WorldWideScience

Sample records for actinium isotopes

  1. Discovery of the actinium, thorium, protactinium, and uranium isotopes

    CERN Document Server

    Fry, C

    2012-01-01

    Currently, 31 actinium, 31 thorium, 28 protactinium, and 23 uranium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, S., E-mail: s.raeder@gsi.de [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Bastin, B. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Block, M. [Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Institut für Kernchemie, Johannes Gutenberg Universität, 55128 Mainz (Germany); Creemers, P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Delahaye, P. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Ferrer, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Fléchard, X. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Franchoo, S. [Institute de Physique Nucléaire (IPN) d’Orsay, 91406 Orsay, Cedex (France); Ghys, L. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol (Belgium); Gaffney, L.P.; Granados, C. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heinke, R. [Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz (Germany); Hijazi, L. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); and others

    2016-06-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  3. Spectroscopic and computational investigation of actinium coordination chemistry

    Science.gov (United States)

    Ferrier, Maryline G.; Batista, Enrique R.; Berg, John M.; Birnbaum, Eva R.; Cross, Justin N.; Engle, Jonathan W.; La Pierre, Henry S.; Kozimor, Stosh A.; Lezama Pacheco, Juan S.; Stein, Benjamin W.; Stieber, S. Chantal E.; Wilson, Justin J.

    2016-08-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac-Cl and Ac-OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1- ligands (3.2+/-1.1) than AmIII (0.8+/-0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour.

  4. Spectroscopic and computational investigation of actinium coordination chemistry

    Science.gov (United States)

    Ferrier, Maryline G.; Batista, Enrique R.; Berg, John M.; Birnbaum, Eva R.; Cross, Justin N.; Engle, Jonathan W.; La Pierre, Henry S.; Kozimor, Stosh A.; Lezama Pacheco, Juan S.; Stein, Benjamin W.; Stieber, S. Chantal E.; Wilson, Justin J.

    2016-01-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac–Cl and Ac–OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1– ligands (3.2±1.1) than AmIII (0.8±0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour. PMID:27531582

  5. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes.

    Science.gov (United States)

    Radchenko, V; Engle, J W; Wilson, J J; Maassen, J R; Nortier, F M; Taylor, W A; Birnbaum, E R; Hudston, L A; John, K D; Fassbender, M E

    2015-02-06

    Actinium-225 (t1/2=9.92d) is an α-emitting radionuclide with nuclear properties well-suited for use in targeted alpha therapy (TAT), a powerful treatment method for malignant tumors. Actinium-225 can also be utilized as a generator for (213)Bi (t1/2 45.6 min), which is another valuable candidate for TAT. Actinium-225 can be produced via proton irradiation of thorium metal; however, long-lived (227)Ac (t1/2=21.8a, 99% β(-), 1% α) is co-produced during this process and will impact the quality of the final product. Thus, accurate assays are needed to determine the (225)Ac/(227)Ac ratio, which is dependent on beam energy, irradiation time and target design. Accurate actinium assays, in turn, require efficient separation of actinium isotopes from both the Th matrix and highly radioactive activation by-products, especially radiolanthanides formed from proton-induced fission. In this study, we introduce a novel, selective chromatographic technique for the recovery and purification of actinium isotopes from irradiated Th matrices. A two-step sequence of cation exchange and extraction chromatography was implemented. Radiolanthanides were quantitatively removed from Ac, and no non-Ac radionuclidic impurities were detected in the final Ac fraction. An (225)Ac spike added prior to separation was recovered at ≥ 98%, and Ac decontamination from Th was found to be ≥ 10(6). The purified actinium fraction allowed for highly accurate (227)Ac determination at analytical scales, i.e., at (227)Ac activities of 1-100 kBq (27 nCi to 2.7 μCi). Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources.

    Science.gov (United States)

    Soderquist, Chuck Z; McNamara, Bruce K; Fisher, Darrell R

    2012-07-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclide with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing (223)Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity (223)Ra from (227)Ac. We obtained (227)Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity (223)Ra. We extracted (223)Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free (223)Ra product, and does not disturb the (227)Ac/(227)Th equilibrium. A high purity, carrier-free (227)Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of (223)Ra for research and new alpha-emitter radiopharmaceutical development.

  7. Relativistic small-core pseudopotentials for actinium, thorium, and protactinium.

    Science.gov (United States)

    Weigand, Anna; Cao, Xiaoyan; Hangele, Tim; Dolg, Michael

    2014-04-03

    Small-core pseudopotentials for actinium, thorium, and protactinium have been energy-adjusted to multiconfiguration Dirac-Hartree-Fock reference data based on the Dirac-Coulomb-Breit Hamiltonian and the Fermi nucleus model. Corresponding optimized valence basis sets of polarized valence quadruple-ζ quality are presented. Atomic test calculations for the first four ionization potentials show satisfactory results at both the Hartree-Fock and the multireference averaged coupled-pair functional level. Highly correlated Fock-space coupled cluster calculations demonstrate that the new pseudopotentials yield ionization potentials, which are in excellent agreement with corresponding all-electron results and experimental data. The pseudopotentials and basis sets supplement a similar set previously published for uranium.

  8. Effects of spin-orbit coupling on actinium under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Ponce, A.; Rivera, J. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico (Mexico); Olguin, D. [Departamento de Fi sica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico (Mexico)

    2015-04-15

    Actinium (Ac) is a radioactive metal and the first element of the actinide series. At ambient conditions Ac crystallizes in the fcc lattice, however, up to date its phase diagram is unknown. In the present work, we have studied the structural and electronic properties of Ac under hydrostatic pressure assuming the fcc structure as well as three hypothetical structures, namely the hcp, bcc, and sc, and for pressures up to 100 GPa. From our calculations, we found only one structural transition allowed, from the fcc to hcp, our calculated pressure was 39.85 GPa. The calculations were performed by means of the full potential linearized augmented plane wave (FLAPW) method and the generalized gradient approximation (GGA) for the exchange-correlation energy, where we have included in our study the spin-orbit coupling which is important for heavy elements. The total energy results were fitted to the third order Birch-Murnaghan's equation of state. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  10. Report for General Research September 18 to December 11, 1950 (Actinium Volume)

    Energy Technology Data Exchange (ETDEWEB)

    Haring, M.M.

    1951-01-15

    The purpose of the research work presented in this volume is to develop a process for the separation and purification of actinium-227 produced by neutron bombardment of radium-226 and to develop methods by which uniform films of actinium metal may be deposited on metallic surfaces. The design work on the cave structure and mechanical equipment used in the actinium separation is proceeding on schedule. As the mechanical design phase is nearing completion the emphasis is being directed toward processing equipment. The process as well as the mechanical equipment has been adapted from the research work of F. T. Hagemann and the Remote Control Group at Argonne National Laboratory. Consequently, one of the first objectives is to become familiary with the chemistry of the process and the operation of the mechanical equipment. Cold runs have been made on the T.T.A. benzene extraction using lanthanum and barium in place of actinium and radium. No difficulty with the operation was observed. The formation of precipitates was one of the difficulties encountered with the process as the precipitates carry radium. It has been found that metals such as nickel cause these precipitates to form and should, therefore, be avoided in the construction of equipment. it was also found that a T.T.A. solution exposed to 0.5 curie of polonium over a period of days develops a precipitate. Some new mechanical features hav eshown promise. The use of copper-coated glassware which will hold together even though the glass is cracked has made it possible to replace custom-built heaters with standard heating mantles. A new graphite, silicone grease mixture appears to hold up in stopcocks handling benzene and, as a result, may eliminate the necessary of entering the cave for regreasing. Tests on the preparation of dense concrete have given results which meet the shielding requirements for the cave. A strippable paint and tape combination has been studied and specified to provide for decontamination of

  11. Analysis of the gamma spectra of the uranium, actinium, and thorium decay series

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M.H.

    1981-09-01

    This report describes the identification of radionuclides in the uranium, actinium, and thorium series by analysis of gamma spectra in the energy range of 40 to 1400 keV. Energies and absolute efficiencies for each gamma line were measured by means of a high-resolution germanium detector and compared with those in the literature. A gamma spectroscopy method, which utilizes an on-line computer for deconvolution of spectra, search and identification of each line, and estimation of activity for each radionuclide, was used to analyze soil and uranium tailings, and ore.

  12. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents.

    Science.gov (United States)

    Henriksen, Gjermund; Bruland, Oyvind S; Larsen, Roy H

    2004-01-01

    The present study explores the use of alpha-particle-emitting, bone-seeking agents as candidates for targeted radiotherapy. Actinium and thorium 1,4,7,10 tetraazacyclododecane N,N',N'',N''' 1,4,7,10-tetra(methylene) phosphonic acid (DOTMP) and thorium-diethylene triamine N,N',N'' penta(methylene) phosphonic acid (DTMP) were prepared and their biodistribution evaluated in conventional Balb/C mice at four hours after injection. All three bone-seeking agents showed a high uptake in bone and a low uptake in soft tissues. Among the soft tissue organs, only kidney had a relatively high uptake. The femur/kidney ratios for 227Th-DTMP, 228-Ac-DOTMP and 227Th-DOTMP were 14.2, 7.6 and 6.0, respectively. A higher liver uptake of 228Ac-DOTMP was seen than for 227Th-DTMP and 227Th-DOTMP. This suggests that some demetallation of the 228Ac-DOTMP complex had occurred. The results indicate that 225Ac-DOTMP, 227Th-DOTMP and 227Th-DTMP have promising properties as potential therapeutic bone-seeking agents.

  13. Production of actinium, thorium and radium isotopes from natural thorium irradiated with protons up to 141 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Ermolaev, S.V.; Zhuikov, B.L.; Kokhanyuk, V.M.; Matushko, V.L. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Nuclear Research; Kalmykov, S.N. [Lomonosov Moscow State Univ., Moscow (Russian Federation). Chemistry Dept.; Aliev, R.A. [Lomonosov Moscow State Univ., Moscow (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Tananaev, I.G.; Myasoedov, B.F. [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Frumkin Inst. of Physical Chemistry and Electrochemistry

    2012-07-01

    Cross sections of {sup 225}Ac, {sup 227}Ac, {sup 227}Th and {sup 228}Th in thorium-232 targets irradiated with protons in the energy range 21-141 MeV have been measured. Based on these data, production yields of {sup 225}Ac and {sup 223}Ra in thick thorium targets have been calculated. It is possible to produce in proton energy range 60-140 MeV about 96 GBq (2.6 Ci) {sup 225}Ac per 10-d irradiation with 100 {mu}A proton beam current and 10-d decay, and much higher amount of {sup 223}Ra. The impurities of {sup 227}Ac and {sup 224}Ra are important and need to be assessed for further medical applications. (orig.)

  14. The release of dissolved actinium to the ocean: A global comparison of different end-members

    Science.gov (United States)

    Geibert, W.; Charette, M.; Kim, G.; Moore, W.S.; Street, J.; Young, M.; Paytan, A.

    2008-01-01

    The measurement of short-lived 223Ra often involves a second measurement for supported activities, which represents 227Ac in the sample. Here we exploit this fact, presenting a set of 284 values on the oceanic distribution of 227Ac, which was collected when analyzing water samples for short-lived radium isotopes by the radium delayed coincidence counting system. The present work compiles 227Ac data from coastal regions all over the northern hemisphere, including values from ground water, from estuaries and lagoons, and from marine end-members. Deep-sea samples from a continental slope off Puerto Rico and from an active vent site near Hawaii complete the overview of 227Ac near its potential sources. The average 227Ac activities of nearshore marine end-members range from 0.4??dpm m- 3 at the Gulf of Mexico to 3.0??dpm m- 3 in the coastal waters of the Korean Strait. In analogy to 228Ra, we find the extension of adjacent shelf regions to play a substantial role for 227Ac activities, although less pronounced than for radium, due to its weaker shelf source. Based on previously published values, we calculate an open ocean 227Ac inventory of 1.35 * 1018??dpm 227Acex in the ocean, which corresponds to 37??moles, or 8.4??kg. This implies a flux of 127??dpm m-2 y- 1 from the deep-sea floor. For the shelf regions, we obtain a global inventory of 227Ac of 4.5 * 1015??dpm, which cannot be converted directly into a flux value, as the regional loss term of 227Ac to the open ocean would have to be included. Ac has so far been considered to behave similarly to Ra in the marine environment, with the exception of a strong Ac source in the deep-sea due to 231Paex. Here, we present evidence of geochemical differences between Ac, which is retained in a warm vent system, and Ra, which is readily released [Moore, W.S., Ussler, W. and Paull, C.K., 2008-this issue. Short-lived radium isotopes in the Hawaiian margin: Evidence for large fluid fluxes through the Puna Ridge. Marine Chemistry

  15. Leatherback Isotopes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  16. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  17. Isotopic Paleoclimatology

    Science.gov (United States)

    Bowen, R.

    Paleotemperature scales were calculated by H. C. Urey and others in the 1950s to assess past temperatures, and later work using the stable isotopes of oxygen, hydrogen, and carbon employed standards such as Peedee belemnite (PDB) and Standard Mean Ocean Water (SMOW). Subsequently, subjects as diverse as ice volume and paleotemperatures, oceanic ice and sediment cores, Pleistocene/Holocene climatic changes, and isotope chronostratigraphy extending back to the Precambrian were investigated.

  18. Stable isotope studies

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  19. METHOD OF ISOTOPE CONCENTRATION

    Science.gov (United States)

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  20. Statistical clumped isotope signatures

    NARCIS (Netherlands)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a m

  1. Generation of Radixenon Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Justin I.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Panisko, Mark E.; Pitts, W. K.; Pratt, Sharon L.; Reeder, Paul L.; Thomas, Charles W.

    2003-06-30

    Pacific Northwest National Laboratory has developed an automated system for separating Xe from air and can detect the following radioxenon isotopes, 131mXe, 133mXe, 133Xe, and 135Xe. This report details the techniques used to generate the various radioxenon isotopes that are used for the calibration of the detector as well as other isotopes that have the potential to interfere with the fission produced radioxenon isotopes. Fission production is covered first using highly enriched uranium followed by a description and results from an experiment to produce radioxenon isotopes from neutron activation of ambient xenon.

  2. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  3. Alpha-emitting isotopes and chromium in a coastal California aquifer

    Science.gov (United States)

    Densmore, Jill N.; Izbicki, John A.; Murtaugh, Joseph M.; Swarzenski, Peter W.; Bullen, Thomas D.

    2014-01-01

    The unadjusted 72-h gross alpha activities in water from two wells completed in marine and alluvial deposits in a coastal southern California aquifer 40 km north of San Diego were 15 and 25 picoCuries per liter (pCi/L). Although activities were below the Maximum Contaminant Level (MCL) of 15 pCi/L, when adjusted for uranium activity; there is concern that new wells in the area may exceed MCLs, or that future regulations may limit water use from the wells. Coupled well-bore flow and depth-dependent water-quality data collected from the wells in 2011 (with analyses for isotopes within the uranium, actinium, and thorium decay-chains) show gross alpha activity in marine deposits is associated with decay of naturally-occurring 238U and its daughter 234U. Radon activities in marine deposits were as high as 2230 pCi/L. In contrast, gross alpha activities in overlying alluvium within the Piedra de Lumbre watershed, eroded from the nearby San Onofre Hills, were associated with decay of 232Th, including its daughter 224Ra. Radon activities in alluvium from Piedra de Lumbre of 450 pCi/L were lower than in marine deposits. Chromium VI concentrations in marine deposits were less than the California MCL of 10 μg/L (effective July 1, 2014) but δ53Cr compositions were near zero and within reported ranges for anthropogenic chromium. Alluvial deposits from the nearby Las Flores watershed, which drains a larger area having diverse geology, has low alpha activities and chromium as a result of geologic and geochemical conditions and may be more promising for future water-supply development.

  4. Discovery of the Cobalt Isotopes

    OpenAIRE

    Szymanski, T.; Thoennessen, M.

    2009-01-01

    Twenty-six cobalt isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  5. Discovery of the Arsenic Isotopes

    CERN Document Server

    Shore, A; Heim, M; Schuh, A; Thoennessen, M

    2009-01-01

    Twenty-nine arsenic isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  6. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  7. Chromium isotope variations

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary

    is incorporated into carbonates. Hence, ancient carbonates can potentially record the Cr isotopic composition (δ53Cr ‰) of seawater in the geological past. Reliable application and interpretation of this proxy requires a detailed knowledge about processes that fractionate Cr on the Earth’s surface...... deposited during the Early Ordovician — a time of known redox instability in ancient oceans – exhibit a significant positive Cr isotope excursion of +0.5‰. This excursion is interpreted as the reductive drawn down of dissolved Cr in seawater in response to the development of a proximal anoxic sink......, and the quantification the Cr isotope composition of major Cr fluxes into and out of ocean. This thesis adds to the current knowledge of the Cr isotope system and is divided into two studies. The focus of the first study was to determine what processes control the Cr isotopic compositionof river water and to quantify...

  8. Isotopes in Greenland Precipitation

    DEFF Research Database (Denmark)

    Faber, Anne-Katrine

    Greenland ice cores offer a unique opportunity to investigate the climate system behaviour. The objective of this PhD project is to investigate isotope modelling of present- day conditions and conduct model-data comparison using Greenland ice cores. Thus this thesis investigates how the integration...... of model and data can be used to improve the understanding of climate changes. This is done through analysis of isotope modelling, observations and ice core measurements. This dissertation comprises three projects: (1) Modelling the isotopic response to changes in Arctic sea surface conditions, (2......) Constructing a new Greenland database of observations and present-day ice core measurements, and (3) Performance test of isotope-enabled CAM5 for Greenland. The recent decades of rapid Arctic sea ice decline are used as a basis for an observational-based model experiment using the isotope-enabled CAM model 3...

  9. Isotopes in Greenland Precipitation

    DEFF Research Database (Denmark)

    Faber, Anne-Katrine

    the Arctic Ocean. A comprehensive database is created based on ice core and weather station data from Greenland within the period 1890-2014. Present day annual and seasonal mean values are computed for 326 locations in Greenland. Parameterization of the spatial distribution of temperature and δ18O are used...... of model and data can be used to improve the understanding of climate changes. This is done through analysis of isotope modelling, observations and ice core measurements. This dissertation comprises three projects: (1) Modelling the isotopic response to changes in Arctic sea surface conditions, (2......) Constructing a new Greenland database of observations and present-day ice core measurements, and (3) Performance test of isotope-enabled CAM5 for Greenland. The recent decades of rapid Arctic sea ice decline are used as a basis for an observational-based model experiment using the isotope-enabled CAM model 3...

  10. Perchlorate isotope forensics

    Science.gov (United States)

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  11. Isotope Production Facility (IPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Los Alamos National Laboratory has produced radioactive isotopes for medicine and research since the mid 1970s, when targets were first irradiated using the 800...

  12. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  13. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  14. Isotopes through the looking glass

    Science.gov (United States)

    Mårtensson Pendrill, Ann Marie

    2000-08-01

    Nuclear distributions affect many aspects of atomic spectra. As an example, recent experimental results for the hyperfine anomaly in Fr isotopes are considered. These depend on nuclear charge and magnetization distributions. The variations in charge radii for these isotopes were studied earlier by measuring optical isotope shifts. The hyperfine anomalies for the odd-odd isotopes involve the neutron distributions, of interest for studies of parity nonconserving effects along a chain of isotopes.

  15. Methods of isotopic geochronology

    Science.gov (United States)

    Gorokhov, I. M.; Levchenkov, O. A.

    Papers are presented on such topics as the age of the chemical elements; the age of meteorites, the moon, and the earth; isotopic ages of the most ancient terrestrial formations; and the Archean evolution of Enderby Land in the Antarctic as evidenced by isotopic dating. Consideration is also given to a uranium-lead geochronology technique for investigating Precambrian ore deposits, a Pb-Pb technique of zircon dating, and the potentials and limitations of Sm-Nd geochronology.

  16. Oxygen Isotopes in Meteorites

    Science.gov (United States)

    Clayton, R. N.

    2003-12-01

    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (shielding in the UV photodissociation of CO (van Dishoeck and Black, 1988). This process results from the large differences in abundance between C16O, on the one hand, and C17O and C18O on the other. Photolysis of CO occurs by absorption of stellar UV radiation in the

  17. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    Science.gov (United States)

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  18. Stable isotopes. Applications and production; Les isotopes stables. Applications - production

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.; Louvet, P.; Soulie, E. [eds.

    1994-12-31

    This conference presents 46 communications concerning stable isotope production, utilization and application, grouped in 6 sessions and posters. The various themes are: biological applications (pharmacology, medical diagnosis, metabolism and protein studies, toxicity and response studies, labelled compounds), analysis procedures (NMR analysis for macromolecules, tracer studies), nuclear applications (utilization of stable isotopes in nuclear reactors), biological, physical and chemical applications (mass transfer, mobility, crystallography, isotopic exchange), stable isotope production (ion chromatography, ion cyclotron resonance, cryogenic distillation).

  19. Deformation of C isotopes

    CERN Document Server

    Kanada-Enyo, Y

    2004-01-01

    Systematic analysis of the deformations of proton and neutron densities in even-even C isotopes was done based on the method of antisymmetrized molecular dynamics. The $E2$ transition strength was discussed in relation to the deformation. We analyze the $B(E2;2^+_1\\to 0^+_1)$ in $^{16}$C, which has been recently measured to be abnormally small. The results suggest the difference of the deformations between proton and neutron densities in the neutron-rich C isotopes. It was found that stable proton structure in C isotopes plays an important role in the enhancement the neutron skin structure as well as in the systematics of $B(E2)$ in the neutron-rich C.

  20. Isotopes in Condensed Matter

    CERN Document Server

    G Plekhanov, Vladimir

    2013-01-01

    This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe  in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed.  The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.

  1. Atomic Weights and Isotopic Compositions

    Science.gov (United States)

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  2. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    M Thoennessen

    2015-09-01

    Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  3. GEOCHRONOMETRY ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20040631 Chen Jiangfeng (School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui) ; Xie Zhi Relationships Between Rb-Sr, Ar - Ar Geochronometers and Oxygen Isotopic Equilibrium of Intrusions from Eastern Anhui Province, China (Geological Journal of China Universities, ISSN 1006 - 7493, CN 32 -

  4. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20090432 Zhou Shuqing (School of Energy Resources, China University of Geosciences Beijing 100083, China); Huang Haiping Stable Isotopic Records vs. Important Events in Life Evolution and the Concurrent Environment (Geological Review, ISSN0371-5736, CN11-1952, 54(2), 2008, p.225-231, 3 illus., 1 table, 77 refs.)

  5. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141014Wang Hairan(State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Xi’an710069,China);Zhao Hongge Theory and Application of Zircon U-Pb Isotope Dating Technique(Geology and Resources,ISSN1671-1947,CN21-1458/P,22(3),2013,p.229

  6. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072750 Huang Sijing(State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China);Pei Changrong Age Calibration for the Boundary between Lower and Middle Triassic by Strontium Isotope Stratigraphy in Eastern Sichuan Province

  7. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070454 Bao Zengkuan (Institute of High Energy Physics, CAS, Beijing 100049, China); Yuan Wanming Apatite (U-Th)/He Dating and Its Application (Acta Petrologica et Mineralogica, ISSN1000-6524, CN11-1966/P, 24(2), 2005, p.126-132, 2 illus., 25 refs.) Key words: isotopic geochronology

  8. Isotopic Implicit Surface Meshing

    NARCIS (Netherlands)

    Boissonnat, Jean-Daniel; Cohen-Steiner, David; Vegter, Gert

    2004-01-01

    This paper addresses the problem of piecewise linear approximation of implicit surfaces. We first give a criterion ensuring that the zero-set of a smooth function and the one of a piecewise linear approximation of it are isotopic. Then, we deduce from this criterion an implicit surface meshing algor

  9. Isotope hydrograph separation

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, P. [UFZ-Umweltforschungszentrum, Centre of Environmental Research Leipzig-Halle, Leipzig (Germany)

    2000-07-01

    Storm-runoff thus reflects the complex hydraulic behaviour of drainage basins and water-links of such systems. Water of different origin may participate in the events and in this lecture, the application of isotope techniques to separate storm hydrographs into different components will be presented.

  10. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  11. Water isotopes in desiccating lichens

    Science.gov (United States)

    Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-01-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition. PMID:19888598

  12. Chromium isotope variations

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary

    is incorporated into carbonates. Hence, ancient carbonates can potentially record the Cr isotopic composition (δ53Cr ‰) of seawater in the geological past. Reliable application and interpretation of this proxy requires a detailed knowledge about processes that fractionate Cr on the Earth’s surface...... deposited during the Early Ordovician — a time of known redox instability in ancient oceans – exhibit a significant positive Cr isotope excursion of +0.5‰. This excursion is interpreted as the reductive drawn down of dissolved Cr in seawater in response to the development of a proximal anoxic sink...... of ancient marine sediments can be a useful tool for understanding the cycling of redox sensitive elements on a local scale....

  13. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>20050934 Chen Zhihong (Chinese Academy of Geological Sciences, Beijing 100037, China); Lu Songnian Age of the Fushui Intermediate-Mafic Intrusive Complex in the Qinling Orogen, New Zircon U - Pb and Whole -Rock Sm and Nd Isotope Chronological Evidence (Geological Bulletin of China, ISSN 1671-2552, CN11-4648/P, 23(4), 2004, p. 322-328, 3 illus. , 3 tables, 10 refs. )

  14. GEOCHRONOMETRY &ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131727 Huang Xiaowen(State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China);Qi Liang Preliminary Study on Sample-Preparation for Re-Os Isotopic Dating of Pyrite(Geochimica,ISSN0379-1726,CN44-1398/P,41(4),2012,p.380-386,3illus.,2tables,25refs)Key words:pyrite,Re-Os dating

  15. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132601 Cui Yurong(Tianjin Institute of Geology and Mineral Resources,China Geological Survey,Tianjin 300170,China);Zhou Hongying In Situ LA-MC-ICP-MS U-Pb Isotopic Dating of Monazite(Acta Geoscientica Sinica,ISSN0375-5444,CN11-1856/P,33(6),2012,p.865-876,6illus.,4tables,41refs.)Key words:monazite,U-Pb dating

  16. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  17. Nuclear physics and stable isotopes; Physique nucleaire et isotopes stables

    Energy Technology Data Exchange (ETDEWEB)

    Goutte, D. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee

    1994-12-31

    The aim of this paper is to show that fundamental research in nuclear physics requires utilization of stable isotopes; stable isotopes are essential as target material since a large quantity of nucleus have to be studied in order to appreciate all the complexity of the nuclear structure, but also as a tool, such as beams, for the same purpose. Examples are given with samarium, tin and germanium isotopes. 7 figs.

  18. Nickel isotopes and methanogens

    Science.gov (United States)

    Neubeck, A.; Ivarsson, M.

    2013-12-01

    Methanogens require Ni for their growth and as a consequence the microbial fractionation of Ni isotopes can be used as a biomarker for activity of methanogenic communities1. Anaerobic laboratory experiments was performed using methanogens to investigate methanogenic growth in a modified nutrient media2 with olivine Fo91 (5g/l) added as an additional mineral nutrient source and as the only H2 provider. One of the investigated methanogens showed an increased growth in the experiments with added olivine. There were also a close relationship between the mobilized Ni and the growth of the methanogen. Ni is an element that previously has been neglected in the study of fossilized microorganisms and their interaction with mineral substrates and, thus, there are no records or published data of Ni in association with microfossils. However, we have detected enrichments of Ni in fossilized microorganisms and ichno-fossils, respectively, from three separate locations. Ni is not present in the host rock in any of the samples. Thus, Ni is present in association with fossilized microorganisms from environments and more extensive analysis is required to understand the magnitude, uptake, preservation and fractionation of Ni in microfossils. In order to analyze Ni isotope fractionation from microbe-mineral interaction, we plan to use a high-resolution Laser-Ablation Time-of-Flight Mass Spectrometer (LMS)3. In situ profile ablation will provide detailed and localized data on fractionation patterns between microfossils and their host rock. Also, this technique will allow us to identify the change in Ni isotopic fractionation in rock samples caused by abiotic and biogenic processes in a faster and easier way and with less risk for contamination compared to the wet chemistry analyses of Ni isotopes. 1. Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the stable isotopes of nickel. Proceedings of the National Academy of Sciences 106, 10944-10948 (2009). 2. Schn

  19. Therapeutic use of radioactive isotopes

    CERN Multimedia

    Caroline Duc

    2013-01-01

    In December, researchers from ISOLDE-CERN, the Paul Scherrer Institute (PSI) and the Institut Laue-Langevin (ILL) published the results of an in vivo study which successfully proved the effectiveness of four terbium isotopes for diagnosing and treating cancerous tumours.   Four terbium isotopes suitable for clinical purposes. “ISOLDE is the only installation capable of supplying terbium isotopes of such purity and intensity in the case of three out of the four types used in this study,” explains Karl Johnson, a physicist at ISOLDE.  “Producing over a thousand different isotopes, our equipment offers the widest choice of isotopes in the world!” Initially intended for fundamental physics research, ISOLDE has diversified its activities over time to invest in various projects in the materials science, biochemistry and nuclear medicine fields. The proof-of-concept study has confirmed that the four terbium isotopes 149Tb, 152Tb, 155Tb produ...

  20. Lithium isotope separation by laser

    Energy Technology Data Exchange (ETDEWEB)

    Arisawa, T.; Maruyama, Y.; Suzuki, Y.; Shiba, K.

    1982-01-01

    A lithium isotope separation was performed using a laser isotope separation method. It was found that the lithium atoms with a natural isotopic abundance enhanced its /sup 6/Li concentration up to over 90% by tuning the laser wavelength to the /sup 2/Psub(1/2) of /sup 6/Li. Too high power, however, leads to a loss of enrichment due to the power broadening effect which was analysed by the equation of motion of density matrices.

  1. Cold regions isotope applications

    Energy Technology Data Exchange (ETDEWEB)

    Perrigo, L.D.; Divine, T.E.

    1976-04-01

    Pacific Northwest Laboratories (PNL) started the Cold Regions Isotope Applications Program in FY-1975 to identify special conditions in the Arctic and similar geographic areas (Cold Regions) where radioisotope power, heater, or sterilization systems would be desirable and economically viable. Significant progress was made in the first year of this program and all objectives for this initial 12-month period were achieved. The major conclusions and recommendations resulting for this effort are described below. The areas of interest covered include: radiosterilization of sewage; heating of septic tanks; and radioisotope thermoelectric generators as power sources for meteorological instruments and navigational aids. (TFD)

  2. Si Isotopes of Brownleeite

    Science.gov (United States)

    Nakamura-Messenger, K.; Messenger, Scott R.; Ito, M.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Tatsuoka, H.; Zolensky, M. E.; Tatsuoka, H.

    2010-01-01

    Brownleeite is a manganese silicide, ideally stoichiometric MnSi, not previously observed in nature until its discovery within an interplanetary dust particle (IDP) that likely originated from a comet [1]. Three discrete brownleeite grains in the IDP L2055 I3 (4 microns in size, hereafter IDP I3) were identified with maximum dimensions of 100, 250 and 600 nm and fully analyzed using scanning-transmission electron microscopy (STEM) [1]. One of the grains (100 nm in size) was poikilitically enclosed by low-Fe, Mn-enriched (LIME) olivine. LIME olivine is epitaxial to the brownleeite with the brownleeite (200) parallel to the olivine c* [1]. LIME olivine is an enigmatic phase first reported from chondritic porous IDPs and some unequilibrated ordinary chondrites [ 2], that is commonly observed in chondritic-porous IDPs. Recently, LIME olivine has been also found in comet Wild-2 (Stardust) samples [3], indicating that LIME olivine is a common mineral component of comets. LIME olivine has been proposed to form as a high temperature condensate in the protosolar nebula [2]. Brownleeite grains also likely formed as high-temperature condensates either in the early Solar System or in the outflow of an evolved star or supernova explosion [1]. The isotopic composition of the brownleeite grains may strongly constrain their ultimate source. To test this hypothesis, we performed isotopic analyses of the brownleeite and the associated LIME olivine, using the NASA/JSC NanoSIMS 50L ion microprobe.

  3. Calcium isotopes in wine

    Science.gov (United States)

    Holmden, C. E.

    2011-12-01

    The δ 44/40Ca values of bottled wine vary between -0.76% to -1.55% on the seawater scale and correlate weakly with inverse Ca concentration and Mg/Ca ratio, such that the lowest δ 44/40Ca values have the highest Ca concentrations and lowest Mg/Ca ratios. The correlation is notable in the sense that the measured wines include both whites and reds sampled from different wine growing regions of the world, and cover a wide range of quality. Trends among the data yield clues regarding the cause of the observed isotopic fractionation. White wines, and wines generally perceived to be of lower quality, have lower δ 44/40Ca values compared to red wines and wines of generally perceived higher quality. Quality was assessed qualitatively through sensory evaluation, price, and scores assigned by critics. The relationship between δ 44/40Ca and wine quality was most apparent when comparing wines of one varietal from one producer from the same growing region. In the vineyard, wine quality is related to factors such as the tonnage of the crop and the ripeness of the grapes at the time of harvesting, the thickness of the skins for reds, the age of the vines, as well as the place where the grapes were grown (terroir). Quality is also influenced by winemaking practices such as fermentation temperature, duration of skin contact, and barrel ageing. Accordingly, the relationship between δ 44/40Ca and wine quality may originate during grape ripening in the vineyard or during winemaking in the cellar. We tested the grape ripening hypothesis using Merlot grapes sampled from a vineyard in the Okanagan, British Columbia, using sugar content (degrees Brix) as an indicator of ripeness. The grapes were separated into pulp, skin, and pip fractions and were analyzed separately. Thus far, there is no clear evidence for a systematic change in δ 44/40Ca values associated with progressive ripening of grapes in the vineyard. On the day of harvesting, the δ 44/40Ca value of juice squeezed from

  4. Competition from Isotopic Modelling

    Directory of Open Access Journals (Sweden)

    Virginie Fabre

    2011-01-01

    Full Text Available During later MOIS3, in Europe two populations were present, autochthonous Neanderthals and modern humans. Ecological competition between these two populations has often been evoked but never demonstrated. Our aim is to establish whether resource competition occurred. In this paper, in order to examine the possibility of ecological competition between these two populations, 599 isotopic data were subjected to rigorous statistical treatment and analysis through mixing models. The aim of this paper was to compare dietary strategies of Neanderthals and modern humans over time. Our conclusions suggest that Neanderthals and modern humans shared dietary habits in the particular environmental context of MOIS3 characterised in Europe by climatic deterioration. In this environmental context, the resource competition between Neanderthals and modern humans may have accelerated the disappearance of the Neanderthal population.

  5. Isotope Effects in ESR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Werner Herrmann

    2013-06-01

    Full Text Available In order to present the relationship between ESR spectroscopy and isotope effects three levels are considered: (i ESR spectroscopy is described on a general level up to the models for interpretation of the experimental spectra, which go beyond the usually used time and mass independent spin-Hamilton operator, (ii the main characteristics of the generalized isotope effects are worked out, and finally (iii the basic, mainly quantum mechanical effects are used to describe the coupling of electron spins with the degrees of freedom, which are accessible under the selected conditions, of the respective paramagnetic object under investigation. The ESR parameters and the respective models are formalized so far, that they include the time and mass depending influences and reflect the specific isotope effects. Relations will be established between the effects in ESR spectra to spin relaxation, to spin exchange, to the magnetic isotope effect, to the Jahn-Teller effects, as well as to the influence of zero-point vibrations. Examples will be presented which demonstrate the influence of isotopes as well as the kind of accessible information. It will be differentiated with respect to isotope effects in paramagnetic centres itself and in the respective matrices up to the technique of ESR imaging. It is shown that the use of isotope effects is indispensable in ESR spectroscopy.

  6. Isotope-edited infrared spectroscopy.

    Science.gov (United States)

    Buchner, Ginka S; Kubelka, Jan

    2012-01-01

    Isotope-edited infrared (IR) spectroscopy is a powerful tool for studying structural and dynamical properties of peptides and proteins with site-specific resolution. Labeling of selected amide carbonyls with (13)C results in detectable sidebands of amide I' vibrations, which provide information about local conformation and/or solvent exposure without structural perturbation to the protein. Incorporation of isotopically labeled amino acids at specific positions is achieved by the chemical synthesis of the studied proteins. We describe the basic procedures for synthesis of (13)C isotopically edited protein samples, experimental IR spectroscopic measurements, and analysis of the site-specific structural changes from the thermal unfolding IR data.

  7. Compelling Research Opportunities using Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1

  8. Carbon isotope geochemistry and geobiology

    Science.gov (United States)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  9. Apparatus and process for separating hydrogen isotopes

    Science.gov (United States)

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  10. Alignments in the nobelium isotopes

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Zie; XU Fu-Rong; YUAN Cen-Xi; QI Chong

    2009-01-01

    Total-Routhian-Surface calculations have been performed to investigate the deformation and align-ment properties of the No isotopes. It is found that normal deformed and superdeformed states in these nuclei can coexist at low excitation energies. In neutron-deficient No isotopes, the superdeformed shapes can even become the ground states. Moreover, we plotted the kinematic moments of inertia of the No isotopes, which follow very nicely available experimental data. It is noted that, as the rotational frequency increases, align-ments develop at hω=0.2-0.3 MeV. Our calculations show that the occupation of the vj orbital plays an important role in the alignments of the No isotopes.

  11. Isotope-based quantum information

    CERN Document Server

    G Plekhanov, Vladimir

    2012-01-01

    The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial...

  12. Isotopic Changes During Digestion: Protein

    Science.gov (United States)

    Tuross, N.

    2013-12-01

    Nutrient and hydrological inputs traverse a complicated route of pH, enzymatic and cellular processes in digestion in higher animals. The end products of digestion are the starting products for biosynthesis that are often used to interpret past life-ways. Using an artificial gut system, the isotopic changes (dD, d18O, d13C and d15N) of protein are documented. Three separate protein sources are subjected to the conditions, chemical and enzymatic, found in the stomach and upper small intestine with only a small shift in the oxygen isotopic composition of the proteins observed. Middle to lower small intestine parameters produced both greater isotopic effects and significantly lower molecular weight products. The role of the gastric enterocyte and the likely involvement of the internal milieu of this cell in the isotopic composition of amino acids that are transported to the liver are reported.

  13. Paleoproxies: Heavy Stable Isotope Perspectives

    Science.gov (United States)

    Nagler, T. F.; Hippler, D.; Siebert, C.; Kramers, J. D.

    2002-12-01

    Recent advances in isotope ratio mass spectrometry, namely multiple collector ICP-MS and refined TIMS techniques, will significantly enhance the ability to measure heavy stable isotope fractionation, which will lead to the development of a wide array of process-identifying (bio)-geochemical tools. Thus far research in this area is not easily assessable to scientists outside the isotope field. This is due to the fact that analyzing heavy stable isotopes does not provide routine numbers which are per se true (the preciser the truer) but is still a highly experimental field. On the other hand resolving earth science problems requires specialists familiar with the environment being studied. So what is in there for paleoceanographers? In a first order approach, relating isotope variations to physical processes is straightforward. A prominent example are oxygen isotope variations with temperature. The total geological signal is of course far more complicated. At low temperatures, heavy stable isotopes variations have been reported for e.g. Ca, Cr, Fe, Cu, Zn, Mo and Tl. Fractionation mechanisms and physical parameters responsible for the observed variations are not yet resolved for most elements. Significant equilibrium isotope fractionation is expected from redox reactions of transition metals. However a difference in coordination number between two coexisting speciations of an element in the same oxidation state can also cause fractionation. Protonation of dissolved Mo is one case currently discussed. For paleoceanography studies, a principal distinction between transition metals essential for life (V to Zn plus Mo) or not will be helpful. In case of the former group, distinction between biogenic and abiogenic isotope fractionation will remain an important issue. For example, abiotic Fe redox reactions result in isotope fractionations indistinguishable in direction and magnitude from microbial effects. Only a combination of different stable isotope systems bears the

  14. Calcium Isotope Analysis by Mass Spectrometry

    Science.gov (United States)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  15. Isotopes a very short introduction

    CERN Document Server

    Ellam, Rob

    2016-01-01

    An isotope is a variant form of a chemical element, containing a different number of neutrons in its nucleus. Most elements exist as several isotopes. Many are stable while others are radioactive, and some may only exist fleetingly before decaying into other elements. In this Very Short Introduction, Rob Ellam explains how isotopes have proved enormously important across all the sciences and in archaeology. Radioactive isotopes may be familiar from their use in nuclear weapons, nuclear power, and in medicine, as well as in carbon dating. They have been central to establishing the age of the Earth and the origins of the solar system. Combining previous and new research, Ellam provides an overview of the nature of stable and radioactive isotopes, and considers their wide range of modern applications. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subjec...

  16. Exotic Structure of Carbon Isotopes

    CERN Document Server

    Suzuki, T; Hagino, K; Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2002-01-01

    We studied firstly the ground state properties of C-isotopes using a deformed Hartree-Fock (HF)+ BCS model with Skyrme interactions. Shallow deformation minima are found in several neutron$-$rich C-isotopes. It is shown also that the deformation minima appear in both the oblate and the prolate sides in $^{17}$C and $^{19}$C having almost the same binding energies. Secondly, we carried out shell model calculations to study electromagnetic moments and electric dipole transitions of the C-isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C-isotopes, which will be useful to find out the deformations and the spin-parities of the ground states of these nuclei. We studied electric dipole states of C-isotopes focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Reasonable agreement is obtained with available experimental data for the photoreaction cross sections both in the low energy region below $\\hbar \\omega $=14 MeV and ...

  17. Handbook of environmental isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Baskaran, Mark (ed.) [Wayne State Univ., Detroit, MI (United States). Dept. Geology

    2011-07-01

    Applications of radioactive and stable isotopes have revolutionized our understanding of the Earth and near-earth surface processes. The utility of the isotopes are ever-increasing and our sole focus is to bring out the applications of these isotopes as tracers and chronometers to a wider audience so that they can be used as powerful tools to solve environmental problems. New developments in this field remain mostly in peer-reviewed journal articles and hence our goal is to synthesize these findings for easy reference for students, faculty, regulators in governmental and non-governmental agencies, and environmental companies. While this volume maintains its rigor in terms of its depth of knowledge and quantitative information, it contains the breadth needed for wide variety problems and applications in the environmental sciences. This volume presents all of the newer and older applications of isotopes pertaining to the environmental problems in one place that is readily accessible to readers. This book not only has the depth and rigor that is needed for academia, but it has the breadth and case studies to illustrate the utility of the isotopes in a wide variety of environments (atmosphere, oceans, lakes, rivers and streams, terrestrial environments, and sub-surface environments) and serves a large audience, from students and researchers, regulators in federal, state and local governments, and environmental companies. (orig.)

  18. Photonuclear reactions on titanium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Belyshev, S. S. [Moscow State University (Russian Federation); Dzhilavyan, L. Z. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Ishkhanov, B. S.; Kapitonov, I. M. [Moscow State University (Russian Federation); Kuznetsov, A. A., E-mail: kuznets@depni.sinp.msu.ru; Orlin, V. N.; Stopani, K. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  19. The terrestrial uranium isotope cycle.

    Science.gov (United States)

    Andersen, Morten B; Elliott, Tim; Freymuth, Heye; Sims, Kenneth W W; Niu, Yaoling; Kelley, Katherine A

    2015-01-15

    Changing conditions on the Earth's surface can have a remarkable influence on the composition of its overwhelmingly more massive interior. The global distribution of uranium is a notable example. In early Earth history, the continental crust was enriched in uranium. Yet after the initial rise in atmospheric oxygen, about 2.4 billion years ago, the aqueous mobility of oxidized uranium resulted in its significant transport to the oceans and, ultimately, by means of subduction, back to the mantle. Here we explore the isotopic characteristics of this global uranium cycle. We show that the subducted flux of uranium is isotopically distinct, with high (238)U/(235)U ratios, as a result of alteration processes at the bottom of an oxic ocean. We also find that mid-ocean-ridge basalts (MORBs) have (238)U/(235)U ratios higher than does the bulk Earth, confirming the widespread pollution of the upper mantle with this recycled uranium. Although many ocean island basalts (OIBs) are argued to contain a recycled component, their uranium isotopic compositions do not differ from those of the bulk Earth. Because subducted uranium was probably isotopically unfractionated before full oceanic oxidation, about 600 million years ago, this observation reflects the greater antiquity of OIB sources. Elemental and isotope systematics of uranium in OIBs are strikingly consistent with previous OIB lead model ages, indicating that these mantle reservoirs formed between 2.4 and 1.8 billion years ago. In contrast, the uranium isotopic composition of MORB requires the convective stirring of recycled uranium throughout the upper mantle within the past 600 million years.

