through tumor vasculature and achieve passive tumor targeting. Thus, nanobubbles would be an attractive tool for use as ultrasound-mediated cancer theranostics. However, the amounts of gas carried by nanobubbles are generally lower than those carried by microbubbles because nanobubbles have inherently smaller volumes. In order to reduce the injection volume and to increase echogenicity, it is important to develop nanobubbles with higher gas content. In this study, we prepared 5 kinds of fluoro-lipids and used these reagents as surfactants to generate "Bubble liposomes", that is, liposomes that encapsulate nanobubbles such that the lipids serve as stabilizers between the fluorous gas and water phases. Bubble liposome containing 1-stearoyl-2-(18,18-difluoro)stearoyl-sn-glycero-3-phosphocholine carried 2-fold higher amounts of C3F8 compared to unmodified Bubble liposome. The modified Bubble liposome also exhibited increased echogenicity by ultrasonography. These results demonstrated that the inclusion of fluoro-lipid is a promising tool for generating nanobubbles with increased efficiency of fluorous gas carrier.

  8. Development of a novel microbubble-liposome complex conjugated with peptide ligands targeting IL4R on brain tumor cells.

    Science.gov (United States)

    Park, See-Hyoung; Yoon, Young Ii; Moon, Hyoungwon; Lee, Ga-Hyun; Lee, Byung-Heon; Yoon, Tae-Jong; Lee, Hak Jong

    2016-07-01

    Gas (SF6)-filled microbubbles (MBs) were prepared by emulsion and solvent-evaporation method. The prepared MBs were further conjugated with doxorubicin (Dox)-loaded nano-sized liposome and peptide ligands to interleukin-4 receptor (IL4R) for targeting brain tumor cells. The final MB-liposome (Dox)-IL4R targeting peptide ligand [MB-Lipo (Dox)-IL4RTP] had a spherical structure with the mean size of 1,500 nm. The MB-Lipo (Dox)‑IL4RTP exhibited cellular uptake in U87MG brain tumor cells (a brain tumor cell line expressing strongly IL4R) with frequency ultrasound energy suggesting that MB-Lipo (Dox)‑IL4RTP provided effective targeting ability for brain tumor cells. In addition, WST-1 assay results showed that MB-Lipo (Dox)‑IL4RTP inhibited the proliferation of U87MG cells IL4R‑dependently. This was confirmed by western blotting of γH2AX, phospho (Ser15)-p53, p53 and p21 which are signal transduction proteins involved in DNA damage response and cell cycle arrest. Taken together, these results indicate that MB-Lipo (Dox)-IL4RTP represents a promising ultrasonic contrast agent for tumor-targeting ultrasonic imaging.

  9. Clinically applicable Monte Carlo-based biological dose optimization for the treatment of head and neck cancers with spot-scanning proton therapy

    CERN Document Server

    Tseung, H Wan Chan; Kreofsky, C R; Ma, D; Beltran, C

    2016-01-01

    Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) based inverse biological planning for the treatment of head and neck tumors in spot-scanning proton therapy. Methods: Recently, a fast and accurate Graphics Processor Unit (GPU)-based MC simulation of proton transport was developed and used as the dose calculation engine in a GPU-accelerated IMPT optimizer. Besides dose, the dose-averaged linear energy transfer (LETd) can be simultaneously scored, which makes biological dose (BD) optimization possible. To convert from LETd to BD, a linear relation was assumed. Using this novel optimizer, inverse biological planning was applied to 4 patients: 2 small and 1 large thyroid tumor targets, and 1 glioma case. To create these plans, constraints were placed to maintain the physical dose (PD) within 1.25 times the prescription while maximizing target BD. For comparison, conventional IMRT and IMPT plans were created for each case in Eclipse (Varian, Inc). The same critical structure PD constraints were use...

  10. Versatile Types of MRI-Visible Cationic Nanoparticles Involving Pullulan Polysaccharides for Multifunctional Gene Carriers.

    Science.gov (United States)

    Huang, Yajun; Hu, Hao; Li, Rui-Quan; Yu, Bingran; Xu, Fu-Jian

    2016-02-17

    Owing to the low cytotoxicity and excellent biocompatibility, polysaccharides are good candidates for the development of promising biomaterials. In this paper, a series of magnetic resonance imaging (MRI)-visible cationic polymeric nanoparticles involving liver cell-targeting polysaccharides were flexibly designed for multifunctional gene delivery systems. The pullulan-based vector (PuPGEA) consisting of one liver cell-targeting pullulan backbone and ethanolamine-functionalized poly(glycidyl methacrylate) (denoted by BUCT-PGEA) side chains with abundant hydroxyl units and secondary amine was first prepared by atom transfer radical polymerization. The resultant cationic nanoparticles (PuPGEA-GdL or PuPGEA-GdW) with MRI functions were produced accordingly by assembling PuPGEA with aminophenylboronic acid-modified Gd-DTPA (GdL) or GdW10O36(9-) (GdW) via the corresponding etherification or electrostatic interaction. The properties of the PuPGEA-GdL and PuPGEA-GdW nanoparticles including pDNA condensation ability, cytotoxicity, gene transfection, cellular uptake, and in vitro and in vivo MRI were characterized in details. Such kinds of cationic nanoparticles exhibited good performances in gene transfection in liver cells. PuPGEA-GdW demonstrated much better MRI abilities. The present design of PuPGEA-based cationic nanoparticles with the liver cell-targeting polysaccharides and MRI contrast agents would shed light on the exploration of tumor-targetable multifunctional gene delivery systems. PMID:26841955

  11. An image guided small animal stereotactic radiotherapy system

    Science.gov (United States)

    Sha, Hao; Udayakumar, Thirupandiyur S.; Johnson, Perry B.; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-01-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ∼0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  12. Phenylboronic acid-functionalized polyamidoamine-mediated Bcl-2 siRNA delivery for inhibiting the cell proliferation.

