WorldWideScience

Sample records for actinium sulfates

  1. Spectroscopic and computational investigation of actinium coordination chemistry

    Science.gov (United States)

    Ferrier, Maryline G.; Batista, Enrique R.; Berg, John M.; Birnbaum, Eva R.; Cross, Justin N.; Engle, Jonathan W.; La Pierre, Henry S.; Kozimor, Stosh A.; Lezama Pacheco, Juan S.; Stein, Benjamin W.; Stieber, S. Chantal E.; Wilson, Justin J.

    2016-08-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac-Cl and Ac-OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1- ligands (3.2+/-1.1) than AmIII (0.8+/-0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour.

  2. Spectroscopic and computational investigation of actinium coordination chemistry

    Science.gov (United States)

    Ferrier, Maryline G.; Batista, Enrique R.; Berg, John M.; Birnbaum, Eva R.; Cross, Justin N.; Engle, Jonathan W.; La Pierre, Henry S.; Kozimor, Stosh A.; Lezama Pacheco, Juan S.; Stein, Benjamin W.; Stieber, S. Chantal E.; Wilson, Justin J.

    2016-01-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac–Cl and Ac–OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1– ligands (3.2±1.1) than AmIII (0.8±0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour. PMID:27531582

  3. Discovery of the actinium, thorium, protactinium, and uranium isotopes

    CERN Document Server

    Fry, C

    2012-01-01

    Currently, 31 actinium, 31 thorium, 28 protactinium, and 23 uranium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  4. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources.

    Science.gov (United States)

    Soderquist, Chuck Z; McNamara, Bruce K; Fisher, Darrell R

    2012-07-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclide with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing (223)Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity (223)Ra from (227)Ac. We obtained (227)Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity (223)Ra. We extracted (223)Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free (223)Ra product, and does not disturb the (227)Ac/(227)Th equilibrium. A high purity, carrier-free (227)Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of (223)Ra for research and new alpha-emitter radiopharmaceutical development.

  5. Relativistic small-core pseudopotentials for actinium, thorium, and protactinium.

    Science.gov (United States)

    Weigand, Anna; Cao, Xiaoyan; Hangele, Tim; Dolg, Michael

    2014-04-03

    Small-core pseudopotentials for actinium, thorium, and protactinium have been energy-adjusted to multiconfiguration Dirac-Hartree-Fock reference data based on the Dirac-Coulomb-Breit Hamiltonian and the Fermi nucleus model. Corresponding optimized valence basis sets of polarized valence quadruple-ζ quality are presented. Atomic test calculations for the first four ionization potentials show satisfactory results at both the Hartree-Fock and the multireference averaged coupled-pair functional level. Highly correlated Fock-space coupled cluster calculations demonstrate that the new pseudopotentials yield ionization potentials, which are in excellent agreement with corresponding all-electron results and experimental data. The pseudopotentials and basis sets supplement a similar set previously published for uranium.

  6. Effects of spin-orbit coupling on actinium under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Ponce, A.; Rivera, J. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico (Mexico); Olguin, D. [Departamento de Fi sica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico (Mexico)

    2015-04-15

    Actinium (Ac) is a radioactive metal and the first element of the actinide series. At ambient conditions Ac crystallizes in the fcc lattice, however, up to date its phase diagram is unknown. In the present work, we have studied the structural and electronic properties of Ac under hydrostatic pressure assuming the fcc structure as well as three hypothetical structures, namely the hcp, bcc, and sc, and for pressures up to 100 GPa. From our calculations, we found only one structural transition allowed, from the fcc to hcp, our calculated pressure was 39.85 GPa. The calculations were performed by means of the full potential linearized augmented plane wave (FLAPW) method and the generalized gradient approximation (GGA) for the exchange-correlation energy, where we have included in our study the spin-orbit coupling which is important for heavy elements. The total energy results were fitted to the third order Birch-Murnaghan's equation of state. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  8. Report for General Research September 18 to December 11, 1950 (Actinium Volume)

    Energy Technology Data Exchange (ETDEWEB)

    Haring, M.M.

    1951-01-15

    The purpose of the research work presented in this volume is to develop a process for the separation and purification of actinium-227 produced by neutron bombardment of radium-226 and to develop methods by which uniform films of actinium metal may be deposited on metallic surfaces. The design work on the cave structure and mechanical equipment used in the actinium separation is proceeding on schedule. As the mechanical design phase is nearing completion the emphasis is being directed toward processing equipment. The process as well as the mechanical equipment has been adapted from the research work of F. T. Hagemann and the Remote Control Group at Argonne National Laboratory. Consequently, one of the first objectives is to become familiary with the chemistry of the process and the operation of the mechanical equipment. Cold runs have been made on the T.T.A. benzene extraction using lanthanum and barium in place of actinium and radium. No difficulty with the operation was observed. The formation of precipitates was one of the difficulties encountered with the process as the precipitates carry radium. It has been found that metals such as nickel cause these precipitates to form and should, therefore, be avoided in the construction of equipment. it was also found that a T.T.A. solution exposed to 0.5 curie of polonium over a period of days develops a precipitate. Some new mechanical features hav eshown promise. The use of copper-coated glassware which will hold together even though the glass is cracked has made it possible to replace custom-built heaters with standard heating mantles. A new graphite, silicone grease mixture appears to hold up in stopcocks handling benzene and, as a result, may eliminate the necessary of entering the cave for regreasing. Tests on the preparation of dense concrete have given results which meet the shielding requirements for the cave. A strippable paint and tape combination has been studied and specified to provide for decontamination of

  9. Analysis of the gamma spectra of the uranium, actinium, and thorium decay series

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M.H.

    1981-09-01

    This report describes the identification of radionuclides in the uranium, actinium, and thorium series by analysis of gamma spectra in the energy range of 40 to 1400 keV. Energies and absolute efficiencies for each gamma line were measured by means of a high-resolution germanium detector and compared with those in the literature. A gamma spectroscopy method, which utilizes an on-line computer for deconvolution of spectra, search and identification of each line, and estimation of activity for each radionuclide, was used to analyze soil and uranium tailings, and ore.

  10. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes.

    Science.gov (United States)

    Radchenko, V; Engle, J W; Wilson, J J; Maassen, J R; Nortier, F M; Taylor, W A; Birnbaum, E R; Hudston, L A; John, K D; Fassbender, M E

    2015-02-06

    Actinium-225 (t1/2=9.92d) is an α-emitting radionuclide with nuclear properties well-suited for use in targeted alpha therapy (TAT), a powerful treatment method for malignant tumors. Actinium-225 can also be utilized as a generator for (213)Bi (t1/2 45.6 min), which is another valuable candidate for TAT. Actinium-225 can be produced via proton irradiation of thorium metal; however, long-lived (227)Ac (t1/2=21.8a, 99% β(-), 1% α) is co-produced during this process and will impact the quality of the final product. Thus, accurate assays are needed to determine the (225)Ac/(227)Ac ratio, which is dependent on beam energy, irradiation time and target design. Accurate actinium assays, in turn, require efficient separation of actinium isotopes from both the Th matrix and highly radioactive activation by-products, especially radiolanthanides formed from proton-induced fission. In this study, we introduce a novel, selective chromatographic technique for the recovery and purification of actinium isotopes from irradiated Th matrices. A two-step sequence of cation exchange and extraction chromatography was implemented. Radiolanthanides were quantitatively removed from Ac, and no non-Ac radionuclidic impurities were detected in the final Ac fraction. An (225)Ac spike added prior to separation was recovered at ≥ 98%, and Ac decontamination from Th was found to be ≥ 10(6). The purified actinium fraction allowed for highly accurate (227)Ac determination at analytical scales, i.e., at (227)Ac activities of 1-100 kBq (27 nCi to 2.7 μCi). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents.

    Science.gov (United States)

    Henriksen, Gjermund; Bruland, Oyvind S; Larsen, Roy H

    2004-01-01

    The present study explores the use of alpha-particle-emitting, bone-seeking agents as candidates for targeted radiotherapy. Actinium and thorium 1,4,7,10 tetraazacyclododecane N,N',N'',N''' 1,4,7,10-tetra(methylene) phosphonic acid (DOTMP) and thorium-diethylene triamine N,N',N'' penta(methylene) phosphonic acid (DTMP) were prepared and their biodistribution evaluated in conventional Balb/C mice at four hours after injection. All three bone-seeking agents showed a high uptake in bone and a low uptake in soft tissues. Among the soft tissue organs, only kidney had a relatively high uptake. The femur/kidney ratios for 227Th-DTMP, 228-Ac-DOTMP and 227Th-DOTMP were 14.2, 7.6 and 6.0, respectively. A higher liver uptake of 228Ac-DOTMP was seen than for 227Th-DTMP and 227Th-DOTMP. This suggests that some demetallation of the 228Ac-DOTMP complex had occurred. The results indicate that 225Ac-DOTMP, 227Th-DOTMP and 227Th-DTMP have promising properties as potential therapeutic bone-seeking agents.

  12. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, S., E-mail: s.raeder@gsi.de [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Bastin, B. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Block, M. [Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Institut für Kernchemie, Johannes Gutenberg Universität, 55128 Mainz (Germany); Creemers, P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Delahaye, P. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Ferrer, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Fléchard, X. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Franchoo, S. [Institute de Physique Nucléaire (IPN) d’Orsay, 91406 Orsay, Cedex (France); Ghys, L. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol (Belgium); Gaffney, L.P.; Granados, C. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heinke, R. [Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz (Germany); Hijazi, L. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); and others

    2016-06-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  13. Sulfate inhibition effect on sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Sulaiman Al Zuhair

    2008-12-01

    Full Text Available There is an increasing interest in the potential of bacterial sulfate reduction as an alternative method for sulfate removal from wastewater. Under anaerobic conditions, sulfate-reducing bacteria (SRB utilize sulfate to oxidize organic compounds and generate sulfide (S2-. SRB were successfully isolated from sludge samples obtained from a local petroleum refinery, and used for sulfate removal. The effects of initial sulfate concentration, temperature and pH on the rate of bacterial growth and anaerobic sulfate removal were investigated and the optimum conditions were identified. The experimental data were used to determine the parameters of two proposed kinetic model, which take into consideration substrate inhibition effect. Keywords: Sulfate Reducing Bacteria, Sulfate, Kinetic Model, Biotreatement, Inhibition Received: 31 August 2008 / Received in revised form: 18 September 2008, Accepted: 18 September 2008 Published online: 28 September 2008

  14. Ferrous Sulfate (Iron)

    Science.gov (United States)

    Ferrous sulfate provides the iron needed by the body to produce red blood cells. It is used ... Ferrous sulfate comes as regular, coated, and extended-release (long-acting) tablets; regular and extended-release capsules; ...

  15. Tyrosine Sulfation of Statherin

    Directory of Open Access Journals (Sweden)

    C. Kasinathan, N. Gandhi, P. Ramaprasad, P. Sundaram, N. Ramasubbu

    2007-01-01

    Full Text Available Tyrosylprotein sulfotransferase (TPST, responsible for the sulfation of a variety of secretory and membrane proteins, has been identified and characterized in submandibular salivary glands (William et al. Arch Biochem Biophys 1997; 338: 90-96. In the present study we demonstrate the sulfation of a salivary secretory protein, statherin, by the tyrosylprotein sulfotransferase present in human saliva. Optimum statherin sulfation was observed at pH 6.5 and at 20 mm MnCl2. Increase in the level of total sulfation was observed with increasing statherin concentration. The Km value of tyrosylprotein sulfotransferase for statherin was 40 μM. Analysis of the sulfated statherin product on SDS-polyacrylamide gel electrophoresis followed by autoradiography revealed 35S-labelling of a 5 kDa statherin. Further analysis of the sulfated statherin revealed the sulfation on tyrosyl residue. This study is the first report demonstrating tyrosine sulfation of a salivary secretory protein. The implications of this sulfation of statherin in hydroxyapatite binding and Actinomyces viscosus interactions are discussed.

  16. Roles of heparan sulfate sulfation in dentinogenesis.

    Science.gov (United States)

    Hayano, Satoru; Kurosaka, Hiroshi; Yanagita, Takeshi; Kalus, Ina; Milz, Fabian; Ishihara, Yoshihito; Islam, Md Nurul; Kawanabe, Noriaki; Saito, Masahiro; Kamioka, Hiroshi; Adachi, Taiji; Dierks, Thomas; Yamashiro, Takashi

    2012-04-06

    Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix.

  17. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    1970-01-01

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation...

  18. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has......-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all...

  19. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...... and CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...... %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid...

  20. Syndecan heparan sulfate proteoglycans

    DEFF Research Database (Denmark)

    Gomes, Angélica Maciel; Sinkeviciute, Dovile; Multhaupt, Hinke A.B.

    2016-01-01

    Virtually all animal cells express heparan sulfate proteoglycans on the cell surface and in the extracellular matrix. Syndecans are a major group of transmembrane proteoglycans functioning as receptors that mediate signal transmission from the extracellular microenvironment to the cell. Their hep......Virtually all animal cells express heparan sulfate proteoglycans on the cell surface and in the extracellular matrix. Syndecans are a major group of transmembrane proteoglycans functioning as receptors that mediate signal transmission from the extracellular microenvironment to the cell....... Their heparan sulfate chains, due to their vast structural diversity, interact with a wide array of ligands including potent regulators of adhesion, migration, growth and survival. Frequently, ligands interact with cell surface heparan sulfate in conjunction with high affinity receptors. The consequent...... signaling can therefore be complex, but it is now known that syndecans are capable of independent signaling. This review is divided in two sections, and will first discuss how the assembly of heparan sulfate, the anabolic process, encodes information related to ligand binding and signaling. Second, we...

  1. Controlling barium sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Greenley, R.

    Even though for several years success has been realized in controlling barium sulfate scale deposition in relatively shallow, low pressure oil wells--by squeezing an organic phosphonate scale inhibitor into the producing zone--barium sulfate scale depositon in deep, high pressure/high temperature wells usually meant an expensive workover operation. A case history of a deep (16,000 ft) well in St. Mary Parish, Louisiana, and the scale inhibitor squeeze operation are described. Based on the successful results obtained in treating this well, a generalized treating procedure for combating downhole scale deposition in high pressure/high temperature gas wells is presented. Formation squeezing with such an inhibitor represents a significant breakthrough for the oil and gas industry.

  2. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    Energy Technology Data Exchange (ETDEWEB)

    Sugumaran, G.; Silbert, J.E.

    1988-04-05

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-(14C)glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo(14C)chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo(14C)chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo(14C) chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo(14C)chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo(14C)chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo(14C)chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo(14C)chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent.

  3. Off limits: sulfate below the sulfate-methane transition

    Science.gov (United States)

    Brunner, Benjamin; Arnold, Gail; Røy, Hans; Müller, Inigo; Jørgensen, Bo

    2016-07-01

    One of the most intriguing recent discoveries in biogeochemistry is the ubiquity of cryptic sulfur cycling. From subglacial lakes to marine oxygen minimum zones, and in marine sediments, cryptic sulfur cycling - the simultaneous sulfate consumption and production - has been observed. Though this process does not leave an imprint in the sulfur budget of the ambient environment - thus the term cryptic - it may have a massive impact on other element cycles and fundamentally change our understanding of biogeochemical processes in the subsurface. Classically, the sulfate-methane transition (SMT) in marine sediments is considered to be the boundary that delimits sulfate reduction from methanogenesis as the predominant terminal pathway of organic matter mineralization. Two sediment cores from Aarhus Bay, Denmark reveal the constant presence of sulfate (generally 0.1 to 0.2 mM) below the SMT. The sulfur and oxygen isotope signature of this deep sulfate (34S = 18.9‰, 18O = 7.7‰) was close to the isotope signature of bottom-seawater collected from the sampling site (34S = 19.8‰, 18O = 7.3‰). In one of the cores, oxygen isotope values of sulfate at the transition from the base of the SMT to the deep sulfate pool (18O = 4.5‰ to 6.8‰) were distinctly lighter than the deep sulfate pool. Our findings are consistent with a scenario where sulfate enriched in 34S and 18O is removed at the base of the SMT and replaced with isotopically light sulfate below. Here, we explore scenarios that explain this observation, ranging from sampling artifacts, such as contamination with seawater or auto-oxidation of sulfide - to the potential of sulfate generation in a section of the sediment column where sulfate is expected to be absent which enables reductive sulfur cycling, creating the conditions under which sulfate respiration can persist in the methanic zone.

  4. 2-Amino-4-hydroxyethylaminoanisole sulfate

    DEFF Research Database (Denmark)

    Madsen, Jakob T; Andersen, Klaus E

    2016-01-01

    positive patch test reactions to the coupler 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. METHODS: Patch test results from the Allergen Bank database for eczema patients patch tested with 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014 were reviewed. RESULTS......: A total of 902 dermatitis patients (154 from the dermatology department and 748 from 65 practices) were patch tested with amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. Thirteen (1.4%) patients had a positive patch test reaction. Our results do not indicate irritant reactions....... CONCLUSIONS: 2-Amino-4-hydroxyethylaminoanisole sulfate is a new but rare contact allergen....

  5. 21 CFR 184.1315 - Ferrous sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferrous sulfate. 184.1315 Section 184.1315 Food and... Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate... as pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate heptahydrate...

  6. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting ...

  7. Interaction of PACls with sulfate

    Institute of Scientific and Technical Information of China (English)

    XU Yi; WANG Dong-Sheng; TANG Hong-Xiao

    2004-01-01

    This article discusses the influential factors on Al13 separation considering the interaction of sulfate with various polyaluminum chloride(PACl). The experimental results showed that the basicity(B=[OH]/[Al]), the concentration of PACl and Al/SO4 ratio exhibited significant roles in the PACl-sulfate reaction. It indicated that different species in various PACl underwent different reaction pathway with sulfate. The Alc, colloidal species, formed precipitation quickly with sulfate, while Alb, oligomers and polymers, undergoes slow crystallization. And Ala, monomers, reacts with sulfate to form soluble complexes. The kinetic difference of reaction made it possible to realize the separation of Alb and further purification. The decrease of Ala resulted in the limit of ferron method was also mentioned.

  8. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  9. p-Cresyl Sulfate

    Directory of Open Access Journals (Sweden)

    Tessa Gryp

    2017-01-01

    Full Text Available If chronic kidney disease (CKD is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden.

  10. p-Cresyl Sulfate

    Science.gov (United States)

    Gryp, Tessa; Vanholder, Raymond; Vaneechoutte, Mario; Glorieux, Griet

    2017-01-01

    If chronic kidney disease (CKD) is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS) is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic) effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden. PMID:28146081

  11. 21 CFR 184.1307 - Ferric sulfate.

    Science.gov (United States)

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide or ferric hydroxide with sulfuric acid. (b) The ingredient must be of a...

  12. 21 CFR 558.364 - Neomycin sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  13. Bioengineered heparins and heparan sulfates.

    Science.gov (United States)

    Fu, Li; Suflita, Matthew; Linhardt, Robert J

    2016-02-01

    Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Heparan sulfate structure: methods to study N-sulfation and NDST action.

    Science.gov (United States)

    Dagälv, Anders; Lundequist, Anders; Filipek-Górniok, Beata; Dierker, Tabea; Eriksson, Inger; Kjellén, Lena

    2015-01-01

    Heparan sulfate proteoglycans are important modulators of cellular processes where the negatively charged polysaccharide chains interact with target proteins. The sulfation pattern of the heparan sulfate chains will determine the proteins that will bind and the affinity of the interactions. The N-deacetylase/N-sulfotransferase (NDST) enzymes are of key importance during heparan sulfate biosynthesis when the sulfation pattern is determined. In this chapter, metabolic labeling of heparan sulfate with [(35)S]sulfate or [(3)H]glucosamine in cell cultures is described, in addition to characterization of polysaccharide chain length and degree of N-sulfation. Methods to measure NDST enzyme activity are also presented.

  15. Studies on Sulfation of Lycium barbarum Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    YI,Jian-Ping; YAN,Hong; ZHONG,Ru-Gang

    2004-01-01

    @@ Polysaccharides can anti-virus, such as human immunodeficiency virus (HIV-1),[1] herpes simplex virus (HSV-1,HSV-2) and cytomegalovirus. Some of them are sulfates, e.g. dextran sulfate, heparin, sulfonation of chitosan and sulfated derivatives of Lentinan. Our results showed that sulfated derivatives of Lycium barbarum polysaccharides (LBP)have anti-HIV activity. Because the anti-HIV activity of LBP was deeply dependent on the molecular weight, the sulfation pattern and glycosidic branches besides degree of sulfation (DS), so we emphasized our work on the factors of DS.

  16. Sulfate reduction in freshwater peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Oequist, M.

    1996-12-31

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO{sub 4}{sup 2-} concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 {mu}M. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 {mu}M h{sup -1} while in B and C they were 1 and 0.05 {mu}M h{sup -1}, respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 {mu}g d{sup -1} g{sup -1}) were found 10 cm below the water table, in B (ca. 1.0 {mu}g d{sup -1} g{sup -1}) in the vicinity of the water table, and in C (0.75 {mu}g d{sup -1} g{sup -1}) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m{sup -2} d{sup -1}, while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m{sup -2} d{sup -1}, respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination

  17. A sulfate conundrum: Dissolved sulfates of deep-saline brines and carbonate-associated sulfates

    Science.gov (United States)

    Labotka, Dana M.; Panno, Samuel V.; Locke, Randall A.

    2016-10-01

    Sulfates in deeply circulating brines and carbonate-associated sulfates (CAS) within sedimentary units of the Cambrian strata in the Illinois Basin record a complex history. Dissolved sulfate within the Mt. Simon Sandstone brines exhibits average δ34SSO4 values of 35.4‰ and δ18OSO4 values of 14.6‰ and appears to be related to Cambrian seawater sulfate, either original seawater or sourced from evaporite deposits such as those in the Michigan Basin. Theoretical and empirical relationships based on stable oxygen isotope fractionation suggest that sulfate within the lower depths of the Mt. Simon brines has experienced a long period of isolation, possibly several tens of millions of years. Comparison with brines from other stratigraphic units shows the Mt. Simon brines are geochemically unique. Dissolved sulfate from brines within the Ironton-Galesville Sandstone averages 22.7‰ for δ34SSO4 values and 13.0‰ for δ18OSO4 values. The Ironton-Galesville brine has mixed with younger groundwater, possibly of Ordovician to Devonian age and younger. The Eau Claire Formation lies between the Mt. Simon and Ironton-Galesville Sandstones. The carbonate units of the Eau Claire and stratigraphically equivalent Bonneterre Formation contain CAS that appears isotopically related to the Late Pennsylvanian-Early Permian Mississippi Valley-type ore pulses that deposited large sulfide minerals in the Viburnum Trend/Old Lead Belt ore districts. The δ34SCAS values range from 21.3‰ to 9.3‰, and δ18OCAS values range from +1.4‰ to -2.6‰ and show a strong covariance (R2 = 0.94). The largely wholesale replacement of Cambrian seawater sulfate signatures in these dolomites does not appear to have affected the sulfate signatures in the Mt. Simon brines even though these sulfide deposits are found in the stratigraphically equivalent Lamotte Sandstone to the southwest. On the basis of this and previous studies, greater fluid densities of the Mt. Simon brines may have prevented the

  18. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...... conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short...

  19. Sulfation of thyroid hormone by estrogen sulfotransferase

    NARCIS (Netherlands)

    M.H.A. Kester (Monique); T.J. Visser (Theo); C.H. van Dijk (Caren); D. Tibboel (Dick); A.M. Hood (Margaret); N.J. Rose; W. Meinl; U. Pabel; H. Glatt; C.N. Falany; M.W. Coughtrie

    1999-01-01

    textabstractSulfation is one of the pathways by which thyroid hormone is inactivated. Iodothyronine sulfate concentrations are very high in human fetal blood and amniotic fluid, suggesting important production of these conjugates in utero. Human estrogen sulfotransferas

  20. Sulfation of thyroid hormone by estrogen sulfotransferase

    NARCIS (Netherlands)

    M.H.A. Kester (Monique); T.J. Visser (Theo); C.H. van Dijk (Caren); D. Tibboel (Dick); A.M. Hood (Margaret); N.J. Rose; W. Meinl; U. Pabel; H. Glatt; C.N. Falany; M.W. Coughtrie

    1999-01-01

    textabstractSulfation is one of the pathways by which thyroid hormone is inactivated. Iodothyronine sulfate concentrations are very high in human fetal blood and amniotic fluid, suggesting important production of these conjugates in utero. Human estrogen sulfotransferas

  1. Sulfation of thyroid hormone by estrogen sulfotransferase

    NARCIS (Netherlands)

    M.H.A. Kester (Monique); T.J. Visser (Theo); C.H. van Dijk (Caren); D. Tibboel (Dick); A.M. Hood (Margaret); N.J. Rose; W. Meinl; U. Pabel; H. Glatt; C.N. Falany; M.W. Coughtrie

    1999-01-01

    textabstractSulfation is one of the pathways by which thyroid hormone is inactivated. Iodothyronine sulfate concentrations are very high in human fetal blood and amniotic fluid, suggesting important production of these conjugates in utero. Human estrogen

  2. Sulfate-rich Archean Oceans

    Science.gov (United States)

    Brainard, J. L.; Choney, A. P.; Ohmoto, H.

    2012-12-01

    There is a widely held belief that prior to 2.4 Ga, the Archean oceans and atmosphere were reducing, and therefore sulfate poor (concentrations 100 m), widely distributed (> km2), and contain only minor amounts of sulfides. These barite beds may have developed from reactions between Ba-rich hydrothermal fluids and evaporate bodies. Simple mass balance calculations suggest that the sulfate contents of the pre-evaporitic seawater must have been greater than ~1 mM. Some researchers have suggested that the SO4 for these beds was derived from the hydrolysis of SO2-rich magmatic fluids. However, this was unlikely as the reaction, 4SO2 + 4H2O → 3H2SO4 + H2S would have produced large amounts of sulfide, as well as sulfate minerals. Many Archean-aged volcanogenic massive sulfide (VMS) deposits, much like those of the younger ages, record evidence for abundant seawater sulfate. As VMS deposits are most likely formed by submarine hydrothermal fluids that developed from seawater circulating through the seafloor rock, much of the seawater sulfate is reduced to from sulfides at depths. However, some residual sulfate in the hydrothermal fluids, with or without the addition of sulfate from the local seawater, can form sulfate minerals such as barite at near the seafloor. The d34S relationships between barites and pyrites in the Archean VMS deposits are similar to those of the younger VMS deposits, except for the lower d34S values for the seawater SO4. The abundance of pyrite in Archean black shales is also evidence of sulfate rich seawater. Pyrites in Archean-aged black shales were most likely the products of either bacterial or thermochemical sulfate reduction during diagenesis of the sediments. Their abundance in sedimentary rocks is determined by: (a) the availability of reactive carbon; (b) the availability of reactive Fe (Fe3+ hydroxides and Fe2+-rich pore fluid); (c) the sedimentation rate; and (d) the flux of SO42- in the sediments, which depends on the seawater SO42

  3. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate and polymyxin B sulfate ophthalmic solution. 524.1484e Section 524.1484e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution....

  4. 21 CFR 582.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  5. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  6. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  7. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to...

  8. Sulfate transport in Penicillium chrysogenum plasma membranes.

    OpenAIRE

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J. M.; Konings, Wil N.

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded that the sulfate transport system catalyzes the symport of two protons with one sulfate anion.

  9. Sulfate-reducing prokaryotes in river floodplains

    NARCIS (Netherlands)

    Miletto, M.

    2007-01-01

    This thesis constitutes a pioneer attempt at elucidating the ecology of sulfate-reducing prokaryotes in river floodplains. These are non-typical sulfate-reducing environmental settings, given the generally low sulfate concentration that characterize freshwater habitats, and river flow regulation

  10. 21 CFR 582.5315 - Ferrous sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferrous sulfate. 582.5315 Section 582.5315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This substance...

  11. 21 CFR 582.5461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  12. 21 CFR 184.1461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... manganese compounds with sulfuric acid. It is also obtained as a byproduct in the manufacture...

  13. Tris(ethylenediaminecobalt(II sulfate

    Directory of Open Access Journals (Sweden)

    Bunlawee Yotnoi

    2010-06-01

    Full Text Available The structure of the title compound, [CoII(C2H8N23]SO4, the cobalt example of [M(C2H8N23]SO4, is reported. The Co and S atoms are located at the 2d and 2c Wyckoff sites (point symmetry 32, respectively. The Co atom is coordinated by six N atoms of three chelating ethylenediamine molecules generated from half of the ethylenediamine molecule in the asymmetric unit. The O atoms of the sulfate anion are disordered mostly over two crystallographic sites. The third disorder site of O (site symmetry 3 has a site occupancy approaching zero. The H atoms of the ethylenediamine molecules interact with the sulfate anions via intermolecular N—H...O hydrogen-bonding interactions.

  14. Sulfates on Mars: Indicators of Aqueous Processes

    Science.gov (United States)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  15. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated......Inactivation of the perlecan gene leads to perinatal lethal chondrodysplasia. The similarity to the phenotypes of the Col2A1 knock-out and the disproportionate micromelia mutation suggests perlecan involvement in cartilage collagen matrix assembly. We now present a mechanism for the defect...... in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...

  16. Sulfation and biological activities of konjac glucomannan.

    Science.gov (United States)

    Bo, Surina; Muschin, Tegshi; Kanamoto, Taisei; Nakashima, Hideki; Yoshida, Takashi

    2013-05-15

    The sulfation of konjac glucomannan and its anti-HIV and blood anticoagulant activities were investigated. Konjac glucomannan is a polysaccharide occurring naturally in konjac plant tubers and has high molecular weights. Solubility in water is very low, and the aqueous solutions at low concentrations have high viscosity. Before sulfation, hydrolysis by diluted sulfuric acid was carried out to decrease the molecular weights of M¯n=19.2 × 10(4)-0.2 × 10(4). Sulfation with piperidine-N-sulfonic acid or SO3-pyridine complex gave sulfated konjac glucomannans with molecular weights of M¯n=1.0 × 10(4)-0.4 × 10(4) and degrees of sulfation (DS) of 1.3-1.4. It was found that the sulfated konjac glucomannans had potent anti-HIV activity at a 50% effective concentration, (EC50) of 1.2-1.3 μg/ml, which was almost as high as that of an AIDS drug, ddC, whose EC50=3.2 μg/ml, and moderate blood anticoagulant activity, AA=0.8-22.7 units/mg, compared to those of standard sulfated polysaccharides, curdlan (10 units/mg) and dextran (22.7 units/mg) sulfates. Structural analysis of sulfated konjac glucomannans with negatively charged sulfated groups was performed by high resolution NMR, and the interaction between poly-l-lysine with positively charged amino groups as a model compound of proteins and peptides was measured by surface plasmon resonance measurement, suggesting that the sulfated konjac glucomannans had a high binding stability on immobilized poly-l-lysine. The binding of sulfated konjac glucomannan was concentration-dependent, and the biological activity of the sulfated konjac glucomannans may be due to electrostatic interaction between the sulfate and amino groups.

  17. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  18. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, C.P.; Nader, H.B. (Paulist School of Medicine, Sao Paulo (Brazil)); Buonassisi, V.; Colburn, P. (W. Alton Jones Cell Science Center, Lake Placid, NY (USA))

    1988-01-01

    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, ({sup 3}H)glucosamine/({sup 35}S)sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain.

  19. Evaluating Deterioration of Concrete by Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfate attack was used to evaluate the deterioration degree of concrete damaged by sulfate. The relationship between the resistance of concrete to sulfate attack and its permeability/porosity were analyzed as well as its responding mechanism. Results show that the depth of sulfate crystal attack from surface to inner of concrete can be reduced by decreasing w/c and addition of combining fly ash with silica fume. The variation of relative elastic modulus ratio and relative flexural strength ratio of various specimens before and after being subjected to sulfate attack was compared.

  20. Depolymerization of sulfated polysaccharides under hydrothermal conditions.

    Science.gov (United States)

    Morimoto, Minoru; Takatori, Masaki; Hayashi, Tetsuya; Mori, Daiki; Takashima, Osamu; Yoshida, Shinichi; Sato, Kimihiko; Kawamoto, Hitoshi; Tamura, Jun-ichi; Izawa, Hironori; Ifuku, Shinsuke; Saimoto, Hiroyuki

    2014-01-30

    Fucoidan and chondroitin sulfate, which are well known sulfated polysaccharides, were depolymerized under hydrothermal conditions (120-180°C, 5-60min) as a method for the preparation of sulfated polysaccharides with controlled molecular weights. Fucoidan was easily depolymerized, and the change of the molecular weight values depended on the reaction temperature and time. The degree of sulfation and IR spectra of the depolymerized fucoidan did not change compared with those of untreated fucoidan at reaction temperatures below 140°C. However, fucoidan was partially degraded during depolymerization above 160°C. Nearly the same depolymerization was observed for chondroitin sulfate. These results indicate that hydrothermal treatment is applicable for the depolymerization of sulfated polysaccharides, and that low molecular weight products without desulfation and deformation of the initial glycan structures can be obtained under mild hydrothermal conditions.

  1. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    Science.gov (United States)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  2. Discovery of a Heparan sulfate 3- o -sulfation specific peeling reaction

    NARCIS (Netherlands)

    Huang, Yu; Mao, Yang; Zong, Chengli; Lin, Cheng; Boons, Geert Jan; Zaia, Joseph

    2015-01-01

    Heparan sulfate (HS) 3-O-sulfation determines the binding specificity of HS/heparin for antithrombin III and plays a key role in herpes simplex virus (HSV) infection. However, the low natural abundance of HS 3-O-sulfation poses a serious challenge for functional studies other than the two cases ment

  3. Involvement of highly sulfated chondroitin sulfate in the metastasis of the Lewis lung carcinoma cells.

    NARCIS (Netherlands)

    Li, F.; Dam, G.B. ten; Murugan, S.; Yamada, S.; Hashiguchi, T.; Mizumoto, S.; Oguri, K.; Okayama, M.; Kuppevelt, A.H.M.S.M. van; Sugahara, K.

    2008-01-01

    The altered expression of cell surface chondroitin sulfate (CS) and dermatan sulfate (DS) in cancer cells has been demonstrated to play a key role in malignant transformation and tumor metastasis. However, the functional highly sulfated structures in CS/DS chains and their involvement in the process

  4. Fucoidans - sulfated polysaccharides of brown algae

    Energy Technology Data Exchange (ETDEWEB)

    Usov, Anatolii I; Bilan, M I [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2009-08-31

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  5. Fucoidans — sulfated polysaccharides of brown algae

    Science.gov (United States)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  6. Primary mesenchyme cell migration requires a chondroitin sulfate/dermatan sulfate proteoglycan.

    Science.gov (United States)

    Lane, M C; Solursh, M

    1991-02-01

    Primary mesenchyme cell migration in the sea urchin embryo is inhibited by sulfate deprivation and exposure to exogenous beta-D-xylosides, two treatments known to disrupt proteoglycan synthesis. We show that in the developing sea urchin, exogenous xyloside affects the synthesis by the primary mesenchyme cells of a very large, cell surface chondroitin sulfate/dermatan sulfate proteoglycan. This proteoglycan is present in a partially purified fraction that restores migratory ability to defective cells in vitro. The integrity of this chondroitin sulfate/dermatan sulfate proteoglycan appears essential for primary mesenchyme cell migration since treatment of actively migrating cells with chondroitinase ABC reversibly inhibited their migration in vitro.

  7. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  8. Optimization of a biological sulfate reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, A.

    1985-01-01

    A biological sulfate reduction process is presented. It is intended to treat sulfate wastes by converting them to hydrogen sulfide which can be further oxidized to elemental sulfur. An optimization study of a completely-mixed reactor system was performed. Major operating parameters were determined at the bench-scale level. The study was conducted in batch-culture experiments, using a mixed Desulfovibrio culture from sewage. Kinetic values were extrapolated using the Michaelis-Menten model, which best fitted the experimental data. The iron loading and the sulfate loading significantly affected the growth and metabolism of sulfate reducing bacteria (SRB). A model to determine V/sub m/ from the iron and sulfate loading values was explored. The model is limited by sulfate loading greater than 4.3 g/l, where bacterial growth is inhibited. Iron loading is not anticipated to suppress the bacterial metabolism efficiency since it remained in the linear pattern even at inhibition levels. Studies of the metabolic behavior of SRB, using lactic acid as the carbon source, showed a requirement of 2.7 moles of lactate for each mole of sulfate. This technique and its application to the sulfur recovery process are discussed.

  9. Using Terrestrial Sulfate Efflorescences as an Analogue of Hydrated Sulfate Formation in Valles Marineris on Mars

    Science.gov (United States)

    Smith, P. C.; Szynkiewicz, A.

    2015-12-01

    Hydrated sulfate minerals provide conclusive evidence that a hydrologic cycle was once active on the surface of Mars. Two classes of hydrated sulfate minerals have been detected by robotic instruments on Mars: monohydrated sulfate minerals comprised of kieserite and gypsum, and various polyhydrated sulfates with Fe-Ca-Na-Mg-rich compositions. These minerals are found in various locations on Mars, including large surface exposures in valley settings of Valles Marineris. However, the sulfate sources and formation mechanisms of these minerals are not yet well understood.Recently, it has been suggested that the sulfate minerals in Valles Marineris might have formed in a manner similar to sulfate efflorescences found in dry environments on Earth. In this study, we use sulfate effloresences from the Rio Puerco Watershed, New Mexico as a terrestrial analogue to assess major factors that might have led to deposition of sulfate minerals in Valles Marineris. In different seasons indicative of dry and wet conditions, we collected field photographs and sediment samples for chemical and stable isotopic analyses (sulfur content, δ34S) to determine major sources of sulfate ions for efflorescences and to assess how the seasonal changes in surface/groundwater activity affect their formation. Preliminary sulfur isotope results suggest that oxidation of bedrock sulfides (0.01-0.05 wt. S %) is a major source of sulfate ion for efflorescences formation because their δ34S varied in negative range (-28 to -20‰) similar to sulfides (average -32‰). Using field photographs collected in Oct 2006, Feb and Nov 2012, May 2013, Mar and Oct 2014, we infer that the highest surface accumulation of sulfate efflorescences in the studied analog site was observed after summer monsoon seasons when more water was available for surface and subsurface transport of solutes from chemical weathering. Conversely, spring snow melt led to enhanced dissolution of sulfate efflorescences.

  10. The role of sulfate in aerobic granular sludge process for emerging sulfate-laden wastewater treatment.

    Science.gov (United States)

    Xue, Weiqi; Hao, Tianwei; Mackey, Hamish R; Li, Xiling; Chan, Richard C; Chen, Guanghao

    2017-11-01

    Sulfate-rich wastewaters pose a major threat to mainstream wastewater treatment due to the unpreventable production of sulfide and associated shift in functional bacteria. Aerobic granular sludge could mitigate these challenges in view of its high tolerance and resilience against changes in various environmental conditions. This study aims to confirm the feasibility of aerobic granular sludge in the treatment of sulfate containing wastewater, investigate the impact of sulfate on nutrient removal and granulation, and reveal metabolic relationships in the above processes. Experiments were conducted using five sequencing batch reactors with different sulfate concentrations operated under alternating anoxic/aerobic condition. Results showed that effect of sulfate on chemical oxygen demand (COD) removal is negligible, while phosphate removal was enhanced from 12% to 87% with an increase in sulfate from 0 to 200 mg/L. However, a long acclimatization of the biomass (more than 70 days) is needed at a sulfate concentration of 500 mg/L and a total deterioration of phosphate removal at 1000 mg/L. Batch tests revealed that sulfide promoted volatile fatty acids (VFAs) uptake, producing more energy for phosphate uptake when sulfate concentrations were beneath 200 mg/L. However, sulfide detoxification became energy dominating, leaving insufficient energy for Polyhydroxyalkanoate (PHA) synthesis and phosphate uptake when sulfate content was further increased. Granulation accelerated with increasing sulfate levels by enhanced production of N-Acyl homoserine lactones (AHLs), a kind of quorum sensing (QS) auto-inducer, using S-Adenosyl Methionine (SAM) as primer. The current study demonstrates interactions among sulfate metabolism, nutrients removal and granulation, and confirms the feasibility of using the aerobic granular sludge process for sulfate-laden wastewaters treatment with low to medium sulfate content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Di-sulfated Keratan Sulfate as a Novel Biomarker for Mucopolysaccharidosis II, IVA, and IVB.

    Science.gov (United States)

    Shimada, Tsutomu; Tomatsu, Shunji; Mason, Robert W; Yasuda, Eriko; Mackenzie, William G; Hossain, Jobayer; Shibata, Yuniko; Montaño, Adriana M; Kubaski, Francyne; Giugliani, Roberto; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji E; Fukao, Toshiyuki; Orii, Tadao

    2015-01-01

    Keratan sulfate (KS) is a storage material in mucopolysaccharidosis IV (MPS IV). However, no detailed analysis has been reported on subclasses of KS: mono-sulfated KS and di-sulfated KS. We established a novel method to distinguish and quantify mono- and di-sulfated KS using liquid chromatography-tandem mass spectrometry and measured both KS levels in various specimens.Di-sulfated KS was dominant in shark cartilage and rat serum, while mono-sulfated KS was dominant in bovine cornea and human serum. Levels of both mono- and di-sulfated KS varied with age in the blood and urine from control subjects and patients with MPS II and IVA. The mean levels of both forms of KS in the plasma/serum from patients with MPS II, IVA, and IVB were elevated compared with that in age-matched controls. Di-sulfated KS provided more significant difference between MPS IVA and the age-matched controls than mono-sulfated KS. The ratio of di-sulfated KS to total KS in plasma/serum increased with age in control subjects and patients with MPS II but was age independent in MPS IVA patients. Consequently, this ratio can discriminate younger MPS IVA patients from controls. Levels of mono- and di-sulfated KS in urine of MPS IVA and IVB patients were all higher than age-matched controls for all ages studied.In conclusion, the level of di-sulfated KS and its ratio to total KS can distinguish control subjects from patients with MPS II, IVA, and IVB, indicating that di-sulfated KS may be a novel biomarker for these disorders.

  12. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... the presence of radioactively labeled tyrosine. These techniques have been described in detail previously. The aim of this chapter is to present alternative analytical methods of Tyr sulfation than radioisotope incorporation before analysis Udgivelsesdato: 2008...

  13. Sulfated binary and trinary oxide solid superacids

    Institute of Scientific and Technical Information of China (English)

    缪长喜; 华伟明; 陈建民; 高滋

    1996-01-01

    A series of sulfated binary and trinary oxide solid superacids were prepared, and their catalytic activities for n-butane isomerization at low temperature were measured. The incorporation of different metal oxides into ZrO2 may produce a positive or negative effect on the acid strength and catalytic activity of the solid superacids. Sulfated oxides of Cr-Zr, Fe-Cr-Zr and Fe-V-Zr are 2 - 3 times more active than the reported sulfated Fe-Mn-Zr oxide. The enhancement in the superacidity and catalytic activity of these new solid superacids has been discussed on account of the results of various characteriation techniques.

  14. Chlorate: a reversible inhibitor of proteoglycan sulfation

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, D.E.; Silbert, J.E.

    1988-07-15

    Bovine aorta endothelial cells were cultured in medium containing (/sup 3/H)glucosamine, (/sup 35/S)sulfate, and various concentrations of chlorate. Cell growth was not affected by 10 mM chlorate, while 30 mM chlorate had a slight inhibitory effect. Chlorate concentrations greater than 10 mM resulted in significant undersulfation of chondroitin. With 30 mM chlorate, sulfation of chondroitin was reduced to 10% and heparan to 35% of controls, but (/sup 3/H)glucosamine incorporation on a per cell basis did not appear to be inhibited. Removal of chlorate from the culture medium of cells resulted in the rapid resumption of sulfation.

  15. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  16. ROE Wet Sulfate Deposition 2009-2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2009 to 2011. Summary data in this indicator were provided by EPA’s...

  17. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    The freshwater-seawater interface was studied in a ~9-m thick anaerobic aquifer located in marine sand and gravel with thin peat lenses. Very limited amounts of iron-oxides are present. Consequently, the dominating redox processes are sulfate reduction and methanogenesis, and the groundwater...... is enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...... chemistry was studied in a 120 m transect perpendicular to the coast. Cores were taken for radiotracer rate measurements of sulfate reduction and methanogenesis. In the saline part of the aquifer 35 m inland, sulfate reduction was the dominant process with rates of 0.1-10 mM/year. In the freshwater part 100...

  18. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    The freshwater-seawater interface was studied in a ~9-m thick anaerobic aquifer located in marine sand and gravel with thin peat lenses. Very limited amounts of iron-oxides are present. Consequently, the dominating redox processes are sulfate reduction and methanogenesis, and the groundwater...... is enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...... chemistry was studied in a 120 m transect perpendicular to the coast. Cores were taken for radiotracer rate measurements of sulfate reduction and methanogenesis. In the saline part of the aquifer 35 m inland, sulfate reduction was the dominant process with rates of 0.1-10 mM/year. In the freshwater part 100...

  19. Sulfate Resistance of Alkali Activated Pozzolans

    OpenAIRE

    Bondar, Dali

    2015-01-01

    The consequence of sulfate attack on geopolymer concrete, made from an alkali activated natural pozzolan (AANP) has been studied in this paper. Changes in the compressive strength, expansion and capillary water absorption of specimens have been investigated combined with phases determination by means of X-ray diffraction. At the end of present investigation which was to evaluate the performance of natural alumina silica based geopolymer concrete in sodium and magnesium sulfate solution, the l...

  20. Is there a correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans?

    Science.gov (United States)

    Pereira, Mariana S; Melo, Fábio R; Mourão, Paulo A S

    2002-10-01

    We attempted to identify the specific structural features in sulfated galactans and sulfated fucans that confer anticoagulant activity. For this study we employed a variety of invertebrate polysaccharides with simple structures composed of well-defined units of oligosaccharides. Our results indicate that a 2-O-sulfated, 3-linked alpha-L-galactan, but not a alpha-L-fucan with a similar molecular size, is a potent thrombin inhibitor mediated by antithrombin or heparin cofactor II. The difference between the activities of these two polysaccharides is not very pronounced when factor Xa replaced thrombin. The occurrence of 2,4-di-O-sulfated units is an amplifying motif for 3-linked alpha-fucan-enhanced thrombin inhibition by antithrombin. If we replace antithrombin by heparin cofactor II, then the major structural requirement for the activity becomes single 4-O-sulfated fucose units. The presence of 2-O-sulfated fucose residues always had a deleterious effect on anticoagulant activity. Overall, our results indicate that the structural requirements for interaction of sulfated galactans and sulfated fucans with coagulation cofactors and their target proteases are stereospecific and not merely a consequence of their charge density and sulfate content.

  1. Hormonal control of sulfate uptake and assimilation.

    Science.gov (United States)

    Koprivova, Anna; Kopriva, Stanislav

    2016-08-01

    Plant hormones have a plethora of functions in control of plant development, stress response, and primary metabolism, including nutrient homeostasis. In the plant nutrition, the interplay of hormones with responses to nitrate and phosphate deficiency is well described, but relatively little is known about the interaction between phytohormones and regulation of sulfur metabolism. As for other nutrients, sulfate deficiency results in modulation of root architecture, where hormones are expected to play an important role. Accordingly, sulfate deficiency induces genes involved in metabolism of tryptophane and auxin. Also jasmonate biosynthesis is induced, pointing to the need of increase the defense capabilities of the plants when sulfur is limiting. However, hormones affect also sulfate uptake and assimilation. The pathway is coordinately induced by jasmonate and the key enzyme, adenosine 5'-phosphosulfate reductase, is additionally regulated by ethylene, abscisic acid, nitric oxid, and other phytohormones. Perhaps the most intriguing link between hormones and sulfate assimilation is the fact that the main regulator of the response to sulfate starvation, SULFATE LIMITATION1 (SLIM1) belongs to the family of ethylene related transcription factors. We will review the current knowledge of interplay between phytohormones and control of sulfur metabolism and discuss the main open questions.

  2. Ammonium sulfate preparation from phosphogypsum waste

    Directory of Open Access Journals (Sweden)

    Abdel-Hakim T. Kandil

    2017-01-01

    Full Text Available The Egyptian phosphogypsum waste is treated using sulfuric acid prior the ammonium sulfate production. The relevant factors that would affect the removal efficiencies of some impurities are studied. The optimum conditions of the treatment are 8 M sulfuric acid solution and 1/4 solid/liquid ratio for 30 min contact time at 80 °C. Moreover, the optimum conditions of the ammonium sulfate preparation are 10 g of the suspended impure or purified phosphogypsum in 40 ml of 3% ammonium sulfate solution (as initiator, 1/4 solid/liquid ratio at pH7 at an addition of an excess ammonium carbonate, and 150 rpm stirring speed for 4.0 h contact time at 55 °C as well as the 5 mg of barium chloride is added to remove the radium in the ammonium sulfate product. Finally, the ammonium sulfate is crystallized and the chemical analysis of the product shows 20% nitrogen and 23.6% sulfur. Therefore, the purity of the obtained ammonium sulfate is 95% from the purified phosphogypsum.

  3. Preparation of Agarose Sulfate and Its Antithrombogenicity

    Institute of Scientific and Technical Information of China (English)

    JIE Youping; ZHANG Lingmin; CHEN Peng; MAO Xuan; TANG Shunqing

    2012-01-01

    As one of the seaweed polysaccharide,agarose has received much attention because of its biocompatibility.However,its application in biomedical field was limited with its biological inertia.Modification with some functional groups is needed to obtain agarose derivatives with biological activity and expand its applications.Consequently,agarose was sulfated with chlorosulfonic acid-pyridine with formamide as dispersing agent.The orthogonal test result showed that the optimal reaction condition was the reaction time being 4 h,the reaction temperature 65 ℃,and the ratio of chlorosulfonic acid to agarose 1-4(mL/g).Two kinds of the insoluble agarose sulfate (below 37 ℃) were synthesized with degree of substitution (DS) being 0.17 and 0.43 respectively.Infrared spectroscopy (IR) and 13C nuclear magnetic resonance (13C-NMR) spectroscopy results proved that C3-6 in agarose was sulfated.Their hydrophobic property and BSA adsorption capacity rose with increasing DS,while the adsorption of Hb was reduced.The anti-clotting properties of agarose sulfate were significantly improved,and agarose sulfate could protect red blood cells from deformation after adsorption of BSA.These findings demonstrate that the cold-water insoluble agarose sulfate has a promise for applications as heparin-like material in anticoagulation or endothelial regeneration scaffold.

  4. Structure of a rat hepatoma heparan sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Fedarko, N.S.; Ishihara, M.; Conrad, H.E.

    1986-05-01

    Previous studies showed that as monolayer cultures of a rat hepatocyte cell line passed from log growth to confluency there was an increase in sulfation of heparan sulfate (HS) and the accumulation of a unique species of HS with a high content of sulfated GlcA residues in the nucleus. The present study compares the HS metabolism of a rat (Morris) hepatoma line. Cells were labeled with /sup 35/SO/sub 4//sup 2 -/ and the structure and distribution of (/sup 35/SO/sub 4/)HS from the culture medium (CM), the pericellular matrix (Ma), the nucleus (NUC), the outer nuclear membrane (NM), and the remaining cytoplasmic (CP) pool was measured as nitrous acid-susceptible material. The amount of label incorporated into each pool was 1/10 that observed in the hepatocyte line. The HS proteglycan and the free HS chains from the hepatoma showed size distributions similar to those found for the hepatocytes, but a lower average charge density. In the HS from the CM, Ma, and CP pools 56% of glucosamine residues were sulfated; in that from the NM and NUC pools 46% were sulfated. HONO treatment gave mono- and disulfated disaccharides in a ratio of 1.5:1 for all five cellular pools, but showed that the HS from the NUC pool did not contain high levels of sulfated GlcA residues.

  5. Sulfated polysaccharides and cell differentiation in the sea urchin embryo.

    Science.gov (United States)

    Løvtrup-Rein, H; Løvtrup, S

    1984-01-01

    The synthesis of sulfated polysaccharides during the embryonic development of Paracentrotus lividus has been investigated by incorporation of radioactive sulfate, glucose, glucosamine and fucose. The following substances become labelled: fucan sulfate (approximately 60%), heparan sulfate (approximately 20%) and dermatan sulfate (approximately 20%), and possibly a very slight amount of chondroitin sulfate. In animalized and vegetalized embryos, the rate of incorporation is significantly reduced, and furthermore dermatan sulfate is almost absent in animalized embryos. It is concluded that this substance is associated with the differentiation of vegetative cells, possibly the mesenchyme cells.

  6. Sulfated polysaccharides and immune response: promoter or inhibitor?

    Science.gov (United States)

    Chen, D; Wu, X Z; Wen, Z Y

    2008-06-01

    Sulfated polysaccharides, which frequently connect to core protein, are expressed not only on cell surface but also throughout the extracellular matrix. Besides providing structural integrity of cells, sulfated polysaccharides interact with a variety of sulfated polysaccharides-binding proteins, such as growth factors, cytokines, chemokines and proteases. Sulfated polysaccharides play two-edged roles, inhibitor and promoter, in immune response. Some sulfated polysaccharides act as the immunosuppressor by blocking inflammatory signal transduction induced by proinflammatory cytokines, suppressing the activation of complement and inhibiting the process that leukocytes adhere to and pass through endothelium. On the contrary, the interaction between immune cells and sulfated polysaccharides produced by bacteria, endothelial cells and immune cells initiate the occurrence of immune response. It promotes the processes of recognizing and arresting antigen, migrating transendothelium, moving into and out of immune organ and enhancing the proliferation of lymphocyte. The structure of sulfated polysaccharides, such as molecular weight and sulfated sites heterogeneity, especially the degree of disaccharide sulfation, position of the sulfate moiety and organization of sulfated domains, may play critical role in their controversial effects. As a consequence, the interaction between sulfated polysaccharides and sulfated polysaccharide-binding proteins may be changed by modifying the structure of sulfated polysaccharides chains. The administration of drug targeting sulfated polysaccharide-protein interaction may be useful in treating inflammatory related diseases.