  20. Non-linear Isotope Effects

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht

    The isotopic fractionation associated with photodissociation of N2O, OCS and CO2, at different altitudes in Earth’s atmosphere, is investigated theoretically using constructed quantum mechanical models of the dissociation processes (i.e. potential energy surfaces and relevant coupling elements...... or moderate, and overall sulfur fractionation in the stratosphere is very weak which does not exclude OCS from being an acceptable background the Stratospheric Sulfate Aerosol layer. (iii) CO2 photolysis in the upper stratosphere and lower mesosphere is highly fractionating in both isotopes, enriching...

  1. The separation of stable isotopes of carbon

    Science.gov (United States)

    Oziashvili, E. D.; Egiazarov, A. S.

    1989-04-01

    The present state of work on the separation of carbon isotopes by diffusion, fractional distillation, chemical isotopic exchange, and the selective excitation and dissociation of molecules in electrical discharges or in the field of laser radiation has been examined. The characteristics of new laboratory and industrial assemblies for separating carbon isotopes have been described. Promising directions of study aimed at developing effective technological processes for separating carbon isotopes have been noted. The bibliography contains 148 references.

  2. Brief review on the development of isotope hydrology in China

    Institute of Scientific and Technical Information of China (English)

    汪集旸; 孙占学

    2001-01-01

    The development of isotope hydrology in China is briefly reviewed. It includes oxygen and hydrogen isotopes of precipitation, application of isotope hydrological methodologies in solving water resources problems, isotope hydrological studies on brines and salt lake waters, as well as isotope hydrological investigations of thermal waters. The review focuses on isotope hydrology in China during the last two decades.

  3. Dry phase reactor for generating medical isotopes

    Science.gov (United States)

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  4. Substitution of stable isotopes in Chlorella

    Science.gov (United States)

    Flaumenhaft, E.; Katz, J. J.; Uphaus, R. A.

    1969-01-01

    Replacement of biologically important isotopes in the alga Chlorella by corresponding heavier stable isotopes produces increasingly greater deviations from the normal cell size and changes the quality and distribution of certain cellular components. The usefulness of isotopically altered organisms increases interest in the study of such permuted organisms.

  5. Isotope Harvesting Opportunities at FRIB

    Science.gov (United States)

    Morrissey, David

    2017-01-01

    The fragmentation of fast heavy ion beams now at the National Superconducting Cyclotron Laboratory (NSCL) and in the future at the Facility for Rare Isotope Beams (FRIB) under construction produce an unprecedentedly broad spectrum of radionuclides but only a small fraction are used in the on-line rare-isotope program. Projectile fragmentation facilities provide an electromagnetically purified beam of a single projectile fragment for nuclear physics experiments ranging from low energy astrophysics, through nuclear structure studies, to probing fundamental symmetries. By augmenting the NSCL and FRIB production facilities with complimentary collection and purification of discarded ions, called isotope harvesting with chemical purification, many other nuclides will become available for off-line experiments in parallel with the primary experiment. A growing user community has established a list of key target isotopes and is working with the FRIB design team to allow inclusion of necessary equipment in the future. An overview of the possibilities and the techniques will be presented in this talk. Supported by Office of Science, US DOE and Michigan State University.

  6. Operation of Electromagnetic Isotope Separator

    Institute of Scientific and Technical Information of China (English)

    MI; Ya-jing

    2015-01-01

    In 2015,we mainly completed the installation of the electromagnetic isotope separator comprehensive technical transformation projects,including the work of installation,debugging,commissioning and acceptance.In June 30,2015,according to the schedule requirements,the project

  7. Research Progress of Isotope Technology

    Institute of Scientific and Technical Information of China (English)

    Department; of; Isotope

    2015-01-01

    Radioactive isotope is one of the origins of nonnuclear power technology.In the 12th Five Year Plan period,CIAE made breakthrough progresses on several important fields such as research and development of preparation of radioactive nuclides,preparation of radioactive source and study of radiopharmaceuticals relied on different financial support,successfully

  8. Bayesian stable isotope mixing models

    Science.gov (United States)

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  9. Calcium isotope analysis by mass spectrometry.

    Science.gov (United States)

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  10. A global Ge isotope budget

    Science.gov (United States)

    Baronas, J. Jotautas; Hammond, Douglas E.; McManus, James; Wheat, C. Geoffrey; Siebert, Christopher

    2017-04-01

    We present measurements of Ge isotope composition and ancillary data for samples of river water, low- and high-temperature hydrothermal fluids, and seawater. The dissolved δ74Ge composition of analyzed rivers ranges from 2.0 to 5.6‰, which is significantly heavier than previously determined values for silicate rocks (δ74Ge = 0.4-0.7‰, Escoube et al., Geostand. Geoanal. Res., 36(2), 2012) from which dissolved Ge is primarily derived. An observed negative correlation between riverine Ge/Si and δ74Ge signatures suggests that the primary δ74Ge fractionation mechanism during rock weathering is the preferential incorporation of light isotopes into secondary weathering products. High temperature (>150 °C) hydrothermal fluids analyzed in this study have δ74Ge of 0.7-1.6‰, most likely fractionated during fluid equilibration with quartz in the reaction zone. Low temperature (25-63 °C) hydrothermal fluids are heavier (δ74Ge between 2.9‰ and 4.1‰) and most likely fractionated during Ge precipitation with hydrothermal clays. Seawater from the open ocean has a δ74Gesw value of 3.2 ± 0.4‰, and is indistinguishable among the different ocean basins at the current level of precision. This value should be regulated over time by the isotopic balance of Ge sources and sinks, and a new compilation of these fluxes is presented, along with their estimated isotopic compositions. Assuming steady-state, non-opal Ge sequestration during sediment authigenesis likely involves isotopic fractionation Δ74Gesolid-solution that is -0.6 ± 1.8‰.

  11. Modelling stable water isotopes: Status and perspectives

    Directory of Open Access Journals (Sweden)

    Werner M.

    2010-12-01

    Full Text Available Modelling of stable water isotopes H2 18O and HDO within various parts of the Earth’s hydrological cycle has clearly improved our understanding of the interplay between climatic variations and related isotope fractionation processes. In this article key principles and major research results of stable water isotope modelling studies are described. Emphasis is put on research work using explicit isotope diagnostics within general circulation models as this highly complex model setup bears many resemblances with studies using simpler isotope modelling approaches.

  12. Zinc isotopic compositions of breast cancer tissue.

    Science.gov (United States)

    Larner, Fiona; Woodley, Laura N; Shousha, Sami; Moyes, Ashley; Humphreys-Williams, Emma; Strekopytov, Stanislav; Halliday, Alex N; Rehkämper, Mark; Coombes, R Charles

    2015-01-01

    An early diagnostic biomarker for breast cancer is essential to improve outcome. High precision isotopic analysis, originating in Earth sciences, can detect very small shifts in metal pathways. For the first time, the natural intrinsic Zn isotopic compositions of various tissues in breast cancer patients and controls were determined. Breast cancer tumours were found to have a significantly lighter Zn isotopic composition than the blood, serum and healthy breast tissue in both groups. The Zn isotopic lightness in tumours suggests that sulphur rich metallothionein dominates the isotopic selectivity of a breast tissue cell, rather than Zn-specific proteins. This reveals a possible mechanism of Zn delivery to Zn-sequestering vesicles by metallothionein, and is supported by a similar signature observed in the copper isotopic compositions of one breast cancer patient. This change in intrinsic isotopic compositions due to cancer has the potential to provide a novel early biomarker for breast cancer.

  13. Heavy atom isotope effects on enzymatic reactions

    Science.gov (United States)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  14. Measuring SNM Isotopic Distributions using FRAM

    Energy Technology Data Exchange (ETDEWEB)

    Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-02

    The first group of slides provides background information on the isotopic composition of plutonium. It is shown that 240Pu is the critical isotope in neutron coincidence/multiplicity counting. Next, response function analysis to determine isotopic composition is discussed. The isotopic composition can be determined by measuring the net peak counts from each isotope and then taking the ratio of the counts for each isotope relative to the total counts for the element. Then FRAM (Fixed energy Response function Analysis with Multiple efficiencies) is explained. FRAM can control data acquisition, automatically analyze newly acquired data, analyze previously acquired data, provide information on the quality of the analysis, and facilitate analysis in unusual situations (non-standard energy calibrations, gamma rays from non-SNM isotopes, poor spectra (within limits)).

  15. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G. J., LLNL

    1998-06-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water. Many solutes in natural waters are derived from the interaction between the water and the rock and/or soil within the system - these are termed `lithogenic` solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both within and outside of the catchment - i.e., in addition to being derived from catchment rock and soil, they are solutes that are also transported into the catchment. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing `cosmogenic` nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing `thermonuclear` nuclides), or radioactive and fission decay of naturally-occurring elements, principally {sup 238}U (producing `in-situ` lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading `cosmogenic nuclides`, and for simplicity we will often follow that usage here, although always indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute concentrations in catchment waters, and how the isotopic compositions of the solutes can be used in integrative ways to identify these processes, thereby revealing the physical history of the water within a catchment system. The concept of a `system` is important in catchment hydrology. A catchment is the smallest landscape unit that can both participate in all of the aspects of the hydrologic cycle and

  16. Natural fractionation of uranium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Noordmann, Janine

    2015-01-24

    The topic of this thesis was the investigation of U (n({sup 238}U) / n({sup 235}U)) isotope variations in nature with a focus on samples (1) that represent the continental crust and its weathering products (i.e. granites, shales and river water) (2) that represent products of hydrothermal alteration on mid-ocean ridges (i.e. altered basalts, carbonate veins and hydrothermal water) and (3) from restricted euxinic basins (i.e. from the water column and respective sediments). The overall goal was to explore the environmental conditions and unravel the mechanisms that fractionate the two most abundant U isotopes, n({sup 238}U) and n({sup 235}U), on Earth.

  17. Lasers utilizing CO2 isotopes

    Science.gov (United States)

    Pechenin, Iu. V.; Domanov, M. S.

    1980-08-01

    The emission spectra and power characteristics of CW (C-12)(O-16)2, (C-13)(O-16)2, (C-12)(O-16)(O-18)2 and (C-12)(O-18) lasers are investigated. Laser output power is found to depend equally on the proportion of carbon and oxygen isotopes in the active medium for all isotopes except the asymmetrical (C-12)(O-16)(O-18), in which maximum output power is four to five times less due to the doubling of emission lines and limited enrichment caused by recombination into (C-12)(O-16)2 and (C-12)(O-18)2 molecules during discharge. The unsaturated gain is observed to increase linearly with enrichment, with that of nonsymmetrical molecules half that of the symmetrical molecules, while the maximum power output is independent of enrichment.

  18. Interstellar Isotopes: Prospects with ALMA

    Science.gov (United States)

    Charnley Steven B.

    2010-01-01

    Cold molecular clouds are natural environments for the enrichment of interstellar molecules in the heavy isotopes of H, C, N and O. Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets, that may trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. Models of the fractionation chemistry of H, C, N and O in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred, make several predictions that can be tested in the near future by molecular line observations. The range of fractionation ratios expected in different interstellar molecules will be discussed and the capabilities of ALMA for testing these models (e.g. in observing doubly-substituted isotopologues) will be outlined.

  19. Copper isotope signatures in modern marine sediments

    Science.gov (United States)

    Little, Susan H.; Vance, Derek; McManus, James; Severmann, Silke; Lyons, Timothy W.

    2017-09-01

    The development of metal stable isotopes as tools in paleoceanography requires a thorough understanding of their modern marine cycling. To date, no Cu isotope data has been published for modern sediments deposited under low oxygen conditions. We present data encompassing a broad spectrum of hydrographic and redox regimes, including continental margin and euxinic (sulphide-containing) settings. Taken together with previously published data from oxic settings, these data indicate that the modern oceanic sink for Cu has a surprisingly homogeneous isotopic composition of about +0.3‰ (δ65Cu, relative to NIST SRM976). We suggest that this signature reflects one of two specific water-column processes: (1) an equilibrium isotope fractionation between soluble, isotopically heavy, Cu complexed to strong organic ligands and an isotopically light pool sorbed to particles that deliver Cu to the sediment, or (2) an equilibrium isotope fractionation between the same isotopically heavy ligand-bound pool and the particle reactive free Cu2+ species, with the latter being scavenged by particulates and thereby delivered to the sediment. An output flux of about +0.3‰ into sediments is isotopically light relative to the known inputs to the ocean (at around +0.6‰) and the seawater value of +0.6 to +0.9‰, suggesting the presence of an as yet unidentified isotopically light source of Cu to the oceans. We hypothesize that this source may be hydrothermal, or may result from the partial dissolution of continentally derived particles.

  20. Comparative isotope ecology of African great apes.

    Science.gov (United States)

    Oelze, Vicky M; Fahy, Geraldine; Hohmann, Gottfried; Robbins, Martha M; Leinert, Vera; Lee, Kevin; Eshuis, Henk; Seiler, Nicole; Wessling, Erin G; Head, Josephine; Boesch, Christophe; Kühl, Hjalmar S

    2016-12-01

    The isotope ecology of great apes is a useful reference for palaeodietary reconstructions in fossil hominins. As extant apes live in C3-dominated habitats, variation in isotope signatures is assumed to be low compared to hominoids exploiting C4-plant resources. However, isotopic differences between sites and between and within individuals are poorly understood due to the lack of vegetation baseline data. In this comparative study, we included all species of free-ranging African great apes (Pan troglodytes, Pan paniscus, Gorilla sp.). First, we explore differences in isotope baselines across different habitats and whether isotopic signatures in apes can be related to feeding niches (faunivory and folivory). Secondly, we illustrate how stable isotopic variations within African ape populations compare to other extant and extinct primates and discuss possible implications for dietary flexibility. Using 701 carbon and nitrogen isotope data points resulting from 148 sectioned hair samples and an additional collection of 189 fruit samples, we compare six different great ape sites. We investigate the relationship between vegetation baselines and climatic variables, and subsequently correct great ape isotope data to a standardized plant baseline from the respective sites. We obtained temporal isotopic profiles of individual animals by sectioning hair along its growth trajectory. Isotopic signatures of great apes differed between sites, mainly as vegetation isotope baselines were correlated with site-specific climatic conditions. We show that controlling for plant isotopic characteristics at a given site is essential for faunal data interpretation. While accounting for plant baseline effects, we found distinct isotopic profiles for each great ape population. Based on evidence from habituated groups and sympatric great ape species, these differences could possibly be related to faunivory and folivory. Dietary flexibility in apes varied, but temporal variation was overall

  1. A novel methodology to investigate isotopic biosignatures

    Science.gov (United States)

    Horner, T. J.; Lee, R. B. Y.; Henderson, G. M.; Rickaby, R. E. M.

    2012-04-01

    An enduring goal of trace metal isotopic studies of Earth History is to find isotopic 'fingerprints' of life or of life's individual physiochemical processes. Generally, such signatures are sought by relating an isotopic effect observed in controlled laboratory conditions or a well-characterized environment to a more complex system or the geological record. However, such an approach is ultimately limited because life exerts numerous isotopic fractionations on any one element so it is hard to dissect the resultant net fractionation into its individual components. Further, different organisms, often with the same apparent cellular function, can express different isotopic fractionation factors. We have used a novel method to investigate the isotopic fractionation associated with a single physiological process-enzyme specific isotopic fractionation. We selected Cd isotopes since only one biological use of Cd is known, CdCA (a Cd/Zn carbonic anhydrase from the coastal diatom T. Weissflogii). Thus, our investigation can also inform the long standing mystery as to why this generally toxic element appears to have a nutrient-like dissolved isotopic and concentration profile in the oceans. We used the pET-15b plasmid to insert the CdCA gene into the E. coli genome. There is no known biochemical function for Cd in E. coli, making it an ideal vector for studying distinct physiological processes within a single organism. The uptake of Cd and associated isotopic fractionation was determined for both normal cells and those expressing CdCA. It was found that whole cells always exhibited a preference for the light isotopes of Cd, regardless of the expression of CdCA; adsorption of Cd to cell surfaces was not seen to cause isotopic fractionation. However, the cleaning procedure employed exerted a strong control on the observed isotopic composition of cells. Using existing protein purification techniques, we measured the Cd isotopic composition of different subcellular fractions of E

  2. Pb isotopes during mingling and melting

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Lesher, Charles E.

    2010-01-01

    Pb isotopic data are presented for hybrid rocks formed by mingling between mantle-derived tholeiitic magma of the Eocene Miki Fjord macrodike (East Greenland) and melt derived from the adjacent Precambrian basement. Bulk mixing and AFC processes between end-members readily identified in the field...... fail to model the Pb isotope systematics. Selective contamination during diffusional exchange, which can explain the complex Sr and Nd isotope compositions of the hybrid rocks (Blichert-Toft et al., 1992), cannot fully account for the variability of the Pb isotopic data using the identified crustal end......-members. The crustal anatectic end-member, although similar in Sr and Nd isotope composition, has a markedly different Pb isotopic composition than its source gneiss. The differences are consistent with preferential incorporation of radiogenic Pb from accessory phases such as metamict zircon or loosely-bound Pb from...

  3. Measuring In Vivo Ureagenesis With Stable Isotopes

    Science.gov (United States)

    Yudkoff, Marc; Mew, Nicholas Ah; Daikhin, Yevgeny; Horyn, Oksana; Nissim, Ilana; Nissim, Itzhak; Payan, Irma; Tuchman, Mendel

    2010-01-01

    Stable isotopes have been an invaluable adjunct to biomedical research for more than 70 years. Indeed, the isotopic approach has revolutionized our understanding of metabolism, revealing it to be an intensely dynamic process characterized by an unending cycle of synthesis and degradation. Isotopic studies have taught us that the urea cycle is intrinsic to such dynamism, since it affords a capacious mechanism by which to eliminate waste nitrogen when rates of protein degradation (or dietary protein intake) are especially high. Isotopes have enabled an appreciation of the degree to which ureagenesis is compromised in patients with urea cycle defects. Indeed, isotopic studies of urea cycle flux correlate well with the severity of cognitive impairment in these patients. Finally, the use of isotopes affords an ideal tool with which to gauge the efficacy of therapeutic interventions to augment residual flux through the cycle. PMID:20338795

  4. Isotope Geochemistry for Comparative Planetology of Exoplanets

    Science.gov (United States)

    Mandt, K. E.; Atreya, S.; Luspay-Kuti, A.; Mousis, O.; Simon, A.; Hofstadter, M. D.

    2017-01-01

    Isotope geochemistry has played a critical role in understanding processes at work in and the history of solar system bodies. Application of these techniques to exoplanets would be revolutionary and would allow comparative planetology with the formation and evolution of exoplanet systems. The roadmap for comparative planetology of the origins and workings of exoplanets involves isotopic geochemistry efforts in three areas: (1) technology development to expand observations of the isotopic composition of solar system bodies and expand observations to isotopic composition of exoplanet atmospheres; (2) theoretical modeling of how isotopes fractionate and the role they play in evolution of exoplanetary systems, atmospheres, surfaces and interiors; and (3) laboratory studies to constrain isotopic fractionation due to processes at work throughout the solar system.

  5. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    The application of stable Oxygen-18 (18O) and Deuterium (2H) isotopes, as a tracer for fluxes between different compartments of the water cycle was subject of the present PhD-thesis. During a three year period, temporal data from a wide range of water cycle constituents was collected from...... the Skjern River catchment, Denmark. The presented applications focused on studying the isotopic 'input signal' to the hydrosphere in the form of precipitation, the isotopic 'output signal' with its related dynamic processes at a coastal saltwater-freshwater interface (groundwater isotopes) and the temporal...... development within a given lowland headwater catchment (stream water isotopes). Based on our investigations on the precipitation isotopic composition a local meteoric water line (LMWL) was constructed and expressed as: δ2H=7.4 δ18O + 5.36‰. Moreover, we showed that under maritime temperature climate influence...

  6. Normalization of oxygen and hydrogen isotope data

    Science.gov (United States)

    Coplen, T.B.

    1988-01-01

    To resolve confusion due to expression of isotopic data from different laboratories on non-corresponding scales, oxygen isotope analyses of all substances can be expressed relative to VSMOW or VPDB (Vienna Peedee belemnite) on scales normalized such that the ??18O of SLAP is -55.5% relative to VSMOW. H3+ contribution in hydrogen isotope ratio analysis can be easily determined using two gaseous reference samples that differ greatly in deuterium content. ?? 1988.

  7. Production of radioactive isotopes from stable isotopes, for nuclear medicine; A partir d`isotopes stables, production d`isotopes radioactifs pour la medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Bourdoiseau, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Office des Rayonnements Ionisants

    1994-12-31

    Around 15 radioactive isotopes only are used for nuclear medicine diagnosis (kinetics or preferential fixation in the body); characteristics of these {gamma} and {beta}-minus emitters are presented: period, energy, production mode (isotopic filiation, fission product separation, cyclotron, reactor); details are given on applications, production mode, properties and consumption of various isotopes: Technetium 99m, Thallium 201, Iodine 123, Indium 111, Gallium 67, Rhenium 186, Erbium 169, Yttrium 90, Iron 59, Chromium 51, Krypton 81m. 1 tab.

  8. Silicon isotopes: from cosmos to benthos

    OpenAIRE

    Chakrabarti, Ramananda

    2015-01-01

    Silicon is the second most abundant element on the Earth and one of the more abundant elements in our Solar System. Variations in the relative abundance of the stable isotopes of Si (Si isotope fractionation) in different natural reservoirs, both terrestrial (surface and deep Earth) as well as extra-terrestrial (e.g. meteorites, lunar samples), are a powerful tracer of present and past processes involving abiotic as well as biotic systems. The versatility of the Si isotope tracer is reflected...

  9. Quantitative microbial ecology through stable isotope probing.

    Science.gov (United States)

    Hungate, Bruce A; Mau, Rebecca L; Schwartz, Egbert; Caporaso, J Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J; Liu, Cindy M; McHugh, Theresa A; Marks, Jane C; Morrissey, Ember M; Price, Lance B

    2015-11-01

    Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in (18)O and (13)C composition after exposure to [(18)O]water or [(13)C]glucose. The addition of glucose increased the assimilation of (18)O into DNA from [(18)O]water. However, the increase in (18)O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing.

  10. Scattering lengths of calcium and barium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dammalapati, U.; Willmann, L.; Knoop, S. [Kernfysisch Versneller Instituut (KVI), University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); LaserLaB Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands)

    2011-11-15

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba) in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed {sup 40}Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that the even isotopes cover a broad range of scattering lengths, opening the possibility of BEC for at least one of the isotopes.

  11. The trend of stable isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Yonekawa, Shigeru [Power Reactor and Nuclear Fuel Development Corp., Kamisaibara, Okayama (Japan). Ningyo Toge Works; Aoki, Eiji; Yato, Yumio

    1994-12-01

    Recently, stable isotopes are used in the field of medical science, nuclear physics, environmental science and agriculture. This report reviews the present status of stable isotope enrichment in ORNL, Urenco, Russia and PNC. Further the utilization method of the stable isotopes in the field of medical science, nuclear power and material science are described, and the application possibility of Laser separation method and Gas Centrifuge method are estimated. There are many overseas actual results of stable isotope separation with Gas Centrifuge method, therefore this method is possible enough in principle. (author).

  12. Copper isotope fractionation by desert shrubs

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete, Jesica U., E-mail: jnavarrete2@miners.utep.edu [University of Texas at El Paso, Department of Geological Sciences, 500 W. University Ave, El Paso, TX 79968 (United States); Viveros, Marian; Ellzey, Joanne T. [University of Texas at El Paso, Department of Biological Sciences, El Paso, TX 79968 (United States); Borrok, David M. [University of Texas at El Paso, Department of Geological Sciences, 500 W. University Ave, El Paso, TX 79968 (United States)

    2011-06-15

    Copper has two naturally occurring stable isotopes of masses 63 and 65 which can undergo mass dependent fractionation during various biotic and abiotic chemical reactions. These interactions and their resulting Cu isotope fractionations can be used to determine the mechanisms involved in the cycling of Cu in natural systems. In this study, Cu isotope changes were investigated at the organismal level in the metal-accumulating desert plant, Prosopis pubescens. Initial results suggest that the lighter Cu isotope was preferentially incorporated into the leaves of the plant, which may suggest that Cu was actively transported via intracellular proteins. The roots and stems show a smaller degree of Cu isotope fractionation and the direction and magnitude of the fractionations was dependent upon the levels of Cu exposure. Based on this and previous work with bacteria and yeast, a trend is emerging that suggests the lighter Cu isotope is preferentially incorporated into biological components, while the heavier Cu isotope tends to become enriched in aqueous solutions. In bacteria, plants and animals, intracellular Cu concentrations are strictly regulated via dozens of enzymes that can bind, transport, and store Cu. Many of these enzymes reduce Cu(II) to Cu(I). These initial results seem to fit into a broader picture of Cu isotope cycling in natural systems where oxidation/reduction reactions are fundamental in controlling the distributions of Cu isotopes.

  13. Uranium isotopes fingerprint biotic reduction

    Science.gov (United States)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  14. CO Isotopes in Planetary Nebulae

    OpenAIRE

    Balser, Dana S.; McMullin, Joseph P.; Wilson, T. L.

    2002-01-01

    Standard stellar evolution theory is inconsistent with the observed isotopic carbon ratio, 12C/13C, in evolved stars. This theory is also inconsistent with the 3He/H abundance ratios observed in Galactic HII regions, when combined with chemical evolution theory. These discrepancies have been attributed to an extra, non-standard mixing which further processes material during the RGB and should lower both the 12C/13C and 3He/H abundance ratios for stars with masses < 2 solar masses. Measurement...

  15. Exploring the isotopic niche: isotopic variance, physiological incorporation, and the temporal dynamics of foraging

    Directory of Open Access Journals (Sweden)

    Justin Douglas Yeakel

    2016-01-01

    Full Text Available Consumer foraging behaviors are dynamic, changing in response to prey availability, seasonality, competition, and even the consumer's physiological state. The isotopic composition of a consumer is a product of these factors as well as the isotopic `landscape' of its prey, i.e. the isotopic mixing space. Stable isotope mixing models are used to back-calculate the most likely proportional contribution of a set of prey to a consumer's diet based on their respective isotopic distributions, however they are disconnected from ecological process. Here we build a mechanistic framework that links the ecological and physiological processes of an individual consumer to the isotopic distribution that describes its diet, and ultimately to the isotopic composition of its own tissues, defined as its `isotopic niche’. By coupling these processes, we systematically investigate under what conditions the isotopic niche of a consumer changes as a function of both the geometric properties of its mixing space and foraging strategies that may be static or dynamic over time. Results of our derivations reveal general insight into the conditions impacting isotopic niche width as a function of consumer specialization on prey, as well as the consumer's ability to transition between diets over time. We show analytically that moderate specialization on isotopically unique prey can serve to maximize a consumer's isotopic niche width, while temporally dynamic diets will tend to result in peak isotopic variance during dietary transitions. We demonstrate the relevance of our theoretical findings by examining a marine system composed of nine invertebrate species commonly consumed by sea otters. In general, our analytical framework highlights the complex interplay of mixing space geometry and consumer dietary behavior in driving expansion and contraction of the isotopic niche. Because this approach is established on ecological mechanism, it is well-suited for enhancing the

  16. Silicon isotope fractionation during magmatic differentiation

    Science.gov (United States)

    Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Burton, Kevin W.; Halliday, Alex N.

    2011-10-01

    The Si isotopic composition of Earth's mantle is thought to be homogeneous (δ 30Si = -0.29 ± 0.08‰, 2 s.d.) and not greatly affected by partial melting and recycling. Previous analyses of evolved igneous material indicate that such rocks are isotopically heavy relative to the mantle. To understand this variation, it is necessary to investigate the degree of Si isotopic fractionation that takes place during magmatic differentiation. Here we report Si isotopic compositions of lavas from Hekla volcano, Iceland, which has formed in a region devoid of old, geochemically diverse crust. We show that Si isotopic composition varies linearly as a function of silica content, with more differentiated rocks possessing heavier isotopic compositions. Data for samples from the Afar Rift Zone, as well as various igneous USGS standards are collinear with the Hekla trend, providing evidence of a fundamental relationship between magmatic differentiation and Si isotopes. The effect of fractionation has been tested by studying cumulates from the Skaergaard Complex, which show that olivine and pyroxene are isotopically light, and plagioclase heavy, relative to the Si isotopic composition of the Earth's mantle. Therefore, Si isotopes can be utilised to model the competing effects of mafic and felsic mineral fractionation in evolving silicate liquids and cumulates. At an average SiO 2 content of ˜60 wt.%, the predicted δ 30Si value of the continental crust that should result from magmatic fractionation alone is -0.23 ± 0.05‰ (2 s.e.), barely heavier than the mantle. This is, at most, a maximum estimate, as this does not take into account weathered material whose formation drives the products toward lighter δ 30Si values. Mass balance calculations suggest that removal of continental crust of this composition from the upper mantle will not affect the Si isotopic composition of the mantle.

  17. Stable isotope utilization methodology; Methodologie de l`emploi des isotopes stables

    Energy Technology Data Exchange (ETDEWEB)

    Roth, E. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1994-12-31

    The various applications of stable isotope utilization are reviewed, as a function of their specific properties: poly-isotopic abundance modification is used for tracer applications; the accurate measurement of the stable isotope abundance may be applied to isotopic dilution for ultra-trace measurement, physical constant determination, fluid volume and concentration measurement; isotopic effects, such as reaction equilibrium differences are used for separation and identification of molecule active centers (pharmacology, paleoclimatology, hydrogeological studies) while reaction rate differences (competitive and non competitive methods) are used for the study of reaction mechanisms, such as enzymatic reactions. Analysis techniques (mass spectrometry, nuclear magnetic resonance, optical methods) are reviewed. 2 figs., 18 refs.

  18. ISOTOPES

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    1 A New Therapeutic Agent for Radiation Synovectomy: Preparation of 166Ho-EDTMP-HA Bai Hongsheng Jin Xiaohai Du Jin Wang Fan Chen Daming Fan Hongqiang Cheng Zhen In order to treat the patient with inflammatory synovial disease, HA particle is labeled with 166Ho by EDTMP under the condition of pH6.0-8.0 and vibration time 15 min, its labeling efficiency is more than 98%, the size of particle is mainly in the range of 2-5 μm. The absorbed capacity is 5 mg Ho per 1g HA. Study on stability of 166Ho-EDTMP-HA in vitro shows that loss of 166Ho is less than 2% for166Ho-EDTMP-HA incubated 72 h in the 0.9% saline and 1% BSA solution at 37 ℃ .Biodistribution in vivo and extra articular leakage are investigated following injection of 166Ho-EDTMP-HA into knee of normal rabbits. The experimental results show that the extra leakage of 166Ho-EDTMP-HA is 0.32% at 48 h post-injection, most of 166Ho radioactivity leaked from the knee joint is excreted in the urine. 99% of 166Ho radioactivity is retained in the knee joint of rabbits. Thereby 166Ho-EDTMP-HA, as a new therapeutical agent of radiation synovectomy, had a value of further clinical study.

  19. The isotopic dipole moment of HDO

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Mohallem, Jose R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)

    2007-03-14

    An adiabatic variational approximation is used to study the monodeuterated water molecule, HDO, accounting for the isotopic effect. The isotopic dipole moment, pointing from D to H, is then calculated for the first time, yielding (1.5 {+-} 0.1) x 10{sup -3} Debye, being helpful in the interpretation of experiments. (fast track communication)

  20. Magnesium isotope geochemistry in arc volcanism

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  1. Magnesium isotope geochemistry in arc volcanism.

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-28

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  2. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  3. Applications of stable isotopes in clinical pharmacology

    NARCIS (Netherlands)

    Schellekens, Reinout C A; Stellaard, Frans; Woerdenbag, Herman J; Frijlink, Henderik W; Kosterink, Jos G W

    2011-01-01

    This review aims to present an overview of the application of stable isotope technology in clinical pharmacology. Three main categories of stable isotope technology can be distinguished in clinical pharmacology. Firstly, it is applied in the assessment of drug pharmacology to determine the pharmacok

  4. Isotopic niches support the resource breadth hypothesis

    Science.gov (United States)

    Rader, Jonathan A.; Newsome, Seth D.; Sabat, Pablo; Chesser, R. Terry; Dillon, Michael E.; Martinez del Rio, Carlos

    2017-01-01

    Because a broad spectrum of resource use allows species to persist in a wide range of habitat types, and thus permits them to occupy large geographical areas, and because broadly distributed species have access to more diverse resource bases, the resource breadth hypothesis posits that the diversity of resources used by organisms should be positively related with the extent of their geographic ranges.We investigated isotopic niche width in a small radiation of South American birds in the genus Cinclodes. We analysed feathers of 12 species of Cinclodes to test the isotopic version of the resource breadth hypothesis and to examine the correlation between isotopic niche breadth and morphology.We found a positive correlation between the widths of hydrogen and oxygen isotopic niches (which estimate breadth of elevational range) and widths of the carbon and nitrogen isotopic niches (which estimates the diversity of resources consumed, and hence of habitats used). We also found a positive correlation between broad isotopic niches and wing morphology.Our study not only supports the resource breadth hypothesis but it also highlights the usefulness of stable isotope analyses as tools in the exploration of ecological niches. It is an example of a macroecological application of stable isotopes. It also illustrates the importance of scientific collections in ecological studies.

  5. Applications of stable isotopes in clinical pharmacology

    NARCIS (Netherlands)

    Schellekens, Reinout C A; Stellaard, Frans; Woerdenbag, Herman J; Frijlink, Henderik W; Kosterink, Jos G W

    2011-01-01

    This review aims to present an overview of the application of stable isotope technology in clinical pharmacology. Three main categories of stable isotope technology can be distinguished in clinical pharmacology. Firstly, it is applied in the assessment of drug pharmacology to determine the

  6. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  7. Isotope Program Report June FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jr, Benjamin E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Egle, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Isotope Program Monthly Highlights are briefly described. These include data on isotopes shipped, updates on equipment fabrication and testing, a potential new approach for nondestructive measurement of the amount of Cf-252 deposited on a surface, and efforts to recover and purify uranium-234 obtained from old PuBe sources.

  8. Second international conference on isotopes. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, C.J. [ed.

    1997-10-01

    The Second International Conference on Isotopes (2ICI) was hosted by the Australian Nuclear Association in Sydney, NSW, Australia. The Theme of the Second Conference: Isotopes for Industry, Health and a Better Environment recognizes that isotopes have been used in these fields successfully for many years and offer prospects for increasing use in the future. The worldwide interest in the use of research reactors and accelerators and in applications of stable and radioactive isotopes, isotopic techniques and radiation in industry, agriculture, medicine, environmental studies and research in general, was considered. Other radiation issues including radiation protection and safety were also addressed. International and national overviews and subject reviews invited from leading experts were included to introduce the program of technical sessions. The invited papers were supported by contributions accepted from participants for oral and poster presentation. A Technical Exhibition was held in association with the Conference. This volume contains the full text or extended abstracts of papers number 61- to number 114

  9. Manus Water Isotope Investigation Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Jessica L [University of Illinois, Urbana-Champaign; Cobb, Kim M [Georgia Institute of Technology; Noone, David [University of Colorado, Boulder

    2016-03-01

    The objective of this field campaign was to investigate climatic controls on the stable isotopic composition of water vapor, precipitation, and seawater in the western tropical Pacific. Simultaneous measurements of the stable isotopic composition of vapor and precipitation from April 28 to May 8, 2013, at the Manus Tropical Western Pacific Atmospheric Radiation Measurement site, provided several key insights into the nature of the climate signal archived in precipitation and vapor isotope ratios. We observed a large shift from lower to higher isotopic values in vapor and precipitation because of the passage of a mesoscale convective system west of the site and a transition from a regional stormy period into a more quiescent period. During the quiescent period, the stable isotopic composition of vapor and precipitation indicated the predominance of oceanic evaporation in determining the isotopic composition of boundary-layer vapor and local precipitation. There was not a consistent relationship between intra-event precipitation amount at the site and the stable isotopic composition of precipitation, thus challenging simplified assumptions about the isotopic “amount effect” in the tropics on the time scale of individual storms. However, some storms did show an amount effect, and deuterium excess values in precipitation had a significant relationship with several meteorological variables, including precipitation, temperature, relative humidity, and cloud base height across all measured storms. The direction of these relationships points to condensation controls on precipitation deuterium excess values on intra-event time scales. The relationship between simultaneous measurements of vapor and precipitation isotope ratios during precipitation events indicates the ratio of precipitation-to-vapor isotope ratios can diagnose precipitation originating from a vapor source unique from boundary-layer vapor and rain re-evaporation.

  10. Lead Isotopes in Highway Runoff

    Science.gov (United States)

    Ferreira, M.; Lau, S.; Green, P. G.; Stenstrom, M. K.

    2011-12-01

    Lead (Pb) isotopes have been used extensively to study the provenance of lead pollution on air, water, and sediments. In this study, we measured Pb isotopes and Pb aqueous concentration in highway runoff in three west Los Angeles sites. Those three sites, part of a long-term study sponsored by the California Department of Transportation, represent small catchment areas, and host heavy traffic. In addition, there were no inputs of sand or salt to the highway because the sites are almost completely impervious and also due to the lack of snow to be controlled. Highway runoff from the three sites was collected for 7 storms during the 2004-2005 Winter. Grab samples were collected every 15 minutes during the first hour, and hourly afterwards. A total of 202 samples were collected and filtered into five size fractions (100μm). Aqueous concentration of Pb range from 0.08μg/L to 46.95μg/L (7.98±10.89μg/L) and it is not correlated with any of the lead isotope ratios. The 208Pb/206Pb ratio ranges from 1.983 to 2.075 (2.024±0.026) and there is no statistical difference for the mean value of the 208Pb/206Pb ratio for the four particulate size fractions (0.45-8μm, 8-20μm, 20-100μm, >100μm). However, the 208Pb/206Pb ratio of nearby soils yield 2.060±0.021 and it is statistically different from the ratios obtained for the highway runoff. This hints that the lead present in highway runoff does not come from local soils. The 207Pb/206Pb ratio ranges from 0.804 to 0.847 (0.827±0.011) and there is no statistical difference for the mean value of the 207Pb/206Pb ratio for the four particulate size fractions (0.45-8μm, 8-20μm, 20-100μm, >100μm). Surprisingly, there is also no statistical difference with the 207Pb/206Pb ratio of nearby soils (0.833±0.009).

  11. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    Science.gov (United States)

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  12. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    composition of contemporaneous seawater. Marine carbonates are ubiquitous throughout Earth’s rock record rendering them a particularly interesting archive for constraining past changes in ocean chemistry. This thesis includes an investigation of the fractionation behavior of Cr isotopesduring coprecipitation......Chromium (Cr) is a redox sensitive element potentially capable of tracing fine-scale fluctuations of the oxygenation of Earth’s early surface environments and seawater. The Cr isotope composition of carbonates could perhaps be used as paleo-redox proxy to elucidate changes in the geological past...... related to the rise of oxygen and the evolution of the biosphere. However, before the Cr isotopesystem can be applied to faithfully delineate paleo-environmental changes, careful assessment of the signal robustness and a thorough understanding of the Cr cycle in Earth system processes is necessary...

  13. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    composition of contemporaneous seawater. Marine carbonates are ubiquitous throughout Earth’s rock record rendering them a particularly interesting archive for constraining past changes in ocean chemistry. This thesis includes an investigation of the fractionation behavior of Cr isotopesduring coprecipitation......Chromium (Cr) is a redox sensitive element potentially capable of tracing fine-scale fluctuations of the oxygenation of Earth’s early surface environments and seawater. The Cr isotope composition of carbonates could perhaps be used as paleo-redox proxy to elucidate changes in the geological past...... related to the rise of oxygen and the evolution of the biosphere. However, before the Cr isotopesystem can be applied to faithfully delineate paleo-environmental changes, careful assessment of the signal robustness and a thorough understanding of the Cr cycle in Earth system processes is necessary...

  14. Compound specific isotope analysis of organophosphorus pesticides.

    Science.gov (United States)

    Wu, Langping; Yao, Jun; Trebse, Polonca; Zhang, Ning; Richnow, Hans H

    2014-09-01

    Compound-specific isotope analysis (CSIA) has been established as a tool to study the environmental fate of a wide range of contaminants. In this study, CSIA was developed to analyse the stable carbon isotope signatures of the widely used organophosphorus pesticides: dichlorvos, omethoate and dimethoate. The linearity of the GC-C-IRMS system was tested for target pesticides and led to an acceptable isotope composition within the uncertainty of the instrument. In order to assess the accuracy of the developed method, the effect of the evaporation procedure on measured carbon isotope composition (δ(13)C) values was studied and showed that concentration by evaporation of solvents had no significant isotope effect. The CSIA was then applied to investigate isotope fractionation of the hydrolysis and photolysis of selected pesticides. The carbon isotope fractionation of tested pesticides was quantified by the Rayleigh model, which revealed a bulk enrichment factor (ε) of -0.2±0.1‰ for hydrolysis of dichlorvos, -1.0±0.1‰ and -3.7±1.1‰ for hydrolysis and photolysis of dimethoate respectively. This study is a first step towards the application of CSIA to trace the transport and degradation of organophosphorus pesticides in the environment.

  15. Stable isotopic characterisation of francolite formation

    Science.gov (United States)

    McArthur, J. M.; Benmore, R. A.; Coleman, M. L.; Soldi, C.; Yeh, H.-W.; O'Brien, G. W.

    1986-02-01

    Stable isotopic data are presented for 112 samples of francolite from 18 separate phosphate deposits. Values of δ 13C and δ 34S in most offshore deposits suggest formation within oxic or suboxic environments either by carbonate replacement or direct precipitation of francolite from water of normal marine compositions. The exceptions are concretionary francolite from Namibia, which has an isotopic composition in keeping with its formation within organic-rich sediments, and that from offshore Morocco, which has an isotopic signature of the anoxic/suboxic interface. Onshore deposits from Jordan, Mexico, South Africa and, possibly, the Permian Phosphoria Formation in the western U.S.A., are substantially depleted in 18O: they appear to be too altered for deductions to be made about their environments of formation. In other onshore deposits which are unaltered, or minimally altered, the isotopic composition suggests that some formed within sulphate-reducing sediments (Sedhura, Morocco) whilst francolite from the Georgina Basin of Australia formed at the oxic/anoxic boundary, where oxidation of biogenic H 2S decreases the δ 34S of pore water. In general, pelletal samples show non-oxic isotopic signatures, whilst non-pelletal samples show oxic isotopic signatures, but samples from Namibia, Peru (Ica Plateau) and the Californian and Moroccan margins are exceptions to this rule. Morphology may therefore be a misleading indicator of francolite genesis as no definitive relation exists between phosphorite type and isotopic signature.

  16. The isotope effect: Prediction, discussion, and discovery

    CERN Document Server

    Kragh, Helge

    2011-01-01

    The precise position of a spectral line emitted by an atomic system depends on the mass of the atomic nucleus and is therefore different for isotopes belonging to the same element. The possible presence of an isotope effect followed from Bohr's atomic theory of 1913, but it took several years before it was confirmed experimentally. Its early history involves the childhood not only of the quantum atom, but also of the concept of isotopy. Bohr's prediction of the isotope effect was apparently at odds with early attempts to distinguish between isotopes by means of their optical spectra. However, in 1920 the effect was discovered in HCl molecules, which gave rise to a fruitful development in molecular spectroscopy. The first detection of an atomic isotope effect was no less important, as it was by this means that the heavy hydrogen isotope deuterium was discovered in 1932. The early development of isotope spectroscopy illustrates the complex relationship between theory and experiment, and is also instructive with...

  17. Si isotope homogeneity of the solar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Pringle, Emily A.; Savage, Paul S.; Moynier, Frédéric [Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 (United States); Jackson, Matthew G. [Department of Earth Science, University of California, Santa Barbara, CA 93109 (United States); Barrat, Jean-Alix, E-mail: eapringle@wustl.edu, E-mail: savage@levee.wustl.edu, E-mail: pringle@ipgp.fr, E-mail: moynier@ipgp.fr, E-mail: jackson@geol.ucsb.edu, E-mail: Jean-Alix.Barrat@univ-brest.fr [Université Européenne de Bretagne, Université de Brest, CNRS UMR 6538 (Domaines Océaniques), I.U.E.M., Place Nicolas Copernic, F-29280 Plouzané Cedex (France)

    2013-12-20

    The presence or absence of variations in the mass-independent abundances of Si isotopes in bulk meteorites provides important clues concerning the evolution of the early solar system. No Si isotopic anomalies have been found within the level of analytical precision of 15 ppm in {sup 29}Si/{sup 28}Si across a wide range of inner solar system materials, including terrestrial basalts, chondrites, and achondrites. A possible exception is the angrites, which may exhibit small excesses of {sup 29}Si. However, the general absence of anomalies suggests that primitive meteorites and differentiated planetesimals formed in a reservoir that was isotopically homogenous with respect to Si. Furthermore, the lack of resolvable anomalies in the calcium-aluminum-rich inclusion measured here suggests that any nucleosynthetic anomalies in Si isotopes were erased through mixing in the solar nebula prior to the formation of refractory solids. The homogeneity exhibited by Si isotopes may have implications for the distribution of Mg isotopes in the solar nebula. Based on supernova nucleosynthetic yield calculations, the expected magnitude of heavy-isotope overabundance is larger for Si than for Mg, suggesting that any potential Mg heterogeneity, if present, exists below the 15 ppm level.