    Science.gov (United States)

    Wu, Di; Yang, Jiebing; Xing, Zhen; Han, Haobo; Wang, Tingting; Zhang, Aijun; Yang, Yan; Li, Quanshun

    2016-10-01

    In this study, the conjugation of phenylboronic acid (PBA) to amine-terminated polyamidoamine (PAMAM) was successfully conducted to prepare a tumor-targeted gene carrier PBA-functionalized PAMAM (PPP) for Bcl-2 siRNA delivery, using a heterobifunctional crosslinker NHS-PEG5k-Mal. The carrier possessed favorable capacity for siRNA condensation and could protect siRNA from the degradation against RNase and serum. The introduction of PBA could facilitate the cellular uptake and further transfection of Bcl-2 siRNA demonstrated by confocal laser scanning microscopy and flow cytometry. Meanwhile, PPP-mediated transfection of Bcl-2 siRNA could significantly inhibit the expression of Bcl-2 gene at both mRNA and protein levels. Furthermore, owing to the knock-down of Bcl-2, PPP/siRNA could significantly inhibit the cell proliferation by inducing the cell apoptosis, and also enhance the antitumor efficiency of doxorubicin by suppressing the resistance of tumor cells to chemotherapeutics. In conclusion, the PPP-mediated Bcl-2 siRNA delivery could potentially be an effective platform for solving the drug resistance and further achieving the combined chemotherapy and gene therapy in tumor treatment. PMID:27371891

  13. Nanomedicine engulfed by macrophages for targeted tumor therapy

    Science.gov (United States)

    Li, Siwen; Feng, Song; Ding, Li; Liu, Yuxi; Zhu, Qiuyun; Qian, Zhiyu; Gu, Yueqing

    2016-01-01

    Macrophages, exhibiting high intrinsic accumulation and infiltration into tumor tissues, are a novel drug vehicle for directional drug delivery. However, the low drug-loading (DL) capacity and the drug cytotoxicity to the cell vehicle have limited the application of macrophages in tumor therapy. In this study, different drugs involving small molecular and nanoparticle drugs were loaded into intrinsic macrophages to find a better way to overcome these limitations. Their DL capacity and cytotoxicity to the macrophages were first compared. Furthermore, their phagocytic ratio, dynamic distributions, and tumoricidal effects were also investigated. Results indicated that more lipid-soluble molecules and DL particles can be phagocytized by macrophages than hydrophilic ones. In addition, the N-succinyl-N′-octyl chitosan (SOC) DL particles showed low cytotoxicity to the macrophage itself, while the dynamic biodistribution of macrophages engulfed with different particles/small molecules showed similar profiles, mainly excreted from liver to intestine pathway. Furthermore, macrophages loaded with SOC–paclitaxel (PTX) particles exhibited greater therapeutic efficacies than those of macrophages directly carrying small molecular drugs such as doxorubicin and PTX. Interestingly, macrophages displayed stronger targeting ability to the tumor site hypersecreting chemokine in immunocompetent mice in comparison to the tumor site secreting low levels of chemokine in immunodeficiency mice. Finally, results demonstrated that macrophages carrying SOC–PTX are a promising pharmaceutical preparation for tumor-targeted therapy. PMID:27601898

  14. X-ray enabled detection and eradication of circulating tumor cells with nanoparticles.

    Science.gov (United States)

    Hossain, Mainul; Luo, Yang; Sun, Zhaoyong; Wang, Chaoming; Zhang, Minghui; Fu, Hanyu; Qiao, Yong; Su, Ming

    2012-01-01

    The early detection and eradication of circulating tumor cells (CTCs) play an important role in cancer metastasis management. This paper describes a new nanoparticle-enabled technique for integrated enrichment, detection and killing of CTCs by using magnetic nanoparticles and bismuth nanoparticles, X-ray fluorescence spectrometry, and X-ray radiation. The nanoparticles are modified with tumor targeting agents and conjugated with tumor cells through folate receptors over-expressed on cancer cells. A permanent micro-magnet is used to collect CTCs suspended inside a flowing medium that contains phosphate buffered saline (PBS) or whole blood. The characteristic X-ray emissions from collected bismuth nanoparticles, upon excitation with collimated X-rays, are used to detect CTCs. Results show that the method is capable of selectively detecting CTCs at concentrations ranging from 100-100,000 cells/mL in the buffer solution, with a detection limit of ≈ 100 CTCs/mL. Moreover, the dose of primary X-rays can be enhanced to kill the localized CTCs by radiation induced DNA damage, with minimal invasiveness, thus making in vivo personalized CTC management possible.