  7. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt;

    2012-01-01

    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...

  8. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions. 524.960 Section 524.960 Food and Drugs FOOD AND DRUG ADMINISTRATION... fundamental healing mechanism. Adrenocorticoid compounds have been reported to cause an increase in...

  9. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory......-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...

  10. Heparin-like properties of sulfated alginates with defined sequences and sulfation degrees.

    Science.gov (United States)

    Arlov, Øystein; Aachmann, Finn Lillelund; Sundan, Anders; Espevik, Terje; Skjåk-Bræk, Gudmund

    2014-07-14

    Sulfated glycosaminoglycans have a vast range of protein interactions relevant to the development of new biomaterials and pharmaceuticals, but their characterization and application is complicated mainly due to a high structural variability and the relative difficulty to isolate large quantities of structurally homogeneous samples. Functional and versatile analogues of heparin/heparan sulfate can potentially be created from sulfated alginates, which offer structure customizability through targeted enzymatic epimerization and precise tuning of the sulfation degree. Alginates are linear polysaccharides consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G), derived from brown algae and certain bacteria. The M/G ratio and distribution of blocks are critical parameters for the physical properties of alginates and can be modified in vitro using mannuronic-C5-epimerases to introduce sequence patterns not found in nature. Alginates with homogeneous sequences (poly-M, poly-MG, and poly-G) and similar molecular weights were chemically sulfated and structurally characterized by the use of NMR and elemental analysis. These sulfated alginates were shown to bind and displace HGF from the surface of myeloma cells in a manner similar to heparin. We observed dependence on the sulfation degree (DS) as well as variation in efficacy based on the alginate monosaccharide sequence, relating to relative flexibility and charge density in the polysaccharide chains. Co-incubation with human plasma showed complement compatibility of the alginates and lowering of soluble terminal complement complex levels by sulfated alginates. The sulfated polyalternating (poly-MG) alginate proved to be the most reproducible in terms of precise sulfation degrees and showed the greatest relative degree of complement inhibition and HGF interaction, maintaining high activity at low DS values.

  11. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  12. p-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis

    Directory of Open Access Journals (Sweden)

    Hye Sun Hyun

    2013-04-01

    Full Text Available <b>Purpose:</b> Indoxyl sulfate and p- cresyl sulfate are important protein-bound uremic retention solutes whose levels can be partially reduced by renal replacement therapy. These solutes originate from intestinal bacterial protein fermentation and are associated with cardiovascular outcomes and chronic kidney disease progression. The aims of this study were to investigate the levels of indoxyl sulfate and p- cresyl sulfate as well as the effect of probiotics on reducing the levels of uremic toxins in pediatric patients on dialysis. <b>Methods:</b> We enrolled 20 pediatric patients undergoing chronic dialysis; 16 patients completed the study. The patients underwent a 12-week regimen of VSL#3, a high-concentration probiotic preparation, and the serum levels of indoxyl sulfate and p- cresyl sulfate were measured before treatment and at 4, 8, and 12 weeks after the regimen by using fluorescence liquid chromatography. To assess the normal range of indoxyl sulfate and p- cresyl sulfate we enrolled the 16 children with normal glomerular filtration rate who had visited an outpatient clinic for asymptomatic microscopic hematuria that had been detected by a school screening in August 2011. <b>Results:</b> The baseline serum levels of indoxyl sulfate and p- cresyl sulfate in the patients on chronic dialysis were significantly higher than those in the children with microscopic hematuria. The baseline serum levels of p- cresyl sulfate in the peritoneal dialysis group were significantly higher than those in the hemodialysis group. There were no significant changes in the levels of these uremic solutes after 12-week VSL#3 treatment in the patients on chronic dialysis. <b>Conclusion:</b> The levels of the uremic toxins p- cresyl sulfate and indoxyl sulfate are highly elevated in pediatric patients on dialysis, but there was no significant effect by

  13. Sulfate-reducing bacteria: Microbiology and physiology

    Science.gov (United States)

    Peck, H. D.

    1985-01-01

    The sulfate reducing bacteria, the first nonphotosynthetic anaerobic bacteria demonstrated to contain c type cytochromes, perform electron transfer coupled to phosphorylation. A new bioenergetic scheme for the formation of a proton gradient for growth of Desulfovibrio on organic substrates and sulfate involving vectors electron transfer and consistent with the cellular localization of enzymes and electron transfer components was proposed. Hydrogen is produced in the cytoplasm from organic substrates and, as a permease molecule diffuses rapidly across the cytoplasmic membrane, it is oxidized to protons and electrons by the periplasmic hydrogenase. The electrons only are transferred across the cytoplasmic membrane to the cytoplasm where they are used to reduce sulfate to sulfide. The protons are used for transport or to drive a reversible ATPOSE. The net effect is the transfer of protons across the cytoplasmic membrane with the intervention of a proton pump. This type of H2 cycling is relevant to the bioenergetics of other types of anaerobic microorganisms.

  14. Sulfated glycopeptide nanostructures for multipotent protein activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp , Samuel I. (NWU)

    2017-06-19

    Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.

  15. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  16. Molybdate transport through the plant sulfate transporter SHST1.

    Science.gov (United States)

    Fitzpatrick, Kate L; Tyerman, Stephen D; Kaiser, Brent N

    2008-04-30

    Molybdenum is an essential micronutrient required by plants. The mechanism of molybdenum uptake in plants is poorly understood, however, evidence has suggested that sulfate transporters may be involved. The sulfate transporter from Stylosanthes hamata, SHST1, restored growth of the sulfate transport yeast mutant, YSD1, on media containing low amounts of molybdate. Kinetic analysis using 99MoO4(2-) demonstrated that SHST1 enhanced the uptake of molybdate into yeast cells at nM concentrations. Uptake was not inhibited by sulfate, but sulfate transport via SHST1 was reduced with molybdate. These results are the first measurement of molybdate transport by a characterised plant sulfate transport protein.

  17. On the evaporation of ammonium sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  18. Selective sulfation of carrageenans and the influence of sulfate regiochemistry on anticoagulant properties.

    Science.gov (United States)

    de Araújo, Cristiano A; Noseda, Miguel D; Cipriani, Thales R; Gonçalves, Alan G; Duarte, Maria Eugênia R; Ducatti, Diogo R B

    2013-01-16

    Sulfated polysaccharides are recognized for their broad range of biological activities, including anticoagulant properties. The positions occupied by the sulfate groups are often related to the level of the inherent biological activity. Herein the naturally sulfated galactans, kappa-, iota- and theta-carrageenan, were additionally sulfated by regioselective means. The anticoagulant activity of the resulting samples was then studied using the aPTT in vitro assay. The influence of sulfate regiochemistry on the anticoagulant activity was evaluated. From kappa-carrageenan three rare polysaccharides were synthesized, one of them involved a synthetic route with an amphiphilic polysaccharide intermediate containing pivaloyl groups. Iota- and theta-carrageenan were utilized in a selective C6 sulfation at β-D-Galp units to produce different structures comprising trisulfated diads. All the samples were characterized by NMR (1D and 2D). The resulting aPPT measurements suggested that sulfation at C2 of 3,6-anhydro-α-D-Galp and C6 of β-D-Galp increased the anticoagulant activity.

  19. Activation and transfer of sulfate in biological systems (1960); Activation biologique du sulfate et son transfert (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    It examines in this review the successive stages of active sulfate formation and its role in biological synthesis of sulfuric esters. The possible role of active sulfate as intermediary in sulfate reduction is also discussed. (author) [French] On examine dans cette etude les stades successifs de la mise en evidence du sulfate actif, son role dans la formation des esters sulfuriques de natures diverses, ainsi que sa participation eventuelle comme intermediaire au cours de la reduction du sulfate. On decrit aussi un procede de preparation du systeme biologique, generateur du sulfate actif et une methode de synthese chimique. (auteur)

  20. METABOLISM OF SULFATE-REDUCING PROKARYOTES

    NARCIS (Netherlands)

    HANSEN, TA

    1994-01-01

    Dissimilatory sulfate reduction is carried out by a heterogeneous group of bacteria and archaea that occur in environments with temperatures up to 105 degrees C. As a group together they have the capacity to metabolize a wide variety of compounds ranging from hydrogen via typical organic fermentatio

  1. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  2. Plasmin Regulation through Allosteric, Sulfated, Small Molecules

    Directory of Open Access Journals (Sweden)

    Rami A. Al-Horani

    2015-01-01

    Full Text Available Plasmin, a key serine protease, plays a major role in clot lysis and extracellular matrix remodeling. Heparin, a natural polydisperse sulfated glycosaminoglycan, is known to allosterically modulate plasmin activity. No small allosteric inhibitor of plasmin has been discovered to date. We screened an in-house library of 55 sulfated, small glycosaminoglycan mimetics based on nine distinct scaffolds and varying number and positions of sulfate groups to discover several promising hits. Of these, a pentasulfated flavonoid-quinazolinone dimer 32 was found to be the most potent sulfated small inhibitor of plasmin (IC50 = 45 μM, efficacy = 100%. Michaelis-Menten kinetic studies revealed an allosteric inhibition of plasmin by these inhibitors. Studies also indicated that the most potent inhibitors are selective for plasmin over thrombin and factor Xa, two serine proteases in coagulation cascade. Interestingly, different inhibitors exhibited different levels of efficacy (40%–100%, an observation alluding to the unique advantage offered by an allosteric process. Overall, our work presents the first small, synthetic allosteric plasmin inhibitors for further rational design.

  3. Sulfate reducing potential in an estuarine beach

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.

    Sulfate reducing bacteria (SRB) and their activity (SRA) together with total anaerobic and aerobic bacterial flora were estimated during July 1982-April 1983 and July-August 1984 from 1, 3 and 5 cm depths using core samples. The average number (no...

  4. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  5. Sulfate transport in Penicillium chrysogenum plasma membranes

    NARCIS (Netherlands)

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J.M.; Konings, Wil N.

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded th

  6. Mechanisms and Effectivity of Sulfate Reducing Bioreactors ...

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenges associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of which is the substrate composition. Chitinous materials have demonstrated high metal removal rates, particularly for the two recalcitrant MIW contaminants Zn and Mn, but their removal mechanisms need further study. We studied Cd, Fe, Zn, and Mn removal in bioactive and abiotic SRBRs to elucidate the metal removal mechanisms and the differences in metal and sulfate removal rates using a chitinous material as substrate. We found that sulfate-reducing bacteria are effective in increasing metal and sulfate removal rates and duration of operation in SRBRs, and that the main mechanism involved was metal precipitation as sulfides. The solid residues provided evidence of the presence of sulfides in the bioactive column, more specifically ZnS, according to XPS analysis. The feasibility of passive treatments with a chitinous substrate could be an important option for MIW remediation. Mining influenced water (MIW) remediation is still one of the top priorities for the agency because it addresses the most important environmental problem associated with the mining industry and that affects thousands of communities in the U.S. and worldwide. In this paper, the MIW bioremediation mechanisms are studied

  7. Lung injury in dimethyl sulfate poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Ip, M.; Wong, K.L.; Wong, K.F.; So, S.Y.

    1989-02-01

    Two manual laborers were exposed to dimethyl sulfate during work and sustained mucosal injury to the eyes and respiratory tract. In one of them, noncardiogenic pulmonary edema occurred and improved with high-dose methylprednisolone. On follow-up for 10 months, this patient developed persistent productive cough with no evidence of bronchiectasis or bronchial hyperreactivity.

  8. Intravenous magnesium sulfate therapy in severe asthma

    Directory of Open Access Journals (Sweden)

    Mohd. Al-Ajmi

    2007-01-01

    Full Text Available A 22-year-old female, known asthmatic since seven years, developed severe bronchospasm in the preop-erative period. Bronchospasm remained unresponsive to the inhaled beta-agonist plus anticholinergic, IV ami-nophylline and hydrocortisone but responded quickly with magnesium sulfate® ( PSI, KSA infusion 1.25gm in 100ml normal saline over 20 minutes and another 1.25 gm over next 30 minutes as the initial infusion showed improvement in her clinical symptoms. Within half an hour of administering the 1st infusion of magnesium sulfate (1.25 gm the respiratory rate started reducing, rhonchi became less, SpO 2 came upto 92% and re-mained always above 90%. Encouraged by this result IV magnesium sulfate 2.5 gm in 500 ml normal saline was infused over next 24 hours along with alternate salbutamol and ipratropium nebulization every 6 hourly. With this treatment regimen the patient became asymptomatic within next 24 hours with normal clinical parameters and FEV 1 value. Hence it may be concluded that IV magnesium sulfate can be considered for patients with acute severe asthma who do not respond to standard therapeutic medications.

  9. Galactose 6-sulfate sulfatase activity in Morquio syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yutaka, T.; Okada, S.; Kato, T.; Inui, K.; Yabuuhi, H. (Osaka Univ. (Japan). Faculty of Medicine)

    1982-07-01

    The authors have prepared a new substrate, o-..beta..-D-sulfo-galactosyl-(1-4)-..beta..-D-6-sulfo-2-acetamido-2-deoxyglucosyl-(1-4)-D-(1-/sup 3/H)galactitol, from shark cartilage keratan sulfate, for the assay of galactose 6-sulfate sulfatase activity. Using this substrate, they found there was a striking deficiency of galactose 6-sulfate sulfatase activity, in addition to the known deficiency of N-acetylgalactosamine 6-sulfate sulfatase, in the cultured skin fibroblasts of patients with Morquio syndrome. Their results could be explained by the hypothesis that accumulation of keratan sulfate and chondroitin 6-sulfate in Morquio syndrome is due to a deficiency of galactose 6-sulfate sulfatase and N-acetylgalactosamine 6-sulfate sulfatase activity, which are necessary for the degradation of these two mucopolysaccharides.

  10. Comparative Evaluation of Ankaferd Blood Stopper, Ferric Sulfate ...

    African Journals Online (AJOL)

    2016-07-24

    Jul 24, 2016 ... ferric sulfate (FS) as pulpotomy agent in primary teeth. Settings and Design: ... sulfate (FS), calcium hydroxide (CH), and mineral trioxide aggregate ..... internal root resorption may remain stable or may be repaired with hard ...

  11. Bacterial transport of sulfate, molybdate, and related oxyanions.

    Science.gov (United States)

    Aguilar-Barajas, Esther; Díaz-Pérez, César; Ramírez-Díaz, Martha I; Riveros-Rosas, Héctor; Cervantes, Carlos

    2011-08-01

    Sulfur is an essential element for microorganisms and it can be obtained from varied compounds, sulfate being the preferred source. The first step for sulfate assimilation, sulfate uptake, has been studied in several bacterial species. This article reviews the properties of different bacterial (and archaeal) transporters for sulfate, molybdate, and related oxyanions. Sulfate uptake is carried out by sulfate permeases that belong to the SulT (CysPTWA), SulP, CysP/(PiT), and CysZ families. The oxyanions molybdate, tungstate, selenate and chromate are structurally related to sulfate. Molybdate is transported mainly by the high-affinity ModABC system and tungstate by the TupABC and WtpABC systems. CysPTWA, ModABC, TupABC, and WtpABC are homologous ATP-binding cassette (ABC)-type transporters with similar organization and properties. Uptake of selenate and chromate oxyanions occurs mainly through sulfate permeases.

  12. Pregnenolone Sulfate: From Steroid Metabolite to TRP Channel Ligand

    Directory of Open Access Journals (Sweden)

    Christian Harteneck

    2013-09-01

    Full Text Available Pregnenolone sulfate is a steroid metabolite with a plethora of actions and functions. As a neurosteroid, pregnenolone sulfate modulates a variety of ion channels, transporters, and enzymes. Interestingly, as a sulfated steroid, pregnenolone sulfate is not the final- or waste-product of pregnenolone being sulfated via a phase II metabolism reaction and renally excreted, as one would presume from the pharmacology textbook knowledge. Pregnenolone sulfate is also the source and thereby the starting point for subsequent steroid synthesis pathways. Most recently, pregnenolone sulfate has been functionally “upgraded” from modulator of ion channels to an activating ion channel ligand. This review will focus on molecular aspects of the neurosteroid, pregnenolone sulfate, its metabolism, concentrations in serum and tissues and last not least will summarize the functional data.

  13. The Importance of Sulfate Adenylyl Transferase in S and O Fractionation by Sulfate Reducing Bacteria

    Science.gov (United States)

    Smith, D. A.; Johnston, D. T.; Bradley, A. S.

    2016-12-01

    Microbial sulfate reduction (MSR) is critical to the oxidation of organic matter in modern and ancient oceans, and plays an important role in regulating the redox state of the Earth's surface. The sulfur and oxygen isotopic composition of seawater sulfate and of sulfate minerals reflect the biogeochemical processes that cycle sulfur, of which MSR is among the most important. MSR is a multi-enzymatic reaction network that partitions the isotopes of sulfur and oxygen as a consequence of both the flux of sulfate through this biochemical network and the fractionation imposed by each individual enzyme. MSR affects the δ18O of residual, extracellular sulfate mainly by the equilibration of the MSR intermediate sulfite with extracellular water (Antler et al., 2013 GCA, Wankel et al., 2013 Geobiol). A series of oxidative and exchange reactions catalyzed by APS reductase (APSr), sulfate adenylyl transferase (Sat), and sulfate transporters promote the conversion of water-equilibrated intracellular sulfite to extracellular sulfate. The flux of sulfoxy anions via these proteins will be, at least in part, dependent on the activity of these enzymes. To test this, we examined sulfur and oxygen isotope fractionation in genetically engineered mutants of the sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH). In these mutants, the activity of Sat has been artificially increased by perturbing the (i) transcriptional repressor Rex and (ii) its binding site upstream of the gene encoding Sat (Christensen et al., 2015 J. Bacteriol). It was predicted that this would minimize the back reaction of Sat, enhance the intracellular pool of APS, and minimize the equilibration between sulfite and adenosine monophosphate (AMP). Both mutants, along with the wild type DvH were grown in batch culture made with water enriched in 18O. Samples were collected throughout batch growth, and we report the evolution of the S and O isotopic composition of sulfate, and of the S isotopic

  14. Sources of sulfate supporting anaerobic metabolism in a contaminated aquifer

    Science.gov (United States)

    Ulrich, G.A.; Breit, G.N.; Cozzarelli, I.M.; Suflita, J.M.

    2003-01-01

    Field and laboratory techniques were used to identify the biogeochemical factors affecting sulfate reduction in a shallow, unconsolidated alluvial aquifer contaminated with landfill leachate. Depth profiles of 35S-sulfate reduction rates in aquifer sediments were positively correlated with the concentration of dissolved sulfate. Manipulation of the sulfate concentration in samples revealed a Michaelis-Menten-like relationship with an apparent Km and Vmax of approximately 80 and 0.83 ??M SO4-2??day-1, respectively. The concentration of sulfate in the core of the leachate plume was well below 20 ??M and coincided with very low reduction rates. Thus, the concentration and availability of this anion could limit in situ sulfate-reducing activity. Three sulfate sources were identified, including iron sulfide oxidation, barite dissolution, and advective flux of sulfate. The relative importance of these sources varied with depth in the alluvium. The relatively high concentration of dissolved sulfate at the water table is attributed to the microbial oxidation of iron sulfides in response to fluctuations of the water table. At intermediate depths, barite dissolves in undersaturated pore water containing relatively high concentrations of dissolved barium (???100 ??M) and low concentrations of sulfate. Dissolution is consistent with the surface texture of detrital barite grains in contact with leachate. Laboratory incubations of unamended and barite-amended aquifer slurries supported the field observation of increasing concentrations of barium in solution when sulfate reached low levels. At a deeper highly permeable interval just above the confining bottom layer of the aquifer, sulfate reduction rates were markedly higher than rates at intermediate depths. Sulfate is supplied to this deeper zone by advection of uncontaminated groundwater beneath the landfill. The measured rates of sulfate reduction in the aquifer also correlated with the abundance of accumulated iron sulfide

  15. 21 CFR 522.1484 - Neomycin sulfate sterile solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate sterile solution. 522.1484... § 522.1484 Neomycin sulfate sterile solution. (a) Specifications. Each milliliter of sterile aqueous solution contains 50 milligrams of neomycin sulfate (equivalent to 35 milligrams of neomycin base).1...

  16. 21 CFR 524.1484a - Neomycin sulfate ophthalmic ointment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate ophthalmic ointment. 524.1484a... § 524.1484a Neomycin sulfate ophthalmic ointment. (a) Specifications. Each gram of the ointment contains 5 milligrams of neomycin sulfate equivalent in activity to 3.5 milligrams of neomycin base....

  17. Nanocrystalline cellulose with various contents of sulfate groups.

    Science.gov (United States)

    Voronova, M I; Surov, O V; Zakharov, A G

    2013-10-15

    Properties of films derived from aqueous nanocrystalline cellulose dispersions by water evaporation depend on concentration of sulfate groups. Namely type of thermodestruction and surface morphology change as a function of contents of sulfate groups. Surface roughness increases and water adsorption enhances with increasing sulfate groups content particularly at high relative pressure.

  18. De Novo Sequencing of Complex Mixtures of Heparan Sulfate Oligosaccharides

    NARCIS (Netherlands)

    Huang, Rongrong; Zong, Chengli; Venot, Andre; Chiu, Yulun; Zhou, Dandan; Boons, Geert-Jan; Sharp, Joshua S

    2016-01-01

    Here, we describe the first sequencing method of a complex mixture of heparan sulfate tetrasaccharides by LC-MS/MS. Heparin and heparan sulfate (HS) are linear polysaccharides that are modified in a complex manner by N- and O-sulfation, N-acetylation, and epimerization of the uronic acid. Heparin an

  19. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...

  20. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  1. Introduction of sulfate groups on poly(ethylene) surfaces by argon plasma immobilization of sodium alkyl sulfates

    NARCIS (Netherlands)

    Lens, J.P.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, J.

    1998-01-01

    Sulfate groups were introduced at the surface of poly(ethylene) (PE) samples. This was accomplished by immobilizing a precoated layer of either sodium 10-undecene sulfate (S11(:)) or sodium dodecane sulfate (SDS) on the polymeric surface by means of an argon plasma treatment. For this purpose, S11(:

  2. ELECTRON DETACHMENT DISSOCIATION OF SYNTHETIC HEPARAN SULFATE GLYCOSAMINOGLYCAN TETRASACCHARIDES VARYING IN DEGREE OF SULFATION AND HEXURONIC ACID STEREOCHEMISTRY.

    Science.gov (United States)

    Leach, Franklin E; Arungundram, Sailaja; Al-Mafraji, Kanar; Venot, Andre; Boons, Geert-Jan; Amster, I Jonathan

    2012-12-15

    Glycosaminoglycan (GAG) carbohydrates provide a challenging analytical target for structural determination due to their polydisperse nature, non-template biosynthesis, and labile sulfate modifications. The resultant structures, although heterogeneous, contain domains which indicate a sulfation pattern or code that correlates to specific function. Mass spectrometry, in particular electron detachment dissociation Fourier transform ion cyclotron resonance (EDD FT-ICR MS), provides a highly sensitive platform for GAG structural analysis by providing cross-ring cleavages for sulfation location and product ions specific to hexuronic acid stereochemistry. To investigate the effect of sulfation pattern and variations in stereochemistry on EDD spectra, a series of synthetic heparan sulfate (HS) tetrasaccharides are examined. Whereas previous studies have focused on lowly sulfated compounds (0.5-1 sulfate groups per disaccharide), the current work extends the application of EDD to more highly sulfated tetrasaccharides (1-2 sulfate groups per disaccharide) and presents the first EDD of a tetrasaccharide containing a sulfated hexuronic acid. For these more highly sulfated HS oligomers, alternative strategies are shown to be effective for extracting full structural details. These strategies inlcude sodium cation replacement of protons, for determining the sites of sulfation, and desulfation of the oligosaccharides for the generation of product ions for assigning uronic acid stereochemistry.

  3. Prognostic significance of highly sulfated chondroitin sulfates in ovarian cancer defined by the single chain antibody GD3A11

    NARCIS (Netherlands)

    Steen, S.C.H.A. van der; Tilborg, A.G. van; Vallen, M.J.E.; Bulten, J.; Kuppevelt, T.H. van; Massuger, L.F.

    2016-01-01

    OBJECTIVE: The extracellular matrix (ECM) of ovarian cancer may provide a number of potential biomarkers. Chondroitin sulfate (CS), a class of sulfated polysaccharides, is abundantly present in the ECM of ovarian cancer. Structural alterations of CS chains (i.e. sulfation pattern) have been demonstr

  4. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms

    DEFF Research Database (Denmark)

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community...... was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths...... was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation....

  5. Effect of magnetic field on the crystallization of zinc sulfate

    Directory of Open Access Journals (Sweden)

    Freitas A. M. B.

    2000-01-01

    Full Text Available The effect of magnetic field on the crystallization of diamagnetic zinc sulfate was investigated in a series of controlled batch cooling experiments. Zinc sulfate solutions were exposed to magnetic fields of different intensities, up to a maximum of 0.7T. A clear influence of magnetic field on the following zinc sulfate crystallization parameters was found: an increase in saturation temperature, a decrease in metastable zone width, and an increase in growth rate and average crystal size. These effects were observed for the diamagnetic zinc sulfate, but not in similar, previously reported experiments for paramagnetic copper sulfate.

  6. Sulfate and acid resistant concrete and mortar

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  7. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    Science.gov (United States)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  8. Effects of Sulfate Chitosan Derivatives on Nonalcoholic Fatty Liver Disease

    Institute of Scientific and Technical Information of China (English)

    YU Mingming; WANG Yuanhong; JIANG Tingfu; LV Zhihua

    2014-01-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentra-tion emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly amelio-rated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  9. The Importance of Heparan Sulfate in Herpesvirus Infection

    Institute of Scientific and Technical Information of China (English)

    Christopher D.O'Donnell; Deepak Shukla

    2008-01-01

    Herpes simplex virus type-1 (HSV-1) is one of many pathogens that use the cell surface glycosaminoglycan heparan sulfate as a receptor.Heparan sulfate is highly expressed on the surface and extracellular matrix of virtually all cell types making it an ideal receptor.Heparan sulfate interacts with HSV-1 envelope glycoproteins gB and gC during the initial attachment step during HSV-1 entry.In addition,a modified form of heparan sulfate,known as 3-O-sulfated heparan sulfate,interacts with HSV-1 gD to induce fusion between the viral envelope and host cell membrane.The 3-O-sulfation of heparan sulfate is a rare modification which occurs during the biosynthesis of heparan sulfate that is carded out by a family of enzymes known as 3-O-sulfotransferases.Due to its involvement in multiple steps of the infection process,heparan sulfate has been a prime target for the development of agents to inhibit HSV entry.Understanding how heparan sulfate functions during HSV-1 infection may not only be critical for inhibiting infection by this virus,but it may also be crucial in the fight against many other pathogens as well.

  10. Cholesterol sulfate in human physiology: what's it all about?

    Science.gov (United States)

    Strott, Charles A; Higashi, Yuko

    2003-07-01

    Cholesterol sulfate is quantitatively the most important known sterol sulfate in human plasma, where it is present in a concentration that overlaps that of the other abundant circulating steroid sulfate, dehydroepiandrosterone (DHEA) sulfate. Although these sulfolipids have similar production and metabolic clearance rates, they arise from distinct sources and are metabolized by different pathways. While the function of DHEA sulfate remains an enigma, cholesterol sulfate has emerged as an important regulatory molecule. Cholesterol sulfate is a component of cell membranes where it has a stabilizing role, e.g., protecting erythrocytes from osmotic lysis and regulating sperm capacitation. It is present in platelet membranes where it supports platelet adhesion. Cholesterol sulfate can regulate the activity of serine proteases, e.g., those involved in blood clotting, fibrinolysis, and epidermal cell adhesion. As a result of its ability to regulate the activity of selective protein kinase C isoforms and modulate the specificity of phosphatidylinositol 3-kinase, cholesterol sulfate is involved in signal transduction. Cholesterol sulfate functions in keratinocyte differentiation, inducing genes that encode for key components involved in development of the barrier. The accumulating evidence demonstrating a regulatory function for cholesterol sulfate appears solid; the challenge now is to work out the molecular mechanisms whereby this interesting molecule carries out its various roles.

  11. Sulfate was a trace constituent of Archean seawater

    DEFF Research Database (Denmark)

    Crowe, Sean Andrew; Paris, Guillaume; Katsev, Sergei

    2014-01-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column...... of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of delta S-34 values. Using models informed by sulfur cycling in Lake Matano, we infer...... Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans....

  12. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    Sulfate reduction was measured with the (SO42-)-S-35-tracer technique in slurries of sediment from Aarhus Bay, Denmark, where seasonal temperatures range from 0 degrees to 15 degrees C. The incubations were made at temperatures from 0 degrees C to 80 degrees C in temperature increments of 2 degrees...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...

  13. Studies on the binding of amylopectin sulfate with gastric mucin.

    Science.gov (United States)

    Kim, Y S; Bella, A; Whitehead, J S; Isaacs, R; Remer, L

    1975-07-01

    Amylopectin sulfate, a sulfated polysaccharide that has an antipeptic property, was examined for its ability to bind gastric mucins. After chemically cross-linking the amylopectin sulfate into an insoluble gel, its binding with mucins isolated from antral and fundic mucosa of canine stomachs was studied with chromatography. A component present in both mucin fractions bound to the amylopectin sulfate gel below pH 4.5. This binding was reversible, and the complex dissociated above pH 5. Similar binding properties were found with soluble amylopectin sulfate. The component of the mucine which bound to amylopectin sulfate differed from the one which did not bind in its electrophoretic mobility and in its higher proportion of basic amino acids and a lower hexosamine, serine, and threonine content. This study suggests that amylopectin sulfate may bind to gastric mucins only under conditions of low pH.

  14. Nickel hydroxide precipitation from aqueous sulfate media

    Science.gov (United States)

    Sist, Cinziana; Demopoulos, George P.

    2003-08-01

    Hydrometallurgical processing of laterite ores constitutes a major industrial and R&D activity in extractive metallurgy. In some of the process flowsheets, nickel hydroxide precipitation is incorporated. For these operations, the optimization of nickel hydroxide precipitation is important to assure efficiency and product quality. The main objective of this investigation was to study and improve the precipitation characteristics of Ni(OH)2 in a sulfate system using supersaturation controlled precipitation.

  15. Engineering sulfotransferases to modify heparan sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ding; Moon, Andrea F.; Song, Danyin; Pedersen, Lars C.; Liu, Jian (NIH); (UNC)

    2008-03-19

    The biosynthesis of heparan sulfate (HS) involves an array of specialized sulfotransferases. Here, we present a study aimed at engineering the substrate specificity of different HS 3-O-sulfotransferase isoforms. Based on the crystal structures, we identified a pair of amino acid residues responsible for selecting the substrates. Mutations of these residues altered the substrate specificities. Our results demonstrate the feasibility of tailoring the specificity of sulfotransferases to modify HS with desired functions.

  16. Sulfation and Cation Effects on the Conformational Properties of the Glycan Backbone of Chondroitin Sulfate Disaccharides

    Science.gov (United States)

    Faller, Christina E.; Guvench, Olgun

    2015-01-01

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic “backbone” has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high resolution, high precision free energies of CS disaccharides as a function of all possible backbone geometries. All ten disaccharides (β1-3 vs. β1-4 linkage x five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA –COO− moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to –COO− can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to –COO− results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing

  17. Conformation of sulfated galactan and sulfated fucan in aqueous solutions: implications to their anticoagulant activities.

    Science.gov (United States)

    Becker, Camila F; Guimarães, Jorge A; Mourão, Paulo A S; Verli, Hugo

    2007-07-01

    The discovery of sulfated galactans and sulfated fucans in marine invertebrates with simple and ordered structures opened new perspectives to investigate the biological activity of these molecules and to determine whether different structures confer high affinity for a particular protein. We undertook a conformational analysis of a 2-sulfated, 3-linked alpha-L-galactan and of a alpha-L-fucan with similar structure. Through comparison between theoretical and NMR derived coupling constants, we observed that the pyranose rings are predominantly in the (1)C(4) conformation in these polysaccharides. Additionally, the geometry of the glycosidic linkages was determined based on force field calculations, indicating that the two polysaccharides have similar conformations in solution. Since the sulfated alpha-L-galactan, but not the alpha-L-fucan potentiates antithrombin (AT) inhibition of thrombin, the solution conformations of the compounds were docked into AT and the complexes obtained were refined through molecular dynamics calculations. The obtained results indicates extremely different orientations for the two polysaccharides, which well correlates and explain their distinct anticoagulant activities. Finally, the molecular mechanism of a selective 2-desulfation reaction, observed among sulfated fucans, was explained as a consequence of an intramolecular hydrogen bond capable of assisting in the removal of the charged group.

  18. Heritability and clinical determinants of serum indoxyl sulfate and p-cresyl sulfate, candidate biomarkers of the human microbiome enterotype.

    Directory of Open Access Journals (Sweden)

    Liesbeth Viaene

    Full Text Available BACKGROUND: Indoxyl sulfate and p-cresyl sulfate are unique microbial co-metabolites. Both co-metabolites have been involved in the pathogenesis of accelerated cardiovascular disease and renal disease progression. Available evidence suggests that indoxyl sulfate and p-cresyl sulfate may be considered candidate biomarkers of the human enterotype and may help to explain the link between diet and cardiovascular disease burden. OBJECTIVE AND DESIGN: Information on clinical determinants and heritability of indoxyl sulfate and p-cresyl sulfate serum is non-existing. To clarify this issue, the authors determined serum levels of indoxyl sulfate and p-cresyl sulfate in 773 individuals, recruited in the frame of the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO study. RESULTS: Serum levels of indoxyl sulfate and p-cresyl sulfate amounted to 3.1 (2.4-4.3 and 13.0 (7.4-21.5 μM, respectively. Regression analysis identified renal function, age and sex as independent determinants of both co-metabolites. Both serum indoxyl sulfate (h2 = 0.17 and p-cresyl sulfate (h2 = 0.18 concentrations showed moderate but significant heritability after adjustment for covariables, with significant genetic and environmental correlations for both co-metabolites. LIMITATIONS: Family studies cannot provide conclusive evidence for a genetic contribution, as confounding by shared environmental effects can never be excluded. CONCLUSIONS: The heritability of indoxyl sulfate and p-cresyl sulfate is moderate. Besides genetic host factors and environmental factors, also renal function, sex and age influence the serum levels of these co-metabolites.

  19. Purity determination of amphotericin B, colistin sulfate and tobramycin sulfate in a hydrophilic suspension by HPLC.

    Science.gov (United States)

    Pfeifer, Corina; Fassauer, Georg; Gerecke, Hagen; Jira, Thomas; Remane, Yvonne; Frontini, Roberto; Byrne, Jonathan; Reinhardt, Robert

    2015-05-15

    A suspension comprising of the three antibiotic substances amphotericin B, colistin sulfate and tobramycin sulfate is often used in clinical practice for the selective decontamination of the digestive tract of patients in intensive care. Since no detailed procedures, specifications or stability data are available for manufacturing this suspension, there may be discrepancies regarding formulation and stability of suspensions prepared in different pharmacies. The aim of this work is to develop a standardized formulation and to determine its stability under defined storage conditions. This would help guarantee that all patients receive the same preparation, therefore ensuring similar efficacy and improved safety. The first step in this process is to develop the required analytical tools to measure the content and purity of the drug substances in this complex mixture. In this paper, the development and validation of these tools as well as the development of the drug suspension formulation is described. The formulation comprises of Ampho-Moronal(®)-Suspension (Dermapharm) and a buffered, preservated aqueous solution of colistin sulfate and tobramycin sulfate. Two simple, well established high-performance liquid chromatography (HPLC) methods in the European Pharmacopoeia (EP) for impurity profiling of the two active ingredients amphotericin B and colistin sulfate were combined with a newly developed sample extraction procedure for the suspension. Sufficient selectivity and stability-indicating power have been demonstrated. Additionally, a new robust routine method was developed to determine possible degradation products of tobramycin sulfate in the investigated suspension. The specificity, precision, accuracy and linearity of the analytical procedures were demonstrated. The recovery rate was in the range of 90-110%. The precision results for the calculated impurities showed variation coefficients of <10%. The calibration curves were found to be linear with correlation

  20. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate.

    Science.gov (United States)

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo

    2016-08-20

    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug.

  1. The preparation and antioxidant activity of glucosamine sulfate

    Institute of Scientific and Technical Information of China (English)

    XING Ronge; LIU Song; WANG Lin; CAI Shengbao; YU Huahua; FENG Jinhua; LI Pengcheng

    2009-01-01

    Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O(2))/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O(2) scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL.However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.

  2. The preparation and antioxidant activity of glucosamine sulfate

    Science.gov (United States)

    Xing, Ronge; Liu, Song; Wang, Lin; Cai, Shengbao; Yu, Huahua; Feng, Jinhua; Li, Pengcheng

    2009-05-01

    Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O{2/-})/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O{2/-} scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.

  3. Inactivation of thrombin by a fucosylated chondroitin sulfate from echinoderm.

    Science.gov (United States)

    Mourão, P A; Boisson-Vidal, C; Tapon-Bretaudière, J; Drouet, B; Bros, A; Fischer, A

    2001-04-15

    A polysaccharide extracted from the sea cucumber body wall has the same backbone structure as the mammalian chondroitin sulfate, but some of the glucuronic acid residues display sulfated fucose branches. These branches confer high anticoagulant activity to the polysaccharide. Since the sea cucumber chondroitin sulfate has analogy in structure with mammalian glycosaminoglycans and sulfated fucans from brown algae, we compared its anticoagulant action with that of heparin and of a homopolymeric sulfated fucan with approximately the same level of sulfation as the sulfated fucose branches found in the sea cucumber polysaccharide. These various compounds differ not only in their anticoagulant potencies but also in the mechanisms of thrombin inhibition. Fucosylated chondroitin sulfate, like heparin, requires antithrombin or heparin cofactor II for thrombin inhibition. Sulfated fucans from brown algae have an antithrombin effect mediated by antithrombin and heparin cofactor II, plus a direct antithrombin effect more pronounced for some fractions. But even in the case of these two polysaccharides, we observed some differences. In contrast with heparin, total inhibition of thrombin in the presence of antithrombin is not achieved with fucosylated chondroitin sulfate, possibly reflecting a less specific interaction. Fucosylated chondroitin sulfate is able to inhibit thrombin generation after stimulation by both contact-activated and thromboplastin-activated systems. It delayed only the contact-induced thrombin generation, as expected for an anticoagulant without direct thrombin inhibition. Overall, the specific spatial array of the sulfated fucose branches in the fucosylated chondroitin sulfate not only confer high anticoagulant activity to the polysaccharide but also determine differences in the way it inhibits thrombin.

  4. Lacrimal gland development and Fgf10-Fgfr2b signaling are controlled by 2-O- and 6-O-sulfated heparan sulfate

    NARCIS (Netherlands)

    Qu, X.; Carbe, C.; Tao, C.; Powers, A.; Lawrence, R.; Kuppevelt, A.H.M.S.M. van; Cardoso, W.V.; Grobe, K.; Esko, J.D.; Zhang, X.

    2011-01-01

    Heparan sulfate, an extensively sulfated glycosaminoglycan abundant on cell surface proteoglycans, regulates intercellular signaling through its binding to various growth factors and receptors. In the lacrimal gland, branching morphogenesis depends on the interaction of heparan sulfate with Fgf10-Fg

  5. Utilization of sulfate additives in biomass combustion: fundamental and modeling aspects

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Grell, Morten Nedergaard;

    2013-01-01

    Sulfates, such as ammonium sulfate, aluminum sulfate and ferric sulfate, are effective additives for converting the alkali chlorides released from biomass combustion to the less harmful alkali sulfates. Optimization of the use of these additives requires knowledge on their decomposition rate...... and product distribution under high temperature conditions. In the present work, the decomposition of ammonium sulfate, aluminum sulfate and ferric sulfate was studied respectively in a fast-heating rate thermogravimetric analyzer for deriving a kinetic model to describe the process. The yields of SO2 and SO3...... of different sulfates indicated that ammonium sulfate has clearly strongest sulfation power towards KCl at temperatures below 800oC, whereas the sulfation power of ferric and aluminum sulfates exceeds clearly that of ammonium sulfate between 900 and 1000oC. However, feeding gaseous SO3 was found to be most...

  6. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Silbert, C.K.; Humphries, D.E.; Palmer, M.E.; Silbert, J.E. (Veterans Administration Outpatient Clinic, Boston, MA (USA))

    1991-02-15

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with (3H)glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of (3H)chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics.

  7. Sulfated fucan as support for antibiotic immobilization.

    Science.gov (United States)

    Araújo, P M; Oliveira, G B; Córdula, C R; Leite, E L; Carvalho Jr, L B; Silva, M P C

    2004-03-01

    Xylofucoglucuronan from Spatoglossum schröederi algae was tested as a support for antibiotic immobilization. The polysaccharide (20 mg in 6 ml) was first activated using carbodiimide, 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide methiodide (20 mg in 2 ml), under stirring for 1 h at 25 masculine C and pH from 4.5 to 5.0. After adjusting the pH to 8.0, either gentamicin or amikacin (62.5 mg in 1.25 ml) was then immobilized on this chemically modified polysaccharide with shaking for 24 h in a cold room. Infrared spectra of the activated carbodiimide xylofucoglucuronan showed two bands to carbonyl (C=O at 1647.9 and 1700.7 cm(-1)) and to amide (C-NH2) groups (1662.8 and 1714.0 cm(-1)). Microbial characterization of the derivatives was carried out by the disk diffusion method using Staphylococcus aureus or Klebsiella pneumoniae incorporated in Müller Hinton medium. Inhibition halos of bacterial growth were observed for the antibiotics immobilized on this sulfated heteropolysaccharide before and after dialysis. However, the halos resulting from the samples after dialysis were much smaller, suggesting that dialysis removed either non-covalently bound antibiotic or other small molecules. In contrast, bacterial growth was not inhibited by either xylofucoglucuronan or its activated form or by gentamicin or amikacin after dialysis. An additional experiment was carried out which demonstrated that the sulfated heteropolysaccharide was hydrolyzed by the microorganism. Therefore, the antibiotic immobilized on xylofucoglucuronan can be proposed as a controlled drug delivery system. Furthermore, this sulfated heteropolysaccharide can be extracted easily from sea algae Spatoglossum schröederi.

  8. Sulfated fucan as support for antibiotic immobilization

    Directory of Open Access Journals (Sweden)

    Araújo P.M.

    2004-01-01

    Full Text Available Xylofucoglucuronan from Spatoglossum schröederi algae was tested as a support for antibiotic immobilization. The polysaccharide (20 mg in 6 ml was first activated using carbodiimide, 1-ethyl-3-(3-dimethylamino-propylcarbodiimide methiodide (20 mg in 2 ml, under stirring for 1 h at 25ºC and pH from 4.5 to 5.0. After adjusting the pH to 8.0, either gentamicin or amikacin (62.5 mg in 1.25 ml was then immobilized on this chemically modified polysaccharide with shaking for 24 h in a cold room. Infrared spectra of the activated carbodiimide xylofucoglucuronan showed two bands to carbonyl (C = O at 1647.9 and 1700.7 cm-1 and to amide (CÝ-NH2 groups (1662.8 and 1714.0 cm-1. Microbial characterization of the derivatives was carried out by the disk diffusion method using Staphylococcus aureus or Klebsiella pneumoniae incorporated in Müller Hinton medium. Inhibition halos of bacterial growth were observed for the antibiotics immobilized on this sulfated heteropolysaccharide before and after dialysis. However, the halos resulting from the samples after dialysis were much smaller, suggesting that dialysis removed either non-covalently bound antibiotic or other small molecules. In contrast, bacterial growth was not inhibited by either xylofucoglucuronan or its activated form or by gentamicin or amikacin after dialysis. An additional experiment was carried out which demonstrated that the sulfated heteropolysaccharide was hydrolyzed by the microorganism. Therefore, the antibiotic immobilized on xylofucoglucuronan can be proposed as a controlled drug delivery system. Furthermore, this sulfated heteropolysaccharide can be extracted easily from sea algae Spatoglossum schröederi.

  9. Synthesis and characterization of novel cellulose ether sulfates.

    Science.gov (United States)

    Rohowsky, Juta; Heise, Katja; Fischer, Steffen; Hettrich, Kay

    2016-05-20

    The synthesis and characterization of novel cellulose sulfate derivatives was reported. Various cellulose ethers were prepared in a homogeneous reaction with common sulfating agents. The received product possess different properties in dependence on the reaction conditions like sulfating agent, solvent, reaction time and reaction temperature. The cellulose ether sulfates are all soluble in water, they rheological behavior could be determined by viscosity measurements and the determination of the sulfur content by elemental analysis lead to a resulting degree of substitution ascribed to sulfate groups (DSSul) of the product. A wide range of products from DSSul 0.1 to DSSul 2.7 will be obtained. Furthermore the cellulose sulfate ethers could be characterized by Raman spectroscopy.

  10. Chemical leukoderma induced by dimethyl sulfate*

    Science.gov (United States)

    Gozali, Maya Valeska; Zhang, Jia-an; Yi, Fei; Zhou, Bing-rong; Luo, Dan

    2016-01-01

    Chemical leukoderma occurs due to the toxic effect of a variety of chemical agents. Mechanisms include either destruction or inhibition of melanocytes. We report two male patients (36 and 51 years old) who presented with multiple hypopigmented macules and patches on the neck, wrist, and legs after exposure to dimethyl sulfate in a chemical industry. Physical examination revealed irregular depigmentation macules with sharp edges and clear hyperpigmentation around the lesions. History of repeated exposure to a chemical agent can help the clinical diagnosis of chemical leukoderma. This diagnosis is very important for prognosis and therapeutic management of the disease.

  11. New Bioactive Alkyl Sulfates from Mediterranean Tunicates

    Directory of Open Access Journals (Sweden)

    Marialuisa Menna

    2012-10-01

    Full Text Available Chemical investigation of two species of marine ascidians, Aplidium elegans and Ciona edwardsii, collected in Mediterranean area, led to isolation of a series of alkyl sulfates (compounds 1–5 including three new molecules 1–3. Structures of the new metabolites have been elucidated by spectroscopic analysis. Based on previously reported cytotoxic activity of these type of molecules, compounds 1–3 have been tested for their effects on the growth of two cell lines, J774A.1 (BALB/c murine macrophages and C6 (rat glioma in vitro. Compounds 1 and 2 induced selective concentration-dependent mortality on J774A.1 cells.

  12. Sulfation patterns determine cellular internalization of heparin-like polysaccharides

    OpenAIRE

    Raman, Karthik; Mencio, Caitlin; Desai, Umesh R.; Kuberan, Balagurunathan

    2013-01-01

    Heparin is a highly sulfated polysaccharide which serves biologically relevant roles as an anticoagulant and anti-cancer agent. While it is well known that modification of heparin’s sulfation pattern can drastically influence its ability to bind growth factors and other extracellular molecules, very little is known about the cellular uptake of heparin and the role sulfation patterns serve in affecting its internalization. In this study, we chemically synthesized several fluorescently-labeled ...

  13. Glycosaminoglycan modifications in Duchenne muscular dystrophy: specific remodeling of chondroitin sulfate/dermatan sulfate.

    Science.gov (United States)

    Negroni, Elisa; Henault, Emilie; Chevalier, Fabien; Gilbert-Sirieix, Marie; Van Kuppevelt, Toin H; Papy-Garcia, Dulce; Uzan, Georges; Albanese, Patricia

    2014-08-01

    Widespread skeletal muscle degeneration and impaired regeneration lead to progressive muscle weakness and premature death in patients with Duchenne muscular dystrophy (DMD). Dystrophic muscles are progressively replaced by nonfunctional tissue because of exhaustion of muscle precursor cells and excessive accumulation of extracellular matrix (ECM). Sulfated glycosaminoglycans (GAGs) are components of the ECM and are increasingly implicated in the regulation of biologic processes, but their possible role in the progression of DMD pathology is not understood. In the present study, we performed immunohistochemical and biochemical analyses of endogenous GAGs in skeletal muscle biopsies of 10 DMD patients and 11 healthy individuals (controls). Immunostaining targeted to specific GAG species showed greater deposition of chondroitin sulfate (CS)/dermatan (DS) sulfate in DMD patient biopsies versus control biopsies. The selective accumulation of CS/DS in DMD biopsies was confirmed by biochemical quantification assay. In addition, high-performance liquid chromatography analysis demonstrated a modification of the sulfation pattern of CS/DS disaccharide units in DMD muscles. In conclusion, our data open up a new path of investigation and suggest that GAGs could represent a new and original therapeutic target for improving the success of gene or cell therapy for the treatment of muscular dystrophies.

  14. Sulfation of heparan sulfate associated with amyloid-beta plaques in patients with Alzheimer's disease.

    NARCIS (Netherlands)

    Bruinsma, I.B.; Riet, L. te; Gevers, T.; Dam, G.B. ten; Kuppevelt, A.H.M.S.M. van; David, G.; Kusters, B.; Waal, R.M.W. de; Verbeek, M.M.

    2010-01-01

    Alzheimer's disease (AD) is characterized by pathological lesions such as amyloid-beta (Abeta) plaques and cerebral amyloid angiopathy. Both these lesions consist mainly of aggregated Abeta protein and this aggregation is affected by macromolecules such as heparan sulfate (HS) proteoglycans.

  15. Inter vs. intraglycosidic acetal linkages control sulfation pattern in semi-synthetic chondroitin sulfate.

    Science.gov (United States)

    Laezza, Antonio; De Castro, Cristina; Parrilli, Michelangelo; Bedini, Emiliano

    2014-11-04

    Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units. This difference was ascribed to the stabilization of a labile interglycosidic benzylidene acetal involving positions O-3 and O-6 of some GlcA and GalNAc, respectively, when the benzylidene-acetylation reactions were conducted in a one-pot fashion. Isolation and characterization of a polysaccharide intermediate showing interglycosidic acetal moieties was accomplished.

  16. REFINEMENT OF THE CRYSTAL STRUCTURE OF GUANIDINIUM ALUMINUM SULFATE HEXAHYDRATE.

    Science.gov (United States)

    FERROELECTRIC CRYSTALS, * CRYSTAL STRUCTURE ), (*GUANIDINES, CRYSTAL STRUCTURE ), (*ALUMINUM COMPOUNDS, CRYSTAL STRUCTURE ), SULFATES, HYDRATES, X RAY DIFFRACTION, CHROMIUM COMPOUNDS, CRYSTAL LATTICES, CHEMICAL BONDS

  17. Cloud water chemistry and the production of sulfates in clouds

    Science.gov (United States)

    Hegg, D. A.; Hobbs, P. V.

    1981-01-01

    Measurements are presented of the pH and ionic content of water collected in clouds over western Washington and the Los Angeles Basin. Evidence for sulfate production in some of the clouds is presented. Not all of the sulfur in the cloud water was in the form of sulfate. However, the measurements indicate that the production of sulfate in clouds is of considerable significance in the atmosphere. Comparison of field measurements with model results show reasonable agreement and suggest that the production of sulfate in cloud water is a consequence of more than one conversion mechanism.

  18. Theoretical study on the reactivity of sulfate species with hydrocarbons

    Science.gov (United States)

    Ma, Q.; Ellis, G.S.; Amrani, A.; Zhang, T.; Tang, Y.

    2008-01-01

    The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42 - are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42 - is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions (HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42 -. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels

  19. An Instrument to Measure Aircraft Sulfate Particle Emissions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodyne is developing a sulfate detection instrument, based on the Tunable Infrared Laser Differential Absorption Spectrophotometer (TILDAS) technology and...

  20. Sulfate Reduction in Groundwater: Characterization and Applications for Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Z.; Brusseau, M. L.; Carroll, Kenneth C.; Carreon-Diazconti, C.; Johnson, B.

    2012-06-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, with a specific focus on implications for groundwater remediation. A case study presenting the results of a pilot-scale ethanol injection test illustrates the advantages and difficulties associated with the use of electron-donor amendments for sulfate remediation.

  1. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production...... and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution...... sulfate proteoglycans previously described....

  2. The "in and out" of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate.

    Science.gov (United States)

    El Masri, Rana; Seffouh, Amal; Lortat-Jacob, Hugues; Vivès, Romain R

    2016-11-03

    The biological properties of Heparan sulfate (HS) polysaccharides essentially rely on their ability to bind and modulate a multitude of protein ligands. These interactions involve internal oligosaccharide sequences defined by their sulfation patterns. Amongst these, the 6-O-sulfation of HS contributes significantly to the polysaccharide structural diversity and is critically involved in the binding of many proteins. HS 6-O-sulfation is catalyzed by 6-O-sulfotransferases (6OSTs) during biosynthesis, and it is further modified by the post-synthetic action of 6-O-endosulfatases (Sulfs), two enzyme families that remain poorly characterized. The aim of the present review is to summarize the contribution of 6-O-sulfates in HS structure/function relationships and to discuss the present knowledge on the complex mechanisms regulating HS 6-O-sulfation.