  18. Beneficial uses and production of isotopes

    CERN Document Server

    2001-01-01

    Isotopes, radioactive and stable, are used worldwide in various applications related to medical diagnosis or care, industry and scientific research. More than fifty countries have isotope production or separation facilities operated for domestic supply, and sometimes for international markets. This publication provides up-to-date information on the current status of, and trends in, isotope uses and production. It also presents key issues, conclusions and recommendations, which will be of interest to policy makers in governmental bodies, scientists and industrial actors in the field.

  19. Hafnium isotope stratigraphy of ferromanganese crusts

    Science.gov (United States)

    Lee, D.-C.; Halliday, A.N.; Hein, J.R.; Burton, K.W.; Christensen, J.N.; Gunther, D.

    1999-01-01

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in 87Sr/86Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  20. Isotopic Fractionation of Selenium Oxyanions in Wetlands

    Science.gov (United States)

    Clark, S. K.; Johnson, T. M.

    2004-05-01

    As oxic surface waters pass through aquatic macrophytes and over anoxic sediments in wetlands and lakes, the dissolved Se load often decreases; and, Se isotope ratio measurements can provide information about the mechanisms involved. Previous work on microbially induced isotopic fractionation of Se oxyanions under nearly natural conditions using wetland sediments shows consistent Se isotopic shifts during reduction of Se(VI) and Se(IV) to insoluble Se(0). However, previous isotopic studies of total dissolved selenium in wetlands found little to no isotopic shift as dissolved selenium concentrations decreased. This suggests that plant/algal uptake, followed by deposition and degradation, is the primary route of Se transfer into sediments. However, it is possible that the effective isotopic fractionation between Se in the surface water and Se deposited into sediments is somehow much less than the fractionation induced by the reduction reaction, or that cycling of organically bound Se is involved. In this study, we report Se isotope data for Se(VI), Se(IV) and total dissolved Se, Se(T), in surface waters from three wetland/lake sites: Sweitzer Lake, CO; 33-Mile Reservoir, WY; and, a small pond adjacent to Benton Lake, MT. We isolated Se(IV) via hydride generation, and Se(VI) via ion exchange. Se(T), including any organic components, was also analyzed. Isotope analysis was performed on an Isoprobe MC-ICPMS, using a method modified from that of Rouxel et al. (2002). We used the 82Se + 74Se double spike approach, and spiked samples before species separation. Our results for all three locations indicate similar trends in concentration changes and isotopic shifts between the inflow and outflow waters. Se(T) concentrations decrease by 45-70%, and Se(VI) concentrations decrease by 60-90%, whereas Se(IV) concentrations increase by 60-150%. Concomitant 80Se/76Se shifts are +0.5-0.8‰ for Se(T); -0.1-0.5‰ for Se(VI); and +0.4-6.5‰ for Se(IV). These data provide greater

  1. The Facility for Rare Isotope Beams

    Directory of Open Access Journals (Sweden)

    Wrede C.

    2015-01-01

    Full Text Available The Facility for Rare Isotope Beams (FRIB is a United States Department of Energy user facility currently under construction on the campus of Michigan State University. Based on a 400 kW, 200 MeV/u heavy-ion driver linac, FRIB will deliver high-quality fast, thermalized, and re-accelerated beams of rare isotopes with unprecedented intensities to a variety of experimental areas and equipment. New science opportunities at the frontiers of nuclear structure, nuclear astrophysics, fundamental symmetries, and societal applications will be enabled by this future world-leading rare-isotope beam facility.

  2. The Facility for Rare Isotope Beams

    Science.gov (United States)

    Wrede, C.

    2015-05-01

    The Facility for Rare Isotope Beams (FRIB) is a United States Department of Energy user facility currently under construction on the campus of Michigan State University. Based on a 400 kW, 200 MeV/u heavy-ion driver linac, FRIB will deliver high-quality fast, thermalized, and re-accelerated beams of rare isotopes with unprecedented intensities to a variety of experimental areas and equipment. New science opportunities at the frontiers of nuclear structure, nuclear astrophysics, fundamental symmetries, and societal applications will be enabled by this future world-leading rare-isotope beam facility.

  3. Isotope effects of hafnium in solvent extraction using crown ethers

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Toshiyuki; Moriyama, Hirotake [Research Reactor Institute, Kyoto University, Osaka (Japan); Hirata, Takafumi [Laboratory for Planetary Sciences, Tokyo Institute of Technology, Tokyo (Japan); Nishizawa, Kazushige [Department of Nuclear Engineering, Graduate School of Engineering, Osaka University, Osaka (Japan)

    2001-06-01

    Hafnium isotopes were fractionated in a liquid-liquid extraction system by using seven types of crown ethers, tributyl phosphate, or {omicron}-diethoxybenzene. The largest isotope effect was observed in the isotope pair of {sup 177}Hf-{sup 179}Hf with dibenzo-24-crown-8; the isotope enrichment factor was observed to be 0.0129{+-}0.0032. (author)

  4. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, M.; Kondo, M.; Noda, N. [Hydrogen Isotope Research Center, University of Toyama, Gofuku, Toyama (Japan); Tanaka, M.; Nishimura, K. [National Institute for Fusion Science, Toki-shi, Gifu (Japan)

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  5. Environmental geochemistry of calcium isotopes: Applications of a new stable isotope approach

    Institute of Scientific and Technical Information of China (English)

    LIU Zhanmin; LIU Congqiang; HAN Guilin; WANG Zhongliang; XUE Zichen; SONG Zhaoliang; YANG Cheng

    2006-01-01

    This paper summarizes isotope fractionation mechanism, analytical method and applications in environmental geochemistry of calcium isotopes. Calcium isotopic composition can be used to constrain material sources and study geological and environmental processes as the isotopic composition of calcium (δ 44Ca) and fractionation processes depend on geochemical circumstances in nature. Recently, thanks to current advances in analytical technology of calcium isotopes, calcium isotopes are broadly used in biological and geochemical studies, such as the mechanism of plants imbibing nutrients through their roots, calcium transport in the environmental ecosystem, calcium cycle in oceans and paleo-oceans and paleo-climate. The elementary data show that δ44Ca values vary from -2.88‰ to 0.92‰ in natural samples.

  6. Newtonian kinetic isotope effects. Observation, prediction, and origin of heavy-atom dynamic isotope effects.

    Science.gov (United States)

    Kelly, Kelmara K; Hirschi, Jennifer S; Singleton, Daniel A

    2009-06-24

    Intramolecular (13)C kinetic isotope effects were determined for the dimerization of cyclopentadiene. Substantial isotope effects were observed in three positions, despite the C(2) symmetry of the cycloaddition transition state and the absence of dynamical bottlenecks after this transition state. The observed isotope effects were predicted well from trajectory studies by extrapolating the outcomes of trajectories incorporating superheavy isotopes of carbon, ranging from (20)C to (140)C. Trajectory studies suggest that the isotope effects are unrelated to zero-point energy or the geometrical and momentum properties of the transition state. However, steepest-descent paths in mass-weighted coordinates correctly predict the direction of the isotope effects, supporting a novel origin in Newton's second law of motion.

  7. Short course on St-02 applications of isotope dilutions and isotopic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.

    1998-01-05

    This short course includes information on these topics and subtopics: (I) Nuclear Properties: (A) Historic roots; (B) Nomenclature; (C) Nuclear Stability and abundance; (D) Uses of isotopic techniques; (II) Instrumentation: (A) Sources; (B) Mass resolving elements; (C) Detectors; (III) Making Isotopic Measurements by ICP-MS: (A) Deadtime Correction; (B) Mass Discrimination; (C) Signal /Noise considerations; (IV) Applications and examples: (A) Isotope dilution; (B) Double Spike; (C) Biological Application; (D) Environmental Application; (E) Geological.

  8. Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research

    Science.gov (United States)

    Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas

    2014-05-01

    During the last decade stable isotope tracers have emerged as versatile tool in ecological research. Besides 'intrinsic' isotope tracers caused by the natural variation of isotopes, the intentional introduction of 'extrinsic' enriched stable isotope tracers into biological systems has gained significant interest. Hereby the induced change in the natural isotopic composition of an element allows amongst others for studying the fate and fluxes of metals, trace elements and species in organisms or provides an intrinsic marker or tag of particular biological samples. Due to the shoreless potential of this methodology, the number of publications dealing with applications of isotope (double) spikes as tracers to address research questions in 'real world systems' is constantly increasing. However, some isotope systems like the natural Sr isotopic system, although potentially very powerful for this type of application, are still rarely used, mainly because their adequate measurement/determination poses major analytical challenges; as e.g. Sr is available in significant amounts in natural samples. In addition, biological systems underlie complex processes such as metabolism, adsorption/desorption or oxidation/reduction. As a consequence, classic evaluation approaches such as the isotope dilution mass spectrometry equation are often not applicable because of the unknown amount of tracer finally present in the sample. Isotope pattern deconvolution (IPD), based on multiple linear regression, serves as simplified alternative data processing strategy to double spike isotope dilution calculations. The outstanding advantage of this mathematical tool lies in the possibility of deconvolving the isotope pattern in a spiked sample without knowing the quantities of enriched isotope tracer being incorporated into the natural sample matrix as well as the degree of impurities and species-interconversion (e.g. from sample preparation). Here, the potential of IPD for environmental tracer

  9. Stable isotope production with laser techniques; Production d`isotopes stables a l`aide des techniques laser

    Energy Technology Data Exchange (ETDEWEB)

    Petit, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes d`Enrichissement

    1994-12-31

    Laser properties may be used for stable isotope production either by selective photoionization of an atom particular isotope, either by selective photodissociation of a molecule. Principles of both processes are reviewed and examples of calcium 43 isotope separation through photoionization and of carbon and oxygen isotope separation by photodissociation are presented. 4 figs., 1 tab., 11 refs.

  10. Production of actinium-225 for alpha particle mediated radioimmunotherapy.

    Science.gov (United States)

    Boll, Rose A; Malkemus, Dairin; Mirzadeh, Saed

    2005-05-01

    The initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the alpha emitter (213)Bi in killing cancer cells. Bismuth-213 is obtained from a radionuclide generator system from decay of 10-days (225)Ac parent. Recent pre-clinical studies have also shown the potential application of both (213)Bi, and the (225)Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. This paper describes our five years of experience in production of (225)Ac in partial support of the on-going clinical trials. A four-step chemical process, consisting of both anion and cation exchange chromatography, is utilized for routine separation of carrier-free (225)Ac from a mixture of (228)Th, (229)Th and (232)Th. The separation of Ra and Ac from Th is achieved using the marcoporous anion exchange resin MP1 in 8M HNO(3) media. Two sequential MP1/NO(3) columns provide a separation factor of approximately 10(6) for Ra and Ac from Th. The separation of Ac from Ra is accomplished on a low cross-linking cation exchange resin AG50-X4 using 1.2M HNO(3) as eluant. Two sequential AG50/NO(3) columns provide a separation factor of approximately 10(2) for Ac from Ra. A 60-day processing schedule has been adopted in order to reduce the processing cost and to provide the highest levels of (225)Ac possible. Over an 8-week campaign, a total of approximately 100 mCi of (225)Ac (approximately 80% of the theoretical yield) is shipped in 5-6 batches, with the first batch typically consisting of approximately 50 mCi. After the initial separation and purification of Ac, the Ra pool is re-processed on a bi-weekly schedule or as needed to provide smaller batches of (225)Ac. The averaged radioisotopic purity of the (225)Ac was 99.6 +/- 0.7% with a (225)Ra content of < or =0.6%, and an average (229)Th content of (4(-4)(+5)) x 10(-5)%.

  11. Isolation of Actinium from Neutron-irradiated Thorium-I

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    Isolation of Actinium from Neutron-irradiated Thorium-I¥YangWeifan;YuanShuanggui;MuWantong;ZhangXueqian;LiZhongweiandZhaoLili...

  12. The anomalous quadrupole collectivity in Te isotopes

    CERN Document Server

    Qi, Chong

    2016-01-01

    We present systematic calculations on the spectroscopy and transition properties of even-even Te isotopes by using the large-scale configuration interaction shell model approach with a realistic interaction. These nuclei are of particular interest since their yrast spectra show a vibrational-like equally-spaced pattern but the few known E2 transitions show anomalous rotational-like behavior, which cannot be reproduced by collective models. Our calculations reproduce well the equally-spaced spectra of those isotopes as well as the constant behavior of the $B(E2)$ values in $^{114}$Te. The calculated $B(E2)$ values for neutron-deficient and heavier Te isotopes show contrasting different behaviors along the yrast line. The $B(E2)$ of light isotopes can exhibit a nearly constant bevavior upto high spins. We show that this is related to the enhanced neutron-proton correlation when approaching $N=50$.

  13. Separation of Isotopes via Dynamical Delocalization

    Institute of Scientific and Technical Information of China (English)

    Farhan Saif

    2008-01-01

    Based on the dynamical de-localization phenomenon we show that different isotopes of a material can be separated.We explain that the suggested scheme can be realized in the laboratory using presently available experimental facilities.

  14. Preparation of Metallic Isotope 26Mg

    Institute of Scientific and Technical Information of China (English)

    WuXiaolei; ZhangFuming; GanZaiguo; GuoJunsheng; QinZhi

    2003-01-01

    Some special isotope material is usually used in nuclear experiments. It can be served as ion beam or target. When new superheavy nuclide 265Bh (Z=107) is synthesized, a reaction of 243Am target with 26Mg ion beamis selected to produce new isotope 265Bh. The preparation and production of this rare and extremely expensive isotope 26 Mg used for ion beam substance will be a key problem in synthesizing experiment of 265Bh. Theavailable chemical form of isotope 26Mg in commercial product usually is oxide or other compound, which are not required in our experiment. They need to be transformed to metal form as a proper working substance in ion source.

  15. Nuclear Astrophysics with rare isotopes at FRIB

    Science.gov (United States)

    Schatz, Hendrik

    2011-05-01

    The Facility for Rare Isotope Beams (FRIB) currently under construction at Michigan State University will be one of the worlds’ most powerful accelerators to produce rare isotopes. These isotopes live only fractions of seconds, but their properties are imprinted onto the composition of the visible universe and the nature of stellar explosions. FRIB will produce for the first time many of the rare isotopes that are part of the rapid neutron capture process, responsible for the origin of heavy elements; it will measure reaction rates that govern stellar explosions such as supernovae, novae, and X-ray bursts; and it will produce the same exotic nuclei that form the crust of neutron stars. I will discuss how data from FRIB, together with new observational data, promise to address many open questions at the intersection of nuclear physics and astronomy, including the chemical evolution of our Galaxy, the nuclear energy sources of stellar explosions, and the nature of neutron stars.

  16. Quantification of isotopic turnover in agricultural systems

    Science.gov (United States)

    Braun, A.; Auerswald, K.; Schnyder, H.

    2012-04-01

    The isotopic turnover, which is a proxy for the metabolic rate, is gaining scientific importance. It is quantified for an increasing range of organisms, from microorganisms over plants to animals including agricultural livestock. Additionally, the isotopic turnover is analyzed on different scales, from organs to organisms to ecosystems and even to the biosphere. In particular, the quantification of the isotopic turnover of specific tissues within the same organism, e.g. organs like liver and muscle and products like milk and faeces, has brought new insights to improve understanding of nutrient cycles and fluxes, respectively. Thus, the knowledge of isotopic turnover is important in many areas, including physiology, e.g. milk synthesis, ecology, e.g. soil retention time of water, and medical science, e.g. cancer diagnosis. So far, the isotopic turnover is quantified by applying time, cost and expertise intensive tracer experiments. Usually, this comprises two isotopic equilibration periods. A first equilibration period with a constant isotopic input signal is followed by a second equilibration period with a distinct constant isotopic input signal. This yields a smooth signal change from the first to the second signal in the object under consideration. This approach reveals at least three major problems. (i) The input signals must be controlled isotopically, which is almost impossible in many realistic cases like free ranging animals. (ii) Both equilibration periods may be very long, especially when the turnover rate of the object under consideration is very slow, which aggravates the first problem. (iii) The detection of small or slow pools is improved by large isotopic signal changes, but large isotopic changes also involve a considerable change in the input material; e.g. animal studies are usually carried out as diet-switch experiments, where the diet is switched between C3 and C4 plants, since C3 and C4 plants differ strongly in their isotopic signal. The

  17. The production of stable isotopes in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M.; Iglesias, J.; Casas, J.; Saviron, J. M.; Quintanilla, M.

    1965-07-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs.

  18. Use of fluorescent screens for isotope radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, S. K.

    1979-01-01

    Radiographic examination can be performed on items beyond the limitation of conventional isotope radiography without a great loss of resolution. With proper film and screen selection and scatter radiation control, fluorescent screens can be a valuable additional tool for radiography.

  19. Carbon isotopic fractionation in heterotrophic microbial metabolism

    Science.gov (United States)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  20. Isotope effects of hydrogen and atom tunnelling

    Science.gov (United States)

    Buchachenko, A. L.; Pliss, E. M.

    2016-06-01

    The abnormally high mass-dependent isotope effects in liquid-phase hydrogen (deuterium) atom transfer reactions, which are customarily regarded as quantum effects, are actually the products of two classical effects, namely, kinetic and thermodynamic ones. The former is determined by the rate constants for atom transfer and the latter is caused by nonbonded (or noncovalent) isotope effects in the solvation of protiated and deuterated reacting molecules. This product can mimic the large isotope effects that are usually attributed to tunnelling. In enzymatic reactions, tunnelling is of particular interest; its existence characterizes an enzyme as a rigid molecular machine in which the residence time of reactants on the reaction coordinate exceeds the waiting time for the tunnelling event. The magnitude of isotope effect becomes a characteristic parameter of the internal dynamics of the enzyme catalytic site. The bibliography includes 61 references.

  1. Beam delivery for stable isotope separation

    Science.gov (United States)

    Forbes, Andrew; Strydom, Hendrick J.; Botha, Lourens R.; Ronander, Einar

    2002-10-01

    In the multi-photon dissociation process of Carbon isotope enrichment, IR photons are used to selectively excite a molecule with the given isotopic base element. This enrichment process is very sensitive to the beam's intensity and wavelength. Because the intensity is determined by the propagation of the field, the enrichment factors are also very dependent on the field propagation. In this paper, the influence of the wavelength and intensity of the beam, on the isotope selective dissociation of a CFC compound is investigated both experimentally and theoretically. Consideration is also given to some of the factors that influence the delivery of various beams to the reactor chamber, and their subsequent propagation through the reactor. The results show that suitable beam forming can lead to an improved isotope separation process.

  2. On the progress in stable isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Prusakov, V.N. [Kurchatov Institute, Moscow (Russian Federation)

    1994-12-31

    The principles and process of centrifuge isotope separation are reviewed; the fundamental advantage of the centrifuge over gaseous diffusion arises from the fact that the primary isotope separation effect occurs at thermodynamic equilibrium; thus, gas centrifuge enrichment uses only about 1/20 to 1/30 of the electricity per SWU (separation work unit) consumed by gaseous diffusion. The various substances that can be used in centrifuge isotope separation are listed (fluorides, oxyfluorides, {pi}-complexes, boron hydrides, metal-organic compounds, halides...). The centrifuge method productivity is much greater than with the electromagnetic separation technique; examples of centrifuge stable and radioactive isotope separation are given; the method of the residue reduction is also presented with the example of separating radioactive krypton-85 out of a nuclear reactor krypton blend. 4 figs.

  3. Development of proliferation resistant isotope separation technology

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Doyoung; Ko, Kwanghoon; Kim, Taeksoo; Park, Hyunmin; Lim, Gwon; Cha, Yongho; Han, Jaemin; Baik, Sunghoon; Cha, Hyungki

    2012-02-15

    This project was accomplished with an aim of establishing the industrial facilities for isotope separation in Korea. The experiment for the measurement of neutrino mass that has been an issue in physics, needs very much of enriched calcium-48 isotope. However, calcium-48 isotope can be produced only by the electro-magnetic method and, thus, its price is very expensive. Therefore, we expect that ALSIS can replace the electro-magnetic method for calcium-48 isotope production. In this research stage, the research was advanced systematically with core technologies, such as atomic vapor production, the measurement of vapor characteristics and stable and powerful laser development. These researches will be the basis of the next research stages. In addition, the international research trends and cooperation results are reported in this report.

  4. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    development within a given lowland headwater catchment (stream water isotopes). Based on our investigations on the precipitation isotopic composition a local meteoric water line (LMWL) was constructed and expressed as: δ2H=7.4 δ18O + 5.36‰. Moreover, we showed that under maritime temperature climate influence......, humidity is the main driver for the temporal and spatial isotopic development and temperature plays only a secondary role. Based on our investigations at a coastal lagoon aquifer we could improve quantifications of seasonal saltwater-wedge dynamics, based on isotopic tracers combined with salinity. We can...... link the observed seasonal regression/transgression pattern to the inland recharge cycle, which is expressed in hydraulic head configuration and submarine groundwater discharge rates at the fieldsite. Nonetheless, those observed dynamics could not be simulated due to numerical limitations. By the use...

  5. Isotope engineering of carbon nanotube systems.

    Science.gov (United States)

    Simon, F; Kramberger, Ch; Pfeiffer, R; Kuzmany, H; Zólyomi, V; Kürti, J; Singer, P M; Alloul, H

    2005-07-01

    The synthesis of a unique isotope engineered system, double-wall carbon nanotubes with natural carbon outer and highly 13C enriched inner walls, is reported from isotope enriched fullerenes encapsulated in single-wall carbon nanotubes (SWCNTs). The material allows the observation of the D line of the highly defect-free inner tubes that can be related to a curvature induced enhancement of the electron-phonon coupling. Ab initio calculations explain the inhomogeneous broadening of inner tube Raman modes due to the distribution of different isotopes. Nuclear magnetic resonance shows a significant contrast of the isotope enriched inner SWCNTs compared to other carbon phases and provides a macroscopic measure of the inner tube mass content. The high curvature of the small diameter inner tubes manifests in an increased distribution of the chemical shift tensor components.

  6. Robust optical carbon dioxide isotope analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  7. Iron isotope biogeochemistry of Neoproterozoic marine shales

    Science.gov (United States)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by oxygen levels. Alternatively, increasing oxygen levels would have led to a higher proportion of Fe(II) being oxidized, without decreasing the initial size of the ferrous seawater iron pool. We consider the latter explanation as the most likely. According to this hypothesis, the δ 56Fe record reflects the redox evolution of Earth's surface environments. δ 56Fe values in pre-Sturtian samples

  8. The Marine Biogeochemistry of Zinc Isotopes

    Science.gov (United States)

    2007-06-01

    dust (Niger) Sapropel (Mediterranean) 4* Deep-Sea Sediments * • Lobster Liver Mussel tissue Plankton Zooplankton Zinc ores * * * Sediment trap material...of natural plankton over large changes in nutrient concentrations in the Peru Upwelling Region. This suggests either that the isotope effect for Zn...hydrothermal fluids and minerals, cultured marine phytoplankton, natural plankton , and seawater. By measuring Zn isotopes in a diverse array of

  9. IUPAC Periodic Table of the Isotopes

    Science.gov (United States)

    Holden, N.E.; Coplen, T.B.; Böhlke, J.K.; Wieser, M.E.; Singleton, G.; Walczyk, T.; Yoneda, S.; Mahaffy, P.G.; Tarbox, L.V.

    2011-01-01

    For almost 150 years, the Periodic Table of the Elements has served as a guide to the world of elements by highlighting similarities and differences in atomic structure and chemical properties. To introduce students, teachers, and society to the existence and importance of isotopes of the chemical elements, an IUPAC Periodic Table of the Isotopes (IPTI) has been prepared and can be found as a supplement to this issue.

  10. Magnesium isotope geochemistry in arc volcanism

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan

    2016-01-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from −0.25 to −0.10, in contrast to the narrow range that characterizes the mantle (−0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid−mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  11. The Facility for Rare Isotope Beams

    OpenAIRE

    Wrede C.

    2015-01-01

    The Facility for Rare Isotope Beams (FRIB) is a United States Department of Energy user facility currently under construction on the campus of Michigan State University. Based on a 400 kW, 200 MeV/u heavy-ion driver linac, FRIB will deliver high-quality fast, thermalized, and re-accelerated beams of rare isotopes with unprecedented intensities to a variety of experimental areas and equipment. New science opportunities at the frontiers of nuclear structure, nuclear astrophysics, fundamental sy...

  12. Dye laser chain for laser isotope separation

    Science.gov (United States)

    Doizi, Denis; Jaraudias, Jean; Pochon, E.; Salvetat, G.

    1993-05-01

    Uranium enrichment by laser isotope separation uses a three step operation which requires four visible wavelengths to boost an individual U235 isotope from a low lying atomic energy level to an autoionizing state. The visible wavelengths are delivered by dye lasers pumped by copper vapor lasers (CVL). In this particular talk, a single dye chain consisting of a master oscillator and amplifier stages will be described and some of its performance given.

  13. Surfaces that become isotopic after Dehn filling

    CERN Document Server

    Bachman, David; Sedgwick, Eric

    2010-01-01

    We show that after generic filling along a torus boundary component of a 3-manifold, no two closed, 2-sided, essential surfaces become isotopic, and no closed, 2-sided, essential surface becomes inessential. That is, the set of essential surfaces (considered up to isotopy) survives unchanged in all suitably generic Dehn fillings. Furthermore, for all but finitely many non-generic fillings, we show that two essential surfaces can only become isotopic in a constrained way.

  14. Hydrogen isotope effect on the Dimits shift

    Science.gov (United States)

    Itoh, S.-I.; Itoh, K.

    2016-10-01

    The hydrogen isotope effect on the Dimits shift in drift wave turbulence (Dimits et al 2000 Phys. Plasmas 7 969) is discussed using the theory of zonal flows, in which the nonlinear damping rate of zonal flows is taken into account. The up-shift of the critical linear growth rate of the drift waves, above which drift wave fluctuations develop, is investigated. The dependence on the mass number of the hydrogen isotope is discussed.

  15. Nickel isotopic composition of the mantle

    Science.gov (United States)

    Gall, Louise; Williams, Helen M.; Halliday, Alex N.; Kerr, Andrew C.

    2017-02-01

    This paper presents a detailed high-precision study of Ni isotope variations in mantle peridotites and their minerals, komatiites as well as chondritic and iron meteorites. Ultramafic rocks display a relatively large range in δ60 Ni (permil deviation in 60 Ni /58 Ni relative to the NIST SRM 986 Ni isotope standard) for this environment, from 0.15 ± 0.07‰ to 0.36 ± 0.08‰, with olivine-rich rocks such as dunite and olivine cumulates showing lighter isotope compositions than komatiite, lherzolite and pyroxenite samples. The data for the mineral separates shed light on the origin of these variations. Olivine and orthopyroxene display light δ60 Ni whereas clinopyroxene and garnet are isotopically heavy. This indicates that peridotite whole-rock δ60 Ni may be controlled by variations in modal mineralogy, with the prediction that mantle melts will display variable δ60 Ni values due to variations in residual mantle and cumulate mineralogy. Based on fertile peridotite xenoliths and Phanerozoic komatiite samples it is concluded that the upper mantle has a relatively homogeneous Ni isotope composition, with the best estimate of δ60Nimantle being 0.23 ± 0.06‰ (2 s.d.). Given that >99% of the Ni in the silicate Earth is located in the mantle, this also defines the Ni isotope composition of the Bulk Silicate Earth (BSE). This value is nearly identical to the results obtained for a suite of chondrites and iron meteorites (mean δ60 Ni 0.26 ± 0.12‰ and 0.29 ± 0.10‰, respectively) showing that the BSE is chondritic with respect to its Ni isotope composition, with little to no Ni mass-dependent isotope fractionation resulting from core formation.

  16. Mixed Population Screening for Sulfur Isotopes

    Institute of Scientific and Technical Information of China (English)

    CUI Bin; ZHAO Lei; ZHAN Zhaoyang; HE Zhijun

    2004-01-01

    Quantitative research of the origin of sulfur isotopes is a difficult problem that has puzzled geochemists all along. In the study of the middle and lower reaches of the Yangtze River and the Dongpo orefield in Hunan Province,the authors successfully applied the mathematical model of mixed population screening to quantitatively resolving the problem on the origin of sulfur isotopes, which is significant in finding out the source of mineralizing matter and metallogenic mechanisms.

  17. IBFM for Ba isotopes and chaoticity

    Energy Technology Data Exchange (ETDEWEB)

    Bucurescu, D.; Cata-Danil, G.; Ivascu, M.; Ur, C.A. (Inst. of Atomic Physics, Bucharest (Romania)); Gizon, A.; Gizon, J. (Inst. des Sciences Nucleaires, 38 - Grenoble (France))

    1992-08-01

    Fluctuation properties have been analysed for the energy levels predicted by IBFM calculations in the Ba isotopes {sup 121}Ba to {sup 131}Ba. The results indicate, in general, a situation which is close to the chaotic limit. For the lighter isotopes studied (121 and 123), a phase transition is obtained in the low-spin, positive parity states, from a situation close to regularity at low excitation energies, towards chaoticity at higher excitations. (orig.).

  18. IBFM for barium isotopes and chaoticity

    Energy Technology Data Exchange (ETDEWEB)

    Bucurescu, D.; Cata-Danil, G.; Ivascu, M.; Ur, C.A. (Institute of Atomic Physics, Bucharest (Romania)); Gizon, A.; Gizon, J. (Institute des Sciences Nucleaires, Grenoble (France))

    1992-01-01

    Fluctuation properties have been analysed for the energy levels predicted by IBFM calculations in the Ba isotopes {sup 121}Ba to {sup 131}Ba. The results are indicating, in general, a situation which is close to the chaotic limit. For the lighter isotopes studied (121 and 131), a phase transition is obtained in the low-spin, positive states, from a situation close to regularity at low excitation energies, towards chaoticity at higher excitations. (author).

  19. IBFM for barium isotopes and chaoticity

    Science.gov (United States)

    Bucurescu, D.; Cata-Danil, G.; Ivascu, M.; Gizon, A.; Gizon, J.; UR, C. A.

    Fluctuation properties have been analysed for the energy levels predicted by IBFM calculations in the Ba isotopes 121Ba to 131Ba. The results are indicating, in general, a situation which is close to the chaotic limit. For the lighter isotopes studied (121 and 131), a phase transition is obtained in the low-spin, positive states, from a situation close to regularity at low excitation energies, towards chaoticity at higher excitations.

  20. Isotope shortage triggers delays for patients

    Science.gov (United States)

    Gould, Paula

    2009-07-01

    An unplanned shutdown of a nuclear reactor in Canada is disrupting the supply of medical isotopes across North America and forcing some hospitals to cancel or postpone patients' tests. The closure of the National Research Universal (NRU) reactor in Chalk River, Ontario, has also embarrassed Canadian officials, including a senior government minister who was forced to apologize after calling the isotope shortage a "sexy" career challenge.

  1. Isotopic discrimination of zinc in higher plants.

    Science.gov (United States)

    Weiss, D J; Mason, T F D; Zhao, F J; Kirk, G J D; Coles, B J; Horstwood, M S A

    2005-03-01

    * The extent of isotopic discrimination of transition metals in biological processes is poorly understood but potentially has important applications in plant and biogeochemical studies. * Using multicollector inductively coupled plasma (ICP) mass spectrometry, we measured isotopic fractionation of zinc (Zn) during uptake from nutrient solutions by rice (Oryza sativa), lettuce (Lactuca sativa) and tomato (Lycopersicon esculentum) plants. * For all three species, the roots showed a similar extent of heavy Zn enrichment relative to the nutrient solution, probably reflecting preferential adsorption on external root surfaces. By contrast, a plant-species specific enrichment of the light Zn isotope occurred in the shoots, indicative of a biological, membrane-transport controlled uptake into plant cells. The extent of the fractionation in the shoots further depended on the Zn speciation in the nutrient solution. * The observed isotopic depletion in heavy Zn from root to shoot (-0.13 to -0.26 per atomic mass unit) is equivalent to roughly a quarter of the total reported terrestrial variability of Zn isotopic compositions (c. 0.84 per atomic mass unit). Plant uptake therefore represents an important source of isotopic variation in biogeochemical cycling of Zn.

  2. Iron isotopic fractionation during continental weathering

    Energy Technology Data Exchange (ETDEWEB)

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  3. The discovery of isotopes a complete compilation

    CERN Document Server

    Thoennessen, Michael

    2016-01-01

    This book describes the exciting discovery of every isotope observed on earth to date, which currently numbers some 3000. For each isotope a short essay highlights the authors of the first publication for the isotope, the laboratory and year where and when the isotope was discovered, as well as details about the production and detection methods used. In controversial cases previously claims are also discussed. At the end a comprehensive table lists all isotopes sorted by elements and a complete list of references. Preliminary versions of these paragraphs have been published over the last few years as separate articles in the journal "Atomic Data and Nuclear Data Tables". The work re-evaluates all assignments judging them with a uniform set of criteria. In addition, the author includes over 100 new isotopes which have been discovered since the articles published. This book is a source of information for researchers as well as enthusiastic laymen alike. From the prepublication review: “The explanations focus ...

  4. Laser Spectroscopy of Neutron Rich Bismuth Isotopes

    CERN Multimedia

    2002-01-01

    %IS344 :\\\\ \\\\ The aim of the experiment is to measure the optical isotope shifts and hyperfine structures of bismuth isotopes across the N=126 shell closure in order to extract the change in mean square charge radii ($\\delta\\langle r^{2}\\rangle$) and static moments. These include the first isotones of lead to be measured directly above the shell closure and will provide new information on the systematics of the kink ($\\delta\\langle r^{2}\\rangle)$ seen in the lead isotopic chain. After two very successful runs the programme has been extended to include the neutron deficient isotopes below $^{201}$Bi to study the systematics across the $i_{13/2}$ neutron sub-shell closure at N=118.\\\\ \\\\ During the initial 2 runs (9 shifts) the isotope shifts and hyperfine structures of three new isotopes, $ ^{210,212,213}$Bi and the 9$^{-}$ isomer of $^{210}$Bi have been measured. The accuracy of the previous measurements of $^{205,206,208}$Bi have been greatly improved. The samples of $ ^{208,210,210^{m}}$Bi were prepared by c...

  5. Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Floss, C; Stadermann, F J; Bradley, J P; Dai, Z R; Bajt, S; Graham, G; Lea, A S

    2005-09-02

    We have carried out a comprehensive survey of the isotopic compositions (H, B, C, N, O, S) of a suite of interplanetary dust particles (IDPs), including both cluster and individual particles. Isotopic imaging with the NanoSIMS shows the presence of numerous discrete hotspots that are strongly enriched in {sup 15}N, including the largest {sup 15}N enrichments ({approx}1300 {per_thousand}) observed in IDPs to date. A number of the IDPs also contain larger regions with more modest enrichments in {sup 15}N, leading to average bulk N isotopic compositions that are {sup 15}N-enriched in these IDPs. Although C isotopic compositions are normal in most of the IDPs, two {sup 15}N-rich N-hotspots have correlated {sup 13}C anomalies. CN{sup -}/C{sup -} ratios suggest that most of the {sup 15}N-rich hotspots are associated with relatively N-poor carbonaceous matter, although specific carriers have not been determined. H isotopic distributions are similar to those of N: D anomalies are present both as distinct very D-rich hotspots and as larger regions with more modest enrichments. Nevertheless, H and N isotopic anomalies are not directly correlated, consistent with results from previous studies. Oxygen isotopic imaging shows the presence of abundant presolar silicate grains in the IDPs. The O isotopic compositions of the grains are similar to those found in presolar oxide and silicate grains from primitive meteorites. Most of the silicate grains in the IDPs have isotopic ratios consistent with meteoritic Group 1 oxide grains, indicating origins in oxygen-rich red giant and asymptotic giant branch stars, but several presolar silicates exhibit the {sup 17}O and {sup 18}O enrichments of Group 4 oxide grains, whose origin is less well understood. Based on their N isotopic compositions, the IDPs studied here can be divided into two groups. One group is characterized as being ''isotopically primitive'' and consists of those IDPs that have anomalous bulk N isotopic

  6. KIPS kilowatt isotope power system

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Control System topical report covers basic control requirements, selection of control system and a recent review of an electromechanical approach to the flow control valve. Section I covers the basic control requirements for Organic Rankine cycle systems, particular requirements for an isotope fueled space power system, and special requirements imposed by launch, Shuttle deployment and spacecraft requirements. Various control devices which can be used to meet system requirements are discussed. In Section II, various combinations of control functions and devices are presented with comments as to the suitability of each for the intended application. This is essentially a review of the selection process used to pick the present KIPS control system. The formal trade-off matrix, component description, and system selection, as prepared for Design Reviews 2 and 3, is included as Appendix A to the report. Section 3 covers the recently completed design of an electronic-electromechanical flow control valve and compares this approach to the thermal bulb-hydro-mechanical flow control valve baseline. The results of this comparative study indicate that the present configuration is preferable to an electrical valve.

  7. Isotopic evolution of Mauna Loa volcano

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, M.D.; Kammer, D.P. (Chemistry Dept., Woods Hole Oceanographic Institution, MA (USA))

    1991-04-01

    In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high {sup 3}He/{sup 4}He ({approx equal} 16-20 times atmospheric), higher {sup 206}Pb/{sup 204}Pb ({approx equal} 18.2), and lower {sup 87}Sr/{sup 86}Sr({approx equal} 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 x atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with {sup 3}He/{sup 4}He ratios similar to the other young Kau basalt ({approx equal} 8.5 x atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. (orig./WL).

  8. Magnesium isotope systematics in Martian meteorites

    Science.gov (United States)

    Magna, Tomáš; Hu, Yan; Teng, Fang-Zhen; Mezger, Klaus

    2017-09-01

    Magnesium isotope compositions are reported for a suite of Martian meteorites that span the range of petrological and geochemical types recognized to date for Mars, including crustal breccia Northwest Africa (NWA) 7034. The δ26Mg values (per mil units relative to DSM-3 reference material) range from -0.32 to -0.11‰; basaltic shergottites and nakhlites lie to the heavier end of the Mg isotope range whereas olivine-phyric, olivine-orthopyroxene-phyric and lherzolitic shergottites, and chassignites have slightly lighter Mg isotope compositions, attesting to modest correlation of Mg isotopes and petrology of the samples. Slightly heavier Mg isotope compositions found for surface-related materials (NWA 7034, black glass fraction of the Tissint shergottite fall; δ26Mg > -0.17‰) indicate measurable Mg isotope difference between the Martian mantle and crust but the true extent of Mg isotope fractionation for Martian surface materials remains unconstrained. The range of δ26Mg values from -0.19 to -0.11‰ in nakhlites is most likely due to accumulation of clinopyroxene during petrogenesis rather than garnet fractionation in the source or assimilation of surface material modified at low temperatures. The rather restricted range in Mg isotope compositions between spatially and temporally distinct mantle-derived samples supports the idea of inefficient/absent major tectonic cycles on Mars, which would include plate tectonics and large-scale recycling of isotopically fractionated surface materials back into the Martian mantle. The cumulative δ26Mg value of Martian samples, which are not influenced by late-stage alteration processes and/or crust-mantle interactions, is - 0.271 ± 0.040 ‰ (2SD) and is considered to reflect δ26Mg value of the Bulk Silicate Mars. This value is robust taking into account the range of lithologies involved in this estimate. It also attests to the lack of the Mg isotope variability reported for the inner Solar System bodies at current

  9. Isotopic yield in cold binary fission of even-even $^{244-258}$Cf isotopes

    CERN Document Server

    Santhosh, K P; Krishnan, Sreejith

    2016-01-01

    The cold binary fission of even-even 244-258Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. It is found that highest yield for 244,246,248Cf isotopes are for the fragments with isotope of Pb (Z=82) as one fragment, whereas for 250Cf and 252Cf isotopes the highest yield is for the fragments with isotope of Hg (Z=80) as one fragment. In the case of 254,256,258Cf isotopes the highest yield is for the fragments with Sn (Z=50) as one fragment. Thus, the fragment combinations with maximum yield reveal the role of doubly magic and near doubly magic nuclei in binary fission. It is found that asymmetric splitting is favoured for Cf isotopes with mass number A 252. In the case of Cf isotope with A=252, there is an equal probability for asymmetric and symmetric splitti...

  10. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenviro......Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  11. Matching isotopic distributions from metabolically labeled samples.

    Science.gov (United States)

    McIlwain, Sean; Page, David; Huttlin, Edward L; Sussman, Michael R

    2008-07-01

    In recent years stable isotopic labeling has become a standard approach for quantitative proteomic analyses. Among the many available isotopic labeling strategies, metabolic labeling is attractive for the excellent internal control it provides. However, analysis of data from metabolic labeling experiments can be complicated because the spacing between labeled and unlabeled forms of each peptide depends on its sequence, and is thus variable from analyte to analyte. As a result, one generally needs to know the sequence of a peptide to identify its matching isotopic distributions in an automated fashion. In some experimental situations it would be necessary or desirable to match pairs of labeled and unlabeled peaks from peptides of unknown sequence. This article addresses this largely overlooked problem in the analysis of quantitative mass spectrometry data by presenting an algorithm that not only identifies isotopic distributions within a mass spectrum, but also annotates matches between natural abundance light isotopic distributions and their metabolically labeled counterparts. This algorithm is designed in two stages: first we annotate the isotopic peaks using a modified version of the IDM algorithm described last year; then we use a probabilistic classifier that is supplemented by dynamic programming to find the metabolically labeled matched isotopic pairs. Such a method is needed for high-throughput quantitative proteomic metabolomic experiments measured via mass spectrometry. The primary result of this article is that the dynamic programming approach performs well given perfect isotopic distribution annotations. Our algorithm achieves a true positive rate of 99% and a false positive rate of 1% using perfect isotopic distribution annotations. When the isotopic distributions are annotated given 'expert' selected peaks, the same algorithm gets a true positive rate of 77% and a false positive rate of 1%. Finally, when annotating using machine selected peaks, which

  12. Myths of Isotopic Reference Materials Busted

    Science.gov (United States)

    Coplen, T.