  15. Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Suriamoorthy, Preethi; Zhang, Xing; Hao, Guiyang; Joly, Alan G.; Singh, S.; Hossu, Marius; Sun, Xiankai; Chen, Wei

    2010-12-01

    In this study, we report the preparation,luminescence, and targeting properties of folic acid- CdTe quantum dot conjugates. Water-soluble CdTe quantum dots were synthesized and conjugated with folic acid using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-N-hydroxysuccinimide chemistry. The in-fluence of folic acid on the luminescence properties of CdTe quantum dots was investigated, and no energy transfer between them was observed. To investigate the efficiency of folic acid-CdTe nanoconjugates for tumor targeting, pure CdTe quantum dots and folic acid-coated CdTe quantum dots were incubated with human naso- pharyngeal epidermal carcinoma cell line with positive expressing folic acid receptors (KB cells) and lung cancer cells without expression of folic acid receptors (A549 cells). For the cancer cells with positive folate receptors (KB cells), the uptake for CdTe quantum dots is very low, but for folic acid-CdTe nanoconjugates, the uptake is very high. For the lung cancer cells without folate receptors (A549 cells), the uptake for folic acid- CdTe nanoconjugates is also very low. The results indicate that folic acid is an effective targeting molecule for tumor cells with overexpressed folate receptors.

  16. Next-generation sequencing for molecular diagnosis of lung adenocarcinoma specimens obtained by fine needle aspiration cytology

    Science.gov (United States)

    Qiu, Tian; Guo, Huiqin; Zhao, Huan; Wang, Luhua; Zhang, Zhihui

    2015-06-01

    Identification of multi-gene variations has led to the development of new targeted therapies in lung adenocarcinoma patients, and identification of an appropriate patient population with a reliable screening method is the key to the overall success of tumor targeted therapies. In this study, we used the Ion Torrent next-generation sequencing (NGS) technique to screen for mutations in 89 cases of lung adenocarcinoma metastatic lymph node specimens obtained by fine-needle aspiration cytology (FNAC). Of the 89 specimens, 30 (34%) were found to harbor epidermal growth factor receptor (EGFR) kinase domain mutations. Seven (8%) samples harbored KRAS mutations, and three (3%) samples had BRAF mutations involving exon 11 (G469A) and exon 15 (V600E). Eight (9%) samples harbored PIK3CA mutations. One (1%) sample had a HRAS G12C mutation. Thirty-two (36%) samples (36%) harbored TP53 mutations. Other genes including APC, ATM, MET, PTPN11, GNAS, HRAS, RB1, SMAD4 and STK11 were found each in one case. Our study has demonstrated that NGS using the Ion Torrent technology is a useful tool for gene mutation screening in lung adenocarcinoma metastatic lymph node specimens obtained by FNAC, and may promote the development of new targeted therapies in lung adenocarcinoma patients.

  17. Computer simulation dose studies in heterogeneous media for electron and proton beam radiotherapy of static and moving targets

    Science.gov (United States)

    Lee, Tae Kyu

    The energy-dependent electron loss model (ELM) and proton loss model (PLM) have been developed to predict dose deposition in heterogeneous slab media. Predictions of dose deposition in heterogeneous slab media are compared to the Monte Carlo calculations and experimental measurements. Slab media studied comprised water/bone/water and water/lung/water and incident beam energies between 10MeV and 18MeV for electron beams and 100MeV and 160MeV for proton beams. Dose discrepancies at large depths beyond the interface were within 5% of maximum dose. This error may be attributed to the assumption of a Gaussian energy distribution for the charge particles at depth. The computational cost is low compared to Monte Carlo simulations making the ELM and PLM attractive as a fast dose engine for dose optimization algorithms. To simulate a more realistic and challenging clinical treatment, a mathematical 3-D phantom was defined to simulate inferior-superior motion of a lung tumor target. Lung size and density change during the breathing cycle was modeled from full inspiration to full expiration. Sensitivity to dose error due to the respiratory motion of the target and the right lung, defined as the organ at risk (OAR), was studied for intensity modulated proton therapy (IMPT) and intensity modulated x-ray therapy (IMXT). Effects of rotational or lateral setup error on the dose distribution were studied independently and simultaneously with breathing.

  18. In vivo evaluation of porous silicon and porous silicon solid lipid nanocomposites for passive targeting and imaging.

    Science.gov (United States)

    Kallinen, Annukka M; Sarparanta, Mirkka P; Liu, Dongfei; Mäkilä, Ermei M; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A; Airaksinen, Anu J

    2014-08-01

    The use of nanoparticle carriers for the sustained release of cytotoxic drugs in cancer therapy can result in fewer adverse effects and can thus be of great benefit for the patient. Recently, a novel nanocomposite, prepared by the encapsulation of THCPSi nanoparticles within solid lipids (SLN), was developed and characterized as a promising drug delivery carrier in vitro. The present study describes the in vivo evaluation of unmodified THCPSi nanoparticles and THCPSi-solid lipid nanocomposites (THCPSi-SLNCs) as potential drug delivery carriers for cancer therapy by using (18)F radiolabeling for the detection of the particle biodistribution in mice. Passive tumor targeting of (18)F-THCPSis and (18)F-THCPSi-SLNCs by the enhanced permeation and retention effect was investigated in a murine breast cancer model. Encapsulation of THCPSi nanoparticles with solid lipids improved their accumulation in tumors at a 7 week time point (tumor-to-liver ratio 0.10 ± 0.08 and 0.24 ± 0.09% for (18)F-THCPSis and (18)F-THCPSi-SLNCs, respectively).