  3. Controls of Soluble Al in Experimental Acid Sulfate Conditions and Acid Sulfate Soils

    Institute of Scientific and Technical Information of China (English)

    LINCHUXIA; M.D.MELVILLE

    1997-01-01

    The controls of soluble Al concentration were examined in three situations of acid sulfate conditions:1) experimental acid sulfate conditions by addition of varying amounts of Al(OH)3(gibbsite) into a sequence of H2SO4 solutions;2)experimental acid sulfate conditions by addition of the same sequence of H2SO4 solutions into two non-cid sulfacte soil samples with known amounts of acid oxalate extractable Al; and 3) actual acid sulfate soil conditions.The experiment using gibbsite as an Al-bearing mineral showed that increase in the concentration of H2SO4 solution increased the soluble Al concentration,accompanied by a decrease i the solution pH, Increasing amount of gibbsite added to the H2SO4 solutions also increased soluble Al concentration,but resulted in an increase in solution pH.Within the H2SO4 concentration range of 0.0005-0.5mol L-1 and the Al(OH)3 range of 0.01-0.5g(in 25 mL of H2SO4 solutions),the input of H2SO4 had the major control on soluble Al Concentration and pH .The availability of Al(OH)3,however,was responsible for the spread fo the various sample points,with a tendency that the samples containing more gibbsite had a higher soluble Al concentration than those containing less gibbsite at equivalent pH levels.The experimental results from treatment of soil samples with H2SO4 solutions and the analytical results of acid sulfate soils also showed the similar trend.

  4. Papillomavirus microbicidal activities of high-molecular-weight cellulose sulfate, dextran sulfate, and polystyrene sulfonate.

    Science.gov (United States)

    Christensen, N D; Reed, C A; Culp, T D; Hermonat, P L; Howett, M K; Anderson, R A; Zaneveld, L J

    2001-12-01

    The high-molecular-weight sulfated or sulfonated polysaccharides or polymers cellulose sulfate, dextran sulfate, and polystyrene sulfonate were tested for microbicidal activity against bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 11 (HPV-11) and type 40 (HPV-40). In vitro assays included the BPV-1-induced focus-forming assay and transient infection of human A431 cells with HPVs. The compounds were tested for microbicidal activity directly by preincubation with virus prior to addition to cell cultures and indirectly by addition of virus to compound-treated cells and to virus-coated cells to test inactivation of the virus after virus-cell binding. The data indicated that all three compounds showed direct microbicidal activity with 50% effective concentrations between 10 to 100 microg/ml. These concentrations were nontoxic to cell cultures for both assays. When a clone of C127 cells was tested for microbicidal activity, approximately 10-fold-less compound was required to achieve a 50% reduction in BPV-1-induced foci than for the uncloned parental C127 cells. Pretreatment of cells with compound prior to addition of virus also demonstrated strong microbicidal activity with dextran sulfate and polystyrene sulfonate, but cellulose sulfate required several orders of magnitude more compound for virus inactivation. Polystyrene sulfonate prevented subsequent infection of HPV-11 after virus-cell binding, and this inactivation was observed up to 4 h after addition of virus. These data indicate that the polysulfated and polysulfonated compounds may be useful nontoxic microbicidal compounds that are active against a variety of sexually transmitted disease agents including papillomaviruses.

  5. Synergistic Extraction of Gallium for Sulfate Solution

    Institute of Scientific and Technical Information of China (English)

    DENGTong; HUANGLijuan; 等

    2002-01-01

    A novel extractant mixture, di-2-ethylhexyl phosphate (DEHPA) plus HX, was propose and tested for recovering gallium from sulfate solution.It was found that the extraction capacity of DEPHA for gallium from sulfate solution could be enhanced significantly due to the synergistic effect of acidix extractant HX. Gallium extraction is negligible below pH 0 and highly sensitive to pH of aqueous phase in the range from 0 to 1, and satisfactory extraction can be gained at pH>1. More than 96% Ga extraction was obtained using 15% DEHPA plus 2% HX. Although Fe(Ⅲ) was found to be extracted preferentially to Ga (Ⅲ), effective extraction of Ga (Ⅲ) was possible by reducing ferric to the ferrous state prior to extraction. A loaded organic phase containing 0.48g·L-1 Ga could be produced from solution of 0.12g·L-1 Ga at A/O ratio of 4:1 via three mixer-settler operation stages. Gallium was stripped quantitatively from the loaded organic phase with 1.5mol·L-1 of sulfuric acid.

  6. Molecular Structure of Aminoguanidine Sulfate Monohydrate

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-yan; ZHANG Tong-lai; QIAO Xiao-jing; YANG Li; SHAO Feng-lei

    2006-01-01

    The single crystal of aminoguanidine sulfate monohydrate [(AG)2SO4·H2O] is obtained and its structure is determined by X-ray diffraction analysis. The compound crystallizes in orthorhombic system with space group Pnma and the empirical formula C2H16N8O5S. The unit cell parameters are as follows: a=0.6759(2)nm, b=1.4131(5)nm, c=1.1650(4)nm, V=1.1128(6)n m3, Z=4, Dc=1.578g/cm3, F(000)=560, s=1.069, μ(MoKα)=0.318mm-1. The final R and Wr are 0.0312 and 0.0833, respectively. The title compound is an ionic compound and its structure unit consists of two aminoguanidium cations, one sulfate anion and one crystal water molecule, which are interconnected by electrostatic forces and hydrogen bond s into net structure, making the title compound very stable. Under a linear heat ingrate, the thermal decomposition processes of (AG)2SO4·H2O have one en dothermal dehydration stage, one melting process and one exothermic decomposition stage at 50-400℃, and can evolve abundant gas products.

  7. Diammonium tricadmium tris(sulfate dihydroxide dihydrate

    Directory of Open Access Journals (Sweden)

    Xin Yin

    2011-05-01

    Full Text Available The title compound, (NH42Cd3(SO43(OH2(H2O2, has been obtained serendipitously. It is isotypic with the heavier alkali analogues M2Cd3(SO43(OH2(H2O2 (M = K, Rb, Cs. The structure contains two Cd2+ ions, one in a general position and one with site symmetry m. The former Cd2+ ion is coordinated by three O atoms of three SO4 groups, two hydroxide O atoms and one water O atom, the latter Cd2+ ion by four O atoms of four SO4 groups and two hydroxide O atoms, both in a distorted octahedral coordination geometry. This arrangement leads to the formation of a layered framework extending parallel to (100, with the ammonium cations situated in the voids. O—H...O hydrogen bonds involving the water molecules, hydroxide groups and sulfate O atoms, as well as N—H...O hydrogen bonds between ammonium cations and sulfate O atoms consolidate the crystal packing.

  8. Effects of brief and intermediate exposures to sulfate submicron aerosols and sulfate injections on cardiopulmonary function of dogs and tracheal mucous velocity of sheep

    Energy Technology Data Exchange (ETDEWEB)

    Sackner, M.A. (Mount Sinai Medical Center, Miami Beach, FL); Dougherty, R.L.; Chapman, G.A.; Cipley, J.; Perez, D.; Kwoka, M.; Reinhart, M.; Brito, M.; Schreck, R.

    1981-06-01

    Pulmonary mechanics of anesthetized dogs were not changed or were minimally altered by breathing the following compounds as submicron aerosols in concentrations up to 17.3 mg/m/sup 3/ for 7.5 min: (1) sodium chloride (as a control), (2) sodium sulfate, (3) ammonium sulfate, (4) zinc sulfate, (5) zinc ammonium sulfate, (6) ammonium bisulfate, (7) aluminum sulfate, (8) manganese sulfate, (9) nickel sulfate, (10) copper sulfate, (11) ferrous fulfate, and (12) ferric sulfate. Submicron aerosols of these compounds in concentrations of 4.1 to 8.8 mg/m/sup 3/, administered for 4 h to anesthetized dogs, did not affect mechanics of breathing, hemodynamics, and arterial blood gases. In conscious sheep, tracheal mucous velocity was not altered by exposure to the submicron aerosols of the sulfate compounds. None of these compounds, injected iv in a dose of 1 mg, had adverse effects on mechanics of breathing, pulmonary and systemic hemodynamics, or arterial blood gases. In 100-mg injections, zinc sulfate and zinc ammonium sulfate produced a fall in cardiac output, systemic hypotension, hypoxemia, and metabolic acidosis. Copper sulfate at this dose produced pulmonary hypertension, a fall in cardiac output, hypoxemia, respiratory acidosis, and a decrease of specific total respiratory conductance. It is concluded that submicron aerosols of sulfate salts do not have adverse cardiopulmonary effects when administered in high concentrations for up to 4 h. However, prolonged exposure to high concentrations of zinc sulfate, zinc ammonium sulfate, and copper sulfate aerosols might have adverse cardiopulmonary effects.

  9. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) involved in chondroitin sulfate initiation: Impact of sulfation on activity and specificity.

    Science.gov (United States)

    Gulberti, Sandrine; Jacquinet, Jean-Claude; Chabel, Matthieu; Ramalanjaona, Nick; Magdalou, Jacques; Netter, Patrick; Coughtrie, Michael W H; Ouzzine, Mohamed; Fournel-Gigleux, Sylvie

    2012-04-01

    Glycosaminoglycan (GAG) assembly initiates through the formation of a linkage tetrasaccharide region serving as a primer for both chondroitin sulfate (CS) and heparan sulfate (HS) chain polymerization. A possible role for sulfation of the linkage structure and of the constitutive disaccharide unit of CS chains in the regulation of CS-GAG chain synthesis has been suggested. To investigate this, we determined whether sulfate substitution of galactose (Gal) residues of the linkage region or of N-acetylgalactosamine (GalNAc) of the disaccharide unit influences activity and specificity of chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1), a key glycosyltransferase of CS biosynthesis. We synthesized a series of sulfated and unsulfated analogs of the linkage oligosaccharide and of the constitutive unit of CS and tested these molecules as potential acceptor substrates for the recombinant human CSGalNAcT-1. We show here that sulfation at C4 or C6 of the Gal residues markedly influences CSGalNAcT-1 initiation activity and catalytic efficiency. Kinetic analysis indicates that CSGalNAcT-1 exhibited 3.6-, 1.6-, and 2.2-fold higher enzymatic efficiency due to lower K(m) values toward monosulfated trisaccharides substituted at C4 or C6 position of Gal1, and at C6 of Gal2, respectively, compared with the unsulfated oligosaccharide. This highlights the critical influence of Gal substitution on both CSGalNAcT-1 activity and specifity. No GalNAcT activity was detected toward sulfated and unsulfated analogs of the CS constitutive disaccharide (GlcA-β1,3-GalNAc), indicating that CSGalNAcT-1 was involved in initiation but not in elongation of CS chains. Our results strongly suggest that sulfation of the linkage region acts as a regulatory signal in CS chain initiation.

  10. Utilization of sulfate additives in biomass combustion: fundamental and modeling aspects

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Grell, Morten Nedergaard

    2013-01-01

    Sulfates, such as ammonium sulfate, aluminum sulfate and ferric sulfate, are effective additives for converting the alkali chlorides released from biomass combustion to the less harmful alkali sulfates. Optimization of the use of these additives requires knowledge on their decomposition rate and ...

  11. Upper tropospheric ice sensitivity to sulfate geoengineering

    Science.gov (United States)

    Visioni, Daniele; Pitari, Giovanni; Mancini, Eva

    2017-04-01

    In light of the Paris Agreement which aims to keep global warming under 2 °C in the next century and considering the emission scenarios produced by the IPCC for the same time span, it is likely that to remain below that threshold some kind of geoengineering technique will have to be deployed. Amongst the different methods, the injection of sulfur into the stratosphere has received much attention considering its effectiveness and affordability. Aside from the rather well established surface cooling sulfate geoengineering (SG) would produce, the investigation on possible side-effects of this method is still ongoing. For instance, some recent studies have investigated the effect SG would have on upper tropospheric cirrus clouds, expecially on the homogenous freezing mechanisms that produces the ice particles (Kuebbeler et al., 2012). The goal of the present study is to better understand the effect of thermal and dynamical anomalies caused by SG on the formation of ice crystals via homogeneous freezing by comparing a complete SG simulation with a RCP4.5 reference case and with a number of sensitivity studies where atmospheric temperature changes in the upper tropospheric region are specified in a schematic way as a function of the aerosol driven stratospheric warming and mid-lower tropospheric cooling. These changes in the temperature profile tend to increase atmospheric stabilization, thus decreasing updraft and with it the amount of water vapor available for homogeneous freezing in the upper troposphere. However, what still needs to be assessed is the interaction between this dynamical effect and the thermal effects of tropospheric cooling (which would increase ice nucleation rates) and stratospheric warming (which would probably extend to the uppermost troposphere via SG aerosol gravitational settling, thus reducing ice nucleation rates), in order to understand how they combine together. Changes in ice clouds coverage could be important for SG, because cirrus ice

  12. A radioimmunoassay for measurement of thyroxine sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, I.J.; Santini, F.; Hurd, R.E.; Chua Teco, G.N. (Univ. of California Center for the Health Sciences, Los Angeles (United States))

    1993-01-01

    A highly sensitive, specific, and reproducible RIA has been developed to measure T[sub 4] sulfate (T[sub 4]S) in ethanol extracts of serum. rT[sub 3] sulfate (rT[sub 3]S) cross-reacted 7.1%, and T[sub 3]S cross-reacted 0.59% in the RIA; T[sub 4], T[sub 3], rT[sub 3] and 3,3[prime]-diiodothyronine cross-reacted 0.004% or less. The recovery of nonradioactive T[sub 4]S added to serum averaged 95%. The detection threshold of the RIA was 18 pmol/L. The coefficient of variation averaged 6.9% within an assay and 12% between assays. T[sub 4]S was bound by T[sub 4]-binding globulin and albumin in serum. The free fraction of T[sub 4]S in four normal sera averaged 0.06% compared to a value of 0.03% for T[sub 4] (P < 0.001). The serum concentration of T[sub 4]S was (mean [+-] SE) 19 [+-] 1.2 pmol/L in normal subjects, 33 [+-] 10 in hyperthyroid patients with Graves disease, 42 [+-] 15 in hypothyroid patients, 34 [+-] 6.9 in patients with systematic nonthyroidal illnesses, 21 [+-] 4.3 in pregnant women at 15-40 weeks gestation, and 245 [+-] 26 in cord blood sera of newborns; the value in the newborn was significantly different from normal (P < 0.001). Administration of sodium ipodate (Oragrafin; 3 g, orally) to hyperthyroid patients was associated with a transient increase in serum T[sub 4]S. The T[sub 4]S content of the thyroid gland was less than 1/4000th that of T[sub 4]. We conclude that (1) T[sub 4]S is a normal component of human serum, and its levels are markedly increased in newborn serum and amniotic fluid; and (2) the sulfation pathway plays an important role in the metabolism of T[sub 4] in man. 28 refs., 4 figs., 2 tabs.

  13. The platelet glycoprotein thrombospondin binds specifically to sulfated glycolipids.

    Science.gov (United States)

    Roberts, D D; Haverstick, D M; Dixit, V M; Frazier, W A; Santoro, S A; Ginsburg, V

    1985-08-05

    The human platelet glycoprotein thrombospondin (TSP) binds specifically and with high affinity to sulfatides (galactosylceramide-I3-sulfate). Binding of 125I-TSP to lipids from sheep and human erythrocytes and human platelets resolved on thin layer chromatograms indicates that sulfatides are the only lipids in the membrane which bind TSP. Binding to less than 2 ng of sulfatide could be detected. TSP failed to bind to other purified lipids including cholesterol 3-sulfate, phospholipids, neutral glycolipids, and gangliosides. Binding of 125I-TSP was inhibited by unlabeled TSP, by low pH, and by reduction of intersubunit disulfide bonds with dithiothreitol. A monoclonal antibody against TSP (A2.5), which inhibits hemagglutination and agglutination of fixed activated platelets by TSP, strongly inhibited TSP binding to sulfatides. A second monoclonal antibody (C6.7), which inhibits hemagglutination and aggregation of thrombin-activated live platelets, weakly inhibited sulfatide binding. Binding was inhibited by high ionic strength and by some monosaccharide sulfates including methyl-alpha-D-GlcNAc-3-sulfate. Neutral sugars did not inhibit. Fucoidan, a sulfated fucan, strongly inhibited binding with 50% inhibition at 0.3 micrograms/ml fucoidan. Other sulfated polysaccharides including heparin and dextran sulfates were good inhibitors, whereas hyaluronic acid and keratan sulfate were very weak.

  14. Quantitative Analysis of Sulfate in Water by Indirect EDTA Titration

    Science.gov (United States)

    Belle-Oudry, Deirdre

    2008-01-01

    The determination of sulfate concentration in water by indirect EDTA titration is an instructive experiment that is easily implemented in an analytical chemistry laboratory course. A water sample is treated with excess barium chloride to precipitate sulfate ions as BaSO[subscript 4](s). The unprecipitated barium ions are then titrated with EDTA.…

  15. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG

    2013-04-18

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property in the ultraviolet region which confirms and agrees well with former results. © 2013 Astro Ltd.

  16. Differential Expression of Specific Dermatan Sulfate Domains in Renal Pathology

    NARCIS (Netherlands)

    Lensen, J.F.M.; Vlag, J. van der; Versteeg, E.M.M.; Wetzels, J.F.M.; Heuvel, L.P.W.J. van den; Berden, J.H.M.; Kuppevelt, T.H. van; Rops, A.

    2015-01-01

    Dermatan sulfate (DS), also known as chondroitin sulfate (CS)-B, is a member of the linear polysaccharides called glycosaminoglycans (GAGs). The expression of CS/DS and DS proteoglycans is increased in several fibrotic renal diseases, including interstitial fibrosis, diabetic nephropathy, mesangial

  17. Novel Thermally Stable Poly (vinyl chloride) Composites for Sulfate Removal

    Science.gov (United States)

    BaCO3 dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthe...

  18. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  19. Reductive and sorptive properties of sulfate green rust (GRSO4)

    DEFF Research Database (Denmark)

    Nedel, Sorin

    The Fe(II), Fe(III) hydroxide containing sulfate in its structure, called sulfate green rust (GRSO4), can effectively reduce and convert contaminants to less mobile and less toxic forms. However, the ability of GRSO4 to remove positively charged species from solution, via sorption, is very limited...

  20. 21 CFR 520.110 - Apramycin sulfate soluble powder.

    Science.gov (United States)

    2010-04-01

    ...) caused by strains of E. coli sensitive to apramycin. (2) It is administered for 7 days in drinking water... sulfate soluble powder. (a) Specifications. A water soluble powder used to make a medicated drinking water containing apramycin sulfate equivalent to 0.375 gram of apramycin activity per gallon of drinking water....

  1. 21 CFR 173.385 - Sodium methyl sulfate.

    Science.gov (United States)

    2010-04-01

    ... Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in pectin in accordance with the following conditions. (a) It is present as the result of methylation of pectin by....1 percent by weight of the pectin....

  2. Serum Indoxyl Sulfate Associates with Postangioplasty Thrombosis of Dialysis Grafts.

    Science.gov (United States)

    Wu, Chih-Cheng; Hsieh, Mu-Yang; Hung, Szu-Chun; Kuo, Ko-Lin; Tsai, Tung-Hu; Lai, Chao-Lun; Chen, Jaw-Wen; Lin, Shing-Jong; Huang, Po-Hsun; Tarng, Der-Cherng

    2016-04-01

    Hemodialysis vascular accesses are prone to recurrent stenosis and thrombosis after endovascular interventions.In vitro data suggest that indoxyl sulfate, a protein-bound uremic toxin, may induce vascular dysfunction and thrombosis. However, there is no clinical evidence regarding the role of indoxyl sulfate in hemodialysis vascular access. From January 2010 to June 2013, we prospectively enrolled patients undergoing angioplasty for dialysis access dysfunction. Patients were stratified into tertiles by baseline serum indoxyl sulfate levels. Study participants received clinical follow-up at 6-month intervals until June 2014. Primary end points were restenosis, thrombosis, and failure of vascular access. Median follow-up duration was 32 months. Of the 306 patients enrolled, 262 (86%) had symptomatic restenosis, 153 (50%) had access thrombosis, and 25 (8%) had access failure. In patients with graft access, free indoxyl sulfate tertiles showed a negative association with thrombosis-free patency (thrombosis-free patency rates of 54%, 38%, and 26% for low, middle, and high tertiles, respectively;P=0.001). Patients with graft thrombosis had higher free and total indoxyl sulfate levels. Using multivariate Cox regression analysis, graft thrombosis was independently predicted by absolute levels of free indoxyl sulfate (hazard ratio=1.14;P=0.01) and free indoxyl sulfate tertiles (high versus low, hazard ratio=2.41;P=0.001). Results of this study provide translational evidence that serum indoxyl sulfate is a novel risk factor for dialysis graft thrombosis after endovascular interventions.

  3. Sulfation of ractopamine and salbutamol by the human cytosolic sulfotransferases.

    Science.gov (United States)

    Ko, Kyounga; Kurogi, Katsuhisa; Davidson, Garrett; Liu, Ming-Yih; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2012-09-01

    Feed additives such as ractopamine and salbutamol are pharmacologically active compounds, acting primarily as β-adrenergic agonists. This study was designed to investigate whether the sulfation of ractopamine and salbutamol may occur under the metabolic conditions and to identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating two major feed additive compounds, ractopamine and salbutamol. A metabolic labelling study showed the generation and release of [(35)S]sulfated ractopamine and salbutamol by HepG2 human hepatoma cells labelled with [(35)S]sulfate in the presence of these two compounds. A systematic analysis using 11 purified human SULTs revealed SULT1A3 as the major SULT responsible for the sulfation of ractopamine and salbutamol. The pH dependence and kinetic parameters were analyzed. Moreover, the inhibitory effects of ractopamine and salbutamol on SULT1A3-mediated dopamine sulfation were investigated. Cytosol or S9 fractions of human lung, liver, kidney and small intestine were examined to verify the presence of ractopamine-/salbutamol-sulfating activity in vivo. Of the four human organs, the small intestine displayed the highest activity towards both compounds. Collectively, these results imply that the sulfation mediated by SULT1A3 may play an important role in the metabolism and detoxification of ractopamine and salbutamol.

  4. Genesis and solution chemistry of acid sulfate soils in Thailand

    NARCIS (Netherlands)

    Breemen, van N.

    1976-01-01

    To study short-term and long-term chemical processes in periodically flooded acid sulfate soils in the Bangkok Plain and in various smaller coastal plains along the Gulf of Thailand, 16 acid sulfate soils and one non-acid marine soil were examined for distribution of iron-sulfur compounds, elemental

  5. Sulfate reduction at low pH in organic wastewaters

    NARCIS (Netherlands)

    Lopes, S.I.C.

    2007-01-01

    The objective of the research described in this thesis was to investigate the operational window of dissimilatory sulfate reduction at low pH (6, 5 and 4) during the acidification of organic wastewaters. High sulfate reduction efficiencies at low pH are desirable for a more sustainable operation of

  6. Genesis and solution chemistry of acid sulfate soils in Thailand

    NARCIS (Netherlands)

    Breemen, van N.

    1976-01-01

    To study short-term and long-term chemical processes in periodically flooded acid sulfate soils in the Bangkok Plain and in various smaller coastal plains along the Gulf of Thailand, 16 acid sulfate soils and one non-acid marine soil were examined for distribution of iron-sulfur compounds, elemental

  7. Catalytic synthesis of sulfated polysaccharides I: Characterization of chemical structure.

    Science.gov (United States)

    Wang, Junlong; Yang, Wen; Yang, Ting; Zhang, Xiaonuo; Zuo, Yuan; Tian, Jia; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2015-03-01

    In the present study, sulfated derivatives of Artemisia sphaerocephala polysaccharide (SASP) with high degree of substitution (DS) were synthesized by using 4-dimethylaminopyridine (DMAP)/dimethylcyclohexylcarbodiimide (DCC) as catalyst in homogeneous conditions. It was found that DMAP/DCC showed marked improvement in DS of sulfated samples. Compared to sulfated derivatives without catalyst, the DS of SASP increased from 0.91 to 1.28 with an increment in dosage of DMAP from 0 to 10 mg. The influence of DMAP/DCC on the DS of sulfated derivatives was depended on the content of DMAP. The effect of DMAP might be due to its strong coordination to the hydroxy group. The results of FT-IR and X-ray photoelectron spectroscopy (XPS) indicated that SO3- group (S6+, binding energy of 172.3 eV) was widely present in sulfated polysaccharide molecules. 13C NMR results indicated that C-6 substitution was predominant for sulfated polysaccharide when compared with other positions. In the sulfation reaction, a sharp decrease in MW was observed. DMAP/DCC was an effective catalyst system in sulfated modification of polysaccharide.

  8. Structural characterization and bioactivities of sulfated polysaccharide from Monostroma oxyspermum.

    Science.gov (United States)

    Seedevi, Palaniappan; Moovendhan, Meivelu; Sudharsan, Sadhasivam; Vasanthkumar, Shanmugam; Srinivasan, Alagiri; Vairamani, Shanmugam; Shanmugam, Annaian

    2015-01-01

    Sulfated polysaccharide was isolated from Monostroma oxyspermum through hot water extraction, anion-exchange and gel permeation column chromatography. The sulfated polysaccharide contained 92% of carbohydrate, 0% of protein, 7.8% of uronic acid, 22% of ash and 33% of moisture respectively. The elemental composition was analyzed using CHNS/O analyzer. The molecular weight of sulfated polysaccharide determined through PAGE was found to be as 55 kDa. Monosaccharides analysis revealed that sulfated polysaccharide was composed of rhamnose, fructose, galactose, xylose, and glucose. The structural features of sulfated polysaccharide were analyzed by NMR spectroscopy. Further the sulfated polysaccharide showed total antioxidant and DPPH free radical scavenging activity were as 66.29% at 250 μg/ml and 66.83% at 160 μg/ml respectively. The sulfated polysaccharide also showed ABTS scavenging ability and reducing power were as 83.88% at 125 μg/ml and 15.81% at 400 μg/ml respectively. The anticoagulant activity was determined for human plasma with respect to Activated Partial Thromboplastin Time (APTT) and Prothrombin Time (PT) was 20.09 IU and 1.79 IU at 25 μg/ml respectively. These results indicated that the sulfated polysaccharide from M. oxyspermum had potent antioxidant and anticoagulant activities.

  9. Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix.

    Science.gov (United States)

    Kokenyesi, R

    Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.

  10. Effects of chlorate on the sulfation process of Trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion.

    Science.gov (United States)

    Ferrero, Maximiliano R; Soprano, Luciana L; Acosta, Diana M; García, Gabriela A; Esteva, Mónica I; Couto, Alicia S; Duschak, Vilma G

    2014-09-01

    Sulfation, a post-translational modification which plays a key role in various biological processes, is inhibited by competition with chlorate. In Trypanosoma cruzi, the agent of Chagas' disease, sulfated structures have been described as part of glycolipids and we have reported sulfated high-mannose type oligosaccharides in the C-T domain of the cruzipain (Cz) glycoprotein. However, sulfation pathways have not been described yet in this parasite. Herein, we studied the effect of chlorate treatment on T. cruzi with the aim to gain some knowledge about sulfation metabolism and the role of sulfated molecules in this parasite. In chlorate-treated epimastigotes, immunoblotting with anti-sulfates enriched Cz IgGs (AS-enriched IgGs) showed Cz undersulfation. Accordingly, a Cz mobility shift toward higher isoelectric points was observed in 2D-PAGE probed with anti-Cz antibodies. Ultrastructural membrane abnormalities and a significant decrease of dark lipid reservosomes were shown by electron microscopy and a significant decrease in sulfatide levels was confirmed by TLC/UV-MALDI-TOF-MS analysis. Altogether, these results suggest T. cruzi sulfation occurs via PAPS. Sulfated epitopes in trypomastigote and amastigote forms were evidenced using AS-enriched IgGs by immunoblotting. Their presence on trypomastigotes surface was demonstrated by flow cytometry and IF with Cz/dCz specific antibodies. Interestingly, the percentage of infected cardiac HL-1 cells decreased 40% when using chlorate-treated trypomastigotes, suggesting sulfates are involved in the invasion process. The same effect was observed when cells were pre-incubated with dCz, dC-T or an anti-high mannose receptor (HMR) antibody, suggesting Cz sulfates and HMR are also involved in the infection process by T. cruzi.

  11. Dehydroepiandrosterone, Its Sulfate and Cognitive Functions

    Science.gov (United States)

    de Menezes, Karina Junqueira; Peixoto, Clayton; Nardi, Antonio Egidio; Carta, Mauro Giovanni; Machado, Sérgio; Veras, André Barciela

    2016-01-01

    To present a review of cross-sectional and longitudinal studies that investigate the relationship between the hormones Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone sulfate (DHEA-S) and cognition. Methods: The cognition items included in this review were global cognitive function, memory, attention, executive function, intelligence, perception and visuospatial ability. A systematic review was proceeded using three databases: PubMed, ISI Web of Science, and PsycINFO. Results: Two thousand fifty five references about cognition and hormones were found; 772 duplicated references were excluded, resulting in 1.283 references to be evaluated. According to exclusion and inclusion criteria, 25 references were selected. A positive correlation between DHEA-S blood levels and global cognition was found in women and men. Other positive correlations between DHEA-S and working memory, attention and verbal fluency were found only in women. The DHEA effect on cognition is limited to one study conducted among young men with high-doses. PMID:27346998

  12. Dehydroepiandrosterone, Its Sulfate and Cognitive Functions.

    Science.gov (United States)

    de Menezes, Karina Junqueira; Peixoto, Clayton; Nardi, Antonio Egidio; Carta, Mauro Giovanni; Machado, Sérgio; Veras, André Barciela

    2016-01-01

    To present a review of cross-sectional and longitudinal studies that investigate the relationship between the hormones Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone sulfate (DHEA-S) and cognition. The cognition items included in this review were global cognitive function, memory, attention, executive function, intelligence, perception and visuospatial ability. A systematic review was proceeded using three databases: PubMed, ISI Web of Science, and PsycINFO. Two thousand fifty five references about cognition and hormones were found; 772 duplicated references were excluded, resulting in 1.283 references to be evaluated. According to exclusion and inclusion criteria, 25 references were selected. A positive correlation between DHEA-S blood levels and global cognition was found in women and men. Other positive correlations between DHEA-S and working memory, attention and verbal fluency were found only in women. The DHEA effect on cognition is limited to one study conducted among young men with high-doses.

  13. Preparation and characterization of a chemically sulfated cashew gum polysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Moura Neto, Erico de; Maciel, Jeanny da S.; Cunha, Pablyana L. R.; Paula, Regina Celia M. de; Feitosa, Judith P.A., E-mail: judith@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, Fortaleza (Brazil)

    2011-09-15

    Cashew gum (CG) was sulfated in pyridine:formamide using chlorosulfonic acid as the reagent. Confirmation of sulfation was obtained by Fourier transform infrared (FTIR) spectroscopy through the presence of an asymmetrical S=O stretching vibration at 1259 cm{sup -1}. The degrees of substitution were 0.02, 0.24 and 0.88 determined from the sulfur percentage. 1D and 2D nuclear magnetic resonance (NMR) data showed that the sulfation occurred at primary carbons. An increase of at least 4% of the solution viscosity was observed due to sulfation. The thermal gravimetric curves (TGA) indicate that the derivatives are stable up to ca. 200 deg C. The sulfated CG is compared to carboxymethylated CG in order to verify the possibility of the use of the former in the preparation of polyelectrolyte complexes; the latter is already being used for this application. (author)

  14. Distribution of sulfate between phases in Portland cement clinkers

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, H.F.W.

    1999-08-01

    Sulfate can occur in Portland cement clinkers as alkali sulfates, potassium calcium sulfate (calcium langbeinite), anhydrite, and as a substituent in the major phases, especially alite and belite. Data for the contents in alit and belite are reviewed and relations to bulk clinker composition are discussed. Evidence on sulfate distribution from extraction procedures is similarly considered. A procedure for predicting sulfate distribution from bulk composition is described and tested and potential sources of error in such calculations are discussed. The evidence does not support suggests that, in concrete made with present-day cements and not subjected to an elevated temperature, damage through delayed ettringite formation can occur for reasons connected with the SO{sub 3} present in the clinker.

  15. Sulfation of tea polysaccharides: synthesis, characterization and hypoglycemic activity.

    Science.gov (United States)

    Wang, Yuanfeng; Peng, Yonghua; Wei, Xinlin; Yang, Zhiwei; Xiao, Jianbo; Jin, Zhengyu

    2010-03-01

    Neutral polysaccharides (NTPS) and acid polysaccharides (ATPS) from tea leaves were obtained on a D315 macroporous anion-exchange resin column chromatography. NTPS and ATPS were sulfated by the pyridine-sulfonic acid method to obtain NTPS-S and ATPS-S. It was found that NTPS was easier sulfated than ATPS. There are strong characteristic absorption peaks located in 1258 cm(-1), 1146 cm(-1), 832 cm(-1) and 617 cm(-1) in the FTIR spectra of sulfated polysaccharides. Sulfation of polysaccharides also affected the endothermic and exothermic peaks via the DSC scan analysis. The appearance of exothermic peaks in both NTPS-S and ATPS-S indicated that the redox reaction might happen. The comparative study of hypoglycemic effect on mice showed that the sulfation of polysaccharides significantly improved hypoglycemic activity.

  16. Pressure effect on dissimilatory sulfate reduction

    Science.gov (United States)

    Williamson, A. J.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Biosouring is the production of H2S by sulfate reducing microorganisms (SRM) in-situ or in the produced fluids of oil reservoirs. Sulfide is explosive, toxic and corrosive which can trigger equipment and transportation failure, leading to environmental catastrophe. As oil exploration and reservoir development continue, subsequent enhanced recovery is occurring in progressively deeper formations and typical oil reservoir pressures range from 10-50 MPa. Therefore, an understanding of souring control effects will require an accurate understanding of the influence of pressure on SRM metabolism and the efficacy of souring control treatments at high pressure. Considerable work to date has focussed on souring control at ambient pressure; however, the influence of pressure on biogeochemical processes and souring treatments in oil reservoirs is poorly understood. To explore the impact of pressure on SRM, wild type Desulfovibrio alaskensis G20 (isolated from a producing oil well in Ventura County, California) was grown under a range of pressures (0.1-14 MPa) at 30 °C. Complete sulfate reduction occurred in all pressures tested within 3 days, but microbial growth was inhibited with increasing pressure. Bar-seq identified several genes associated with flagella biosynthesis (including FlhB) and assembly as important for survival at elevated pressure and fitness was confirmed using individual transposon mutants. Flagellar genes have previously been implicated with biofilm formation and confocal microscopy on glass slides incubated with wild type D. alaskensis G20 showed more biomass associated with surfaces under pressure, highlighting the link between pressure, flagellar and biofilm formation. To determine the effect of pressure on the efficacy of SRM inhibitors, IC50 experiments were conducted and D. alaskensis G20 showed a greater resistance to nitrate and the antibiotic chloramphenicol, but a lower resistance to perchlorate. These results will be discussed in the context of

  17. Role of protein sulfation in vasodilation induced by minoxidil sulfate, a K+ channel opener

    Energy Technology Data Exchange (ETDEWEB)

    Meisheri, K.D.; Oleynek, J.J.; Puddington, L. (Cardiovascular Diseases Research, Upjohn Laboratories, Upjohn Company, Kalamazoo, MI (United States))

    1991-09-01

    Evidence from contractile, radioisotope ion flux and electrophysiological studies suggest that minoxidil sulfate (MNXS) acts as a K+ channel opener in vascular smooth muscle. This study was designed to examine possible biochemical mechanisms by which MNXS exerts such an effect. Experiments performed in the isolated rabbit mesenteric artery (RMA) showed that MNXS, 5 microM, but not the parent compound minoxidil, was a potent vasodilator. Whereas the relaxant effects of an another K+ channel opener vasodilator, BRL-34915 (cromakalim), were removed by washing with physiological saline solution, the effects of MNXS persisted after repeated washout attempts. Furthermore, after an initial exposure of segments of intact RMA to (35S) MNXS, greater than 30% of the radiolabel was retained 2 hr after removal of the drug. In contrast, retention of radiolabel was not detected with either (3H)MNXS (label on the piperidine ring of MNXS) or (3H)minoxidil (each less than 3% after a 2-hr washout). These data suggested that the sulfate moiety from MNXS was closely associated with the vascular tissue. To determine if proteins were the acceptors of sulfate from MNXS, intact RMAs were incubated with (35S)MNXS, and then 35S-labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by fluorography. Preferential labeling of a 116 kD protein was detected by 2 and 5 min of treatment. A 43 kD protein (resembling actin) also showed significant labeling. A similar profile of 35S-labeled proteins was observed in (35S) MNXS-treated A7r5 rat aortic smooth muscle cells, suggesting that the majority of proteins labeled by (35S)MNXS in intact RMA were components of smooth muscle cells.

  18. Chondroitin / dermatan sulfate modification enzymes in zebrafish development.

    Directory of Open Access Journals (Sweden)

    Judith Habicher

    Full Text Available Chondroitin/dermatan sulfate (CS/DS proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS. Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.

  19. Acidity-Reactivity Relationships in Catalytic Esterification over Ammonium Sulfate-Derived Sulfated Zirconia

    Directory of Open Access Journals (Sweden)

    Abdallah I. M. Rabee

    2017-07-01

    Full Text Available New insight was gained into the acidity-reactivity relationships of sulfated zirconia (SZ catalysts prepared via (NH42SO4 impregnation of Zr(OH4 for propanoic acid esterification with methanol. A family of systematically related SZs was characterized by bulk and surface analyses including XRD, XPS, TGA-MS, N2 porosimetry, temperature-programmed propylamine decomposition, and FTIR of adsorbed pyridine, as well as methylbutynol (MBOH as a reactive probe molecule. Increasing surface sulfation induces a transition from amphoteric character for the parent zirconia and low S loadings <1.7 wt %, evidenced by MBOH conversion to 3-hydroxy-3-methyl-2-butanone, methylbutyne and acetone, with higher S loadings resulting in strong Brønsted-Lewis acid pairs upon completion of the sulfate monolayer, which favored MBOH conversion to prenal. Catalytic activity for propanoic acid esterification directly correlated with acid strength determined from propylamine decomposition, coincident with the formation of Brønsted-Lewis acid pairs identified by MBOH reactive titration. Monodispersed bisulfate species are likely responsible for superacidity at intermediate sulfur loadings.

  20. Anticoagulantly active heparan sulfate and proteoheparan sulfate from cloned bovine aortic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, J.A.; Atha, D.H.; Fritze, L.M.S.; Rosenberg, R.D.

    1986-05-01

    Heparan sulfate chains and intact proteoheparans were isolated from cloned endothelial cells of bovine aortic intima. The cells were grown in vitro and metabolically labeled using Na/sub 2/(/sup 35/S)SO/sub 4/ and/or tritiated amino acids. The radiolabeled heparan chains (M/sub r/ approx. = 30,000) and the proteoglycans were affinity fractionated on immobilized antithrombin and assayed for anticoagulant activity by radioimmunoassay for thrombin-antithrombin complex. About 1% of the heparan chains and proteoheparan bound antithrombin and accounted for >99% and >85% of the anticoagulant activity, respectively. Comparison of the bound and unbound fractions demonstrated a 6000-fold increase in specific activity for the heparan chains and a >1000-fold increase in specific activity for the proteoglycan. The disaccharide compositions of nitrous acid-cleaved heparan sulfate chains were analyzed by ion-exchange HPLC and found to have about a 4-fold enhancement in the bound fraction of GlcA ..-->.. GlcN-3-0-SO/sub 3/. This disaccharide has been shown previously to be a marker for the antithrombin binding domain in commercial heparin. These results demonstrate that bovine aortic endothelial cells synthesize heparan sulfate and proteoheparan which exhibit anticoagulant activity indistinguishable from heparin, and that the active species contains disaccharides which constitute the unique antithrombin binding domain of heparin.

  1. Low levels of H2S may replace sulfate as sulfur source in sulfate-deprived onion

    NARCIS (Netherlands)

    Durenkamp, Mark; De Kok, LJ

    2005-01-01

    Onion (Allium cepa L.) was exposed to low levels of H2S in order to investigate to what extent H2S could be used as a sulfur source for growth under sulfate-deprived conditions. Sulfate deprivation for a two-week period resulted in a decreased biomass production of the shoot, a subsequently

  2. 21 CFR 524.154 - Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin or bacitracin zinc-neomycin sulfate... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.154 Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B...: (1) To 000009; each gram contains 500 units of bacitracin, 3.5 milligrams of neomycin, and...

  3. Low levels of H2S may replace sulfate as sulfur source in sulfate-deprived onion

    NARCIS (Netherlands)

    Durenkamp, Mark; De Kok, LJ

    2005-01-01

    Onion (Allium cepa L.) was exposed to low levels of H2S in order to investigate to what extent H2S could be used as a sulfur source for growth under sulfate-deprived conditions. Sulfate deprivation for a two-week period resulted in a decreased biomass production of the shoot, a subsequently decrease

  4. Impact of sulfation pattern on the conformation and dynamics of sulfated fucan oligosaccharides as revealed by NMR and MD.

    Science.gov (United States)

    Queiroz, Ismael N L; Wang, Xiaocong; Glushka, John N; Santos, Gustavo R C; Valente, Ana P; Prestegard, James H; Woods, Robert J; Mourão, Paulo A S; Pomin, Vitor H

    2015-05-01

    Sulfated fucans from sea urchin egg jelly express well-defined chemical structures that vary with species. This species specificity regulates the sperm acrosome reaction, a critical step to assure intra-specific fertilization. In addition, these polysaccharides are involved in other biological activities such as anticoagulation. Although sulfation patterns are relevant to the levels of response in both activities, conformation and dynamics of these glycans are also contributing factors. However, data about these features of sulfated fucans are very rare. To address this, we have employed nuclear magnetic resonance experiments combined with molecular dynamics on structurally defined oligosaccharides derived from two sulfated fucans. The results have indicated that the oligosaccharides are flexible in solution. Ring conformation of their composing units displays just the (1)C4 chair configuration. In a particular octasaccharide, composed of two tetrasaccharide sequences, inter-residual hydrogen bonds play a role to decrease dynamics in these repeating units. Conversely, the linking disaccharide [-3)-α-L-Fucp-2(OSO3(-))-(1-3)-α-L-Fucp-4(OCO3(-))-(1-] located right between the two tetrasaccharide units has amplified motions suggested to be promoted by electrostatic repulsion of sulfates on opposite sides of the central glycosidic bond. This conjunction of information about conformation and dynamics of sulfated fucan oligosaccharides provides new insights to explain how these glycans behave free in solution and influenced by sulfation patterns. It may also serve for future studies concerning structure-function relationship of sulfated fucans, especially those involving sea urchin fertilization and anticoagulation.

  5. Ulvans induce resistance against plant pathogenic fungi independently of their sulfation degree.

    Science.gov (United States)

    de Freitas, Mateus B; Ferreira, Luciana G; Hawerroth, Caroline; Duarte, Maria Eugênia R; Noseda, Miguel D; Stadnik, Marciel J

    2015-11-20

    The present work aimed to evaluate the defense responses induced by chemically sulfated ulvans in Arabidopsis thaliana plants against the phytopathogenic fungi Alternaria brassicicola and Colletotrichum higginsianum. Derivatives with growing sulfate content (from 20.9 to 36.6%) were prepared with SO3-pyridine complex in formamide. NMR and FTIR spectroscopic analyses confirmed the increase of sulfate groups after the chemical sulfation process. The native sulfated polysaccharide (18.9% of sulfate) and its chemically sulfated derivatives similarly reduced the severity of both pathogenic fungi infections. Collectively, our results suggest that ulvans induce resistance against both fungal pathogens independently of its sulfation degree.

  6. General Motors sulfate dispersion experiment: experimental procedures and results

    Energy Technology Data Exchange (ETDEWEB)

    Cadle, S.H.; Chock, D.P.; Monson, P.R.; Heuss, J.M.

    1977-01-01

    A massive experiment was conducted at the General Motors Proving Ground to measure the dispersion of sulfates generated by catalyst equipped vehicles. 352 cars equipped with catalysts and air pumps were driven on a 10 kilometer test track to provide a simulated freeway situation with a traffic density of 5462 cars/hour. Experiments were conducted on 17 days in October 1975, providing sixty-six 30 min data sets. On most days, the experiment was carried out early in the morning in order to run under the most adverse meteorological conditions available. Samples of airborne sulfate and a gas tracer, sulfur hexafluoride, as well as extensive meteorological data were collected simultaneously at 20 sampling points under a wide variety of meteorological conditions. The maximum measured increase in sulfate from each 30 min data set was generally found next to the roadway at the lowest level and varied from 3 to 15 ..mu..g/m/sup 3/. This increase in sulfate over background fell off rapidly with height and distance. Sulfate increases in vehicles (2 hr averages) ranged from 0 to 20 ..mu..g/m/sup 3/, and averaged 4 ..mu..g/m/sup 3/. Within experimental uncertainty, the sulfate aerosol and the gas tracer were found to disperse in the same manner. The tracer data have also been used to calculate the sulfate emission rate of the vehicles.

  7. Reconstruction of secular variation in seawater sulfate concentrations

    Science.gov (United States)

    Algeo, T. J.; Luo, G. M.; Song, H. Y.; Lyons, T. W.; Canfield, D. E.

    2015-04-01

    Long-term secular variation in seawater sulfate concentrations ([SO42-]SW) is of interest owing to its relationship to the oxygenation history of Earth's surface environment. In this study, we develop two complementary approaches for quantification of sulfate concentrations in ancient seawater and test their application to late Neoproterozoic (635 Ma) to Recent marine units. The "rate method" is based on two measurable parameters of paleomarine systems: (1) the S-isotope fractionation associated with microbial sulfate reduction (MSR), as proxied by Δ34SCAS-PY, and (2) the maximum rate of change in seawater sulfate, as proxied by &partial; δ 34SCAS/∂ t(max). The "MSR-trend method" is based on the empirical relationship of Δ34SCAS-PY to aqueous sulfate concentrations in 81 modern depositional systems. For a given paleomarine system, the rate method yields an estimate of maximum possible [SO42-]SW (although results are dependent on assumptions regarding the pyrite burial flux, FPY), and the MSR-trend method yields an estimate of mean [SO42-]SW. An analysis of seawater sulfate concentrations since 635 Ma suggests that [SO42-]SW was low during the late Neoproterozoic (short (<~2 Myr) intervals of the Cambrian, Early Triassic, Early Jurassic, and Cretaceous as a consequence of widespread ocean anoxia, intense MSR, and pyrite burial. The procedures developed in this study offer potential for future high-resolution quantitative analyses of paleo-seawater sulfate concentrations.

  8. Biological functions of iduronic acid in chondroitin/dermatan sulfate.

    Science.gov (United States)

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-05-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease.

  9. Sulfate Reduction at a Lignite Seam: Microbial Abundance and Activity.

    Science.gov (United States)

    Detmers, J.; Schulte, U.; Strauss, H.; Kuever, J.

    2001-10-01

    In a combined isotope geochemical and microbiological investigation, a setting of multiple aquifers was characterized. Biologically mediated redox processes were observed in the aquifers situated in marine sands of Tertiary age and overlying Quaternary gravel deposits. Intercalated lignite seams define the aquitards, which separate the aquifers. Bacterial oxidation of organic matter is evident from dissolved inorganic carbon characterized by average carbon isotope values between ?18.4 per thousand and ?15.7 per thousand (PDB). Strongly positive sulfur isotope values of up to +50 per thousand (CTD) for residual sulfate indicate sulfate reduction under closed system conditions with respect to sulfate availability. Both, hydrochemical and isotope data are thus consistent with the recent activity of sulfate-reducing bacteria (SRB). Microbiological investigations revealed the presence of an anaerobic food chain in the aquifers. Most-probable-number (MPN) determinations for SRB and fermenting microorganisms reached highest values at the interface between aquifer and lignite seam (1.5 x 103 cells/g sediment dry mass). Five strains of SRB were isolated from highest MPN dilutions. Spore-forming bacteria appeared to dominate the SRB population. Sulfate reduction rates were determined by the 35S-radiotracer method. A detailed assessment indicates an increase in the reduction rate in proximity to the lignite seam, with a maximum turnover of 8.4 mM sulfate/a, suggesting that lignite-drived compounds represent the substrate for sulfate reduction.

  10. ALTERED ENZYMATIC ACTIVITY OF LYSOZYMES BOUND TO VARIOUSLY SULFATED CHITOSANS

    Institute of Scientific and Technical Information of China (English)

    Hong-wei Wang; Lin Yuan; Tie-liang Zhao; He Huang; Hong Chen; Di Wu

    2012-01-01

    The purpose of this research is to investigate the effects of the variously sulfated chitosans on lysozyme activity and structure.It was shown that the specific enzymatic activity of lysozyme remained almost similar to the native protein after being bound to 6-O-sulfated chitosan (6S-chitosan) and 3,6-O-sulfated chitosan (3,6S-chitosan),but decreased greatly after being bound to 2-N-6-O-sulfated chitosan (2,6S-chitosan).Meanwhile,among these sulfated chitosans,2,6S-chitosan induced the greatest conformational change in lysozyme as indicated by the fluorescence spectra.These findings demonstrated that when sulfated chitosans of different structures bind to lysozyme,lysozyme undergoes conformational change of different magnitudes,which results in corresponding levels of lysozyme activity.Further study on the interaction of sulfated chitosans with lysozyme by surface plasmon resonance (SPR) suggested that their affinities might be determined by their molecular structures.

  11. Sulfation patterns determine cellular internalization of heparin-like polysaccharides.

    Science.gov (United States)

    Raman, Karthik; Mencio, Caitlin; Desai, Umesh R; Kuberan, Balagurunathan

    2013-04-01

    Heparin is a highly sulfated polysaccharide that serves biologically relevant roles as an anticoagulant and anticancer agent. While it is well-known that modification of heparin's sulfation pattern can drastically influence its ability to bind growth factors and other extracellular molecules, very little is known about the cellular uptake of heparin and the role sulfation patterns serve in affecting its internalization. In this study, we chemically synthesized several fluorescently labeled heparins consisting of a variety of sulfation patterns. These polysaccharides were thoroughly characterized using anion exchange chromatography and size exclusion chromatography. Subsequently, we utilized flow cytometry and confocal imaging to show that sulfation patterns differentially affect the amount of heparin uptake in multiple cell types. This study provides the first comprehensive analysis of the effect of sulfation pattern on the cellular internalization of heparin or heparan sulfate like polysaccharides. The results of this study expand current knowledge regarding heparin internalization and provide insights into developing more effective heparin-based drug conjugates for applications in intracellular drug delivery.

  12. Structure versus anticoagulant and antithrombotic actions of marine sulfated polysaccharides

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Pomin

    2012-08-01

    Full Text Available Marine sulfated polysaccharides (MSP, such as sulfated fucans (SF, sulfated galactans (SG and glycosaminoglycans (GAG isolated from either algae or invertebrate animals, are highly anionic polysaccharides capable of interacting with certain cationic proteins, such as (co-factors of the coagulation cascade during clotting-inhibition processes. These molecular complexes between MSP and coagulation-related proteins might, at first glance, be assumed to be driven mostly by electrostatic interactions. However, a systematic comparison using several novel sulfated polysaccharides composed of repetitive oligosaccharides with clear sulfation patterns has shown that these molecular interactions are regulated essentially by the stereochemistry of the glycans (which depends on a conjunction of anomericity, monosaccharide, conformational preference, and glycosylation and sulfation sites, rather than just a simple consequence of their negative charge density (mainly the number of sulfate groups. Here, we present an overview of the structure-function relationships of MSP, correlating their structures with their potential anticoagulant and antithrombotic actions, since pathologies related to the cardiovascular system are one of the major causes of illness and mortality in the world.

  13. Regioselective sulfation of Artemisia sphaerocephala polysaccharide: Characterization of chemical structure.

    Science.gov (United States)

    Wang, Junlong; Yang, Wen; Wang, Jiancheng; Wang, Xia; Wu, Fang; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2015-11-20

    The biological activities of sulfated polysaccharides are related to the substitution positions of functional groups. In this study, regioselective sulfation of Artemisia sphaerocephala polysaccharides (SRSASP) was prepared by using triphenylchloromethane (TrCl) as protecting precursor. FT-IR spectra and X-ray photoelectron spectroscopy (XPS) showed that SO(3-) group (S(6+), high binding energy of 168.7eV) was widely present in sulfated polysaccharides. (13)C NMR spectroscopy showed that C-2 and C-3 substitution was occurred but not fully sulfation. Meanwhile, C-6 substituted signals near 65ppm were not observed. The degree of substitution varied from 0.44 to 0.63 in SRSASP which could be attributed to the low reactivity at secondary hydroxyl. Monosaccharide composition result showed a decrease in the ratio of mannose/glucose, indicating the change of chemical composition in sulfated polysaccharides. In size-exclusion chromatograph analysis, a decrease in molecular weight and broadening of molecular weight distribution of sulfated polysaccharides was also observed. It could be attributed to the hydrolysis of polysaccharide in the sulfated reaction.