    2007-12-01

    During the past several years, the determination of the isotopic abundances of elements including H, Li, B, C, N, O, Mg, Si, S, Cl, Ca, Cr, Fe, Cu, Zn, Tl, and Se has substantially increased because of expanded use in hydrology, environmental studies, microbiology, forensic investigations, atmospheric investigations, oceanography, etc. Improvements in instrumentation enable increasingly precise isotope-amount-ratio measurements in these fields, but these improvements in precision commonly do not lead to improvements in accuracy because of the lack or improper use of isotopic reference materials. When properly used, these critically important materials enable any laboratory worldwide to measure the same homogeneous sample and report the same isotopic abundance within analytical uncertainty. For example, for stable isotopic analysis of gaseous hydrogen samples, the agreement among 36 laboratories worldwide before normalization to any hydrogen gas reference material was 11.8 per mill. After normalization to anchors (gaseous H isotopic reference materials) at each end of the delta H-2 scale, the agreement was 0.85 per mill, an improvement of more than an order of magnitude. Consistency of delta C-13 measurements often can be improved by nearly 50 percent by anchoring the delta C-13 scale with two isotopic reference materials differing substantially in C-13 mole fraction, namely NBS 19 calcite and L-SVEC lithium carbonate. Agreement of delta C-13 values of four expert laboratories analyzing USGS40 L- glutamic acid by CF-IRMS methods improved from 0.084 to 0.015 per mill with use of the two scale anchors (NBS 19 and L-SVEC). Solid oxygen isotopic reference materials (IAEA-600 caffeine, IAEA-601 and IAEA-602 benzoic acids, IAEA-NO-3, USGS32, USGS34, and USGS35 nitrates, NBS-127, IAEA-SO-5, and IAEA-SO-6 barium sulfates) are poorly calibrated. Calibrating these solids to the VSMOW-SLAP reference water scale has been very difficult because both the solids and reference

  13. Stable isotopes in Lithuanian bioarcheological material

    Science.gov (United States)

    Skipityte, Raminta; Jankauskas, Rimantas; Remeikis, Vidmantas

    2015-04-01

    Investigation of bioarcheological material of ancient human populations allows us to understand the subsistence behavior associated with various adaptations to the environment. Feeding habits are essential to the survival and growth of ancient populations. Stable isotope analysis is accepted tool in paleodiet (Schutkowski et al, 1999) and paleoenvironmental (Zernitskaya et al, 2014) studies. However, stable isotopes can be useful not only in investigating human feeding habits but also in describing social and cultural structure of the past populations (Le Huray and Schutkowski, 2005). Only few stable isotope investigations have been performed before in Lithuanian region suggesting a quite uniform diet between males and females and protein intake from freshwater fish and animal protein. Previously, stable isotope analysis has only been used to study a Stone Age population however, more recently studies have been conducted on Iron Age and Late medieval samples (Jacobs et al, 2009). Anyway, there was a need for more precise examination. Stable isotope analysis were performed on human bone collagen and apatite samples in this study. Data represented various ages (from 5-7th cent. to 18th cent.). Stable carbon and nitrogen isotope analysis on medieval populations indicated that individuals in studied sites in Lithuania were almost exclusively consuming C3 plants, C3 fed terrestrial animals, and some freshwater resources. Current investigation demonstrated social differences between elites and country people and is promising in paleodietary and daily life reconstruction. Acknowledgement I thank prof. dr. G. Grupe, Director of the Anthropological and Palaeoanatomical State Collection in Munich for providing the opportunity to work in her laboratory. The part of this work was funded by DAAD. Antanaitis-Jacobs, Indre, et al. "Diet in early Lithuanian prehistory and the new stable isotope evidence." Archaeologia Baltica 12 (2009): 12-30. Le Huray, Jonathan D., and Holger

  14. Stable isotope enrichment using a plasma centrifuge

    Science.gov (United States)

    Krishnan, Mahadevan; Bures, Brian; Madden, Robert

    2012-10-01

    A primary goal of the Department of Energy's Isotope Development and Production for Research and Applications Program (Isotope Program) within the Office of Nuclear Physics (NP) is to produce isotopes that are in short supply in the U.S. and of which there exists no or insufficient domestic commercial production capability. A vacuum arc plasma centrifuge is a rigid rotor column of metal plasma in which centrifugal forces re-distribute ions radially according to their mass/charge ratio. Early work demonstrated rotation at 2 million rpm and separation of various stable isotopes. The spinning plasma column had a Gaussian flux profile, peaked on the rigid rotor axis. This work adopts a more efficient approach, with the plasma created as a hollow column, wherein the flux is concentrated at larger radii where the centrifugal action is highest. By tailoring the vacuum arc discharge geometry, the rotation rate can also be increased to ˜10 million rpm. Data from Cu, Al and other metal plasmas will be presented and discussed in light of enriched stable isotopes needed for research and medicine.

  15. Accelerator Production of Isotopes for Medical Use

    Science.gov (United States)

    Lapi, Suzanne

    2014-03-01

    The increase in use of radioisotopes for medical imaging and therapy has led to the development of novel routes of isotope production. For example, the production and purification of longer-lived position emitting radiometals has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller medical cyclotrons at dedicated facilities. Recently, isotope harvesting from heavy ion accelerator facilities has also been suggested. The Facility for Rare Isotope Beams (FRIB) will be a new national user facility for nuclear science to be completed in 2020. Radioisotopes could be produced by dedicated runs by primary users or may be collected synergistically from the water in cooling-loops for the primary beam dump that cycle the water at flow rates in excess of hundreds of gallons per minute. A liquid water target system for harvesting radioisotopes at the National Superconducting Cyclotron Laboratory (NSCL) was designed and constructed as the initial step in proof-of-principle experiments to harvest useful radioisotopes in this manner. This talk will provide an overview of isotope production using both dedicated machines and harvesting from larger accelerators typically used for nuclear physics. Funding from Department of Energy under DESC0007352 and DESC0006862.

  16. Second international conference on isotopes. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, C.J. [ed.

    1997-10-01

    The Second International Conference on Isotopes (2ICI) was hosted by the Australian Nuclear Association in Sydney, NSW, Australia. The Theme of the Second Conference: Isotopes for Industry, Health and a Better Environment recognizes that isotopes have been used in these fields successfully for many years and offer prospects for increasing use in the future. The worldwide interest in the use of research reactors and accelerators and in applications of stable and radioactive isotopes, isotopic techniques and radiation in industry, agriculture, medicine, environmental studies and research in general, was considered. Other radiation issues including radiation protection and safety were also addressed. International and national overviews and subject reviews invited from leading experts were included to introduce the program of technical sessions. The invited papers were supported by contributions accepted from participants for oral and poster presentation. A Technical Exhibition was held in association with the Conference. This volume contains the foreword, technical program, the author index and of the papers (1-60) presented at the conference.

  17. CERN to start producing medical isotopes

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    A promising project that was hailed at the ICTR-PHE 2012 medical conference (see Bulletin issues 10-11/2012 and 12-13/2012) has seen the light of day at CERN. The project, known by the name of MEDICIS, will make it possible to produce a large variety of radioactive isotopes for medical research.   This image of a brain, superimposed on a drawing by Leonardo da Vinci, was taken by a PET scanner after injecting a molecule containing a positron-emitting isotope. CERN-MEDICIS will produce new isotopes for imaging which will be able to show up cancerous tissues and destroy them by emitting local radiation as the isotopes decay. In the United States, a new radium-based drug which targets bone metastases is about to go on the market. Radium, which can be brought to bear at the cell level, is a potent weapon in the fight against certain types of cancer, and is opening the way to a new form of medicine. This is the direction that CERN has decided to follow through the CERN-MEDICIS* (Medical Isotopes...

  18. Iron isotope systematics of the Skaergaard intrusion

    DEFF Research Database (Denmark)

    Lesher, Charles; Lundstrom, C.C.; Barfod, Gry

    report the results of a broad study of the iron isotope compositions of gabbros within the layered and upper border series of the Skaergaard intrusion, pegmatite and granophyre associated with these gabbroic rocks, and the sandwich horizon thought to represent the product of extreme differentiation and/or...... crystallization on non-traditional stable isotope systems, particularly iron. FeTi oxide minerals (titanomagnetite and ilmenite) appear after ~60% of the magma had solidified. This was a significant event affecting the liquid line of descent and potentially accompanied by iron isotope fractionation. Here we...... liquid immiscibility. Forty-eight whole rock samples from well-constrained stratigraphic levels in the intrusion were crushed, powdered and dissolved, followed by iron separation by ion chromatography. Purified solutions were analyzed by MC- ICPMS in high-resolution mode using the sample-std bracket...

  19. Isotope analysis in the transmission electron microscope

    CERN Document Server

    Susi, Toma; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-01-01

    The {\\AA}ngstr\\"om-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either $^{12}$C or $^{13}$C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method should be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  20. Stable isotope dilution assays in mycotoxin analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rychlik, Michael; Asam, Stefan [Universitaet Muenchen, Lehrstuhl fuer Lebensmittelchemie der Technischen, Garching (Germany)

    2008-01-15

    The principle and applications of stable isotope dilution assays (SIDAs) in mycotoxin analysis are critically reviewed. The general section includes historical aspects of SIDAs, the prerequisites and limitations of the use of stable isotopically labelled internal standards, and possible calibration procedures. In the application section actual SIDAs for the analysis of trichothecenes, zearalenone, fumonisins, patulin, and ochratoxin A are presented. The syntheses and availability of labelled mycotoxins for use as internal standards is reviewed and specific advances in food analysis and toxicology are demonstrated. The review indicates that LC-MS applications, in particular, require the use of stable isotopically labelled standards to compensate for losses during clean-up and for discrimination due to ion suppression. As the commercial availability of these compounds continues to increase, SIDAs can be expected to find expanding use in mycotoxin analysis. (orig.)

  1. Sourcing explosives: a multi-isotope approach.

    Science.gov (United States)

    Widory, David; Minet, Jean-Jacques; Barbe-Leborgne, Martine

    2009-06-01

    Although explosives are easily identified with current instrumental techniques, it is generally impossible to distinguish between sources of the same substance. To alleviate this difficulty, we present a multi-stable isotope (delta13C, delta15N, delta18O, deltaD) approach for appraising the possibility of discriminating explosives. The results from 30 distinct PETN, TNT and ANFO samples show that the different families of explosives are clearly differentiated by both their specific isotope signatures and their combination with corresponding element concentrations. Coupling two or more of the studied isotope systematics yields an even more precise differentiation on the basis of their raw-material origin and/or manufacturing process.

  2. Guideline on Isotope Dilution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Amy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-19

    Isotope dilution mass spectrometry is used to determine the concentration of an element of interest in a bulk sample. It is a destructive analysis technique that is applicable to a wide range of analytes and bulk sample types. With this method, a known amount of a rare isotope, or ‘spike’, of the element of interest is added to a known amount of sample. The element of interest is chemically purified from the bulk sample, the isotope ratio of the spiked sample is measured by mass spectrometry, and the concentration of the element of interest is calculated from this result. This method is widely used, although a mass spectrometer required for this analysis may be fairly expensive.

  3. Iron isotope systematics of the Skaergaard intrusion

    DEFF Research Database (Denmark)

    Lesher, Charles; Lundstrom, C.C.; Barfod, Gry

    crystallization on non-traditional stable isotope systems, particularly iron. FeTi oxide minerals (titanomagnetite and ilmenite) appear after ~60% of the magma had solidified. This was a significant event affecting the liquid line of descent and potentially accompanied by iron isotope fractionation. Here we...... report the results of a broad study of the iron isotope compositions of gabbros within the layered and upper border series of the Skaergaard intrusion, pegmatite and granophyre associated with these gabbroic rocks, and the sandwich horizon thought to represent the product of extreme differentiation and....../or liquid immiscibility. Forty-eight whole rock samples from well-constrained stratigraphic levels in the intrusion were crushed, powdered and dissolved, followed by iron separation by ion chromatography. Purified solutions were analyzed by MC- ICPMS in high-resolution mode using the sample-std bracket...

  4. Earth Processes: Reading the Isotopic Code

    Science.gov (United States)

    Basu, Asish; Hart, Stan

    Publication of this monograph will coincide, to a precision of a few per mil, with the centenary of Henri Becquerel's discovery of "radiations actives" (C. R. Acad. Sci., Feb. 24, 1896). In 1896 the Earth was only 40 million years old according to Lord Kelvin. Eleven years later, Boltwood had pushed the Earth's age past 2000 million years, based on the first U/Pb chemical dating results. In exciting progression came discovery of isotopes by J. J. Thomson in 1912, invention of the mass spectrometer by Dempster (1918) and Aston (1919), the first measurement of the isotopic composition of Pb (Aston, 1927) and the final approach, using Pb-Pb isotopic dating, to the correct age of the Earth: close—2.9 Ga (Gerling, 1942), closer—3.0 Ga (Holmes, 1949) and closest—4.50 Ga (Patterson, Tilton and Inghram, 1953).

  5. Isotopes in the Arctic atmospheric water cycle

    Science.gov (United States)

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen Larsen, Hans Christian; Masson-Delmotte, Valérie

    2016-04-01

    The ISO-ARC project aims at documenting the Arctic atmospheric hydrological cycle, by assessing the imprint of the marine boundary conditions (e.g. temperature variations, circulation changes, or meltwater input) to the isotopic composition of the atmospheric water cycle (H218O and HDO) with a focus on North Atlantic and Arctic oceans. For this purpose, two continuous monitoring water vapour stable isotopes cavity ring-down spectrometers have been installed in July 2015: on-board the Polarstern research vessel and in the Siberian Lena delta Samoylov research station (N 72° 22', E 126° 29'). The Polarstern measurements cover the summer 2015 Arctic campaign from July to mid-October, including six weeks in the Fram Strait region in July- August, followed by a campaign reaching the North Pole and a transect from the Norwegian Sea to the North Sea. These vapour observations are completed by water isotopic measurements in samples from the surface ocean water for Polarstern and from precipitation in Samoylov and Tiksi (120 km south-east of the station). A custom-made designed automatic calibration system has been implemented in a comparable manner for both vapour instruments, based on the injection of different liquid water standards, which are completely vaporised in dry air at high temperature. Subsequent humidity level can be adjusted from 2000 to at least 30000 ppm. For a better resilience, an independent calibration system has been added on the Samoylov instrument, allowing measurements of one standard at humidity levels ranging from 2000 to 15000 ppm: dry air is introduced in a tank containing a large amount of liquid water standard, undergoing evaporation under a controlled environment. The measurement protocol includes an automatic calibration every 25 hours. First instrument characterisation experiments depict a significant isotope-humidity effect at low humidity, dependant on the isotopic composition of the standard. For ambient air, our first isotope

  6. Laser spectroscopy of neutron deficient Sn isotopes

    CERN Multimedia

    We propose to study the ground state properties of neutron-deficient Sn isotopes towards the doubly-magic nucleus $^{100}$Sn. Nuclear spins, changes in the rms charge radii and electromagnetic moments of $^{101-121}$Sn will be measured by laser spectroscopy using the CRIS experimental beam line. These ground-state properties will help to clarify the evolution of nuclear structure properties approaching the $\\textit{N = Z =}$ 50 shell closures. The Sn isotopic chain is currently the frontier for the application of state-of-the-art ab-initio calculations. Our knowledge of the nuclear structure of the Sn isotopes will set a benchmark for the advances of many-body methods, and will provide an important test for modern descriptions of the nuclear force.

  7. Analysing Groundwater Using the 13C Isotope

    Science.gov (United States)

    Awad, Sadek

    The stable isotope of the carbon atom (13C) give information about the type of the mineralisation of the groundwater existing during the water seepage and about the recharge conditions of the groundwater. The concentration of the CO2(aq.) dissolved during the infiltration of the water through the soil's layers has an effect on the mineralisation of this water. The type of the photosynthesis's cycle (C-3 or C-4 carbon cycle) can have a very important role to determine the conditions (closed or open system) of the mineralisation of groundwater. The isotope 13C of the dissolved CO2 in water give us a certain information about the origin and the area of pollution of water. The proportion of the biogenic carbon and its percentage in the mineralisation of groundwater is determined by using the isotope 13C.

  8. Stable isotope dilution assays in mycotoxin analysis.

    Science.gov (United States)

    Rychlik, Michael; Asam, Stefan

    2008-01-01

    The principle and applications of stable isotope dilution assays (SIDAs) in mycotoxin analysis are critically reviewed. The general section includes historical aspects of SIDAs, the prerequisites and limitations of the use of stable isotopically labelled internal standards, and possible calibration procedures. In the application section actual SIDAs for the analysis of trichothecenes, zearalenone, fumonisins, patulin, and ochratoxin A are presented. The syntheses and availability of labelled mycotoxins for use as internal standards is reviewed and specific advances in food analysis and toxicology are demonstrated. The review indicates that LC-MS applications, in particular, require the use of stable isotopically labelled standards to compensate for losses during clean-up and for discrimination due to ion suppression. As the commercial availability of these compounds continues to increase, SIDAs can be expected to find expanding use in mycotoxin analysis.

  9. Carbon isotope geochemistry in the Yalujiang estuary

    Institute of Scientific and Technical Information of China (English)

    吴莹; 张经

    2001-01-01

    The distribution of particulate organic carbon (POC) along the lower reaches is similar between the dry season and the flood season in the Yalujiang Estuary, North China. However, the values of particulate organic carbon of the upperstream in the dry season are one magnitude lower than the concentrations in the flood season. Stable carbon isotope ratios have been used to study the sources of particulate organic carbon in the Yalujiang Estuary. The isotopic composition of POC shows a range from -23.1‰ to -29.4‰ with a little seasonal variation. The isotopic evidence indicates that the POC in the Yalujiang Estuary is predominantly of terrestrial origin rather than a result of in situ plankton. The study of the ratio of POC: Chla shows that the turbidity maximum plays an important role in POC cycle in the Yalujiang Estuary. Organic detritus and soil erosion are the main contributions to POC in the turbidity maximum, especially in the flood season.

  10. Strontium isotope stratigraphy of the Pelotas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Zerfass, Geise de Santana dos Anjos, E-mail: geise.zerfass@petrobras.com.br [Petroleo Brasileiro S.A. (PETROBRAS/CENPES/PDGEO/BPA), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento Leopoldo Americo Miguez de Mello; Chemale Junior, Farid, E-mail: fchemale@unb.br [Universidade de Brasilia (UnB), DF (Brazil). Instituto de Geociencias; Moura, Candido Augusto Veloso, E-mail: candido@ufpa.br [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Centro de Geociencias. Dept. de Geoquimica e Petrologia; Costa, Karen Badaraco, E-mail: karen.costa@usp.br [Instituto Oceanografico, Sao Paulo, SP (Brazil); Kawashita, Koji, E-mail: koji@usp.br [Unversidade de Sao Paulo (USP), SP (Brazil). Centro de Pesquisas Geocronologicas

    2014-07-01

    Strontium isotope data were obtained from foraminifera shells of the Pelotas Basin Tertiary deposits to facilitate the refinement of the chronostratigraphic framework of this section. This represents the first approach to the acquisition of numerical ages for these strata. Strontium isotope stratigraphy allowed the identification of eight depositional hiatuses in the Eocene-Pliocene section, here classified as disconformities and a condensed section. The reconnaissance of depositional gaps based on confident age assignments represents an important advance considering the remarkably low chronostratigraphic resolution in the Cenozoic section of the Pelotas Basin. The recognition of hiatuses that match hiatuses is based on biostratigraphic data, as well as on global events. Furthermore, a substantial increase in the sedimentation rate of the upper Miocene section was identified. Paleotemperature and productivity trends were identified based on oxygen and carbon isotope data from the Oligocene-Miocene section, which are coherent with worldwide events, indicating the environmental conditions during sedimentation. (author)

  11. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    Science.gov (United States)

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  12. Titan's Isotopic Menagerie: The Cassini CIRS Perspective

    Science.gov (United States)

    Nixon, Conor A.; Achterberg, R. K.; Bezard, B.; Bjoraker, G. L.; Coustenis, A.; de Kok, R.; Flasar, F. M.; Hewagama, T.; Irwin, P. G. J.; Jennings, D. E.; Jolly, A.; Romani, P. N.; Teanby, N. A.; Vinatier, S.; CIRS Team

    2008-09-01

    Saturn's long-mysterious moon Titan is gradually yielding up its secrets under the intense scrutiny of the Cassini spacecraft, which has just completed a 4-year prime mission including 45 close flybys of the giant satellite. We here focus on the isotopic composition of the stratosphere, which since Voyager 1 in 1980 has been known to comprise a surprisingly rich mixture of hydrocarbons, nitriles and several oxygen species. These molecules are now understood to originate in the upper atmosphere by chemical processes initiated by the dissociation of the most abundant native species - methane and nitrogen - with some oxygen added from externally-supplied water. Measurements of isotopic ratios in these compounds are important and can provide valuable information on the formation and evolution of Titan's atmosphere. E.g. Chemical processes can cause isotopic fractionation via the 'kinetic isotope effect' (KIE). Cassini's Composite Infrared Spectrometer (CIRS), which is sensitive to thermal infrared radiation from 10-1500 cm-1 (7-1000 micron), is an ideal tool for measuring molecular concentrations and can distinguish between isotopologues due to the shifts in the molecular bands. CIRS has now identified at least eleven isotopologue species in our spectra, with multiple new detections in the past year (13CO2, CO18O, HC13CCCN). CIRS has measured the ratios 12C/13C in a total of seven species, D/H in two species, and 14N/15N and 16O/18O each in one species - the best measurement so far of the important ratio 16O/18O on Titan (346±110). In this presentation we will summarize all our results to date on isotopic ratios, including comparison with Huygens GCMS and other determinations, a discussion of possible isotopic separation in hydrocarbon chains, and formation/evolution implications of these measurements for Titan.

  13. Prospects and Challenges in tropical isotope dendroclimatology

    Science.gov (United States)

    Evans, M. N.; Anchukaitis, K. J.; White, S. R.; Ektvedt, T. M.; Penniston, R. C.; Rheaume, M. M.; Bowman, D. M.

    2008-12-01

    We review a stable isotope-based approach to the development, modeling, interpretation, and analysis of hydrometeorological estimates from tropical trees. The strategy overcomes the common problem of missing, intermittent or non-annual ring structure in tropical trees by relying instead on the observation of the annual wet-dry seasonality typical to tropical environments as mirrored in the oxygen isotopic composition of wood-derived α-cellulose. We explore regions for which forward modeling of the proxy system would expect us to resolve hydrometeorological variations associated with the El Niño-Southern Oscillation (ENSO) phenomenon, rather than being limited to regions with tree species or environments producing verifiable annual ring chronologies. A modified protocol allows for rapid, simple and non-toxic micro-extraction of pure α-cellulose, which is isotopically indistinguishable from that produced by more classical means. We describe a new reactor for the pyrolysis of α-cellulose in an induction heater, which permits isotopic analysis of α-cellulose samples as small as 30μg, and as many as 100 automated sample analyses per day. A forward model adapted for tropical environments can be used to test and refine the interpretation of the isotopic data, and to predict locales for which we should be able to maximize the paleoclimatic potential of future sample collections. We have found the modeled isotopic chronometer and raingage in agreement with independent chronological controls in a variety of environments and tree species in Costa Rica, Indonesia, Brazil, Peru and Australia. Development of long hydrometeorological records from the terrestrial tropics is underway not only by our group, but by a growing number of collaborators and colleagues. Together we should be able to build a network of paleoprecipitation records and better understand the linkages between tropical surface ocean temperatures and large-scale drought.

  14. Hitting the moving target: modelling ontogenetic shifts with stable isotopes reveals the importance of isotopic turnover.

    Science.gov (United States)

    Hertz, Eric; Trudel, Marc; El-Sabaawi, Rana; Tucker, Strahan; Dower, John F; Beacham, Terry D; Edwards, Andrew M; Mazumder, Asit

    2016-05-01

    Ontogenetic niche shifts are widely prevalent in nature and are important in shaping the structure and dynamics of ecosystems. Stable isotope analysis is a powerful tool to assess these shifts, with δ(15) N providing a measure of trophic level and δ(13) C a measure of energy source. Previous applications of stable isotopes to study ontogenetic niche shifts have not considered the appreciable time lag between diet and consumer tissue associated with isotopic turnover. These time lags introduce significant complexity into field studies of ontogenetic niche shifts. Juvenile Chinook salmon (Oncorhynchus tshawytscha) migrate from freshwater to marine ecosystems and shift their diet from feeding primarily on invertebrates to feeding primarily on fish. This dual ontogenetic habitat and diet shift, in addition to the long time lag associated with isotopic turnover, suggests that there is potential for a disconnect between the prey sources that juvenile salmon are consuming, and the inferred prey sources from stable isotopes. We developed a model that considered ontogenetic niche shifts and time lags associated with isotopic turnover, and compared this 'ontogeny' model to one that considered only isotopic turnover. We used a Bayesian framework to explicitly account for parameter uncertainty. Data showed overwhelming support for the ontogeny model relative to the isotopic turnover model. Estimated variables from best model fits indicate that the ontogeny model predicts a much greater reliance on fish prey than does the stomach content data. Overall, we found that this method of quantifying ontogenetic niche shifts effectively accounted for both isotopic turnover and ontogenetic diet shifts; a finding that could be widely applicable to a variety of systems.

  15. Tracing food webs with stable hydrogen isotopes.

    Science.gov (United States)

    Estep, M F; Dabrowski, H

    1980-09-26

    The hydrogen isotopic content of an animal's food, not water, determines that animal's hydrogen isotopic content. Liver and muscle tissue from mice reared on a diet such that the ratio of deuterium to hydrogen (DIH) of their food and water was kept constant, have the same average D/H ratio as the food source. In a simple, natural population of snails and their possible algal diets, Littorina obtusata (northern Atlantic intertidal snails that feed almost exclusively on the brown alga Fucus vesiculosus) has the same D/H ratio as Fucus vesiculosis and not that of the other algae available to the snails.

  16. Water Metabolism of Walruses by Isotope Dilution

    DEFF Research Database (Denmark)

    Acquarone, M.; Born, E. W.; Chwalibog, A.

    In August 2000, the hydrogen isotope dilution method was used on 7 adult male Atlantic walruses (Odobenus rosmarus rosmarus) (weight: 1197±148 kg, mean±SD, range 1013-1508 kg) at a terrestrial haul-out in Northeastern Greenland to determine their body water pool sizes and body water turnover rates...... was sampled via an epidural catheter, at regular intervals, for up to seven hours after the initial enrichment to assess isotope equilibration in the body water pools. Five individuals returned to the haul-out after feeding trips of varying duration (158±86 hr, 44-287 hr) where they were immobilized again...

  17. Iron isotopes in an Archean ocean analogue

    Science.gov (United States)

    Busigny, Vincent; Planavsky, Noah J.; Jézéquel, Didier; Crowe, Sean; Louvat, Pascale; Moureau, Julien; Viollier, Eric; Lyons, Timothy W.

    2014-05-01

    Iron isotopes have been extensively used to trace the history of microbial metabolisms and the redox evolution of the oceans. Archean sedimentary rocks display greater variability in iron isotope ratios and more markedly negative values than those deposited in the Proterozoic and Phanerozoic. This increased variability has been linked to changes in either water column iron cycling or the extent of benthic microbial iron reduction through time. We tested these contrasting scenarios through a detailed study of anoxic and ferruginous Lac Pavin (France), which can serve as a modern analogue of the Archean ocean. A depth-profile in the water column of Lac Pavin shows a remarkable increase in dissolved Fe concentration (0.1-1200 μM) and δ56Fe values (-2.14‰ to +0.31‰) across the oxic-anoxic boundary to the lake bottom. The largest Fe isotope variability is found at the redox boundary and is related to partial oxidation of dissolved ferrous iron, leaving the residual Fe enriched in light isotopes. The analysis of four sediment cores collected along a lateral profile (one in the oxic layer, one at the redox boundary, one in the anoxic zone, and one at the bottom of the lake) indicates that bulk sediments, porewaters, and reactive Fe mostly have δ56Fe values near 0.0 ± 0.2‰, similar to detrital iron. In contrast, pyrite δ56Fe values in sub-chemocline cores (60, 65, and 92 m) are highly variable and show significant deviations from the detrital iron isotope composition (δ56Fepyrite between -1.51‰ and +0.09‰; average -0.93‰). Importantly, the pyrite δ56Fe values mirror the δ56Fe of dissolved iron at the redox boundary—where near quantitative sulfate and sulfide drawdown occurs—suggesting limited iron isotope fractionation during iron sulfide formation. This finding has important implications for the Archean environment. Specifically, this work suggests that in a ferruginous system, most of the Fe isotope variability observed in sedimentary pyrites can

  18. Precision Mass Measurement of Argon Isotopes

    CERN Multimedia

    Lunney, D

    2002-01-01

    % IS388\\\\ \\\\ A precision mass measurement of the neutron-deficient isotopes $^{32,33,34}$Ar is proposed. Mass values of these isotopes are of importance for: a) a stringent test of the Isobaric-Multiplet- Mass-Equation, b) a verification of the correctness of calculated charge-dependent corrections as used in super-allowed $\\beta$- decay studies aiming at a test of the CVC hypothesis, and c) the determination of the kinematics in electron-neutrino correlation experiments searching for scalar currents in weak interaction. The measurements will be carried out with the ISOLTRAP Penning trap mass spectrometer.

  19. Isotopic Dependence of the Caloric Curve

    CERN Document Server

    Trautmann, W; Aumann, T; Bacri, C O; Barczyk, T; Bassini, R; Bianchin, S; Boiano, C; Botvina, A S; Boudard, A; Brzychczyk, J; Chbihi, A; Cibor, J; Czech, B; De Napoli, M; Ducret, J -E; Emling, H; Frankland, J D; Hellström, M; Henzlova, D; Imme, G; Iori, I; Johansson, H; Kezzar, K; Lafriakh, A; Le Fèvre, A; Gentil, E Le; Leifels, Y; Lühning, J; Lukasik, J; Lynch, W G; Lynen, U; Majka, Z; Mocko, M; Müller, W F J; Mykulyak, A; Orth, H; Otte, A N; Palit, R; Pawlowski, P; Pullia, A; Raciti, G; Rapisarda, E; Sann, H; Schwarz, C; Sfienti, C; Simon, H; Sümmerer, K; Tsang, M B; Verde, G; Volant, C; Wallace, M; Weick, H; Wiechula, J; Wieloch, A; Zwieglinski, B; 10.1016/j.ppnp.2008.12.006

    2009-01-01

    Isotopic effects in projectile fragmentation at relativistic energies have been studied with the ALADIN forward spectrometer at SIS. Stable and radioactive Sn and La beams with an incident energy of 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. Chemical freeze-out temperatures are found to be nearly invariant with respect to the A/Z ratio of the produced spectator sources, consistent with predictions for expanded systems. Consequences for the proposed interpretation of chemical breakup temperatures as representing the limiting temperatures predicted by microscopic models are discussed.

  20. Novel PEFC Application for Deuterium Isotope Separation

    Directory of Open Access Journals (Sweden)

    Hisayoshi Matsushima

    2017-03-01

    Full Text Available The use of a polymer electrolyte fuel cell (PEFC with a Nafion membrane for isotopic separation of deuterium (D was investigated. Mass analysis at the cathode side indicated that D diffused through the membrane and participated in an isotope exchange reaction. The exchange of D with protium (H in H2O was facilitated by a Pt catalyst. The anodic data showed that the separation efficiency was dependent on the D concentration in the source gas, whereby the water produced during the operation of the PEFC was more enriched in D as the D concentration of the source gas was increased.

  1. Laser isotope separation by multiple photon absorption

    Science.gov (United States)

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  2. OXYGEN ISOTOPE FRACTION ATION IN URANIUM OXIDES

    Institute of Scientific and Technical Information of China (English)

    郑永飞

    1995-01-01

    Thermodynamic oxygen isotope factors for uranium oxides have been calculated by means of the modified increment method.The sequence of 18O-enrichment in the uranium oxides with respect to the common rock-forming minerals is predicted as follows:spinelisotopic geothermometry of uranium ores when pairing with other gangue minerals in hydrothermal uranium deposits.

  3. Isotopic abundance in atom trap trace analysis

    Science.gov (United States)

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  4. Isotope separation and advanced manufacturing technology

    Science.gov (United States)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  5. The Mt Logan Holocene-late Wisconsinan isotope record

    DEFF Research Database (Denmark)

    Dahl-Jensen, Dorthe; Fisher, David; Osterberg, Erich

    2008-01-01

    Mt Logan • stable isotopes • Holocene • ENSO • peat • N Pacific • sudden change Udgivelsesdato: August......Mt Logan • stable isotopes • Holocene • ENSO • peat • N Pacific • sudden change Udgivelsesdato: August...

  6. Method for production of an isotopically enriched compound

    Science.gov (United States)

    Watrous, Matthew G.

    2012-12-11

    A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

  7. Chlorine isotopes potential as geo-chemical tracers

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Pradhan, U.K.; Banerjee, R.

    The potential of chlorine isotopes as tracers of geo-chemical processes of earth and the oceans is highlighted based on systematic studies carried out in understanding the chlorine isotope fractionation mechanism, its constancy in seawater and its...

  8. Hydrograph separation using stable isotopes: Review and evaluation

    Science.gov (United States)

    Klaus, J.; McDonnell, J. J.

    2013-11-01

    We reviewed isotope hydrograph separation studies.We examine methods, applications, and limitations.We summarize factors that control the event/pre-event water contributions.We outline new possible research avenues in isotope hydrograph separation.

  9. Stable isotope customer list and summary of shipments - FY 1978

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.C. (comp.)

    1979-05-01

    This compilation is divided into four sections: alphabetical lists of customers, of isotopes (cross-referenced to customer numbers), and of states and countries (cross-referenced to customer numbers), and a tabulation of the shipments of each isotope. (DLC)

  10. The three-isotope method for equilibrium isotope fractionation factor determination: Unfounded optimism

    Science.gov (United States)

    Cao, X.; Hayles, J. A.; Bao, H.

    2015-12-01

    The equilibrium isotope fractionation factor α is a fundamental parameter in stable isotope geochemistry. Although equilibrium α can be determined by theoretical calculation or by measurement of natural samples, direct laboratory experiments are ultimately required to verify those results. The attainment of a true exchange equilibrium in experiments is often difficult, but three methods have been devised and used to ensure that an equilibrium α has been obtained in an isotope exchange experiment. These are the two-directional method, partial-exchange method, and three-isotope method. Of these, the three-isotope method is thought to be the most rigorous. Using water-water exchange as a basic unit, we have developed a set of complex exchange models to study when and why the three-isotope method may work well or not. We found that the method cannot promise to lead to an equilibrium α before the kinetic complexity of the specific exchange experiment is known. An equilibrium point in δ17O-δ18O space can be reached only when all of the isotope exchange pathways are fully reversible, i.e. there is no mass loss at any instant, and the forward and backward reactions share the same pathway. If the exchange pathways are not fully reversible, steady state may be reached, but a steady state α can be very different from the equilibrium α. Our results validated the earlier warning that the trajectory for three-isotope evolution in δ17O-δ18O space may be a distinctly curved line or contain more than one straight line due to the non-fully reversible isotope exchange reactions. The three-isotope method for equilibrium α determination is not as rigorous or as promising as it may seem. Instead, the trajectory of three-isotope evolution provides detailed insights into the kinetics of isotope exchange between compounds. If multiple components exist in the exchange system, the δ17O-δ18O evolving trajectory would be more complex.

  11. Stable isotope deltas: Tiny, yet robust signatures in nature

    Science.gov (United States)

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  12. Stable isotope deltas: tiny, yet robust signatures in nature.

    Science.gov (United States)

    Brand, Willi A; Coplen, Tyler B

    2012-09-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including (14)C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. (13)C, (2)H, and (18)O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as-25 per mil can be written as-25 mUr (or-2.5 cUr or-0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg 'units' are easily included (e.g. either+0.015 ‰ or+15 per meg

  13. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-01

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  14. Determination of fission gas yields from isotope ratios

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    1983-01-01

    This paper describes a method of calculating the actual fission yield of Kr and Xe in nuclear fuel including the effect of neutron capture reactions and decay. The bases for this calculation are the cumulative yields (ref. 1) of Kr and Xe isotopes (or pairs of isotopes) which are unaffected...... by neutron capture reactions, and measured Kr and Xe isotope ratios. Also the burnup contribution from the different fissile heavy isotopes must be known in order to get accurate fission gas yields....

  15. Determination of fission gas yields from isotope ratios

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    1983-01-01

    This paper describes a method of calculating the actual fission yield of Kr and Xe in nuclear fuel including the effect of neutron capture reactions and decay. The bases for this calculation are the cumulative yields (ref. 1) of Kr and Xe isotopes (or pairs of isotopes) which are unaffected...... by neutron capture reactions, and measured Kr and Xe isotope ratios. Also the burnup contribution from the different fissile heavy isotopes must be known in order to get accurate fission gas yields....

  16. Discovery of Chromium, Manganese, Nickel, and Copper Isotopes

    CERN Document Server

    Garofali, K; Thoennessen, M

    2010-01-01

    Twenty-seven chromium, twenty-five manganese, thirty-one nickel and twenty-six copper isotopes have so far been observed and the discovery of these isotopes is discussed. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  17. Discovery of Gallium, Germanium, Lutetium, and Hafnium Isotopes

    CERN Document Server

    Gross, J L

    2011-01-01

    Currently, twenty-eight gallium, thirty-one germanium, thirty-five lutetium, and thirty-six hafnium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  18. Discovery of Samarium, Europium, Gadolinium, and Terbium Isotopes

    CERN Document Server

    May, E

    2012-01-01

    Currently, thirty-four samarium, thirty-four europium, thirty-one gadolinium, and thirty-one terbium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  19. Worldwide lead-isotope ratio in bivalves and sediments

    DEFF Research Database (Denmark)

    Larsen, Martin Mørk; Jacobsen, Gitte; Strand, Jakob

    The lead-isotope ratio have been used to assess and identify impact of leaded gasoline, coal combustion and  mineral activities[ref 1] due to the difference in 206Pb (~52%), 207Pb (~24%) and 208Pb (~23%) isotope ratios. The source of these differences is the decaying of the parent isotopes of 238U...

  20. Discovery of the thallium, lead, bismuth, and polonium isotopes

    Science.gov (United States)

    Fry, C.; Thoennessen, M.

    2013-05-01

    Forty-two thallium, forty-two lead, forty-one bismuth, and forty-two polonium isotopes have so far been observed; the discovery of these isotopes is described. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  1. Discovery of the thallium, lead, bismuth, and polonium isotopes

    CERN Document Server

    Fry, C

    2012-01-01

    Currently, forty-two thallium, forty-two lead, forty-one bismuth, and forty-two polonium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Final Report on Isotope Ratio Techniques for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

    2009-07-01

    The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

  3. Environmental effects on the stable carbon and oxygen isotopic ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... Key words: Oxygen isotopes, carbon isotopes, Porites coral, density bands, skeletal .... isotopic ratio of CO2 gas derived from the Pee Dee Belemnite (PDB) ... water samples, a 2.0 ml of the sample was taken into a syringe and.

  4. Recent results on neutron rich tin isotopes by laser spectroscopy

    CERN Document Server

    Roussière, B; Crawford, J E; Essabaa, S; Fedosseev, V; Geithner, W; Genevey, J; Girod, M; Huber, G; Horn, R; Kappertz, S; Lassen, J; Le Blanc, F; Lee, J K P; Le Scornet, G; Lettry, Jacques; Mishin, V I; Neugart, R; Obert, J; Oms, J; Ouchrif, A; Peru, S; Pinard, J; Ravn, H L; Sauvage, J; Verney, D

    2001-01-01

    Laser spectroscopy measurements have been performed on neutron rich tin isotopes using the COMPLIS experimental setup. The nuclear charge radii of the even-even isotopes from A=108 to 132 are compared to the results of macroscopic and microscopic calculations. The improvements and optimizations needed to perform the isotope shift measurement on $^{134}$Sn are presented.

  5. Laser Isotope Enrichment for Medical and Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  6. Isotope separation of the Yb-168 stable isotope for low energy gamma ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Min; Kwon, Duck Hee; Cha, Yong Ho; Lee, Ki Tae; Nam, Sung Mo; Yoo, Jaek Won; Han, Jae Min; Rhee, Yong Joo [Lab. of Quantum Optics, Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of)

    2003-07-01

    We developed laser isotope separation technology of stable isotope of low melting point metals. Yb-168 can be effectively used in non-destructive testing (NDT) after it is transformed to Yb-168 by neutron irradiation in a nuclear reactor. For this application of Yb-168, the isotope purity of it should be enhanced to more than 15% from the natural abundance of 0.135%. Our isotope separation system consist of laser system, Yb vapor generating system, and photoionized particle extraction system. For the system, we developed a diode-pumped slid-state laser of high-repetition rate and 3-color dye lasers. Yb vapor was generated by heating solid Yb sample resistively. The photo-ion produced by resonance ionization were extracted by a devised extractor. We produced enriched Yb metal more than 20 mg with the abundance of 25.8% of Yb-168 in the Yb (NO{sub 3}){sub 3}.

  7. 2015 Update of the Discoveries of Isotopes

    CERN Document Server

    Thoennessen, M

    2016-01-01

    The 2015 update of the discovery of nuclide project is presented. Twenty new nuclides were observed for the first time in 2015. An overall review of all previous assignments was made in order to apply the discovery criteria consistently to all elements. In addition, a list of isotopes published so far only in conference proceedings or internal reports is included.

  8. Heavy ion isotope resolution with polymer detectors

    OpenAIRE

    Vidal-Quadras Roca, Alejo; Ortega Girón, Manuel; Fernández Moreno, Francisco; Font Garcia, Josep Lluís; Casas Ametller, Montserrat; Baixeras Divar, Carmen; Gonzalo Cestero, Miguel

    1984-01-01

    The heavy ion mass resolution power of polymer detectors Lexan and cellulose nitrate is systematically studied both for accelerator and for cosmic ions. It is concluded that a satisfactory isotopic discrimination, better than 1 u, is hardly attainable with these detectors. Peer Reviewed

  9. Lasers utilizing CO/sub 2/ isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Pechenin, Y.V.; Domanov, M.S.

    1980-08-01

    The lasing spectra and energy characteristics were investigated for lasers operating with the isotopes /sup 12/C/sup 16/O/sub 2/, /sup 13/C/sup 16/O/sub 2/, /sup 12/C/sup 18/O/sub 2/, and /sup 12/C/sup 16/O/sup 18/O. It was found that the output power of a laser utilizing the CO/sub 2/ isotopes was determined by the content of a particular isotope in the carbon dioxide gas. For equal enrichments, all the isotopes investigated, with the exception of /sup 12/C/sup 16/O/sup 18/O, gave comparable output powers. The unsaturated gains were identical for the most intense transitions of the symmetric molecules; the gain was a factor of two less for the asymmetric molecule. The gain rose linearly with increasing enrichment. The ultimate specific power output, given by the product of the saturation power density and the gain, was practically independent of the enrichment.

  10. Global Isotopic Signatures of Oceanic Island Basalts.

    Science.gov (United States)

    1991-08-01

    Appendix). Samples in the data set are mainly basalt. with some gabbros and trachybasalts, trachytes and other silica-rich rocks relative to basalt...Hart (1984) contoured world maps of OIB isotope data for his three DUPAL anomaly criteria [ASr> 40; A7/4 > 3; A8/4 > 401. These maps show a

  11. Isotope specific arbitrary material flow meter

    Energy Technology Data Exchange (ETDEWEB)

    Barty, Christopher P. J.; Post, John C.; Jones, Edwin

    2016-10-25

    A laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  12. Scattering lengths of calcium and barium isotopes

    NARCIS (Netherlands)

    Dammalapati, U.; Willmann, L.; Knoop, S.

    2011-01-01

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba) in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca

  13. Soil Carbon: Compositional and Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Alexander, M. L.; Laskin, Alexander

    2016-11-01

    This is a short chapter to be included in the next edition of the Encyclopedia of Soil Science. The work here describes techniques being developed at PNNL for investigating organic carbon in soils. Techniques discussed include: laser ablation isotope ratio mass spectrometry, laser ablation aerosol mass spectrometry, and nanospray desorption electrospray ionization mass spectrometry.

  14. Fast ion extraction in laser isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Hazak, G.; Gell, Y.; Boneh, Y.; Goshen, S.

    1980-10-01

    An analysis of the E x B scheme for fast ion extraction in laser isotope separation is presented. Using an analytically solvable model and a numerical simulation we have found that the scheme can meet the rather severe time and space restrictions imposed by the large cross section for charge exchange.

  15. Brayton Isotope Power System (BIPS) facility specification

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-31

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included.

  16. Argon isotope fractionation induced by stepwise heating

    Science.gov (United States)

    Trieloff, Mario; Falter, Martina; Buikin, Alexei I.; Korochantseva, Ekaterina V.; Jessberger, Elmar K.; Altherr, Rainer

    2005-03-01

    Noble gas isotopes are widely used to elucidate the history of the rocks in which they have been trapped, either from distinct reservoirs or by accumulation following radioactive decay. To extract noble gases from their host rocks, stepwise heating is the most commonly used technique to deconvolve isotopically different components, e.g., atmospheric, in situ radiogenic, or excess radiogenic from mantle or crustal reservoirs. The accurate determination of the isotopic composition of these different components is of crucial importance, e.g., for ages obtained by 40Ar- 39Ar stepheating plateaus. However, diffusion theory-based model calculations predict that the stepwise thermal extraction process from mineral phases induces isotope fractionation and, hence, adulterates the original composition. Such effects are largely unconsidered, as they are small and a compelling experimental observation is lacking. We report the first unequivocal evidence for significant mass fractionation of argon isotopes during thermal extraction, observed on shungite, a carbon-rich Precambrian sedimentary rock. The degree of fractionation, as monitored by 38Ar/ 36Ar and 40Ar/ 36Ar ratios, very well agrees with theoretical predictions assuming an inverse square root dependence of diffusion coefficient and atomic mass, resulting in easier extraction of lighter isotopes. Hence, subatmospheric 40Ar/ 36Ar ratios obtained for argon extracted at low temperatures may not represent paleoatmospheric argon. Shungite argon resembles modern atmospheric composition, but constraints on the timing of trapping appear difficult to obtain, as shungites are multicomponent systems. In 40Ar- 39Ar stepwise heating, the isotope fractionation effect could cause systematic underestimations of plateau ages, between 0.15 and 0.4% depending on age, or considerably higher if samples contain appreciable atmospheric Ar. The magnitude of this effect is similar to the presently achieved uncertainties of this increasingly

  17. Iron isotope systematics in planetary reservoirs

    Science.gov (United States)

    Sossi, Paolo A.; Nebel, Oliver; Foden, John

    2016-10-01

    Iron is the only polyvalent major element, and controls reduction-oxidation (redox) reactions in a host of geologic processes and reservoirs, from the mineral- to planetary-scale, on Earth and in space. Mass transfer of Fe is often accompanied by changes in bonding environment, meaning the resultant variation in bond-strength in crystals, liquids and gases induces stable isotope fractionation, even at high temperatures. In the absence of iron exchange, electron transfer can also affect iron's valence state and calculated oxygen fugacity (fO2), however its isotope composition remains unchanged. Thus, iron isotopes are a powerful tool to investigate processes that involve mass transfer, redox reactions and changes in bonding environment in planetary systems. Primitive chondritic meteorites show remarkable isotopic homogeneity, δ57 Fe = - 0.01 ± 0.01 ‰ (2SE), over a wide range of Fe/Mg vs Ni/Mg, a proxy for fO2 in the solar nebula. In chondrites, there are iron isotope differences between metal and silicates that become more pronounced at higher metamorphic grades. However, on a planetary scale, Mars and Vesta overlap with chondrites, preserving no trace of core formation or volatile depletion on these bodies. Upon assessment of pristine lherzolites, the Bulk Silicate Earth is heavier than chondrites (δ57 Fe = + 0.05 ± 0.01 ‰; 2SE), and similar to or slightly lighter than the Moon. That the mantles of some differentiated inner solar system bodies extend to heavier compositions (+ 0.2 ‰) than chondrites may principally result from volatile depletion either at a nebular or late accretion stage. Within terrestrial silicate reservoirs, iron isotopes provide insight into petrogenetic and geodynamic processes. Partial melting of the upper mantle produces basalts that are heavier than their sources, scaling with degree of melting and driving the increasingly refractory peridotite to lighter compositions. Mid-Ocean Ridge Basalts (MORBs) are homogeneous to δ57 Fe

  18. Carbon isotope ratios and isotopic correlations between components in fruit juices

    Science.gov (United States)

    Wierzchnicki, Ryszard

    2013-04-01

    Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.