  19. 间质干细胞与肿瘤的关系研究进展%Mesenchymal stem cells and tumor

    Institute of Scientific and Technical Information of China (English)

    田超; 江国荣; 周梁; 刘兆国; 朱智杰; 郑仕中; 王爱云; 陆茵

    2013-01-01

    Mesenchymal stem cells ( MSCs ),with a high degree of self-renewal and differentiation potential and well organized migration and tumor targeting, are from the mesoderm and are a class of non-hematopoietic stem cells. Extensive research has been carried out in the anti-tumor therapy of MSCs. MSCs can be used as a cell vehicle to resist tumots, meanwhile MSCs can promote malignant behavior of tumor by promoting tumor angio-genesis, immunesuppression and differentiating to tumor-associated fibroblasts. This article is a brief overview of the research progress in recent years in the field.%间质干细胞(mesenchymal stem cells,MSCs)是来源于中胚层的一类具有高度自我更新能力和多向分化潜能的非造血干细胞,具有很好的组织迁移能力和肿瘤靶向性.MSCs用于抗肿瘤治疗已经开展了广泛的研究,MSCs可以作为细胞载体发挥抗肿瘤作用,同时通过促肿瘤血管生成、免疫抑制、分化为肿瘤相关成纤维细胞等方式促进肿瘤的恶性行为.该文对近年来该领域的研究进展进行简要综述.

  20. A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kandalaft Lana E

    2012-08-01

    Full Text Available Abstract Purpose In spite of increased rates of complete response to initial chemotherapy, most patients with advanced ovarian cancer relapse and succumb to progressive disease. Rationale Genetically reprogrammed, patient-derived chimeric antigen receptor (CAR-T lymphocytes with the ability to recognize predefined surface antigens with high specificity in a non-MHC restricted manner have shown increasing anti-tumor efficacy in preclinical and clinical studies. Folate receptor-α (FRα is an ovarian cancer-specific tumor target; however, it is expressed at low levels in certain organs with risk for toxicity. Design Here we propose a phase I study testing the feasibility, safety and preliminary activity of FRα-redirected CAR-T cells bearing the CD137 (4-1BB costimulatory domain, administered after lymphodepletion for the treatment of recurrent ovarian cancer. A novel trial design is proposed that maximizes safety features. Innovation This design involves an initial accelerated dose escalation phase of FR-α CAR-T cells followed by a standard 3 + 3 escalation phase. A split-dose approach is proposed to mitigate acute adverse events. Furthermore, infusion of bulk untransduced autologous peripheral blood lymphocytes (PBL is proposed two days after CAR-T cell infusion at the lower dose levels of CAR-T cells, to suppress excessive expansion of CAR-T cells in vivo and mitigate toxicity.

  1. Characterization of human γδ T lymphocytes infiltrating primary malignant melanomas.

    Directory of Open Access Journals (Sweden)

    Adriana Cordova

    Full Text Available T lymphocytes are often induced naturally in melanoma patients and infiltrate tumors. Given that γδ T cells mediate antigen-specific killing of tumor cells, we studied the representation and the in vitro cytokine production and cytotoxic activity of tumor infiltrating γδ T cells from 74 patients with primary melanoma. We found that γδ T cells represent the major lymphocyte population infiltrating melanoma, and both Vδ1(+ and Vδ2(+ cells are involved. The majority of melanoma-infiltrating γδ cells showed effector memory and terminally-differentiated phenotypes and, accordingly, polyclonal γδ T cell lines obtained from tumor-infiltrating immune cells produced IFN-γ and TNF-α and were capable of killing melanoma cell lines in vitro. The cytotoxic capability of Vδ2 cell lines was further improved by pre-treatment of tumor target cells with zoledronate. Moreover, higher rate of γδ T cells isolation and percentages of Vδ2 cells correlate with early stage of development of melanoma and absence of metastasis. Altogether, our results suggest that a natural immune response mediated by γδ T lymphocytes may contribute to the immunosurveillance of melanoma.

  2. Studies of the antitumor and immunomodulatory characteristics of an extract of Momordica charantia

    Energy Technology Data Exchange (ETDEWEB)

    Cunnick, J.E.

    1987-01-01

    An extract from the fruit of the bitter melon (BME), Momordica charantia is able to act as a biological response modifier in the murine system. Injection of 8 ..mu..g of BME protein, intraperitoneally induces an infiltration of lymphocytes into the peritoneal cavity. These peritoneal exudate cells (PEC) are cytotoxic to a wide range of tumor targets, including the NK sensitive tumor cell line, YAC-1. Injections of BME given twice a week augments tumor cytotoxic PEC, for 4 weeks. Fractionation of BME induced PEC revealed that the non-specific, tumor cytotoxic population of PEC were non-adherent mononuclear cells. Fractionation of PEC using unit gravity sedimentation revealed that the cytotoxic population is either a neutrophil or a large granular lymphocyte (LGL) as observed in the /sup 51/Cr-release assay. The antitumor activity of the BME which confers a tumor-dormant state on L1210 tumor-bearing mice was found to correlate with an increase in tumor cytotoxic cells in the PEC of BME injected mice. Tumor-bearing mice which received treatment with saline did not exhibit any tumor cytotoxic activity. Oral administration of the BME augmented splenic NK cytotoxicity. BME is highly antigenic. The formation of antibodies against the BME is detectable by a solid-phase radioimmunoassay after three weeks of ip injections (two/week). The mechanism of NK activation is still unknown. Results indicated that a BME does not induce the production of interleukin-2 or interferon.