  14. The influence of cloud droplet heterogeneity on sulfate production mechanisms constrained by isotopic measurements of sulfate aerosol

    Science.gov (United States)

    Alexander, B.; Allman, D. J.; Amos, H. M.; Fairlie, T. D.; Dachs, J.; Hegg, D.; Sletten, R. S.

    2011-12-01

    Observations and modeling studies have shown that heterogeneity in fog and cloud drop size and chemical composition can significantly impact in-cloud sulfate production rates due to the strong pH dependence of the ozone oxidation pathway. Averaging cloud water pH tends to underestimate the fraction of S(IV) that is SO32- leading to underestimates of in-cloud sulfate production rates. Large scale models typically do not account for this heterogeneity due to the large computational expense associated with this calculation, and instead employ bulk calculations or assumptions of cloud water pH. Modeling studies have consistently shown that calculated sulfate production rates using bulk cloud pH treatments tend to underestimate in-cloud sulfate production rates compared to more explicit treatment of cloud drop heterogeneity by underestimating the ozone oxidation pathway. Here, we utilize a global chemical transport model (GEOS-Chem) and observations of the oxygen isotopic composition of sulfate aerosol collected during a ship cruise in the subtropical northeast Atlantic Ocean to quantify sulfate formation pathways in the marine boundary layer. The oxygen isotopic composition of sulfate aerosol is particularly sensitive to the importance of the ozone oxidation pathway due to its large isotopic signature. We employ a model parameterization by Yuen et al. (1996) that accounts for the impact of alkaline, coarse-mode sea salt aerosols on in-cloud sulfate production rates. As sulfate formation in cloud droplets formed on alkaline coarse-mode sea salt aerosols is thought to be dominated by the ozone oxidation pathway, observations of the oxygen isotopic composition of sulfate aerosol provide a robust test of this parameterization. Including the Yuen et al. (1996) parameterization of cloud droplet heterogeneity improves the model's agreement with the observed sulfate oxygen isotopes. Accounting for the impact of cloud droplet heterogeneity on in-cloud sulfate production rates

  15. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  16. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  17. Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate.

    Science.gov (United States)

    Farhat, Ali; Keller, Jurg; Tait, Stephan; Radjenovic, Jelena

    2015-12-15

    Solutions of sulfate have often been used as background electrolytes in the electrochemical degradation of contaminants and have been generally considered inert even when high-oxidation-power anodes such as boron-doped diamond (BDD) were employed. This study examines the role of sulfate by comparing electro-oxidation rates for seven persistent organic contaminants at BDD anodes in sulfate and inert nitrate anolytes. Sulfate yielded electro-oxidation rates 10-15 times higher for all target contaminants compared to the rates of nitrate anolyte. This electrochemical activation of sulfate was also observed at concentrations as low as 1.6 mM, which is relevant for many wastewaters. Electrolysis of diatrizoate in the presence of specific radical quenchers (tert-butanol and methanol) had a similar effect on electro-oxidation rates, illustrating a possible role of the hydroxyl radical ((•)OH) in the anodic formation of sulfate radical (SO4(•-)) species. The addition of 0.55 mM persulfate increased the electro-oxidation rate of diatrizoate in nitrate from 0.94 to 9.97 h(-1), suggesting a nonradical activation of persulfate. Overall findings indicate the formation of strong sulfate-derived oxidant species at BDD anodes when polarized at high potentials. This may have positive implications in the electro-oxidation of wastewaters containing sulfate. For example, the energy required for the 10-fold removal of diatrizoate was decreased from 45.6 to 2.44 kWh m(-3) by switching from nitrate to sulfate anolyte.

  18. Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-05-01

    Full Text Available Abstract Background Previously, we have reported the presence of highly sulfated dermatans in solitary ascidians from the orders Phlebobranchia (Phallusia nigra and Stolidobranchia (Halocynthia pyriformis and Styela plicata. Despite the identical disaccharide backbone, consisting of [→4IdoA(2Sβ-1→3GalNAcβ-1→], those polymers differ in the position of sulfation on the N-Acetyl galactosamine, which can occur at carbon 4 or 6. We have shown that position rather than degree of sulfation is important for heparin cofactor II activity. As a consequence, 2,4- and 2,6-sulfated dermatans have high and low heparin cofactor II activities, respectively. In the present study we extended the disaccharide analysis of ascidian dermatan sulfates to additional species of the orders Stolidobranchia (Herdmania pallida, Halocynthia roretzi and Phlebobranchia (Ciona intestinalis, aiming to investigate how sulfation evolved within Tunicata. In addition, we analysed how heparin cofactor II activity responds to dermatan sulfates containing different proportions of 2,6- or 2,4-disulfated units. Results Disaccharide analyses indicated a high content of disulfated disaccharide units in the dermatan sulfates from both orders. However, the degree of sulfation decreased from Stolidobranchia to Phlebobranchia. While 76% of the disaccharide units in dermatan sulfates from stolidobranch ascidians are disulfated, 53% of disulfated disaccharides are found in dermatan sulfates from phlebobranch ascidians. Besides this notable difference in the sulfation degree, dermatan sulfates from phlebobranch ascidians contain mainly 2,6-sulfated disaccharides whereas dermatan sulfate from the stolidobranch ascidians contain mostly 2,4-sulfated disaccharides, suggesting that the biosynthesis of dermatan sulfates might be differently regulated during tunicates evolution. Changes in the position of sulfation on N-acetylgalactosamine in the disaccharide [→4IdoA(2-Sulfateβ-1→3GalNAcβ-1

  19. Sulfated oligosaccharide structures, as determined by NMR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J. [Parana Univ., Curitiba, PR (Brazil). Dept. De Bioquimica; Cerezo, A.S. [Buenos Aires Univ. Nacional (Argentina). Dept. de Quimica Organica

    1997-12-31

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a {lambda}-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author) 4 refs., 8 figs., 1 tabs.

  20. Commercial Application of Technique for Removing Sulfates from Reforming Catalyst

    Institute of Scientific and Technical Information of China (English)

    JiChangqing

    2002-01-01

    In the course of reduction of reforming catalyst by not hydrogen a certain amount of chlorine containing compounds is added to the recycle hydrogen to facilitate the reduction of sulfates.The outcome of commercial application of this technique has revealed that the procedure of "regeneration by chlorination→reduction→sulfate removal→sulfiding and oil feed-in"aimed at sulate removal is very simple and can recover the reaction activity of reforming catalyst after having been poisoned by sulfates.This procedure can be disseminated for application in refineries.

  1. Damage modelling in concrete subject to sulfate attack

    Directory of Open Access Journals (Sweden)

    N. Cefis

    2014-07-01

    Full Text Available In this paper, we consider the mechanical effect of the sulfate attack on concrete. The durability analysis of concrete structures in contact to external sulfate solutions requires the definition of a proper diffusion-reaction model, for the computation of the varying sulfate concentration and of the consequent ettringite formation, coupled to a mechanical model for the prediction of swelling and material degradation. In this work, we make use of a two-ions formulation of the reactive-diffusion problem and we propose a bi-phase chemo-elastic damage model aimed to simulate the mechanical response of concrete and apt to be used in structural analyses.

  2. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  3. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    Directory of Open Access Journals (Sweden)

    H. Stephen Ewart

    2011-02-01

    Full Text Available Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans, ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application.

  4. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.;

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  5. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    Energy Technology Data Exchange (ETDEWEB)

    Bizzozero, Julien, E-mail: julien.bizzozero@gmail.com; Scrivener, Karen L.

    2015-10-15

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction.

  6. Initial kinetics of the direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Shang, Lei; Dam-Johansen, Kim;

    2008-01-01

    The initial kinetics of direct sulfation of Faxe Bryozo, a porous bryozoan limestone was studied in the temperature interval from 873 to 973 K in a pilot entrained flow reactor with very short reaction times (between 0.1 and 0.6 s). The initial conversion rate of the limestone - for conversions...... ions in calcite grains is established. The validity of the model is limited to the initial sulfation period, in which nucleation of the solid product calcium sulphate is not started. This theoretical reaction-diffusion model gives a good simulation of the initial kinetics of the direct sulfation...

  7. Preparation and characterization of mesoporous tetragonal sulfated zirconia

    Institute of Scientific and Technical Information of China (English)

    Chun Xia He; Bin Yue; Ji Fang Cheng; Wei Ming Hua; Ying Hong Yue; He Yong He

    2009-01-01

    Mesoporous tetragonal sulfated zirconia with high surface area and narrow pore-size distribution was prepared using Zr(O-nPr)4 as zirconium precursor, sulfuric acid as sulfur source and triblock copolymer poly(ethylene glycol)-poly(propylene glycol)poly(ethylene glycol) (P123) as the template. The samples were characterized by X-ray diffraction, N2 sorption, TEM, and NH3TPD. A phase transformation from monoclinic sulfated zirconia to tetragonal sulfated zirconia is observed. The product shows strong acidity.

  8. The kinetics of sulfation of calcium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, A.F.; Longwell, J.P.

    1990-01-01

    The rate of sulfation of a CaO surface is rapid at first, limited by the intrinsic kinetics, but slows down with increasing conversion as a consequence of the increased resistance to diffusion through the product layer. The objectives of this study are to determine the intrinsic kinetics and the product layer diffusion pate by minimizing the resistances to gas-phase pore diffusion, and eliminating complications due to pore filling. This is achieved by the use of nonporous CaO. A wide range of particle sizes are used to change the relative importance of the regimes in which the intrinsic kinetics and product layer diffusion control. The assumption of constant product layer diffusivity can then be tested and the variables that determine this diffusivity independently studied. Information on product layer diffusion can also be obtained from studies of porous particles after the pore mouths are all plugged and a uniform surface coating is obtained. This information on diffusion rate and intrinsic reactivity can then be combined with a geometrical model to describe the rate of reaction over the entire range of conversions and is particularly useful in treating the effect of particle size on conversion history.

  9. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  10. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E.S. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  11. Correction: Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-07-01

    Full Text Available Abstract After the publication of the work entitled "Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity", by Kozlowski et al., BMC Biochemistry 2011, 12:29, we found that the legends to Figures 2 to 5 contain serious mistakes that compromise the comprehension of the work. This correction article contains the correct text of the legends to Figures 2 to 5.

  12. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  13. ROE Wet Sulfate Deposition Raster 2011-2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2011 to 2013. Summary data in this indicator were provided by EPA’s...

  14. ROE Wet Sulfate Deposition Raster 1989-1991

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 1989 to 1991. Summary data in this indicator were provided by EPA’s...

  15. Specificities of Ricinus communis agglutinin 120 interaction with sulfated galactose.

    Science.gov (United States)

    Wang, Yufeng; Yu, Guangli; Han, Zhangrun; Yang, Bo; Hu, Yannan; Zhao, Xia; Wu, Jiandong; Lv, Youjing; Chai, Wengang

    2011-12-15

    Lectins are used extensively as research tools to detect and target specific oligosaccharide sequences. Ricinus communis agglutinin I (RCA(120)) recognizes non-reducing terminal β-D-galactose (Galβ) and its specificities of interactions with neutral and sialylated oligosaccharides have been well documented. Here we use carbohydrate arrays of sulfated Galβ-containing oligosaccharide probes, prepared from marine-derived galactans, to investigate their interactions with RCA(120). Our results showed that RCA(120) binding to Galβ1-4 was enhanced by 2-O- or 6-O-sulfation but abolished by 4-O-sulfation. The results were corroborated with competition experiments. Erythrina cristagalli lectin is also a Galβ-binding protein but it cannot accommodate any sulfation on Galβ.

  16. Predictive mapping of the acidifying potential for acid sulfate soils

    DEFF Research Database (Denmark)

    Boman, A; Beucher, Amélie; Mattbäck, S

    Developing methods for the predictive mapping of the potential environmental impact from acid sulfate soils is important because recent studies (e.g. Mattbäck et al., under revision) have shown that the environmental hazards (e.g. leaching of acidity) related to acid sulfate soils vary depending...... on their texture (clay, silt, sand etc.). Moreover, acidity correlates, not only with the sulfur content, but also with the electrical conductivity (EC) measured after incubation. Electromagnetic induction (EMI) data collected from an EM38 proximal sensor also enabled the detailed mapping of acid sulfate soils...... over a field (Huang et al., 2014).This study aims at assessing the use of EMI data for the predictive mapping of the acidifying potential in an acid sulfate soil area in western Finland. Different supervised classification modelling techniques, such as Artificial Neural Networks (Beucher et al., 2015...

  17. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.......0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...

  18. Recombinant heparan sulfate for use in tissue engineering applications

    DEFF Research Database (Denmark)

    Whitelock, J.; Ma, J.L.; Davies, N.

    2008-01-01

    Background: Heparan sulfate (HS) is an important component of many extracellular matrices that interacts with mitogens and morphogens to guide and control tissue and organ development. These interactions are controlled by its structure, which varies when produced by different cell types and diffe......Background: Heparan sulfate (HS) is an important component of many extracellular matrices that interacts with mitogens and morphogens to guide and control tissue and organ development. These interactions are controlled by its structure, which varies when produced by different cell types...... in the presence of Medium 199. It was purified as a proteoglycan with a molecular weight between 75 and 150 kDa, which was decorated with HS, chondroitin sulfate (CS) and keratan sulfate (KS) in a similar way to the full-length perlecan from the same cells. Compositional analysis of the glycosaminoglycan (GAG...

  19. Heparan sulfate proteoglycans in extravasation : assisting leukocyte guidance

    NARCIS (Netherlands)

    Celie, Johanna W. A. M.; Beelen, Robert H. J.; van den Born, Jacob

    2009-01-01

    Heparan sulfate proteoglycans (HSPGs) are glycoconjugates that are implicated in various biological processes including development, inflammation and repair, which is based on their capacity to bind and present several proteins via their carbohydrate side chains (glycosaminoglycans; GAGs). Well-know

  20. Electrochemical removal of sulfate from petroleum produced water.

    Science.gov (United States)

    Jain, Pratiksha; Sharma, Mohita; Kumar, Manoj; Dureja, Prem; Singh, M P; Lal, Banwari; Sarma, Priyangshu M

    2015-01-01

    Petroleum produced water (PPW) is a waste-stream that entails huge cost on the petroleum industry. Along with other suspended and dissolved solids, it contains sulfate, which is a major hurdle for its alternative use intended toward enhanced oil recovery. This study proposes a two-step process for sulfate removal from PPW. A synthetic PPW was designed for the study using response surface methodology. During the first step, sulfate present in PPW was reduced to sulfide by anaerobic fermentation with 80% efficiency. In the second step, more than 70% of the accumulated sulfide was electrochemically oxidized. This integrated approach successfully removed sulfate from the synthetic wastewater indicating its applicability in the treatment of PPW and its subsequent applications in other oil field operations.

  1. Biotechnological aspects of sulfate reduction with methane as electron donor

    OpenAIRE

    Meulepas, R.J.W.; Stams, A.J.M.; Lens, P. N L

    2010-01-01

    Biological sulfate reduction can be used for the removal and recovery of oxidized sulfur compounds and metals from waste streams. However, the costs of conventional electron donors, like hydrogen and ethanol, limit the application possibilities. Methane from natural gas or biogas would be a more attractive electron donor. Sulfate reduction with methane as electron donor prevails in marine sediments. Recently, several authors succeeded in cultivating the responsible microorganisms in vitro. In...

  2. A New Ursane type Sulfated Saponin from Zygophyllum fabago Linn.

    Directory of Open Access Journals (Sweden)

    Saleha Suleman Khan

    2014-07-01

    Full Text Available One new sulfated saponin 3β,23,30-trihydroxyurs-20-en-28-al-23-sulfate 3-O-β- D -xylopyranoside (Zygofaboside C; 1 was purified from the water soluble fraction of ethanolic extract of the aerial parts of Zygophyllum fabago Linn. The structure of the compound was elucidated through spectral studies, especially 1D- and 2D-NMR, HR-FAB mass spectrometry, and comparison with literature data.

  3. Dextran sulfate inhibits acute Toxoplama gondii infection in pigs

    OpenAIRE

    2016-01-01

    Background Toxoplasma gondii is a highly prevalent protozoan that can infect all warm-blooded animals, including humans. Its definitive hosts are Felidae and its intermediate hosts include various other mammals and birds, including pigs. It is found in the meat of livestock which is a major source of human infection. Hence the control of toxoplasmosis in pigs is important for public health. We previously showed that dextran sulfate (DS), especially DS10 (dextran sulfate MW 10 kDa), is effecti...

  4. Calcium sulfate in periodontics: A time tested versatile alloplast

    Directory of Open Access Journals (Sweden)

    Arnav Mukherji

    2016-01-01

    Full Text Available Calcium sulfate has multifaceted properties and has versatile use in the field of periodontal practice. Calcium sulfate can function as a resorbable space filler, a resorbable barrier (compatible with guided tissue regeneration principles, as a combination with other bone grafts in intrabony defects and in socket preservation procedures for implant placement. This review is an attempt to shed light on various applications of this bone graft in periodontal regeneration.

  5. Responses to sulfated steroids of female mouse vomeronasal sensory neurons

    OpenAIRE

    Celsi, F.; d'Errico, A.; Menini, A.

    2012-01-01

    The rodent vomeronasal organ plays an important role in many social behaviors. Using the calcium imaging technique with the dye fluo-4 we measured intracellular calcium concentration changes induced by the application of sulfated steroids to neurons isolated from the vomeronasal organ of female mice. We found that a mix of 10 sulfated steroids from the androgen, estrogen, pregnanolone, and glucocorticoid families induced a calcium response in 71% of neurons. Moreover, 31% of the neurons respo...

  6. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    alveolar, airway, and vascular BMs, in addition to smooth muscle external laminae (EL), in the adult and developing rat. Immunostaining for CSPG required hyaluronidase digestion, whereas CS staining was lost with the same treatment. A polyclonal antibody to the core protein of HSPG was found...... to be similarly distributed to CSPG by immunoperoxidase staining in adult and developing rat lungs, with the notable exception that little immunoreactivity for HSPG was found in smooth muscle EL. Commercially obtained polyclonal antibodies to entactin and laminin gave immunostaining comparable to that seen......Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  7. Persistent sulfate formation from London Fog to Chinese haze

    Science.gov (United States)

    Wang, Gehui; Zhang, Renyi; Gomez, Mario E.; Yang, Lingxiao; Levy Zamora, Misti; Hu, Min; Lin, Yun; Peng, Jianfei; Guo, Song; Meng, Jingjing; Li, Jianjun; Cheng, Chunlei; Hu, Tafeng; Ren, Yanqin; Wang, Yuesi; Gao, Jian; Cao, Junji; An, Zhisheng; Zhou, Weijian; Li, Guohui; Wang, Jiayuan; Tian, Pengfei; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Zeng, Limin; Shao, Min; Wang, Weigang; Huang, Yao; Wang, Yuan; Zhu, Yujiao; Li, Yixin; Hu, Jiaxi; Pan, Bowen; Cai, Li; Cheng, Yuting; Ji, Yuemeng; Zhang, Fang; Rosenfeld, Daniel; Liss, Peter S.; Duce, Robert A.; Kolb, Charles E.; Molina, Mario J.

    2016-11-01

    Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.

  8. "Maternal serum Dehydroepiandrosterone Sulfate levels and successful labor induction "

    Directory of Open Access Journals (Sweden)

    Modares Gilani M

    2003-06-01

    Full Text Available To evaluate the maternal serum dehydroepiandrosterone sulfate level as a factor associated with the outcome of labor induction. Venous blood was collected from 45 women at the initiation of labor induction. Pregnancies complicated by maternal corticosteriod use, anterpartum chorioamnionitis, or cesarean delivery for indications other than arrest disorders, were excluded from analysis. In 42 women meeting inclusion criteria, induction followed established protocol. Serum dehydroepiandrosterone sulfate levels were measured by radioimmunoassay and correlated with the outcome of each induction attempt. A successful result was defined as progression to active labor. The welch approximate t-test, Mann-Whitney test, Fisher exact test, simple regression, and multiple regression were used for statistical analysis, with P<0.05 considered to be significant. The mean (±standard error dehydroepiandrosterone sulfate level was higher in women who progressed to active labor (n=25 than in those with unsuccessful attempts (n=17, (48,63±6.53 µg/dl versus 26.86±5.17 mg/dl, respectively; p= 0.03. Compared with women with dehydroepiandrosterone sulfate levels above 60 µg/dl, women with lower levels had an unsuccessful induction odds ratio (OR of 6.92 (95% confidence interval 1.74, 32.52, p= 0.01. The OR increased as dehydroepiandrosterone sulfate levels decreased. Dehydroepiandrosterone sulfate may be an important factor in successful labor induction.

  9. Sulfated phenolic acids from Dasycladales siphonous green algae.

    Science.gov (United States)

    Kurth, Caroline; Welling, Matthew; Pohnert, Georg

    2015-09-01

    Sulfated aromatic acids play a central role as mediators of chemical interactions and physiological processes in marine algae and seagrass. Among others, Dasycladus vermicularis (Scopoli) Krasser 1898 uses a sulfated hydroxylated coumarin derivative as storage metabolite for a protein cross linker that can be activated upon mechanical disruption of the alga. We introduce a comprehensive monitoring technique for sulfated metabolites based on fragmentation patterns in liquid chromatography/mass spectrometry and applied it to Dasycladales. This allowed the identification of two new aromatic sulfate esters 4-(sulfooxy)phenylacetic acid and 4-(sulfooxy)benzoic acid. The two metabolites were synthesized to prove the mass spectrometry-based structure elucidation in co-injections. We show that both metabolites are transformed to the corresponding desulfated phenols by sulfatases of bacteria. In biofouling experiments with Escherichia coli and Vibrio natriegens the desulfated forms were more active than the sulfated ones. Sulfatation might thus represent a measure of detoxification that enables the algae to store inactive forms of metabolites that are activated by settling organisms and then act as defense. Copyright © 2015. Published by Elsevier Ltd.

  10. Stratospheric sulfate geoengineering impacts on global agriculture

    Science.gov (United States)

    Xia, L.; Robock, A.; Lawrence, P.; Lombardozzi, D.

    2015-12-01

    Stratospheric sulfate geoengineering has been proposed to reduce the impacts of anthropogenic climate change. If it is ever used, it would change agricultural production, and so is one of the future climate scenarios for the third phase of the Global Gridded Crop Model Intercomparison. As an example of those impacts, we use the Community Land Model (CLM-crop 4.5) to simulate how climate changes from the G4 geoengineering scenario from the Geoengineering Modeling Intercomparison Project. The G4 geoengineering scenario specifies, in combination with RCP4.5 forcing, starting in 2020 daily injections of a constant amount of SO2 at a rate of 5 Tg SO2 per year at one point on the Equator into the lower stratosphere. Eight climate modeling groups have completed G4 simulations. We use the crop model to simulate the impacts of climate change (temperature, precipitation, and solar radiation) on the global agriculture system for five crops - rice, maize, soybeans, cotton, and sugarcane. In general, without irrigation, compared with the reference run (RCP4.5), global production of cotton, rice and sugarcane would increase significantly due to the cooling effect. Maize and soybeans show different regional responses. In tropical regions, maize and soybean have a higher yield in G4 compared with RCP4.5, while in the temperate regions they have a lower yield under a geoengineered climate. Impacts on specific countries in terms of different crop production depend on their locations. For example, the United States and Argentina show soybean production reduction of about 15% under G4 compared to RCP4.5, while Brazil increases soybean production by about 10%.

  11. Chromatofocusing of mammalian estrone sulfate sulfohydrolase activity.

    Science.gov (United States)

    Choi, H Y; Hobkirk, R

    1986-12-01

    Estrone sulfate sulfohydrolase (estrogen sulfatase) activity was solubilized by treatment with Triton X-100 from 105,000 g pellets of guinea pig uterus, testis and brain, as well as from rat liver and human placenta. The solubilized forms were subjected to chromatofocusing in the fast protein liquid chromatography (FPLC) system and on conventional columns packed in our laboratory. The guinea pig tissue pattern was complex. Uterus showed peaks of activity with apparent pI's of 9.11 and 7.6; testis contained 3 peaks with pI's of 9.18, 8.7 and 7.5; brain possessed peaks with pI's of 9.28 and 8.6. In each case the major activity peak was that with pI greater than 9. Rat liver activity chromatofocused as a single peak of apparent pI = 6.87 and the human placental enzyme also showed a single, though broad, peak, of pI = 6.57. This suggests not only that the guinea pig enzyme(s) differs markedly from those of rat liver and human placenta, but that there may be qualitative differences between the forms in the three guinea pig tissues. Chromatofocusing behaviour was not independent of the specific exchange resins and ampholytes utilized. The recovered enzyme activity was fairly stable and it seems that chromatofocusing could be a useful step in purification of the guinea pig enzyme(s), particularly the main form possessing a pI greater than 9.

  12. Thermodestruction of complex sulfates of iridium and ruthenium in sulfate solutions at 100-180 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Sinitsyn, N.M.; Godzhiev, S.E.; Blagodatin, Yu.V. (Moskovskij Inst. Tonkoj Khimicheskoj Tekhnologii (USSR))

    1983-12-01

    Thermodestruction of iridium- and ruthenium complex sulfates in sulfate solutions is studied at 100-180 deg C depending on the solution acidity, hold time, element initial chemical form in the solution, salt background. The complex ruthenium sulfates are shown to be destroyed during high-temperature solution holding with the solid phase formation, the rate of platinum metal transfer into a precipitate increasing with the temperature, hold time and pH of the source solution. Depending on the initial chemical form the thermodestruction proceeds in various ways and leads to the formation of either hydroxides or solid phase ''proper'' of the platinium metal salt. A reduced tendency to high-temperature hydrolysis of complex ruthenium sulfates at the +3 oxidation level is noted.

  13. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities.

    Science.gov (United States)

    Mizumoto, Shuji; Murakoshi, Saori; Kalayanamitra, Kittiwan; Deepa, Sarama Sathyaseelan; Fukui, Shigeyuki; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki

    2013-02-01

    Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.

  14. Requirement of keratan sulfate proteoglycan phosphacan with a specific sulfation pattern for critical period plasticity in the visual cortex.

    Science.gov (United States)

    Takeda-Uchimura, Yoshiko; Uchimura, Kenji; Sugimura, Taketoshi; Yanagawa, Yuchio; Kawasaki, Toshisuke; Komatsu, Yukio; Kadomatsu, Kenji

    2015-12-01

    Proteoglycans play important roles in regulating the development and functions of the brain. They consist of a core protein and glycosaminoglycans, which are long sugar chains of repeating disaccharide units with sulfation. A recent study demonstrated that the sulfation pattern of chondroitin sulfate on proteoglycans contributes to regulation of the critical period of experience-dependent plasticity in the mouse visual cortex. In the present study, we investigated the role of keratan sulfate (KS), another glycosaminoglycan, in critical period plasticity in the mouse visual cortex. Immunohistochemical analyses demonstrated the presence of KS containing disaccharide units of N-acetylglucosamine (GlcNAc)-6-sulfate and nonsulfated galactose during the critical period, although KS containing disaccharide units of GlcNAc-6-sulfate and galactose-6-sulfate was already known to disappear before that period. The KS chains were distributed diffusely in the extracellular space and densely around the soma of a large population of excitatory and inhibitory neurons. Electron microscopic analysis revealed that the KS was localized within the perisynaptic spaces and dendrites but not in presynaptic sites. KS was mainly located on phosphacan. In mice deficient in GlcNAc-6-O-sulfotransferase 1, which is one of the enzymes necessary for the synthesis of KS chains, the expression of KS was one half that in wild-type mice. In the knockout mice, monocular deprivation during the critical period resulted in a depression of deprived-eye responses but failed to produce potentiation of nondeprived-eye responses. In addition, T-type Ca(2+) channel-dependent long-term potentiation (LTP), which occurs only during the critical period, was not observed. These results suggest that regulation by KS-phosphacan with a specific sulfation pattern is necessary for the generation of LTP and hence the potentiation of nondeprived-eye responses after monocular deprivation.

  15. Flow injection spectrophotometry coupled with a crushed barium sulfate reactor column for the determination of sulfate ion in water samples

    OpenAIRE

    Burakham,Rodjana; Higuchi, Keiro; Oshima, Mitsuko; Grudpan, Kate; Motomizu, Shoji

    2004-01-01

    A new type of a reactor column, a crushed BaSO4 reactor column used for the flow injection spectrophotometric determination of sulfate ion using the exchange reaction of sulfate ion and barium-dimethylsulfonazo III is proposed. The column is very simple and economical. It can be continuously used for 8 h before washing with water for repeated usage of at least 1 month. The procedure is sensitive. Application to various water samples was demonstrated.

  16. Characteristics of Phosphorus in Some Eastern Australian Acid Sulfate Soils

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores were collected from 11 locations along the New South Wales coast, Australia. There was an overall trend for the concentration of the HC1extractable P to increase along with increasing amounts of organic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acid sulfate soils (pH <4.5). This suggests that inorganic P in these soils probably accumulated via biological cycling and was retained by complexation with trivalent metals or their oxides and hydroxides. While there was no clear correlation between pH and the water-extractable P, the concentration of the water-extractable P tended to increase with increasing amounts of the HCl-extractable P. This disagrees with some established models which suggest that the concentration of solution P in acid soils is independent of total P and decreases with increasing acidity. The high concentration of sulfate present in acid sulfate soils appeared to affect the chemical behavior of P in these soil systems. Comparison was made between a less disturbed wetland acid sulfate soil and a more intensively disturbed sugarcane acid sulfate soil.The results show that reclamation of wetland acid sulfate soils for sugarcane production caused a significant decrease in the HCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorus following sugarcane farming. Simulation experiment shows that addition of hydrated lime had no effects on the immobilization of retained P in an acid sulfate soil sample within a pH range 3.5~4.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency to increase with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poor pH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that soluble P was not clearly pH-dependent in acid sulfate soils with pH < 4.5.

  17. Identification of keratan sulfate disaccharide at C-3 position of glucuronate of chondroitin sulfate from Mactra chinensis

    Science.gov (United States)

    Higashi, Kyohei; Takeda, Keita; Mukuno, Ann; Okamoto, Yusuke; Masuko, Sayaka; Linhardt, Robert J.; Toida, Toshihiko

    2016-01-01

    Glycosaminoglycans (GAGs), including chondroitin sulfate (CS), dermatan sulfate, heparin, heparan sulfate and keratan sulfate (KS) are linear sulfated repeating disaccharide sequences containing hexosamine and uronic acid [or galactose (Gal) in the case of KS]. Among the GAGs, CS shows structural variations, such as sulfation patterns and fucosylation, which are responsible for their physiological functions through CS interaction with CS-binding proteins. Here, we solved the structure of KS-branched CS-E derived from a clam, Mactra chinensis. KS disaccharide [d-GlcNAc6S-(1→3)-β-d-Gal-(1→] was attached to the C-3 position of GlcA, and consecutive KS-branched disaccharide sequences were found in a CS chain. KS-branched polysaccharides clearly exhibited resistance to degradation by chondroitinase ABC or ACII (at low concentrations) compared with typical CS structures. Furthermore, KS-branched polysaccharides stimulated neurite outgrowth of hippocampal neurons. These results strongly suggest that M. chinensis is a rich source of KS-branched CS, and it has important biological activities. PMID:27647934

  18. Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin ☆

    OpenAIRE

    Fruhmann, Philipp; Skrinjar, Philipp; Weber, Julia; Mikula, Hannes; Warth, Benedikt; Sulyok, Michael; Krska, Rudolf; Adam, Gerhard; Erwin ROSENBERG; Hametner, Christian; Fröhlich, Johannes

    2014-01-01

    The synthesis of several sulfates of trichothecene mycotoxins is presented. Deoxynivalenol (DON) and its acetylated derivatives were synthesized from 3-acetyldeoxynivalenol (3ADON) and used as substrate for sulfation in order to reach a series of five different DON-based sulfates as well as T2-toxin-3-sulfate. These substances are suspected to be formed during phase-II metabolism in plants and humans. The sulfation was performed using a sulfuryl imidazolium salt, which was synthesized prior t...

  19. Olivine Weathering aud Sulfate Formation Under Cryogenic Conditions

    Science.gov (United States)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history. This view has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals which seemingly need more water. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars. This study seeks to test whether sulfate formation may be possible at temperatures well below 0degC in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars. To test this idea we performed laboratory experiments to simulate weathering of mafic minerals under Mars-like conditions. The weathering rates measured in this study suggest that fine grained olivine on Mars would weather into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40degC. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment despite the very low temperatures. On Mars the presence of large deposits of mixed ice and dust is undisputed. The presence of substantial

  20. A statistical experimental design to remove sulfate by crystallization in a fluidized-bed reactor

    Directory of Open Access Journals (Sweden)

    Mark Daniel G. de Luna

    2017-05-01

    Full Text Available This study used crystallization in a fluidized-bed reactor as an alternative technology to the conventional chemical precipitation to remove sulfate. The Box-Behnken Design was used to study the effects and interactions of seed dosage of synthetic gypsum, initial sulfate concentration and molar ratio of calcium to sulfate on conversion and removal of sulfate. The optimum conditions of conversion and removal of sulfate were determined and used to treat the simulated acid mine drainage (AMD wastewater. The effect of inorganic ions CO32−, NH4+ and Al3+ on sulfate conversion was also investigated. Experimental results indicated that seed dosage, initial sulfate concentration and molar ratio of calcium to sulfate are all significant parameters in the sulfate removal by fluidized-bed crystallization. The optimal conditions of 4 g seed L−1, 119.7 mM of initial sulfate concentration and [Ca2+]/[SO42−] molar ratio of 1.48 resulted in sulfate conversion of 82% and sulfate removal of 67%. Conversion and removal of sulfate in the simulated AMD wastewater were 79 and 63%, respectively. When ammonium or aluminum was added to the synthetic sulfate wastewater, significant conversion of sulfate was achieved.

  1. Revisiting Modes of energy generation in sulfate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Joachimiak, Marcin; Chakraborty, Romy; Zhou, Aifen; Fortney, Julian; Geller, Jil; Wall, Judy; Zhou, Jizhong; Arkin, Adam; Hazen, Terry; Keasling, Jay; Chhabra, Swapnil

    2010-05-17

    Sulfate reducing bacteria (SRB) play an important role in global sulfur and carbon cycling through their ability to completely mineralize organic matter while respiring sulfate to hydrogen sulfide. They are ubiquitous in anaerobic environments and have the ability to reduce toxic metals like Cr(VI) and U(VI). While SRB have been studied for over three decades, bioenergetic modes of this group of microbes are poorly understood. Desulfovibrio vulgaris strain Hildenborough (DvH) has served as a model SRB over the last decade with the accumulation of transcriptomic, proteomic and metabolic data under a wide variety of stressors. To further investigate the three hypothesized modes of energy generation in this anaerobe we conducted a systematic study involving multiple electron donor and acceptor combinations for growth. DvH was grown at 37oC in a defined medium with (a) lactate + thiosulfate, (b) lactate + sulfite (c) lactate + sulfate, (d) pyruvate + sulfate, (e) H2 + acetate + sulfate, (f) formate + acetate + sulfate, g) formate + sulfate and (h) pyruvate fermentation. Cells were harvested at mid-log phase of growth for all conditions for transcriptomics, when the optical density at 600nm was in the range 0.42-0.5. Initial results indicate that cells grown on lactate do not appear to significantly differentiate their gene expression profiles when presented with different electron acceptors. These profiles however differ significantly from those observed during growth with other electron donors such as H2 and formate, as well as during fermentative growth. Together the gene expression changes in the presence of different electron donors provide insights into the ability of DvH to differentially reduce metals such as Cr(VI). Here we present revised modes of energy generation in DvH in light of this new transcriptomic evidence.

  2. Revisiting Modes of energy generation in sulfate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Joachimiak, Marcin; Chakraborty, Romy; Zhou, Aifen; Fortney, Julian; Geller, Jil; Wall, Judy; Zhou, Jizhong; Arkin, Adam; Hazen, Terry; Keasling, Jay; Chhabra, Swapnil

    2010-05-17

    Sulfate reducing bacteria (SRB) play an important role in global sulfur and carbon cycling through their ability to completely mineralize organic matter while respiring sulfate to hydrogen sulfide. They are ubiquitous in anaerobic environments and have the ability to reduce toxic metals like Cr(VI) and U(VI). While SRB have been studied for over three decades, bioenergetic modes of this group of microbes are poorly understood. Desulfovibrio vulgaris strain Hildenborough (DvH) has served as a model SRB over the last decade with the accumulation of transcriptomic, proteomic and metabolic data under a wide variety of stressors. To further investigate the three hypothesized modes of energy generation in this anaerobe we conducted a systematic study involving multiple electron donor and acceptor combinations for growth. DvH was grown at 37oC in a defined medium with (a) lactate + thiosulfate, (b) lactate + sulfite (c) lactate + sulfate, (d) pyruvate + sulfate, (e) H2 + acetate + sulfate, (f) formate + acetate + sulfate, g) formate + sulfate and (h) pyruvate fermentation. Cells were harvested at mid-log phase of growth for all conditions for transcriptomics, when the optical density at 600nm was in the range 0.42-0.5. Initial results indicate that cells grown on lactate do not appear to significantly differentiate their gene expression profiles when presented with different electron acceptors. These profiles however differ significantly from those observed during growth with other electron donors such as H2 and formate, as well as during fermentative growth. Together the gene expression changes in the presence of different electron donors provide insights into the ability of DvH to differentially reduce metals such as Cr(VI). Here we present revised modes of energy generation in DvH in light of this new transcriptomic evidence.

  3. Anaerobic degradation of citrate under sulfate reducing and methanogenic conditions.

    Science.gov (United States)

    Gámez, Victor M; Sierra-Alvarez, Reyes; Waltz, Rebecca J; Field, James A

    2009-07-01

    Citrate is an important component of metal processing effluents such as chemical mechanical planarization wastewaters of the semiconductor industry. Citrate can serve as an electron donor for sulfate reduction applied to promote the removal of metals, and it can also potentially be used by methanogens that coexist in anaerobic biofilms. The objective of this study was to evaluate the degradation of citrate with sulfate-reducing and methanogenic biofilms. During batch bioassays, the citrate, acetate, methane and sulfide concentrations were monitored. The results indicate that independent of the biofilm or incubation conditions used, citrate was rapidly fermented with specific rates ranging from 566 to 720 mg chemical oxygen demand (COD) consumed per gram volatile suspended solids per day. Acetate was found to be the main fermentation product of citrate degradation, which was later degraded completely under either methanogenic or sulfate reducing conditions. However, if either sulfate reduction or methanogenesis was infeasible due to specific inhibitors (2-bromoethane sulfonate), absence of sulfate or lack of adequate microorganisms in the biofilm, acetate accumulated to levels accounting for 90-100% of the citrate-COD consumed. Based on carbon balances measured in phosphate buffered bioassays, acetate, CO(2) and hydrogen are the main products of citrate fermentation, with a molar ratio of 2:2:1 per mol of citrate, respectively. In bicarbonate buffered bioassays, acetogenesis of H(2) and CO(2) increased the yield of acetate. The results taken as a whole suggest that in anaerobic biofilm systems, citrate is metabolized via the formation of acetate as the main metabolic intermediate prior to methanogenesis or sulfate reduction. Sulfate reducing consortia must be enriched to utilize acetate as an electron donor in order to utilize the majority of the electron-equivalents in citrate.

  4. Annual sulfate budgets for Dutch lowland peat polders: The soil is a major sulfate source through peat and pyrite oxidation

    Science.gov (United States)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; van der Geest, Harm G.; de Klein, Jeroen J. M.; Kosten, Sarian; Smolders, Alfons J. P.; Verhoeven, Jos T. A.; Mes, Ron G.; Ouboter, Maarten

    2016-02-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species. Potential limitation of these plants to areas with low sulfate was analyzed with a spatial match-up of two large databases. The peat polders are generally used for dairy farming or nature conservation, and have considerable areas of shallow surface water (mean 16%, range 6-43%). As a consequence of continuous drainage, the peat in these polders mineralizes causing subsidence rates generally ranging between 2 and 10 mm y-1. Together with pyrite oxidation, this peat mineralization the most important internal source of sulfate, providing an estimated 96 kg SO4 ha-1 mm-1 subsidence y-1. External sources are precipitation and water supplied during summer to compensate for water shortage, but these were found to be minor compared to internal release. The most important output flux is discharge of excess surface water during autumn and winter. If only external fluxes in and out of a polder are evaluated, inputs average 37 ± 9 and exports 169 ± 17 kg S ha-1 y-1. During summer, when evapotranspiration exceeds rainfall, sulfate accumulates in the unsaturated zone, to be flushed away and drained off during the wet autumn and winter. In some polders, upward seepage from early Holocene, brackish sediments can be a source of sulfate. Peat polders export sulfate to the regional water system and the sea during winter drainage. The available sulfate probably only plays a minor role in the oxidation of peat: we estimate that this is less than 10% whereas aerobic mineralization is the most important. Most surface waters in these polders have high sulfate concentrations, which generally decline during the growing season when aquatic sediments are a sink. In the sediment, this sulfur is

  5. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part I. the absorption of hydrogen sulfide in metal sulfate solutions

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    The desulfurization of gas streams using aqueous iron(II)sulfate (Fe(II)SO4), zinc sulfate (ZnSO4) and copper sulfate (CuSO4) solutions as washing liquor is studied theoretically and experimentally. The desulfurization is accomplished by a precipitation reaction that occurs when sulfide ions and met

  6. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part I. the absorption of hydrogen sulfide in metal sulfate solutions

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    The desulfurization of gas streams using aqueous iron(II)sulfate (Fe(II)SO4), zinc sulfate (ZnSO4) and copper sulfate (CuSO4) solutions as washing liquor is studied theoretically and experimentally. The desulfurization is accomplished by a precipitation reaction that occurs when sulfide ions and

  7. Combinatorial roles of heparan sulfate proteoglycans and heparan sulfates in Caenorhabditis elegans neural development.

    Directory of Open Access Journals (Sweden)

    Tarja K Kinnunen

    Full Text Available Heparan sulfate proteoglycans (HSPGs play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS glycans. However, whether a specific HSPG (such as syndecan contains HS modifications that differ from another HSPG (such as glypican has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease.

  8. Sulfate Hydration States in Interpretation of Martian Mineral Assemblages

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.

    2008-12-01

    Remote spectral data and surface-measured chemical associations with S indicate widespread distribution of Mg-, Ca-, and Fe-sulfate salts on Mars. These salts are identified at least in part as hydrates, but spectral data and the low temperatures and low pH2O of Mars suggest that hydration states vary with origin, latitude, and exposure history. An understanding of stability limits and dehydration/rehydration rates is vital to understanding occurrences that may be interpreted variously as lacustrine, alteration via groundwater or discharge with evaporation, surface weathering, thermal brine systems, eolian recycling, or others. Different sulfates on Mars have varied susceptibility to desiccation at relatively warm, low-RH conditions or to hydration at cold, high-RH conditions. This variability provides a potent tool for interpreting exposure history. Among Ca-sulfates, gypsum and insoluble anhydrite should be stable and remain, respectively, fully hydrated or water-free at most latitudes and through diurnal and seasonal cycles, but bassanite is more sensitive to transient hydration. Mg-sulfates may have various values of n in the formula MgSO4.nH2O, and rehydration of desiccated forms often produces metastable phases. At low pH2O, unlike Ca- sulfates, amorphous forms appear with low values of n dependent, in part, on temperature. Kieserite resists dehydration but may hydrate in conditions where ice is stable at the surface. Fe-sulfates have more complex dehydration and rehydration properties. Jarosite is very resilient because of the lack of H2O molecules and presence of OH. Other Fe-sulfates are not so durable, e.g., coquimbite (Fe2 (SO4)3.9H2O) has independent H2O and dehydration on heating to 30 °C produces an amorphous product that does not rehydrate. Copiapite is similarly susceptible to dehydration. Modest heating of many H2O-bearing ferric sulfates can be destructive, and degradation can produce both cemented solids and viscous liquids. Sulfate salt

  9. Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio.

    Science.gov (United States)

    Barbosa, L P; Costa, P F; Bertolino, S M; Silva, J C C; Guerra-Sá, R; Leão, V A; Teixeira, M C

    2014-08-01

    The use of sulfate-reducing bacteria (SRB) in passive treatments of acidic effluents containing heavy metals has become an attractive alternative biotechnology. Treatment efficiency may be linked with the effluent conditions (pH and metal concentration) and also to the amount and nature of the organic substrate. Variations on organic substrate and sulfate ratios clearly interfere with the biological removal of this ion by mixed cultures of SRB. This study aimed to cultivate a mixed culture of SRB using different lactate concentrations at pH 7.0 in the presence of Ni, Mn and Cu. The highest sulfate removal efficiency obtained was 98 %, at a COD/sulfate ratio of 2.0. The organic acid analyses indicated an acetate accumulation as a consequence of lactate degradation. Different concentrations of metals were added to the system at neutral pH conditions. Cell proliferation and sulfate consumption in the presence of nickel (4, 20 and 50 mg l(-1)), manganese (1.5, 10 and 25 mg l(-1)) and copper (1.5, 10 and 25 mg l(-1)) were measured. The presence of metals interfered in the sulfate biological removal however the concentration of sulfide produced was high enough to remove over 90 % of the metals in the environment. The molecular characterization of the bacterial consortium based on dsrB gene sequencing indicated the presence of Desulfovibrio desulfuricans, Desulfomonas pigra and Desulfobulbus sp. The results here presented indicate that this SRB culture may be employed for mine effluent bioremediation due to its potential for removing sulfate and metals, simultaneously.

  10. Rationally designed fluorescently labeled sulfate-binding protein mutants: evaluation in the development of a sensing system for sulfate

    Science.gov (United States)

    Shrestha, Suresh; Salins, Lyndon L E.; Mark Ensor, C.; Daunert, Sylvia

    2002-01-01

    Periplasmic binding proteins from E. coli undergo large conformational changes upon binding their respective ligands. By attaching a fluorescent probe at rationally selected unique sites on the protein, these conformational changes in the protein can be monitored by measuring the changes in fluorescence intensity of the probe which allow the development of reagentless sensing systems for their corresponding ligands. In this work, we evaluated several sites on bacterial periplasmic sulfate-binding protein (SBP) for attachment of a fluorescent probe and rationally designed a reagentless sensing system for sulfate. Eight different mutants of SBP were prepared by employing the polymerase chain reaction (PCR) to introduce a unique cysteine residue at a specific location on the protein. The sites Gly55, Ser90, Ser129, Ala140, Leu145, Ser171, Val181, and Gly186 were chosen for mutagenesis by studying the three-dimensional X-ray crystal structure of SBP. An environment-sensitive fluorescent probe (MDCC) was then attached site-specifically to the protein through the sulfhydryl group of the unique cysteine residue introduced. Each fluorescent probe-conjugated SBP mutant was characterized in terms of its fluorescence properties and Ser171 was determined to be the best site for the attachment of the fluorescent probe that would allow for the development of a reagentless sensing system for sulfate. Three different environment-sensitive fluorescent probes (1,5-IAEDANS, MDCC, and acylodan) were studied with the SBP171 mutant protein. A calibration curve for sulfate was constructed using the labeled protein and relating the change in the fluorescence intensity with the amount of sulfate present in the sample. The detection limit for sulfate was found to be in the submicromolar range using this system. The selectivity of the sensing system was demonstrated by evaluating its response to other anions. A fast and selective sensing system with detection limits for sulfate in the

  11. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  12. Is Encephalopathy a Mechanism to Renew Sulfate in Autism?

    Directory of Open Access Journals (Sweden)

    Laurie Lentz-Marino

    2013-01-01

    Full Text Available This paper makes two claims: (1 autism can be characterized as a chronic low-grade encephalopathy, associated with excess exposure to nitric oxide, ammonia and glutamate in the central nervous system, which leads to hippocampal pathologies and resulting cognitive impairment, and (2, encephalitis is provoked by a systemic deficiency in sulfate, but associated seizures and fever support sulfate restoration. We argue that impaired synthesis of cholesterol sulfate in the skin and red blood cells, catalyzed by sunlight and nitric oxide synthase enzymes, creates a state of colloidal instability in the blood manifested as a low zeta potential and increased interfacial stress. Encephalitis, while life-threatening, can result in partial renewal of sulfate supply, promoting neuronal survival. Research is cited showing how taurine may not only help protect neurons from hypochlorite exposure, but also provide a source for sulfate renewal. Several environmental factors can synergistically promote the encephalopathy of autism, including the herbicide, glyphosate, aluminum, mercury, lead, nutritional deficiencies in thiamine and zinc, and yeast overgrowth due to excess dietary sugar. Given these facts, dietary and lifestyle changes, including increased sulfur ingestion, organic whole foods, increased sun exposure, and avoidance of toxins such as aluminum, mercury, and lead, may help to alleviate symptoms or, in some instances, to prevent autism altogether.

  13. Melamine nanosensing with chondroitin sulfate-reduced gold nanoparticles.

    Science.gov (United States)

    Noh, Hwa Jung; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

    2013-12-01

    Gold nanoparticles were green-synthesized using a glycosaminoglycan, chondroitin sulfate, as the reducing agent by mixing Au3+ and chondroitin sulfate under heating. Chondroitin sulfate-reduced gold nanoparticles were characterized by UV-Vis spectrophotometry, high resolution transmission electron microscopy and atomic force microscopy. The yield of Au3+ to Au0 was measured as 80.1% by inductively coupled plasma-atomic emission spectroscopy. A mostly spherical shape, with an average diameter of 44.68 +/- 11.25 nm, was observed from the atomic force microscopy images. Using chondroitin sulfate-reduced gold nanoparticles, we developed a melamine nanosensor that provides a simplified method to detect melamine in infant formula. With an increase in the melamine concentration in the gold nanoparticle solution, the characteristic surface plasmon resonance band of gold nanoparticles at 530 nm decreased, whereas a new peak appeared at 620 nm. There was a linear relationship between the absorbance ratio (A620/A530) and the melamine concentration in the range of 0.1-10 microM. The practical use of the proposed method was verified by quantifying melamine spiked in real infant formula at concentrations as low as 12.6 ppb. The nanosensing of melamine using chondroitin sulfate-reduced gold nanoparticles can be a promising technique for quick on-site melamine screening of milk products.

  14. Antifouling potential of Nature-inspired sulfated compounds

    Science.gov (United States)

    Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel

    2017-02-01

    Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL‑1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL‑1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina ( 1000 μg.mL‑1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.

  15. Arsenic mobilization from sediments in microcosms under sulfate reduction.

    Science.gov (United States)

    Sun, Jing; Quicksall, Andrew N; Chillrud, Steven N; Mailloux, Brian J; Bostick, Benjamin C

    2016-06-01

    Arsenic is often assumed to be immobile in sulfidic environments. Here, laboratory-scale microcosms were conducted to investigate whether microbial sulfate reduction could control dissolved arsenic concentrations sufficiently for use in groundwater remediation. Sediments from the Vineland Superfund site and the Coeur d'Alene mining district were amended with different combination of lactate and sulfate and incubated for 30-40 days. In general, sulfate reduction in Vineland sediments resulted in transient and incomplete arsenic removal, or arsenic release from sediments. Sulfate reduction in the Coeur d'Alene sediments was more effective at removing arsenic from solution than the Vineland sediments, probably by arsenic substitution and adsorption within iron sulfides. X-ray absorption spectroscopy indicated that the Vineland sediments initially contained abundant reactive ferrihydrite, and underwent extensive sulfur cycling during incubation. As a result, arsenic in the Vineland sediments could not be effectively converted to immobile arsenic-bearing sulfides, but instead a part of the arsenic was probably converted to soluble thioarsenates. These results suggest that coupling between the iron and sulfur redox cycles must be fully understood for in situ arsenic immobilization by sulfate reduction to be successful.

  16. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  17. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea RID A-8182-2008

    DEFF Research Database (Denmark)

    Leloup, Julie; Loy, Alexander; Knab, Nina J.

    2007-01-01

    The Black Sea, with its highly sulfidic water column, is the largest anoxic basin in the world. Within its sediments, the mineralization of organic matter occurs essentially through sulfate reduction and methanogenesis. In this study, the sulfate-reducing community was investigated in order...... quantified by targeting their metabolic key gene, the dissimilatory (bi)sulfite reductase (dsrA). Sulfate-reducing microorganisms were predominant in the sulfate zone but occurred also in the methane zone, relative proportion was maximal around the sulfate-methane transition, c. 30%, and equally high...

  18. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea RID A-8182-2008

    DEFF Research Database (Denmark)

    Leloup, Julie; Loy, Alexander; Knab, Nina J.

    2007-01-01

    quantified by targeting their metabolic key gene, the dissimilatory (bi)sulfite reductase (dsrA). Sulfate-reducing microorganisms were predominant in the sulfate zone but occurred also in the methane zone, relative proportion was maximal around the sulfate-methane transition, c. 30%, and equally high...... branching sequences which might represent Gram-positive spore-forming sulfate- and/or sulfite-reducing microorganisms. We thus hypothesize that terminal carbon mineralization in surface sediments of the Black Sea is largely due to the sulfate reduction activity of previously hidden SRM. Although these novel...

  19. Carbonate-Sulfate Volcanism on Venus?

    Science.gov (United States)

    Kargel, J.S.; Kirk, R.L.; Fegley, B.; Treiman, A.H.