  19. Isotope hydrology: applied discipline in earth sciences; Hydrologie isotope: une discipline des sciences de la terre

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, K.; Rozanski, K.; Araguas Araguas, L. [Isotope Hydrology Section, International Atomic Agency, Vienna (Austria)

    1998-12-31

    The discipline `isotope hydrology` is being reviewed from the perspective of the Isotope Hydrology Section of the International Atomic Energy Agency in Vienna. The Section was created in the late fifties and is activities involved int the scientific progress of the discipline. The role of the IAEA in the development of isotope hydrology has always been of a dual nature: on one hand, the Section has been and still is heavily engaged in supporting and coordinating further development of isotope methodologies, on the other hand, it serves as an interface between the methodological development in research institutes and the applied work using proven techniques in field projects on water resources assessment and management. The paper provides a brief overview of applications of isotope-based methodologies in hydrology, with emphasis on new trends and challenges related to man`s growing impact on the water cycle. This contribution is a tribute to the memory of the former Head of the Isotope Hydrology Section, Jean-Charles Fontes, to whom we owe so much. (authors) 30 refs.

  20. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    Science.gov (United States)

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-03-01

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.

  1. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry.

    Science.gov (United States)

    Hartig, Kyle C; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-03-08

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.

  2. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  3. Isotopic evidence of early hominin diets

    Science.gov (United States)

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Kyalo Manthi, Fredrick; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-06-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  4. Strontium-isotope stratigraphy of Enewetak Atoll

    Science.gov (United States)

    Ludwig, K. R.; Halley, Robert B.; Simmons, Kathleen R.; Peterman, Zell E.

    1988-01-01

    87Sr/86Sr ratios determined for samples from a 350 m core of Neogene lagoonal, shallow-water limestones from Enewetak Atoll display a remarkably informative trend. Like the recently published data for Deep Sea Drilling Project (DSDP) carbonates, 87Sr/86Sr at Enewetak increases monotonically but not smoothly from the early Miocene to the Pleistocene. The data show intervals of little or no change in 87Sr/86Sr, punctuated by sharp transitions to lower values toward greater core depths. The sharp transitions correlate with observed solution disconformities caused by periods of subaerial erosion, whereas the intervals of little or no change in 87Sr/86Sr correspond to intervals of rapid accumulation of shallow-water carbonate sediments. When converted to numerical ages using the published DSDP 590B trend, the best-resolved time breaks are at 282 m (12.3 to 18.2 Ma missing) and 121.6 m (3.0 to 5.3 Ma missing) below the lagoon floor. At Enewetak, Sr isotopes offer a stratigraphic resolution for these shallow-marine Neogene carbonates comparable to that of nannofossil zonation in deep-sea carbonates (0.3-3 m.y.). In addition, the correlation of times of Sr-isotope breaks at Enewetak with times of rapid Sr-isotope change in the DSDP 590B samples confirms the importance off sea-level changes in the evolution of global-marine Sr isotopes and shows that the Sr-isotope response to sea-level falls is rapid.

  5. Quantifying uncertainty in stable isotope mixing models

    Science.gov (United States)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-01

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, Stable Isotope Analysis in R (SIAR), a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated

  6. Strontium-isotope stratigraphy of Enewetak Atoll

    Science.gov (United States)

    Ludwig, K. R.; Halley, R. B.; Simmons, K. R.; Peterman, Z. E.

    1988-02-01

    87Sr/86Sr ratios determined for samples from a 350 m core of Neogene lagoonal, shallow-water limestones from Enewetak Atoll display a remarkably informative trend. Like the recently published data for Deep Sea Drilling Project (DSDP) carbonates, 87Sr/86Sr at Enewetak increases monotonically but not smoothly from the early Miocene to the Pleistocene. The data show intervals of little or no change in 87Sr/86Sr, punctuated by sharp transitions to lower values toward greater core depths. The sharp transitions correlate with observed solution disconformities caused by periods of subaerial erosion, whereas the intervals of little or no change in 87Sr/86Sr correspond to intervals of rapid accumulation of shallow-water carbonate sediments. When converted to numerical ages using the published DSDP 590B trend, the best-resolved time breaks are at 282 m (12.3 to 18.2 Ma missing) and 121.6 m (3.0 to 5.3 Ma missing) below the lagoon floor. At Enewetak, Sr isotopes offer a stratigraphic resolution for these shallow-marine Neogene carbonates comparable to that of nannofossil zonation in deep-sea carbonates (0.3-3 m.y.). In addition, the correlation of times of Sr-isotope breaks at Enewetak with times of rapid Sr-isotope change in the DSDP 590B samples confirms the importance off sea-level changes in the evolution of global-marine Sr isotopes and shows that the Sr-isotope response to sea-level falls is rapid.

  7. Stable isotope customer list and summary of shipments - FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.C. (comp.)

    1983-12-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope.

  8. Stable Isotope Customer List and Summary of Shipments. FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, J. G. [comp.

    1985-11-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope.

  9. The common property of isotope anomalies in meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Robert, F. [Museum-USM 205, CNRS-UMS 2679 LEME, 75 - Paris (France)

    2004-03-01

    The treatment proposed to account for the non-mass-dependent isotopic fractionation effect observed for oxygen isotopes during the synthesis of ozone (Robert and Camy-Peyret 2001) is applied to other chemical elements. A numerical treatment to calculate isotopic reaction rate ratios is proposed. This treatment yields non-mass-dependent isotopic effects in other chemical elements, qualitatively similar to those observed in some of the high temperature minerals found in the carbonaceous meteorites. This treatment may reflect the numerical consequences of an unrecognized quantum mechanical effect, linked to a property of chemical reactions involving indistinguishable isotopes. (author)

  10. Isotope products manufacture in Russia and its prospects

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, S.V.; Okhotina, I.A.; Kalelin, E.A.; Krasnov, N.N.; Kuzin, V.V.; Malykh, J.A.; Makarovsky, S.B. [Tenex, Techsnabexport Co Ltd, Moscow (Russian Federation)

    1997-10-01

    At the present stage of the world economy development, stable and radioactive isotopes,preparations and products on their base are widely used in many fields of the national economy, medicine and scientific researches. The Russian Federation is one of the largest worldwide producers of a variety of nuclide products on the base of more than 350 isotopes, as follows: stable isotopes reactor, cyclotron, fission product radioactive isotopes, ion-radiation sources compounds, labelled with stable and radioactive isotopes, radionuclide short-lived isotope generators, radiopharmaceuticals, radionuclide light and heat sources; luminous paints on base of isotopes. The Russian Ministry for Atomic Energy coordinates activity for development and organization of manufacture and isotope products supply in Russia as well as for export. Within many years of isotope industry development, there have appeared some manufacturing centres in Russia, dealing with a variety of isotope products. The report presents the production potentialities of these centres and also an outlook on isotope production development in Russia in the next years

  11. Production Situation and Technology Prospect of Medical Isotopes

    Directory of Open Access Journals (Sweden)

    GAO Feng;LIN Li;LIU Yu-hao;MA Xing-jun

    2016-10-01

    Full Text Available The isotope production technology was overviewed, including traditional and newest technology. The current situation of medical isotope production was introduced. The problems faced by isotope supply and demand were analyzed. The future development trend of medical isotopes and technology prospect were put forward. As the most populous country, nuclear medicine develops rapidly, however, domestic isotope mainly relies on imports. The highly productive and relatively safe MIPR is expected to be an effective way to breakthrough the bottleneck of the development of nuclear medicine. Traditional isotope production technologies with reactor can be improved. It's urgent to research and promote new isotope production technologies with reactor. Those technologies which do not depend on reactor will have a bright market prospects.

  12. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  13. Method of preparing mercury with an arbitrary isotopic distribution

    Science.gov (United States)

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  14. Studies on Separation Process and Production Technology of Boron Isotope

    Directory of Open Access Journals (Sweden)

    LI Jian-ping

    2014-02-01

    Full Text Available The boron isotopes separation test was performed by chemical exchange reaction in the benzene ether -three boron fluoride system, which resulted to the boron isotopic enrichment of -10 in the liquid phase, the boron isotopic enrichment of -11 in the gas phase. After then, boron isotope separation trial production has been finished. In this process, the exchange column and complex tower normal operating parameters and the complex tower technology have been obtained, the problems of material distillation purification is solved, boron isotopes feasibility with PTFE packing enrichment is verified in an exchange column. Also, effect of operating pressure, flow and other parameters on boron -10 isotopic enrichment experiments and the effect and properties of the PTFE packing have been investigated in the existing system. All the results are very useful for the industrialization of the boron isotopes separation system.

  15. Resolving the stellar sources of isotopically rare presolar silicate grains through Mg and Fe isotopic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ann N.; Messenger, Scott, E-mail: lan-anh.n.nguyen@nasa.gov [Robert M. Walker Laboratory for Space Science, Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston, TX 77058 (United States)

    2014-04-01

    We conducted multi-element isotopic analyses of 11 presolar silicate grains from the Acfer 094 meteorite having unusual O isotopic compositions. Eight grains are {sup 18}O-rich, one is {sup 16}O-rich, and two are extremely {sup 17}O-rich. We constrained the grains' stellar sources by measuring their Si and Mg isotopic ratios, and also the {sup 54}Fe/{sup 56}Fe and {sup 57}Fe/{sup 56}Fe ratios for five grains. The Mg and Fe isotopic measurements were conducted after surrounding matrix grains were removed for more accurate ratios. Most of the {sup 18}O-rich silicates had anomalous Mg isotopic ratios, and their combined isotopic constraints are consistent with origins in low-mass Type II supernovae (SNe II) rather than high-metallicity stars. The isotopic ratios of the {sup 16}O-rich silicate are also consistent with an SN origin. Mixing small amounts of interior stellar material with the stellar envelope replicated all measured isotopic ratios except for {sup 29}Si/{sup 28}Si and {sup 54}Fe/{sup 56}Fe in some grains. The {sup 29}Si/{sup 28}Si ratios of all SN-derived grains are matched by doubling the {sup 29}Si yield in the Ne- and Si-burning zones. The {sup 54}Fe/{sup 56}Fe ratios of the grains imply elemental fractionation in the Si/S zone, or introduction of isotopically solar Fe by secondary processing. The two highly {sup 17}O-rich silicates exhibited significant {sup 25}Mg and/or {sup 26}Mg enrichments and their isotopic ratios are best explained by strong dilution of 1.15 M {sub ☉} CO nova matter. We estimate that ∼12% and 1% of presolar silicates have SN and nova origins, respectively, similar to presolar SiC and oxides. This implies that asymptotic giant branch stars are the dominant dust producers in the galaxy.

  16. Future stable water isotope projection with an isotope-AGCM driven by CMIP5 SSTs

    Science.gov (United States)

    Yoshimura, K.

    2016-12-01

    Stable water isotope ratios (dD and d18O) are widely used as proxy of past climate changes, and it is extremely important to understand and predict the mechanism of current isotopic spatio-temporal behavior with regard to the on-going climate change. However, as compared many studies on reproduction of isotopes for the past, there are few studies on future projection of isotopes. Therefore, in this study, a set of experiments using an isotope-incorporate AGCM (IsoGSM) with SST and sea ice field simulated from multiple CMIP5 models, namely MIROC5, CCSM4, and MRI-CGCM3, were conducted for the end of 20th century (1980-1990) and the end of 21st century (2080-2090) under RCP2.6 and RCP8.5 scenarios. Thus the responses in stable water isotope ratio in precipitation and water vapor in accordance to the global warming were investigated. As results, the changes in global surface air temperature were about +1K and +3K with RCP2.6 and RCP8.5, respectively. Similarly, the global precipitation changes were about +0.07mm/day (about +2%) and +0.18mm/day (about +5%), and the global precipitable water changes were about +2mm (+7%) and +6mm (+24%), respectively. The moisture was increased in accordance to the Clausius-Clapayron theory (7%/K), but the increase in precipitation is not that large. This indicates that the global hydrological cycle was slowed down in the globally warmed experiments. On the other hand, for the isotopic signals, the changes in globally averaged d18O in precipitation were about 0.2‰ and 0.4‰, and those in precipitable water were 0.2‰ and 0.5‰, in RCP2.6 and RCP8.5, respectively. It is well-known that there are temperature effect (positive correlation in air temperature and precipitation isotopes) and amount effect (negative correlation in precipitation amount and isotopes), but in the globally warmed world, these effects were offset, and only weaker temperature effect was appeared in the global mean isotope signals. Regional details will be shown

  17. Redefining the utility of the three-isotope method

    Science.gov (United States)

    Cao, Xiaobin; Bao, Huiming

    2017-09-01

    The equilibrium isotope fractionation factor αeq is a fundamental parameter in the study of stable isotope effects. Experimentally, it has been difficult to establish that a system has attained equilibrium. The three-isotope method, using the initial trajectory of changing isotope ratios (e.g. 16O, 17O, and 18O) to deduce the final equilibrium point of isotope exchange, has long been hailed as the most rigorous experimental approach. However, over the years some researchers have cautioned on the limitations of this method, but the foundation of three-isotope method has not been properly examined and the method is still widely used in calibrating αeq for both traditional and increasingly non-traditional isotope systems today. Here, using water-water and dissolved CO2-water oxygen exchange as model systems, we conduct an isotopologues-specific kinetic analysis of the exchange processes and explore the underlying assumptions and validity of the three-isotope method. We demonstrate that without knowing the detailed exchange kinetics a priori the three-isotope method cannot lead to a reliable αeq. For a two-reservoir exchanging system, α determined by this method may be αeq, kinetic isotope effect, or apparent kinetic isotope effect, which can all bear different values. When multiple reservoirs exist during exchange, the evolving trajectory can be complex and hard to predict. Instead of being a tool for αeq determination, three-isotope method should be used as a tool for studying kinetic isotope effect, apparent kinetic isotope effect, and detailed exchange kinetics in diverse systems.

  18. Combinatorial effects on clumped isotopes and their significance in biogeochemistry

    Science.gov (United States)

    Yeung, Laurence Y.

    2016-01-01

    The arrangement of isotopes within a collection of molecules records their physical and chemical histories. Clumped-isotope analysis interrogates these arrangements, i.e., how often rare isotopes are bound together, which in many cases can be explained by equilibrium and/or kinetic isotope fractionation. However, purely combinatorial effects, rooted in the statistics of pairing atoms in a closed system, are also relevant, and not well understood. Here, I show that combinatorial isotope effects are most important when two identical atoms are neighbors on the same molecule (e.g., O2, N2, and D-D clumping in CH4). When the two halves of an atom pair are either assembled with different isotopic preferences or drawn from different reservoirs, combinatorial effects cause depletions in clumped-isotope abundance that are most likely between zero and -1‰, although they could potentially be -10‰ or larger for D-D pairs. These depletions are of similar magnitude, but of opposite sign, to low-temperature equilibrium clumped-isotope effects for many small molecules. Enzymatic isotope-pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect, although it is not limited to biological reactions. Chemical-kinetic isotope effects, which are related to a bond-forming transition state, arise independently and express second-order combinatorial effects related to the abundance of the rare isotope. Heteronuclear moeties (e.g., Csbnd O and Csbnd H), are insensitive to direct combinatorial influences, but secondary combinatorial influences are evident. In general, both combinatorial and chemical-kinetic factors are important for calculating and interpreting clumped-isotope signatures of kinetically controlled reactions. I apply this analytical framework to isotope-pairing reactions relevant to geochemical oxygen, carbon, and nitrogen cycling that may be influenced by combinatorial

  19. Calculation of individual isotope equilibrium constants for geochemical reactions

    Science.gov (United States)

    Thorstenson, D.C.; Parkhurst, D.L.

    2004-01-01

    Theory is derived from the work of Urey (Urey H. C. [1947] The thermodynamic properties of isotopic substances. J. Chem. Soc. 562-581) to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by ?? = (Kex)1/n, where n is the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example 13C16O18O and 1H2H18O. The equilibrium constants of the isotope exchange reactions can be expressed as ratios of individual isotope equilibrium constants for geochemical reactions. Knowledge of the equilibrium constant for the dominant isotopic species can then be used to calculate the individual isotope equilibrium constants. Individual isotope equilibrium constants are calculated for the reaction CO2g = CO2aq for all species that can be formed from 12C, 13C, 16O, and 18O; for the reaction between 12C18 O2aq and 1H218Ol; and among the various 1H, 2H, 16O, and 18O species of H2O. This is a subset of a larger number of equilibrium constants calculated elsewhere (Thorstenson D. C. and Parkhurst D. L. [2002] Calculation of individual isotope equilibrium constants for implementation in geochemical models. Water-Resources Investigation Report 02-4172. U.S. Geological Survey). Activity coefficients, activity-concentration conventions for the isotopic variants of H2O in the solvent 1H216Ol, and salt effects on isotope fractionation have been included in the derivations. The effects of nonideality are small because of the chemical similarity of different isotopic species of the same molecule or ion. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation

  20. Carbon isotopes as indicators of peatland growth?

    Science.gov (United States)

    Alewell, Christine; Krüger, Jan Paul; von Sengbusch, Pascal; Szidat, Sönke; Leifeld, Jens

    2016-04-01

    As undisturbed and/or growing peatlands store considerable amounts of carbon and are unique in their biodiversity and species assemblage, the knowledge of the current status of peatlands (growing with carbon sequestration, stagnating or degrading with carbon emissions) is crucial for landscape management and nature conservation. However, monitoring of peatland status requires long term measurements and is only feasible with expert knowledge. The latter determination is increasingly impeded in a scientific world, where taxonomic expert knowledge and funding of long term monitoring is rare. Stable carbon and nitrogen isotopes depth profiles in peatland soils have been shown to be a useful tool to monitor the degradation of peatlands due to permafrost thawing in Northern Sweden (Alewell et al., 2011; Krüger et al., 2014), drainage in Southern Finland (Krüger et al., 2016) as well as land use intensification in Northern Germany (Krüger et al., 2015). Here, we tackle the questions if we are able to differentiate between growing and degrading peats with the use of a combination of carbon stable (δ13C) and radiogenic isotope data (14C) with peat stratification information (degree of humification and macroscopic plant remains). Results indicate that isotope data are a useful tool to approximate peatland status, but that expert taxonomic knowledge will be needed for the final conclusion on peatland growth. Thus, isotope tools might be used for landscape screening to pin point sites for detailed taxonomic monitoring. As the method remains qualitative future research at these sites will need to integrate quantitative approaches to determine carbon loss or gain (soil C balances by ash content or C accumulation methods by radiocarbon data; Krüger et al., 2016). Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for micro-geomorphic changes in palsa peats. Biogeosciences, 8, 1769-1778. Krüger, J. P., Leifeld, J

  1. N Isotopes in Nile Sediments (ethiopia, Sudan)

    Science.gov (United States)

    Padoan, M.; Villa, I. M.; Garzanti, E.; Galbusera, M.; Quistini, S.; Peruta, L.; El Kammar, A.

    2009-04-01

    The Nile is the most important river of the Eastern Mediterranean. Its water and sediment fluxes have greatly influenced marine circulation throughout the Quaternary, and are widely considered as possible causes for stagnation and formation of sapropel (Krom et al., 1999a; 2002; Talbot et al., 2000; Freydier et al., 2001; Weldeab et al., 2002; Scrivner et al., 2004). Variations in annual flooding and baseflow of the river Nile, controlled by climate changes, had major impact on the rise and demise of Egyptian dynasties (Stanley et al., 2003). In order to better define sedimentary sources of the Nile system and to obtain more robust results, we have analyzed Nd isotopes in sediments of all its major Sudanese and Ethiopian tributaries (Atbara, Gash, Abay, Didesa, Dabus, White Nile, Bahr Ez Zeraf) in several replicate samples. Analyses were carried out on distinct mud and sand fractions (STANLEY, J.D., CLIFF, R.A., WOODWARD, J.C., 2002. Nile River sediment fluctuations over the past 7000 yr and their key role in sapropel development. Geol., 30, n. 1, 71-74. PADOAN M., GALBUSERA M., QUISTINI S., VILLA I.M., AND GARZANTI E., 2007 Isotopic tracers of Nile sediment sources. AGU Fall Meeting, San Francisco December 2007. PIK, R., DENIEL, C., COULON, C., YIRGU, G., MARTY, B., 1999, Isotopic and trace element signatures of Ethiopian flood basalts: Evidence for plume-lithosphere interactions. Geochim. Cosmochim. Acta, 63, 2263-2279. SCRIVNER, A., VANCE, D., ROHLING, E.J., 2004. New neodymium isotope data quantify Nile involvement in Mediterranean anoxic episodes. Geol., 32, n. 7, 565-568. STANLEY, J.D., KROM, M.D., CLIFF, R.A., WOODWARD, J.C., 2003. Short Contribution: Nile flow failure at the End of the Old Kingdom, Egypt: strontium isotopic and petrologic evidence. TALBOT, M.R., WILLIAMS, M.A.J., ADAMSON, D.A., 2000. Strontium isotope evidence for late Pleistocene reestablishment of an integrated Nile drainage network. Geol., 28, n. 4, 343-346. WELDEAB, S., EMEIS, K

  2. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: Stefano.bernasconi@erdw.ethz.ch [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2011-06-15

    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  3. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    Science.gov (United States)

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  4. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    Science.gov (United States)

    Ni, Yunyan; Ma, Qisheng; Ellis, Geoffrey S.; Dai, Jinxing; Katz, Barry; Zhang, Shuichang; Tang, Yongchun

    2011-05-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ 13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.

  5. Oxygen isotope fractionation in phosphates: the role of dissolved complex anions in isotope exchange.

    Science.gov (United States)

    Zheng, Yong-Fei

    2016-01-01

    Oxygen isotope fractionation factors for phosphates were calculated by means of the increment method. The results suggest that Ag3PO4 and BiPO4 are enriched in (18)O relative to AgPO4, and the three phosphates are consistently depleted in (18)O relative to Ba3[PO4]2; fluorapatite and chlorapatite exhibit a similar behaviour of oxygen isotope fractionation with consistent enrichment of (18)O relative to hydroxyapatite. The valence, radii and coordination of metal cations play a quantitative role in dictating the (18)O/(16)O partitioning in these phosphates of different compositions. The calculated fractionation factors for the Ag3PO4-H2O system are in agreement with experimental determinations derived from enzyme-catalysed isotope exchange between dissolved inorganic phosphate and water at the longest reaction durations at low temperatures. This demonstrates that the precipitated Ag3PO4 has completely captured the oxygen isotope fractionation in the dissolved inorganic phosphate. The calculated fractionation factors for the F/Cl-apatite-water systems are in agreement with the enzyme-catalysed experimental fractionations for the dissolved phosphate-water system at the longest reaction durations but larger than fractionations derived from bacteria-facilitated exchange and inorganic precipitation experiments as well as natural observations. For the experimental calibrations of oxygen isotope fractionation involving the precipitation of dissolved phosphate species from aqueous solutions, the fractionation between precipitate and water is primarily dictated by the isotope equilibration between the dissolved complex anions and water prior to the precipitation. Therefore, the present results provide a quantitative means to interpret the temperature dependence of oxygen isotope fractionation in inorganic and biogenic phosphates.

  6. Ion implantation system and process for ultrasensitive determination of target isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, III, Orville T.; Liezers, Martin

    2016-09-13

    A system and process are disclosed for ultrasensitive determination of target isotopes of analytical interest in a sample. Target isotopes may be implanted in an implant area on a high-purity substrate to pre-concentrate the target isotopes free of contaminants. A known quantity of a tracer isotope may also be implanted. Target isotopes and tracer isotopes may be determined in a mass spectrometer. The present invention provides ultrasensitive determination of target isotopes in the sample.

  7. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    Science.gov (United States)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control

  8. Helium and carbon isotopes in Indian diamonds

    Science.gov (United States)

    Wiens, R.; Lal, D.; Craig, H.

    1990-09-01

    Helium and carbon isotope measurements in Indian diamonds (from Andhra Pradesh) were carried out using samples that included mined diamonds from primary kimberlite source rocks and alluvial diamonds from river gravel. The He and C isotope concentrations in diamonds from these two sources were compared, and the Indian diamonds were compared to those from other regions. Results indicate that most of the He-3 in the alluvial diamonds is of cosmogenic origin and that the alluvial diamonds may also have a significant He-4 component due to alpha particles implanted during storage in a secondary matrix. One diamond, a mined kimberlite specimen, was found to have the lowest He-4 content (0.018 microcc/g) so far recorded in diamonds.

  9. Multi-neutron emission of Cd isotopes

    CERN Document Server

    Severyukhin, A P; Borzov, I N; Sushenok, E O

    2016-01-01

    An influence of the phonon-phonon coupling (PPC) on the $\\beta$-decay half-lives and multi-neutron emission probabilities is analysed within the microscopic model based on the Skyrme interaction with tensor components included. The finite-rank separable approximation is used in order to handle large two-quasiparticle spaces. The even-even nuclei near the r-process pathes at $N=82$ are studied. The characteristics of ground states, $2^+$ excitations and $\\beta$-decay strength of the neutron-rich Cd isotopes are treated in detail. It is shown that a strong redistribution of the Gamow-Teller strength due to the PPC is mostly sensitive to the multi-neutron emission probability of the Cd isotopes.

  10. CO/sub 2/-isotope lasers

    Energy Technology Data Exchange (ETDEWEB)

    Pechenin, Yu.V.; Domanov, M.S.

    1980-08-01

    The emission spectra and power characteristics of CW (C-12)(O-16)2, (C-13)(O-16)2, (C-12)(O-16)(O-18)2 and (C-12)(O-18) lasers are investigated. Laser output power is found to depend equally on the proportion of carbon and oxygen isotopes in the active medium for all isotopes except the asymmetrical (C-12)(O-16)(O-18), in which maximum output power is four to five times less due to the doubling of emission lines and limited enrichment caused by recombination into (C-12)(O-16)2 and (C-12)(O-18)2 molecules during discharge. The unsaturated gain is observed to increase linearly with enrichment, with that of nonsymmetrical molecules half that of the symmetrical molecules, while the maximum power output is independent of enrichment.

  11. Atom Trap Trace Analysis of Ca Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, S., E-mail: hoekstra@fhi-berlin.mgp.de [Fritz-Haber Institut der Max-Planck Gesellschaft (Germany); Mollema, A. K.; Morgenstern, R.; Willmann, L.; Wilschut, H. W.; Hoekstra, R. [Rijksuniversiteit Groningen, Atomic Physics, KVI (Netherlands)

    2005-04-15

    In our experiment we aim at the detection of the rarest, naturally occuring calcium isotope 41Ca by means of atom trap trace analysis. On basis of single-atom detection of 46Ca our present sensitivity for 41Ca is estimated to be 1 atom per hour at an abundance of 10-12. To reach a sensitivity at the level of natural abundance, which is 10-14, we need to reduce atomic beam losses. To achieve this, optical compression of the atomic beam is a promising option. We use Monte Carlo Simulations to demonstrate that optical compression of the atomic beam increases throughput of the atomic beam as well as isotope selectivity.

  12. New isotopes of interest to astrophysics

    CERN Document Server

    Davids, C N; Pardo, R C; Parks, L A

    1976-01-01

    The beta decays of the new isotopes /sup 53/Ti and /sup 59/Mn have been studied. These neutron-rich isotopes have half-lives of 32.7+or-0.9 s and 4.75+or-0.14 s, respectively. They were produced via the /sup 48/Ca(/sup 7/Li, pn)/sup 53/Ti and /sup 48/Ca(/sup 13/C, pn) /sup 59/Mn reactions using beams from the Argonne National Laboratory FN Tandem Van de Graaff accelerator. Measurement of gamma singles, gamma - gamma coincidences, and beta - gamma coincidences were facilitated by a pneumatic target-transfer system ('rabbit'). Decay schemes are presented, and the measured masses compared with various predictions. The relevance to astrophysics will be discussed. In addition, a new 8-target multiple rabbit system will be described. (7 refs).

  13. (n,{gamma}) Experiments on tin isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Baramsai, B.; Mitchell, G. E.; Walker, C. L.; Rusev, G. [North Carolina State University, Raleigh, NC 27695, USA and Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O' Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Becvar, F.; Krticka, M.; Kroll, J. [Charles University of Prague, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Agvaanluvsan, U.; Dashdorj, D.; Erdenehuluun, B.; Tsend-Ayush, T. [MonAme Scientific Research Center, Ulaanbaatar (Mongolia)

    2013-04-19

    Neutron capture experiments on highly enriched {sup 117,119}Sn isotopes were performed with the DANCE detector array located at the Los Alamos Neutron Science Center. The DANCE detector provides detailed information about the multi-step {gamma}-ray cascade following neutron capture. Analysis of the experimental data provides important information to improve understanding of the neutron capture reaction, including a test of the statistical model, the assignment of spins and parities of neutron resonances, and information concerning the Photon Strength Function (PSF) and Level Density (LD) below the neutron separation energy. Preliminary results for the (n,{gamma}) reaction on {sup 117,119}Sn are presented. Resonance spins of the odd-A tin isotopes were almost completely unknown. Resonance spins and parities have been assigned via analysis of the multi-step {gamma}-ray spectra and directional correlations.

  14. Radioactive isotopes in solid-state physics

    CERN Document Server

    Deicher, M

    2002-01-01

    Radioactive atoms have been used in solid-state physics and in material science for many decades. Besides their classical application as tracer for diffusion studies, nuclear techniques such as M\\"ossbauer spectroscopy, perturbed angular correlation, $\\beta$-NMR, and emission channelling have used nuclear properties (via hyperfine interactions or emitted particles) to gain microscopical information on the structural and dynamical properties of solids. During the last decade, the availability of many different radioactive isotopes as a clean ion beam at ISOL facilities such as ISOLDE at CERN has triggered a new era involving methods sensitive for the optical and electronic properties of solids, especially in the field of semiconductor physics. Extremely sensitive spectroscopic techniques like deep-level transient spectroscopy (DLTS), photoluminescence (PL), and Hall effect have gained a new quality by using radioactive isotopes. Because of their decay the chemical origin of an observed electronic and optical b...

  15. The evolving structure of the Cd isotopes

    Directory of Open Access Journals (Sweden)

    Garrett P.E.

    2014-03-01

    Full Text Available The even-even Cd isotopes have long been cited as one of the prime examples of vibrational behaviour, identified soon after the Bohr model was developed in the early 1950’s. By the late 1970’s, the presence of intruder states and shape coexistence were identified, but the underlying vibrational nature remained intact. More recently, the robustness of the multiphonon states was questioned, prompting detailed spectroscopic investigations at a number of facilities, including the use of the (n, n'γ reaction and β-decay studies with modern γ-ray spectrometers. Combining results from these studies, a re-examination of the structure of the mid-shell Cd isotopes suggests that they may represent deformed γ-soft rotors rather than spherical vibrators.

  16. Wolf's isotopic response, presenting as lichen planus*

    Science.gov (United States)

    Queiroz, Mariana Thomaz da Silva; de Almeida, José Roberto Paes; Sementilli, Ângelo; Dinato, Sandra Lopes Mattos e; Romiti, Ney

    2015-01-01

    The term "Wolf's isotopic response" describes the occurrence of a new skin disorder at the site of another unrelated and already healed skin disease. In most cases, herpes zoster is the inicial disease. Different disorders may develop on the same site, most commonly granulomatous and lichenoid reactions, infiltration of hematologic diseases, skin tumors and infections. There are few related cases of lichen planus presenting as isotopic response. We report a case of a 74 year-old woman, with multiple itchy, rose-colored and shiny papules that developed at site of previously healed herpes zoster, on the right arm and shoulder. The pathogenesis of this phenomenon is still unknown and further studies are needed. PMID:26312684

  17. Stable Chlorine Isotope Study: Application to Early Solar System Materials

    Science.gov (United States)

    Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2010-01-01

    A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each

  18. Impact of duration of infusion and choice of isotope label on isotope recycling in glucose homeostasis.

    Science.gov (United States)

    Tigas, Stelios K; Sunehag, Agneta L; Haymond, Morey W

    2002-11-01

    The purposes of this study were to quantify the impact of the duration of infusion and choice of stable isotope of glucose on measures of glucose rate of appearance (glucose R(a)) and to determine whether the differences observed were due to tracer recycling via the glycogen pool (direct pathway) or gluconeogenesis (indirect pathway). Six healthy adult volunteers were studied on four occasions in the postabsorptive state during infusions of [1-(13)C]glucose and [6,6-(2)H(2)]glucose: 2.5-h infusion of both (A), and 2.5-h infusion of one (B) and 14.5-h infusion of the other isotope (C), and 5-h infusion of [6,6-(2)H(2)]glucose and 2.5-h infusion of [1-(13)C]glucose (D). Infusion of both isotopes for 2.5 h resulted in similar glucose R(a) values. When compared with a 14.5-h infusion, the 2.5-h glucose tracer infusion overestimated glucose R(a) by 26-35%. Glucose (13)C recycled via the Cori cycle, resulting in slower decay from the plasma pool and longer half-life of [1-(13)C]glucose compared with [6,6-(2)H(2)]glucose. There was no detectable release of [(13)C]glucose or [(2)H(2)]glucose tracer into the plasma pool after administration of glucagon. These data demonstrate that glucose R(a) varies not as a result of isotope cycling but as a result of differences in duration of isotope infusion regardless of the isotope used. This is most likely due to incomplete isotope and substrate equilibration with the 2.5-h infusion. The potential error was reduced by nearly 80% using a 5-h infusion of [6,6-(2)H(2)]glucose. These studies demonstrate that the duration of isotope infusion has significantly greater impact on quantitation of glucose R(a) than does the selection of isotope.

  19. Unbiased isotope equilibrium factors from partial isotope exchange experiments in 3-exchange site systems

    Science.gov (United States)

    Agrinier, Pierre; Javoy, Marc

    2016-09-01

    Two methods are available in order to evaluate the equilibrium isotope fractionation factors between exchange sites or phases from partial isotope exchange experiments. The first one developed by Northrop and Clayton (1966) is designed for isotope exchanges between two exchange sites (hereafter, the N&C method), the second one from Zheng et al. (1994) is a refinement of the first one to account for a third isotope exchanging site (hereafter, the Z method). In this paper, we use a simple model of isotope kinetic exchange for a 3-exchange site system (such as hydroxysilicates where oxygen occurs as OH and non-OH groups like in muscovite, chlorite, serpentine, or water or calcite) to explore the behavior of the N&C and Z methods. We show that these two methods lead to significant biases that cannot be detected with the usual graphical tests proposed by the authors. Our model shows that biases originate because isotopes are fractionated between all these exchanging sites. Actually, we point out that the variable mobility (or exchangeability) of isotopes in and between the exchange sites only controls the amplitude of the bias, but is not essential to the production of this bias as previously suggested. Setting a priori two of the three exchange sites at isotopic equilibrium remove the bias and thus is required for future partial exchange experiments to produce accurate and unbiased extrapolated equilibrium fractionation factors. Our modeling applied to published partial oxygen isotope exchange experiments for 3-exchange site systems (the muscovite-calcite (Chacko et al., 1996), the chlorite-water (Cole and Ripley, 1998) and the serpentine-water (Saccocia et al., 2009)) shows that the extrapolated equilibrium fractionation factors (reported as 1000 ln(α)) using either the N&C or the Z methods lead to bias that may reach several δ per mil in a few cases. These problematic cases, may be because experiments were conducted at low temperature and did not reach high

  20. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    Science.gov (United States)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  1. Measurement system analysis (MSA) of the isotopic ratio for uranium isotope enrichment process control

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josue C. de; Barbosa, Rodrigo A.; Carnaval, Joao Paulo R., E-mail: josue@inb.gov.br, E-mail: rodrigobarbosa@inb.gov.br, E-mail: joaocarnaval@inb.gov.br [Industrias Nucleares do Brasil (INB), Rezende, RJ (Brazil)

    2013-07-01

    Currently, one of the stages in nuclear fuel cycle development is the process of uranium isotope enrichment, which will provide the amount of low enriched uranium for the nuclear fuel production to supply 100% Angra 1 and 20% Angra 2 demands. Determination of isotopic ration n({sup 235}U)/n({sup 238}U) in uranium hexafluoride (UF{sub 6} - used as process gas) is essential in order to control of enrichment process of isotopic separation by gaseous centrifugation cascades. The uranium hexafluoride process is performed by gas continuous feeding in separation unit which uses the centrifuge force principle, establishing a density gradient in a gas containing components of different molecular weights. The elemental separation effect occurs in a single ultracentrifuge that results in a partial separation of the feed in two fractions: an enriched on (product) and another depleted (waste) in the desired isotope ({sup 235}UF{sub 6}). Industrias Nucleares do Brasil (INB) has used quadrupole mass spectrometry (QMS) by electron impact (EI) to perform isotopic ratio n({sup 235}U)/n({sup 238}U) analysis in the process. The decision of adjustments and change te input variables are based on the results presented in these analysis. A study of stability, bias and linearity determination has been performed in order to evaluate the applied method, variations and systematic errors in the measurement system. The software used to analyze the techniques above was the Minitab 15. (author)

  2. Utilizing Stable Isotopes and Isotopic Anomalies to Study Early Solar System Formation Processes

    Science.gov (United States)

    Simon, Justin

    2017-01-01

    Chondritic meteorites contain a diversity of particle components, i.e., chondrules and calcium-, aluminum-rich refractory inclusions (CAIs), that have survived since the formation of the Solar System. The chemical and isotopic compositions of these materials provide a record of the conditions present in the protoplanetary disk where they formed and can aid our understanding of the processes and reservoirs in which solids formed in the solar nebula, an important step leading to the accretion of planetesimals. Isotopic anomalies associated with nucleosynthetic processes are observed in these discrete materials, and can be compared to astronomical observations and astrophysical formation models of stars and more recently proplyds. The existence and size of these isotopic anomalies are typically thought to reflect a significant state of isotopic heterogeneity in the earliest Solar System, likely left over from molecular cloud heterogeneities on the grain scale, but some could also be due to late stellar injection. The homogenization of these isotopic anomalies towards planetary values can be used to track the efficiency and timescales of disk wide mixing,

  3. Embryotoxicity of stable isotopes and use of stable isotopes in studies of teratogenetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Spielmann, H.; Nau, H.

    1986-07-01

    Experiments on teratogenic effects of stable isotopes from our own and other laboratories are evaluated. In the first series of investigations, the enrichment of the stable isotope /sup 13/C derived from U-/sup 13/C-glucose was studied in mouse embryos at various stages of development, including limb buds in organ culture. Preimplantation mouse embryos incubated in vitro in /sup 13/C-enriched medium for 48 hours showed normal development during subsequent differentiation in vitro and also in vivo after embryo transfer to faster mothers. These embryos were 15% to 20% enriched in /sup 13/C. Administration of U-13-C-glucose to pregnant mice during organogenesis led to an increase of the absolute /sup 13/C content of the embryo for several days after the end of isotope administration, whereas the enrichment in maternal tissue decreased. No alterations of embryonic development were detected due to stable isotope enrichment. Development of cultured mouse limb buds was unaffected by incubation with 82 mol% U-/sup 13/C-glucose as judged from morphologic and biochemical criteria. The second part of the article describes the value of deuterium-labeled drugs as probes into the mechanism of activation of teratogenic metabolites. A comparison of the pharmacokinetics as well as the teratogenicity between cyclophosphamide and some specific deuterium-labeled analogues showed that the isotope effect observed can be related to a particular metabolic pathway crucial for teratogenic activation by this drug.

  4. The isotope hydrology of Quaternary climate change.

    Science.gov (United States)

    Darling, W G

    2011-04-01

    Understanding the links between climate change and human migration and culture is an important theme in Quaternary archaeology. While oxygen and hydrogen stable isotopes in high-latitude ice cores provide the ultimate detailed record of palaeoclimate extending back to the Middle Pleistocene, groundwater can act as a climate archive for areas at lower latitudes, permitting a degree of calibration for proxy records such as lake sediments, bones, and organic matter. Not only can oxygen and hydrogen stable isotopes be measured on waters, but the temperature of recharge can be calculated from the amount of the atmospheric noble gases neon, argon, krypton, and xenon in solution, while residence time can be estimated from the decay of the radioisotopes carbon-14, chlorine-36, and krypton-81 over timescales comparable to the ice core record. The Pleistocene-Holocene transition is well characterised in aquifers worldwide, and it is apparent that isotope-temperature relationships of the present day are not necessarily transferable to past climatic regimes, with important implications for the interpretation of proxy isotope data. Groundwaters dating back to one million years, i.e., to beyond the Middle Pleistocene, are only found in major aquifer basins and information is relatively sparse and of low resolution. Speleothem fluid inclusions offer a way of considerably increasing this resolution, but both speleothem formation and large-scale groundwater recharge requires humid conditions, which may be relatively infrequent for areas currently experiencing arid climates. Both types of record therefore require caution in their interpretation when considering a particular archaeological context.

  5. The isotope crisis - a Canadian viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    From the fall of 2007 the summer of 2010 there were repeated cries in the media of North America and Europe of an -isotope crisis-. This concerned the on-going shortage of the isotope Molybdenum 99 and more specifically of its daughter product Technetium Mo 99. The latter is used in about 80 percent of medical imagining procedures in North America, Europe, Japan and a number of other countries. Both isotopes are short-lived and can not be stock-piled. Mo 99 is produced in only a handful of reactors around the world. The fifty-year old Nru reactor in Canada and the equally old Hfr reactor in the Netherlands have each traditionally supplied about a third of the world's supply. In late 2007 the Canadian nuclear regulator ordered the owner and operator of Nru, to shut down the reactor over a matter that was not a clear licence condition. Sensing the impending shortage of Mo 99, the nuclear medicine community raised a major concern sufficient to convince the Canadian government to overrule the regulator. Then in early 2009 a major leak was observed in the Nru reactor vessel. Although it did not present a safety concern it was decided to shut down the reactor to conduct an inspection. This proved to be extremely difficult since the leaks were near the bottom of the 10 metre tall vessel and the only access was through a 20 cm diameter hole at the top of the vessel. The reactor was finally restarted in August 2010, just as the Hfr reactor was shut down for a lengthy overhaul. The paper provides a background on Canada's pioneering involvement in the production and use of radioactive isotopes for medical purposes, a brief account of the Nru repair and an overview of Mo 99 production. (Author)

  6. Oxygen and hydrogen isotope geochemistry of zeolites

    Science.gov (United States)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  7. Aerosol carbon isotope composition over Baltic Sea

    Science.gov (United States)

    Garbaras, Andrius; Pabedinskas, Algirdas; Masalaite, Agne; Petelski, Tomasz; Gorokhova, Elena; Sapolaite, Justina; Ezerinskis, Zilvinas; Remeikis, Vidmantas

    2017-04-01

    Particulate carbonaceous matter is significant contributor to ambient particulate matter originating from intervening sources which contribution is difficult to quantify due to source diversity, chemical complexity and processes during atmospheric transport. Carbon isotope analysis can be extremely useful in source apportionment of organic matter due to the unique isotopic signatures associated with anthropocentric (fossil fuel), continental (terrestrial plants) and marine sources, and is particularly effective when these sources are mixed (Ceburnis et al., 2011;Ceburnis et al., 2016). We will present the isotope ratio measurement results of aerosol collected during the cruise in the Baltic Sea. Sampling campaign of PM10 and size segregated aerosol particles was performed on the R/V "Oceania" in October 2015. Air mass back trajectories were prevailing both from the continental and marine areas during the sampling period. The total carbon concentration varied from 1 µg/m3 to 8 µg/m3. Two end members (δ13C = -25‰ and δ13C = -28 ‰ ) were established from the total stable carbon isotope analysis in PM10 fraction. δ13C analysis in size segregated aerosol particles revealed δ13C values being highest in the 1 - 2.5 µm range (δ13C = -24.9 ‰ ) during continental transport, while lowest TC δ13C values (δ13C ≈ -27 ‰ ) were detected in the size range D50 dual carbon pools contributing to organic matter enrichment in marine aerosol, Scientific Reports, 6, 2016. Masalaite, A., Remeikis, V., Garbaras, A., Dudoitis, V., Ulevicius, V., and Ceburnis, D.: Elucidating carbonaceous aerosol sources by the stable carbon δ13C TC ratio in size-segregated particles, Atmospheric Research, 158, 1-12, 2015.