  3. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model.

    Science.gov (United States)

    Shah, Rhythm R; Dombrowsky, Alexander R; Paulson, Abigail L; Johnson, Margaret P; Nikles, David E; Brazel, Christopher S

    2016-11-01

    Magnetic iron oxide nanoparticles (MNPs) have been developed for magnetic fluid hyperthermia (MFH) cancer therapy, where cancer cells are treated through the heat generated by application of a high frequency magnetic field. This heat has also been proposed as a mechanism to trigger release of chemotherapy agents. In each of these cases, MNPs with optimal heating performance can be used to maximize therapeutic effect while minimizing the required dosage of MNPs. In this study, the heating efficiencies (or specific absorption rate, SAR) of two types of MNPs were evaluated experimentally and then predicted from their magnetic properties. MNPs were also incorporated in the core of poly(ethylene glycol-b-caprolactone) micelles, co-localized with rhodamine B fluorescent dye attached to polycaprolactone to monitor local, nanoscale temperatures during magnetic heating. Despite a relatively high SAR produced by these MNPs, no significant temperature rise beyond that observed in the bulk solution was measured by fluorescence in the core of the magnetic micelles. MNPs were also incorporated into a macro-scale agarose gel system that mimicked a tumor targeted by MNPs and surrounded by healthy tissues. The agarose-based tumor models showed that targeted MNPs can reach hyperthermia temperatures inside a tumor with a sufficient MNP concentration, while causing minimal temperature rise in the healthy tissue surrounding the tumor. PMID:27523991

  4. Folate-conjugated beta-cyclodextrin-based polymeric micelles with enhanced doxorubicin antitumor efficacy.

    Science.gov (United States)

    Zhang, Lu; Lu, Jiafei; Jin, Yangmin; Qiu, Liyan

    2014-10-01

    In order to enhance the antitumor effects of doxorubicin (DOX), a novel micellar vector with high DOX loading and tumor targeting function based on folate-conjugated amphiphilic copolymer folate-poly(ethylene glycol)-poly(d,l-lactide)-β-cyclodextrin (FA-PEL-CD) was constructed. Cytotoxicity and cellular uptake experiments were performed in HeLa, KB, and A549 cell lines expressing different amounts of folate receptors in order to evaluate the targeting effect of the folate modification. The antitumor experiments performed in a KB cell-xenografted nude mouse model showed that the treatment with 10mg/kg DOX loaded FA-PEL-CD micelles achieved approximately 86% of tumor growth inhibition compared to the control. Ex vivo fluorescence imaging experiments and histological examination confirmed that folate modification can enhance the antitumorigenesis efficacy and reduce the cardiotoxicity of DOX. These results suggest that FA-PEL-CD copolymer-based micelles are promising nanocarriers for targeted doxorubicin delivery, with improved antitumor efficacy and reduced toxicity in normal tissues. PMID:25058857

  5. Nanopreparations for organelle-specific delivery in cancer.

    Science.gov (United States)

    Biswas, Swati; Torchilin, Vladimir P

    2014-02-01

    To efficiently deliver therapeutics into cancer cells, a number of strategies have been recently investigated. The toxicity associated with the administration of chemotherapeutic drugs due to their random interactions throughout the body necessitates the development of drug-encapsulating nanopreparations that significantly mask, or reduce, the toxic side effects of the drugs. In addition to reduced side effects associated with drug encapsulation, nanocarriers preferentially accumulate in tumors as a result of its abnormally leaky vasculature via the Enhanced Permeability and Retention (EPR) effect. However, simple passive nanocarrier delivery to the tumor site is unlikely to be enough to elicit a maximum therapeutic response as the drug-loaded carriers must reach the intracellular target sites. Therefore, efficient translocation of the nanocarrier through the cell membrane is necessary for cytosolic delivery of the cargo. However, crossing the cell membrane barrier and reaching cytosol might still not be enough for achieving maximum therapeutic benefit, which necessitates the delivery of drugs directly to intracellular targets, such as bringing pro-apoptotic drugs to mitochondria, nucleic acid therapeutics to nuclei, and lysosomal enzymes to defective lysosomes. In this review, we discuss the strategies developed for tumor targeting, cytosolic delivery via cell membrane translocation, and finally organelle-specific targeting, which may be applied for developing highly efficacious, truly multifunctional, cancer-targeted nanopreparations. PMID:24270008

  6. Accumulation and toxicity of antibody-targeted doxorubicin-loaded PEG-PE micelles in ovarian cancer cell spheroid model.