    1994-01-01

    Venusian canali, outflow channels, and associated volcanic deposits resemble fluvial landforms more than they resemble volcanic features on Earth and Mars. Some canali have meandering habits and features indicative of channel migration that are very similar to meandering river channels and flood plains on Earth, venusian outflow channels closely resemble water-carved outflow channels on Mars and the Channeled Scabland in Washington, collapsed terrains at the sources of some venusian channels resemble chaotic terrains at the sources of martian outflow channels, venusian lava deltas are similar to bird's-foot deltas such as the Mississippi delta, and venusian valley networks indicate sapping. The depositional fluvial-type features (deltas, braided bars, and channeled plains) are generally among the smoothest terrains at the Magellan radar wavelength (12.6 cm) on Venus. These features suggest the involvement of an unusual lava, unexpected processes, and/or extraordinary eruption conditions. Possibly the lava was an ordinary silicate lava such as basalt or a less common type of silicate lava, and conditions unique to Venus or to those particular eruptions may have caused an unusual volcanological behavior. We have developed the alternative possibility that the lava had a water-like rheology and a melting point slightly greater than Venus' surface temperature, thus accounting for the unusual behavior of the lava. Unlike silicate lavas, some carbonatites (including carbonate-sulfate-rich liquids) have these properties; thus they can flow great distances while retaining a high fluidity, significant mechanical erosiveness, and substantial capacity to transport and deposit sediment. Venusian geochemistry and petrology are consistent with extensive eruptions of carbonatite lavas, which could have crustal and/or mantle origins. Venus' atmosphere (especially CO2, HCl, and HF abundances) and rocks may be in local chemical equilibrium, which suggests that the upper crust

  20. Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

    2011-03-15

    Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations, as well as metabolic engineering manipulations.

  1. Performance of sulfate-dependent anaerobic ammonium oxidation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The performance of sulfate-dependent anaerobic ammonium oxidation was studied.The results showed that both SO42-and NH4+ were chemically stable under anaerobic conditions.They did not react with each other in the absence of biological catalyst(sludge).The anaerobic digested sludge cultivated in an anaerobic reactor for three years took on the ability of oxidizing ammonium with sulfate anaero-bically.The average reduction of sulfate and ammonium was 71.67 mg.L-1 and 56.82 mg.L-1 at high concentrations.The reaction between SO42-and NH4+ was difficult,though feasible,due to its low standard Gibbs free energy change.The experiment demonstrated that high substrate concentrations and low oxidation-reduction potential(ORP) may be favourable for the biological reaction.

  2. Performance of sulfate-dependent anaerobic ammo-nium oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; ZHENG Ping; HE YuHui; JIN RenCun

    2009-01-01

    The performance of sulfate-dependent anaerobic ammonium oxidation was studied. The results showed that both SO42- and NH4+ were chemically stable under anaerobic conditions. They did not react with each other in the absence of biological catalyst (sludge). The anaerobic digested sludge cultivated in an anaerobic reactor for three years took on the ability of oxidizing ammonium with sulfate anaero-bically. The average reduction of sulfate and ammonium was 71.67 mg.L-1 and 56.82 mg.L-1 at high concentrations.The reaction between SO42- and NH4+ was difficult, though feasible, due to its low standard Gibbs free energy change. The experiment demonstrated that high substrate concentrations and low oxidation-reduction potential (ORP) may be favourable for the biological reaction.

  3. Marine Non-Glycosaminoglycan Sulfated Glycans as Potential Pharmaceuticals

    Science.gov (United States)

    Pomin, Vitor H.

    2015-01-01

    Sulfated fucans (SFs) and sulfated galactans (SGs) are currently the marine non-glycosaminoglycan (GAG) sulfated glycans most studied in glycomics. These compounds exhibit therapeutic effects in several pathophysiological systems such as blood coagulation, thrombosis, neovascularization, cancer, inflammation, and microbial infections. As analogs of the largely employed GAGs and due to some limitations of the GAG-based therapies, SFs and SGs comprise new carbohydrate-based therapeutics available for clinical studies. Here, the principal structural features and the major mechanisms of action of the SFs and SGs in the above-mentioned pathophysiological systems are presented. Discussion is also given on the current challenges and the future perspectives in drug development of these marine glycans. PMID:26690451

  4. Indoor-outdoor relationships of respirable sulfates and particles

    Science.gov (United States)

    Dockery, Douglas W.; Spengler, John D.

    Indoor and outdoor concentrations of respirable particulates and sulfates have been measured in 68 homes in six cities for at least 1 yr. A conservation of mass model was derived describing indoor concentrations in terms of outdoor concentrations, infiltration and indoor sources. The measured data were analysed to identify important building characteristics and to quantify their effect. The mean infiltration rate of outdoor fine particulates was found to be approximately 70%. Cigarette smoking was found to be the dominant indoor source of respirable particulates. Increased indoor concentrations of sulfates were found to be associated with smoking and also with gas stoves. The effect of full air conditioning of the building was to reduce infiltration of outdoor fine particulates by about one half, while preventing dilution and purging of internally generated pollutants. The model for indoor respirable particulate and sulfate levels was found to compare well with measurements.

  5. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  6. In vitro sulfate turnover in osteogenesis imperfacta congenita and tarda

    Energy Technology Data Exchange (ETDEWEB)

    Delvin, E.E.; Glorieux, F.H.; Lopez, E.

    1979-01-01

    Sulfate (/sup 35/SO/sub 4//sup -2/) uptake was studied in confluent skin fibroblasts from three patients with osteogenesis imperfecta congenita, six patients with osteogenesis imperfecta tarda, three clinically unaffected relatives of an osteogenesis imperfecta tarda patient, and four controls. Only two of the osteogenesis imperfecta congenita cell strains showed an increased uptake of sulfate, all other cell strains being comparable to the control group. The degradation rate of glycosaminolgycans in mutants as seen by the chase experiments was comparable to that found in the normal control cell strains. Glucose oxidation was normal in the osteogenesis imperfecta cell strains having an abnormal sulfate uptake. This rules out the possibility of an hypermetabolic state of these cells. These findings do not warrant the use of /sup 35/SO/sub 4//sup -2/ incorporation in cultured cells as a tool for prenatal diagnosis of osteogenesis imperfecta.

  7. Prenyl sulfates as alkylating reagents for mercapto amino acids.

    Science.gov (United States)

    Maltsev, Sergey; Sizova, Olga; Utkina, Natalia; Shibaev, Vladimir; Chojnacki, Tadeusz; Jankowski, Wieslaw; Swiezewska, Ewa

    2008-01-01

    A new methodology for prenylation of thiol compounds has been developed. The approach is based on the use of prenyl sulfates as new reagents for S-prenylation of benzenethiol and cysteamine in aqueous systems. The C(10)-prenols geraniol and nerol that differ in the configuration (E or Z, correspondingly) of the alpha-isoprene unit were efficiently O-sulfated in the presence of a pyridine-SO(3') complex. The obtained geranyl and neryl sulfates were tested as alkylating agents. These compounds were chosen to reveal the influence of the alpha-isoprene unit configuration on their alkylation (prenylation) ability. S-Geranyl cysteine was prepared to demonstrate the applicability of this method for prenylation of peptides containing mercapto amino acids.

  8. Effects of magnesium sulfate on traumatic brain edema in rats

    Institute of Scientific and Technical Information of China (English)

    冯东福; 朱志安; 卢亦成

    2004-01-01

    Objective: To investigate the effects of magnesium sulfate on traumatic brain edema and explore its possible mechanism.Methods: Forty-eight Sprague-Dawley ( SD ) rats were randomly divided into three groups: Control, Trauma and Treatment groups. In Treatment group, magnesium sulfate was intraperitoneally administered immediately after the induction of brain trauma. At 24 h after trauma, total tissue water content and Na + , K + , Ca2 + , Mg2+ contents were measured. Permeability of blood-brain barrier (BBB)was assessed quantitatively by Evans Blue (EB) dye technique. The pathological changes were also studied.Results: Water, Na + , Ca2 + and EB contents in Treatment group were significantly lower than those in Trauma group ( P < 0. 05 ). Results of light microscopy and electron microscopy confirmed that magnesium sulfate can attenuate traumatic brain injury and relieve BBB injury.Conclusions: Treatment with MgSO4 in the early stage can attenuate traumatic brain edema and prevent BBB injury.

  9. Mobility of alkali cations in polypyrrole-dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Kupila, E.L. [Department of Chemistry, University of Turku, 20500 Turku (Finland); Kankare, J. [Department of Chemistry, University of Turku, 20500 Turku (Finland)

    1995-03-01

    Due to the immobility of the large dodecyl sulfate anion, the mobile ions in polypyrrole-dodecyl sulfate are small ions from the solution. Virgin PP-dodecyl sulfate does not contain other ionic species, but already the first reduction causes the incorporation of cations into the membrane. Using in situ AC conductimetry on a double-band platinum electrode, we show that the insertion of cations from the solution into the PP membrane proceeds as a non-conducting zone advancing from the solution interface toward the substrate. The model allows to estimate ion mobilities in the membrane giving 8.6x10{sup -7}cm{sup 2}s{sup -1}V{sup -1} for K{sup +}. (orig.)

  10. BIOCOMPATIBILITY EVALUATION OF XANTHAN/CHONDROITIN SULFATE HYDROGELS

    Directory of Open Access Journals (Sweden)

    Ana-Maria Oprea

    2012-03-01

    Full Text Available The in vitro and in vivo biocompatibility of xanthan/chondroitin sulfate hydrogels (X/CS in differentmixing ratios was investigated. The in vitro biocompatibility evaluation was performed by a chemiluminescent assayusing microorganisms such as Saccharomyces pombe. The cellular growth of S. pombe in presence of thexanthan/chondroitin sulfate hydrogels containing up to 20 % chondroitin sulfate was examinated comparatively withxanthan hydrogel.The in vivo evaluation was performed by toxicity test and subcutaneously implantation in rats. It has been establisheda lethal dose (LD50 bigger than 3200 mg/kg for all studied hydrogels, therefore they are nontoxic materials.The in vivo 30 days testing performed by subcutaneous implantation showed that the X/CS matrices were easilyabsorbed without side-effects, demonstrating their biocompatibility and effectiveness as potential drug delivery systems.

  11. Sulfate burial constraints on the Phanerozoic sulfur cycle.

    Science.gov (United States)

    Halevy, Itay; Peters, Shanan E; Fischer, Woodward W

    2012-07-20

    The sulfur cycle influences the respiration of sedimentary organic matter, the oxidation state of the atmosphere and oceans, and the composition of seawater. However, the factors governing the major sulfur fluxes between seawater and sedimentary reservoirs remain incompletely understood. Using macrostratigraphic data, we quantified sulfate evaporite burial fluxes through Phanerozoic time. Approximately half of the modern riverine sulfate flux comes from weathering of recently deposited evaporites. Rates of sulfate burial are unsteady and linked to changes in the area of marine environments suitable for evaporite formation and preservation. By contrast, rates of pyrite burial and weathering are higher, less variable, and largely balanced, highlighting a greater role of the sulfur cycle in regulating atmospheric oxygen.

  12. Anaerobic degradation of benzoate by sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.P.; Adorno, M.A.T.; Moraes, E.M.; Varesche, M.B.A. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Biological Processes Laboratory

    2004-07-01

    Anaerobic processes are an efficient way to degrade aromatic compounds in industrial wastewater, such as phenol, cresol and benzoate. This study characterized the bacteria that degrades benzoate, an anaerobic degradation intermediate of several complex aromatic compounds. In particular, the study assessed the capacity to use benzoate with sulfate reducing bacteria in mesophilic conditions. Biofilm from polyurethane foam matrices of a fixed bed reactor was used as the cellular inoculum to treat industrial wastewater containing organic peroxide. Dilution techniques were used to purify the material and obtain cultures of cocci. The benzoate consumption capacity in sulfidogenic conditions was observed when the purified inoculum was applied to batch reactors with different benzoate/sulfate relations. Results indicate that purification was positive to bacteria that can degrade aromatic compounds. Desulfococcus multivorans bacteria was identified following the physiologic and kinetic experiments. The 0.6 benzoate/sulfate relation was considered ideal for complete consumption of carbon and total use of sulfur. 10 refs., 3 figs.

  13. Inhibitory effects of sulfated lentinan with different degree of sulfation against tobacco mosaic virus (TMV) in tobacco seedlings.

    Science.gov (United States)

    Wang, Jie; Yu, Guanghong; Li, Yihong; Shen, Lili; Qian, Yumei; Yang, Jinguang; Wang, Fenglong

    2015-07-01

    The inhibitory effects of sulfated lentinan with different degrees of sulfation against tobacco mosaic virus (TMV) and the underlying mechanism were investigated. The results indicated that plants treated with increasing concentrations of sulfated lentinan, with increasing numbers of treatments and with increasing time after treatment had a decrease in the number of necrotic lesions, indicating a long-term protection against TMV that mimics vaccination. In addition, the levels of TMV-capsid protein (CP) transcripts decreased in distant leaves, indicating that sulfated lentinan induces systemic protection against TMV. The activities of the defense enzymes phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) and the amounts of several phenylpropanoid compounds (PPCs) were measured in control and treated plants without infection. A progressive increase in PAL activity was observed with increasing time after treatment, together with the accumulation of free and conjugated PPCs. In contrast, LOX activity remained unchanged. Interestingly, the increase in PAL activity showed a linear correlation with the decrease in necrotic lesions and the decrease in TMV-CP transcript level. Thus, sulfated lentinan induced systemic and long-term protection against TMV in tobacco plants that is determined, at least in part, by a sustained activation of PAL and the accumulation of PPCs with potential antiviral activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    Directory of Open Access Journals (Sweden)

    Hiroyasu Ogawa

    Full Text Available Chondroitin sulfate (CS is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/- mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/- chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  15. Isolation of Polysaccharides Sulfated during Early Embryogenesis in Fucus.

    Science.gov (United States)

    Hogsett, W E; Quatrano, R S

    1975-01-01

    Beginning 10 hours after fertilization, zygotes of Fucus distichus L. Powell incorporate (35)S into polysaccharides as a sulfate ester of fucose. These sulfated polysaccharides are sequestered in only the rhizoid cell of the two-celled embryo and can serve as a marker of cellular differentiation. Zygotes were pulsed at different times after fertilization with Na(2) (35)SO(4) to identify and isolate the fucans localized within the region of cytoplasm destined to become the rhizoid cell. Low molecular weight pools of (35)S were saturated within 60 minutes, with the greatest incorporation into ethanol-soluble and insoluble fractions occurring with 0.1 mm Na(2)SO(4) in the artificial sea water medium. At the time of rhizoid formation, four fucose-containing polysaccharide fractions incorporated (35)S. When each fraction was subjected to diethylaminoethyl chromatography, two components were eluted with KCl that contained over 84% of the fucose and 93% of the (35)S of the particular fraction. Highvoltage paper electrophoresis of each fraction also resulted in the separation of these two major components. Both components from each of the four fractions behaved identically when separated by diethylaminoethyl chromatography and paper electrophoresis. By comparing the incorporation of (35)S into the polysaccharide fractions at 4 and 16 hours after fertilization, the fucan-sulfate components that are localized in the cytoplasm at the time of rhizoid formation were isolated. Although sulfated polysaccharides in brown algae are reported to be very heterogeneous in terms of their sugar composition and complexes with other heteropolymers, we propose that there are two major components that are sulfated during early embryogenesis in Fucus. The location of these two sulfated polysaccharides in different chemical fractions may reflect their subcellular localization (e.g., cytoplasmic vesicles or cell walls), or their association with other heteropolymers.

  16. A Copper-Sulfate-Based Inorganic Chemistry Laboratory for First-Year University Students That Teaches Basic Operations and Concepts.

    Science.gov (United States)

    Rodriguez, Emilio; Vicente, Miguel Angel

    2002-01-01

    Presents a 10-hour chemistry experiment using copper sulfate that has three steps: (1) purification of an ore containing copper sulfate and insoluble basic copper sulfates; (2) determination of the number of water molecules in hydrated copper sulfate; and (3) recovery of metallic copper from copper sulfate. (Author/YDS)

  17. Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates.

    Science.gov (United States)

    Farias, W R; Valente, A P; Pereira, M S; Mourão, P A

    2000-09-22

    We have characterized the structure of a sulfated d-galactan from the red algae Botryocladia occidentalis. The following repeating structure (-4-alpha-d-Galp-1-->3-beta-d-Galp-1-->) was found for this polysaccharide, but with a variable sulfation pattern. Clearly one-third of the total alpha-units are 2,3-di-O-sulfated and another one-third are 2-O-sulfated. The algal sulfated d-galactan has a potent anticoagulant activity (similar potency as unfractionated heparin) due to enhanced inhibition of thrombin and factor Xa by antithrombin and/or heparin cofactor II. We also extended the experiments to several sulfated polysaccharides from marine invertebrates with simple structures, composed of a single repeating structure. A 2-O- or 3-O-sulfated l-galactan (as well as a 2-O-sulfated l-fucan) has a weak anticoagulant action when compared with the potent action of the algal sulfated d-galactan. Possibly, the addition of two sulfate esters to a single alpha-galactose residue has an "amplifying effect" on the anticoagulant action, which cannot be totally ascribed to the increased charge density of the polymer. These results indicate that the wide diversity of polysaccharides from marine alga and invertebrates is a useful tool to elucidate structure/anticoagulant activity relationships.

  18. Heparan sulfate regulates ADAM12 through a molecular switch mechanism

    DEFF Research Database (Denmark)

    Sørensen, Hans P; Vives, Romain R; Manetopoulos, Christina

    2008-01-01

    tumor progression and chondrocyte proliferation in osteoarthritic cartilage, is shown to possess a pro/catalytic domain cationic molecular switch, regulated by exogenous heparan sulfate and heparin but also endogenous cell surface proteoglycans and the polyanion, calcium pentosan polysulfate. Sheddase...... functions of ADAM12 are regulated by the switch, as are proteolytic functions in placental tissue and sera of pregnant women. Moreover, human heparanase, an enzyme also linked to tumorigenesis, can promote ADAM12 sheddase activity at the cell surface through cleavage of the inhibitory heparan sulfate...

  19. Sulfate dry deposition to red oak and tulip poplar leaves

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberg, J.J. (US Environmental Protection Agency Research Triangle Park, NC (USA)); Knoerr, K.R. (Duke Univ Durham, NC (USA))

    1988-01-01

    Measurement of rates of atmospheric sulfate dry deposition to vegetation is necessary to assess biophysical relationships. However, micrometeorological measurement techniques have stringent site and equipment requirements and direct estimation techniques have procedural and contamination difficulties. This paper describes the development and testing of a leaf washing technique to directly measure the rate of sulfate dry deposition to hardwood forest vegetation. The leaf washing technique was developed by comparing the rate of removal of sulfur dry deposited to leaf surfaces with the rate and extent of leaching from the internal sulfur pool.

  20. Recombinant heparan sulfate for use in tissue engineering applications

    DEFF Research Database (Denmark)

    Whitelock, J.; Ma, J.L.; Davies, N.

    2008-01-01

    Background: Heparan sulfate (HS) is an important component of many extracellular matrices that interacts with mitogens and morphogens to guide and control tissue and organ development. These interactions are controlled by its structure, which varies when produced by different cell types and diffe......Background: Heparan sulfate (HS) is an important component of many extracellular matrices that interacts with mitogens and morphogens to guide and control tissue and organ development. These interactions are controlled by its structure, which varies when produced by different cell types...

  1. Thermodynamics of Ion Pair of Magnesium Sulfate in Mixed Solvent

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Introduction Magnesium sulfate is an archetypal 2-2 salt that plays a central role in defining the characteristics of higher valent electrolyte solutions and its solution has been widely used to test various theories of strong electrolyte behavior and to develop models of ion association in solution[1]. Up to now, the ion pairs of magnesium sulfate in an aqueous solution have been widely investigated by using different experimental techniques, such as conductometry[2] , cryoscopy[3] , potentiometry[4] ,solubility[5] and Raman spectrometry[6]. However, to our knowledge, no measurement of the standard association constant of the ion pairs, [MgSO4] 0 in a glucosewater mixed solvent is available.

  2. Regioselectivity and stereochemistry of the synthesized sulfated polysaccharides

    OpenAIRE

    前田, 昌徹

    1998-01-01

    A novel sulfated β-1,3-xylan product was synthesized from algal cell wall microfibril homoxylan by the N,N-dimethylformamide (DMF)-SO3 complex sulfation method. Antithrombin activity appeared in this product was 6.5 times higher than that of standard heparin. From the results of 1H- and 13C-NMR spectroscopic analysis by DQF-COSY and HMQC, it was revealed that the ordered structure of β-1,3-xylan as a triple helix decayed and the resulting conformational change had been caused by the sulfatio...

  3. Role of sodium tetradecyl sulfate in venous malformations

    Directory of Open Access Journals (Sweden)

    Saraf Sanjay

    2006-01-01

    Full Text Available Venous malformations are one of the commonest anomalies of the vascular tree and their management has always remained a major challenge. Surgery and other treatment modalities are not always satisfactory and have a higher morbidity, recurrence and complication rate. The author retrospectively analyzed 40 patients of venous malformations who underwent sclerotherapy with sodium tetradecyl sulfate solely or as an adjunct to surgery. The purpose of the study was to evaluate the efficacy and safety of sodium tetradecyl sulfate sclerotherapy in the treatment of venous malformations.

  4. Structure and anticoagulant properties of sulfated glycosaminoglycans from primitive Chordates

    Directory of Open Access Journals (Sweden)

    MAURO S. G. PAVÃO

    2002-03-01

    Full Text Available Dermatan sulfates and heparin, similar to the mammalian glycosaminoglycans, but with differences in the degree and position of sulfation were previously isolated from the body of the ascidian Styela plicata and Ascidia nigra. These differences produce profound effects on their anticoagulant properties. S. plicata dermatan sulfate composed by 2-O-sulfatedalpha-L-iduronic acid and 4-O-sulfated N-acetyl-beta-D-galactosamine residues is a potent anticoagulant due to a high heparin cofactor II activity. Surprisingly, it has a lower potency to prevent thrombus formation on an experimental model and a lower bleeding effect in rats than the mammalian dermatan sulfate. In contrast, A. nigra dermatan sulfate, also enriched in 2-O-sulfated alpha-L-iduronic acid, but in this case sulfated at O-6 of the N-acetyl-beta-D-galactosamine units, has no in vitro or in vivo anticoagulant activity, does not prevent thrombus formation but shows a bleeding effect similar to the mammalian glycosaminoglycan. Ascidian heparin, composed by 2-O-sulfated alpha-L-iduronic acid, N- and 6-O-sulfated glucosamine (75% and alpha-L-iduronic acid, N- and 6-O-sulfated glucosamine (25% disaccharide units has an anticoagulant activity 10 times lower than the mammalian heparin, is about 20 times less potent in the inhibition of thrombin by antithrombin, but has the same heparin cofactor II activity as mammalian heparin.Dermatam sulfato e heparina semelhantes aos glicosaminoglicanos de mamíferos, mas apresentando diferenças no grau e posição de sulfatação foram previamente isolados do corpo das ascídias Styela plicata e Ascidia nigra. Estas diferenças produzem efeitos profundos nas suas propriedades anticoagulantes. O dermatam sulfato de S. plicata, composto por resíduos de ácido alfa-L-idurônico 2-O-sulfatados e N-acetilgalactosamina 4-O-sulfatados é um potente anticoagulante devido a sua alta atividade de cofator II da heparina. Surpreendentemente, este polímero possui uma

  5. SULFATE SOLUBILITY LIMIT VERIFICATION FOR DWPF SLUDGE BATCH 7B

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2011-10-03

    The objective of this study was to determine a sulfate solubility limit in glass for Sludge Batch 7b (SB7b). The SB7b composition projection provided by Savannah River Remediation (SRR) on May 25, 2011 was used as the basis for formulating glass compositions to determine the sulfate limit. Additions of Na{sub 2}O to the projected sludge composition were made by the Savannah River National Laboratory (SRNL) due to uncertainty in the final concentration of Na{sub 2}O for SB7b, which is dependent on washing effectiveness and the potential need to add NaOH to ensure an acceptable projected operating window. Additions of 4, 6, and 8 wt % Na{sub 2}O were made to the nominal May 25, 2011 composition projection. An updated SB7b composition projection was received from SRR on August 4, 2011. Due to compositional similarities, no additional experimental work using the August 4, 2011 compositions was considered to be necessary for this study. Both Frit 418 and Frit 702 were included in this study. The targeted sulfate (SO{sub 4}{sup 2-}) concentrations of the study glasses were selected within the range of 0.6 to 0.9 wt % in glass. A total of 52 glass compositions were selected based on the compositional variables of Na{sub 2}O addition, Actinide Removal Process (ARP) stream addition, waste loading, frit composition, and sulfate concentration. The glasses were batched, melted, and characterized following SRNL procedures. Visual observations were recorded for each glass after it cooled and used as in indicator of sulfur retention. Representative samples of each of the glasses fabricated were subjected to chemical analysis to determine whether the targeted compositions were met, as well as to determine the quantity of sulfate that was retained after melting. In general, the measured composition data showed that there were only minor issues in meeting the targeted compositions for the study glasses, and the measured sulfate concentrations for each study glass were within 10% of

  6. Specific sulfation and glycosylation—a structural combination for the anticoagulation of marine carbohydrates

    Science.gov (United States)

    Pomin, Vitor H.; Mourão, Paulo A. S.

    2014-01-01

    Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans (SFs), sulfated galactans (SGs) and glycosaminoglycans (GAGs). The structural combinations necessary for the anticoagulant activities are the 2-sulfation in α-L-SGs, the 2,4-di-sulfation in α-L-fucopyranosyl units found as composing units of certain sea-urchin and sea-cucumber linear SFs, or as branching units of the fucosylated chondroitin sulfate, a unique GAG from sea-cucumbers. Another unique GAG type from marine organisms is the dermatan sulfate isolated from ascidians. The high levels of 4-sulfation at the galactosamine units combined with certain levels of 2-sulfation at the iduronic acid units is the anticoagulant structural requirements of these GAGs. When the backbones of red algal SGs are homogeneous, the anticoagulation is proportionally dependent of their sulfation content. Finally, 4-sulfation was observed to be the structural motif required to enhance the inhibition of thrombin via heparin cofactor-II by invertebrate SFs. PMID:24639954

  7. Specific sulfation and glycosylation - a structural combination for the anticoagulation of marine carbohydrates

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Pomin

    2014-03-01

    Full Text Available Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans (SFs, sulfated galactans (SGs and glycosaminoglycans (GAGs. The structural combinations necessary for the anticoagulant activities are the 2-sulfation in α-L-SGs, the 2,4-di-sulfation in α-L-fucopyranosyl units found as composing units of certain sea-urchin and sea-cucumber linear SFs, or as branching units of the fucosylated chondroitin sulfate, a unique GAG from sea-cucumbers. Another unique GAG type from marine organisms is the dermatan sulfate isolated from ascidians. The high levels of 4-sulfation at the galactosamine units combined with certain levels of 2-sulfation at the iduronic acid units is the anticoagulant structural requirements of these GAGs. When the backbones of red algal SGs are homogeneous, the anticoagulation is proportionally dependent of their sulfation content. Finally, 4-sulfation was observed to be the structural motif required to enhance the inhibition of thrombin via heparin cofactor-II by invertebrate SFs.

  8. Specific sulfation and glycosylation-a structural combination for the anticoagulation of marine carbohydrates.

    Science.gov (United States)

    Pomin, Vitor H; Mourão, Paulo A S

    2014-01-01

    Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans (SFs), sulfated galactans (SGs) and glycosaminoglycans (GAGs). The structural combinations necessary for the anticoagulant activities are the 2-sulfation in α-L-SGs, the 2,4-di-sulfation in α-L-fucopyranosyl units found as composing units of certain sea-urchin and sea-cucumber linear SFs, or as branching units of the fucosylated chondroitin sulfate, a unique GAG from sea-cucumbers. Another unique GAG type from marine organisms is the dermatan sulfate isolated from ascidians. The high levels of 4-sulfation at the galactosamine units combined with certain levels of 2-sulfation at the iduronic acid units is the anticoagulant structural requirements of these GAGs. When the backbones of red algal SGs are homogeneous, the anticoagulation is proportionally dependent of their sulfation content. Finally, 4-sulfation was observed to be the structural motif required to enhance the inhibition of thrombin via heparin cofactor-II by invertebrate SFs.

  9. Combined elimination of organic C, sulfate and heavy metals. Final report; Kombinierte organische C-, Sulfat- und Schwermetalleliminierung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Raebiger, N.

    2002-01-11

    A new biological process for purification of highly burdened industrial effluents was developed in which aerobic, oxygen-limiting reaction conditions ensure simultaneous elimination of organic C, sulfate and heavy metals in a single process step in a compact system. The design data are presented here for the purpose of practical implementation of the process. [German] Das Ziel des Forschungsvorhabens ist die Entwicklung eines neuen biologischen Verfahrens zur Reinigung hochbelasteter Industrieabwaesser, bei dem durch die Einstellung aerober, sauerstofflimitierender Reaktionsbedingungen eine kombinierte organisch C-, Sulfat- und Schwermetalleliminierung gleichzeitig in einem Verfahrensschritt und kompakter Anlagentechnik realisiert wird. Hierbei werden die Auslegungsunterlagen fuer die praxisrelevante Umsetzung dieses Verfahrens zur Verfuegung gestellt. (orig.)

  10. Acid-Sulfate Alteration at Gusev Crater and Across Mars: High-SiO2 Residues and Ferric Sulfate Precipitates

    Science.gov (United States)

    Morris, R. V.; Catalano, J. G.; Klingelhoefer, G.; Schroeder, C.; Gellert, R.; Clark, B. C.; Ming, D. W.; Yen, A. S.; Arvidson, R. E.; Cohen, B. A.; hide

    2017-01-01

    The Mars Exploration Rover Spirit ended its mission in Gusev crater on sol 2210 after it had become stuck in a deposit of fined-grained and sulfate rich soil with dust covered solar panels unfavorably pointed toward the sun. Final analysis of remaining data from Spirit's Moessbauer spectrometer (Fe redox and mineralogy) for sols 1529 through 2071 is now complete. We focus here on chemical (APXS) and MB data for targets having high-SiO2 or high-SO3 and process link the targets through mixing and geochemical modelling to an acid-sulfate system centered at Home Plate, which is considered to be a hydrovolcanic complex.

  11. Semi-synthesis of unusual chondroitin sulfate polysaccharides containing GlcA(3-O-sulfate) or GlcA(2,3-di-O-sulfate) units.

    Science.gov (United States)

    Bedini, Emiliano; De Castro, Cristina; De Rosa, Mario; Di Nola, Annalida; Restaino, Odile F; Schiraldi, Chiara; Parrilli, Michelangelo

    2012-02-13

    The extraction from natural sources of Chondroitin sulfate (CS), a polysaccharide used for management of osteoarthritis, leads to very complex mixtures. The synthesis of CS by chemical modification of other polysaccharides has seldom been reported due to the intrinsic complexity that arises from fine chemical modifications of the polysaccharide structure. In view of the growing interest in expanding the application of CS to pharmacological fields other than osteoarthritis treatment, we launched a program to find new sources of known or even unprecedented CS polysaccharides. As part of this program, we report herein on an investigation of the use of a cyclic orthoester group to selectively protect the 4,6-diol of N-acetyl-galactosamine residues in chondroitin (obtained from a microbial source), thereby facilitating its transformation into CSs. In particular, three CS polysaccharides were obtained and demonstrated to possess rare or hitherto unprecedented sulfation patterns by 2D NMR spectroscopy characterization. Two of them contained disaccharide subunits characterized by glucuronic acid residues selectively sulfated at position 3 (GlcA(3S)), the biological functions of which are known but have yet to be fully investigated. This first semi-synthetic access to GlcA(3S)-containing CS could greatly expedite such studies, since it can easily furnish considerable amounts of these polysaccharides, which are usually isolated with difficulty and in very low quantity from natural sources.

  12. Reactive Uptake of Dimethylamine by Ammonium Sulfate and Ammonium Sulfate-Sucrose Mixed Particles.

    Science.gov (United States)

    Chu, Yangxi; Chan, Chak K

    2017-01-12

    Short-chain alkyl amines can undergo gas-to-particle partitioning via reactive uptake by ammonium salts, whose phases have been thought to largely influence the extent of amine uptake. Previous studies mainly focused on particles of single ammonium salt at either dry or wet conditions without any addition of organic compounds. Here we report the uptake of dimethylamine (DMA) by ammonium sulfate (AS) and AS-sucrose mixed particles at different relative humidities (RHs) using an electrodynamic balance coupled with in situ Raman spectroscopy. DMA is selected as a representative of short-chain alkyl amines, and sucrose is used as a surrogate of viscous and hydrophilic organics. Effective DMA uptake was observed for most cases, except for the water-limiting scenario at <5% RH and the formation of an ultraviscous sucrose coating at 10% RH and below. DMA uptake coefficients (γ) were estimated using the particle mass measurements during DMA uptake. Addition of sucrose can increase γ by absorbing water or inhibiting AS crystallization and decrease γ by elevating the particle viscosity and forming a coating layer. DMA uptake can be facilitated for crystalline AS or retarded for aqueous AS with hydrophilic viscous organics (e.g., secondary organic material formed via the oxidation of biogenic volatile organic compounds) present in aerosol particles.

  13. Anaerobic degradation of sodium dodecyl sulfate (SDS) by denitrifying bacteria

    NARCIS (Netherlands)

    Paulo, A.; Plugge, C.M.; Garcia Encina, P.A.; Stams, A.J.M.

    2013-01-01

    Two denitrifying bacteria were isolated using sodium dodecyl sulfate (SDS) as substrate. Strains SN1 and SN2 were isolated from an activated sludge reactor of a wastewater treatment plant (WWTP) with Anaerobic–Anoxic–Oxic (A2/O) steps. Based on 16S rRNA gene analysis strain SN1 is 99% similar to Pse

  14. Sulfation of Condensed Potassium Chloride by SO2

    DEFF Research Database (Denmark)

    Sengeløv, Louise With; Hansen, Troels Bruun; Bartolomé, Carmen;

    2013-01-01

    The interaction between alkali chloride and sulfur oxides has important implications for deposition and corrosion in combustion of biomass. In the present study, the sulfation of particulate KCl (90–125 μm) by SO2 was studied in a fixed bed reactor in the temperature range 673–1023 K and with rea...

  15. Dimethylsulfoxide reduction by marine sulfate-reducing bacteria

    NARCIS (Netherlands)

    Jonkers, Henk M.; Maarel, Marc J.E.C. van der; Gemerden, Hans van; Hansen, Theo A.

    1996-01-01

    Dimethylsulfoxide (DMSO) reduction occurred in five out of nine strains of sulfate-reducing bacteria from marine or saline environments, but not in three freshwater isolates. DMSO reduction supported growth in all positive strains. In Desulfovibrio desulfuricans strain PA2805, DMSO reduction occurre

  16. Decomposition of Copper (II) Sulfate Pentahydrate: A Sequential Gravimetric Analysis.

    Science.gov (United States)

    Harris, Arlo D.; Kalbus, Lee H.

    1979-01-01

    Describes an improved experiment of the thermal dehydration of copper (II) sulfate pentahydrate. The improvements described here are control of the temperature environment and a quantitative study of the decomposition reaction to a thermally stable oxide. Data will suffice to show sequential gravimetric analysis. (Author/SA)

  17. Copper sulfate acute ecotoxicity and environmental risk for tropical fish

    Directory of Open Access Journals (Sweden)

    Adilson Ferreira da Silva

    2014-10-01

    Full Text Available The aim of this study was to estimate copper sulfate acute toxicity and to determine death percentage and environmental risk on guppy fish (Phallocerus caudimaculatus, zebrafish (Brachydanio rerio, mato grosso (Hyphessobrycon eques, and pacu (Piaractus mesopotamicus. Fish were exposed to 0.01, 0.03, 0.05, 0.07, 0.10, and 0.30 mg L-1 (guppy, 0.05, 0.07, 0.10, and 0.30 mg L-1 (zebrafish, 0.07, 0.10, 0.20, and 0.30 mg L-1 (mato grosso and 9.5, 10.0, 10.5, 11.0, 11.5, and 12.0 mg L-1 (pacu of copper sulfate, with triplicate control. The estimated 50% average lethal concentrations (LC50; 96 hours were 0.05 (guppy, 0.13 (zebrafish; 0.16 (mato grosso and 10.36 mg L-1 (pacu. Copper sulfate was extremely toxic for guppy, highly toxic for zebrafish and mato grosso and lightly toxic for pacu and presents environmental risk of high adverse effects on the guppy, zebrafish and mato grosso and moderate adverse effect to the pacu. Therefore, the guppy fish, zebrafish, and mato grosso are important alternatives for copper sulfate toxicity evaluation in waterbodies.

  18. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Science.gov (United States)

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  19. Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum.

    Science.gov (United States)

    Adhikari, Utpal; Mateu, Cecilia G; Chattopadhyay, Kausik; Pujol, Carlos A; Damonte, Elsa B; Ray, Bimalendu

    2006-11-01

    A sulfated fucan containing fraction (SmWE) was isolated from water extract of the brown seaweed Stoechospermum marginatum collected from the Arabian Sea. Anion exchange chromatography of the crude fraction results in the production of a sulfated fucan (F3) having a molecular mass of 40 kDa and specific rotation [alpha]D(30) - 124 degrees (c 0.5, H2O). NMR spectroscopic studies and methylation analysis suggested that the polymer consists of a backbone of (1-->4)- and (1-->3)-linked-alpha-L-fucopyranosyl residues that are substituted at C-2 and C-3, and that fucosyl residues are sulfated mostly at C-2 and/or C-4. SmWE and F3 were selective inhibitors of herpes simplex virus type 1 (strain F, thymidine kinase-deficient strains field and B2006 and syncytial variants arising after selection with a natural carrageenan syn 13-8 and 14-1) and type 2 (strain MS) in Vero cells, with antiviral effective concentration 50% (EC50) values in the range 0.63-10.0 microg/ml. The compounds were highly selective due to the lack of cytotoxicity. The antiviral activity was dependent on the presence of the sulfated fucans during the adsorption period. No direct inactivating effect on virions was observed in a virucidal assay. The absence of anticoagulant activity at concentrations near EC50 confirmed that there was no correlation between the antiviral and anticoagulant properties.

  20. Selective discrimination of cyclodextrin diols using cyclic sulfates

    DEFF Research Database (Denmark)

    Petrillo, Marta; Marinescu, Lavinia; Rousseau, Cyril

    2009-01-01

    A method for selective monofunctionalition of readily available cyclodextrin diols (2(A-F),3(A-F),6(B,C,E,F)-hexadeca-O-benzyl-alpha-cyclodextrin and 2(A-G),3(A-G),6(B,C,E-G)-nonadeca-O-benzyl-beta-cyclodextrin) by regioselective nucleophilic opening of their cyclic sulfates is presented. Althoug...

  1. Heparan sulfate in angiogenesis: a target for therapy

    NARCIS (Netherlands)

    Wijk, X.M.R. van; Kuppevelt, T.H. van

    2014-01-01

    Heparan sulfate (HS), a long linear polysaccharide of alternating disaccharide residues, interacts with a wide variety of proteins, including many angiogenic factors. The involvement of HS in signaling of pro-angiogenic factors (e.g. vascular endothelial growth factor and fibroblast growth factor 2)

  2. Sulfate Reduction at Low Ph To Remediate Acid Mine Drainage

    NARCIS (Netherlands)

    Sánchez-Andrea, I.; Sanz, J.L.; Bijmans, M.F.M.; Stams, A.J.M.

    2014-01-01

    Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities,

  3. Mercury and lead tolerance in hypersaline sulfate-reducing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Harithsa, S.; Kerkar, S.; LokaBharathi, P.A.

    Sulfate-reducing bacteria (SRB) HSR 1, HSR 4, and HSR 14 isolated from the salt pans of Goa, India grew best at 90-100 ppt salinity on substrates like formate, acetate, lactate, butyrate, ethanol and benzoate. They were gram negative, non...

  4. Sulfate Reduction at Low Ph To Remediate Acid Mine Drainage

    NARCIS (Netherlands)

    Sánchez-Andrea, I.; Sanz, J.L.; Bijmans, M.F.M.; Stams, A.J.M.

    2014-01-01

    Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, b

  5. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Science.gov (United States)

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  6. Secondary Storage of Dermatan Sulfate in Sanfilippo Disease*

    OpenAIRE

    Lamanna, William C.; Lawrence, Roger; Sarrazin, Stéphane; Jeffrey D Esko

    2010-01-01

    Mucopolysaccharidoses are a group of genetically inherited disorders that result from the defective activity of lysosomal enzymes involved in glycosaminoglycan catabolism, causing their intralysosomal accumulation. Sanfilippo disease describes a subset of mucopolysaccharidoses resulting from defects in heparan sulfate catabolism. Sanfilippo disorders cause severe neuropathology in affected children. The reason for such extensive central nervous system dysfunction is unresolved, but it may be ...

  7. Dimethylsulfoxide reduction by marine sulfate-reducing bacteria

    NARCIS (Netherlands)

    Jonkers, Henk M.; Maarel, Marc J.E.C. van der; Gemerden, Hans van; Hansen, Theo A.

    1996-01-01

    Dimethylsulfoxide (DMSO) reduction occurred in five out of nine strains of sulfate-reducing bacteria from marine or saline environments, but not in three freshwater isolates. DMSO reduction supported growth in all positive strains. In Desulfovibrio desulfuricans strain PA2805, DMSO reduction occurre

  8. The importance of thyroid hormone sulfation during fetal development

    NARCIS (Netherlands)

    M.H.A. Kester (Monique)

    2001-01-01

    textabstractNormal fetal development requires the presence of thyroid hormone. Disruption of any of the processes regulating the bioavailability of thyroid hormone may contribute to congenital anomalies. This thesis is focussed a) on the importance of thyroid hormone sulfation during fetal developme

  9. Biogeography of sulfate-reducing prokaryotes in river floodplains

    NARCIS (Netherlands)

    Miletto, M.; Loy, A.; Antheunisse, A.M.; Loeb, R.; Bodelier, P.L.E.; Laanbroek, R.

    2008-01-01

    In this study, a large-scale field survey was conducted to describe the biogeography of sulfate-reducing prokaryotes (SRPs) in river floodplains. Fingerprints obtained with three methods, i.e. 16S rRNA gene-based oligonucleotide microarray, dsrB-based denaturing gradient gel electrophoresis (DGGE) a

  10. Biotechnological aspects of sulfate reduction with methane as electron donor

    NARCIS (Netherlands)

    Meulepas, R.J.W.; Stams, A.J.M.; Lens, P.N.L.

    2010-01-01

    Biological sulfate reduction can be used for the removal and recovery of oxidized sulfur compounds and metals from waste streams. However, the costs of conventional electron donors, like hydrogen and ethanol, limit the application possibilities. Methane from natural gas or biogas would be a more att

  11. Dietary copper sulfate for control of gastrointestinal nematodes in goats

    Science.gov (United States)

    Prevalence of anthelmintic resistance in goats has necessitated studies for alternative means of gastrointestinal nematode (GIN) control. The objective was to determine the effectiveness of dietary copper sulfate for control of GIN in meat goats. Naturally infected buck kids received 0 (LC), 78 (M...

  12. The effect of divalent salt in chondroitin sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aranghel, D., E-mail: daranghe@nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Extreme Light Intrastructure Nuclear Physics (ELI-NP), Reactorului 30,RO-077125, POB-MG6, Magurele-Bucharest (Romania); Badita, C. R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele (Romania); Radulescu, A. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science, 85747 Garching (Germany); Moldovan, L.; Craciunescu, O. [National Institute R& D for Biological Sciences, Splaiul Independenţei 296, sector 6, cod 060031, C.P. 17-16, Bucharest (Romania); Balasoiu, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-25

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca{sup 2+} cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca{sup 2+} by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl{sub 2}) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  13. Eutrophication, microbial-sulfate reduction and mass extinctions

    DEFF Research Database (Denmark)

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas

    2016-01-01

    to the Earth system, notably, the biogeochemical sulfur and carbon cycle. This climate warming feedback produces large-scale eutrophication on the continental shelf, which, in turn, expands oxygen minimum zones by increased respiration, which can turn to a sulfidic state by increased microbial-sulfate...

  14. Dissolving Lignin in Water through Enzymatic Sulfation with Aryl Sulfotransferase.

    Science.gov (United States)

    Prinsen, Pepijn; Narani, Anand; Hartog, Aloysius F; Wever, Ron; Rothenberg, Gadi

    2017-05-22

    We introduce the concept of using site-specific sulfation of various lignins for increasing their aqueous solubility and thereby their processability. Using p-nitrophenylsulfate as a sulfate source and an aryl sulfotransferase enzyme as catalyst, lignins are easily sulfated at ambient conditions. We demonstrate the specific sulfation of phenolic hydroxyl groups on five different lignins: Indulin AT (Kraft softwood), Protobind 1000 (mixed wheat straw/Sarkanda grass soda) and three organosolv lignins. The reaction proceeds smoothly and the increase in solubility is visible to the naked eye. We then examine the reaction kinetics, and show that these are easily monitored qualitatively and quantitatively using UV/Vis spectroscopy. The UV/Vis results are validated with (31) P NMR spectroscopy of the lignin phenol groups after derivatization with phosphorylation reagent II. In general, the results are more significant with organosolv lignins, as Kraft and soda lignins are produced from aqueous lignocellulose extraction processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Distribution of Heparan Sulfate Oligosaccharides in Murine Mucopolysaccharidosis Type IIIA

    Directory of Open Access Journals (Sweden)

    Kerryn Mason

    2014-12-01

    Full Text Available Heparan sulfate (HS catabolism begins with endo-degradation of the polysaccharide to smaller HS oligosaccharides, followed by the sequential action of exo-enzymes to reduce these oligosaccharides to monosaccharides and inorganic sulfate. In mucopolysaccharidosis type IIIA (MPS IIIA the exo-enzyme, N-sulfoglucosamine sulfohydrolase, is deficient resulting in an inability to hydrolyze non-reducing end glucosamine N-sulfate esters. Consequently, partially degraded HS oligosaccharides with non-reducing end glucosamine sulfate esters accumulate. We investigated the distribution of these HS oligosaccharides in tissues of a mouse model of MPS IIIA using high performance liquid chromatography electrospray ionization-tandem mass spectrometry. Oligosaccharide levels were compared to total uronic acid (UA, which was used as a measure of total glycosaminoglycan. Ten oligosaccharides, ranging in size from di- to hexasaccharides, were present in all the tissues examined including brain, spleen, lung, heart, liver, kidney and urine. However, the relative levels varied up to 10-fold, suggesting different levels of HS turnover and storage. The relationship between the di- and tetrasaccharides and total UA was tissue specific with spleen and kidney showing a different disaccharide:total UA ratio than the other tissues. The hexasaccharides showed a stronger correlation with total UA in all tissue types suggesting that hexasaccharides may more accurately reflect the storage burden in these tissues.

  16. PREPARATION AND CHARACTERIZATION OF SULFATED ZIRCONIA FOR BIODIESEL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Heri Rustamaji

    2012-05-01

    Full Text Available Sulfated zirconia has been prepared and characterized by X-ray diffraction, infrared spectroscopy, BET surface area, and BJH pore distribution methods. XRD patterns reveal that the sulfated zirconia mainly consists of tetragonal crystalline zirconia with average size of about 9.8 nm. N2 adsorption data show that the nanosized sulfated zirconia has high surface area (109.4 m2/g and shows the uniform pore distribution aggregated by zirconia nanoparticles. Sulfated zirconias were used as catalysts in the alcoholysis of jatropha oil. The conversions of jatropha oil alcoholysis under good conditions (120oC, 2 h, 3 wt% of catalyst and 1000 rpm agitation speed were 79.65%.  Abstrak PREPARASI DAN KARAKTERISASI ZIRKONIA TERSULFATASI SEBAGAI KATALISATOR DALAM PEMBUATAN BIODIESEL. Zirkonia tersulfatasi berhasil dibuat dan dikarakterisasi dengan difraksi sinar X, spektroskopi inframerah, pengukuran luas permukaan dengan metode BET dan dan pengukuran distribusi pori dengan metode BJH. Pola difraksi sinar X menunjukkan bahwa susunan utama zirkonia tersulfatasi terdiri atas kristal zirkonia tetragonal dengan ukuran pori rata-rata sekitar 9,8 nm. Data adsorpsi N2 menunjukkan bahwa zirkonia tersulfatasi yang berukuran nano memiliki luas permukaan yang tinggi (109,4 m2/g dan memiliki distribusi ukuran pori yang seragam. Zirkonia tersulfatasi digunakan sebagai katalisator dalam reaksi alkoholisis minyak jarak pagar dengan konversi pada kondisi yang relatif baik (120oC, 2 jam, 3% berat katalis dan kecepatan pengadukan 1000 rpm sebesar 79,65%.

  17. Sulfate radicals enable a non-enzymatic Krebs cycle precursor.

    Science.gov (United States)

    Keller, Markus A; Kampjut, Domen; Harrison, Stuart A; Ralser, Markus

    2017-03-13

    The evolutionary origins of the Krebs cycle (tricarboxylic acid cycle) are not currently clear. Despite the existence of a simple non-enzymatic Krebs cycle catalyst being dismissed only a few years ago as 'an appeal to magic', citrate and other intermediates have since been discovered on a carbonaceous meteorite and do interconvert non-enzymatically. To identify a metabolism-like non-enzymatic Krebs cycle catalyst, we used combinatorial, quantitative high-throughput metabolomics to systematically screen iron and sulfate compounds in a reaction mixture that orients on the typical components of Archaean sediment. Krebs cycle intermediates were found to be stable in water and in the presence of most molecule species, including simple iron sulfate minerals. However, in the presence of sulfate radicals generated from peroxydisulfate, the intermediates underwent 24 interconversion reactions. These non-enzymatic reactions covered the critical topology of the oxidative Krebs cycle, the glyoxylate shunt and the succinic-semialdehyde pathway. Assembled in a chemical network, the reactions achieved over 90% carbon recovery. Our results show that a non-enzymatic precursor of the Krebs cycle is biologically sensible, efficient, and forms spontaneously in the presence of sulfate radicals.

  18. Anaerobic degradation of sodium dodecyl sulfate (SDS) by denitrifying bacteria

    NARCIS (Netherlands)

    Paulo, A.; Plugge, C.M.; Garcia Encina, P.A.; Stams, A.J.M.

    2013-01-01

    Two denitrifying bacteria were isolated using sodium dodecyl sulfate (SDS) as substrate. Strains SN1 and SN2 were isolated from an activated sludge reactor of a wastewater treatment plant (WWTP) with Anaerobic–Anoxic–Oxic (A2/O) steps. Based on 16S rRNA gene analysis strain SN1 is 99% similar to

  19. Biotechnological aspects of sulfate reduction with methane as electron donor

    NARCIS (Netherlands)

    Meulepas, R.J.W.; Stams, A.J.M.; Lens, P.N.L.

    2010-01-01

    Biological sulfate reduction can be used for the removal and recovery of oxidized sulfur compounds and metals from waste streams. However, the costs of conventional electron donors, like hydrogen and ethanol, limit the application possibilities. Methane from natural gas or biogas would be a more

  20. Artemin Crystal Structure Reveals Insights into Heparan Sulfate Binding

    Energy Technology Data Exchange (ETDEWEB)

    Silvian,L.; Jin, P.; Carmillo, P.; Boriack-Sjodin, P.; Pelletier, C.; Rushe, M.; Gong, B.; Sah, D.; Pepinsky, B.; Rossomando, A.

    2006-01-01

    Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFR{alpha}3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangement characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.

  1. The effect of divalent salt in chondroitin sulfate solutions

    Science.gov (United States)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-03-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca2+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca2+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  2. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duu-Jong, E-mail: cedean@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Lee, Chin-Yu [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. Black-Right-Pointing-Pointer Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. Black-Right-Pointing-Pointer The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. Black-Right-Pointing-Pointer The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  3. D-Area Sulfate Reduction Studty Comprehensive Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M

    2005-02-11

    An acidic/metals/sulfate, groundwater contaminant plume emanates from the D-Area Coal Pile Runoff Basin (DCPRB) at the Savannah River Site (SRS), due to the contaminated runoff the basin receives from the D-Area coal pile. A Treatability Study Work Plan (TSWP) (WSRC 2001) was implemented to evaluate the potential for the sulfate reduction remediation of the DCPRB acidic/metals/sulfate, groundwater contaminant plume. The following studies, implemented as part of the TSWP, are documented herein: Bacteria Population and Organic Selection Laboratory Testing; DTT-1 Trench Evaluation; DIW-1 Organic Application Field Study-Part 1; and DIW-1 Organic Application Field Study-Part 2. Evaluation of sulfate reduction applicability actually began with a literature search and feasibility report in mid 2001, which fed into the TSWP. Physical completion of TSWP work occurred in late 2004 with the completion of the DIW-1 Organic Application Field Study-Part 2. The following are the primary conclusions drawn based upon this 3-year effort: (1) Pure soybean oil provides a long-term, indirect, SRB carbon source that floats on top of the water table (by indirect it means that the soybean oil must be degraded by other microbes prior to utilization by SRB) for the promotion of sulfate reduction remediation. Soybean oil produces no known SRB inhibitory response and therefore large quantities can be injected. (2) Sodium lactate provides a short-term, immediately available, direct, SRB carbon source that is miscible with the groundwater and therefore flows with the groundwater until it has been completely utilized for the promotion of sulfate reduction remediation. Lactate at elevated concentrations (greater than 6 g/L) does produce a SRB inhibitory response and therefore small quantities must be injected frequently. (3) The use of limestone to buffer the contaminated groundwater facilitates sulfate reduction remediation through the injection of organic substrate. Additionally conclusions and

  4. Searching for Life in the Sulfur Isotopic Analysis of Surface Sulfates on Mars

    Science.gov (United States)

    Parnell, J.; Boyce, A. J.; Osinski, G. R.; Izawa, M.; Lee, P.