  8. Volatile and Isotopic Imprints of Ancient Mars

    Science.gov (United States)

    Mahaffy, Paul R.; Conrad, Pamela G.

    2015-01-01

    The science investigations enabled by Curiosity rover's instruments focus on identifying and exploring the habitability of the Martian environment. Measurements of noble gases, organic and inorganic compounds, and the isotopes of light elements permit the study of the physical and chemical processes that have transformed Mars throughout its history. Samples of the atmosphere, volatiles released from soils, and rocks from the floor of Gale Crater have provided a wealth of new data and a window into conditions on ancient Mars.

  9. Stable isotopic analyses in paleoclimatic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Wigand, P.E. [Univ. and Community College System of Nevada, Reno, NV (United States)

    1995-09-01

    Most traditional paleoclimatic proxy data have inherent time lags between climatic input and system response that constrain their use in accurate reconstruction of paleoclimate chronology, scaling of its variability, and the elucidation of the processes that determine its impact on the biotic and abiotic environment. With the exception of dendroclimatology, and studies of short-lived organisms and pollen recovered from annually varved lacustrine sediments, significant periods of time ranging from years, to centuries, to millennia may intervene between climate change and its first manifestation in paleoclimatic proxy data records. Reconstruction of past climate through changes in plant community composition derived from pollen sequences and plant remains from ancient woodrat middens, wet environments and dry caves all suffer from these lags. However, stable isotopic analyses can provide more immediate indication of biotic response to climate change. Evidence of past physiological response of organisms to changes in effective precipitation as climate varies can be provided by analyses of the stable isotopic content of plant macrofossils from various contexts. These analyses consider variation in the stable isotopic (hydrogen, oxygen and carbon) content of plant tissues as it reflects (1) past global or local temperature through changes in meteoric (rainfall) water chemistry in the case of the first two isotopes, and (2) plant stress through changes in plant respiration/transpiration processes under differing water availability, and varying atmospheric CO, composition (which itself may actually be a net result of biotic response to climate change). Studies currently being conducted in the Intermountain West indicate both long- and short-term responses that when calibrated with modem analogue studies have the potential of revealing not only the timing of climate events, but their direction, magnitude and rapidity.

  10. Water Metabolism of Walruses by Isotope Dilution

    DEFF Research Database (Denmark)

    Acquarone, M.; Born, E. W.; Chwalibog, A.;

    In August 2000, the hydrogen isotope dilution method was used on 7 adult male Atlantic walruses (Odobenus rosmarus rosmarus) (weight: 1197±148 kg, mean±SD, range 1013-1508 kg) at a terrestrial haul-out in Northeastern Greenland to determine their body water pool sizes and body water turnover rate...... successfully be used on walruses to estimate water metabolism as well as other metabolic parameters....

  11. Uniform Silicon Isotope Ratios Across the Milky Way Galaxy

    Science.gov (United States)

    Monson, Nathaniel N.; Morris, Mark R.; Young, Edward D.

    2017-04-01

    We report the relative abundances of the three stable isotopes of silicon, 28Si, 29Si, and 30Si, across the Galaxy using the v=0,J=1\\to 0 transition of silicon monoxide. The chosen sources represent a range in Galactocentric radii ({R}{GC}) from 0 to 9.8 kpc. The high spectral resolution and sensitivity afforded by the Green Bank Telescope permit isotope ratios to be corrected for optical depths. The optical-depth-corrected data indicate that the secondary-to-primary silicon isotope ratios {}29{Si}{/}28{Si} and {}30{Si}{/}28{Si} vary much less than predicted on the basis of other stable isotope ratio gradients across the Galaxy. Indeed, there is no detectable variation in Si isotope ratios with {R}{GC}. This lack of an isotope ratio gradient stands in stark contrast to the monotonically decreasing trend with {R}{GC} exhibited by published secondary-to-primary oxygen isotope ratios. These results, when considered in the context of the expectations for chemical evolution, suggest that the reported oxygen isotope ratio trends, and perhaps those for carbon as well, require further investigation. The methods developed in this study for SiO isotopologue ratio measurements are equally applicable to Galactic oxygen, carbon, and nitrogen isotope ratio measurements, and should prove useful for future observations of these isotope systems.

  12. Application of transition metal isotope tracers in global change research

    Institute of Scientific and Technical Information of China (English)

    SONG Jinming; Thomas F. Pedersen

    2005-01-01

    High-precision isotope composition determinations using multicollector, magnetic-sector inductively coupled plasma mass spectrometry (MC-ICPMS) have recently revealed that some transition metal isotopes such as those of Mo, Fe, Cu, Zn etc. can be used as biogeochemical tracers in global change research.The Mo isotope system may be useful in paleoredox investigations indicating that δ 97/95Mo in seawater may co-vary with changes in the relative proportions of anoxic and oxic sedimentation in the ocean, and that this variation may be recorded in δ 97/95Mo of anoxic sediments. The Mo continental flux into the oceans and the global Mo isotope budget can be estimated fromδ 97/95MO values. The Fe isotope composition in seawater is an important issue because Fe plays a controlling role in biological productivity in the oceans and its abundance in seawater may have substantial effect on climate changes. Iron isotope fractionations could result from bio- and abio-processes and have about 0.1% variation (δ 56/54Fe), so Fe isotopes considered alone cannot be used to distinguish the products of abiotic and biotic Fe processing in geological records. Cu and Zn isotopes are also used as biogeochemical tracers, but the researches are relatively less. This review mainly focuses on the methods for preparation, purification and determination of new isotope tracer samples, and on isotope applications in marine environmental changes.

  13. Iron isotope fractionation in marine invertebrates in near shore environments

    Science.gov (United States)

    Emmanuel, S.; Schuessler, J. A.; Vinther, J.; Matthews, A.; von Blanckenburg, F.

    2014-04-01

    Chitons (Mollusca) are marine invertebrates that produce radula (teeth or rasping tongue) containing high concentrations of biomineralized magnetite and other iron bearing minerals. As Fe isotope signatures are influenced by redox processes and biological fractionation, Fe isotopes in chiton radula might be expected to provide an effective tracer of ambient oceanic conditions and biogeochemical cycling. Here, in a pilot study to measure Fe isotopes in marine invertebrates, we examine Fe isotopes in modern marine chiton radula collected from different locations in the Atlantic and Pacific oceans to assess the range of isotopic values, and to test whether or not the isotopic signatures reflect seawater values. Furthermore, by comparing two species that have very different feeding habits but collected from the same location, we infer a possible link between diet and Fe isotopic signatures. Values of δ56Fe (relative to IRMM-014) in chiton teeth range from -1.90 to 0.00‰ (±0.05‰ (2σ) uncertainty in δ56Fe), probably reflecting a combination of geographical control and biological fractionation processes. Comparison with published local surface seawater Fe isotope data shows a consistent negative offset of chiton teeth Fe isotope compositions relative to seawater. Strikingly, two different species from the same locality in the North Pacific (Puget Sound, Washington, USA) have distinct isotopic signatures. Tonicella lineata, which feeds on red algae, has a mean δ56Fe of -0.65 ± 0.26‰ (2σ, 3 specimens), while Mopalia muscosa, which feeds primarily on green algae, shows lighter isotopic values with a mean δ56Fe of -1.47 ± 0.98‰ (2σ, 5 specimens). Although chitons are not simple recorders of the ambient seawater Fe isotopic signature, these preliminary results suggest that Fe isotopes provide information concerning Fe biogeochemical cycling in near shore environments, and might be used to probe sources of Fe in the diets of different organisms.

  14. AMS of the Minor Plutonium Isotopes.

    Science.gov (United States)

    Steier, P; Hrnecek, E; Priller, A; Quinto, F; Srncik, M; Wallner, A; Wallner, G; Winkler, S

    2013-01-01

    VERA, the Vienna Environmental Research Accelerator, is especially equipped for the measurement of actinides, and performs a growing number of measurements on environmental samples. While AMS is not the optimum method for each particular plutonium isotope, the possibility to measure (239)Pu, (240)Pu, (241)Pu, (242)Pu and (244)Pu on the same AMS sputter target is a great simplification. We have obtained a first result on the global fallout value of (244)Pu/(239)Pu = (5.7 ± 1.0) × 10(-5) based on soil samples from Salzburg prefecture, Austria. Furthermore, we suggest using the (242)Pu/(240)Pu ratio as an estimate of the initial (241)Pu/(239)Pu ratio, which allows dating of the time of irradiation based solely on Pu isotopes. We have checked the validity of this estimate using literature data, simulations, and environmental samples from soil from the Salzburg prefecture (Austria), from the shut down Garigliano Nuclear Power Plant (Sessa Aurunca, Italy) and from the Irish Sea near the Sellafield nuclear facility. The maximum deviation of the estimated dates from the expected ages is 6 years, while relative dating of material from the same source seems to be possible with a precision of less than 2 years. Additional information carried by the minor plutonium isotopes may allow further improvements of the precision of the method.

  15. Optimal design of isotope labeling experiments.

    Science.gov (United States)

    Yang, Hong; Mandy, Dominic E; Libourel, Igor G L

    2014-01-01

    Stable isotope labeling experiments (ILE) constitute a powerful methodology for estimating metabolic fluxes. An optimal label design for such an experiment is necessary to maximize the precision with which fluxes can be determined. But often, precision gained in the determination of one flux comes at the expense of the precision of other fluxes, and an appropriate label design therefore foremost depends on the question the investigator wants to address. One could liken ILE to shadows that metabolism casts on products. Optimal label design is the placement of the lamp; creating clear shadows for some parts of metabolism and obscuring others.An optimal isotope label design is influenced by: (1) the network structure; (2) the true flux values; (3) the available label measurements; and, (4) commercially available substrates. The first two aspects are dictated by nature and constrain any optimal design. The second two aspects are suitable design parameters. To create an optimal label design, an explicit optimization criterion needs to be formulated. This usually is a property of the flux covariance matrix, which can be augmented by weighting label substrate cost. An optimal design is found by using such a criterion as an objective function for an optimizer. This chapter uses a simple elementary metabolite units (EMU) representation of the TCA cycle to illustrate the process of experimental design of isotope labeled substrates.

  16. Probing New Physics with Isotope Shift Spectroscopy

    CERN Document Server

    Delaunay, Cédric

    2016-01-01

    We investigate the potential to probe physics beyond the Standard Model with isotope shift measurements of optical atomic clock transitions. We first derive the reach for generic new physics above the GeV scale at the effective field theory level, as well as estimate the limits on possible new spin-independent forces mediated by sub-GeV states coupled to electrons and neutrons. We also study the weak force and show that isotope shifts could provide strong constraints on the $Z^0$ couplings to valence quarks, which complement precision observables at LEP and atomic parity violation experiments. Finally, motivated by recent experimental hints of a new 750 GeV resonance in diphotons, we also consider the potential to probe its parity-preserving couplings to electrons, quarks and gluons with this method. In particular, combining the diphoton signal with indirect constraints from $g_e-2$ and isotope shifts in Ytterbium allows to probe the resonance coupling to electrons with unprecedented precision.

  17. Oxygen Isotope Study of the Suzhou Granite

    Institute of Scientific and Technical Information of China (English)

    王汝成; 沈渭洲; 等

    1998-01-01

    Oxygen isotope studies of the Suzhou granite have been made based on drill-hole samples.In the inner part,the δ18 O values are less variable either in the whole-rock,quartz or in feldspar.Oxygen isotopic compositions are in equilibrium between coexisting quartz and feldspar.Data points from the inner part are plotted in a small area in the δ18 OQ-δ18Of diagram,indicating that this part has not been affected by meteoric hydrothermal fluids.But the whole-rock δ18 O values of the marginal part vary greatly.Oxygen isotopic compositions are in extreme disequilibrium between quartz and feldspar.Data points from the marginal part are displayed with a nearly vertical slope in the δ18OQ-δ18 Of diagram,implying that rocks of this part are affected by the meteoric hydrothermal fluids.Extreme water-rock interactions lead to mineralizations of rare-elements(Nb,Ta,as well as Zr,Hf,Th)in the marginal part.Source materials of the Suzhou granite are also discussed in this paper.

  18. Tracing Waste Water with Li isotopes

    Science.gov (United States)

    Millot, R.; Desaulty, A. M.

    2015-12-01

    The contribution of human activities such as industries, agriculture and various domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. In the present study, we investigate waste water tracing by the use of Li isotopes in a small river basin near Orléans in France (l'Egoutier, 15 km² and 5 km long). It is well known that Li has strategic importance for numerous industrial applications including its use in the production of batteries for both mobile devices (computers, tablets, smartphones, etc.) and electric vehicles, but also in pharmaceutical formulations. In the present work, we collected river waters samples before and after the release from a waste water treatment plant connected to an hospital. Lithium isotopic compositions are rather homogeneous in river waters with δ7Li values around -0.5‰ ± 1 along the main course of the stream (n=7). The waste water sample is very different from the natural background of the river basin with Li concentration being twice of the values without pollution and significant heavy lithium contribution (δ7Li = +4‰). These preliminary results will be discussed in relation with factors controlling the distribution of Li and its isotopes in this specific system and compared with the release of other metals such as Pb or Zn.

  19. Boundary processes traced by neodymium isotopes

    Science.gov (United States)

    Jeandel, C.; Lacan, F.

    2003-04-01

    Continental margins have been identified as preferential sites for removing of reactive elements from the ocean, on the base of U-series measurements (more specifically 231Pa/230Th). This process is called boundary scavenging (Bacon, 1988). Five years of neodymium isotopes data in water masses along the ocean margins (Indonesia, Papua New Guinea, Greenland-Scotland ridge and Labrador Sea) suggests that Nd is transferred from the sediments to the ocean but the reverse also occurs via the so-called boundary scavenging. These processes are only detectable by isotopic ratio measurements because they affect the isotopic signature of the water mass coming in contact with the margin, without changing its concentration. They can involve much higher fluxes than net input processes: for example, the modification of the AAIW signature along the Papua New Guinea slope involves exchange processes only (Lacan and Jeandel, 2001). Since we suspect that such processes not only affect the Nd oceanic chemistry but also the chemical fate of other reactive elements in the ocean, we suggest that the concept of boundary scavenging should be extended to "boundary exchange".

  20. Online spectroscopy of trapped radium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Versolato, Oscar O.; Giri, Gouri S.; Berg, Joost van den; Hoek, Duurt Johan van der; Kruithof, Wilbert; Santra, Bodhaditya; Shidling, Praveen; Willmann, Lorenz; Wilschut, Hans W.; Jungmann, Klaus [Kernfysisch Versneller Instituut, University of Groningen (Netherlands)

    2010-07-01

    Radium ions are of particular interest for a most precise measurement of Atomic Parity Violation. From a single cold and trapped ion one expects a significantly improved measurement of the weak mixing (Weinberg) angle through a determination of the light shift in the forbidden 7{sup 2}S{sub 1/2}-6{sup 2}D{sub 3/2} transition. In preparation of such precision measurements the transitions relevant for this (7S-7P, 6D-7P) were observed and measured in the isotopes {sup 212}Ra, {sup 213}Ra and {sup 214}Ra. The isotopes were produced at the TRI{mu}P facility of KVI, when a {sup 208}Pb beam hit a solid {sup 12}C target. The Ra isotopes were stopped and re-ionized to Ra{sup +} in a Thermal Ionizer, mass separated in a Wien Filter and cooled in a gas filled Radio Frequency Quadrupole. The ions were stored as a cloud in a Paul trap, where they also interacted with laser light. All necessary wavelengths were obtained by semiconductor lasers. The setup and the measurements will be discussed.

  1. Isotopic fractionation of tritium in biological systems.

    Science.gov (United States)

    Le Goff, Pierre; Fromm, Michel; Vichot, Laurent; Badot, Pierre-Marie; Guétat, Philippe

    2014-04-01

    Isotopic fractionation of tritium is a highly relevant issue in radiation protection and requires certain radioecological considerations. Sound evaluation of this factor is indeed necessary to determine whether environmental compartments are enriched/depleted in tritium or if tritium is, on the contrary, isotopically well-distributed in a given system. The ubiquity of tritium and the standard analytical methods used to assay it may induce biases in both the measurement and the signification that is accorded to the so-called fractionation: based on an exhaustive review of the literature, we show how, sometimes large deviations may appear. It is shown that when comparing the non-exchangeable fraction of organically bound tritium (neOBT) to another fraction of tritium (e.g. tritiated water) the preparation of samples and the measurement of neOBT reported frequently led to underestimation of the ratio of tritium to hydrogen (T/H) in the non-exchangeable compartment by a factor of 5% to 50%. In the present study, corrections are proposed for most of the biological matrices studied so far. Nevertheless, the values of isotopic fractionation reported in the literature remain difficult to compare with each other, especially since the physical quantities and units often vary between authors. Some improvements are proposed to better define what should encompass the concepts of exchangeable and non-exchangeable fractions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Hydrogen isotope fractionation in methane plasma

    Science.gov (United States)

    Robert, François; Derenne, Sylvie; Lombardi, Guillaume; Hassouni, Khaled; Michau, Armelle; Reinhardt, Peter; Duhamel, Rémi; Gonzalez, Adriana; Biron, Kasia

    2017-01-01

    The hydrogen isotope ratio (D/H) is commonly used to reconstruct the chemical processes at the origin of water and organic compounds in the early solar system. On the one hand, the large enrichments in deuterium of the insoluble organic matter (IOM) isolated from the carbonaceous meteorites are interpreted as a heritage of the interstellar medium or resulting from ion‑molecule reactions taking place in the diffuse part of the protosolar nebula. On the other hand, the molecular structure of this IOM suggests that organic radicals have played a central role in a gas-phase organosynthesis. So as to reproduce this type of chemistry between organic radicals, experiments based on a microwave plasma of CH4 have been performed. They yielded a black organic residue in which ion microprobe analyses revealed hydrogen isotopic anomalies at a submicrometric spatial resolution. They likely reflect differences in the D/H ratios between the various CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities, usually referred to as hot and cold spots, are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the disk surrounding the Sun during its formation may have triggered the formation of organic compounds.

  3. Isotopic paleoecology of Clovis mammoths from Arizona

    Science.gov (United States)

    Metcalfe, Jessica Z.; Longstaffe, Fred J.; Ballenger, Jesse A. M.; Vance Haynes, C., Jr.

    2011-11-01

    The causes of megafaunal extinctions in North America have been widely debated but remain poorly understood. Mammoths (Mammuthus spp.) in the American Southwest were hunted by Clovis people during a period of rapid climate change, just before the regional onset of Younger Dryas cooling and mammoth extirpation. Thus, these mammoths may provide key insights into late Pleistocene extinction processes. Here we reconstruct the seasonal diet and climatic conditions experienced by mammoths in the San Pedro Valley of Arizona, using the carbon (13C/12C) and oxygen (18O/16O) isotope compositions of tooth enamel. These records suggest that Clovis mammoths experienced a warm, dry climate with sufficient summer rainfall to support seasonal C4 plant growth. Monsoon intensity may have been reduced relative to the preceding time period, but there is no isotopic evidence for severe drought. However, it is possible that the "Clovis drought", inferred from stratigraphic evidence, occurred suddenly at the end of the animals' lives and thus was not recorded in the enamel isotopic compositions. Unlike mammoths that lived before the Last Glacial Maximum, Clovis mammoths regularly increased C4 grass consumption during summer, probably seeking seasonally green grasslands farther from the river valley. This predictable seasonal behavior may have made mammoths easier to locate by Clovis hunters. Furthermore, Clovis mammoths probably had no previous experience of such sudden climatic change as is believed to have occurred at the time of their extinction.

  4. Carbon isotopic composition of individual Precambrian microfossils.

    Science.gov (United States)

    House, C H; Schopf, J W; McKeegan, K D; Coath, C D; Harrison, T M; Stetter, K O

    2000-08-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  5. Isotopic paleoecology of Clovis mammoths from Arizona.

    Science.gov (United States)

    Metcalfe, Jessica Z; Longstaffe, Fred J; Ballenger, Jesse A M; Haynes, C Vance

    2011-11-01

    The causes of megafaunal extinctions in North America have been widely debated but remain poorly understood. Mammoths (Mammuthus spp.) in the American Southwest were hunted by Clovis people during a period of rapid climate change, just before the regional onset of Younger Dryas cooling and mammoth extirpation. Thus, these mammoths may provide key insights into late Pleistocene extinction processes. Here we reconstruct the seasonal diet and climatic conditions experienced by mammoths in the San Pedro Valley of Arizona, using the carbon ((13)C/(12)C) and oxygen ((18)O/(16)O) isotope compositions of tooth enamel. These records suggest that Clovis mammoths experienced a warm, dry climate with sufficient summer rainfall to support seasonal C(4) plant growth. Monsoon intensity may have been reduced relative to the preceding time period, but there is no isotopic evidence for severe drought. However, it is possible that the "Clovis drought", inferred from stratigraphic evidence, occurred suddenly at the end of the animals' lives and thus was not recorded in the enamel isotopic compositions. Unlike mammoths that lived before the Last Glacial Maximum, Clovis mammoths regularly increased C(4) grass consumption during summer, probably seeking seasonally green grasslands farther from the river valley. This predictable seasonal behavior may have made mammoths easier to locate by Clovis hunters. Furthermore, Clovis mammoths probably had no previous experience of such sudden climatic change as is believed to have occurred at the time of their extinction.

  6. Isotopes Tell Sun's Origin and Operation

    Science.gov (United States)

    Manuel, O.; Kamat, Sumeet A.; Mozina, Michael

    2006-03-01

    Modern versions of Aston's mass spectrometer enable measurements of two quantities - isotope abundances and masses - that tell the Sun's origin and operation. Isotope analyses of meteorites, the Earth, Moon, Mars, Jupiter, the solar wind, and solar flares over the past 45 years indicate that fresh, poorly-mixed, supernova debris formed the solar system. The iron-rich Sun formed on the collapsed supernova core and now itself acts as a magnetic plasma diffuser, as did the precursor star, separating ions by mass. This process covers the solar surface with lightweight elements and with the lighter isotopes of each element. Running difference imaging provides supporting evidence of a rigid, iron-rich structure below the Sun's fluid outer layer of lightweight elements. Mass measurements of all 2,850 known nuclides expose repulsive interactions between neutrons that trigger neutron-emission at the solar core, followed by neutron-decay and a series of reactions that collectively generate solar luminosity, solar neutrinos, the carrier gas for solar mass separation, and an outpouring of solar-wind hydrogen from the solar surface. Neutron-emission and neutron-decay generate ~ 65% of solar luminosity; H-fusion ~ 35%, and ~ 1% of the neutron-decay product survives to depart as solar-wind hydrogen. The energy source for the Sun and other ordinary stars seems to be neutron-emission and neutron-decay, with partial fusion of the decay product, rather than simple fusion of hydrogen into helium or heavier elements.

  7. Triple Oxygen Isotopes: Fundamental Relationships and Applications

    Science.gov (United States)

    Bao, Huiming; Cao, Xiaobin; Hayles, Justin A.

    2016-06-01

    The element oxygen has three stable isotopes: 16O, 17O, and 18O. For a defined process, a change in 18O/16O scales with the corresponding change in 17O/16O, or the fractionation factors 18α and 17α have a relationship of θ = ln17α/ln18α, in which the triple oxygen isotope exponent θ is relatively fixed but does vary with reaction path, temperature, and species involved. When the small variation is of interest, the distinction of three concepts—θ, S (a slope through data points in δ17O-δ18O space), and C (an arbitrary referencing number for the degree of 17O deviation)—becomes important. Triple oxygen isotope variations can be measured by modern instruments and thus offer an additional line of information on the underlying reaction processes and conditions. Analytical methods and Earth science applications have recently been developed for air oxygen, carbon dioxide, water, silicates, oxides, sulfates, carbonates, and phosphates.

  8. Photonuclear activation of pure isotopic mediums.

    Energy Technology Data Exchange (ETDEWEB)

    Grohman, Mark A.; Lukosi, Eric Daniel

    2010-06-01

    This work simulated the response of idealized isotopic U-235, U-238, Th-232, and Pu-239 mediums to photonuclear activation with various photon energies. These simulations were conducted using MCNPX version 2.6.0. It was found that photon energies between 14-16 MeV produce the highest response with respect to neutron production rates from all photonuclear reactions. In all cases, Pu-239 responds the highest, followed by U-238. Th-232 produces more overall neutrons at lower photon energies then U-235 when material thickness is above 3.943 centimeters. The time it takes each isotopic material to reach stable neutron production rates in time is directly proportional to the material thickness and stopping power of the medium, where thicker mediums take longer to reach stable neutron production rates and thinner media display a neutron production plateau effect, due to the lack of significant attenuation of the activating photons in the isotopic mediums. At this time, no neutron sensor system has time resolutions capable of verifying these simulations, but various indirect methods are possible and should be explored for verification of these results.

  9. THE NITROGEN ISOTOPIC COMPOSITION OF METEORITIC HCN

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, Sandra, E-mail: pizzar@asu.edu [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604 (United States)

    2014-12-01

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organic compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.

  10. Measuring Isotope Ratios Across the Solar System

    Science.gov (United States)

    Webster, Chris R.; Mahaffy, Paul R.

    2012-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biology [1]. For the Allan Hills 84001 meteorite, for example, the (sup 1)(sup 3)C/(sup 1)(sup 2)C ratio identifies it as a Mars (SNC) meteorite; the ??K/??Ar ratio tells us the last time the rock cooled to solid, namely 4 Gya; isotope ratios in (sup 3)He, (sup 2)(sup 1)Ne and (sup 3)?Ar show it was in space (cosmic ray exposure) for 10-20 million years; (sup 1)?C dating that it sat in Antarctica for 13,000 years before discovery; and clumped isotope analysis of (sup 1)?O(sup 1)(sup 3)C(sup 1)?O in its carbonate that it was formed at 18+/-4 ?C in a near-surface aqueous environment [2]. Solar System Formation

  11. PREFACE: Processes in Isotopes and Molecules

    Science.gov (United States)

    Bogdan, Diana; Tosa, Valer

    2009-07-01

    These Proceedings present some of the Invited Lectures and Contributed Papers of the International Conference 'Processes in Isotopes and Molecules' (PIM), held in Cluj-Napoca, Romania, 24-26 September 2009. The PIM conference, started in 1999 as a local event, is now an international conference organized every two years by the National Institute for R&D of Isotopic and Molecular Technologies in Cluj-Napoca, the capital city of Transylvania, Romania. The meetings are attended by researchers in the field of atomic and molecular physics as well as those developing new materials and technologies. The scientific subjects are at the cross-roads of three fundamental research areas: physics, chemistry, and biology. The papers here are grouped according to the five conference topics: T1 - Molecular and biomolecular systems T2 - Modern techniques and technologies T3 - Environmental molecular processes T4 - Hydrogen and renewable sources of energy T5 - Nanostructured materials and nanocomposites We gratefully acknowledge the contribution of our colleagues from the Scientific Committee and Program Committee who contributed their time, energy and expertise to the refereeing process. Finally, we would like to thank people from IOP Publishing for their friendly advice and prompt help during the editing process, as well as for their efforts making the Journal of Physics: Conference Series available to the scientific community. Diana Bogdan and Valer Tosa National Institute for R&D Isotopic and Molecular Technologies, Cluj-Napoca

  12. Measuring Isotope Ratios Across the Solar System

    Science.gov (United States)

    Webster, Chris R.; Mahaffy, Paul R.

    2012-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biology [1]. For the Allan Hills 84001 meteorite, for example, the (sup 1)(sup 3)C/(sup 1)(sup 2)C ratio identifies it as a Mars (SNC) meteorite; the ??K/??Ar ratio tells us the last time the rock cooled to solid, namely 4 Gya; isotope ratios in (sup 3)He, (sup 2)(sup 1)Ne and (sup 3)?Ar show it was in space (cosmic ray exposure) for 10-20 million years; (sup 1)?C dating that it sat in Antarctica for 13,000 years before discovery; and clumped isotope analysis of (sup 1)?O(sup 1)(sup 3)C(sup 1)?O in its carbonate that it was formed at 18+/-4 ?C in a near-surface aqueous environment [2]. Solar System Formation

  13. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of d13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  14. Sulfur Isotopic Characteristics of Coal in China and Sulfur Isotopic Fractionation during Coal—burning Process

    Institute of Scientific and Technical Information of China (English)

    洪业汤; 张鸿斌; 等

    1993-01-01

    The determined results of the sulfur contents and isotopic composition of coal samples from major coal mines in 15 provinces and regions of China show that the coal mined in the north of China is characterized by higher 34S and lower sulfur content, but that in the south of China has lower 34S and higher sulfur content.During the coal-burning process in both indrstrial and daily use of coal as fuel the released sulfur dioxide is always enriched in lighter sulfur isotope relative to the corresponding coal;the particles are always enriched in heavier sulfur isotope.The discussion on the environmental geochemical significance of the above-mentioned results also has been made.

  15. Fishing for isotopes in the Brookhaven Lab Isotope Producer (BLIP) cooling water

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Jonathan [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider Accelerator Dept.

    2016-04-29

    Be-7 has been used in environmental studies; the isotope is produced during BLIP irradiations and accumulates in the 320 gallons of cooling water. Be-7 has a 53.24 day half-life, so the optimal production/purification time is at the end of the BLIP run season. To purify Be-7 fifteen to twenty gallons of BLIP cooling water are removed and pumped through ion exchange columns that retain Be-7. This labor intensive approach captures ~15 mCi of Be-7, but the solution requires further purification. The method can lead to increased radiation exposure to staff. The ideal way to capture isotopes from large volumes is to reach in to the solution and selectively pull out the desired isotope. It is a lot like fishing.

  16. The behaviour of copper isotopes during igneous processes

    Science.gov (United States)

    Savage, P. S.; Moynier, F.; Harvey, J.; Burton, K. W.

    2015-12-01

    Application of Cu isotopes to high temperature systems has recently gained momentum and has the potential for probing sulphide fractionation during planetary differentiation [1]. This requires robust estimates for planetary reservoirs, and a fundamental understanding of how igneous processes affect Cu isotopes; this study aims to tackle the latter. Cogenetic suites affected by both fractionation crystallisation and cumulate formation were analysed to study such effects on Cu isotopes. In S-undersatured systems, Cu behaves incompatibly during melt evolution and the Cu isotope composition of such melt is invariant over the differentiation sequence. In contrast, S-saturated systems show resolvable Cu isotope variations relative to primitive melt. Such variations are minor but imply a slightly heavy Cu isotope composition for continental crust compared to BSE, consistent with granite data [2]. Although olivine accumulation does not affect Cu isotopes, spinel-hosted Cu is isotopically light relative to the bulk. Analysis of variably melt-depleted cratonic peridotites shows that partial melting can affect Cu isotope composition in restite, with the depleted samples isotopically light compared to BSE. This could be due to residual spinel and/or incongruent melting of sulphides - individual sulphides picked from a single xenolith reveal a range of Cu isotope compositions, dependent on composition. Although partial melting may fractionate Cu isotopes, models suggest most mantle-derived melt will have δ65Cu ≈ BSE, as most source Cu will be transferred to the melt. Small degree melts such as ocean island basalts are predicted to be isotopically heavier than MORB, if derived from a primitive mantle source. OIBs have a range of Cu isotope compositions: some are heavier than MORB as predicted; however, some have much lighter compositions. Since Cu isotopes can be significantly fractionated in the surface environment [e.g. 3] OIB Cu isotopic variations may be linked to

  17. Isotope ratio analysis by Orbitrap mass spectrometry

    Science.gov (United States)

    Eiler, J. M.; Chimiak, L. M.; Dallas, B.; Griep-Raming, J.; Juchelka, D.; Makarov, A.; Schwieters, J. B.

    2016-12-01

    Several technologies are being developed to examine the intramolecular isotopic structures of molecules (i.e., site-specific and multiple substitution), but various limitations in sample size and type or (for IRMS) resolution have so far prevented the creation of a truly general technique. We will discuss the initial findings of a technique based on Fourier transform mass spectrometry, using the Thermo Scientific Q Exactive GC — an instrument that contains an Orbitrap mass analyzer. Fourier transform mass spectrometry is marked by exceptionally high mass resolutions (the Orbitrap reaches M/∆M in the range 250,000-1M in the mass range of greatest interest, 50-200 amu). This allows for resolution of a large range of nearly isobaric interferences for isotopologues of volatile and semi-volatile compounds (i.e., involving isotopes of H, C, N, O and S). It also provides potential to solve very challenging mass resolution problems for isotopic analysis of other, heavier elements. Both internal and external experimental reproducibilities of isotope ratio analyses using the Orbitrap typically conform to shot-noise limits down to levels of 0.2 ‰ (1SE), and routinely in the range 0.5-1.0 ‰, with similar accuracy when standardized to concurrently run reference materials. Such measurements can be made without modifications to the ion optics of the Q Exactive GC, but do require specially designed sample introduction devices to permit sample/standard comparison and long integration times. The sensitivity of the Q Exactive GC permits analysis of sub-nanomolar samples and quantification of multiply-substituted species. The site-specific capability of this instrument arises from the fact that mass spectra of molecular analytes commonly contain diverse fragment ion species, each of which samples a specific sub-set of molecular sites. We will present applications of this technique to the biological and abiological chemistry of amino acids, forensic identification of

  18. Stable water isotope patterns in a climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean).

    Science.gov (United States)

    van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C

    2014-06-01

    The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

  19. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    CERN Document Server

    Xie, Xueshu

    2014-01-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous; instead, at some resonance isotopic compositions, the kinetics increases, while at off resonance compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error plus or minus 0.05%) experiment to measure the bacterial growth parameters in minimal media with varying isotopic compositions. A number of predicted resonance conditions were tested, which kinetic enhancements as strong as plus 3% discovered at these conditions. The combined evidence extremely strongly supports the existence of isotopic resonances. This phenomenon has numerous implications for the origin of life and astrobiology, and possible application...

  20. Radionuclide Data Analysis and Evaluation: More Information From Fewer Isotopes

    Science.gov (United States)

    Prinke, A.; McIntyre, J.; Cooper, M.; Haas, D.; Lowrey, J.; Miley, H.; Schrom, B.; Suckow, T.

    2013-12-01

    The analysis of the International Monitoring System radionuclide data sets provides daily concentrations for both particulate and radioxenon isotopes. These isotopes can come from many potential sources such as nuclear reactors, nuclear physics experiments, and medical isotope production. These interesting but irrelevant sources have several of the same radio-isotopic signatures from above or underground nuclear explosions and must be ruled out as part of the determination that an event originated as a nuclear explosion. There are several methods under development that aid in this determination and this poster will briefly cover each: radio-isotopic ratios and parent daughter relationships, co-detection of radioxenon and isotopes found on particulates, and past detection history.

  1. The isotopic composition of CO in vehicle exhaust

    Science.gov (United States)

    Naus, Stijn; Röckmann, Thomas; Popa, Elena

    2017-04-01

    The isotopic composition of atmospheric carbon monoxide (CO) and its sources can be a powerful tool to help constrain the CO budget, but data on the isotopic composition of CO sources is sparse. We investigated the isotopic composition (13C16O and 12C18O) of one of the main sources of CO in urban areas: traffic emissions. Samples from individual passenger cars and atmospheric samples from polluted areas were measured. The results show strong indications that CO emissions from traffic are dominated by a small subset of cars or driving conditions, which, in this study, were cold petrol cars. The spread in isotopic composition of the full dataset was large, but this dominant subset showed a relatively stable isotopic composition. Therefore, the individual car samples result in a well-defined overall traffic signature, which was in agreement with the atmospheric isotopic signature derived from the atmospheric samples.

  2. Ubiquitous isotopic anomalies in Ti from normal Allende inclusions

    Science.gov (United States)

    Niemeyer, S.; Lugmair, G. W.

    1981-01-01

    A novel technique for the high-precision isotopic analysis of titanium was applied to three terrestrial rocks and coarse- and fine-grained Allende inclusions. Repeated analyses of the three terrestrial rocks gave excellent agreement with a Ti metal standard. All seven Allende inclusions were previously determined to contain isotopically normal Nd and/or Sm, indicating that none belongs to a small group of peculiar intrusions. The discovery of widespread Ti isotopic anomalies in normal Allende inclusions establishes Ti as the first non-noble gas element studied since oxygen to show such isotopic heterogeneity. A survey of nucleosynthetic origins of Ti isotopes suggests that the dominant Ti-50 excesses in these inclusions are due to the relative enrichment of isotopes synthesized during hydrostatic burning in, or near, the core of a massive star.

  3. The geochemistry of stable chlorine and bromine isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Eggenkamp, Hans [Onderzock and Beleving, Bussum (Netherlands)

    2014-11-01

    First book solely dedicated to the geochemistry of chlorine and bromine isotopes. Detailed description of analytical techniques, including their advantages and disadvantages. Indication of research fields where measurement of these isotopes is especially useful. This book provides detailed information on the history, analysis and applications of chlorine and bromine isotope geochemistry. Chlorine and bromine are geochemically unique as they prefer to exist as single charged negative ions. For this reason isotope fractionation reflects mostly processes that are not related to changes in the redox state and this fractionation is generally modest. The book will describe the processes that are most easily detected using these isotopes. Also isotope variations, and processes that cause them, measured in oxidised species such as perchlorates and in organic molecules will be described in this book.

  4. Utilization of stable isotopes in power reactor; Utilisation des isotopes stables dans les reacteurs de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Desmoulins, P. [Electricite de France (EDF), 75 - Paris (France)

    1994-12-31

    The stable isotopes, besides uranium, used in EDF power nuclear reactors are mainly the boron 10 and the lithium 7. Boron is used in reactors as a neutrophagous agent for core reactivity control, and lithium, and more especially lithium 7, is extensively used as a solution in PWR moderators for primary fluid pH control. Boron and lithium ore reserves and producers are presented; industrial isotopic separation techniques are described: for the boron 10, they include dissociative distillation (Sulzer process) and separation on anionic resins, and for lithium 7, ion exchange columns (Cogema). 1 tab.

  5. Stable isotopes in soil and water studies; Isotopes stables dans l`eau et le sol

    Energy Technology Data Exchange (ETDEWEB)

    Allison, G.B. [Division of Water Resources, Adelaide Laboratory, PMB2, South (Australia)

    1998-12-31

    The composition of oxygen-18 and deuterium in soil waters varies mainly as a result of changes in the isotopic composition of rainfall and the processes of evaporation. This paper gives examples of how the isotope profiles which develop in the unsaturated zone can give information about recharge fluxes and mechanisms, evaporation from groundwater systems in arid areas and the zones in soil profiles from which plants use water. J. Ch. Fontes and his colleagues have been leaders in the application of these techniques to the measurement of evaporation from deep water tables in arid areas. (author) 29 refs.

  6. Advances in laser-based isotope ratio measurements: selected applications

    OpenAIRE

    Kerstel, E; Gianfrani, L.

    2008-01-01

    Small molecules exhibit characteristic ro-vibrational transitions in the near- and mid-infrared spectral regions, which are strongly influenced by isotopic substitution. This gift of nature has made it possible to use laser spectroscopy for the accurate analysis of the isotopic composition of gaseous samples. Nowadays, laser spectroscopy is clearly recognized as a valid alternative to isotope ratio mass spectrometry. Laser-based instruments are leaving the research laboratory stage and are be...

  7. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    Science.gov (United States)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  8. Applications of stable isotope analysis in mammalian ecology.

    Science.gov (United States)

    Walter, W David; Kurle, Carolyn M; Hopkins, John B

    2014-01-01

    In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.

  9. Isotope Effects of Solid Hydrogenic Pellet Ablation in Fusion Plasma

    Institute of Scientific and Technical Information of China (English)

    PENGLilin; DENGBaiquan; YANJiancheng; WANGXiaoyu

    2003-01-01

    The isotope effects of ablation processes in fusion plasma for five combinations of solid isotopic hydrogenic pellets H2, HD, D2,DT, T2 have been first time studied. The resuits show that the modifications caused by isotope effects for pellet erosion speeds range from 1 for hydrogen pellet down to 0. 487 for tritium pellet and are not negligible in ablation rate calculations. These effects lead to deeper mass deposition and improved core fueling efficiency.

  10. Systematic Study on Triaxial Superdeformed Bands of Hf Isotopes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da-Li; DING Bin-Gang

    2009-01-01

    Properties of the triaxial superdeformed (TSD) bands of Hf isotopes are investigated systematically within the supersymmetry scheme including many-body interactions and a perturbation possessing the SO(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the γ-ray energies, the dynamical moments of inertia,and the spin of the TSD bands in Hf isotopes are obtained. It shows that this approach is quite powerful in describing the properties of the triaxial superdeformation in Hf isotopes.

  11. Isotope composition and volume of Earth’s early oceans

    OpenAIRE

    Pope, Emily C.; Bird, Dennis K.; Rosing, Minik T.

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth’s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen’s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotop...

  12. Thermal neutron capture cross sections of tellurium isotopes

    Science.gov (United States)

    Tomandl, I.; Honzátko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklósi, L.; Révay, Zs.; Molnár, G. L.; Firestone, R. B.; Bondarenko, V.

    2003-12-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122 Te , 124 Te , 125 Te , 126 Te , 128 Te , and 130 Te are reported. These values are based on a combination of newly determined partial γ -ray cross sections obtained from experiments on targets contained natural Te and γ intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  13. Modelling of stable water isotopes in Central Europe with COSMOiso

    Science.gov (United States)

    Christner, Emanuel; Pfahl, Stephan; Schädler, Gerd

    2016-04-01

    Atmospheric water in form of vapor or clouds is responsible for ˜75 % of the natural greenhouse effect and carries huge amounts of latent heat. For this reason, a best possible description of the hydrological cycle is a prerequisite for reliable climate modelling. As the stable isotopes H216O, H218O and HDO differ in vapor pressure, they are fractionated during phase changes and contain information about the formation of precipitation, evaporation from the ground, etc. Therefore, the isotopic composition of atmospheric water is an useful tracer to test and improve our understanding of the extremely complex and variable hydrological cycle in Earth's atmosphere. Within the project PalMod the isotope-enabled limited-area model COSMOiso will be used for high-resolution isotope simulations of paleo-climates. For validation with modern observations we compare 12 years of modelled isotope ratios from Central Europe to observations of the Global Network of Isotopes in Precipitation (GNIP) and to observations of isotope ratios of water vapor at different locations in Germany. We find a good agreement of modelled and observed isotope ratios in summer. In winter, we observe a systematic overestimation of modelled isotope ratios in precipitation and low-level water vapor. We relate those differences to specific circulation regimes with predominantly easterly moisture transport and the corresponding strong dependence of modelled isotope ratios on lateral boundary data. Furthermore, we investigate the dependence of modelled isotope ratios in winter on the type of isotope fractionation during surface evaporation at skin temperatures close to the freezing point.