    Science.gov (United States)

    Perche, Federico; Patel, Niravkumar R; Torchilin, Vladimir P

    2012-11-28

    We describe the evaluation of doxorubicin-loaded PEG-PE micelles targeting using an ovarian cancer cell spheroid model. Most ovarian cancer patients present at an advanced clinical stage and develop resistance to standard of care platinum/taxane therapy. Doxorubicin is also approved for ovarian cancer but had limited benefits in refractory patients. In this study, we used drug-resistant spheroid cultures of ovarian carcinoma to evaluate the uptake and cytotoxicity of an antibody-targeted doxorubicin formulation. Doxorubicin was encapsulated in polyethylene glycol-phosphatidyl ethanolamine (PEG-PE) conjugated micelles. The doxorubicin-loaded PEG-PE micelles (MDOX) were further decorated with a cancer cell-specific monoclonal 2C5 antibody to obtain doxorubicin-loaded immunomicelles (2C5-MDOX). Targeting and resulting toxicity of doxorubicin-loaded PEG-PE micelles were evaluated in three dimensional cancer cell spheroids. Superior accumulation of 2C5-MDOX compared to free doxorubicin or untargeted MDOX in spheroids was evidenced both by flow cytometry, fluorescence and confocal microscopy. Interestingly, even higher toxicity was measured by lactate dehydrogenase release and terminal deoxynucleotidyl transferase dUTP nick end labeling of targeted doxorubicin micelles in Bcl-2 overexpressing adriamycin-resistant spheroids. Overall, these results support use of spheroids to evaluate tumor targeted drug delivery. PMID:22974689

  7. Paclitaxel-loaded PEG-PE-based micellar nanopreparations targeted with tumor-specific landscape phage fusion protein enhance apoptosis and efficiently reduce tumors.

    Science.gov (United States)

    Wang, Tao; Yang, Shenghong; Mei, Leslie A; Parmar, Chirag K; Gillespie, James W; Praveen, Kulkarni P; Petrenko, Valery A; Torchilin, Vladimir P

    2014-12-01

    In an effort to improve the therapeutic index of cancer chemotherapy, we developed an advanced nanopreparation based on the combination of landscape phage display to obtain new targeting ligands with micellar nanoparticles for tumor targeting of water-insoluble neoplastic agents. With paclitaxel as a drug, this self-assembled nanopreparation composed of MCF-7-specific phage protein and polyethylene glycol-phosphatidylethanolamine (PEG-PE) micelles showed selective toxicity to target cancer cells rather than nontarget, non cancer cells in vitro. In vivo, the targeted phage micelles triggered a dramatic tumor reduction and extensive necrosis as a result of improved tumor delivery of paclitaxel. The enhanced anticancer effect was also verified by an enhanced apoptosis and reduced tumor cell proliferation following the treatment with the targeted micellar paclitaxel both in vitro and in vivo. The absence of hepatotoxicity and pathologic changes in tissue sections of vital organs, together with maintenance of overall health of mice following the treatment, further support its translational potential as an effective and safe chemotherapy for improved breast cancer treatment. PMID:25239936

  8. Three-dimensional velocity mapping of lung motion using vessel bifurcation pattern matching

    International Nuclear Information System (INIS)

    We present a new quantification technique for three-dimensional (3D) lung motion by means of tracking the anatomical features inside the lung using a set of sequential 3D-CT images (a 4D-CT image). The method is based on the conservation of topology, such as connections and junctions of vessels, during the motion. Lung CT images are used to do lung volume modeling, lung vessel extracting and thinning, and coordinates of vessel bifurcations are derived as feature points. Such feature points are tracked in a series of 3D-CT images, i.e., the points are individually tracked between two successive 3D-CT images, in which the lung is deformed. Consequently, 3D displacement vectors are obtained. The feature point tracking is carried out using point pattern matching with a probabilistic relaxation method. We examined this technique using a lung 3D-CT image and artificially deformed one, and separately scanned CT images for a rigid bifurcation phantom. The studies estimated that the error of the vectors is within ∼1 voxel, i.e., 1 mm or less. Therefore, the accuracy is expected to be high enough for radiation therapy. This technique enables us to quantify realistic 3D organ motion without any fiducial markers. It can be applied to the quantification of tumor (target volume) deformation by gridding interpolation into all voxels. We expect it to be useful for dose estimation in mobile organs and for 4D treatment planning in radiation therapy

  9. RGD-peptide conjugated inulin-ibuprofen nanoparticles for targeted delivery of Epirubicin.

    Science.gov (United States)

    Zhang, Luzhong; Li, Guicai; Gao, Ming; Liu, Xin; Ji, Bing; Hua, Ruheng; Zhou, Youlang; Yang, Yumin

    2016-08-01

    Recently, chemotherapy-based polymeric nanoparticles have been extensively investigated for solid tumor treatment. Tumor targeted nanoparticles demonstrated great potential for improved accumulation in the tumor tissue, superior anticancer activity and reduced side effects. Thus, inulin-ibuprofen polymer was synthesized by esterification between inulin and ibuprofen, and RGD targeted epirubicin (EPB) loaded nanoparticles were prepared by the self-assembly of inulin-ibuprofen polymer and in situ encapsulation of EPB. RGD conjugated EPB loaded nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). The EPB release from the nanoparticles showed pH-dependent profile and accelerated by the decreased pH value, which would favor the effective drug delivery in vivo. Intracellular uptake analysis suggested that RGD conjugated nanoparticles could be easily internalized by the cancer cells. In vitro cytotoxicity revealed that RGD conjugated EPB loaded nanoparticles exhibited the better antitumor efficacy compared with non-conjugated nanoparticles. More importantly, RGD conjugated EPB loaded nanoparticles showed superior anticancer effects and reduced toxicity than free EPB and non-conjugated nanoparticles by in vivo antitumor activity, EPB biodistribution and histology analysis.