    2011-03-01

    Sulfur isotopic measurements on Mars are likely to be limited to sulfates due to oxidation of sulfides. We show that evidence for life can be determined from sulfate data alone, using an analogue for a robotic traverse.

  5. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments

    DEFF Research Database (Denmark)

    Habicht, K S; Canfield, D E

    1997-01-01

    by the natural populations of sulfate reducers and previous measurements from pure cultures. This was somewhat surprising given the extremely high rates of sulfate reduction in the experiments. Our results are explained if we conclude that the fractionation was mainly controlled by the specific rate of sulfate......Isotope fractionation during sulfate reduction by natural populations of sulfate-reducing bacteria was investigated in the cyanobacterial microbial mats of Solar Lake, Sinai and the sediments of Logten Lagoon sulfuretum, Denmark. Fractionation was measured at different sediment depths, sulfate...... concentrations, and incubation temperatures. Rates of sulfate reduction varied between 0.1 and 37 micromoles cm-3 d-1, with the highest rates among the highest ever reported from natural sediments. The depletion of 34S during dissimilatory sulfate reduction ranged from 16% to 42%, with the largest 34S...

  6. Effects of Korean Red Ginseng marc with aluminum sulfate against pathogen populations in poultry litters

    Directory of Open Access Journals (Sweden)

    Tae Ho Chung

    2015-10-01

    Conclusion: The results showed that using Korean Red Ginseng marc with aluminum sulfate (blends, which act as acidifying agents by reducing the pH of the litter, was equally effective as aluminum sulfate in reducing the environmental impact.

  7. Nitrate and sulfate reducers-retrievable number of bacteria and their activities in Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Culturable heterotrophic, nitrate reducing and sulfate reducing bacteria (HB, NRB and SRB) were enumerated from 25, 50, 100 and 200 m depths at 15 stations and their potential activities viz. Nitrate reducing (NRA) and Sulfate reducing (SRA) were...

  8. Sulfate threshold target to control methylmercury levels in wetland ecosystems

    Science.gov (United States)

    Corrales, J.; Naja, G.M.; Dziuba, C.; Rivero, R.G.; Orem, W.

    2011-01-01

    Sulfate contamination has a significant environmental implication through the stimulation of toxic hydrogen sulfide and methylmercury (MeHg) production. High levels of MeHg are a serious problem in many wetland ecosystems worldwide. In the Florida Everglades, it has been demonstrated that increasing MeHg occurrence is due to a sulfate contamination problem. A promising strategy of lowering the MeHg occurrence is to reduce the amount of sulfate entering the ecosystem. High surface water sulfate concentrations in the Everglades are mainly due to discharges from the Everglades Agricultural Area (EAA) canals. Water and total sulfur mass balances indicated that total sulfur released by soil oxidation, Lake Okeechobee and agricultural application were the major sources contributing 49,169, 35,217 and 11,775mtonsyear-1, respectively. Total sulfur loads from groundwater, levees, and atmospheric deposition contributed to a lesser extent: 4055; 5858 and 4229mtonsyear-1, respectively. Total sulfur leaving the EAA into Water Conservation Areas (WCAs) through canal discharge was estimated at 116,360mtonsyear-1, and total sulfur removed by sugarcane harvest accounted for 23,182mtonsyear-1. Furthermore, a rise in the mineral content and pH of the EAA soil over time, suggested that the current rates of sulfur application would increase as the buffer capacity of the soil increases. Therefore, a site specific numeric criterion for sulfate of 1mgL-1 was recommended for the protection of the Everglades; above this level, mercury methylation is enhanced. In parallel, sulfide concentrations in the EAA exceeded the 2??gL-1 criterion for surface water already established by the U.S. Environmental Protection Agency (EPA). ?? 2011 Elsevier B.V.

  9. XPS spectra and electronic structure of Group IA sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Wahlqvist, M. [Department of Chemistry, Inorganic Chemistry, Umea University, S-901 87 Umea (Sweden); Shchukarev, A. [Department of Chemistry, Inorganic Chemistry, Umea University, S-901 87 Umea (Sweden)], E-mail: andrei.shchukarev@chem.umu.se

    2007-05-15

    The results of systematic XPS measurements of Group IA (H, Li, Na, K, Rb and Cs) sulfates together with NaHSO{sub 4}, KHSO{sub 4} and (NH{sub 4}){sub 2}SO{sub 4} are presented. The experiments on the alkali metal salts were preformed on ground powders at both liquid nitrogen and room temperatures; concentrated sulfuric acid was measured as a fast-frozen liquid drop. Spectra from grounded and floated samples were compared, and no significant difference relating to charging effects was observed. The influence of grinding on surface chemistry of the powders is described. Such a mechanical activation produces mainly monohydrates on the surface of all sulfates. In the case of Na{sub 2}SO{sub 4}, an additional NaHSO{sub 4} surface phase seems to form that is not stable in vacuum even at liquid nitrogen temperatures. It was found that the binding energies (O 1s and S 2p) of sulfate ion decrease down the group. The shifts are discussed and related to ionicity of the metal-sulfate bond. The structure of XPS valence band spectra is in good agreement with cluster calculations of SO{sub 4}{sup 2-} and HSO{sub 4}{sup -} [A.A. Audi, P.M.A. Sherwood, Surf. Interface Anal. 29 (2000) 265]. While the energies of bisulfate bands are not influenced by the cation (H{sup +}, Na{sup +} or K{sup +}), the sulfate ones experience an increase in bond ionicity and demonstrate the same binding energy shifts as the core levels.

  10. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers

    Directory of Open Access Journals (Sweden)

    Durnford Dion G

    2008-02-01

    Full Text Available Abstract Background The sulfate assimilation pathway is present in photosynthetic organisms, fungi, and many bacteria, providing reduced sulfur for the synthesis of cysteine and methionine and a range of other metabolites. In photosynthetic eukaryotes sulfate is reduced in the plastids whereas in aplastidic eukaryotes the pathway is cytosolic. The only known exception is Euglena gracilis, where the pathway is localized in mitochondria. To obtain an insight into the evolution of the sulfate assimilation pathway in eukaryotes and relationships of the differently compartmentalized isoforms we determined the locations of the pathway in lineages for which this was unknown and performed detailed phylogenetic analyses of three enzymes involved in sulfate reduction: ATP sulfurylase (ATPS, adenosine 5'-phosphosulfate reductase (APR and sulfite reductase (SiR. Results The inheritance of ATPS, APR and the related 3'-phosphoadenosine 5'-phosphosulfate reductase (PAPR are remarkable, with multiple origins in the lineages that comprise the opisthokonts, different isoforms in chlorophytes and streptophytes, gene fusions with other enzymes of the pathway, evidence a eukaryote to prokaryote lateral gene transfer, changes in substrate specificity and two reversals of cellular location of host- and endosymbiont-originating enzymes. We also found that the ATPS and APR active in the mitochondria of Euglena were inherited from its secondary, green algal plastid. Conclusion Our results reveal a complex history for the enzymes of the sulfate assimilation pathway. Whilst they shed light on the origin of some characterised novelties, such as a recently described novel isoform of APR from Bryophytes and the origin of the pathway active in the mitochondria of Euglenids, the many distinct and novel isoforms identified here represent an excellent resource for detailed biochemical studies of the enzyme structure/function relationships.

  11. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  12. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    Science.gov (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  13. Sulfate threshold target to control methylmercury levels in wetland ecosystems.

    Science.gov (United States)

    Corrales, Juliana; Naja, Ghinwa M; Dziuba, Catherine; Rivero, Rosanna G; Orem, William

    2011-05-01

    Sulfate contamination has a significant environmental implication through the stimulation of toxic hydrogen sulfide and methylmercury (MeHg) production. High levels of MeHg are a serious problem in many wetland ecosystems worldwide. In the Florida Everglades, it has been demonstrated that increasing MeHg occurrence is due to a sulfate contamination problem. A promising strategy of lowering the MeHg occurrence is to reduce the amount of sulfate entering the ecosystem. High surface water sulfate concentrations in the Everglades are mainly due to discharges from the Everglades Agricultural Area (EAA) canals. Water and total sulfur mass balances indicated that total sulfur released by soil oxidation, Lake Okeechobee and agricultural application were the major sources contributing 49,169, 35,217 and 11,775mtonsyear(-1), respectively. Total sulfur loads from groundwater, levees, and atmospheric deposition contributed to a lesser extent: 4055; 5858 and 4229mtonsyear(-1), respectively. Total sulfur leaving the EAA into Water Conservation Areas (WCAs) through canal discharge was estimated at 116,360mtonsyear(-1), and total sulfur removed by sugarcane harvest accounted for 23,182mtonsyear(-1). Furthermore, a rise in the mineral content and pH of the EAA soil over time, suggested that the current rates of sulfur application would increase as the buffer capacity of the soil increases. Therefore, a site specific numeric criterion for sulfate of 1mgL(-1) was recommended for the protection of the Everglades; above this level, mercury methylation is enhanced. In parallel, sulfide concentrations in the EAA exceeded the 2μgL(-1) criterion for surface water already established by the U.S. Environmental Protection Agency (EPA).

  14. Why Is the Climate Forcing of Sulfate Aerosols So Uncertain?

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sulfate aerosol particles have strong scattering effect on the solar radiation transfer which results in increasing the planet albedo and, hence, tend to cool the earth-atmosphere system. Also, aerosols can act as the cloud condensation nuclei (CCN) which tend to increase the albedo of clouds and cool the global warming. The ARPEGE-Climat version 3 AGCM with FMR radiation scheme is used to estimate the direct and indirect radiative forcing of sulfate aerosols. For minimizing the uncertainties in assessing this kind of cooling effect, all kinds of factors are analyzed which have been mixed in the assessment process and may lead to the different results of the radiative forcing of aerosols. It is noticed that one of the uncertainties to assess the climate forcing of aerosols by GCM results from the different definition of radiative forcing that was used. In order to clarify this vague idea, the off-line case for considering no feedbacks and on-line case for including all the feedbacks have been used for assessment. The direct forcing of sulfate aerosols in off-line case is -0.57 W/m2 and -0.38 W/m2 for the clear sky and all sky respectively. The value of on-line case appears to be a little larger than that in off-line case chiefly due to the feedback of clouds. The indirect forcing of sulfate aerosols in off-line case is -1.4 W / m2 and -1.0 W / m2 in on-line case. The radiative forcing of sulfate aerosols has obvious regional characteristics. There is a larger negative radiative forcing over North America, Europe and East Asia. If the direct and indirect forcing are added together, it is enough to offset the positive radiative forcing induced by the greenhouse gases in these regions.

  15. Quantification and isotopic analysis of intracellular sulfur metabolites in the dissimilatory sulfate reduction pathway

    Science.gov (United States)

    Sim, Min Sub; Paris, Guillaume; Adkins, Jess F.; Orphan, Victoria J.; Sessions, Alex L.

    2017-06-01

    Microbial sulfate reduction exhibits a normal isotope effect, leaving unreacted sulfate enriched in 34S and producing sulfide that is depleted in 34S. However, the magnitude of sulfur isotope fractionation is quite variable. The resulting changes in sulfur isotope abundance have been used to trace microbial sulfate reduction in modern and ancient ecosystems, but the intracellular mechanism(s) underlying the wide range of fractionations remains unclear. Here we report the concentrations and isotopic ratios of sulfur metabolites in the dissimilatory sulfate reduction pathway of Desulfovibrio alaskensis. Intracellular sulfate and APS levels change depending on the growth phase, peaking at the end of exponential phase, while sulfite accumulates in the cell during stationary phase. During exponential growth, intracellular sulfate and APS are strongly enriched in 34S. The fractionation between internal and external sulfate is up to 49‰, while at the same time that between external sulfate and sulfide is just a few permil. We interpret this pattern to indicate that enzymatic fractionations remain large but the net fractionation between sulfate and sulfide is muted by the closed-system limitation of intracellular sulfate. This 'reservoir effect' diminishes upon cessation of exponential phase growth, allowing the expression of larger net sulfur isotope fractionations. Thus, the relative rates of sulfate exchange across the membrane versus intracellular sulfate reduction should govern the overall (net) fractionation that is expressed. A strong reservoir effect due to vigorous sulfate reduction might be responsible for the well-established inverse correlation between sulfur isotope fractionation and the cell-specific rate of sulfate reduction, while at the same time intraspecies differences in sulfate uptake and/or exchange rates could account for the significant scatter in this relationship. Our approach, together with ongoing investigations of the kinetic isotope

  16. Analytical Methods for Environmental Risk Assessment of Acid Sulfate Soils: A Review

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Assessment of acid sulfate soil risk is an important step for acid sulfate soil management and its reliability depends very much on the suitability and accuracy of various analytical methods for estimating sulfide-derived potential acidity, actual acidity and acid-neutralizing capacity in acid sulfate soils. This paper critically reviews various analytical methods that are currently used for determination of the above parameters, as well as their implications for environmental risk assessment of acid sulfate soils.

  17. Techniques for the conversion to carbon dioxide of oxygen from dissolved sulfate in thermal waters

    Science.gov (United States)

    Nehring, N.L.; Bowen, P.A.; Truesdell, A.H.

    1977-01-01

    The fractionation of oxygen isotopes between dissolved sulfate ions and water provides a useful geothermometer for geothermal waters. The oxygen isotope composition of dissolved sulfate may also be used to indicate the source of the sulfate and processes of formation. The methods described here for separation, purification and reduction of sulfate to prepare carbon dioxide for mass spectrometric analysis are modifications of methods by Rafter (1967), Mizutani (1971), Sakai and Krouse (1971), and Mizutani and Rafter (1969). ?? 1976.

  18. In Vitro Antioxidant Activities of Sulfated Derivatives of Polysaccharides Extracted from Auricularia auricular

    OpenAIRE

    Zhi Zhang; Xue Wang; Lin Yang; Xin Yang; Zhen-Yu Wang; Hua Zhang

    2011-01-01

    In this research, two types of sulfated polysaccharide derivatives were successfully synthesized. Their antioxidant activities were investigated by employing various established in vitro systems. In addition, the degree of sulfation was evaluated using ion-chromatography and IR spectra. The results verify that, when employing scavenging superoxide radical tests, both the sulfation of acid Auricularia auricular polysaccharides (SAAAP) and the sulfation of neutral Auricularia auricular polysacc...

  19. Specific sulfation and glycosylation - a structural combination for the anticoagulation of marine carbohydrates

    OpenAIRE

    Vitor Hugo Pomin; Paulo Antonio De Souza Mourão

    2014-01-01

    Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans...

  20. Specific sulfation and glycosylation—a structural combination for the anticoagulation of marine carbohydrates

    OpenAIRE

    Pomin, Vitor H.; Mourão, Paulo A. S.

    2014-01-01

    Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans...

  1. 3-O-sulfated oligosaccharide structures are recognized by anti-heparan sulfate antibody HS4C3.

    NARCIS (Netherlands)

    Dam, G.B. ten; Kurup, S.; Westerlo, E.M. van de; Versteeg, E.M.M.; Lindahl, U.; Spillmann, D.; Kuppevelt, A.H.M.S.M. van

    2006-01-01

    Antibodies against heparan sulfate (HS) are useful tools to study the structural diversity of HS. They demonstrate the large sequential variation within HS and show the distribution of HS oligosaccharide sequences within their natural environment. We analyzed the distribution and the structural char

  2. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water.

    Science.gov (United States)

    Song, Yali; Dong, Bingzhi; Gao, Naiyun; Deng, Yang

    2015-06-12

    Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM) as a pretreatment prior to polyvinylidene fluoride (PVDF) microfiltration (MF) membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW) distributions of NOM in the tested surface raw water were concentrated at 3-5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3-5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2-30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM) image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling.

  3. A Clinical Study on Glucosamine Sulfate versus Combination of Glucosamine Sulfate and NSAIDs in Mild to Moderate Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Tamil Selvan

    2012-01-01

    Full Text Available Background. Glucosamine may be effective in treating and possibly slowing the progression of Osteoarthritis (OA. It is believed Glucosamine supplements may help to stop cartilage breakdown, build cartilage and decrease swelling. Objective. The objective of this study was glucosamine sulfate versus combination of glucosamine sulfate and Non-Steroidal anti-inflammatory drugs (NSAID in mild to moderate knee osteoarthritis. Methods. Subjects were randomly recruited from Rheumatology outpatient department after a diagnosis of mild or moderate Osteoarthritis. Study tools like patient data collection form, Western Ontario McMaster Universities Arthritis index (WOMAC of Osteoarthritis questionnaires and Visual Analog Scale (VAS were used. Results. After 12 weeks, WOMAC total score the result showed that the significant mean difference between the group A and Group B treatment (<0.01, with a combination of GS and NSAIDs reducing VAS pain scores. Thus, it is found that Group B treatments over 4 and 12 weeks produced improved WOMAC and VAS grades. Conclusions. Study results may suggest that the Glucosamine Sulfate has a carryover effect like Disease modifying agents. Long-term treatment of Glucosamine Sulfate may reduce the dependence of NSAIDs usage and delay the disease progression. Thereby we can reduce the NSAIDs side effects and improve the patient's quality of life.

  4. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water

    Directory of Open Access Journals (Sweden)

    Yali Song

    2015-06-01

    Full Text Available Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM as a pretreatment prior to polyvinylidene fluoride (PVDF microfiltration (MF membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW distributions of NOM in the tested surface raw water were concentrated at 3–5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3–5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2–30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling.

  5. The structure-anticoagulant activity relationships of sulfated lacquer polysaccharide: effect of carboxyl group and position of sulfation.

    Science.gov (United States)

    Yang, Jianhong; Du, Yumin; Huang, Ronghua; Wan, Yunyang; Wen, Yan

    2005-07-01

    Regiospecific oxidation of the primary hydroxyl groups in lacquer polysaccharide (LPL, Mw 6.85 x 10(4)) and its NaIO4 oxidation derivatives (LPLde) to C-6 carboxy groups was achieved with NaOCl in the presence of Tempo and NaBr. Sulfate groups were incorporated into the oxidated polysaccharides using Py.SO3 complex as a reagent. Reactivity of polysaccharide hydroxyl group was C-6 > C-2 > C-4. Sulfate groups were mainly linked to the second hydroxy at C-2 in the products. The results of APTT assay showed after incorporation of carboxyl groups into lacquer polysaccharides, the intrinsic coagulation pathway was promoted, and all sulfated polysaccharides had very weak anticoagulant activity within the scope of studied DS (0.39-1.11). These indicated that carboxyl groups and sulfate groups had the synergistic action. At the same time, the anticoagulant activity increased very slowly with the DS in the second hydroxy. This indicated that 6-O-SO3- in the side chains took an important role in the anticoagulant activity.

  6. Nanofiltration as energy-efficient solution for sulfate waste in vacuum salt production

    NARCIS (Netherlands)

    Bargeman, Gerrald; Steensma, M.; ten Kate, A.; Westerink, J.B.; Demmer, R.L.M.; Bakkenes, H.; Manuhutu, C.F.H.

    2009-01-01

    In vacuum salt production sulfate is an important impurity, but it is also used to remove other cationic impurities from the raw brine. Removal of excess sulfate is currently done by purging salt crystallizer mother liquor from the brine plant, or crystallizing sodium sulfate through evaporative or

  7. Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin

    Science.gov (United States)

    Fathy, Mahmoud; Moghny, Th. Abdel; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.

    2017-03-01

    In response to rising concerns about the effect of sulfate on water quality, human health, and agriculture, many jurisdictions around the world are imposing tighter regulations for sulfate discharge. This is driving the need for environmental compliance in industries like mining, metal processing, pulp and paper, sewage treatment, and chemical manufacturing. The sulfate removal from synthetic water by high cross-linked polystyrene divinylbenzene resin was studied at batch experiments in this study. The effect of pH, contact time, sulfates concentration, and adsorbent dose on the sulfate sequestration was investigated. The optimum conditions were studied on Saline water as a case study. The results showed that with increasing of the absorbent amount; contact time, and pH improve the efficiency of sulfate removal. The maximum sulfates uptake was obtained in pH and contact time 3.0 and 120 min, respectively. Also, with increasing initial concentration of sulfates in water, the efficiency of sulfate removal decreased. The obtained results in this study were matched with Freundlich isotherm and pseudo-second-order kinetic. The maximum adsorption capacity (Qm) and constant rate were found 0.318 (mg/g) and 0.21 (mg/g.min), respectively. This study also showed that in the optimum conditions, the sulfate removal efficiency from Saline water by 0.1 mg/L sulfates was 65.64 %. Eventually, high cross-linked polystyrene divinylbenzene resin is recommended as a suitable and low cost absorbent to sulfate removal from aqueous solutions.

  8. The Effects of Low Sulfate Concentrations on Modern Microbial Mat Communities: A Long Term Manipulation

    Science.gov (United States)

    Bebout, Brad; Carpenter, Steve; DesMarais, David J.; Discipulo, Mykell; Hogan, Mary; Turk, Kendra

    2002-01-01

    Microbial mats were widespread during the first ca. 2 Ga. of our biosphere's history. To better understand microbial ecosystems and their biomarkers under the low sulfate levels present in early oceans, we attempted a long-term (ca. 1 year) manipulation of sulfate in modem mats. Mats collected from salt ponds at Guerrero Negro, Baja Calif. Sur were incubated in a Greenhouse "Collaboratory" at Ames. Mats were maintained in artificial seawater brine containing either: 1) sulfate levels normal for these mats (70 mM), or 2) brine in which sulfate was replaced by chloride. Sulfate concentrations in the "low sulfate" brine gradually approached their lowest (to date) value of 0. 1 mM as sulfate was consumed and/or diffused out of the mat over a period of ca. 4 months. During that period of time, a number of differences between the treatments emerged. Relative to the "low sulfate" mats, "normal sulfate" mats had: 1) lower consumption of oxygen in the lower levels of the mat, 2) higher efficiencies of oxygenic photosynthesis, and 3) higher rates of nitrogen fixation. Rates of methane production by the mats increased greatly as sulfate concentrations fell below ca. 0.2 mM. In contrast, "low" and "normal" sulfate mats had similar net rates of exchange of O2 and dissolved inorganic C between the mats and overlying water. Reduced sulfate levels have diverse impacts upon these ecosystems.

  9. 21 CFR 524.1883 - Prednisolone sodium phosphate-neomycin sulfate ophthalmic ointment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Prednisolone sodium phosphate-neomycin sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1883 Prednisolone sodium phosphate-neomycin sulfate ophthalmic ointment. (a) Specifications. Prednisolone sodium phosphate-neomycin sulfate ophthalmic ointment...

  10. 21 CFR 524.1880 - Prednisolone-neomycin sulfate ophthalmic ointment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Prednisolone-neomycin sulfate ophthalmic ointment... ANIMAL DRUGS § 524.1880 Prednisolone-neomycin sulfate ophthalmic ointment. (a) Specifications. Prednisolone-neomycin sulfate ophthalmic ointment contains 2 milligrams prednisolone and 5 milligrams...

  11. 21 CFR 524.1484i - Neomycin sulfate, hydrocortisone acetate, sterile ointment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate, hydrocortisone acetate, sterile... NEW ANIMAL DRUGS § 524.1484i Neomycin sulfate, hydrocortisone acetate, sterile ointment. (a) Specifications. The drug contains 5 milligrams of neomycin sulfate, equivalent to 3.5 milligrams of neomycin...

  12. Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases

    NARCIS (Netherlands)

    Lens, P.N.L.; Gastesi, R.; Lettinga, G.

    2003-01-01

    This paper describes a novel bioscrubber concept for biological flue gas desulfurization, based on the recycling of a cell suspension of sulfite/sulfate reducing bacteria between a scrubber and a sulfite/sulfate reducing hydrogen fed bioreactor. Hydrogen metabolism in sulfite/sulfate reducing cell

  13. Oriented nucleation and growth of anhydrite during direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2008-01-01

    The direct sulfation of limestone (Iceland Spar) was studied at 973 K in a fixed-bed reactor. Scanning electron microscopy examinations of the sulfated limestone particles show that the sulfation process involves oriented nucleation and growth of the solid product, anhydrite. The reason...

  14. 75 FR 51055 - Propionic Acid and Salts, and Urea Sulfate; Registration Review Proposed Decisions; Notice of...

    Science.gov (United States)

    2010-08-18

    ... AGENCY Propionic Acid and Salts, and Urea Sulfate; Registration Review Proposed Decisions; Notice of... urea sulfate and opens a public comment period on the proposed decisions. Registration review is EPA's.... Urea sulfate is used as a desiccant on ] cotton. No food crop uses remain and all tolerances for...

  15. 75 FR 78243 - Propionic Acid and Salts, Urea Sulfate, Methidathion, and Methyl Parathion; Registration Review...

    Science.gov (United States)

    2010-12-15

    ... AGENCY Propionic Acid and Salts, Urea Sulfate, Methidathion, and Methyl Parathion; Registration Review... pesticides propionic acid and salts, case no. 4078, urea sulfate, case no. 7213, methidathion, case no. 0034... pesticides in the table below--propionic acid and salts, case 4078, urea sulfate, case no. 7213,...

  16. Toxicity of sulfate and chloride to early life stages of wild rice (Zizania palustris).

    Science.gov (United States)

    Fort, Douglas J; Mathis, Michael B; Walker, Rachel; Tuominen, Lindsey K; Hansel, Mike; Hall, Scott; Richards, Robin; Grattan, S R; Anderson, Kurt

    2014-12-01

    Despite the importance of wild rice (Zizania palustris) in the Great Lakes region of North America, its sensitivity to sulfate is not well understood. A 21-d hydroponic experiment was performed to determine the toxicity of sulfate to wild rice seeds and seedlings. Effects of 6 sulfate concentrations ranging from 10 mg/L to 5000 mg/L and of chloride salts at equivalent conductivity were evaluated to determine whether adverse effects were attributable to sulfate or to conductivity-related stress. Sulfate treatment decreased root length, shoot length, and leaf number, and increased phytotoxic effects at concentrations of 5000 mg/L relative to a 50 mg/L control. The time to 30% mesocotyl emergence decreased at 2500 mg/L sulfate, indicating a potential stimulatory effect. Sulfate exposures of ≤ 5000 mg/L had no effect on 5 additional end points. Multiple regression analysis indicated that most observed changes could be attributed to conductivity-related stress rather than sulfate per se, with the exception of shoot length and leaf number. Chloride was more toxic than sulfate, as determined by root length and phytotoxicity. In summary, sulfate concentrations below 5000 mg/L did not adversely affect early-life stage wild rice during a 21-d period, and effects at 5000 mg/L sulfate were attributable to conductivity-related stress rather than sulfate toxicity in 2 of 4 end points.

  17. Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases

    NARCIS (Netherlands)

    Lens, P.N.L.; Gastesi, R.; Lettinga, G.

    2003-01-01

    This paper describes a novel bioscrubber concept for biological flue gas desulfurization, based on the recycling of a cell suspension of sulfite/sulfate reducing bacteria between a scrubber and a sulfite/sulfate reducing hydrogen fed bioreactor. Hydrogen metabolism in sulfite/sulfate reducing cell s

  18. 40 CFR 180.1230 - Ferrous sulfate; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ferrous sulfate; exemption from the... Exemptions From Tolerances § 180.1230 Ferrous sulfate; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of ferrous sulfate. ...

  19. High Magnetic Susceptibility in a Highly Saline Sulfate-Rich Aquifer Undergoing Biodegradation of Hydrocarbon Results from Sulfate Reduction.

    Science.gov (United States)

    Atekwana, E. A.; Enright, A.; Ntarlagiannis, D.; Slater, L. D.; Bernier, R.; Beaver, C. L.; Rossbach, S.

    2016-12-01

    We investigated the chemical and stable carbon isotope composition of groundwater in a highly saline aquifer contaminated with hydrocarbon. Our aim to evaluate hydrocarbon degradation and to constrain the geochemical conditions that generated high anomalous magnetic susceptibility (MS) signatures observed at the water table interface. The occurrence of high MS in the water table fluctuating zone has been attributed to microbial iron reduction, suggesting the use of MS as a proxy for iron cycling. The highly saline aquifer had total dissolved solids concentrations of 3.7 to 29.3 g/L and sulfate concentrations of 787 to 37,100 mg/L. We compared our results for groundwater locations with high hydrocarbon contamination (total petroleum hydrocarbon (TPH) >10 mg/L), at lightly contaminated (TPH contaminations. Our results for the terminal electron acceptors (TEAs) dissolved oxygen (DO), nitrate (NO3-), dissolved iron (Fe2+) , dissolved manganese (Mn2+), sulfate (SO42-) and methane (CH4) suggest a chemically heterogeneous aquifer, probably controlled by heterogeneous distribution of TEAs and contamination (type of hydrocarbon, phase and age of contamination). The concentrations of dissolved inorganic carbon (DIC) ranged from 67 to 648 mg C/L and the stable carbon isotope (δ13CDIC) ranged from -30.0‰ to 1.0 ‰ and DIC-δ13CDIC modeling indicates that the carbon in the DIC is derived primarily from hydrocarbon degradation. The concentrations of Fe2+ in the aquifer ranged from 0.1 to 55.8 mg/L, but was mostly low, averaging 2.7+10.9 mg/L. Given the low Fe2+ [AE1] in the aqueous phase and the high MS at contaminated locations, we suggest that the high MS observed does not arise from iron reduction but rather from sulfate reduction. Sulfate reduction produces H2S which reacts with Fe2+ to produce ferrous sulfide (Fe2+S) or the mixed valence greigite (Fe2+Fe3+2S4). We conclude that in highly saline aquifers with high concentrations of sulfate and contaminated with

  20. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.;

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...

  1. A contribution to the surface characterization of alkali metal sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Fantauzzi, Marzia; Rigoldi, Americo; Elsener, Bernhard; Atzei, Davide; Rossi, Antonella, E-mail: rossi@unica.it

    2014-03-01

    Highlights: • Full electronic characterization of alkali metals sulfates by X-ray photoelectron spectroscopy and X-ray induced Auger electron spectroscopy. • Curve-fitting of SKLL signals makes possible to clarify the role of the cation in the series of alkali metal sulfates. • Differences in the binding energies and Auger parameter are discussed in terms of the electronic properties and the polarizability of the cation. • The line intensities are analyzed and a thorough quantitative analysis is presented. - Abstract: The analytical characterization of surfaces of sulfur-bearing samples that present sulfides, polysulfides and/or elemental sulfur as reaction products can be difficult by simply relying on the binding energy of the S2p X-ray photoelectron signals, due to the small chemical shifts. In such cases the Auger parameter concept can be used to distinguish among different chemical states, but this requires a model to curve fit complex Auger SKLL signals in order to resolve the contributions arising from sulfur in different chemical states on the surface. With this scope a detailed X-ray photoelectron spectroscopy (XPS) and X-ray induced Auger electron spectroscopy (XAES) surface analytical study of the group IA sulfates is presented in this paper. Sulfates were chosen as model compounds for curve fitting the X-ray induced SKLL spectra since in these compounds sulfur is present in a unique chemical state. For the first time the multicomponent SKLL spectra are fitted with model functions consisting of an intense {sup 1}D and a low intensity {sup 1}S contribution with constant energy difference of 8 eV. It was found that the kinetic energy of the SK{sub 2,3}L{sub 2,3} ({sup 1}D) line increases from 2105.1 ± 0.1 to 2107.5 ± 0.2 eV whereas the corresponding S2p{sub 3/2} binding energy decreases from 169.5 ± 0.1 eV for Li{sub 2}SO{sub 4} to 167.8 ± 0.1 eV for Cs{sub 2}SO{sub 4}. Shifts to lower binding energy values are observed also for S2p, S2s and O1

  2. (E)- and (Z)-Stereodefined Enol Sulfate Esters Derived from α-Aryl Aldehydes: Stereocomplementary Synthesis of Styryl Sulfate Natural Products.

    Science.gov (United States)

    Yu, Shuai; Li, Feng; Kim, Sanghee

    2017-07-07

    A method for the stereoselective formation of enol sulfate esters from α-aryl aldehydes is described. This method involved the stereocontrolled enolization of a carbonyl group with DBU or t-BuOK followed by trapping with a reactive sulfuryl imidazolium salt, providing the corresponding styryl enol sulfate esters in good to excellent yields and stereoselectivities. This method was applied to the first total synthesis of the enol sulfate natural products in a stereocomplementary manner.

  3. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Directory of Open Access Journals (Sweden)

    Juliana L. Dreyfuss

    2009-09-01

    Full Text Available Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam

  4. Distinguishing iron-reducing from sulfate-reducing conditions

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.

    2009-01-01

    Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.

  5. Influence of sulfate on the transport of bacteria in quartz sand.

    Science.gov (United States)

    Shen, Xiufang; Han, Peng; Yang, Haiyan; Kim, Hyunjung; Tong, Meiping

    2013-10-01

    The influence of sulfate on the transport of bacteria in packed quartz sand was examined at a constant 25mM ionic strength with the sulfate concentration progressively increased from 0 to 20mM at pH 6.0. Two representative cell types, Escherichia coli BL21 (Gram-negative) and Bacillus subtilis (Gram-positive), were used to determine the effect of sulfate on cell transport behavior. For both examined cell types, the breakthrough plateaus in the presence of sulfate in suspensions were higher and the corresponding retained profiles were lower than those without sulfate ions, indicating that the presence of sulfate in suspensions increased cell transport in packed quartz sand regardless of the examined cell types (Gram-positive or Gram-negative). Moreover, the enhancement of bacteria transport induced by the presence of sulfate was more pronounced with increasing sulfate concentration from 5 to 20mM. In contrast with the results for EPS-present bacteria, the presence of sulfate in solutions did not change the transport behavior for EPS-removed cells. The zeta potentials of EPS-present cells with sulfate were found to be more negative relative to those without sulfate in suspensions, whereas, the zeta potentials for EPS-removed cells in the presence of sulfate were similar as those without sulfate. We proposed that sulfate could interact with EPS on cell surfaces and thus negatively increased the zeta potentials of bacteria, contributing to the increased transport in the presence of sulfate in suspensions.

  6. Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments

    DEFF Research Database (Denmark)

    Bruchert, V.; Knoblauch, C.; Jørgensen, BB

    2001-01-01

    Sulfur isotope fractionation experiments during bacterial sulfate reduction were performed with recently isolated strains of cold-adapted sulfate-reducing bacteria from Arctic marine sediments with year-round temperatures below 2 degreesC. The bacteria represent quantitatively important members...... parts per thousand and 8 parts per thousand above 25 degreesC, respectively. In absence of significant differences in sulfate reduction rates in the high and low temperature range, respectively, we infer that different genera of sulfate-reducing bacteria dominate the sulfate-reducing bacterial community...

  7. Model identification with BPNN on restrictive ecological factors of SRB for sulfate-reduction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The model of back-propagation neural network(BPNN)was presented to demonstrate the effect of restrictive ecological factors,COD/SO42-ratio,pH value,alkalinity(ALK)and SO42-loading rate(Ns),on sulfate-reduction of Sulfate Reducing Bacteria(SRB)in an acidogenic sulfate-reducing reactor supplied with molasses as sole organic carbon source and sodium sulfate as electron acceptor.The compare of experimental results and computer simulation was also discussed.It was shown that the method of BPNN had a powerful ability to analyze the ecological characteristic of acidogenic sulfate-reducing ecosystem quantitatively.

  8. Tyrosine sulfation, a post-translational modification of microvillar enzymes in the small intestinal enterocyte

    DEFF Research Database (Denmark)

    Danielsen, E M

    1987-01-01

    Protein sulfation in small intestinal epithelial cells was studied by labelling of organ cultured mucosal explants with [35S]-sulfate. Six bands in SDS-PAGE became selectively labelled; four, of 250, 200, 166 and 130 kd, were membrane-bound and two, of 75 and 60 kd, were soluble. The sulfated mem...... sulfated. Most if not all the sulfate was bound to tyrosine residues rather than to the carbohydrate of the microvillar enzymes, showing that this type of modification can occur on plasma membrane proteins as well as on secretory proteins....

  9. Triple sulfur isotope composition of Late Archean seawater sulfate

    Science.gov (United States)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2013-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks have provided powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. Most processes fractionate sulfur isotopes in proportion to their mass differences, but the Archean sulfur isotope record is marked by pronounced mass-independent fractionation (MIF, Δ33S≠0). The origin of these signatures has been traditionally interpreted as the result of photolysis of SO2 from short wavelength UV light, with positive Δ33S values recorded in pyrite and negative Δ33S values in sulfate-bearing phases [2]. This long-held hypothesis rests on observations of negative Δ33S from enigmatic barite occurrences from mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes [3], it is largely untested [3]. It is largely untested. Consequently, the biggest challenge to our current understanding of the early sulfur cycle is a poor understanding of the isotopic composition of seawater sulfate. Sulfate evaporite minerals are absent from Archean strata and the sulfur isotope record is written entirely by measurements of pyrite. Carbonate associated sulfate (CAS) provides an important archive for assaying the isotopic composition of ancient seawater sulfate It has been exploited in many studies of Phanerozoic and Proterozoic sulfate but have been only marginally used thus far for Archean samples because of the extremely low concentration of CAS in limestones and dolomites from this era. We have developed a novel MC-ICP-MS approach to solve this problem [4]. This new method lowers the detection limit by up to three orders of magnitude for δ34S and Δ33S measurements, enabling to work on a few nmols of sulfate which represent only tens of mg of sample powders micromilled from specific carbonate textures. Two stratigraphic sections from the 2

  10. Complexation of Plutonium (IV) With Sulfate At Variable Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Y. Xia; J.I. Friese; D.A> Moore; P.P. Bachelor; L. Rao

    2006-10-05

    The complexation of plutonium(IV) with sulfate at variable temperatures has been investigated by solvent extraction method. A NaBrO{sub 3} solution was used as holding oxidant to maintain the plutonium(IV) oxidation state throughout the experiments. The distribution ratio of Pu(IV) between the organic and aqueous phases was found to decrease as the concentrations of sulfate were increased. Stability constants of the 1:1 and 1:2 Pu(IV)-HSO{sub 4}{sup -} complexes, dominant in the aqueous phase, were calculated from the effect of [HSO{sub 4}{sup -}] on the distribution ratio. The enthalpy and entropy of complexation were calculated from the stability constants at different temperatures using the Van't Hoff equation.

  11. Gas evolution during vitrification of sodium sulfate and silica

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L.; Bakel, A.J. [Argonne National Lab., IL (United States). Chemical Technology Div.; Rosine, S.D. [Argonne National Lab., IL (United States). Chemical Technology Div.]|[Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1997-08-01

    This paper describes the operation of an apparatus designed to identify species evolved during vitrification of hazardous waste materials and to measure the temperatures at which they are evolved. To demonstrate the utility of the apparatus for designing off-gas systems, the authors present the results of heating various sulfates alone and in the presence of silica. During vitrification, the decomposition behavior of some waste components will be affected by the chemical composition of the melt. For example, they found that when silica is present during heating, SO{sub x} gases are evolved at lower temperatures than when pure sodium sulfate is heated. Such analyses will be important in the design of off-gas units for waste vitrification systems.

  12. Post-flame gas-phase sulfation of potassium chloride

    DEFF Research Database (Denmark)

    Li, Bo; Sun, Zhiwei; Li, Zhongshan;

    2013-01-01

    homogeneous systems are required to characterize the gas-phase formation of alkali sulfates. We have measured the temperature and gas-phase concentrations of KCl and HCl, and detected the presence of aerosols in the post-flame region of a range of hydrocarbon flames seeded with KCl, with and without......The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously...... the addition of SO2. Dilution of the flame products with different amounts of N2 ensured post-flame temperatures in the range 950–1400K. In the absence of SO2, KCl levels were constant in the post-flame zone and no aerosols were formed, even at the lowest temperatures. In the presence of SO2, KCl was consumed...

  13. Electron ionization mass spectral fragmentation study of sulfation derivatives of polychlorinated biphenyls

    Directory of Open Access Journals (Sweden)

    Robertson Larry W

    2009-03-01

    Full Text Available Abstract Background Polychlorinated biphenyls are persistent organic pollutants that can be metabolized via hydroxylated PCBs to PCB sulfate metabolites. The sensitive and selective analysis of PCB sulfate monoesters by gas chromatography-mass spectrometry (GC-MS requires their derivatization, for example, as PCB 2,2,2-trichloroethyl (TCE sulfate monoesters. To aid in the identification of unknown PCB sulfate metabolites isolated from biological samples, the electron impact MS fragmentation pathways of selected PCB TCE sulfate diesters were analyzed and compared to the fragmentation pathways of the corresponding methoxylated PCBs. Results The most abundant and characteristic fragment ions of PCB TCE sulfate diesters were formed by releasing CHCCl3, SO3, HCl2 and/or CCl3 from the TCE sulfate moiety and Cl2, HCl, ethyne and chloroethyne from an intermediate phenylcyclopentadienyl cation. The fragmentation pattern depended on the degree of chlorination and the position of the TCE sulfate moiety (i.e., ortho vs. meta/para to the second phenyl ring, but were independent of the chlorine substitution pattern. These fragmentation pathways are similar to the fragmentation pathways of structurally related methoxylated PCBs. Conclusion Knowledge of the fragmentation patterns of PCB TCE sulfate diesters will greatly aid in determining the position of sulfate moiety (ortho vs. meta/para of unknown PCB sulfate metabolites isolated from environmental or laboratory samples.

  14. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer.

    Science.gov (United States)

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-11-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ(13) CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed ((34) ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment.

  15. Sulfate resupply accentuates protein synthesis in coordination with nitrogen metabolism in sulfur deprived Brassica napus.

    Science.gov (United States)

    Zhang, Qian; Lee, Bok-Rye; Park, Sang-Hyun; Zaman, Rashed; Avice, Jean-Christophe; Ourry, Alain; Kim, Tae-Hwan

    2015-02-01

    To investigate the regulatory interactions between S assimilation and N metabolism in Brassica napus, de novo synthesis of amino acids and proteins was quantified by (15)N and (34)S tracing, and the responses of transporter genes, assimilatory enzymes and metabolites pool involving in nitrate and sulfate metabolism were assessed under continuous sulfur supply, sulfur deprivation and sulfate resupply after 3 days of sulfur (S) deprivation. S-deprived plants were characterized by a strong induction of sulfate transporter genes, ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate reductase (APR), and by a repressed activity of nitrate reductase (NR) and glutamine synthetase (GS). Sulfate resupply to the S-deprived plants strongly increased cysteine, amino acids and proteins concentration. The increase in sulfate and cysteine concentration caused by sulfate resupply was not matched with the expression of sulfate transporters and the activity of ATPS and APR which were rapidly decreased by sulfate resupply. A strong induction of O-acetylserine(thiol)lyase (OASTL), NR and GS upon sulfate resupply was accompanied with the increase in cysteine, amino acids and proteins pool. Sulfate resupply resulted in a strong increase in de novo synthesis of amino acids and proteins, as evidenced by the increases in N and S incorporation into amino acids (1.8- and 2.4-fold increase) and proteins (2.2-and 6.3-fold increase) when compared to S-deprived plants. The results thus indicate that sulfate resupply followed by S-deprivation accelerates nitrate assimilation for protein synthesis.

  16. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    Science.gov (United States)

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.

  17. Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities

    Science.gov (United States)

    Bowles, Marshall W.; Mogollón, José M.; Kasten, Sabine; Zabel, Matthias; Hinrichs, Kai-Uwe

    2014-05-01

    Sulfate reduction is a globally important redox process in marine sediments, yet global rates are poorly quantified. We developed an artificial neural network trained with 199 sulfate profiles, constrained with geomorphological and geochemical maps to estimate global sulfate-reduction rate distributions. Globally, 11.3 teramoles of sulfate are reduced yearly (~15% of previous estimates), accounting for the oxidation of 12 to 29% of the organic carbon flux to the sea floor. Combined with global cell distributions in marine sediments, these results indicate a strong contrast in sub-sea-floor prokaryote habitats: In continental margins, global cell numbers in sulfate-depleted sediment exceed those in the overlying sulfate-bearing sediment by one order of magnitude, whereas in the abyss, most life occurs in oxic and/or sulfate-reducing sediments.

  18. Heparan sulfate proteoglycans made by different basement-membrane-producing tumors have immunological and structural similarities

    DEFF Research Database (Denmark)

    Wewer, U M; Albrechtsen, R; Hassell, J R

    1985-01-01

    Using immunological assays, we determined the relationship between the heparan sulfate proteoglycans produced by two different murine basement-membrane-producing tumors, i.e., the mouse Engelbreth-Holm-Swarm (EHS) tumor and the L2 rat yolk-sac tumor. Antibodies prepared against the heparan sulfate...... mainly heparan sulfate (75%) along with smaller amounts of chondroitin sulfate (19%), whereas the L2 rat yolk-sac tumor produced mainly chondroitin sulfate (76%) with smaller amounts of heparan sulfate (21%). We conclude that these two murine basement-membrane-producing tumors elaborate...... proteoglycans obtained from these two sources immunoprecipitated the same precursor protein with a molecular mass of 400,000 daltons from 35S-methionine pulse-labeled cells of both tumors. Immunohistochemistry showed the heparan sulfate proteoglycan to be distributed in the extracellular matrix and also...

  19. Modeling the Use of Sulfate Additives for Potassium Chloride Destruction in Biomass Combustion

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Morten Nedergaard; Jespersen, Jacob Boll;

    2014-01-01

    Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4 and HCl. In the present study, the rate constants for decomposition of ammonium sulfate and aluminum...... sulfate were obtained from experiments in a fast heating rate thermogravimetric analyzer. The yields of SO2 and SO3 from the decomposition were investigated in a tube reactor at 600–900 °C, revealing a constant distribution of about 15% SO2 and 85% SO3 from aluminum sulfate decomposition and a temperature......-dependent distribution of SO2 and SO3 from ammonium sulfate decomposition. On the basis of these data as well as earlier results, a detailed chemical kinetic model for sulfation of KCl by a range of sulfate additives was established. Modeling results were compared to biomass combustion experiments in a bubbling...

  20. In vitro antioxidant activities of sulfated derivatives of polysaccharides extracted from Auricularia auricular.

    Science.gov (United States)

    Zhang, Hua; Wang, Zhen-Yu; Yang, Lin; Yang, Xin; Wang, Xue; Zhang, Zhi

    2011-01-01

    In this research, two types of sulfated polysaccharide derivatives were successfully synthesized. Their antioxidant activities were investigated by employing various established in vitro systems. In addition, the degree of sulfation was evaluated using ion-chromatography and IR spectra. The results verify that, when employing scavenging superoxide radical tests, both the sulfation of acid Auricularia auricular polysaccharides (SAAAP) and the sulfation of neutral Auricularia auricular polysaccharides (SNAAP) derivatives possessed considerable antioxidant activity and had a more powerful antioxidant competence than that of the native non-sulfated polysaccharides (AAAP and NAAP). On the other hand, AAAP and NAAP exhibited stronger activity on scavenging both the hydroxyl radical and lipid peroxidation. Available data obtained with in vitro measurements indicates that the sulfated groups of AAAP and NAAP played an important role on antioxidant activity. In sum, the research demonstrates that the antioxidant activity of sulfated polysaccharide derivatives in vitro has a potential significance for seeking new natural antioxidant protective agents.

  1. In Vitro Antioxidant Activities of Sulfated Derivatives of Polysaccharides Extracted from Auricularia auricular

    Directory of Open Access Journals (Sweden)

    Zhi Zhang

    2011-05-01

    Full Text Available In this research, two types of sulfated polysaccharide derivatives were successfully synthesized. Their antioxidant activities were investigated by employing various established in vitro systems. In addition, the degree of sulfation was evaluated using ion-chromatography and IR spectra. The results verify that, when employing scavenging superoxide radical tests, both the sulfation of acid Auricularia auricular polysaccharides (SAAAP and the sulfation of neutral Auricularia auricular polysaccharides (SNAAP derivatives possessed considerable antioxidant activity and had a more powerful antioxidant competence than that of the native non-sulfated polysaccharides (AAAP and NAAP. On the other hand, AAAP and NAAP exhibited stronger activity on scavenging both the hydroxyl radical and lipid peroxidation. Available data obtained with in vitro measurements indicates that the sulfated groups of AAAP and NAAP played an important role on antioxidant activity. In sum, the research demonstrates that the antioxidant activity of sulfated polysaccharide derivatives in vitro has a potential significance for seeking new natural antioxidant protective agents.

  2. Effect of sulfated modification on the molecular characteristics and biological activities of polysaccharides from Hypsizigus marmoreus.

    Science.gov (United States)

    Bao, HongHui; Choi, Won-Seok; You, SangGuan

    2010-01-01

    The effect of sulfated modification on polysaccharides from Hypsizigus marmoreus was examined by determining their molecular structures and bioactivities. The sulfation, which was implemented by using an orthogonal array design, produced polysaccharides with varying degrees of substitution (DS) ranging from 0.11 to 1.06. The sulfated polysaccharides exhibited a lower average molecular weight (M(w)) and considerably higher radius of gyration (R(g)) than those of native polysaccharide, suggesting that the conformation of the sulfated polysaccharides had been changed towards a more extended type. The inhibitory activity toward cancer cell growth was enhanced by treating with the sulfated polysaccharides by up to 34%, as compared to the native polysaccharide. In addition, treating with the sulfated polysaccharides increased the nitric oxide (NO) and cytokine (IL-1beta and TNF-alpha) release to levels comparable to those detected in the positive control, lipopolysaccharide (LPS), suggesting that the sulfated polysaccharides might have strong immunomodulatory activity.

  3. Sulfate Storage and Stability on Common Lean NOx Trap Components

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, Nathan A [ORNL; Toops, Todd J [ORNL; Pihl, Josh A [ORNL; Roop, Justin T [ORNL; Choi, Jae-Soon [ORNL; Partridge Jr, William P [ORNL

    2012-01-01

    Components found in a commercial lean NO{sub x} trap have been studied in order to determine their impact on sulfate storage and release. A micro-reactor and a diffuse reflectance infrared Fourier transform spectrometer (DRIFTS) were used to compare components MgAl{sub 2}O{sub 4}, Pt/MgAl{sub 2}O{sub 4}, Pt/Al{sub 2}O{sub 3}, Pt/Ba/Al{sub 2}O{sub 3}, Pt/CeO{sub 2}-ZrO{sub 2}, and Pt/Ba/CeO{sub 2}-ZrO{sub 2}, as well as physical mixtures of Pt/Al{sub 2}O{sub 3} + MgAl{sub 2}O{sub 4} and Pt/Ba/CeO{sub 2}-ZrO{sub 2} + MgAl{sub 2}O{sub 4}. Desulfation temperature profiles as well as DRIFTS NO{sub x} and SO{sub x} storage spectra are presented for all components. This systematic approach highlighted the ability of the underlying support to impact sulfate stability, in particular when Ba was supported on ceria-zirconia rather than alumina the desulfation temperature decreased by 60-120 C. A conceptual model of sulfation progression on the ceria-zirconia support is proposed that explains the high uptake of sulfur and low temperature release when it is employed. It was also determined that the close proximity of platinum is not necessary for much of the sulfation and desulfation chemistry that occurs, as physical mixtures with platinum dispersed on only one phase displayed similar behavior to samples with platinum dispersed on both phases.

  4. An intertwined evolutionary history of methanogenic archaea and sulfate reduction.

    Directory of Open Access Journals (Sweden)

    Dwi Susanti

    Full Text Available Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F(420-dependent sulfite reductase (Fsr where N- and C-terminal halves (Fsr-N and Fsr-C are homologs of F(420H(2 dehydrogenase and dissimilatory sulfite reductase (Dsr, respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP, both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest, carrying a coupled siroheme-[Fe(4-S(4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex, with group I features, a Dsr-type peripheral [Fe(4-S(4] cluster and an additional [Fe(4-S(4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe(4-S(4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F(420H(2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago biologically produced sulfide deposit.

  5. A sulfated alpha-L-fucan from sea cucumber.

    Science.gov (United States)

    Ribeiro, A C; Vieira, R P; Mourão, P A; Mulloy, B

    1994-03-04

    A purified sulfated alpha-L-fucan from the sea cucumber body wall was studied, before and after almost complete desulfation, using methylation analysis and NMR spectroscopy. NMR analysis indicates that 2,4-di-O-sulfo-L-fucopyranose and unsubstituted fucopyranose are present in equal proportions, and that 2-O-sulfo-L-fucopyranose is present in twice that proportion. There is some NMR evidence that a regular repeating sequence of four residues comprises most or all of the polysaccharide chain.