  14. Magnesium isotope fractionation during carbonatite magmatism at Oldoinyo Lengai, Tanzania

    Science.gov (United States)

    Li, Wang-Ye; Teng, Fang-Zhen; Halama, Ralf; Keller, Jörg; Klaudius, Jurgis

    2016-06-01

    To investigate the behaviour of Mg isotopes during carbonatite magmatism, we analyzed Mg isotopic compositions of natrocarbonatites and peralkaline silicate rocks from Oldoinyo Lengai, Tanzania. The olivine melilitites from the vicinity of Oldoinyo Lengai have homogeneous and mantle-like Mg isotopic compositions (δ26Mg of -0.30 to -0.26‰), indicating limited Mg isotope fractionation during mantle melting. The highly evolved peralkaline silicate rocks not related to silicate-carbonatite liquid immiscibility, including phonolites from the unit Lengai I, combeite-wollastonite nephelinites (CWNs) from the unit Lengai II A and carbonated combeite-wollastonite-melilite nephelinites (carbCWMNs), have δ26Mg values (from -0.25 to -0.10‰) clustered around the mantle value. By contrast, the CWNs from the unit Lengai II B, which evolved from the silicate melts that were presumably generated by silicate-carbonatite liquid immiscibility, have heavier Mg isotopes (δ26Mg of -0.06 to +0.09‰). Such a difference suggests Mg isotope fractionation during liquid immiscibility and implies, based on mass-balance calculations, that the original carbonatite melts at Lengai were isotopically light. The variable and positive δ26Mg values of natrocarbonatites (from +0.13 to +0.37‰) hence require a change of their Mg isotopic compositions subsequent to liquid immiscibility. The negative correlations between δ26Mg values and contents of alkali and alkaline earth metals of natrocarbonatites suggest Mg isotope fractionation during fractional crystallization of carbonatite melts, with heavy Mg isotopes enriched in the residual melts relative to fractionated carbonate minerals. Collectively, significant Mg isotope fractionation may occur during both silicate-carbonatite liquid immiscibility and fractional crystallization of carbonatite melts, making Mg isotopes a potentially useful tracer of these processes relevant to carbonatite petrogenesis.

  15. Fractionation of Metal Stable Isotopes by Higher Plants

    OpenAIRE

    Friedhelm von Blanckenburg; N. von Wirén; M. Guelke; Weiss, D J; T. D. Bullen

    2009-01-01

    Higher plants induce chemical reactions in the rhizosphere, facilitating metal uptake by roots. Fractionation of the isotopes in nutrients such as calcium, iron, magnesium, and zinc produces a stable isotope composition in the plants that generally differs from that of the growth medium. Isotope fractionation also occurs during transport of the metals within most plants, but its extent depends on plant species and on the metal, in particular, on the metal’s redox state and what ligand it is b...

  16. Isotopically Modified Molybdenum: Production for Application in Nuclear Energy

    Science.gov (United States)

    Smirnov, A. Yu.; Bonarev, A. K.; Sulaberidze, G. A.; Borisevich, V. D.; Kulikov, G. G.; Shmelev, A. N.

    The possibility to use the isotopically modified molybdenum as a constructive material for the fuel rods of light water and fast reactors is discussed. The calculations demonstrate that the isotopically modified molybdenum with an average neutron absorption cross-section comparable to that of zirconium can be obtained with the reasonable for practice cost by a cascade of gas centrifuges, specially designed for separation of non-uranium isotopes.

  17. Possible shape phase transition in the heavy Kr isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bucurescu, D.; Constantinescu, G.; Cutoiu, D.; Ivascu, M.; Zamfir, N.V. (Institutul de Fizica si Inginerie Nucleara, Bucharest (Romania))

    1981-06-01

    Potential energy surfaces of Kr isotopes computed in the variables (epsilon,..gamma..) are presented. They account qualitatively for the main features observed experimentally for the lighter isotopes and predict that a shape phase transition, similar to that known for the heavy (A of the order of 100) Sr and Zr nuclei, should be observed in the neutron-rich isotopes between the neutron numbers 58 and 60.

  18. Isotopic heterogeneity in synthetic and natural silicon carbide

    OpenAIRE

    Shiryaev, A. A.; Michael Wiedenbeck; Reutsky, V.; Polyakov, V.B.; Mel'nik, N. N.; Lebedev, A. A.; Yakimova, R.

    2008-01-01

    The distribution of both carbon and silicon isotopes in synthetic sublimation growth SiC wafers and in natural SiC grains was studied using secondary ion mass-spectrometry (SIMS). Significant variations in both isotopic ratios were observed which were broadly correlated with the crystalline perfection as documented by Raman microspectroscopy. Domains consisting of 15R (or with its admixture) are, on average, enriched in 12C isotope relative to 6H domains, and they also show larger scatter in ...

  19. Development of lowenergy accelerator-based production of medical isotopes

    OpenAIRE

    Radcliffe, Naomi; Barlow, Roger; Cywinski, Robert; Beasley, P.

    2013-01-01

    Here we present methods for production of new and existing isotopes for SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) imaging using accelerator-based systems. Such isotopes are already widely used in medical diagnostics and research, and there is constant development of new drugs and isotopes. However the main production method for 99mTc, is currently in research reactors and is at risk due to scheduled and unscheduled shut downs. Therefore, a low c...

  20. Thermal neutron capture cross sections of tellurium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  1. Isotopic compositions of the elements 2013 (IUPAC Technical Report)

    Science.gov (United States)

    Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna; Loss, Robert D.; Walczyk, Thomas; Prohaska, Thomas

    2016-01-01

    The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) of the International Union of Pure and Applied Chemistry (iupac.org) has revised the Table of Isotopic Compositions of the Elements (TICE). The update involved a critical evaluation of the recent published literature. The new TICE 2013 includes evaluated data from the “best measurement” of the isotopic abundances in a single sample, along with a set of representative isotopic abundances and uncertainties that accommodate known variations in normal terrestrial materials.

  2. The process of glauconitization: chemical and isotopic evidence

    Science.gov (United States)

    Stille, Peter; Clauer, Norbert

    1994-08-01

    Sequential leaching experiments were made on Recent glauconies and clay fractions of the associated mud from off-shore Africa near the estuary of the Congo River. Analyses of major/rare earth elements (REE) and Nd isotopic compositions on the resulting leachate and residue pairs allow identification of at least three important and isotopically distinct components which contributed to the glauconitization process: (1) a detrital component with relatively high 87Sr/86Sr and relatively low 143Nd/144Nd isotopic ratios; (2) a phosphate phase rich in REE and Sr with sea water Sr and Nd isotopic characteristics; (3) a component rich in organic matter and Ca with a sea water Sr isotopic signature, a relatively low Nd isotopic composition and elevated Sm/Nd ratios. This latter component probably represents the suspended organic and carbonate-rich river load. The detrital and the river components were mixed up in the muddy off-shore sediment, ingested by worms, and integrated into faecal pellets. The resulting material has Sr and Nd isotopic signatures intermediate between those of the detrital and river components, and represents the precursor of the glaucony minerals. During the subsequent dissolution-crystallization process, the glauconitic pellets remain isotopically closed to any external supply, but expulsion of Sr and Nd with increasing degree of maturation is observed without any effect on the Sr and Nd isotopic compositions. At a higher maturation stage (K2O>4.5%), the Sr and Nd isotopic compositions tend to decrease and increase, respectively, approximating the isotopic composition values of the phosphate-rich phase. Because the Sr and Nd concentrations decrease, the evolution of the glauconies toward lower Sr and higher Nd isotopic compositions can only be explained by expulsion of Sr and Nd of the detrital component with high Sr and low Nd isotopic signatures. Dissolution of the chemically unstable, wormdigested clay material from mud may be responsible for the

  3. Multiconfiguration calculations of electronic isotope shift factors in Al I

    CERN Document Server

    Filippin, Livio; Ekman, Jörgen; Fritzsche, Stephan; Godefroid, Michel; Jönsson, Per

    2016-01-01

    The present work reports results from systematic multiconfiguration Dirac-Hartree-Fock calculations of electronic isotope shift factors for a set of transitions between low-lying states in neutral aluminium. These electronic quantities together with observed isotope shifts between different pairs of isotopes provide the changes in mean-square charge radii of the atomic nuclei. Two computational approaches are adopted for the estimation of the mass- and field shift factors. Within these approaches, different models for electron correlation are explored in a systematic way to determine a reliable computational strategy and estimate theoretical uncertainties of the isotope shift factors.

  4. Isotope Tales: Remaining Problems, Unsolvable Questions, and Gentle Successes

    Science.gov (United States)

    fogel, marilyn; bradley, christina; newsome, seth; filipp, fabian

    2014-05-01

    Earth's biomes function and adapt today as climate changes and ecosystems and the organisms within them adapt. Stable isotope biogeochemistry has had a major influence in understanding climate perturbations and continues to be an active area of research on many fronts. Banking on the success of compound specific stable isotope analyses of amino acids, nitrogen, carbon, and hydrogen isotopes continue to reveal subtle shifts in oceanic food webs and metabolic changes in microbes, plants, and animals. A biochemical understanding of exactly how organisms process and partition stable isotopes during metabolism remains unsolved, but is required if this field is to move beyond description to quantitation. Although the patterns of carbon and nitrogen isotopes are fairly well established in the common amino acids, we need to consider specifics: How do shifting metabolic pathways (metabolomics) influence the outcome of stable isotope partitioning? What influence does the gut microflora in animals have on isotopic labeling? What are the intramolecular isotope patterns of common amino acids and what do they tell us? What can be learned with other isotope systems, such as hydrogen? Results and ideas of how to move forward in this field will be presented starting at the molecular level and ending with ecosystems.

  5. Laser Ablation - Optical Cavity Isotopic Spectrometer (LAOCIS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses NASA astrobiology objectives, particularly the need for a compact instrument capable of in situ isotopic measurements. We propose the...

  6. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes.

    Science.gov (United States)

    Fitzpatrick, Paul F

    2015-11-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin- and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.

  7. Isotope and multiband effects in layered superconductors.

    Science.gov (United States)

    Bussmann-Holder, Annette; Keller, Hugo

    2012-06-13

    In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.

  8. Isotopic characterisation of CO2 sources during regional pollution events using isotopic and radiocarbon analysis

    NARCIS (Netherlands)

    Zondervan, A; Meijer, HAJ

    1996-01-01

    At the station Kollumerwaard (The Netherlands), for monitoring tracers in the troposphere, air is sampled in 16 containers for off-line C-13, O-18 and C-14 isotopic analysis of CO2. The timing of the sampling is chosen such that CO2 variations correlating with pollutants like CO and CH4 are optimall

  9. Global Cr-isotope distributions in surface seawater and incorporation of Cr isotopes into carbonate shells

    DEFF Research Database (Denmark)

    Paulukat, Cora Stefanie; Frei, Robert; Vögelin, Andrea Regula

    In this study we present the Cr-isotope composition of surface seawater from several locations worldwide. In addition to the samples from the oceans (Atlantic Ocean, Pacific Ocean, Southern Ocean and Artic Ocean) we analysed water samples from areas with a more limited water exchange (Mediterrane...

  10. Analytical techniques in biomedical stable isotope applications : (isotope ratio) mass spectrometry or infrared spectrometry?

    NARCIS (Netherlands)

    Stellaard, F; Elzinga, H

    2005-01-01

    An overview is presented of biomedical applications of stable isotopes in general, but mainly focused on the activities of the Center for Liver, Digestive and Metabolic Diseases of the University Medical Center Groningen. The aims of metabolic studies in the areas of glucose, fat, cholesterol and

  11. Utilization of stable isotopes for characterizing an underground gas generator; Utilisation des isotopes stables pour caracteriser un gazogene souterrain

    Energy Technology Data Exchange (ETDEWEB)

    Pirard, J.P.; Antenucci, D.; Renard, X. [Liege Univ. (Belgium); Letolle, R. [Paris-6 Univ., 75 (France)

    1994-12-31

    The principles of isotopic exchange and isotope ratio result interpretation are first reviewed; then, in the framework of an underground coal gasification project in Belgium, experiments and modelling of the underground gas generator have been carried out: isotopic abundances of carbon, hydrogen and oxygen have been measured in the gasifying agent (O{sub 2}, H{sub 2}O) and in the effluent (CO{sub 2}, CO, H{sub 2}, H{sub 2}O, CH{sub 4}, O{sub 2}, heavy oils and various organic and mineral substances). Gasification kinetics and temperatures have been evaluated and isotope application to thermometry is discussed. 1 fig., 9 refs.

  12. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: Outlook of Mg isotopes as geothermometer and seawater proxy

    Science.gov (United States)

    Hu, Zhongya; Hu, Wenxuan; Wang, Xiaomin; Lu, Yizhou; Wang, Lichao; Liao, Zhiwei; Li, Weiqiang

    2017-07-01

    Magnesium isotopes are an emerging tool to study the geological processes recorded in carbonates. Calcite, due to its ubiquitous occurrence and the large Mg isotope fractionation associated with the mineral, has attracted great interests in applications of Mg isotope geochemistry. However, the fidelity of Mg isotopes in geological records of carbonate minerals (e.g., calcite and dolomite) against burial metamorphism remains poorly constrained. Here we report our investigation on the Mg isotope systematics of a dolomitized Middle Triassic Geshan carbonate section in eastern China. Magnesium isotope analysis was complemented by analyses of Sr-C-O isotopic compositions, major and trace element concentrations, and petrographic and mineralogical features. Multiple lines of evidence consistently indicated that post-depositional diagenesis of carbonate minerals occurred to the carbonate rocks. Magnesium isotope compositions of the carbonate rocks closely follow a mixing trend between a high δ26Mg dolomite end member and a low δ26Mg calcite end member, irrespective of sample positions in the section and calcite/dolomite ratio in the samples. By fitting the measured Mg isotope data using a two-end member mixing model, an inter-mineral Δ26Mgdolomite-calcite fractionation of 0.72‰ was obtained. Based on the experimentally derived Mg isotope fractionation factors for dolomite and calcite, a temperature of 150-190 °C was calculated to correspond to the 0.72‰ Δ26Mgdolomite-calcite fractionation. Such temperature range matches with the burial-thermal history of the local strata, making a successful case of Mg isotope geothermometry. Our results indicate that both calcite and dolomite had been re-equilibrated during burial metamorphism, and based on isotope mass balance of Mg, the system was buffered by dolomite in the section. Therefore, burial metamorphism may reset Mg isotope signature of calcite, and Mg isotope compositions in calcite should be dealt with caution in

  13. Isotopic perspectives on the western Himalayan syntaxis

    Science.gov (United States)

    Argles, T. W.; Foster, G. L.; Whittington, A. G.; George, M. T.

    2003-04-01

    The western syntaxis has been characterised as a structural and metamorphic anomaly within the Himalaya, resulting from extreme Neogene exhumation and associated partial melting. However, an integration of detailed fieldwork with whole-rock isotopic data indicates that all the major tectonic units observed along the arc of the orogen also occur in the syntaxis. Most of the rocks exposed by the extreme exhumation have very different characteristics to their correlatives in the rest of the Himalayan mountain belt, because they represent very different crustal levels. The generally higher metamorphic grade of most syntaxial units obscures their affinities, while high strain throughout the syntaxis also conspires to mask the major tectonic faults that form boundaries to the units in the rest of the orogen. The Lesser Himalayan affinity of the gneissic core of the Nanga Parbat massif has been revealed previously using Nd isotopes. This study confirms the distinction between Lesser (E(Nd) = -20 to -29) and High (E(Nd) = -12 to -19) Himalayan rocks, but further subdivides those units with a High Himalayan Nd signature using Sr isotopic data. Some low-grade schists within the syntaxis have a relatively low 87Sr/86Sr ratio (<0.720) that distinguishes them from the High Himalayan rocks, and suggests they are metamorphic equivalents of the Tethyan sediments exposed in the main Himalayan orogen. The tectonic contact between the Lesser and High Himalayan units in the central Himalaya is the Main Central Thrust, a zone characterised by inverted metamorphism and high strain, but in the uniformly high-strain syntaxis this thrust is difficult to locate except by isotopic signatures. Extensive thermobarometric studies in the syntaxis, however, show two things. The first is the varying intensity of Neogene metamorphic overprint, whose strength is closely related to the degree of deformation (and rheology). The second is a zone of distinctly lower temperature mineral assemblages

  14. Isotopic Dependence of the Nuclear Caloric Curve

    Science.gov (United States)

    Sfienti, C.; Adrich, P.; Aumann, T.; Bacri, C. O.; Barczyk, T.; Bassini, R.; Bianchin, S.; Boiano, C.; Botvina, A. S.; Boudard, A.; Brzychczyk, J.; Chbihi, A.; Cibor, J.; Czech, B.; de Napoli, M.; Ducret, J.-É.; Emling, H.; Frankland, J. D.; Hellström, M.; Henzlova, D.; Immè, G.; Iori, I.; Johansson, H.; Kezzar, K.; Lafriakh, A.; Le Fèvre, A.; Le Gentil, E.; Leifels, Y.; Lühning, J.; Łukasik, J.; Lynch, W. G.; Lynen, U.; Majka, Z.; Mocko, M.; Müller, W. F. J.; Mykulyak, A.; Orth, H.; Otte, A. N.; Palit, R.; Pawłowski, P.; Pullia, A.; Raciti, G.; Rapisarda, E.; Sann, H.; Schwarz, C.; Simon, H.; Sümmerer, K.; Trautmann, W.; Tsang, M. B.; Verde, G.; Volant, C.; Wallace, M.; Weick, H.; Wiechula, J.; Wieloch, A.; Zwiegliński, B.

    2009-04-01

    The A/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at SIS. A stable beam of Sn124 and radioactive beams of La124 and Sn107 at 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. Chemical freeze-out temperatures are found to be nearly invariant with respect to the A/Z of the produced spectator sources, consistent with predictions for expanded systems. Small Coulomb effects (ΔT≈0.6MeV) appear for residue production near the onset of multifragmentation.

  15. Isotopic Dependence of the Nuclear Caloric Curve

    CERN Document Server

    Sfienti, C; Aumann, T; Bacri, C O; Barczyk, T; Bassini, R; Bianchin, S; Boiano, C; Botvina, A S; Boudard, A; Brzychczyk, J; Chbihi, A; Cibor, J; Czech, B; De Napoli, M; Ducret, J -E; Emling, H; Frankland, J D; Hellström, M; Henzlova, D; Imme, G; Iori, I; Johansson, H; Kezzar, K; Lafriakh, A; Le Fèvre, A; Gentil, E Le; Leifels, Y; Lühning, J; Lukasik, J; Lynch, W G; Lynen, U; Majka, Z; Mocko, M; Müller, W F J; Mykulyak, A; Orth, H; Otte, A N; Palit, R; Pawlowski, P; Pullia, A; Raciti, G; Rapisarda, E; Sann, H; Schwarz, C; Simon, H; Sümmerer, K; Trautmann, W; Tsang, M B; Verde, G; Volant, C; Wallace, M; Weick, H; Wiechula, J; Wieloch, A; Zwieglinski, B

    2009-01-01

    The A/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at SIS. A stable beam of 124Sn and radioactive beams of 124La and 107Sn at 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. Chemical freeze-out temperatures are found to be nearly invariant with respect to the A/Z of the produced spectator sources, consistent with predictions for expanded systems. Small Coulomb effects (\\Delta T \\approx 0.6 MeV) appear for residue production near the onset of multifragmentation.

  16. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  17. Trapped radioactive isotopes for fundamental symmetry investigations

    Energy Technology Data Exchange (ETDEWEB)

    Willmann, Lorenz, E-mail: willmann@kvi.nl; Jungmann, Klaus; Onderwater, Cornelis J. G.; Timmermans, Rob G. E.; Wilschut, Hans W. [University of Groningen, KVI (Netherlands)

    2012-05-15

    Discrete symmetries tested in high precision atomic physics experiments provide guidance to model building beyond the Standard Model (SM). Here experimental opportunities arise for searches for permanent electric dipole moments (EDMs) and measurements of atomic parity violation (APV). Heavy atoms are favorable for such experiments since symmetry violating effects in atoms increase faster than the third power of the nuclear charge Z. Of special interest are isotopes of the heavy alkaline earth element radium (Z=88) since they offer large enhancement factors for EDMs and provide a new experimental road towards high precision measurements of atomic parity violation. These opportunities are exploited at the TRI{mu}P facility at KVI, Groningen.

  18. Electric Dipole Moment Measurements with Rare Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chupp, Timothy

    2016-11-11

    The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over. These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic

  19. Helium and neon isotopes in stratospheric particles

    Science.gov (United States)

    Nier, A. O.; Schlutter, D. J.

    1990-01-01

    He and Ne isotope ratios were determined for 16 interplanetary dust particles (IDPs) collected in the stratosphere. The observed He concentration varied greatly from particle to particle, with the highest values approaching those found for lunar surface fines and some gas-rich meteorites. The average Ne-20/Ne-22 ratio was 12.0 + or - 0.5. The data suggest that the observed IDPs could have entered the atmosphere at relatively low velocities, and hence may be primarily of asteroidal rather than cometary origin.

  20. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  1. Magnesium Isotopic Composition of Subducting Marine Sediments

    Science.gov (United States)

    Hu, Y.; Teng, F. Z.; Plank, T. A.; Huang, K. J.

    2015-12-01

    Subducted marine sediments have recently been called upon to explain the heterogeneous Mg isotopic composition (δ26Mg, ‰) found in mantle wehrlites (-0.39 to +0.09 [1]) in the context of a homogeneous mantle (-0.25 ± 0.07 [2]). However, no systematic measurements of δ26Mg on marine sediments are currently available to provide direct support to this model. To characterize the Mg inputs to global subduction zones, we measured δ26Mg data for a total of 90 marine sediments collected from 12 drill sites outboard of the world's major subduction zones. These sediments span a 1.73‰ range in δ26Mg. The detritus-dominated sediments have δ26Mg (-0.59 to +0.53) comparable to those of weathered materials on continents (e.g. -0.52 to +0.92 [3]), while the calcareous oozes yield δ26Mg (as light as -1.20) more similar to the seawater value (-0.83 [4]). The negative correlation between δ26Mg and CaO/Al2O3 in these sediments indicates the primary control of mineralogy over the Mg isotopic distribution among different sediment types, as carbonates are enriched in light Mg isotopes (-5.10 to -0.40 [5]) whereas clay-rich weathering residues generally have heavier δ26Mg (e.g. up to +0.65 in saprolite [6]). In addition, chemical weathering and grain-size sorting drive sediments to a heavier δ26Mg, as indicated by the broad positive trends between δ26Mg with CIA (Chemical Index of Alteration [7]) and Al2O3/SiO2, respectively. Collectively, the arc systems sampled in this study represent ~30% of global arc length and the extrapolated global Mg flux of subducting marine sediments accounts for ~9% of the yearly Mg riverine input with a flux-weighted average δ26Mg at -0.26. Subduction of these heterogeneous sediments may not cause significant mantle heterogeneity on a global scale, but the highly variable Mg fluxes and δ26Mg of sediments delivered to different trenches are capable of producing local mantle variations. Volcanic rocks sourced from these mantle domains are thus

  2. [Isotope nephrography in patients with obesity].

    Science.gov (United States)

    Vlakhov, N; Benova, A; Penkova, D

    1989-04-01

    131I-hippuran nephrography conducted in 80 patients aged 26-53 with I and II degree obesity has revealed changes in the excretory phase (36.9 per cent of the patients with I degree obesity) and secretory and excretory and some vascular and metabolic abnormalities were registered in 79.4 per cent of those with II degree obesity. Weight gain had an adverse effect on the condition of such patients. Isotope nephrography enables one to study risk factors (arterial hypertension, atherosclerosis, diabetes mellitus).

  3. Measurement of Plutonium Isotopic Composition - MGA

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  4. Mass-dependent fractionation of nickel isotopes in meteoritic metal

    Science.gov (United States)

    Cook, David L.; Wadhwa, Meenakshi; Clayton, Robert N.; Dauphas, Nicolas; Janney, Philip E.; Davis, Andrew M.

    We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non-magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ≈0.4‰ amu-1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (≈0.0 to ≈0.3‰ amu-1) and chondrites (≈0.0 to ≈0.2‰ amu-1) are similar, whereas the range in pallasite metal (≈-0.1 to 0.0‰ amu-1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (≈0.0 to ≈0.3‰ amu-1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ≈0.4‰ amu-1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe-Ni alloy and the development of the Widmanstätten pattern.

  5. Iron isotope composition of some Archean and Proterozoic iron formations

    Science.gov (United States)

    Planavsky, Noah; Rouxel, Olivier J.; Bekker, Andrey; Hofmann, Axel; Little, Crispin T. S.; Lyons, Timothy W.

    2012-03-01

    Fe isotopes can provide new insight into redox-dependent biogeochemical processes. Precambrian iron formations (IF) are deserving targets for Fe isotope studies because they are composed predominantly of authigenic Fe phases and record a period of unprecedented iron deposition in Earth's history. We present Fe isotope data for bulk samples from 24 Archean and Proterozoic IF and eight Phanerozoic Fe oxide-rich deposits. These data reveal that many Archean and early Paleoproterozoic iron formations were a sink for isotopically heavy Fe, in contrast to later Proterozoic and Phanerozoic Fe oxide-rich rocks. The positive δ56Fe values in IF are best explained by delivery of particulate ferric oxides formed in the water column to the sediment-water interface. Because IF are a net sink for isotopically heavy Fe, there must be a corresponding pool of isotopically light Fe in the sedimentary record. Earlier work suggested that Archean pyritic black shales were an important part of this light sink before 2.35 billion years ago (Ga). It is therefore likely that the persistently and anomalously low δ56Fe values in shales are linked with the deposition of isotopically heavy Fe in IF in the deeper parts of basins. IF deposition produced a residual isotopically light dissolved Fe pool that was captured by pyritic Fe in shales. Local dissimilatory Fe reduction in porewater and associated diagenetic reactions resulting in pyrite and carbonate precipitation may have further enhanced Fe isotope heterogeneity in marine sediments, and an 'iron shuttle' may have transported isotopically light Fe from shelf sediments to the basin. Nevertheless, water-column processing of hydrothermally delivered Fe likely had the strongest influence on the bulk iron isotope composition of Archean and Paleoproterozoic iron formations and other marine sediments.

  6. Coupled extremely light Ca and Fe isotopes in peridotites

    Science.gov (United States)

    Zhao, Xinmiao; Zhang, Zhaofeng; Huang, Shichun; Liu, Yufei; Li, Xin; Zhang, Hongfu

    2017-07-01

    Large metal stable isotopic variations have been observed in both extraterrestrial and terrestrial samples. For example, Ca exhibits large mass-dependent isotopic variation in terrestrial igneous rocks and mantle minerals (on the order of ∼2‰ variation in 44Ca/40Ca). A thorough assessment and understanding of such isotopic variations in peridotites provides important constraints on the evolution and compositon of the Earth's mantle. In order to better understand the Ca and Fe isotopic variations in terrestrial silicate rocks, we report Ca isotopic compositions in a set of peridotitic xenoliths from North China Craton (NCC), which have been studied for Fe isotopes. These NCC peridotites have large Ca and Fe isotopic variations, with δ44/40Ca ranging from -0.08 to 0.92 (delta value relative to SRM915a) and δ57/54Fe (delta value relative to IRMM-014) ranging from -0.61 to 0.16, and these isotopic variations are correlated with large Mg# (100 × Mg/(Mg + Fe) molar ratio) variation, ranging from 80 to 90. Importantly, NCC Fe-rich peridotites have the lowest 44Ca/40Ca and 57Fe/54Fe ratios in all terrestrial silicate rocks. In contrast, although ureilites, mantle rocks from a now broken differentiated asteroid(s), have large Mg# variation, from 70 to 92, they have very limited δ57Fe/54Fe variation (0.03-0.21, delta value relative to IRMM-014). Our model calculations show that the coupled extremely light Ca-Fe isotopic signatures in NCC Fe-rich peridotites most likely reflect kinetic isotopic fractionation during melt-peridotite reaction on a timescale of several to 104 years. In addition, our new data and compiled literature data show a possible compositional effect on the inter-mineral Ca isotopic fractionation between co-existing clinopyroxene and orthopyroxene pairs.

  7. Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane

    Energy Technology Data Exchange (ETDEWEB)

    Jewett, J.R., Fluor Daniel Hanford

    1997-02-24

    Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

  8. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Directory of Open Access Journals (Sweden)

    Hannah B Vander Zanden

    2016-03-01

    Full Text Available The measurement of stable carbon (δ13C and nitrogen (δ15N isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H and oxygen (δ18O isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advantages and challenges associated with three applications of δ2H and δ18O values in food web studies. First, large δ2H differences between aquatic and terrestrial ecosystem end members can permit the quantification of energy inputs and nutrient fluxes between these two sources, with potential applications for determining allochthonous vs. autochthonous nutrient sources in freshwater systems and relative aquatic habitat utilization by terrestrial organisms. Next, some studies have identified a relationship between δ2H values and trophic position, which suggests that this marker may serve as a trophic indicator, in addition to the more commonly used δ15N values. Finally, coupled measurements of δ2H and δ18O values are increasing as a result of reduced analytical challenges to measure both simultaneously and may provide additional ecological information over single element measurements. In some organisms, the isotopic ratios of these two elements are tightly coupled, whereas the isotopic disequilibrium in other organisms may offer insight into the diet and physiology of individuals. Although a coherent framework for interpreting δ2H and δ18O data in the context of food web studies is emerging, many fundamental uncertainties remain. We highlight directions for targeted research that

  9. Zinc Isotope Variability in Three Coal-Fired Power Plants: A Predictive Model for Determining Isotopic Fractionation during Combustion.

    Science.gov (United States)

    Ochoa Gonzalez, R; Weiss, D

    2015-10-20

    The zinc (Zn) isotope compositions of feed materials and combustion byproducts were investigated in three different coal-fired power plants, and the results were used to develop a generalized model that can account for Zn isotopic fractionation during coal combustion. The isotope signatures in the coal (δ(66)ZnIRMM) ranged between +0.73 and +1.18‰, values that fall well within those previously determined for peat (+0.6 ±2.0‰). We therefore propose that the speciation of Zn in peat determines the isotope fingerprint in coal. All of the bottom ashes collected in these power plants were isotopically depleted in the heavy isotopes relative to the coals, with δ(66)ZnIRMM values ranging between +0.26‰ and +0.64‰. This suggests that the heavy isotopes, possibly associated with the organic matter of the coal, may be preferentially released into the vapor phase. The fly ash in all of these power plants was, in contrast, enriched in the heavy isotopes relative to coal. The signatures in the fly ash can be accounted for using a simple unidirectional fractionation model with isotope fractionation factors (αsolid-vapor) ranging between 1.0003 and 1.0007, and we suggest that condensation is the controlling process. The model proposed allows, once the isotope composition of the feed coal is known, the constraining of the Zn signatures in the byproducts. This will now enable the integration of Zn isotopes as a quantitative tool for the source apportionment of this metal from coal combustion in the atmosphere.

  10. Molybdenum isotope fractionation in the mantle

    Science.gov (United States)

    Liang, Yu-Hsuan; Halliday, Alex N.; Siebert, Chris; Fitton, J. Godfrey; Burton, Kevin W.; Wang, Kuo-Lung; Harvey, Jason

    2017-02-01

    We report double-spike molybdenum (Mo) isotope data for forty-two mafic and fifteen ultramafic rocks from diverse locations and compare these with results for five chondrites. The δ98/95Mo values (normalized to NIST SRM 3134) range from -0.59 ± 0.04 to +0.10 ± 0.08‰. The compositions of one carbonaceous (CI) and four ordinary chondrites are relatively uniform (-0.14 ± 0.01‰, 95% ci (confidence interval)) in excellent agreement with previous data. These values are just resolvable from the mean of 10 mid-ocean ridge basalts (MORBs) (0.00 ± 0.02‰, 95% ci). The compositions of 13 mantle-derived ultramafic xenoliths from Kilbourne Hole, Tariat and Vitim are more diverse (-0.39 to -0.07‰) with a mean of -0.22 ± 0.06‰ (95% ci). On this basis, the isotopic composition of the bulk silicate Earth (BSE or Primitive Mantle) is within error identical to chondrites. The mean Mo concentration of the ultramafic xenoliths (0.19 ± 0.07 ppm, 95% ci) is similar in magnitude to that of MORB (0.48 ± 0.13 ppm, 95% ci), providing evidence, either for a more compatible behaviour than previously thought or for selective Mo enrichment of the subcontinental lithospheric mantle. Intraplate and ocean island basalts (OIBs) display significant isotopic variability within a single locality from MORB-like to strongly negative (-0.59 ± 0.04‰). The most extreme values measured are for nephelinites from the Cameroon Line and Trinidade, which also have anomalously high Ce/Pb and low Mo/Ce relative to normal oceanic basalts. δ98/95Mo correlates negatively with Ce/Pb and U/Pb, and positively with Mo/Ce, explicable if a phase such as an oxide or a sulphide liquid selectively retains isotopically heavy Mo in the mantle and fractionates its isotopic composition in low degree partial melts. If residual phases retain Mo during partial melting, it is possible that the [Mo] for the BSE may be misrepresented by values estimated from basalts. This would be consistent with the high Mo

  11. Hafnium isotope variations in oceanic basalts

    Science.gov (United States)

    Patchett, P. J.; Tatsumoto, M.

    1980-01-01

    Hafnium isotope ratios generated by the beta(-) decay of Lu-176 are investigated in volcanic rocks derived from the suboceanic mantle. Hf-176/Hf-177 and Lu/Hf ratios were determined to precisions of 0.01-0.04% and 0.5%, respectively, by routine, low-blank chemistry. The Hf-176/Hf-177 ratio is found to be positively correlated with the Nd-143/Nd-144 ratio and negatively correlated with the Sr-87/Sr-86 and Pb-206/Pb-204 ratios, and to increase southwards along the Iceland-Reykjanes ridge traverse. An approximate bulk earth Hf-176/Hf-177 ratio of 0.28295 is inferred from the bulk earth Nd-143/Nd-144 ratio, which requires a bulk earth Lu/Hf ratio of 0.25, similar to the Juvinas eucrite. Midocean ridge basalts are shown to account for 60% of the range of Hf isotope ratios, and it is suggested that Lu-Hf fractionation is decoupled from Sm-Nd and Rb-Sr fractionation in very trace-element-depleted source regions as a result of partial melting.

  12. Interstellar sulfur isotopes and stellar oxygen burning

    CERN Document Server

    Chin, Y N; Whiteoak, J B; Langer, N; Churchwell, E B; Chin, Y N

    1995-01-01

    A 12C32S, 13C32S, 12C34S, and 12C33S J = 2 - 1 line survey has been made to study interstellar 32S/34S and 34S/33S ratios from the galactic disk. The four CS isotopomers were detected in 20 star forming regions with galactocentric distances between 3 and 9 kpc. From a comparison of line velocities, the C33S J = 2 - 1 rest frequency is about 250 kHz below the value given in the Lovas (1992) catalog. Taking 12C/13C ratios from Wilson & Rood (1994) and assuming equal 12C32S and 13C32S excitation temperatures and beam filling factors, 12C32S opacities are in the range 3 to 15; average 32S/34S and 34S/33S isotope ratios are 24.4 +/- 5.0 and 6.27 +/- 1.01, respectively. While no systematic variation in the 34S/33S isotope ratio is found, the 32S/34S ratio increases with galactocentric distance when accounting for the 12C/13C gradient of the galactic disk. A fit to the unweighted data yields 32S/34S = 3.3 +/- 0.5 (dGC/kpc) + 4.1 +/- 3.1 with a correlation coefficient of 0.84. Since the interstellar sulfur (S) is...

  13. Radium isotopes in the lower Mississippi River

    Science.gov (United States)

    Kraemer, T. F.; Curwick, P. B.

    1991-02-01

    Radium isotopes have been measured in Mississippi River water at several locations between St. Francisville and Venice, Louisiana. Measured activities averaged 11.1 dpm/100 L (disintegrations per minute per 100 L) for dissolved 226Ra with a 228Ra/226Ra activity ratio of 1.04 and a 224Ra/228Ra activity ratio of 1.06 for the section of river above a phosphogypsum waste-discharge input. Down river from this site, the dissolved 226Ra activity averaged 22.4 dpm/100 L with a 228Ra/226Ra activity ratio of 0.55 and a 224Ra/228Ra activity ratio of 0.87. Chemical and isotopic reequilibration of the radium in the waste with that in the river water and suspended sediments occurs very rapidly. Fluxes of 226Ra are calculated to be 2.44×1014 dpm/yr (disintegrations per minute per year) for the main stem of the Mississippi during phosphogypsum disposal compared to 0.98×1014 dpm/yr when no phosphogypsum disposal is occurring. 28Ra flux is calculated to be 1.06×1014 dpm/yr during disposal and 1.01×1014 dpm/yr in the absence of disposal. The radium flux is estimated to be 45% in the dissolved state and 55% in the adsorbed state.

  14. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  15. Hydrogen isotope separation for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R., E-mail: robert.smith@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Whittaker, D.A.J.; Butler, B.; Hollingsworth, A.; Lawless, R.E.; Lefebvre, X.; Medley, S.A.; Parracho, A.I.; Wakeling, B. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-10-05

    Highlights: • Summary of the tritium plant, the Active Gas Handling System (AGHS), at JET. • Review of the Water Detritiation System (WDS) under construction. • Design of the new Material Detritiation Facility (MDF). • Review of problems in fusion related to metal/hydrogen system. - Abstract: The invited talk given at MH2014 in Salford ranged over many issues associated with hydrogen isotope separation, fusion machines and the hydrogen/metal systems found in the Joint European Torus (JET) machine located near Oxford. As this sort of talk does not lend itself well to a paper below I have attempted to highlight some of the more pertinent information. After a description of the Active Gas Handling System (AGHS) a brief summary of isotope separation systems is described followed by descriptions of three major projects currently being undertaken by the Tritium Engineering and Science Group (TESG), the upgrade to the Analytical Systems (AN-GC) at the AGH, the construction of a Water Detritiation System (WDS) and a Material Detritiation Facility (MDF). Finally, a review of some of the challenges facing fusion with respect to metal/hydrogen systems is presented.

  16. Carbon isotope analysis in apple nectar beverages

    Directory of Open Access Journals (Sweden)

    Ricardo Figueira

    2013-03-01

    Full Text Available The aims of this study were to use the isotope analysis method to quantify the carbon of C3 photosynthetic cycle in commercial apple nectars and to determine the legal limit to identify the beverages that do not conform to the safety standards established by the Brazilian Ministry of Agriculture, Livestock and Food Supply. These beverages (apple nectars were produced in the laboratory according to the Brazilian legislation. Adulterated nectars were also produced with an amount of pulp juice below the permitted threshold limit value. The δ13C values of the apple nectars and their fractions (pulp and purified sugar were measured to quantify the C3 source percentage. In order to demonstrate the existence of adulteration, the values found were compared to the limit values established by the Brazilian Law. All commercial apple nectars analyzed were within the legal limits, which enabled to identify the nectars that were in conformity with the Brazilian Law. The isotopic methodology developed proved efficient to quantify the carbon of C3 origin in commercial apple nectars.

  17. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  18. Chlorine isotope separation using an hydrous zirconium dioxide exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Heumann, K.G.; Baier, K.; Wibmer, G.

    1980-05-01

    Hydrous zirconium dioxide is used in column experiments for separating the halide ions as well as for isotope fractionation of chlorine. The preparation of the zirconium dioxide particles is carried out by homogeneous hydrolysis of a zirconyl chloride solution using hexamethylenetetramine. The separation order of the halides is I/sup -/, Br/sup -/ and Cl/sup -/ in contrast to the inverse separation order using a strongly basic anion exchange resin. In chlorine isotope separation experiments an enrichment of /sup 35/Cl/sup -/ is found in the first fractions, whereas the last fractions show a significant enrichment of /sup 37/Cl/sup -/. This also indicates an inversion of the isotope separation compared with a strongly basic anion exchange resin. A dependence of the isotope fractionation on the concentration of the NaNO/sub 3/ solution used as eluant is found. With increasing concentration the isotope fractionation decreases. Using a 0.5 M NaNO/sub 3/ solution the elementary separation effect was calculated epsilon = 6,1 x 10/sup -4/. This is one of the highest isotope fractionations known in a chloride isotope exchange system. The results show that the electrolyte behaviour of isotopes is comparable to that of a series of homologous elements.

  19. Silicon isotopes in angrites and volatile loss in planetesimals

    Science.gov (United States)

    Moynier, Frédéric; Savage, Paul S.; Badro, James; Barrat, Jean-Alix

    2014-01-01

    Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium–aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50–100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal–silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion. PMID:25404309

  20. ESTIMATING THE TIMING OF DIET SHIFTS USING STABLE ISOTOPES

    Science.gov (United States)

    Stable isotope analysis has become an important tool in studies of trophic food webs and animal feeding patterns. When animals undergo rapid dietary shifts due to migration, metamorphosis, or other reasons, the isotopic composition of their tissues begins changing to reflect tha...

  1. Carbon Stable Isotopes as Indicators of Coastal Eutrophication

    Science.gov (United States)

    Coastal ecologists and managers have frequently used nitrogen stable isotopes (δ15N) to trace and monitor anthropogenic nitrogen (N) in coastal ecosystems. However, the interpretation of δ15N data can often be challenging, if not confounding, as the isotope values fractionate su...

  2. Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark

    Science.gov (United States)

    Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.

    2014-12-01

    Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.

  3. Advances in laser-based isotope ratio measurements : selected applications

    NARCIS (Netherlands)

    Kerstel, E.; Gianfrani, L.

    2008-01-01

    Small molecules exhibit characteristic ro-vibrational transitions in the near- and mid-infrared spectral regions, which are strongly influenced by isotopic substitution. This gift of nature has made it possible to use laser spectroscopy for the accurate analysis of the isotopic composition of gaseou

  4. USE OF STABLE ISOTOPES IN ENVIRONMENTAL AND FORENSIC GEOCHEMISTRY STUDIES

    Science.gov (United States)

    Stable carbon and hydrogen isotopes have been used for many decades in the petroleum industry, but the development of combined gas chromatography-isotope ratio mass spectrometry (GCIRMS) has led to a virtual explosion in application of this technique not only in petroleum explora...

  5. Late Carboniferous to Late Permian carbon isotope stratigraphy

    DEFF Research Database (Denmark)

    Buggisch, Werner; Krainer, Karl; Schaffhauser, Maria

    2015-01-01

    An integrated study of the litho-, bio-, and isotope stratigraphy of carbonates in the Southern Alps was undertaken in order to better constrain δ13C variations during the Late Carboniferous to Late Permian. The presented high resolution isotope curves are based on 1299 δ13Ccarb and 396 δ13Corg a...

  6. Sources of Holocene variability of oxygen isotopes in paleoclimate archives

    Directory of Open Access Journals (Sweden)

    A. N. LeGrande

    2009-08-01

    Full Text Available Variability in water isotopes has been captured in numerous archives and used to infer past climate changes. Here we examine water isotope variability over the course of the Holocene using the water-isotope enabled, coupled atmosphere-ocean general circulation model, GISS ModelE-R. Eight Holocene time slices, ~1000 years apart are simulated and driven by estimated changes in orbital configuration, greenhouse gases, and ice sheet extent. We find that simulated water isotope archives match well with those seen in ice cores, ocean sediment cores, and speleothems. The climate changes associated with the water isotope changes, however, are more complex than simple modern spatial slope interpretations might suggest. In particular, water isotope variability in Asian speleothems is linked to alterations in landward water vapor transport, not local precipitation, and ice sheet changes over North America lead to the masking of temperature signals in Summit, Greenland. Salinity-seawater isotope variability is complicated by inter-ocean basin exchanges of water vapor. Water isotopes do reflect variability in the hydrology, but are better interpreted in terms of regional hydrological cycle changes rather than as indicators of local climate.

  7. Stable isotope methods in biological and ecological studies of arthropods

    NARCIS (Netherlands)

    Hood-Nowotny, R.C.; Knols, B.G.J.

    2007-01-01

    This is an eclectic review and analysis of contemporary and promising stable isotope methodologies to study the biology and ecology of arthropods. It is augmented with literature from other disciplines, indicative of the potential for knowledge transfer. It is demonstrated that stable isotopes can

  8. Snow isotope diffusion rates measured in a laboratory experiment

    NARCIS (Netherlands)

    Van der Wel, L. G.; Gkinis, V.; Pohjola, V. A.; Meijer, H. A. J.

    2011-01-01

    The diffusion of stable water isotopes in snow was measured in two controlled laboratory experiments. Two batches of snow of different isotopic composition were stacked alternately with varying layer thicknesses. The stack was stored in a freezer room at constant temperature for several months, and

  9. Spatiotemporal variation of stable isotopic composition in precipitation

    DEFF Research Database (Denmark)

    Müller, Sascha; Stumpp, Christine; Sørensen, Jens Havskov

    2017-01-01

    gradient and predominant westerly winds. Data showed the local meteoric water line for this region is expressed by the equation δ2H = 7.4δ18O + 5.4‰. A significant trend correlating enriched isotopic values to humidities around 70% during dry season and more depleted isotopic values to humidities around 90...