  10. A multi-functional nanoplatform for tumor synergistic phototherapy

    Science.gov (United States)

    Zhang, Huijuan; Jiao, Xiaojing; Chen, Qianqian; Ji, Yandan; Zhang, Xiaoge; Zhu, Xing; Zhang, Zhenzhong

    2016-02-01

    Phototherapy, which mainly includes photothermal treatment (PTT) and photodynamic treatment (PDT), is a photo-initiated, noninvasive and effective approach for cancer treatment. The high accumulation of photosensitizers (PSs) in a targeted tumor is still a major challenge for efficient light conversion, to generate reactive oxygen species (ROS) and local hyperthermia. In this study, a simple and efficient hyaluronic acid (HA)-modified nanoplatform (HA-TiO2@MWCNTs) with high tumor-targeting ability, excellent phototherapy efficiency, low light-associated side effects and good water solubility was developed. It could be an effective carrier to load hematoporphyrin monomethyl ether (HMME), owing to the tubular conjugate structure. Apart from this, the as-prepared TiO2@MWCNTs nanocomposites could also be used as PSs for tumor PTT and PDT. Those results in vitro and in vivo showed that the anti-tumor effect of this system-mediated PTT/PDT were significantly better than those of single treatment manner. In addition, this drug delivery system could realize high ratio of drug loading, sustained drug release, prolonged circulation in vivo and active targeted accumulation in tumor. These results suggest that HA-TiO2@MWCNTs/HMME has high potential for tumor synergistic phototherapy as a smart theranostic nanoplatform.

  11. Novel 2DG-based harmine derivatives for targeted cancer therapy

    Science.gov (United States)

    Wang, Aqin; Chen, Yuqi; Chen, Wei R.; Gu, Yueqing

    2013-02-01

    Harmine is a beta-carboline alkaloid from the plant Peganum harmala. These alkaloids were stimulated by their promising antitumor activities in the recent years. In this study, we designed and synthesized two harmine derivatives #1and #2 modified at position-9 of harmine with ethyl and phenylpropyl, respectively. To improve the tumor targeting capability, #1' and #2' were synthesized by conjugating 2-amino-2-deoxy-D-glucose (2DG) to the derivatives #1 and #2, respectively. The MTT assays of all these compounds in vitro against L02, HepG2 showed all compounds had low toxicity to normal cells (L02) and significantly enhanced carcinoma cell inhibitory rate compared to harmine. Cytotoxicity against liver cancer cell lines of compound #1' #2' is higher than #1 #2, and even the compound #2' is better than positive drug 5-FU. The compound #2', a novel 2DG-based harmine derivatives, could become a promising drug for targeted cancer therapy and combination therapy with other antitumor drugs.

  12. Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion.

    Science.gov (United States)

    Cossu, Irene; Bottoni, Gianluca; Loi, Monica; Emionite, Laura; Bartolini, Alice; Di Paolo, Daniela; Brignole, Chiara; Piaggio, Francesca; Perri, Patrizia; Sacchi, Angelina; Curnis, Flavio; Gagliani, Maria Cristina; Bruno, Silvia; Marini, Cecilia; Gori, Alessandro; Longhi, Renato; Murgia, Daniele; Sementa, Angela Rita; Cilli, Michele; Tacchetti, Carlo; Corti, Angelo; Sambuceti, Gianmario; Marchiò, Serena; Ponzoni, Mirco; Pastorino, Fabio

    2015-11-01

    Selective tumor targeting is expected to enhance drug delivery and to decrease toxicity, resulting in an improved therapeutic index. We have recently identified the HSYWLRS peptide sequence as a specific ligand for aggressive neuroblastoma, a childhood tumor mostly refractory to current therapies. Here we validated the specific binding of HSYWLRS to neuroblastoma cell suspensions obtained either from cell lines, animal models, or Schwannian-stroma poor, stage IV neuroblastoma patients. Binding of the biotinylated peptide and of HSYWLRS-functionalized fluorescent quantum dots or liposomal nanoparticles was dose-dependent and inhibited by an excess of free peptide. In animal models obtained by the orthotopic implant of either MYCN-amplified or MYCN single copy human neuroblastoma cell lines, treatment with HSYWLRS-targeted, doxorubicin-loaded Stealth Liposomes increased tumor vascular permeability and perfusion, enhancing tumor penetration of the drug. This formulation proved to exert a potent antitumor efficacy, as evaluated by bioluminescence imaging and micro-PET, leading to (i) delay of tumor growth paralleled by decreased tumor glucose consumption, and (ii) abrogation of metastatic spreading, accompanied by absence of systemic toxicity and significant increase in the animal life span. Our findings are functional to the design of targeted nanocarriers with potentiated therapeutic efficacy towards the clinical translation.

  13. Preparation and In Vitro Evaluation of Glycyrrhetinic Acid-Modified Curcumin-Loaded Nanostructured Lipid Carriers

    Directory of Open Access Journals (Sweden)

    Yang Chu

    2014-02-01

    Full Text Available Curcumin, a phenolic antioxidant compound derived from the rhizome of the turmeric plant Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion and apoptosis, revealing its anticancer potential. In this study, a Glycyrrhetinic Acid-Modified Curcumin-Loaded Nanostructured Lipid Carrier (Cur-GA-PEG-NLC was prepared by the film ultrasound method to improve the tumor-targeting ability. The drug content was detected by an UV spectrophotometry method. The encapsulation efficiency of curcumin in the nanostructured lipid carriers (NLCs was determined using a mini-column centrifugation method. The encapsulation efficiency for various Cur-GA-PEG-NLC was within the range of 90.06%–95.31% and particle size was between 123.1 nm and 132.7 nm. An in vitro MTT assay showed that Cur-GA10%-PEG-NLC had significantly high cellular uptake and cytotoxicity against HepG2 cells compared with other groups.