  6. Effect of topography on sulfate redistribution in Cumulonimbus cloud development.

    Science.gov (United States)

    Vujović, Dragana; Vučković, Vladan; Curić, Mlađen

    2014-03-01

    An aqueous chemical module is created and included into a complex three-dimensional atmospheric cloud-resolving mesoscale model. In the chemical module, oxidation of S(IV) by ozone and hydrogen peroxide in cloud-water and rainwater, as important process of the sulfate production is included. To examine the impact of topography on the sulfate redistribution in a clean and a polluted environment, the complex topography of Serbia is included in the model. Numerical simulations of an isolated summer Cumulonimbus cloud shows that thunderstorms generate very strong vertical sulfate redistribution from the planetary boundary layer to the upper troposphere. This redistribution is sensitive to cloud dynamics, while cloud microphysics and precipitation determine wet removal of the chemical species. In simulations with realistic topography, the chemical species are transported over larger distances close to the surface, while in the upper atmosphere, there is no difference compared to the simulations without topography. The sensitivity tests of cloud chemistry to the physical processes are made. Omission of nucleation and impact scavenging of aerosols in the model simulations shows that 75.8 and 62.5 % of total sulfur mass deposited in the base experiment for the clean and the polluted environment, respectively, is the result of other processes. Exclusion of oxidation accounted for 19.2 and 37.7 % of total sulfur deposited for clean and polluted environment. Ignoring the ice phase almost not change mass of deposited sulfur: there is an increase of 2.9 and 1.5 % for clean and polluted atmosphere, respectively. Real topography conditions affect the sulfate redistribution in the sense of greater possibilities of transport. Numerical simulations without real topography give an artificial increase of deposited sulfur mass of about 25-30 %.

  7. Polyaniline–lead sulfate based cell with supercapattery behavior

    Directory of Open Access Journals (Sweden)

    Alsadek A. Alguail

    2017-07-01

    Full Text Available The electrochemically synthesized polyaniline and lead sulfate are investigated as a possible active material of the aqueous based hybrid asymmetric supercapacitors. The electrochemical characteristics of polyaniline (doping-dedoping reactions, as well as electrical characteristics (specific capacitance, capacity, energy, and power of the PbSO4|PANI cell, are determined. Based on the estimated specific energy and power, it is suggested that investigated cell could be classified as “supercapattery” type of electrochemical power sources.

  8. Effect of sulfate on low-temperature anaerobic digestion.

    Science.gov (United States)

    Madden, Pádhraig; Al-Raei, Abdul M; Enright, Anne M; Chinalia, Fabio A; de Beer, Dirk; O'Flaherty, Vincent; Collins, Gavin

    2014-01-01

    The effect of sulfate addition on the stability of, and microbial community behavior in, low-temperature anaerobic expanded granular sludge bed-based bioreactors was investigated at 15°C. Efficient bioreactor performance was observed, with chemical oxygen demand (COD) removal efficiencies of >90%, and a mean SO(2-) 4 removal rate of 98.3%. In situ methanogensis appeared unaffected at a COD: SO(2-) 4 influent ratio of 8:1, and subsequently of 3:1, and was impacted marginally only when the COD: SO(2-) 4 ratio was 1:2. Specific methanogenic activity assays indicated a complex set of interactions between sulfate-reducing bacteria (SRB), methanogens and homoacetogenic bacteria. SO(2-) 4 addition resulted in predominantly acetoclastic, rather than hydrogenotrophic, methanogenesis until >600 days of SO(2-) 4-influenced bioreactor operation. Temporal microbial community development was monitored by denaturation gradient gel electrophoresis (DGGE) of 16S rRNA genes. Fluorescence in situ hybridizations (FISH), qPCR and microsensor analysis were combined to investigate the distribution of microbial groups, and particularly SRB and methanogens, along the structure of granular biofilms. qPCR data indicated that sulfidogenic genes were present in methanogenic and sulfidogenic biofilms, indicating the potential for sulfate reduction even in bioreactors not exposed to SO(2-) 4. Although the architecture of methanogenic and sulfidogenic granules was similar, indicating the presence of SRB even in methanogenic systems, FISH with rRNA targets found that the SRB were more abundant in the sulfidogenic biofilms. Methanosaeta species were the predominant, keystone members of the archaeal community, with the complete absence of the Methanosarcina species in the experimental bioreactor by trial conclusion. Microsensor data suggested the ordered distribution of sulfate reduction and sulfide accumulation, even in methanogenic granules.

  9. The investigation on sulfation of modified Ca-based sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Hongwei Chen; Chunbo Wang; Yonghua Li; Zijie Wang [North China Electric Power University, Baoding (China). Department of Power Engineering

    2003-07-01

    The sulfation of a limestone modified by Na{sub 2}CO{sub 3} was investigated in this paper, which aimed to find the causes of its enhanced sulfation capacity. It was shown in the experiment that although the sulfur capture capability of M-CaO (the CaO calcined from modified limestone) is in excess of that of N-CaO (the CaO calcined from original sample), the specific surface area and porosity of the former are much less than that of the latter and also the average pore radius of the former become bigger. Based on the solid-state ion diffusion theory, a new mechanism to explain M-CaO sulfation is suggested. More lattice defects are formed in M-CaO, which reduce the resistance of ion diffusion in the CaSO{sub 4} product layer, and increase the Ca-conversion. To verify this, XRD was applied to measure the crystal structures of CaO samples. It was found M-CaO has bigger lattice distortion than N-CaO. It means that M-CaO has more lattice defects. In the sulfation the lattice defects in M-CaO will go into the CaSO{sub 4} product layer and it is that accelerates the ion diffusivity and leads to the higher Ca-conversion than that of N-CaO. By scanning the element distribution in reacted M-CaO using SEM, how the lattice defects formed in the product layers was verified.

  10. Controlling Sulfate Attack in Mississippi Department of Transportation Structures

    Science.gov (United States)

    2010-08-01

    one of the materials that normally forms during the early setting of portland cement from a reaction between calcium aluminate and gypsum in the...such as calcium aluminates and calcium hydroxide, can influence the degree of damage observed. In all cases, the deterioration observed appears to be...counterions, such as calcium, magnesium , or sodium. Additionally, there are well-documented cases of concrete deterioration due to acid sulfate attack

  11. Detection of chondroitin sulfate proteoglycan 4 (CSPG4) in melanoma.

    Science.gov (United States)

    Wang, Yangyang; Sabbatino, Francesco; Wang, Xinhui; Ferrone, Soldano

    2014-01-01

    The tumor antigen chondroitin sulfate proteoglycan 4 (CSPG4) appears to be a useful biomarker to identify melanoma cells and an attractive target to apply antibody-based immunotherapy for the treatment of melanoma. Here we described the reverse transcription-polymerase chain reaction (RT-PCR) method and the immunohistochemical (IHC) staining method to detect the expression of CSPG4 in melanoma cells and tissues.

  12. Parameterization of the Optical Properties of Sulfate Aerosols.

    Science.gov (United States)

    Li, J.; Wong, J. G. D.; Dobbie, J. S.; Chýlek, P.

    2001-01-01

    Parameterizations of the shortwave optical properties of ammonium sulfate [(NH4)2SO4], ammonium bisulfate (NH4HSO4), and sulfuric acid (H2SO4) are provided as functions of relative humidity for high and low spectral resolution band models. The optical property parameterization is simple in form and in its dependence on relative humidity. The growth of the aerosol particles is based on equilibrium saturation theory, and the optical properties are computed from Mie theory. The optical properties necessary for the most commonly used radiative transfer methods are provided.Results show that when relative humidity effects are included in the backscatter fraction the radiative forcing is found to be a more sensitive function of near infrared wavelengths compared to visible wavelengths. For increasing relative humidity, sulfuric acid is found to have a larger effect on radiative forcing compared to the forcing by ammonium sulfate or ammonium bisulfate. Also, as relative humidity increases, forcing increases to higher values for smaller mode size distributions compared to forcing by larger mode distributions. These parameterizations will enable climate forcing studies to be performed with radiative transfer schemes that more accurately represent sulfate influences on the radiation balance.

  13. Effects of polyacrylic acid additive on barium sulfate particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie; Liu, Dandan; Jiang, Hongkun; Wang, Jun; Jing, Xiaoyan; Chen, Rongrong [Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhu, Wenting [Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin 150081 (China); Han, Shihui [Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Li, Wanyou [College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001 (China); Wei, Hao, E-mail: weihao7512@126.com [Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001 (China)

    2016-06-01

    In this paper, polyacrylic acid (PAA) was used as a growth modifier to control micron-sized barium sulfate particles via a simple precipitation reaction between sodium sulfate and barium chloride at ambient temperature. The barium sulfate particles were exhibited various morphologies, such as monodisperse spheres, ellipsoids, rose-like aggregates, etc. To better understand the formation mechanisms of the various morphologies of these particles, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA) were employed. It was found that the PAA concentration, pH, and Ba{sup 2+} and SO{sub 4}{sup 2−} ions concentrations were the most important parameters controlling the morphology of the BaSO{sub 4} particles. These parameters affected the BaSO{sub 4} morphology by influencing the interactions between the PAA carboxyl groups and inorganic ions and the conformation change of the PAA molecular chains. Moreover, this work attempts to provide a preliminary understanding of the formation of the spherical BaSO{sub 4} particles with the randomly coiled conformation of the polymer. - Highlights: • Polyacrylic acid (PAA) was used as a growth modifier to control micron-sized BaSO{sub 4} particles. • The PAA/BaSO{sub 4} particles were exhibited various morphologies. • Provide a preliminary understanding of the formation mechanism of BaSO{sub 4} particles.

  14. SULFATE RESISTANCE MECHANISM OF HIGH-PERFORMANCE CONCRETE CONTAINING NCI

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    It is found that the incorporation of Nitrite Corrosion Inhibitor (NCI) greatly weakens the resistance of mixtures to sulfate attack.To study the mechanism of this phenomenon,in this paper,the influence of NCI additionon on the cement paste and microstructure change of high performance concrete specimens is studied by means of quantitative XRD,SEM tests.The results demonstrate that the incorporation of NCI accelerates the formation of calcium hydroxide and ettringite crystals,and weakens the pore refinement effect caused by the secondary hydration reaction of fly ash and microsilica.At the age up to one year,the relative crystal quantity in mixture containing NCI is always higher than that in control mixture.The reasons for the degradation in sulfate resisitance of mixtures may be attributed to the increase and stability of the calcium hydroxide and ettringite crystals formed and the weakening of secondary hydration reaction.Based on the results,conclusion can be drawn that NCI should be used cautiously in practical engineering where high resistance to sulfate attack is required.

  15. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, K. B.; Rakesh, K. [Mahatma Gandhi University Regional Research Center in Chemistry, Department of Chemistry, Mar Athanasius College, Kothamangalam-686666, Kerala (India)

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  16. Reduction of molybdate by sulfate-reducing bacteria.

    Science.gov (United States)

    Biswas, Keka C; Woodards, Nicole A; Xu, Huifang; Barton, Larry L

    2009-02-01

    Molybdate is an essential trace element required by biological systems including the anaerobic sulfate-reducing bacteria (SRB); however, detrimental consequences may occur if molybdate is present in high concentrations in the environment. While molybdate is a structural analog of sulfate and inhibits sulfate respiration of SRB, little information is available concerning the effect of molybdate on pure cultures. We followed the growth of Desulfovibrio gigas ATCC 19364, Desulfovibrio vulgaris Hildenborough, Desulfovibrio desulfuricans DSM 642, and D. desulfuricans DSM 27774 in media containing sub-lethal levels of molybdate and observed a red-brown color in the culture fluid. Spectral analysis of the culture fluid revealed absorption peaks at 467, 395 and 314 nm and this color is proposed to be a molybdate-sulfide complex. Reduction of molybdate with the formation of molybdate disulfide occurs in the periplasm D. gigas and D. desulfuricans DSM 642. From these results we suggest that the occurrence of poorly crystalline Mo-sulfides in black shale may be a result from SRB reduction and selective enrichment of Mo in paleo-seawater.

  17. Bioremediation of coal contaminated soil under sulfate-reducing condition

    Energy Technology Data Exchange (ETDEWEB)

    Kuwano, Y.; Shimizu, Y. [Kyoto University, Shiga (Japan)

    2006-01-15

    The objective of this study was to investigate the biodegradation of coal-derived hydrocarbons, especially high molecular weight (HMW) components, under anaerobic conditions. For this purpose biodegradation experiments were performed, using specifically designed soil column bioreactors. For the experiment, coal-contaminated soil was prepared, which contains high molecular weight hydrocarbons at high concentration (approx. 55.5 mgC g-drysoil{sup -1}). The experiment was carried out in two different conditions: sulfate reducing (SR) condition (SO{sub 4}{sup 2-}=10 mmol 1{sup -1} in the liquid medium) and control condition (SO{sub 4}{sup 2-} {lt} 0.5 mmol 1{sup -1}). Although no degradation was observed under the control condition, the resin fraction decreased to half (from 6,541 to 3,386 mgC g-soil{sup -1}) under SR condition, with the concomitant increase of two PAHs (phenanthrene and fluoranthene 9 and 2.5 times, respectively). From these results, we could conclude that high molecular hydrocarbons were biodegradable and transformed to low molecular weight PAHs under the sulfate-reducing condition. Since these PAHs are known to be biologically degraded under aerobic condition, a serial combination of anaerobic (sulfate reducing) and then aerobic bioremediations could be effective and useful for the soil pollution by petroleum and/or coal derived hydrocarbons.

  18. Evidence of sulfate-dependent anaerobic methane oxidation ...

    Science.gov (United States)

    The rapid development of unconventional gas resources has been accompanied by an increase in public awareness regarding the potential effects of drilling operations on drinking water sources. Incidents have been reported involving blowouts (e.g., Converse County, WY; Lawrence Township, PA; Aliso Canyon, CA) and home/property explosions (e.g., Bainbridge Township, OH; Dimock, PA; Huerfano County, CO) caused by methane migration in the subsurface within areas of natural gas development. We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Results show persistent secondary water quality impacts related to the biodegradation of methane. We identify four distinct characteristics of groundwater methane attenuation in the Poison Canyon aquifer: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher-molecular-weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. We also show that the biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic,

  19. Mast Cells Produce a Unique Chondroitin Sulfate Epitope.

    Science.gov (United States)

    Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S

    2016-02-01

    The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells.

  20. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications

    Science.gov (United States)

    Cunha, Ludmylla; Grenha, Ana

    2016-01-01

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. PMID:26927134

  1. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism

    CERN Document Server

    Misra, Amit; Koehler, Matthew C; Sholes, Steven

    2015-01-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism, and therefore a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosols with lifetimes of months to years. We demonstrate that the rapid increase and gradual decrease in sulfate aerosol loading associated with these eruptions may be detectable in transit transmission spectra with future large-aperture telescopes, such as the James Webb Space Telescope (JWST) and European Extremely-Large Telescope (E-ELT) for a planetary system at a distance of 10 pc, assuming an Earth-like atmosphere, bulk composition, and size. Specifically, we find that a S/N of 12.1 and 7.1 could be achieved with E-ELT (...

  2. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Science.gov (United States)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  3. The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds.

    Science.gov (United States)

    Zuber, Hélène; Davidian, Jean-Claude; Aubert, Grégoire; Aimé, Delphine; Belghazi, Maya; Lugan, Raphaël; Heintz, Dimitri; Wirtz, Markus; Hell, Rüdiger; Thompson, Richard; Gallardo, Karine

    2010-10-01

    Sulfate is required for the synthesis of sulfur-containing amino acids and numerous other compounds essential for the plant life cycle. The delivery of sulfate to seeds and its translocation between seed tissues is likely to require specific transporters. In Arabidopsis (Arabidopsis thaliana), the group 3 plasmalemma-predicted sulfate transporters (SULTR3) comprise five genes, all expressed in developing seeds, especially in the tissues surrounding the embryo. Here, we show that sulfur supply to seeds is unaffected by T-DNA insertions in the SULTR3 genes. However, remarkably, an increased accumulation of sulfate was found in mature seeds of four mutants out of five. In these mutant seeds, the ratio of sulfur in sulfate form versus total sulfur was significantly increased, accompanied by a reduction in free cysteine content, which varied depending on the gene inactivated. These results demonstrate a reduced capacity of the mutant seeds to metabolize sulfate and suggest that these transporters may be involved in sulfate translocation between seed compartments. This was further supported by sulfate measurements of the envelopes separated from the embryo of the sultr3;2 mutant seeds, which showed differences in sulfate partitioning compared with the wild type. A dissection of the seed proteome of the sultr3 mutants revealed protein changes characteristic of a sulfur-stress response, supporting a role for these transporters in providing sulfate to the embryo. The mutants were affected in 12S globulin accumulation, demonstrating the importance of intraseed sulfate transport for the synthesis and maturation of embryo proteins. Metabolic adjustments were also revealed, some of which could release sulfur from glucosinolates.

  4. Tandem Mass Spectrometry of Heparan Sulfate Negative Ions: Sulfate Loss Patterns and Chemical Modification Methods for Improvement of Product Ion Profiles

    Science.gov (United States)

    Shi, Xiaofeng; Huang, Yu; Mao, Yang; Naimy, Hicham; Zaia, Joseph

    2012-09-01

    Heparan sulfate (HS) is a polysaccharide modified with sulfation, acetylation, and epimerization that enable its binding with protein ligands and regulation of important biological processes. Tandem mass spectrometry has been employed to sequence linear biomolecules e.g., proteins and peptides. However, its application in structural characterization of HS is limited due to the neutral loss of sulfate (SO3) during collisional induced dissociation (CID). In this report, we studied the dissociation patterns of HS disaccharides and demonstrate that the N-sulfate (N-S) bond is especially facile during CID. We identified factors that influence the propensities of such losses from precursor ions and proposed a Free Proton Index (FPI) to help select ions that are able to produce meaningful backbone dissociations. We then investigated the thermodynamics and kinetics of SO3 loss from sulfates that are protonated, deprotonated, and metal-adducted using density functional theory computations. The calculations showed that sulfate loss from a protonated site was much more facile than that from a deprotonated or metal-adducted site. Further, the loss of SO3 from N-sulfate was energetically favored by 3-8 kcal/mol in transition states relative to O-sulfates, making it more prone to this process by a substantial factor. In order to reduce the FPI, representing the number of labile sulfates in HS native chains and oligosaccharides, we developed a series of chemical modifications to selectively replace the N-sulfates of the glucosamine with deuterated acetyl group. These modifications effectively reduced the sulfate density on the HS oligosaccharides and generated considerably more backbone dissociation using on-line LC/tandem MS.

  5. Protective effect of sulfated chitosan of C3 sulfation on glycerol-induced acute renal failure in rat kidney.

    Science.gov (United States)

    Xing, Ronge; Liu, Song; Yu, Huahua; Qin, Yukun; Chen, Xiaolin; Li, Kecheng; Li, Pengcheng

    2014-04-01

    The purpose of this study was to investigate the protective effects of sulfated chitosan of C3 sulfation (TCTS) on the glycerol-induced acute renal failure. Compared with the normal group, rats from model group exhibited collecting duct and medullary ascending limb dilation and casts by glycerol treating. TCTS, which was injected to pretreat rats by glycerol, exerted a protective effect. The results showed that serum creatinine and blood urea nitrogen were markedly increased in glycerol-treated rats. It is proved that TCTS reduced their levels significantly. Ions level in plasma and urine were significantly changed in glycerol-treated rats, whereas TCTS almost recovered their levels back to normal. For female rats, administration of TCTS reduced their mortality. This study showed a noticeable renal morphologic and functional protection by TCTS in glycerol-induced acute renal failure.

  6. Inhalation toxicity and carcinogenicity studies of cobalt sulfate.

    Science.gov (United States)

    Bucher, J R; Hailey, J R; Roycroft, J R; Haseman, J K; Sills, R C; Grumbein, S L; Mellick, P W; Chou, B J

    1999-05-01

    Cobalt sulfate is a water-soluble cobalt salt with a variety of industrial and agricultural uses. Several cobalt compounds have induced sarcomas at injection sites in animals, and reports have suggested that exposure to cobalt-containing materials may cause lung cancer in humans. The present studies were done because no adequate rodent carcinogenicity studies had been performed with a soluble cobalt salt using a route relevant to occupational exposures. Groups of 50 male and 50 female F344/N rats and B6C3F1 mice were exposed to aerosols containing 0, 0.3, 1.0, or 3.0 mg/m3 cobalt sulfate hexahydrate, 6 h/day, 5 days/week, for 104 weeks. Survival and body weights of exposed rats and mice were generally unaffected by the exposures. In rats, proteinosis, alveolar epithelial metaplasia, granulomatous alveolar inflammation, and interstitial fibrosis were observed in the lung in all exposed groups. Nonneoplastic lesions of the nose and larynx were also attributed to exposure to all concentrations of cobalt sulfate. In 3.0 mg/m3 male rats and in female rats exposed to 1.0 or 3.0 mg/m3, the incidences of alveolar/bronchiolar neoplasms were increased over those in the control groups. Lung tumors occurred with significant positive trends in both sexes. The incidences of adrenal pheochromocytoma in 1.0 mg/m3 male rats and in 3.0 mg/m3 female rats were increased. Nonneoplastic lesions of the respiratory tract were less severe in mice than in rats. In mice, alveolar/bronchiolar neoplasms in 3.0 mg/m3 males and females were greater than those in the controls, and lung tumors occurred with significantly positive trends. Male mice had liver lesions consistent with a Helicobacter hepaticus infection. Incidences of liver hemangiosarcomas were increased in exposed groups of male mice; however, because of the infection, no conclusion could be reached concerning an association between liver hemangiosarcomas and cobalt sulfate. In summary, exposure to cobalt sulfate by inhalation

  7. Carbonate-associated sulfate in lucinid (Bivalvia) shells

    Science.gov (United States)

    Peng, Y.; Bao, H.; Anderson, L.; Engel, A. S.

    2007-12-01

    Symbiosis is a fundamental driver of evolution, with examples ranging from mitochondria in eukaryotic cells to barnacle-whale commensalism. The association between sulfur-oxidizing (thiotrophic) bacteria and the lucinid bivalve clade is particularly intriguing because the inferred antiquity of the relationship (>400 m.y.) seems at odds with the relatively loose ecologic linkage of living members. Because only half of genus-level lucinid taxa are extant, and the δ13C of shell carbonate exhibits no systematic difference between symbiotic and non- symbiotic bivalves, a new morphologically-independent proxy to determine whether fossil taxa possessed thiotrophic endosymbionts is needed. The δ34S of carbonate-associated sulfate (CAS) in bivalve shells may hold promise because biogenic carbonate incorporates sulfate into its crystal structure during biomineralization. Incorporation of bacterially derived SO42- (with a more negative δ34S value due to its reduced sulfur origin) into the lucinid-shell crystal lattice would, therefore, impart a distinctly lower δ34SCAS value than that from seawater SO42-, and would be distinguishable from CAS values of co- occurring heterotrophic bivalves. We measured CAS contents, δ34SCAS and δ18OCAS values of 15 sets of lucinid and co-occurring infaunal and epifaunal heterotrophic bivalve shells collected from modern and Cenozoic shallow marine sites. The modern bivalve shells had variable CAS content, from 100 to 2600 ppm. Epifauna often had the highest concentrations relative to the other ecological groups. The δ34SCAS and δ18OCAS clustered at values corresponding to modern seawater sulfate, but with significant scatter. There was no systematic isotope- compositional difference among all bivalves in the same habitat, or among the same lucinid, infaunal, or epifaunal groups across different sites. The fossil bivalve shells tended to preserve lower CAS concentrations and the isotope compositions further deviated from seawater values

  8. Atmospheric black carbon and sulfate concentrations in Northeast Greenland

    Science.gov (United States)

    Massling, A.; Nielsen, I. E.; Kristensen, D.; Christensen, J. H.; Sørensen, L. L.; Jensen, B.; Nguyen, Q. T.; Nøjgaard, J. K.; Glasius, M.; Skov, H.

    2015-08-01

    Measurements of equivalent black carbon (EBC) in aerosols at the high Arctic field site Villum Research Station (VRS) at Station Nord in North Greenland showed a seasonal variation in EBC concentrations with a maximum in winter and spring at ground level. Average measured concentrations were about 0.067 ± 0.071 for the winter and 0.011 ± 0.009 for the summer period. These data were obtained using a multi-angle absorption photometer (MAAP). A similar seasonal pattern was found for sulfate concentrations with a maximum level during winter and spring analyzed by ion chromatography. Here, measured average concentrations were about 0.485 ± 0.397 for the winter and 0.112 ± 0.072 for the summer period. A correlation between EBC and sulfate concentrations was observed over the years 2011 to 2013 stating a correlation coefficient of R2 = 0.72. This finding gives the hint that most likely transport of primary emitted BC particles to the Arctic was accompanied by aging of the aerosols through condensational processes. BC and sulfate are known to have only partly similar sources with respect to their transport pathways when reaching the high Arctic. Aging processes may have led to the formation of secondary inorganic matter and further transport of BC particles as cloud processing and further washout of particles is less likely based on the typically observed transport patterns of air masses arriving at VRS. Additionally, concentrations of EC (elemental carbon) based on a thermo-optical method were determined and compared to EBC measurements. EBC measurements were generally higher, but a correlation between EC and EBC resulted in a correlation coefficient of R2 = 0.64. Model estimates of the climate forcing due to BC in the Arctic are based on contributions of long-range transported BC during spring and summer. The measured concentrations were here compared with model results obtained by the Danish Eulerian Hemispheric Model, DEHM. Good agreement between measured and

  9. COMPARISON OF ON-LINE COUPLED AND CONSTANT TRANSFER SIMULATION METHODS FOR DIRECT RADIATIVE FORCING OF ANTHROPOGENIC SULFATE

    Institute of Scientific and Technical Information of China (English)

    WU Jian; LIU Hong-nian; WANG Wei-guo; LIU Gang

    2006-01-01

    @@ 1 INTRODUCTION Of three main methods for studying the radiative forcing of anthropogenic sulfate and climatic response on the regional scale, the first is, with given rates for transforming SO2 to sulfate, converting actually released SO2 into sulfate and acquiring the distribution of sulfate by computing transfer equations in the climate model.

  10. Thermochemical sulfate reduction in deep petroleum reservoirs: a molecular approach; Thermoreduction des sulfates dans les reservoirs petroliers: approche moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Hanin, S.

    2002-11-01

    The thermochemical sulfate reduction (TSR) is a set of chemical reactions leading to hydrocarbon oxidation and production of carbon dioxide and sour gas (H{sub 2}S) which is observed in deep petroleum reservoirs enriched in anhydrites (calcium sulfate). Molecular and isotopic studies have been conducted on several crude oil samples to determine which types of compounds could have been produced during TSR. Actually, we have shown that the main molecules formed by TSR were organo-sulfur compounds. Indeed, sulfur isotopic measurements. of alkyl-di-benzothiophenes, di-aryl-disulfides and thia-diamondoids (identified by NMR or synthesis of standards) shows that they are formed during TSR as their value approach that of the sulfur of the anhydrite. Moreover, thia-diamondoids are apparently exclusively formed during this phenomenon and can thus be considered as true molecular markers of TSR. In a second part, we have investigated with laboratory experiments the formation mechanism of the molecules produced during TSR. A first model has shown that sulfur incorporation into the organic matter occurred with mineral sulfur species of low oxidation degree. The use of {sup 34}S allowed to show that the sulfates reduction occurred during these simulations. At least, some experiments on polycyclic hydrocarbons, sulfurized or not, allowed to establish that thia-diamondoids could be formed by acid-catalysed rearrangements at high temperatures in a similar way as the diamondoids. (author)

  11. Novel membrane potentiometric sulfate ion sensor based on zinc-phthalocyanine for the quick determination of trace amounts of sulfate.

    Science.gov (United States)

    Ganjali, Mohammad Reza; Pourjavid, Mohammad Reza; Shamsipur, Mojtaba; Poursaeri, Taherh; Rezapour, Morteza; Javanbakht, Mehran; Sharghi, Hashem

    2003-07-01

    Poly(vinyl chloride) (PVC) based membranes of zinc-phthalocyanine (ZPC) with hexadecyltrimethylammonium bromide (HTAB) as a cation excluder, and dibutyl phthalate (DBP) and benzyl acetate (BA) as plasticizing solvent mediators were prepared and investigated as a SO4(2-) selective electrode. The best performance was observed with a membrane having a composition of ZPC-PVC-HTAB-BA in a ratio of 5%:32%:3%:60%, which works well over a wide concentration range (1.0 x 10(-2) - 1.0 x 10(-6) M) with a Nemstian slope of -29.2 mV per decade of activity, between the pH values of 2.0 to 7.0. This sensor shows a very fast response time of 10 s, and can be used over a period of 2 months with good reproducibility. The proposed sensor displays excellent selectivity for SO4(2-) over a large number of common inorganic anions. The sensor has been successfully applied for the direct and indirect determination of sulfate and zinc in zinc sulfate tablets, respectively. It was also used as an indicator electrode in the potentiometric titration of sulfate ions with barium ions.

  12. Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate.

    Science.gov (United States)

    Dou, Wenfang; Xu, Yongmei; Pagadala, Vijayakanth; Pedersen, Lars C; Liu, Jian

    2015-08-14

    Heparan sulfate (HS) is a highly sulfated polysaccharide that plays important physiological roles. The biosynthesis of HS involves a series of enzymes, including glycosyltransferases (or HS polymerase), epimerase, and sulfotransferases. N-Deacetylase/N-Sulfotransferase isoform 1 (NDST-1) is a critical enzyme in this pathway. NDST-1, a bifunctional enzyme, displays N-deacetylase and N-sulfotransferase activities to convert an N-acetylated glucosamine residue to an N-sulfo glucosamine residue. Here, we report the cooperative effects between N-deacetylase and N-sulfotransferase activities. Using baculovirus expression in insect cells, we obtained three recombinant proteins: full-length NDST-1 and the individual N-deacetylase and N-sulfotransferase domains. Structurally defined oligosaccharide substrates were synthesized to test the substrate specificities of the enzymes. We discovered that N-deacetylation is the limiting step and that interplay between the N-sulfotransferase and N-deacetylase accelerates the reaction. Furthermore, combining the individually expressed N-deacetylase and N-sulfotransferase domains produced different sulfation patterns when compared with that made by the NDST-1 enzyme. Our data demonstrate the essential role of domain cooperation within NDST-1 in producing HS with specific domain structures.

  13. Preparation of Highly Pure Vanadyl Sulfate from Sulfate Solutions Containing Impurities of Iron and Aluminum by Solvent Extraction Using EHEHPA

    Directory of Open Access Journals (Sweden)

    Dan Li

    2017-03-01

    Full Text Available The preparation of highly pure vanadyl sulfate from sulfate solutions containing impurities of iron and aluminumwas investigated by solvent extraction with 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (EHEHPA and tri-n-butyl phosphate (TBP as the phase modifier. The extraction and stripping conditions of vanadium (IV and its separation from iron and aluminum were optimized. Under the optimal extraction conditions, the extraction of vanadium (IV and iron were 68% and 53%, respectively, while only 2% aluminum was extracted in a single contact, suggesting good separation of vanadium (IV from aluminum. Sulfuric acid solution was used for the stripping. Nearly 100% vanadium (IV and 95% aluminum were stripped, while only 10% iron was stripped under the optimal stripping conditions in a single contact, suggesting good separation of vanadium (IV from iron. After five stages of extraction and stripping, highly pure vanadyl sulfate containing 76.5 g/L V (IV with the impurities of 12 mg/L Fe and 10 mg/L Al was obtained, which is suitable for the electrolyte of a vanadium redox flow battery. Organic solution was well regenerated after stripping by oxalic acid solution to remove the remaining iron. The mechanism of vanadium (IV extraction using EHEHPA was also discussed based on the Fourier transform infrared spectroscopy (FT-IR analysis.

  14. A Modular Approach to a Library of Semi-Synthetic Fucosylated Chondroitin Sulfate Polysaccharides with Different Sulfation and Fucosylation Patterns.

    Science.gov (United States)

    Laezza, Antonio; Iadonisi, Alfonso; Pirozzi, Anna V A; Diana, Paola; De Rosa, Mario; Schiraldi, Chiara; Parrilli, Michelangelo; Bedini, Emiliano

    2016-12-12

    Fucosylated chondroitin sulfate (fCS)-a glycosaminoglycan (GAG) found in sea cucumbers-has recently attracted much attention owing to its biological properties. In particular, a low molecular mass fCS polysaccharide has very recently been suggested as a strong candidate for the development of an antithrombotic drug that would be safer and more effective than heparin. To avoid the use of animal sourced drugs, here we present the chemical transformation of a microbial sourced unsulfated chondroitin polysaccharide into a small library of fucosylated (and sulfated) derivatives thereof. To this aim, a modular approach based on the different combination of only five reactions was employed, with an almost unprecedented polysaccharide branching by O-glycosylation as the key step. The library was differentiated for sulfation patterns and/or positions of the fucose branches, as confirmed by detailed 2D NMR spectroscopic analysis. These semi-synthetic polysaccharides will allow a wider and more accurate structure-activity relationship study with respect to those reported in literature to date.

  15. Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio

    NARCIS (Netherlands)

    Dar, S.A.; Kleerebezem, R.; Stams, A.J.M.; Kuenen, J.G.; Muyzer, G.

    2008-01-01

    The microbial population structure and function of natural anaerobic communities maintained in lab-scale continuously stirred tank reactors at different lactate to sulfate ratios and in the absence of sulfate were analyzed using an integrated approach of molecular techniques and chemical analysis. T

  16. Sulf1 and Sulf2 Differentially Modulate Heparan Sulfate Proteoglycan Sulfation during Postnatal Cerebellum Development: Evidence for Neuroprotective and Neurite Outgrowth Promoting Functions

    NARCIS (Netherlands)

    Kalus, I.; Rohn, S.; Puvirajesinghe, T.M.; Guimond, S.E.; Eyckerman-Kolln, P.J.; Dam, G.B. ten; Kuppevelt, T.H. van; Turnbull, J.E.; Dierks, T.

    2015-01-01

    INTRODUCTION: Sulf1 and Sulf2 are cell surface sulfatases, which remove specific 6-O-sulfate groups from heparan sulfate (HS) proteoglycans, resulting in modulation of various HS-dependent signaling pathways. Both Sulf1 and Sulf2 knockout mice show impairments in brain development and neurite outgro

  17. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride-sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride-sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related t

  18. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride–sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride–sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related t

  19. Roles of chondroitin sulfate and dermatan sulfate in the formation of a lesion scar and axonal regeneration after traumatic injury of the mouse brain

    NARCIS (Netherlands)

    Li, H.P.; Komuta, Y.; Kimura-Kuroda, J.; Kuppevelt, A.H.M.S.M. van; Kawano, H.

    2013-01-01

    Abstract Dermatan sulfate (DS) is synthesized from chondroitin sulfate (CS) by epimerization of glucuronic acid of CS to yield iduronic acid. In the present study, the role of CS and DS was examined in mice that received transection of nigrostriatal dopaminergic pathway followed by injection of

  20. Sulfate and dissolved sulfide variation under low COD/Sulfate ratio in Up-flow Anaerobic Sludge Blanket (UASB treating domestic wastewater

    Directory of Open Access Journals (Sweden)

    Sérvio Túlio Alves Cassini

    2012-04-01

    Full Text Available In this study, the dynamics of sulfate reduction and dissolved sulfide generation (S2-, HS-, H2Saq in liquid phase was evaluated in an UASB reactor treating domestic wastewater with low COD/Sulfate content. The evaluation in the UASB reactor was performed at three sludge heights (0.25, 1.25, 2.25 taps and effluent of the reactor. Sulfate reduction was verified in the reactor, with an average reduction of 24 % throughout the experiment period. However, the dissolved sulfide concentration in the reactor was not higher than 5.0 mg Sdiss/L. The kinetic model of first order showed good fit to describe the sulfate reduction under different COD/sulfate ratio, with K1app between 2.94x10-5 s-1 and 1.17x10-5 s-1 with correlation coefficients for data over 91%. The maximum rate to sulfate reduction was 18.0 mg SO42-/L.h-1 and small variation in COD/sulfate ratio promotes a significant change both in sulfate and sulfide concentrations.

  1. Evidence for surface nucleation: efflorescence of ammonium sulfate and coated ammonium sulfate aerosol particles

    Science.gov (United States)

    Ciobanu, V. Gabriela; Marcolli, Claudia; Krieger, Ulrich K.; Zuend, Andreas; Peter, Thomas

    2010-05-01

    Aerosol particles are ubiquitous in the atmosphere and can undergo different phase transitions, such as deliquescence and efflorescence. Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in supersaturated AS and 1:1 and 8:1 (by weight) poly(ethylene glycol)-400 (PEG-400)/AS particles, which were deposited as droplets with diameters in the 16 - 35 μm range on a hydrophobically coated slide. The PEG-400/AS particles that are exposed to decreasing relative humidity (RH) exhibit a liquid-liquid phase separation below 90 % RH with the PEG-400 phase surrounding the aqueous AS inner phase (Marcolli and Krieger, 2006; Ciobanu et al., 2009). Pure AS particles effloresced in the RH range from 36.3 to 43.7 % RH, in agreement with literature data (31 - 48 % RH). In contrast, 1:1 PEG-400/AS particles with diameters of the AS phase from 7.2 - 19.2 μm effloresced between 26.8 - 33.9 % RH and 8:1 PEG-400/AS particles with diameters of the AS phase from 1.8 - 7.3 μm between 24.3 - 29.3 % RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that neither a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, nor the presence of low amounts of PEG-400 in the AS phase, nor different timescales between various experimental techniques could possibly explain the low AS ERH values of PEG-400/AS particles in our setup. High-speed photography of the efflorescence process allowed to monitor the proceeding of the AS crystallization fronts within the particles with millisecond time resolution. The nucleation locations were deduced based on the initial crystals growth locations. Statistical analysis of 31 and 19 efflorescence events for pure AS and 1:1 PEG-400/AS particles, respectively, identified the air/droplet/substrate contact line and the air/droplet interface as preferred nucleation locations in the case of pure AS particles

  2. Dry Climate as Major Factor Controlling Formation of Hydrated Sulfate Minerals in Valles Marineris on Mars

    Science.gov (United States)

    Szynkiewicz, A.

    2016-12-01

    In this study, a model for the formation of hydrated sulfate salts (Mg-Ca-Na sulfates) in the Rio Puerco watershed of New Mexico, a terrestrial analog site from the semi-arid Southwest U.S., was used to assess the origin and climate condition that may have controlled deposition of hydrated sulfates in Valles Marineris on Mars. In this analog site, the surface accumulation of sulfate minerals along canyon walls, slopes and valley surfaces closely resemble occurrences of hydrated sulfates in Valles Marineris on Mars. Significant surface accumulations of Mg-Ca-Na sulfates are a result of prevailing semiarid conditions and a short-lived hydrological cycle that mobilizes sulfur present in the bedrock as sulfides, sulfate minerals, and atmospheric deposition. Repeating cycles of salt dissolution and re-precipitation appear to be the underpinning processes that serve to transport sulfate from bedrock to sulfate salts (e.g., efflorescences) and into surface water. This process occurs in the shallow surface environment and is not accompanied by deep groundwater flow because of prevailing dry conditions and low annual precipitation. Generally, close resemblance of surface occurrence and mineralogical composition of sulfate salts between the studied terrestrial analog and Valles Marineris suggest that a similar sulfate cycle, involving limited water activity during formation of hydrated sulfates, was once present in Valles Marineris. Measured as efflorescence, the distributed surface mass of hydrated sulfates in Valles Marineris is relatively small (4 to 42%) when compared to terrestrial settings with higher surface accumulation of sulfate minerals such as the White Sands gypsum dune field. Under semi-arid conditions similar to the studied analog in the Rio Pueurco watershed, it would take only 100 to 1,000 years to activate an equivalent flux of aqueous sulfate in Valles Marineris, when comparing terrestrial annual sulfate fluxes from the Rio Puerco watershed with the amount

  3. Perlecan and basement membrane-chondroitin sulfate proteoglycan (bamacan) are two basement membrane chondroitin/dermatan sulfate proteoglycans in the Engelbreth-Holm-Swarm tumor matrix

    DEFF Research Database (Denmark)

    Couchman, J R; Kapoor, R; Sthanam, M;

    1996-01-01

    The presence of proteoglycans bearing galactosaminoglycan chains has been reported, but none has been identified previously in the matrix of the Engelbreth-Holm-Swarm tumor, which is a source of several basement membrane components. This tumor matrix contains perlecan, a large, low buoyant density...... heparan sulfate proteoglycan, widespread in many basement membranes and connective tissues. We now identify two distinct proteoglycan species from this tumor source, which are substituted with galactosaminoglycans and which show basement membrane localization by immunohistochemistry. One species...... is perlecan but, in addition to being present as a heparan sulfate proteoglycan, it is also present as a hybrid molecule, with dermatan sulfate chains. A minor population of perlecan apparently lacks heparan sulfate chains totally, and some of this is substituted with chondroitin sulfate. The second species...

  4. Biological sulfate removal from acrylic fiber manufacturing wastewater using a two-stage UASB reactor

    Institute of Scientific and Technical Information of China (English)

    Jin Li; Jun Wang; Zhaokun Luan; Zhongguang Ji; Lian Yu

    2012-01-01

    A two-stage UASB reactor was employed to remove sulfate from acrylic fiber manufacturing wastewater.Mesophilic operation (35±0.5℃) was performed with hydraulic retention time (HRT) varied between 28 and 40 hr.Mixed liquor suspended solids (MLSS)in the reactor was maintained about 8000 mg/L.The results indicated that sulfate removal was enhanced with increasing the ratio of COD/SO42-.At low COD/SO42-,the growth of the sulfate-reducing bacteria (SRB) was carbon-limited.The optimal sulfate removal efficiencies were 75% when the HRT was no less than 38 hr.Sulfidogenesis mainly happened in the sulfate-reducing stage,while methanogenesis in the methane-producing stage.Microbes in sulfate-reducing stage performed granulation better than that in methaneproducing stage.Higher extracellular polymeric substances (EPS) content in sulfate-reducing stage helped to adhere and connect the flocculent sludge particles together.SRB accounted for about 31% both in sulfate-reducing stage and methane-producing stage at COD/SO42- ratio of 0.5,while it dropped dramatically from 34% in sulfate-reducing stage to 10% in methane-producing stage corresponding to the COD/SO42- ratio of 4.7.SRB and MPA were predominant in sulfate-reducing stage and methane-producing stage respectively.

  5. A zinc complex of heparan sulfate destabilises lysozyme and alters its conformation

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Ashley J. [Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom); Diamond Light Source Ltd., Diamond House, Didcot, Oxfordshire OX11 0DE (United Kingdom); Hussain, Rohanah [Diamond Light Source Ltd., Diamond House, Didcot, Oxfordshire OX11 0DE (United Kingdom); Cosentino, Cesare; Guerrini, Marco [Istituto di Chimica e Biochimica ' G. Ronzoni' , Via G. Colombo 81, Milano 20133 (Italy); Siligardi, Giuliano [Diamond Light Source Ltd., Diamond House, Didcot, Oxfordshire OX11 0DE (United Kingdom); Yates, Edwin A., E-mail: eayates@liv.ac.uk [Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom); Rudd, Timothy R., E-mail: trudd@liv.ac.uk [Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom); Istituto di Chimica e Biochimica ' G. Ronzoni' , Via G. Colombo 81, Milano 20133 (Italy)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Zinc-heparan sulfate complex destabilises lysozyme, a model amyloid protein. Black-Right-Pointing-Pointer Addition of zinc, without heparan sulfate, stabilises lysozyme. Black-Right-Pointing-Pointer Heparan sulfate cation complexes provide alternative protein folding routes. -- Abstract: The naturally occurring anionic cell surface polysaccharide heparan sulfate is involved in key biological activities and is implicated in amyloid formation. Following addition of Zn-heparan sulfate, hen lysozyme, a model amyloid forming protein, resembled {beta}-rich amyloid by far UV circular dichroism (increased {beta}-sheet: +25%), with a significantly reduced melting temperature (from 68 to 58 Degree-Sign C) by fluorescence shift assay. Secondary structure stability of the Zn-heparan sulfate complex with lysozyme was also distinct from that with heparan sulfate, under stronger denaturation conditions using synchrotron radiation circular dichroism. Changing the cation associated with heparan sulfate is sufficient to alter the conformation and stability of complexes formed between heparan sulfate and lysozyme, substantially reducing the stability of the protein. Complexes of heparan sulfate and cations, such as Zn, which are abundant in the brain, may provide alternative folding routes for proteins.

  6. Sources et marché du sulfate d'ammonium Sources of and Market for Ammonium Sulfate

    Directory of Open Access Journals (Sweden)

    Loussouarn C.

    2006-11-01

    Full Text Available Engrais azoté le plus utilisé dans le monde jusqu'en 1970, le sulfate d'ammonium ne représente plus aujourd'hui que 4 % de la fertilisation azotée. Avec une teneur en azote de 21 % seulement, il a été peu à peu remplacé comme engrais universel par des produits plus concentrés, notamment l'urée et le nitrate d'ammonium. Obtenu pour plus de 40 % comme sous-produit dans la synthèse de monomères comme le caprolactame, l'acrylonitrile ou le méthacrylate de méthyle, et pour près de 10 % dans le traitement des gaz de cokerie, sa production dépend largement des développements du marché des fibres synthétiques, et, dans une moindre mesure, de la sidérurgie et de la métallurgie. Dans les pays développés, où la production est essentiellement fatale, le volume du marché est et sera plus fonction de la disponibilité du sulfate d'ammonium que de la demande ou de facteurs de marché; sa consommation ne résidera plus que dans des applications spécifiques pour lesquelles il sera bien adapté. Par contre, l'intérêt croissant pour compenser le déficit en soufre de certains sols, et les qualités agronomiques propres du sulfate d'ammonium laissent entrevoir la possibilité d'un essor de son utilisation dans certaines régions en voie de développernent. Ammonium sulfate was the most worldwide nitrogenous fertilizer used up to 1970. Today, it makes up only 4% of nitrogenous fertilization. With a nitrogen content of only 21%, it has gradually been replaced as a universal fertilizer by more concentrated products, particularly urea and ammonium nitrate. More than 40% of the ammonium sulfate is obtained as a by-product from the synthesis of monomers such as caprolactam, acrylonitrile or methyl methacrylate, and nearly 10% from coking gas processing. Its production depends extensively on the development of the market for synthetic fibers and, to a lesser extent, on the steel and metallurgical industries. In the industrialized countries

  7. Geological records of secondary atmospheric sulfate: A review (Invited)

    Science.gov (United States)

    Bao, H.

    2013-12-01

    Important information on the sources, oxidants, competing oxidation pathways, and atmospheric conditions can be revealed by measuring multiple sulfur and oxygen isotope compositions of secondary atmospheric sulfate (SAS), the ultimate oxidation product of sulfur gases in the atmosphere. The information is particularly valuable to understanding both long-term evolution and transient events in Earth's atmosphere. SAS from Earth's distant past, however, is rarely preserved in the rock records due to its often insignificant reservoir size relative to other sulfate reservoirs such as seawater sulfate. Furthermore, due to its high solubility, SAS readily dissolves in water and hardly forms solids. Therefore, the most likely place to find a geological SAS record should be surfaces that had been (1) accepting only or mostly SAS deposition; (2) old, thus allowing SAS to accumulate for a long duration; (3) arid to semi-arid, thus preventing excessive leaching by meteoric water, and/or (4) conducive to early cementation and lithification, thus being less vulnerable to post-depositional erosion. Any combination of the four conditions may increase the probability of SAS preservation. Currently, we have identified several old and arid surfaces, early cemented ash beds, and soil caliches as effective hosts for geological SAS records. Ice cores deserve a special place and are not included here. The current state of knowledge is summarized here. In the Archean Eon, sedimentary barite, despite its marine origin, has an SAS component as evident from its 33S anomaly. This anomaly is explained by a reduced atmospheric condition (pO2atmospheric level), a low seawater sulfate concentration, and a weak if any microbial S redox cycling in the Archean oceans. The 33 S-anomalous SAS signal has not been found in rocks younger than 2.2 Ga. SAS record is so far not known for the entire Proterozoic Eon and the Paleozoic-Mesozoic eras. The oldest Cenozoic SAS record comes from Eocene

  8. SULFATE SOLUBILITY LIMIT VERIFICATION FOR DWPF SLUDGE BATCH 7A

    Energy Technology Data Exchange (ETDEWEB)

    Billings, A.

    2011-04-19

    During processing at the Defense Waste Processing Facility (DWPF), high sulfate concentrations in the feed are a concern to DWPF as it can lead to the formation of a detrimental, sulfate-rich, molten salt phase on the surface of the glass melt pool. To avoid these issues, a sulfate concentration limit was implemented into the Product Composition Control System (PCCS). Related to SB7a frit development efforts, the Savannah River National Laboratory (SRNL) assessed the viability of using the current 0.6 wt % SO{sub 4}{sup 2-} limit set for SB6 (in glass) and the possibility of increasing the SO{sub 4}{sup 2-} solubility limit in PCCS to account for anticipated sulfur concentrations, targeted waste loadings, and inclusion of secondary streams (e.g., Actinide Removal Process (ARP)) with two recommended frits (Frit 418 and Frit 702) for SB7a processing. For a nominal SB7a blend with a 63 inch SB6 heel remaining in Tank 40 (projection SB7a-63), a 0.60 wt% SO{sub 4}{sup 2-} in glass limit was determined for waste loadings of 34 wt% up to 40 wt% with Frit 418 based on crucible melts with batched chemicals. SRNL also examined the inclusion of ARP for the same blending scenario (SB7a-63-ARP) with Frit 418 and at least a 0.6 wt% SO{sub 4}{sup 2-} level, and waste loadings of 34 wt% to 40 wt% were also acceptable. When a visible yellow and/or white sulfate salt layer was visible on the surface of any cooled glass, it was assumed to have surpassed the solubility limit of SO{sub 4}{sup 2-} for that particular composition. All of the glasses fabricated at these concentrations did not exhibit a sulfate rich salt layer on the surface of the glass melt and retained the majority of the batched SO{sub 4}{sup 2-}. At higher levels of SO{sub 4}{sup 2-} 'spiked' into the projected sludge compositions over the aforementioned interval of waste loadings, with Frit 418, low viscosity sulfur layers were observed on the surface of glass melts which confirm exceeding the solubility

  9. Sulfate resistance of ordinary Portland cement with fly ash

    Directory of Open Access Journals (Sweden)

    Irassar, Edgardo F.

    1989-03-01

    Full Text Available Low calcium fly ash has demonstrated to be an effective pozzolan to improve sulfate resistance of ordinary portland cement (type I. In this paper physico-chemical effects that produce this pozzolan in the mortar exposed to sulfate attack are studied. Dilution and dispersion affects are analyzed using mixes of cement with an inert mineral admixture. Mineralogical changes of mortar are studied using X-ray diffraction and the help of scanning electron microscope. The results show that fly ash delays mortar cracking phenomenon due to less content of unstable compounds in sulfate environment, greater available space to be occupied by expansive compounds and less CH present in the mortars.

    La ceniza volante de bajo contenido de óxido de calcio ha demostrado ser una efectiva puzolana para mejorar la resistencia a los sulfatos del cemento portland normal (CRN. En el presente trabajo se estudian los efectos físico-químicos que produce esta puzolana en el mortero expuesto al ataque de sulfatos. Se analizan los efectos de dilución y dispersión utilizando mezclas de cemento con una adición mineral inactiva. Los cambios mineralógicos del mortero se estudian con difracción de rayos X (DRX y la ayuda del microscopio electrónico. Los resultados indican que la ceniza volante retarda el fenómeno de fisuración del mortero debido a la menor cantidad de compuestos inestables en ambiente con sulfatos, el mayor espacio disponible para albergar a los compuestos expansivos y la disminución del CH presente en la mezcla.

  10. Differential Expression of Specific Dermatan Sulfate Domains in Renal Pathology.

    Science.gov (United States)

    Lensen, Joost F M; van der Vlag, Johan; Versteeg, Elly M M; Wetzels, Jack F M; van den Heuvel, Lambert P W J; Berden, Jo H M; van Kuppevelt, Toin H; Rops, Angelique L W M M

    2015-01-01

    Dermatan sulfate (DS), also known as chondroitin sulfate (CS)-B, is a member of the linear polysaccharides called glycosaminoglycans (GAGs). The expression of CS/DS and DS proteoglycans is increased in several fibrotic renal diseases, including interstitial fibrosis, diabetic nephropathy, mesangial sclerosis and nephrosclerosis. Little, however, is known about structural alterations in DS in renal diseases. The aim of this study was to evaluate the renal expression of two different DS domains in renal transplant rejection and glomerular pathologies. DS expression was evaluated in normal renal tissue and in kidney biopsies obtained from patients with acute interstitial or vascular renal allograft rejection, patients with interstitial fibrosis and tubular atrophy (IF/TA), and from patients with focal segmental glomerulosclerosis (FSGS), membranous glomerulopathy (MGP) or systemic lupus erythematosus (SLE), using our unique specific anti-DS antibodies LKN1 and GD3A12. Expression of the 4/2,4-di-O-sulfated DS domain recognized by antibody LKN1 was decreased in the interstitium of transplant kidneys with IF/TA, which was accompanied by an increased expression of type I collagen, decorin and transforming growth factor beta (TGF-β), while its expression was increased in the interstitium in FSGS, MGP and SLE. Importantly, all patients showed glomerular LKN1 staining in contrast to the controls. Expression of the IdoA-Gal-NAc4SDS domain recognized by GD3A12 was similar in controls and patients. Our data suggest a role for the DS domain recognized by antibody LKN1 in renal diseases with early fibrosis. Further research is required to delineate the exact role of different DS domains in renal fibrosis.

  11. Role of magnesium sulfate in neuroprotection in acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Harpreet Singh

    2012-01-01

    Full Text Available Aims: To study the effect of intravenous magnesium sulfate infusion on clinical outcome of patients of acute stroke. Materials and Methods: Sixty consecutive cases of acute ischemic stroke hospitalised within 24 h of an episode of stroke were taken as subjects. All subjects underwent a computed tomography head, and those found to have evidence of bleed/space-occupying lesions were excluded from the study. The subjects taken up for the study were divided into two groups of 30 subjects each. Both the groups received the standard protocol management for acute ischemic stroke. Subjects of Group 1 additionally received intravenous magnesium sulfate as initial 4 g bolus dose over 15 min followed by 16 g as slow infusion over the next 24 h. In all the subjects of the two study groups, serum magnesium levels were estimated at the time of admission (Day 0, Day 1 and Day 2 of hospitalization using an atomic absorption spectrometer. Statistical Analysis Used: Scandinavian stroke scores were calculated on Day 3, day of discharge and Day 28. Paired t-test was employed for comparison of stroke scores on Day 3, day of discharge and Day 28 within the same group and the unpaired t-test was used for the intergroup comparison, i.e. comparison of stroke scores of control group with corresponding stroke scores of magnesium group. Results: Comparison of stroke scores on Day 3 and day of discharge, on the day of discharge and Day 28 and on Day 3 and Day 28 in the magnesium group produced a t-value of 5.000 and P 0.05, which was not significant. Conclusions: The study failed to document a statistical significant stroke recovery in spite of achieving a significant rise in serum magnesium level, more than that necessary for neuroprotection, with an intravenous magnesium sulfate regime.

  12. Differential Expression of Specific Dermatan Sulfate Domains in Renal Pathology.

    Directory of Open Access Journals (Sweden)

    Joost F M Lensen

    Full Text Available Dermatan sulfate (DS, also known as chondroitin sulfate (CS-B, is a member of the linear polysaccharides called glycosaminoglycans (GAGs. The expression of CS/DS and DS proteoglycans is increased in several fibrotic renal diseases, including interstitial fibrosis, diabetic nephropathy, mesangial sclerosis and nephrosclerosis. Little, however, is known about structural alterations in DS in renal diseases. The aim of this study was to evaluate the renal expression of two different DS domains in renal transplant rejection and glomerular pathologies. DS expression was evaluated in normal renal tissue and in kidney biopsies obtained from patients with acute interstitial or vascular renal allograft rejection, patients with interstitial fibrosis and tubular atrophy (IF/TA, and from patients with focal segmental glomerulosclerosis (FSGS, membranous glomerulopathy (MGP or systemic lupus erythematosus (SLE, using our unique specific anti-DS antibodies LKN1 and GD3A12. Expression of the 4/2,4-di-O-sulfated DS domain recognized by antibody LKN1 was decreased in the interstitium of transplant kidneys with IF/TA, which was accompanied by an increased expression of type I collagen, decorin and transforming growth factor beta (TGF-β, while its expression was increased in the interstitium in FSGS, MGP and SLE. Importantly, all patients showed glomerular LKN1 staining in contrast to the controls. Expression of the IdoA-Gal-NAc4SDS domain recognized by GD3A12 was similar in controls and patients. Our data suggest a role for the DS domain recognized by antibody LKN1 in renal diseases with early fibrosis. Further research is required to delineate the exact role of different DS domains in renal fibrosis.

  13. Bioinformatics comparison of sulfate-reducing metabolism nucleotide sequences

    Science.gov (United States)

    Tremberger, G.; Dehipawala, Sunil; Nguyen, A.; Cheung, E.; Sullivan, R.; Holden, T.; Lieberman, D.; Cheung, T.

    2015-09-01

    The sulfate-reducing bacteria can be traced back to 3.5 billion years ago. The thermodynamics details of the sulfur cycle have been well documented. A recent sulfate-reducing bacteria report (Robator, Jungbluth, et al , 2015 Jan, Front. Microbiol) with Genbank nucleotide data has been analyzed in terms of the sulfite reductase (dsrAB) via fractal dimension and entropy values. Comparison to oil field sulfate-reducing sequences was included. The AUCG translational mass fractal dimension versus ATCG transcriptional mass fractal dimension for the low temperature dsrB and dsrA sequences reported in Reference Thirteen shows correlation R-sq ~ 0.79 , with a probably of about 3% in simulation. A recent report of using Cystathionine gamma-lyase sequence to produce CdS quantum dot in a biological method, where the sulfur is reduced just like in the H2S production process, was included for comparison. The AUCG mass fractal dimension versus ATCG mass fractal dimension for the Cystathionine gamma-lyase sequences was found to have R-sq of 0.72, similar to the low temperature dissimilatory sulfite reductase dsr group with 3% probability, in contrary to the oil field group having R-sq ~ 0.94, a high probable outcome in the simulation. The other two simulation histograms, namely, fractal dimension versus entropy R-sq outcome values, and di-nucleotide entropy versus mono-nucleotide entropy R-sq outcome values are also discussed in the data analysis focusing on low probability outcomes.

  14. Measuring 35S of Aerosol Sulfate: Techniques and First Results

    Science.gov (United States)

    Brothers, L. A.; Dominguez, G.; Bluen, B.; Corbin, A.; Abramian, A.; Thiemens, M. H.

    2007-12-01

    On a global and regional level, the cycling of sulfur in the environment has consequences for air quality, human health, and may contribute to global climate change. Due to its multiple oxidation states, the sulfur cycle is very complex and poorly understood. Stable isotopes are currently used to understand reaction pathways as well as sources and sinks of sulfurous compounds in the environment. Sulfur also has one short lived (τ1/2 ~87 d) radioactive isotope (35S) which is continuously made in the atmosphere by the cosmic ray spallation of argon, is then quickly oxidized to 35SO2 and enters the atmospheric sulfur cycle. The short-lived radioactive nature of this isotope of sulfur provides us with potentially powerful tracer for understanding the time scales at which sulfur is oxidized, deposited, and transported in the atmosphere and the deposition of atmospheric sulfate into rivers and water catchments. However, despite its potential, the use of 35S as a tracer of aerosol chemistry has not been fully exploited, Here we present details of instrumental set up for measuring 35S in aerosol sulfate and some preliminary results of measurements of 35S abundances in aerosols from Riverside (inland) and La Jolla (coastal) CA and discuss the sensitivity and limitations of the measurements in providing insights into day/night aerosol chemistry (Riverside) as well as the uptake of SO2 pollution in coastal environments by sea-salt aerosols. Also, we present preliminary results from measurement of sulfate in river water in Ecuador before and after precipitation events.

  15. Atmospheric black carbon and sulfate concentrations in Northeast Greenland

    Directory of Open Access Journals (Sweden)

    A. Massling

    2015-04-01

    Full Text Available Measurements of Black Carbon (BC in aerosols at the high Arctic field site Villum Research Station (VRS at Station Nord in North Greenland showed a seasonal variation in BC concentrations with a maximum in winter and spring at ground level. The data was obtained using a Multi Angle Absorption Photometer (MAAP. A similar seasonal pattern was found for sulfate concentrations with a maximum level during winter and spring analyzed by ion chromatography. A correlation between BC and sulfate concentrations was observed over the years 2011 to 2013. This finding gives the hint that most likely transport of primary emitted BC particles to the Arctic was accompanied by aging of the aerosols through condensational processes. This process may have led to the formation of secondary inorganic matter and further transport of BC particles as cloud processing and further washout of particles is less likely based on the typically observed transport patterns of air masses arriving at VRS. Additionally, concentrations of EC (elemental carbon based on a thermo-optical method were determined and compared to BC measurements. Model estimates of the climate forcing due to BC in the Arctic are based on contributions of long-range transported BC during spring and summer. The measured concentrations were here compared with model results obtained by the Danish Hemispheric Model, DEHM. Good agreement between measured and modeled concentrations of both BC and sulfate was observed. The dominant source is found to be combustion of fossil fuel with biomass burning as a minor though significant source. During winter and spring the Arctic atmosphere is known to be impacted by long-range transport of BC and associated with the Arctic haze phenomenon.

  16. A possible pathway for rapid growth of sulfate during haze days in China

    Science.gov (United States)

    Li, Guohui; Bei, Naifang; Cao, Junji; Huang, Rujin; Wu, Jiarui; Feng, Tian; Wang, Yichen; Liu, Suixin; Zhang, Qiang; Tie, Xuexi; Molina, Luisa T.

    2017-03-01

    Rapid industrialization and urbanization have caused frequent occurrence of haze in China during wintertime in recent years. The sulfate aerosol is one of the most important components of fine particles (PM2. 5) in the atmosphere, contributing significantly to the haze formation. However, the heterogeneous formation mechanism of sulfate remains poorly characterized. The relationships of the observed sulfate with PM2. 5, iron, and relative humidity in Xi'an, China have been employed to evaluate the mechanism and to develop a parameterization of the sulfate heterogeneous formation involving aerosol water for incorporation into atmospheric chemical transport models. Model simulations with the proposed parameterization can successfully reproduce the observed sulfate rapid growth and diurnal variations in Xi'an and Beijing, China. Reasonable representation of sulfate heterogeneous formation in chemical transport models considerably improves the PM2. 5 simulations, providing the underlying basis for better understanding the haze formation and supporting the design and implementation of emission control strategies.

  17. 6-O-Sulfated Modification of Natural Glycoalkaloids Chaconine and Solanine

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Glycoalkaloids(GAS) have important biological and pharmaceutical activities. In order to study the relationship between the structures and the activities of carbohydrate chains, two natural glycoalkaloids, chaconine( compound 1 )and solanine( compound 2) , were isolated from potato stems and leaves( Solanum tuberosum L. ). The selective sulfation to the 6-hydroxy groups of chaconine and solanine was carried out in a strategy by the use of protective groups.The 6-hydroxyl groups of the sugar chains in chaconine and solanine were protected with 4,4'-dimethoxytrityl(DMT)while the other hydroxyl groups were acetylated. The protective group DMT was removed by using 0. 5% TFA in dichloromethane. The free 6-hydroxyl groups were sulfated by chlorosulfonic acid pyridine to give 6-O-sulfated products. After the acetyl groups were removed, the final products obtained were sulfated chaconine and sulfated solanine. 13C NMR spectra confirmed that chaconine and solanine were sulfated at O6 of the carbohydrate moiety.

  18. Application of Image Analysis Based on SEM and Chemical Mapping on PC Mortars under Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    YU Cheng; SUN Wei; Scrivener Karen

    2014-01-01

    The degradation mechanisms of cementitious materials exposed to sulfate solutions have been controversial, despite considerable research. In this paper, two methodologies of image analysis based on scanning electron microscope and chemical mapping are used to analyse Portland cement mortars exposed to sodium sulfate solution. The effects of sulfate concentration in solution and water to cement ratio of mortar, which are considered as the most sensitive factors to sulfate attack, are investigated respectively by comparing the macro expansion with microstructure analysis. It is found that the sulfate concentration in pore solution, expressed as sulfate content in C-S-H, plays a critical role on the supersaturation with respect to ettringite and so on the expansion force generated.

  19. Kinetics Analysis on Mixing Calcination Process of Fly Ash and Ammonium Sulfate

    Institute of Scientific and Technical Information of China (English)

    Peng Wang; Laishi Li; Dezhou Wei

    2014-01-01

    abstract The further development of the extraction of alumina that is produced in the calcination process of ammonium sulfate mixed with fly ash was limited because of the lack of systematic theoretical study. In order to aggrandize the research of the calcination process, the kinetics and reaction mechanism of the calcinations were studied. The result suggests that there are two stages in the calcination process, and the alumina extraction rate increases swiftly in the initial stage, but slows down increasing in the later stage. The apparent activation energy of the initial and later stages equals to 13.31 and 35.65 kJ·mol-1, respectively. In the initial stage, ammonium sulfate reacts directly with mullite in the fly ash to form ammonium aluminum sulfate, while in the later stage, alumi-num sulfate is formed by the reaction between ammonium aluminum sulfate and ammonium sulfate.

  20. Sulfation of afimoxifene, endoxifen, raloxifene, and fulvestrant by the human cytosolic sulfotransferases (SULTs): A systematic analysis.

    Science.gov (United States)

    Hui, Ying; Luo, Lijun; Zhang, Lingtian; Kurogi, Katsuhisa; Zhou, Chunyang; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2015-07-01

    Previous studies demonstrated that sulfate conjugation is involved in the metabolism of three commonly used breast cancer drugs, tamoxifen, raloxifene and fulvestrant. The current study was designed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating raloxifene, fulvestrant, and two active metabolites of tamoxifen, afimoxifene and endoxifen. A systematic analysis using 13 known human SULTs revealed SULT1A1 and SULT1C4 as the major SULTs responsible for the sulfation of afimoxifene, endoxifen, raloxifene and fulvestrant. Kinetic parameters of these two human SULTs in catalyzing the sulfation of these drug compounds were determined. Sulfation of afimoxifene, endoxifen, raloxifene and fulvestrant under metabolic conditions was examined using HepG2 human hepatoma cells and MCF-7 breast cancer cells. Moreover, human intestine, kidney, liver, and lung cytosols were examined to verify the presence of afimoxifene/endoxifen/raloxifene/fulvestrant-sulfating activity.

  1. Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Bilan, Maria I; Gerbst, Alexey G; Ushakova, Natalia A; Tsvetkova, Eugenia A; Dmitrenok, Andrey S; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-01-20

    Selectively and totally sulfated (1 → 3)-linked linear homofucans bearing ∼ 20 monosaccharide residues on average have been prepared from the branched xylofucan sulfate isolated from the brown alga Punctaria plantaginea. Anticoagulant and antithrombotic properties of the parent biopolymer and its derivatives were assessed in vitro. Highly sulfated linear fucan derivatives were shown to inhibit clot formation in APTT assay and ristocetin induced platelets aggregation, while the partially sulfated analogs were inactive. In the experiments with purified proteins, fucan derivatives with degree of sulfation of ∼ 2.0 were found to enhance thrombin and factor Xa inhibition by antithrombin III. The effect of sulfated fucans on thrombin inhibition, which was similar to those of heparinoid Clexane(®) (enoxaparin) and of a fucoidan from the brown alga Saccharina latissima studied previously, can be explained by the multicenter interaction and formation of a ternary complex thrombin-antithrombin III-polysaccharide. The possibility of such complexation was confirmed by computer docking study.

  2. Vitamin C-sulfate inhibits mineralization in chondrocyte cultures: a caveat

    Science.gov (United States)

    Boskey, A. L.; Blank, R. D.; Doty, S. B.

    2001-01-01

    Differentiating chick limb-bud mesenchymal cell micro-mass cultures routinely mineralize in the presence of 10% fetal calf serum, antibiotics, 4 mM inorganic phosphate (or 2.5 mM beta-glycerophosphate), 0.3 mg/ml glutamine and either 25 microg/ml vitamin C or 5-12 microg/ml vitamin C-sulfate. The failure of these cultures to produce a mineralized matrix (assessed by electron microscopy, 45Ca uptake and Fourier transform infrared microscopy) led to the evaluation of each of these additives. We report here that the "stable" vitamin C-sulfate (ascorbic acid-2-sulfate) causes increased sulfate incorporation into the cartilage matrix. Furthermore, the release of sulfate from the vitamin C derivative appears to be responsible for the inhibition of mineral deposition, as demonstrated in cultures with equimolar amounts of vitamin C and sodium sulfate.

  3. Efficacy of copper sulfate hoof baths against digital dermatitis- Where is the evidence?

    DEFF Research Database (Denmark)

    Thomsen, Peter T.

    2015-01-01

    . For decades, copper sulfate hoof baths have been used to treat and prevent digital dermatitis. Copper sulfate has been referred to as the industry gold standard when it comes to hoof-bath chemicals. In several scientific studies testing the efficacy of other hoof-care products, copper sulfate has been used...... of this effect. The objective of this study was to evaluate the existing scientific literature to determine whether the efficacy of copper sulfate used in hoof baths against digital dermatitis has in fact been demonstrated scientifically. A systematic literature search identified 7 peer-reviewed journal articles...... as a positive control, thereby indicating that copper sulfate has a known positive effect. However, this may not be the case. A dilemma may exist between (1) copper sulfate generally being perceived as being effective against digital dermatitis and (2) a possible lack of well-documented scientific evidence...

  4. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments

    DEFF Research Database (Denmark)

    Habicht, K S; Canfield, D E

    1997-01-01

    Isotope fractionation during sulfate reduction by natural populations of sulfate-reducing bacteria was investigated in the cyanobacterial microbial mats of Solar Lake, Sinai and the sediments of Logten Lagoon sulfuretum, Denmark. Fractionation was measured at different sediment depths, sulfate...... concentrations, and incubation temperatures. Rates of sulfate reduction varied between 0.1 and 37 micromoles cm-3 d-1, with the highest rates among the highest ever reported from natural sediments. The depletion of 34S during dissimilatory sulfate reduction ranged from 16% to 42%, with the largest 34S...... sulfate reduction. Therefore, additional processes contributing to the fractionation of sulfur isotopes in the sediments are indicated. From both Solar Lake and Logten Lagoon we were able to enrich cultures of elemental sulfur-disproportionating bacteria. We suggest that isotope fractionation accompanying...

  5. KINETIKA REAKSI OKSIDASI KATALITIK FERO SULFAT DARI LIMBAH BESI DALAM REAKTOR LULUHAN

    Directory of Open Access Journals (Sweden)

    Hary Sulistyo

    2012-02-01

    Full Text Available Limbah besi yang berupa serbuk direaksikan dengan asam sulfat membentuk larutan fero sulfat. Larutan fero sulfat dapat dioksidasi menjadi feri sulfat. Oksidasi dijalankan dalam reaktor drift pada tekanan dan suhu tetap. Percobaan dilakukan pada kisaran suhu 323K sampai 353K dan konsentrasi katalisator dari 1,7 sampai 6,7 g/L, waktu reaksi 150 menit pada tekanan atmosferis. Nilai konversi tertinggi fero sulfat menjadi feri sulfat yang diperoleh 39,5%. Nilai koefisien perpindahan massa gas ke cairan dan cairan ke permukaan padatan berturut-turut 37,18 cm/s dan 180 cm/s. Hubungan antara konstante kecepatan reaksi permukaan dengan suhu dapat dinyatakan dalam bentuk persamaan Arrhenius, k = 2,8092x107exp(-8794/RT. Hasil penelitian yang diperoleh sesuai dengan data di pustaka dan kinetika reaksi ditentukan oleh gabungan antara perpindahan massa gas ke cairan dan reaksi pada permukaan katalisator. 

  6. Structure-Activity Relationships of Bioengineered Heparin/Heparan Sulfates Produced in Different Bioreactors

    Directory of Open Access Journals (Sweden)

    Ha Na Kim

    2017-05-01

    Full Text Available Heparin and heparan sulfate are structurally-related carbohydrates with therapeutic applications in anticoagulation, drug delivery, and regenerative medicine. This study explored the effect of different bioreactor conditions on the production of heparin/heparan sulfate chains via the recombinant expression of serglycin in mammalian cells. Tissue culture flasks and continuously-stirred tank reactors promoted the production of serglycin decorated with heparin/heparan sulfate, as well as chondroitin sulfate, while the serglycin secreted by cells in the tissue culture flasks produced more highly-sulfated heparin/heparan sulfate chains. The serglycin produced in tissue culture flasks was effective in binding and signaling fibroblast growth factor 2, indicating the utility of this molecule in drug delivery and regenerative medicine applications in addition to its well-known anticoagulant activity.

  7. Discovery and measurement of an isotopically distinct source of sulfate in Earth's atmosphere.

    Science.gov (United States)

    Dominguez, Gerardo; Jackson, Terri; Brothers, Lauren; Barnett, Burton; Nguyen, Bryan; Thiemens, Mark H

    2008-09-01

    Sulfate (SO(4)) and its precursors are significant components of the atmosphere, with both natural and anthropogenic sources. Recently, our triple-isotope ((16)O, (17)O, (18)O) measurements of atmospheric sulfate have provided specific insights into the oxidation pathways leading to sulfate, with important implications for models of the sulfur cycle and global climate change. Using similar isotopic measurements of aerosol sulfate in a polluted marine boundary layer (MBL) and primary sulfate (p-SO(4)) sampled directly from a ship stack, we quantify the amount of p-SO(4) found in the atmosphere from ships. We find that ships contribute between 10% and 44% of the non-sea-salt sulfate found in fine [diameter (D) international maritime law, and atmospheric chemistry.

  8. Enhanced Sulfate Management in HLW Glass Formulations VSL12R2540-1 REV 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Kot, Wing [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States)

    2012-11-13

    The Low Activity Waste (LAW) tanks that are scheduled to provide the Hanford Tank Waste Treatment and Immobilization Plant (WTP) with waste feeds contain significant amounts of sulfate. The sulfate content in the LAW feeds is sufficiently high that a separate molten sulfate salt phase may form on top of the glass melt during the vitrification process unless suitable glass formulations are employed and sulfate levels are controlled. Since the formation of the salt phase is undesirable from many perspectives, mitigation approaches had to be developed. Considerable progress has been made and reported by the Vitreous State Laboratory (VSL) in enhancing sulfate incorporation into LAW glass melts and developing strategies to manage and mitigate the risks associated with high-sulfate feeds.

  9. Sulfation effect on levan polysaccharide chains structure with molecular dynamics simulations

    Science.gov (United States)

    Coskunkan, Binnaz; Turgut, Deniz; Rende, Deniz; Malta, Seyda; Baysal, Nihat; Ozisik, Rahmi; Toksoy-Oner, Ebru

    Diversity in conformations and structural heterogeneity make polysaccharides the most challenging biopolymer type for experimental and theoretical characterization studies. Levan is a biopolymer chain that consists of fructose rings with β(2-6) linkages. It is a glycan that has great potential as a functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Sulfated polysaccharides are group of macromolecules with sulfated groups in their hydroxyl parts with a range of important biological properties. Sulfate groups and their positions have a major effect on anticoagulant activity. It is reported that sulfate modified levan has anticoagulant activity such as heparin. In the current study, the effect of sulfation on the structure and dynamics of unmodified and sulfate modified levan are investigated via fully atomistic Molecular Dynamics simulations in aqueous media and varying salt concentrations at 310 K. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  10. Manganese complexes with bicarbonate and sulfate in natural water

    Science.gov (United States)

    Hem, J.D.

    1963-01-01

    The association constant for the dissolved species MnHCO3+ was experimentally determined to be 63. From this value and a published constant for the species MNSO4 aq., a diagram was prepared showing per cent of dissolved manganese complexed in the presence of 10 to 10,000 p.p.m. bicarbonate and 1.0 to 10,000 p.p.m. sulfate. The rate of oxidation of Mn+2 in aerated water is greatly increased by increasing pH, and is retarded when SO4-2and HCO3- are present.

  11. Biphenyl-4-yl 2,2,2-trichloroethyl sulfate

    Directory of Open Access Journals (Sweden)

    Xueshu Li

    2010-05-01

    Full Text Available The molecular structure of the title compound, C14H11Cl3O4S, displays a biphenyl dihedral angle of 4.9 (2° between the benzene rings, which is significantly smaller than the calculated dihedral angle of 41.2° of biphenyl derivatives without ortho substituents. The CAr—O bond length of 1.432 (4 Å is comparable with other sulfuric acid biphenyl-4-yl ester 2,2,2-trichloroether ester derivatives without electronegative substituents in the sulfated phenyl ring.

  12. Corrosion Inhibition of Carbon Steel in Chloride and Sulfate Solutions

    Directory of Open Access Journals (Sweden)

    Amr Ahmed Elsayed

    2016-02-01

    Full Text Available Corrosion is a major problem in industry and in infrastructure; a huge sum of expenditure every year is spent on preventing, retarding, and repairing its damages. This work studies the engineering of an inhibitor for carbon steel metal used in the cooling systems containing high concentration of chloride and sulfate ions. For this purpose, the synergy between the dichromate, molybdate and nitrite inhibitors is examined and optimized to the best results. Moreover, care was taken that the proposed inhibitor is compliant with the environmental laws and regulations.

  13. Complexation between dodecyl sulfate surfactant and zein protein in solution.

    Science.gov (United States)

    Ruso, Juan M; Deo, Namita; Somasundaran, P

    2004-10-12

    Interactions between sodium dodecyl sulfate and zein protein, a model system for the understanding of the effect of surfactants on skin, were investigated using a range of techniques involving UV-vis spectroscopy, TOC (total organic carbon analysis), electrophoresis, and static and dynamic light scattering. Zein protein was solubilized by SDS. The adsorption of SDS onto insoluble protein fraction caused the zeta potential of the complex to become more negative. From these values, we calculated the Gibbs energy of absorption, which decreases when the SDS concentration is raised. Finally the structure of the complex, based on the analysis by static and dynamic light scattering, is proposed to be rod like.

  14. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  15. Sulfate Metabolites of 4-Monochlorobiphenyl in Whole Poplar Plants

    OpenAIRE

    Zhai, Guangshu; Lehmler, Hans-Joachim; Schnoor, Jerald L.

    2012-01-01

    4-Monochlorobiphenyl (PCB3) has been proven to be transformed into hydroxylated metabolites of PCB3 (OH-PCB3s) in whole poplar plants in our previous work. However, hydroxylated metabolites of PCBs, including OH-PCB3s, as the substrates of sulfotransferases have not been studied in many organisms including plants in vivo. Poplar (Populus deltoides × nigra, DN34) was used to investigate the further metabolism from OH-PCB3s to PCB3 sulfates because it is a model plant and one that is frequently...

  16. Microstructural Origins of Cement Paste Degradation by External Sulfate Attack

    Science.gov (United States)

    Feng, Pan; Garboczi, Edward J.; Miao, Changwen; Bullard, Jeffrey W.

    2015-01-01

    A microstructure model has been applied to simulate near-surface degradation of portland cement paste in contact with a sodium sulfate solution. This new model uses thermodynamic equilibrium calculations to guide both compositional and microstructure changes. It predicts localized deformation and the onset of damage by coupling the confined growth of new solids with linear thermoelastic finite element calculations of stress and strain fields. Constrained ettringite growth happens primarily at the expense of calcium monosulfoaluminate, carboaluminate and aluminum-rich hydrotalcite, if any, respectively. Expansion and damage can be mitigated chemically by increasing carbonate and magnesium concentrations or microstructurally by inducing a finer dispersion of monosulfate. PMID:26722191

  17. Neurobehavioral toxicity of cadmium sulfate to the planarian Dugesia dorotocephala

    Energy Technology Data Exchange (ETDEWEB)

    Grebe, E.; Schaeffer, D.J. (Univ. of Illinois, Urbana (United States))

    1991-05-01

    The authors are developing bioassays which use planarians (free-living platyhelminthes) for the rapid determination of various types of toxicity, including acute mortality, tumorigenicity, and short-term neurobehavioral responses. Their motivation for using these animals is due to their importance as components of the aquatic ecology of unpolluted streams their sensitivity to low concentrations of environmental toxicants and the presence of a sensitive neurological system with a true brain which allows for complex social behavior. A previous paper described the results of a neurobehavioral bioassay using phenol in a crossover study. This paper reports a similar crossover study using cadmium sulfate.

  18. Inadvertent intrathecal injection of large dose magnesium sulfate

    Directory of Open Access Journals (Sweden)

    Atabak Najafi

    2013-01-01

    Full Text Available The case is a 35-year-old man who underwent spinal anesthesia for emergency strangulated inguinal hernia repair. About five minutes after 3 ml intrathecal drug injection, the patient suffered respiratory distress, bradycardia, hypotension and loss of consciousness. The patient was rapidly intubated and crystalloid infusion and epinephrine drip were established. Thereafter, he was admitted in intensive care unit. Search for the cause revealed us that 3 ml of magnesium sulfate (50% was injected mistakenly for spinal anesthesia. Two days later, he was extubated and on the fifth day, he was discharged from the hospital without an obvious evidence of complication.

  19. Recovery of alumina and some heavy metals from sulfate liquor

    Directory of Open Access Journals (Sweden)

    M.N. El Hazek

    2016-05-01

    Full Text Available The gibbsite bearing shale occurrence in the Paleozoic sedimentary sequence of SW Sinai, Egypt, was found to be associated with several metal values. From sulfate liquor prepared by proper leaching, the recovery of these metal values has been studied. Alumina was first separated in the form of potash alum followed by Cu-selective extraction by hydroxyoxime LIX-973N solvent. Then U recovery using an anionic exchange resin Amberlite IRA-400 was achieved. For the associated heavy metal Zn, it was subsequently extracted using di-2-ethylhexyl phosphoric acid. The relevant factors affecting the extraction process were adequately studied.

  20. External sulfate attack in dam concretes with thaumasite formation

    Directory of Open Access Journals (Sweden)

    Chinchón-Payá, S.

    2015-03-01

    Full Text Available Concrete core samples extracted from different areas of the Mequinenza Dam (Spain have been studied and expansive reactions affecting the structure were not found. However, expansive reactions in the concrete of certain parts located near the abutments of two galleries have been observed as a consequence of an external sulfate attack due to the sulfur compounds contained in the lignites that are present on the surrounding terrain. Secondary gypsum, ettringite, and thaumasite, as well as several sulfate efflorescence have been detected. The thaumasite formed in the degraded concrete is related to a Thaumasite Sulfate Attack (TSA. Scanning Electron Microscopy (SEM and Rietveld analyses of the TSA samples would show that thaumasite could have been formed thanks to ettringite acting as nuclei or by a direct precipitation from solutions within the pores of the cement matrix.Se han estudiado testigos de hormigón extraídos de diferentes zonas de la presa de Mequinenza (España descartando la existencia de una reacción expansiva que pudiera afectar a la estructura. Sin embargo, se han observado reacciones expansivas en el hormigón de ciertas zonas próximas a los estribos de dos galerías, como consecuencia de un ataque sulfático externo debido a los compuestos de azufre contenidos en los lignitos que están presentes en los terrenos circundantes. Se ha identificado un conjunto de productos relacionados con el ataque sulfático: yeso secundario, ettringita y thaumasita, además de sales sulfatadas solubles. Las zonas más degradadas del hormigón coinciden con una cristalización abundante de thaumasita (Thaumasite Sulfate Attack–TSA-. El estudio de las muestras de TSA, mediante microscopía electrónica de barrido (SEM y el método de Rietveld, indicaría que la thaumasita podría haberse formado a partir de la ettringita como medio de nucleación o por precipitación directa a partir de sus componentes en disolución dentro de los poros de la

  1. Production of actinium-225 for alpha particle mediated radioimmunotherapy.

    Science.gov (United States)

    Boll, Rose A; Malkemus, Dairin; Mirzadeh, Saed

    2005-05-01

    The initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the alpha emitter (213)Bi in killing cancer cells. Bismuth-213 is obtained from a radionuclide generator system from decay of 10-days (225)Ac parent. Recent pre-clinical studies have also shown the potential application of both (213)Bi, and the (225)Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. This paper describes our five years of experience in production of (225)Ac in partial support of the on-going clinical trials. A four-step chemical process, consisting of both anion and cation exchange chromatography, is utilized for routine separation of carrier-free (225)Ac from a mixture of (228)Th, (229)Th and (232)Th. The separation of Ra and Ac from Th is achieved using the marcoporous anion exchange resin MP1 in 8M HNO(3) media. Two sequential MP1/NO(3) columns provide a separation factor of approximately 10(6) for Ra and Ac from Th. The separation of Ac from Ra is accomplished on a low cross-linking cation exchange resin AG50-X4 using 1.2M HNO(3) as eluant. Two sequential AG50/NO(3) columns provide a separation factor of approximately 10(2) for Ac from Ra. A 60-day processing schedule has been adopted in order to reduce the processing cost and to provide the highest levels of (225)Ac possible. Over an 8-week campaign, a total of approximately 100 mCi of (225)Ac (approximately 80% of the theoretical yield) is shipped in 5-6 batches, with the first batch typically consisting of approximately 50 mCi. After the initial separation and purification of Ac, the Ra pool is re-processed on a bi-weekly schedule or as needed to provide smaller batches of (225)Ac. The averaged radioisotopic purity of the (225)Ac was 99.6 +/- 0.7% with a (225)Ra content of < or =0.6%, and an average (229)Th content of (4(-4)(+5)) x 10(-5)%.

  2. Isolation of Actinium from Neutron-irradiated Thorium-I

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    Isolation of Actinium from Neutron-irradiated Thorium-I¥YangWeifan;YuanShuanggui;MuWantong;ZhangXueqian;LiZhongweiandZhaoLili...

  3. The Effects of Morphine Sulfate on Agglutination, Clot Formation and Hemolysis in Packed Red Blood Cells

    Science.gov (United States)

    2007-11-02

    THE EFFECTS OF MORPHINE SULFATE ON AGGLUTINATION , CLOT FORMATION AND HEMOLYSIS IN PACKED RED BLOOD CELLS 6. AUTHOR(S) CAPT ESTAVILLO BRIAN K 7...ANSI Std8 239.18 Designed using Perform Pro, WHS/DIOR, Oct 94 THE EFFECTS OF MORPHINE SULFATE ON AGGLUTINATION , CLOT FORMATION AND HEMOLYSIS IN PACKED...that the use of any copyrighted material in the thesis entitled: "THE EFFECTS OF MORPHINE SULFATE ON AGGLUTINATION , CLOT FORMATION AND HEMOLYSIS IN

  4. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.

    Science.gov (United States)

    Baldwin, Darren S; Mitchell, Alison

    2012-03-15

    The impact of sulfate pollution is increasingly being seen as an issue in the management of inland aquatic ecosystems. In this study we use sediment slurry experiments to explore the addition of sulfate, with or without added carbon, on the anaerobic biogeochemical cycles in a wetland sediment that previously had not been exposed to high levels of sulfate. Specifically we looked at the cycling of S (sulfate, dissolved and particulate sulfide--the latter measured as acid volatile sulfide; AVS), C (carbon dioxide, bicarbonate, methane and the short chain volatile fatty acids formate, acetate, butyrate and propionate), N (dinitrogen, ammonium, nitrate and nitrite) and redox active metals (Fe(II) and Mn(II)). Sulfate had the largest effects on the cycling of S and C. All the added S at lower loadings were converted to AVS over the course of the experiment (30 days). At the highest loading (8 mmol) less than 50% of consumed S was converted to AVS, however this is believed to be a kinetic effect. Although sulfate reduction was occurring in sediments with added sulfate, dissolved sulfide concentrations remained low throughout the study. Sulfate addition affected methanogenesis. In the absence of added carbon, addition of sulfate, even at a loading of 1 mmol, resulted in a halving of methane formation. The initial rate of formation of methane was not affected by sulfate if additional carbon was added to the sediment. However, there was evidence for anaerobic methane oxidation in those sediments with added sulfate and carbon, but not in those sediments treated only with carbon. Surprisingly, sulfate addition had little apparent impact on N dynamics; previous studies have shown that sulfide can inhibit denitrification and stimulate dissimilatory nitrate reduction to ammonia. We propose that because most of the reduced sulfur was in particulate form, levels of dissolved sulfide were too low to interfere with the N cycle.

  5. Short communication: Efficacy of copper sulfate hoof baths against digital dermatitis--Where is the evidence?

    Science.gov (United States)

    Thomsen, Peter T

    2015-04-01

    Digital dermatitis is a major problem in modern dairy production because of decreased animal welfare and financial losses. Individual cow treatments are often seen as too time consuming by farmers, and walk-through hoof baths have therefore been used extensively to control digital dermatitis. For decades, copper sulfate hoof baths have been used to treat and prevent digital dermatitis. Copper sulfate has been referred to as the industry gold standard when it comes to hoof-bath chemicals. In several scientific studies testing the efficacy of other hoof-care products, copper sulfate has been used as a positive control, thereby indicating that copper sulfate has a known positive effect. However, this may not be the case. A dilemma may exist between (1) copper sulfate generally being perceived as being effective against digital dermatitis and (2) a possible lack of well-documented scientific evidence of this effect. The objective of this study was to evaluate the existing scientific literature to determine whether the efficacy of copper sulfate used in hoof baths against digital dermatitis has in fact been demonstrated scientifically. A systematic literature search identified 7 peer-reviewed journal articles describing the efficacy of copper sulfate in hoof baths as treatment or prevention of bovine digital dermatitis. Only 2 of the 7 studies compared copper sulfate to a negative control; most studies were relatively small, and often no clear positive effect of copper sulfate was demonstrated. In conclusion, the frequent claim that copper sulfate is widely reported to be effective is supported by little scientific evidence. Well-designed clinical trials evaluating the effect of copper sulfate against digital dermatitis compared with a negative control are needed. Until such studies have been made, the efficacy of copper sulfate in hoof baths against digital dermatitis remains largely unproven.

  6. The Microbial Metabolic Characteristics in the Course of Sulfate-Reduction

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Acid-producing phase reactor of two-phase anaerobic treatment process has remarkable advantages treating sulfate-laden wastewater. In order to investigate SRB population's capability of utilizing substrate and the microbial acidification type formed during the course of sulfate reduction, continuous-flow and batch tests were conducted in a continuous stirred tank bio-film reactor supplied with sodium sulfate as electron acceptor. The experimental results demonstrated that the acidification type formed b...

  7. A Versatile pH Sensitive Chondroitin Sulfate-PEG Tissue Adhesive and Hydrogel**

    OpenAIRE

    Strehin, Iossif; Nahas, Zayna; Arora,Karun; Nguyen, Thao; Elisseeff, Jennifer

    2010-01-01

    We developed a chondroitin sulfate - polyethylene glycol (CS-PEG) adhesive hydrogel with numerous potential biomedical applications. The carboxyl groups on chondroitin sulfate (CS) chains were functionalized with N-hydroxysuccinimide (NHS) to yield chondroitin sulfate succinimidyl succinate (CS-NHS). Following purification, the CS-NHS molecule can react with primary amines to form amide bonds. Hence, using six arm polyethylene glycol amine PEG-(NH2)6 as a crosslinker we formed a hydrogel whic...

  8. Biological activities of the sulfated polysaccharide from the vascular plant Halodule wrightii

    OpenAIRE

    Juliana M. C. Silva; Nednaldo Dantas-Santos; Dayanne L. Gomes; Leandro S. Costa; Sara L. Cordeiro; Costa,Mariana S. S. P.; Silva,Naisandra B.; Maria de L. Freitas; Katia Castanho Scortecci; Edda L. Leite; Rocha, Hugo A. O.

    2012-01-01

    A sulfated polysaccharide (SPSG) was successfully isolated from seagrass Halodule wrightii Asch., Cymodoceaceae, and its antioxidant and anticoagulant activities were investigated. The data presented here showed that the SPSG is a 11 kDa sulfated heterogalactan with a sulfatation degree of 20.63% and it also contains glucose and xylose. SPSG antioxidant activities were evaluated using several in vitro assays and the anticoagulant activity was evaluated by aPTT and PT tests. These assays sugge...

  9. Acidity enhancement of niobia by sulfation: An experimental and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Angela S., E-mail: angela.sanches.rocha@gmail.com [Universidade do Estado do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil); Costa, Gustavo C. [Universidade do Estado do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil); Tamiasso-Martinhon, Priscila; Sousa, Célia; Rocha, Alexandre B. [Universidade Federal do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil)

    2017-01-15

    Acidic solids are used as catalyst at several industrial processes and studies to improve their activities have been developed by different groups. One method well known is sulfating oxide to create new acid sites, but investigations about sulfated niobia are still scarce. This work studied the influence of sulfation on the niobia acidity by using a very simple reaction model, the esterification of acetic acid with ethanol, performed at 60 °C and 1 atm. Niobia and sulfated niobia samples were characterized by N{sub 2} adsorption, X-ray diffraction, FTIR and titration with n-butylamine. To investigate the nature of sulfate groups formed on the surface of niobia, calculations based on the Density Functional Theory (DFT) have been performed for two models: pure niobia with hydroxylated surface and sulfated niobia where one OH{sup −} surface group was replaced by a HSO{sub 4}{sup −}. The experimental results indicated that the sulfation treatment leads to an increase in the specific surface area, acidity and, consequently, in the activity of niobia, with small changes in the crystal structure of the solid. The presence of sulfate groups was evidenced by FTIR spectra and calculations have indicated HSO{sub 4}{sup −} species bounded to the surface. Density Functional Perturbation Theory (DFPT) was also employed to obtain infrared intensities in the region of sulfate vibration bands. - Highlights: • Sulfation treatment has improved the acidity of niobium oxide. • A sulfate group on niobia (T-Nb{sub 2}O{sub 5}) was proposed using DFT method. • Niobia and sulfated niobia are used for esterification of acetic acid with ethanol.

  10. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland

    Science.gov (United States)

    Coleman Wasik, J. K.; Engstrom, D. R.; Mitchell, C. P. J.; Swain, E. B.; Monson, B. A.; Balogh, S. J.; Jeremiason, J. D.; Branfireun, B. A.; Kolka, R. K.; Almendinger, J. E.

    2015-09-01

    A series of severe droughts during the course of a long-term, atmospheric sulfate-deposition experiment in a boreal peatland in northern Minnesota created a unique opportunity to study how methylmercury (MeHg) production responds to drying and rewetting events in peatlands under variable levels of sulfate loading. Peat oxidation during extended dry periods mobilized sulfate, MeHg, and total mercury (HgT) to peatland pore waters during rewetting events. Pore water sulfate concentrations were inversely related to antecedent moisture conditions and proportional to past and current levels of atmospheric sulfate deposition. Severe drying events caused oxidative release of MeHg to pore waters and resulted in increased net MeHg production likely because available sulfate stimulated the activity of sulfate-reducing bacteria, an important group of Hg-methylating bacteria in peatlands. Rewetting events led to increased MeHg concentrations across the peatland, but concentrations were highest in peat receiving elevated atmospheric sulfate deposition. Dissolved HgT concentrations also increased in peatland pore waters following drought but were not affected by sulfate loading and did not appear to be directly controlled by dissolved organic carbon mobilization to peatland pore waters. Peatlands are often considered to be sinks for sulfate and HgT in the landscape and sources of MeHg. Hydrologic fluctuations not only serve to release previously sequestered sulfate and HgT from peatlands but may also increase the strength of peatlands as sources of MeHg to downstream aquatic systems, particularly in regions that have experienced elevated levels of atmospheric sulfate deposition.

  11. Selective recognition of sulfate anions by a cyclopeptide-derived receptor in aqueous phosphate buffer.

    Science.gov (United States)

    Schaly, Astrid; Belda, Raquel; García-España, Enrique; Kubik, Stefan

    2013-12-20

    A cyclopeptide-based anion receptor containing alternating 6-aminopicolinic acid and substituted (4R)-4-aminoproline subunits with appended β-alanine residues binds sulfate anions in water. Importantly, appreciable sulfate binding is even observed in phosphate buffer, hence in the presence of anions of similar structure but with a different degree of protonation. The cause for the high selectivity of this receptor is related to the mode of action of the sulfate-binding protein.

  12. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions.

    Science.gov (United States)

    Krick, Wolfgang; Schnedler, Nina; Burckhardt, Gerhard; Burckhardt, Birgitta C

    2009-07-01

    Tubular reabsorption of sulfate is achieved by the sodium-dependent sulfate transporter, NaSi-1, located at the apical membrane, and the sulfate-anion exchanger, sat-1, located at the basolateral membrane. To delineate the physiological role of rat sat-1, [(35)S]sulfate and [(14)C]oxalate uptake into sat-1-expressing oocytes was determined under various experimental conditions. Influx of [(35)S]sulfate was inhibited by bicarbonate, thiosulfate, sulfite, and oxalate, but not by sulfamate and sulfide, in a competitive manner with K(i) values of 2.7 +/- 1.3 mM, 101.7 +/- 9.7 microM, 53.8 +/- 10.9 microM, and 63.5 +/- 38.7 microM, respectively. Vice versa, [(14)C]oxalate uptake was inhibited by sulfate with a K(i) of 85.9 +/- 9.5 microM. The competitive type of inhibition indicates that these compounds are most likely substrates of sat-1. Physiological plasma bicarbonate concentrations (25 mM) reduced sulfate and oxalate uptake by more than 75%. Simultaneous application of sulfate, bicarbonate, and oxalate abolished sulfate as well as oxalate uptake. These data and electrophysiological studies using a two-electrode voltage-clamp device provide evidence that sat-1 preferentially works as an electroneutral sulfate-bicarbonate or oxalate-bicarbonate exchanger. In kidney proximal tubule cells, sat-1 likely completes sulfate reabsorption from the ultrafiltrate across the basolateral membrane in exchange for bicarbonate. In hepatocytes, oxalate extrusion is most probably mediated either by an exchange for sulfate or bicarbonate.

  13. Draft Genome Sequence of a Novel Desulfobacteraceae Member from a Sulfate-Reducing Bioreactor Metagenome

    Science.gov (United States)

    Pinto, Ameet J.; Figueroa, Linda A.; Sharp, Jonathan O.

    2016-01-01

    Sulfate-reducing bacteria are important players in the global sulfur cycle and of considerable commercial interest. The draft genome sequence of a sulfate-reducing bacterium of the family Desulfobacteraceae, assembled from a sulfate-reducing bioreactor metagenome, indicates that heavy-metal– and acid-resistance traits of this organism may be of importance for its application in acid mine drainage mitigation. PMID:26769931

  14. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kijjanapanich, Pimluck, E-mail: som_cheng00@hotmail.com [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Do, Anh Tien [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Annachhatre, Ajit P. [Environmental Engineering and Management, Asian Institute of Technology, PO Box 4, Klongluang, Pathumthani 12120 (Thailand); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino (Italy); Yeh, Daniel H. [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Lens, Piet N.L. [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands)

    2014-03-01

    Highlights: • Novel biological technique for gypsum removal from CDD. • CDDS leachate treatment performed using different sulfate reducing bioreactors. • Gypsum in CDD can be used as a source of sulfate for sulfate reducing bacteria. • High calcium concentration (1000 mg L{sup −1}) did not affect the bioreactor performance. - Abstract: Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75–85% was achieved at a hydraulic retention time (HRT) of 15.5 h. A high calcium concentration up to 1000 mg L{sup −1} did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems.

  15. Sulfate Salts in Gasoline and Ethanol Fuels -- Historical Perspective and Analysis of Available Data

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Alleman, Teresa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yanowitz, Janet [Ecoengineering, Inc.

    2017-09-21

    This report reviews the chemistry of sulfate salts dissolved in ethanol and gasoline, potential sources of sulfate salts in ethanol and gasoline, the history of consumer vehicle issues with sulfate salt deposits in the early 2000s, and the corresponding changes to the denatured fuel ethanol specification. Recommendations for future research are provided. During a period of rapid market expansion in 2004-05, issues were reported with vehicles running on E10 provided by certain suppliers in some markets. It was commonly believed that these vehicle problems were caused by sulfate salts precipitating from the fuel. Investigators identified sodium sulfate, and in one case also ammonium sulfate, as the predominate salts found in the engines. Several stakeholders believed the issue was excess sulfate ions in the ethanol portion of the E10, and in 2005 the ASTM specification for ethanol (D4806) was modified to include a 4-part per million (ppm) limit on sulfate ions. While there have been no further reports of consumer vehicle issues, the recently approved increase of ethanol in gasoline from 10 to 15 volume percent has resulted in renewed interest in the sulfate ion concentration in fuel ethanol. This report reviews published data on the solubility of sulfate salts in ethanol. The possible sources of sulfate anions and charge balancing cations (such as sodium) in fuel ethanol and petroleum derived blendstocks are discussed. Examination of historical information on the consumer vehicle issues that occurred in 2004-2005 reveals that a source of sodium or ammonium ions, required for the formation of the observed insoluble salts, was never identified. Recommendations for research to better understand sulfate salt solubility issues in ethanol, hydrocarbon blendstocks, and ethanol-gasoline blends are presented.

  16. Discovery of a TNF-α Antagonist Using Chondroitin Sulfate Microarrays

    OpenAIRE

    Tully, Sarah E.; Rawat, Manish; Hsieh-Wilson, Linda C.

    2006-01-01

    We report the first example of synthetic chondroitin sulfate (CS) microarrays to rapidly identify glycosaminoglycan−protein interactions and probe the specificity of proteins for distinct sulfation sequences. Using the microarrays, we identify a novel interaction between CS and TNF-α, a proinflammatory cytokine involved in rheumatoid arthritis, Crohn's disease, and psoriasis. Moreover, we demonstrate that CS-E tetrasaccharides and polysaccharides enriched in the CS-E sulfation motif can inhib...

  17. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action.

    Science.gov (United States)

    Mourão, P A; Pereira, M S; Pavão, M S; Mulloy, B; Tollefsen, D M; Mowinckel, M C; Abildgaard, U

    1996-09-27

    A polysaccharide isolated from the body wall of the sea cucumber Ludwigothurea grisea has a backbone like that of mammalian chondroitin sulfate: [4-beta-D-GlcA-1-->3-beta-D-GalNAc-1]n but substituted at the 3-position of the beta--glucuronic acid residues with sulfated alpha--fucopyranosyl branches (Vieira, R. P., Mulloy, B., and Mourão, P. A. S. (1991) J. Biol. Chem. 266, 13530-13536). Mild acid hydrolysis removes the sulfated alpha--fucose branches, and cleaved residues have been characterized by 1H NMR spectroscopy; the most abundant species is fucose 4-O-monosulfate, but 2,4- and 3, 4-di-O-sulfated residues are also present. Degradation of the remaining polysaccharide with chondroitin ABC lyase shows that the sulfated alpha-L-fucose residues released by mild acid hydrolysis are concentrated toward the non-reducing end of the polysaccharide chains; enzyme-resistant polysaccharide material includes the reducing terminal and carries acid-resistant -fucose substitution. The sulfated alpha-L-fucose branches confer anticoagulant activity on the polysaccharide. The specific activity of fucosylated chondroitin sulfate in the activated partial thromboplastin time assay is greater than that of a linear homopolymeric alpha-L-fucan with about the same level of sulfation; this activity is lost on defucosylation or desulfation but not on carboxyl-reduction of the polymer. Assays with purified reagents show that the fucosylated chondroitin sulfate can potentiate the thrombin inhibition activity of both antithrombin and heparin cofactor II.

  18. Modelling Fluids Associated with Sulfate Veining in Yellowknife Bay, Gale Crater

    Science.gov (United States)

    Bridges, J. C.; Schwenzer, S. P.; Berger, G.; Mangold, N.; Wiens, R. C.; Westall, F. W.; Oehler, D. Z.; Leveille, R.; MSL Team

    2013-09-01

    The sedimentary outcrops in Yellowknife Bay, Gale Crater show sulfate veining (Fig. 1). Understanding the fluid chemistry, temperature and pH of the associated fluids is an important part of the aims of Mars Science Laboratory - establishing where conditions were habitable for microbial life. The veins are particularly abundant in the Sheepbed area which contains fine-grained lithified sediments in the lowest part of the exposed Yellowknife stratigraphy. The sulfate identity has been determined from Laser Induced Breakdown Spectroscopy analyses, the latter suggesting Ca sulfate [1]. Visually, the MastCam and Remote Micro-Imager photographs suggest that the veins are near pure sulfate.

  19. Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan

    Directory of Open Access Journals (Sweden)

    Shinji Miyata

    2016-01-01

    Full Text Available Perineuronal nets (PNNs are lattice-like extracellular matrix structures composed of chondroitin sulfate proteoglycans (CSPGs. The appearance of PNNs parallels the decline of neural plasticity, and disruption of PNNs reactivates neural plasticity in the adult brain. We previously reported that sulfation patterns of chondroitin sulfate (CS chains on CSPGs influenced the formation of PNNs and neural plasticity. However, the mechanism of PNN formation regulated by CS sulfation remains unknown. Here we found that overexpression of chondroitin 6-sulfotransferase-1 (C6ST-1, which catalyzes 6-sulfation of CS chains, selectively decreased aggrecan, a major CSPG in PNNs, in the aged brain without affecting other PNN components. Both diffuse and PNN-associated aggrecans were reduced by overexpression of C6ST-1. C6ST-1 increased 6-sulfation in both the repeating disaccharide region and linkage region of CS chains. Overexpression of 6-sulfation primarily impaired accumulation of aggrecan in PNNs, whereas condensation of other PNN components was not affected. Finally, we found that increased 6-sulfation accelerated proteolysis of aggrecan by a disintegrin and metalloproteinase domain with thrombospondin motif (ADAMTS protease. Taken together, our results indicate that sulfation patterns of CS chains on aggrecan influenced the stability of the CSPG, thereby regulating formation of PNNs and neural plasticity.

  20. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations

    Science.gov (United States)

    Liu, J.; Mauzerall, D. L.; Horowitz, L. W.

    2008-07-01

    We analyze the effect of varying East Asian (EA) sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2). We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R) relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80% 20% of sulfate at the surface, but at least 50% at 500 hPa. Surface sulfate concentrations are dominated by local anthropogenic sources. Of the sulfate produced from sources other than local anthropogenic emissions (defined here as "background" sulfate), EA sources account for approximately 30% 50% (over the Western US) and 10% 20% (over the Eastern US). The surface concentrations of sulfate from EA sources over the Western US are highest in MAM (up to 0.15 μg/m3), and lowest in DJF (less than 0.06 μg/m3). Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence (represented by the areas where at least 0.1 μg m-3 of sulfate originates from EA) over the North Pacific both at the surface and at 500 hPa in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (in particular of H2O2, which oxidizes SO2 to sulfate in the aqueous phase). We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be obtained using either sensitivity (i.e., varying emissions from a region to examine the effects on downwind concentrations