  14. Bacteria-mediated in vivo delivery of quantum dots into solid tumor

    International Nuclear Information System (INIS)

    Highlights: ► New approach using the probiotic Bifidobacterium bifidum as a vehicle to deliver QDs into the deep tissue of solid tumors in vivo was achieved. ► Bifidobacterium bifidum delivery system has intrinsic biocompatibility. ► The targeting efficacy was improved by folic acids. -- Abstract: Semiconductor nanocrystals, so-called quantum dots (QDs), promise potential application in bioimaging and diagnosis in vitro and in vivo owing to their high-quality photoluminescence and excellent photostability as well as size-tunable spectra. Here, we describe a biocompatible, comparatively safe bacteria-based system that can deliver QDs specifically into solid tumor of living animals. In our strategy, anaerobic bacterium Bifidobacterium bifidum (B. bifidum) that colonizes selectively in hypoxic regions of animal body was successfully used as a vehicle to load with QDs and transported into the deep tissue of solid tumors. The internalization of lipid-encapsuled QDs into B. bifidum was conveniently carried by electroporation. To improve the efficacy and specificity of tumor targeting, the QDs-carrying bacterium surface was further conjugated with folic acids (FAs) that can bind to the folic acid receptor overexpressed tumor cells. This new approach opens a pathway for delivering different types of functional cargos such as nanoparticles and drugs into solid tumor of live animals for imaging, diagnosis and therapy.

  15. Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery.

    Science.gov (United States)

    Song, Huijuan; Zhang, Ju; Wang, Weiwei; Huang, Pingsheng; Zhang, Yumin; Liu, Jianfeng; Li, Chen; Kong, Deling

    2015-12-01

    Self-assembled prodrug nanoparticles have demonstrated great promise in cancer chemotherapy. In the present study, we developed a new kind of prodrug nanoparticles for targeted drug delivery. PEGylated doxorubicin conjugate with an acid-cleavable cis-aconityl spacer was prepared. Then it was functionalized with a tumor-penetrating peptide, Cys-Arg-Gly-Asp-Lys (CRGDK), providing the prodrug nanoparticles with the specific binding ability to neurophilin-1 receptor. In acid mediums, doxorubicin could be released from the prodrug nanoparticles with an accumulative release around 60% through the acid-triggered hydrolysis of cis-aconityl bond and nanoparticle disassembly. Whereas, drug release was slow under a neutral pH and the accumulative drug release was less than 16%. In the cell culture tests, our prodrug nanoparticles showed enhanced endocytosis and cytotoxicity in cancer cells including HepG2, MCF-7 and MDA-MB-231 cells, but lower cytotoxicity in human cardiomyocyte H2C9. In the animal experiments, the prodrug nanoparticles were intravenously injected into Balb/c nude mice bearing MDA-MB-231 tumors. Enhanced drug penetration and accumulation in tumors, accompanying with a rapid early tumor-binding behavior, was observed after intravenous injection of the peptide modified prodrug nanoparticles. These data suggests that the acid-sensitive and tumor-targeting PEGylated doxorubicin prodrug nanoparticle may be an efficient drug delivery system for cancer chemotherapy.

  16. CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses.

    Science.gov (United States)

    Yuan, Ming; Webb, Eika; Lemoine, Nicholas Robert; Wang, Yaohe

    2016-03-01

    The development of oncolytic viruses has led to an emerging new class of cancer therapeutics. Although the safety profile has been encouraging, the transition of oncolytic viruses to the clinical setting has been a slow process due to modifications. Therefore, a new generation of more potent oncolytic viruses needs to be exploited, following our better understanding of the complex interactions between the tumor, its microenvironment, the virus, and the host immune response. The conventional method for creation of tumor-targeted oncolytic viruses is based on homologous recombination. However, the creation of new mutant oncolytic viruses with large genomes remains a challenge due to the multi-step process and low efficiency of homologous recombination. The CRISPR-associated endonuclease Cas9 has hugely advanced the potential to edit the genomes of various organisms due to the ability of Cas9 to target a specific genomic site by a single guide RNA. In this review, we discuss the CRISPR-Cas9 system as an efficient viral editing method for the creation of new oncolytic viruses, as well as its potential future applications in the development of oncolytic viruses. Further, this review discusses the potential of off-target effects as well as CRISPR-Cas9 as a tool for basic research into viral biology. PMID:26959050

  17. Detection Limits of Intraoperative Near Infrared Imaging for Tumor Resection

    Science.gov (United States)

    THURBER, GREG M.; FIGUEIREDO, JOSE-LUIZ; WEISSLEDER, RALPH

    2013-01-01

    Background and Objectives The application of fluorescent molecular imaging to surgical oncology is a developing field with the potential to reduce morbidity and mortality. However, the detection thresholds and other requirements for successful intervention remain poorly understood. Here we modeled and experimentally validated depth and size of detection of tumor deposits, trade-offs in coverage and resolution of areas of interest, and required pharmacokinetics of probes based on differing levels of tumor target presentation. Methods Three orthotopic tumor models were imaged by widefield epifluorescence and confocal microscopes, and the experimental results were compared with pharmacokinetic models and