  10. Moessbauer optics of synchrotron radiation at an isotope interface

    CERN Document Server

    Belyakov, V A

    2000-01-01

    Coherent inelastic Moessbauer scattering (CIMS) of synchrotron radiation (SR) at an isotope interface (plane interface between two regions differing only in the concentration of the Moessbauer isotope) is investigated theoretically. Main attention is paid to the CIMS component resulting from SR quanta absorption by Moessbauer nuclei accompanied by creation or annihilation of the phonons in sample and following recoilless reemission of Moessbauer quanta.

  11. The Oxidant Budget of Dissolved Organic Carbon Driven Isotope Excursions

    Science.gov (United States)

    Bristow, T. F.; Kennedy, M. J.

    2008-12-01

    Negative carbon isotope values, falling below the mantle average of about -5 per mil, in carbonate phases of Ediacaran age sedimentary rocks are widely regarded as reflecting negative excursions in the carbon isotopic composition of seawater lasting millions of years. These isotopic signals form the basis of chemostratigraphic correlations between Ediacaran aged sections in different parts of the world, and have been used to track the oxidation of the biosphere. However, these isotopic values are difficult to accommodate within limits prescribed by the current understanding of the carbon cycle, and a hypothetical Precambrian ocean dissolved organic carbon (DOC) pool 100 to 1000 times the size of the modern provides a potential source of depleted carbon not considered in Phanerozoic carbon cycle budgets. We present box model results that show the remineralization of such a DOC pool to drive an isotope excursion of the magnitude observed in the geological record exhausts global budgets of free oxygen and sulfate in 800 k.y. These results are incompatible with the estimated duration of late Ediacaran isotope excursions of more than 10 m.y., as well as geochemical and biological indicators that oceanic sulfate and oxygen levels were maintained or even increased at the same time. Therefore the carbon isotope record is probably not a useful tool for monitoring oxygen levels in the atmosphere and ocean. Covariation between the carbon and oxygen isotope records is often observed during negative excursions and is indicative of local processes or diagenetic overprinting.

  12. Hydrology and isotope geochemistry; Hydrologie et geochimie isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Causse, Ch.; Gasse, F

    1998-12-31

    This book gathers recent works in hydrology and isotopic geochemistry. Part I exposes the general water cycle, from precipitations to deep aquifers, through the analysis of hydrogen, oxygen and carbon isotopic composition. Regional types are laid out from high latitudes (Spitzberg), through temperate regions (Parisian Basin), to the tropics (the Soudanian-Sahelian Niger Basin). The significance of isotopic techniques for Global Change analysis in shown in part II. Several case studies, mainly in Africa, reconstruct the hydro-climatic history through the pluri-proxy analysis of sediment profiles, where isotopic geochemistry is key. The last glacial maximum cooling is shown to have been homogeneous throughout middle and low latitudes, based upon noble gases isotopic analysis in groundwaters. The interpretation of some isotopic analysis could sometimes be questionable due to the organic origin of carbon in some sedimented carbonates. Part III refers to isotopes of cosmic origin and to in situ production of radionuclides. {sup 14}C dating is reminded to have contributed to our understanding of climate change mechanisms during the last glacial and post-glacial periods. Both the limitations and the recent improvements in this methodology are highlighted in a well documented synthesis. Isotopic data enable geochemistry to be the base for modelling stability conditions in the Oklo natural fossil nuclear fission reactor. (author)

  13. A compact isotope identification telescope with a wide dynamic range

    Institute of Scientific and Technical Information of China (English)

    徐瑚珊; 诸永泰; 等

    1996-01-01

    A compact ΔE-E telescope,used to complete the isotope identification for lighter projectile-like fragments in intermediate energy heavy ion collisions.is developed.By detecting the fragments emitted from 30MeV/u 40Ar induced reactions.it can identify isotopes of up to element aluminum(Z=13).

  14. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  15. Isotopic insights into biological regulation of zinc in contaminated systems

    Science.gov (United States)

    Wanty, Richard B.; Balistrieri, Laurie S.; Wesner, Jeff S.; Walters, David; Schmidt, Travis S.; Podda, Francesca; De Giudici, G.; Stricker, Craig A.; Kraus, Johanna M.; Lattanzi, Pierfranco; Wolf, Ruth E.; Cidu, R.

    2015-01-01

    Aquatic organisms use a variety of biogeochemical reactions to regulate essential and non-essential trace metals. Many of these mechanisms can lead to isotopic fractionation, thus measurement of metal isotopes may yield insights into the processes by which organisms respond to metal exposure. We illustrate these concepts with two case studies, one involving an intra- and the other an extra-cellular mechanism of Zn sequestration. In the first study, the mayfly Neocloeon triangulifer was grown in the laboratory, and fed a diet of Zn-doped diatoms at Zn levels exceeding the requirements for normal mayfly life functions. The N. triangulifer larvae consumed the diatoms and retained their Zn isotopic signature. Upon metamorphosis, the subimago life stage lost Zn mass either in the exuvia or by excretion, and the Zn retained was isotopically enriched. Thus, Zn uptake is nonfractionating, but Zn regulation favors the lighter isotope. Thus the Zn remaining in the subimago was isotopically heavier. In the second study, Zn was adsorbed on the cell walls and exopolysaccharide secretions of cyanobacteria, which favored the heavier Zn isotope. Continued adsorption eventually resulted in nucleation and biomineralization of hydrozincite {Zn5(CO3)2(OH)6}. These case studies demonstrate the utility of Zn isotopes to provide insights into how aquatic insects respond to metal exposure.

  16. Degradation changes stable carbon isotope depth profiles in palsa peatlands

    Directory of Open Access Journals (Sweden)

    J. P. Krüger

    2014-01-01

    Full Text Available Palsa peatlands are a significant carbon pool in the global carbon cycle and are projected to change by global warming due to accelerated permafrost thaw. Our aim was to use stable carbon isotopes as indicators of palsa degradation. Depth profiles of stable carbon isotopes generally reflect organic matter dynamics in soils with an increase of δ13C values during aerobic decomposition and stable or decreasing δ13C values with depth during anaerobic decomposition. Stable carbon isotope depth profiles of undisturbed and degraded sites of hummocks as well as hollows at three palsa peatlands in northern Sweden were used to investigate the degradation processes. The depth patterns of stable isotopes clearly differ between intact and degraded hummocks at all sites. Erosion and cryoturbation at the degraded sites significantly changes the stable carbon isotope depth profiles. At the intact hummocks the uplifting of peat material by permafrost is indicated by a turning in the δ13C depth trend and this assessment is supported by a change in the C / N ratios. For hollows isotope patterns were less clear, but some hollows and degraded hollows in the palsa peatlands show differences in their stable carbon isotope depth profiles indicating enhanced degradation rates. We conclude that the degradation of palsa peatlands by accelerated permafrost thawing could be identified with stable carbon isotope depth profiles. At intact hummocks δ13C depth patterns display the uplifting of peat material by a change in peat decomposition processes.

  17. Trophic position of coexisting krill species: a stable isotope approach

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Bode, Antonio; Nielsen, Torkel Gissel

    2014-01-01

    Four krill species with overlapping functional biology coexist in Greenland waters. Here, we used stable isotopes to investigate and discuss their trophic role and mode of coexistence. Bulk carbon (δ13C) and nitrogen (δ15N) stable isotope analyses of Thysanoessa longicaudata, T. inermis, T. rasch...

  18. Modelling the budget of middle atmospheric water vapour isotopes

    NARCIS (Netherlands)

    Zahn, A.; Franz, P.; Bechtel, C.; Grooss, J.U.; Röckmann, T.

    2006-01-01

    A one-dimensional chemistry model is applied to study the stable hydrogen (D) and stable oxygen isotope (17O, 18O) composition of water vapour in stratosphere and mesosphere. In the troposphere, this isotope composition is determined by “physical” fractionation effects, that are phase changes (e.g.

  19. Silicon isotopes in angrites and volatile loss in planetesimals.

    Science.gov (United States)

    Pringle, Emily A; Moynier, Frédéric; Savage, Paul S; Badro, James; Barrat, Jean-Alix

    2014-12-02

    Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium-aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50-100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal-silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion.

  20. Isotope shift of the ferromagnetic transition temperature in itinerant ferromagnets

    Science.gov (United States)

    Yanagisawa, Takashi; Hase, Izumi; Odagiri, Kosuke

    2017-02-01

    We present a theory of the isotope effect of the Curie temperature Tc in itinerant ferromagnets. The isotope effect in ferromagnets occurs via the electron-phonon vertex correction and the effective attractive interaction mediated by the electron-phonon interaction. The decrease of the Debye frequency increases the relative strength of the Coulomb interaction, which results in a positive isotope shift of Tc when the mass M of an atom increases. Following this picture, we evaluate the isotope effect of Tc by using the Stoner theory and a spin-fluctuation theory. When Tc is large enough as large as or more than 100 K, the isotope effect on Tc can be measurable. Recently, precise measurements on the oxygen isotope effect on Tc have been performed for itinerant ferromagnet SrRuO3 with Tc ∼ 160 K. A clear isotope effect has been observed with the positive shift of Tc ∼ 1 K by isotope substitution (16O →18O). This experimental result is consistent with our theory.

  1. Mo isotopes in OAE 2 black shales

    Science.gov (United States)

    Westermann, Stephane; Vance, Derek; Cameron, Vyllinniskii; Archer, Corey; Robinson, Stuart A.

    2014-05-01

    Sedimentary rocks, especially organic-rich deposits, have the potential to track change in the oxygenation state of the ocean over geological time. Oceanic anoxic events (OAEs) correspond to periods of profound and rapid environmental change, which have led to both the widespread deposition of black shales and the development of widespread anoxia in the ocean. Understanding the variations in redox conditions during these events is of primary importance, since recent observations and modelling have shown that processes invoked to explain the origin of OAEs are being observed today as a consequence of anthropogenic change. Here, we compare redox-sensitive trace metal (RSTM) distributions and molybdenum (Mo) isotope variations during a major Cretaceous OAE (OAE 2, Bonarelli event). Whereas RSTM have the potential to provide insights regarding local depositional conditions and processes in palaeoceanographic systems, Mo-isotope data can, under certain circumstances, provide quantitative estimates of how the global extent of seawater anoxia may have fluctuated in the past. We selected for study a series sections within the western Tethys (La Contessa and Furlo, Italy) and in the northern Atlantic (DSDP site 367, Cape Verde Basin and ODP site 1276, Newfoundland Basin. RSTM contents show similar trends through all the studied sections, characterized by low concentration below and above the OAE interval and higher concentrations within the Bonarelli interval. This suggests rapid variations in the redox conditions, from suboxic to euxinic conditions during OAE 2. The RSTM enrichment factors (EFs) indicate different depositional conditions and palaeoceanographic processes between the Tethys and the North Atlantic. Whereas the North Atlantic sites show evidence of weak watermass restriction associated with the action of a particulate shuttle within the water column, the EFs of the Tethyan sections are characteristic of unrestricted marine systems. Despite local differences in

  2. Lithium Isotopic Fractionation in Subduction Zones: Clues From Clays

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2003-12-01

    Lithium isotope ratios show such large variations in nature (>30 per mil), that many areas of geosciences are exploring the usefulness of this system in explaining the evolution of particular rocks. Here we show how the lithium isotope ratios change during the transformation of smectite clay minerals to illite during burial metamorphism. Such a transition may be a common feature in the shallow regions of subduction zones and may ultimately affect the Li isotope compositions of fluids contributing to arc magmatism. Lithium is a ubiquitous trace element in natural formation waters that, like B, shows large isotopic fractionation especially during interactions with clay minerals. Lithium is adsorbed in the interlayer region of expandable clay minerals but is easily exchanged. Lithium is also incorporated into the octahedral sites. The substitutions of Li in two crystallographic sites of clay minerals may complicate interpretations of bulk Li-isotope ratios. We suggest that the magnitude of the isotopic fractionation of Li between fluid and clay is different in the interlayer sites of clay minerals than in the octahedral sites of clay minerals. Examination of Li contents and isotope variations in experimental reactions of smectite to illite (300C, 100MPa) shows changes with structural re-arrangement of the clay layers. The Li-isotope trend declines (from ~+6 to -13 per mil, expressed as ratios of 7/6) throughout R1-ordering of the mixed-layered illite smectite (I/S). However, the equilibrium end products of the reaction have R3-ordering and show a heavier isotope ratio (~0 per mil). This observation is very similar to the trends we observed for B-isotopes, where the interlayer B initially overprinted the tetrahedral-layer B isotope composition, but as the interlayer sites were collapsed during illitization, the equilibrium isotope composition was approached. The significant Li and B isotopic changes that occur during ordering of I/S coincides with the temperatures

  3. Medical applications of Cu, Zn, and S isotope effects.

    Science.gov (United States)

    Albarede, Francis; Télouk, Philippe; Balter, Vincent; Bondanese, Victor P; Albalat, Emmanuelle; Oger, Philippe; Bonaventura, Paola; Miossec, Pierre; Fujii, Toshiyuki

    2016-10-01

    This review examines recent applications of stable copper, zinc and sulfur isotopes to medical cases and notably cancer. The distribution of the natural stable isotopes of a particular element among coexisting molecular species varies as a function of the bond strength, the ionic charge, and the coordination, and it also changes with kinetics. Ab initio calculations show that compounds in which a metal binds to oxygen- (sulfate, phosphate, lactate) and nitrogen-bearing moieties (histidine) favor heavy isotopes, whereas bonds with sulfur (cysteine, methionine) favor light isotopes. Oxidized cations (e.g., Cu(ii)) and low coordination numbers are expected to favor heavy isotopes relative to their reduced counterparts (Cu(i)) and high coordination numbers. Here we discuss the first observations of Cu, Zn, and S isotopic variations, three elements closely related along multiple biological pathways, with emphasis on serum samples of healthy volunteers and of cancer patients. It was found that heavy isotopes of Zn and to an even greater extent Cu are enriched in erythrocytes relative to serum, while the difference is small for sulfur. Isotopic variations related to age and sex are relatively small. The (65)Cu/(63)Cu ratio in the serum of patients with colon, breast, and liver cancer is conspicuously low relative to healthy subjects. The characteristic time over which Cu isotopes may change with disease progression (a few weeks) is consistent with both the turnover time of the element and albumin half-life. A parallel effect on sulfur isotopes is detected in a few un-medicated patients. Copper in liver tumor tissue is isotopically heavy. In contrast, Zn in breast cancer tumors is isotopically lighter than in healthy breast tissue. (66)Zn/(64)Zn is very similar in the serum of cancer patients and in controls. Possible reasons for Cu isotope variations may be related to the cytosolic storage of Cu lactate (Warburg effect), release of intracellular copper from cysteine

  4. Precise measurement of chromium isotopes by MC-ICPMS

    DEFF Research Database (Denmark)

    Schiller, Martin; Van Kooten, Elishevah; Holst, Jesper Christian

    2014-01-01

    of the neutron-rich isotope 54Cr. Because nitride and oxide interferences are a major obstacle to precise and accurate 54Cr measurements by MC-ICPMS, our approach is designed to minimize these interferences. Based on repeat measurements of standards, we show that the mass-independent 53Cr and 54Cr compositions......We report novel analytical procedures allowing for the concurrent determination of the stable and mass-independent Cr isotopic composition of silicate materials by multiple collector inductively coupled mass spectrometry (MC-ICPMS). In particular, we focus on improved precision of the measurement...... by equilibrium processes during production of the synthetic standards. The stable isotope data concurrently obtained have a precision of 0.05‰ Da-1, which is comparable to earlier studies. Comparison of the measured isotopic composition of four meteorites with published data indicates that Cr isotope data...

  5. Stable isotope views on ecosystem function: challenging or challenged?

    Science.gov (United States)

    Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-01-01

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858

  6. Fractionation of Boron Isotopes in Icelandic Hydrothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, J.K.; Palmer, M.R.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.

  7. Direct path integral estimators for isotope fractionation ratios

    CERN Document Server

    Cheng, Bingqing

    2014-01-01

    Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical and atmospheric phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.

  8. Boron isotope method for study of seawater intrusion

    Institute of Scientific and Technical Information of China (English)

    肖应凯; 尹德忠; 刘卫国; 王庆忠; 魏海珍

    2001-01-01

    A distinct difference in boron isotopes between seawater and terrestrial water is emphasized by δ11B values reported for seawater and groundwater, with an average of 38.8‰ and in the range of -8.9‰ to 9.8‰, respectively. The isotopic composition of boron in groundwater can be used to quantify seawater intrusion and identify intrusion types, e.g. seawater or brine intrusions with different chemical and isotopic characteristics, by using the relation of δ11B and chloride concentration. The feasibility of utilizing boron isotope in groundwater for studying seawater intrusion in Laizhou Bay Region, China, is reported in this study, which shows that boron isotope is a useful and excellent tool for the study of seawater intrusion.

  9. Isotopic evidence for multiple contributions to felsic magma chambers

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Wiebe, R.A.; Krogstad, E.J.

    2007-01-01

    by contemporaneous mafic magmas; the transition between the two now preserved as a zone of chilled mafic sheets and pillows in granite. Mafic components have highly variably isotopic compositions as a result of contamination either at depth or following injection into the magma chamber. Intermediate dikes...... with identical isotopic compositions to more mafic dikes suggest that closed system fractionation may be occurring in deeper level chambers prior to injection to shallower levels. The granitic portion of the pluton has the highest Nd isotopic composition (eNd=+3.0) of plutons in the region whereas the mafic...... lithologies have Nd isotopic compositions (eNd=+3.5) that are the lowest in the region and similar to the granite and suggestive of prolonged interactions and homogenization of the two components. Sr and Nd isotopic data for felsic enclaves are inconsistent with previously suggested models of diffusional...

  10. Proliferation-resistant stable isotope separation based on optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol-Jung; Park, Hyunmin; Ko, Kwang-Hoon; Lim, Gwon; Kim, Taek-Soo; Rho, Sipyo; Cha, Yong-Ho; Han, Jamin; Jeong, Do-Young [Korea Atomic Energy Research Institute, Deajeon (Korea, Republic of). Quantum Optics Division

    2008-07-01

    Korea Atomic Energy Research Institute (KAERI) has developed the laser stable isotope separation based on optical pumping which can be applied to isotopes with small isotopic shift, provides high enrichment, is economical owing to high efficiency, and is proliferation-resistant. KAERI's laser isotope separation is based on isotope-selective optical pumping by very narrow bandwidth continuous wave laser followed by efficient infrared photo-ionization. KAERI demonstrated the pilot production of Tl-203 enriching over 97 % and separating 100 mg/hr. KAERI also demonstrated the separation of Yb-168 over 30 % and Yb- 176 over 97 % with tens of mg/hr. KAERI plans to scale up the production of Tl-203 up to 500 mg/hr and apply it to separation of Zn-67, Zn-70, Ba-130 and Ca-48 which are very important in medical industry and basic sciences. (author)

  11. Isotope chemistry; a useful tool in the drug discovery arsenal.

    Science.gov (United States)

    Elmore, Charles S; Bragg, Ryan A

    2015-01-15

    As Medicinal Chemists are responsible for the synthesis and optimization of compounds, they often provide intermediates for use by isotope chemistry. Nevertheless, there is generally an incomplete understanding of the critical factors involved in the labeling of compounds. The remit of an Isotope Chemistry group varies from company to company, but often includes the synthesis of compounds labeled with radioisotopes, especially H-3 and C-14 and occasionally I-125, and stable isotopes, especially H-2, C-13, and N-15. Often the remit will also include the synthesis of drug metabolites. The methods used to prepare radiolabeled compounds by Isotope Chemists have been reviewed relatively recently. However, the organization and utilization of Isotope Chemistry has not been discussed recently and will be reviewed herein.

  12. Development of O-18 stable isotope separation technology using membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Woo; Kim, Taek Soo; Choi, Hwa Rim; Park, Sung Hee; Lee, Ki Tae; Chang, Dae Shik

    2006-06-15

    The ultimate goal of this investigation is to develop the separation technology for O-18 oxygen stable isotope used in a cyclotron as a target for production of radioisotope F-18. F-18 is a base material for synthesis of [F-18]FDG radio-pharmaceutical, which is one of the most important tumor diagnostic agent used in PET (Positron Emission Tomography). More specifically, this investigation is focused on three categories as follow, 1) development of the membrane distillation isotope separation process to re-enrich O-18 stable isotope whose isotopic concentration is reduced after used in a cyclotron, 2) development of organic impurity purification technology to remove acetone, methanol, ethanol, and acetonitrile contained in a used cyclotron O-18 enriched target water, and 3) development of a laser absorption spectroscopic system for analyzing oxygen isotopic concentration in water.

  13. Isotopic constraints on biogeochemical cycling of copper in the ocean.

    Science.gov (United States)

    Takano, Shotaro; Tanimizu, Masaharu; Hirata, Takafumi; Sohrin, Yoshiki

    2014-12-05

    Trace elements and their isotopes are being actively studied as powerful tracers in the modern ocean and as proxies for the palaeocean. Although distributions and fractionations have been reported for stable isotopes of dissolved Fe, Cu, Zn and Cd in the ocean, the data remain limited and only preliminary explanations have been given. Copper is of great interest because it is either essential or toxic to organisms and because its distribution reflects both biological recycling and scavenging. Here we present new isotopic composition data for dissolved Cu (δ(65)Cu) in seawater and rainwater. The Cu isotopic composition in surface seawater can be explained by the mixing of rain, river and deep seawater. In deep seawater, δ(65)Cu becomes heavier with oceanic circulation because of preferential scavenging of the lighter isotope ((63)Cu). In addition, we constrain the marine biogeochemical cycling of Cu using a new box model based on Cu concentrations and δ(65)Cu.

  14. Fractionation of metal stable isotopes by higher plants

    Science.gov (United States)

    Von Blanckenburg, F.; Von Wiren, N.; Guelke, M.; Weiss, D.J.; Bullen, T.D.

    2009-01-01

    Higher plants induce chemical reactions in the rhizosphere, facilitating metal uptake by roots. Fractionation of the isotopes in nutrients such as calcium, iron, magnesium, and zinc produces a stable isotope composition in the plants that generally differs from that of the growth medium. Isotope fractionation also occurs during transport of the metals within most plants, but its extent depends on plant species and on the metal, in particular, on the metal's redox state and what ligand it is bound to. The metal stable isotope variations observed in plants create an isotope signature of life at the Earth's surface, contributing substantially to our understanding of metal cycling processes in the environment and in individual organisms.

  15. Pristine extraterrestrial material with unprecedented nitrogen isotopic variation.

    Science.gov (United States)

    Briani, Giacomo; Gounelle, Matthieu; Marrocchi, Yves; Mostefaoui, Smail; Leroux, Hugues; Quirico, Eric; Meibom, Anders

    2009-06-30

    Pristine meteoritic materials carry light element isotopic fractionations that constrain physiochemical conditions during solar system formation. Here we report the discovery of a unique xenolith in the metal-rich chondrite Isheyevo. Its fine-grained, highly pristine mineralogy has similarity with interplanetary dust particles (IDPs), but the volume of the xenolith is more than 30,000 times that of a typical IDP. Furthermore, an extreme continuum of N isotopic variation is present in this xenolith: from very light N isotopic composition (delta(15)N(AIR) = -310 +/- 20 per thousand), similar to that inferred for the solar nebula, to the heaviest ratios measured in any solar system material (delta(15)N(AIR) = 4,900 +/- 300 per thousand). At the same time, its hydrogen and carbon isotopic compositions exhibit very little variation. This object poses serious challenges for existing models for the origin of light element isotopic anomalies.

  16. Investigation of Isotope Anomalies in Meteorites and their Components

    DEFF Research Database (Denmark)

    Holst, Jesper Christian

    and earliest evolution of the solar system through the chemical and isotopic study of meteorites. One area of cosmochemistry that has benefited from high-precision mass spectrometry is that of early solar system chronology. Several radioactive isotopes with short and long half-lives are known to have been...... thermal events caused by the actively accreting protosun, an initial well-mixed disk could evolve to isotopic heterogeneity over time. Such extensive thermal processing is likely recorded in a range of elements as any element present in anomalous presolar carrier grains would be isotopically distinct from....... Moreover, high-precision tungsten and zirconium isotope results for bulk meteorites and inclusions help constrain the nature and degree of processing experienced by dust and gas present in the protoplanetary disk. Our results show that short-lived radionuclei 182Hf and 26Al had different stellar sources...

  17. Towards absolute laser spectroscopic CO2 isotope ratio measurements

    Science.gov (United States)

    Anyangwe Nwaboh, Javis; Werhahn, Olav; Ebert, Volker

    2017-04-01

    Knowledge of isotope composition of carbon dioxide (CO2) in the atmosphere is necessary to identify sources and sinks of this key greenhouse gas. In the last years, laser spectroscopic techniques such as cavity ring-down spectroscopy (CRDS) and tunable diode laser absorption spectroscopy (TDLAS) have been shown to perform accurate isotope ratio measurements for CO2 and other gases like water vapour (H2O) [1,2]. Typically, isotope ratios are reported in literature referring to reference materials provided by e.g. the International Atomic Energy Agency (IAEA). However, there could be some benefit if field deployable absolute isotope ratio measurement methods were developed to address issues such as exhausted reference material like the Pee Dee Belemnite (PDB) standard. Absolute isotope ratio measurements would be particularly important for situations where reference materials do not even exist. Here, we present CRDS and TDLAS-based absolute isotope ratios (13C/12C ) in atmospheric CO2. We demonstrate the capabilities of the used methods by measuring CO2 isotope ratios in gas standards. We compare our results to values reported for the isotope certified gas standards. Guide to the expression of uncertainty in measurement (GUM) compliant uncertainty budgets on the CRDS and TDLAS absolute isotope ratio measurements are presented, and traceability is addressed. We outline the current impediments in realizing high accuracy absolute isotope ratio measurements using laser spectroscopic methods, propose solutions and the way forward. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] B. Kühnreich, S. Wagner, J. C. Habig,·O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119:177-187 (2015). [2] E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439-449 (2008).

  18. Stable isotopic signature of Australian monsoon controlled by regional convection

    Science.gov (United States)

    Zwart, C.; Munksgaard, N. C.; Kurita, N.; Bird, M. I.

    2016-11-01

    The aim of this study was to identify the main meteorological drivers of rainfall isotopic variation in north Australia in order to improve the interpretation of isotopic proxy records in this region. An intense monitoring program was conducted during two monsoonal events that showed significant and systematic isotopic change over time. The results showed a close link between isotopic variation in precipitation and variability in monsoon conditions, associated with the presence of large convective envelopes propagating through the study site. The largest negative amplitudes in the isotopic signal were observed when eastward and westward moving precipitation systems within the convective envelope merged over the measurement site. This suggests that the amplitude of the isotopic signal is related to the size and activity of the convective envelope. The strong correlation between rainfall isotopic variation, regional outgoing longwave radiation and regional rainfall amount supports this conclusion. This is further strengthened by the strong relationship between isotopic variation and the integrated rainfall history of air masses prior to arriving at the measurement locations. A local amount effect was not significant and these findings support the interpretation of δ18O as proxy for regional climatic conditions rather than local rainfall amount. Meteorological parameters that characterize intra-seasonal variability of monsoon conditions were also found to be strongly linked to inter-seasonal variability of the monthly based δ18O values in the Global Network of Isotopes in Precipitation (GNIP) database. This leads to the conclusion that information about the Australian monsoon variability can likely be inferred from the isotopic proxy record in North Australia on short (intra seasonal) and long (inter seasonal or longer) timescales.

  19. Spatial distribution of stable water isotopes in alpine snow cover

    Directory of Open Access Journals (Sweden)

    N. Dietermann

    2013-07-01

    Full Text Available The aim of this study was to analyse and predict the mean stable water isotopic composition of the snow cover at specific geographic locations and altitudes. In addition, the dependence of the isotopic composition of the entire snow cover on altitude was analysed. Snow in four Swiss catchments was sampled at the end of the accumulation period in April 2010 and a second time during snowmelt in May 2010 and analysed for stable isotope composition of 2H and 18O. The sampling was conducted at both south-facing and north-facing slopes at elevation differences of 100 m, for a total altitude difference of approximately 1000 m. The observed variability of isotopic composition of the snow cover was analysed with stepwise multiple linear regression models. The analysis indicated that there is only a limited altitude effect on the isotopic composition when considering all samples. This is due to the high variability of the isotopic composition of the precipitation during the winter months and, in particular in the case of south-facing slopes, an enrichment of heavy isotopes due to intermittent melting processes. This enrichment effect could clearly be observed in the samples which were taken later in the year. A small altitudinal gradient of the isotopic composition could only be observed at some north-facing slopes. However, the dependence of snow depth and the day of the year were significant predictor variables in all models. This study indicates the necessity to further study the variability of water isotopes in the snow cover to increase prediction for isotopic composition of snowmelt and hence increase model performance of residence time models for alpine areas in order to better understand the accumulation processes and the sources of water in the snow cover of high mountains.

  20. Isotopic disproportionation during hydrogen isotopic analysis of nitrogen-bearing organic compounds

    Science.gov (United States)

    Nair, Sreejesh; Geilmann, Heike; Coplen, Tyler B.; Qi, Haiping; Gehre, Matthias; Schimmelmann, Arndt; Brand, Willi A.

    2015-01-01

    Rationale High-precision hydrogen isotope ratio analysis of nitrogen-bearing organic materials using high-temperature conversion (HTC) techniques has proven troublesome in the past. Formation of reaction products other than molecular hydrogen (H2) has been suspected as a possible cause of incomplete H2 yield and hydrogen isotopic fractionation. Methods The classical HTC reactor setup and a modified version including elemental chromium, both operated at temperatures in excess of 1400 °C, have been compared using a selection of nitrogen-bearing organic compounds, including caffeine. A focus of the experiments was to avoid or suppress hydrogen cyanide (HCN) formation and to reach quantitative H2 yields. The technique also was optimized to provide acceptable sample throughput. Results The classical HTC reaction of a number of selected compounds exhibited H2 yields from 60 to 90 %. Yields close to 100 % were measured for the experiments with the chromium-enhanced reactor. The δ2H values also were substantially different between the two types of experiments. For the majority of the compounds studied, a highly significant relationship was observed between the amount of missing H2and the number of nitrogen atoms in the molecules, suggesting the pyrolytic formation of HCN as a byproduct. A similar linear relationship was found between the amount of missing H2 and the observed hydrogen isotopic result, reflecting isotopic fractionation. Conclusions The classical HTC technique to produce H2 from organic materials using high temperatures in the presence of glassy carbon is not suitable for nitrogen-bearing compounds. Adding chromium to the reaction zone improves the yield to 100 % in most cases. The initial formation of HCN is accompanied by a strong hydrogen isotope effect, with the observed hydrogen isotope results on H2 being substantially shifted to more negative δ2H values. The reaction can be understood as an initial disproportionation leading to H2 and HCN

  1. Persistently strong Indonesian Throughflow during marine isotope stage 3: evidence from radiogenic isotopes

    Science.gov (United States)

    Stumpf, Roland; Kraft, Steffanie; Frank, Martin; Haley, Brian; Holbourn, Ann; Kuhnt, Wolfgang

    2015-03-01

    The Indonesian Throughflow (ITF) connects the western Pacific Ocean with the eastern Indian Ocean, thus forming one of the major near surface current systems of the global thermohaline circulation. The intensity of the ITF has been found to be sensitive to changes in global ocean circulation, fluctuations in sea level, as well as to the prevailing monsoonal conditions of the Indonesian Archipelago and NW Australia. This study presents the first reconstruction of ITF dynamics combining radiogenic isotope compositions of neodymium (Nd), strontium (Sr), and lead (Pb) of the clay-size detrital fraction to investigate changes in sediment provenance, and paleo seawater Nd signatures extracted from the planktonic foraminifera and authigenic Fe-Mn oxyhydroxide coatings of the marine sediments focussing on marine isotope stage 3 (MIS3). Sediment core MD01-2378 was recovered within the framework of the International Marine Global Change Study (IMAGES) and is located in the area of the ITF outflow in the western Timor Sea (Scott Plateau, 13° 04.95‧ S and 121° 47.27‧ E, 1783 m water depth). In order to produce reliable seawater signatures, several extraction methods were tested against each other. The results of the study show that at this core location the extraction of surface water Nd isotope compositions from planktonic foraminifera is complicated by incomplete removal of contributions from Fe-Mn oxyhydroxides carrying ambient bottom water signatures. The bottom water Nd isotope signatures reliably obtained from the sediment coatings (average ɛNd = -5.0) document an essentially invariable water mass composition similar to today throughout the entire MIS3. The radiogenic Nd, Sr, and Pb isotope records of the clay-sized detrital fraction suggest that the Indonesian Archipelago rather than NW Australia was the main particle source at the location of core MD01-2378, and thus indicating a persistently strong ITF during MIS3. Furthermore, the variations of the detrital

  2. Rubidium isotopes in primitive chondrites: Constraints on Earth's volatile element depletion and lead isotope evolution

    Science.gov (United States)

    Nebel, O.; Mezger, K.; van Westrenen, W.

    2011-05-01

    The bulk silicate Earth (BSE) shows substantial deficits in volatile elements compared to CI-chondrites and solar abundances. These deficits could be caused by pre-accretionary depletion in the solar nebula during condensation of solids, or by later heat-driven evaporation during collision of small bodies that later accreted to form the Earth. The latter is considered to result in isotope fractionation for elements with low condensation temperatures that correlates with the degree of depletion. Here, we report first high-precision isotope ratio measurements of the moderately volatile and lithophile trace element Rb. Data from seventeen chondrite meteorites show that their Rb isotope abundances are nearly indistinguishable from Earth, not deviating more than 1 per mil in their 87Rb/85Rb. The almost uniform solar system Rb isotope pool suggests incomplete condensation or evaporation in a single stage is unlikely to be the cause of the volatile element deficit of the Earth. As Rb and Pb have similar condensation temperatures, we use their different degrees of depletion in the BSE to address the mechanisms and timing of terrestrial volatile depletion. The Rb isotope data are consistent with a scenario in which the volatile budget of the Earth was generated by a mixture of a highly volatile-element depleted early Proto-Earth with undepleted material in the course of terrestrial accretion. Observed Pb and Rb abundances and U-Pb and Rb-Sr isotope systematics suggest that volatile addition occurred at approximately the same time at which last core-mantle equilibration was achieved. In line with previous suggestions, this last equilibration involved a second stage of Pb (but not Rb) depletion from the BSE. The timing of this second Pb loss event can be constrained to ~ 110 Ma after the start of the solar system. This model supports a scenario with core storage of Pb in the aftermath of a putative Moon forming giant impact that also delivered the bulk of the volatile

  3. Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration.

    Science.gov (United States)

    Wingate, Lisa; Ogée, Jérôme; Burlett, Régis; Bosc, Alexandre; Devaux, Marion; Grace, John; Loustau, Denis; Gessler, Arthur

    2010-10-01

    • Photosynthetic carbon (C) isotope discrimination (Δ(Α)) labels photosynthates (δ(A) ) and atmospheric CO(2) (δ(a)) with variable C isotope compositions during fluctuating environmental conditions. In this context, the C isotope composition of respired CO(2) within ecosystems is often hypothesized to vary temporally with Δ(Α). • We investigated the relationship between Δ(Α) and the C isotope signals from stem (δ(W)), soil (δ(S)) and ecosystem (δ(E)) respired CO(2) to environmental fluctuations, using novel tuneable diode laser absorption spectrometer instrumentation in a mature maritime pine forest. • Broad seasonal changes in Δ(Α) were reflected in δ(W,) δ(S) and δ(E). However, respired CO(2) signals had smaller short-term variations than Δ(A) and were offset and delayed by 2-10 d, indicating fractionation and isotopic mixing in a large C pool. Variations in δ(S) did not follow Δ(A) at all times, especially during rainy periods and when there is a strong demand for C allocation above ground. • It is likely that future isotope-enabled vegetation models will need to develop transfer functions that can account for these phenomena in order to interpret and predict the isotopic impact of biosphere gas exchange on the C isotope composition of atmospheric CO(2).

  4. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    NARCIS (Netherlands)

    Pathirana, S. L.; Van Der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-01-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique.

  5. Influence of isotopic re-equilibration on speleothem and fluid inclusion isotope ratios after primary calcite precipitation

    Science.gov (United States)

    Kluge, Tobias; Haderlein, Astrid; Weißbach, Therese

    2016-04-01

    Oxygen isotope ratios in speleothems (notably stalagmites) have been used since decades to successfully infer paleotemperatures and deduce paleo-environmental information. In addition, recent technical developments allow to increasingly use fluid inclusions as an archive for drip-water and together with the surrounding calcite as paleothermometer. A basic requirement for isotope data interpretation is the complete knowledge of the fractionation between calcite and fluid. Most laboratory and in-situ cave experiments focus on calcite growth and the isotope fractionation between calcite and feed solution. Potential isotope exchange and re-equilibration processes after the initial deposition have mostly been neglected. However, experiments of Oelkers et al. (2015) showed that the isotope exchange between minerals and fluid can proceed rapidly (within days), even at chemical equilibrium. In hydrous Mg carbonates a similar process of continuous isotope exchange between carbonate and fluid was observed after the carbonate precipitation was completed (Mavromatis et al., 2015). These observations suggest that the isotope ratios of speleothem calcite may be affected by this continuous exchange, likely driving the isotope composition continuously towards equilibrium at the respective cave conditions. In addition, fluid inclusions are suspected to be sensitive to an isotope exchange with the surrounding carbonate highlighting the need to precisely understand and quantify this effect. We assessed the oxygen isotope exchange between calcite and solution at chemical equilibrium conditions with theoretical estimates and laboratory experiments over an intermediate time scale (hours-weeks). A large isotope gradient (~20 ‰)) between solution and calcite was prepared in the experiment to investigate the dynamics of this re-equilibration process. We used a theoretical model based on a Rayleigh fractionation approach and the direct comparison with the experiment to determine

  6. Ru isotope heterogeneity in the solar protoplanetary disk

    Science.gov (United States)

    Fischer-Gödde, Mario; Burkhardt, Christoph; Kruijer, Thomas S.; Kleine, Thorsten

    2015-11-01

    Nucleosynthetic isotope anomalies in bulk chondrites and differentiated meteorites reflect variable proportions of isotopically diverse presolar components in bulk planetary bodies, but the origin of these heterogeneities is not well understood. Here, the Ru isotope composition of a comprehensive suite of iron meteorites and bulk samples of ordinary, enstatite and carbonaceous chondrites, as well as acid leachates and an insoluble residue of the Allende chondrite are examined using newly developed multi-collector inductively coupled plasma mass spectrometry techniques. Except for IAB iron meteorites and enstatite chondrites, all investigated meteorites show well-resolved Ru isotope anomalies. Of these, within-group Ru isotopic variations observed for samples from a given chemical group of iron meteorites reflect secondary neutron capture induced Ru isotope shifts during prolonged cosmic ray-exposure. After correction of these cosmogenic effects using Pt isotopes as a neutron-dose monitor, the remaining Ru isotope anomalies are nucleosynthetic in nature and are consistent with a deficit in s-process Ru in iron meteorite parent bodies. Similarly, Ru isotope anomalies in bulk ordinary and carbonaceous chondrites also reflect a deficiency in s-process Ru. The sequential dissolution of Allende reveals the presence of an HF-soluble s-process carrier, which is either an unidentified presolar phase or a component that incorporated s-process Ru liberated from SiC grains during nebular or parent body processes. We show that varying proportions of the s-process carrier identified in Allende resulted in the correlated Ru isotope anomalies observed for bulk meteorites, and that all meteorites (except possibly IAB irons and enstatite chondrites) are depleted in this s-process component relative to Ru from the Earth's mantle. Bulk meteorites exhibit correlated Ru and Mo isotope anomalies, reflecting variable deficits of a common s-process component, but some iron meteorites and

  7. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    Science.gov (United States)

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  8. Chlorine Isotope Effects from Isotope Ratio Mass Spectrometry Suggest Intramolecular C-Cl Bond Competition in Trichloroethene (TCE Reductive Dehalogenation

    Directory of Open Access Journals (Sweden)

    Stefan Cretnik

    2014-05-01

    Full Text Available Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (biochemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE dehalogenation was investigated. Selective biotransformation reactions (i of tetrachloroethene (PCE to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii of TCE to cis-1,2-dichloroethene (cis-DCE in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were −19.0‰ ± 0.9‰ (PCE and −12.2‰ ± 1.0‰ (TCE (95% confidence intervals. Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (−5.0‰ ± 0.1‰ and TCE (−3.6‰ ± 0.2‰. In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by −16.3‰ ± 1.4‰ (standard error than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of −2.4‰ ± 0.3‰ and the product chloride an isotope effect of −6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals. A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect. These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition. This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I or single electron transfer as reductive dehalogenation mechanisms.

  9. Dual-isotope measurement of lung water

    Energy Technology Data Exchange (ETDEWEB)

    Chu, R.Y.L.; Carlile, P.V. Jr.; Basmadjian, G. (Oklahoma Univ., Oklahoma City, OK (USA). Health Sciences Center Oklahoma Univ., Oklahoma City, OK (USA). Veterans Administration Medical Center)

    1989-01-01

    Iodine-131-labeled iodo-antipyrine and {sup 99m}Tc-labeled erythrocytes were used to measure water content in lungs. These radioactive tracers were injected into 11 dogs with injured lungs. Blood samples were drawn and the animals sacrificed. The lungs were removed, weighed and homogenized. Samples of blood and lung homogenate were assayed for {sup 131}I and {sup 99m}Tc. Samples were also weighed before and after drying to a constant weight at 70-76{sup 0}C. Extravascular lung water was determined by the dual-isotope technique and again by gravimetric analysis. The average ratio of the results from the two different methods was 1.14{plus minus}0.20. The two methods were also compared by regression analysis and the correlation coefficient was 0.97{plus minus}0.09. (author).

  10. Absolute photoneutron cross sections of Sm isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Gheorghe, I.; Glodariu, T. [National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Utsunomiya, H. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Filipescu, D. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6 and National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Nyhus, H.-T.; Renstrom, T. [Department of Physics, University of Oslo, N-0316 Oslo (Norway); Tesileanu, O. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6 (Romania); Shima, T.; Takahisa, K. [Research Center for Nuclear Physics, Osaka University, Suita, Osaka 567-0047 (Japan); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori, Hyogo 678-1205 (Japan)

    2015-02-24

    Photoneutron cross sections for seven samarium isotopes, {sup 144}Sm, {sup 147}Sm, {sup 148}Sm, {sup 149}Sm, {sup 150}Sm, {sup 152}Sm and {sup 154}Sm, have been investigated near neutron emission threshold using quasimonochromatic laser-Compton scattering γ-rays produced at the synchrotron radiation facility NewSUBARU. The results are important for nuclear astrophysics calculations and also for probing γ-ray strength functions in the vicinity of neutron threshold. Here we describe the neutron detection system and we discuss the related data analysis and the necessary method improvements for adapting the current experimental method to the working parameters of the future Gamma Beam System of Extreme Light Infrastructure - Nuclear Physics facility.

  11. Isotope-committee reports 1999; Isotopkommitterapporter 1999

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, M.; McCarthy, G

    2000-12-01

    In this compilation the use of radioactive substances in therapies and in vivo examinations during 1999 is presented. For each examination the nuclide, chemical form, way of administration, number of hospitals, total number of examinations, mean activity used, interval of mean activity for the different hospitals and maximum activity is presented. Some examinations may be found at several different places. This is due to diverse routines of reporting and the confused use of old and new classifications. A certain caution is recommended when interpreting the data. Of the compilation it becomes known that during 1999 approximately 109,000 examinations and 2900 therapies were performed. The isotope committees at two hospitals have not presented their statistics.

  12. Octupole collectivity in the Sm isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Babilon, M. [Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab.]|[Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Zamfir, N.V. [Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab.]|[National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Kusnezov, D. [Yale Univ., New Haven, CT (United States). Sloane Physics Lab.; McCutchan, E.A. [Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab.; Zilges, A. [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik

    2005-08-27

    Microscopic models suggest the occurrence of strong octupole correlations in nuclei with N{approx}88. To examine the signatures of octupole correlations in this region, the spdf Interacting Boson Approximation (IBA) Model is applied to the Sm isotopes with N = 86 - 92. The effects of including multiple negative parity bosons in the basis are compared to more standard one negative parity boson calculations and are analyzed in terms of signatures for strong octupole correlations. It is found that multiple negative parity bosons are needed to describe properties at medium spin. Bands with strong octupole correlations (multiple negative parity bosons) become yrast at medium spin in {sup 148,150}Sm. This region shares some similarities with the light actinides, where strong octupole correlations were also found at medium spin. (orig.)

  13. Quantum and isotope effects in lithium metal

    Science.gov (United States)

    Ackland, Graeme J.; Dunuwille, Mihindra; Martinez-Canales, Miguel; Loa, Ingo; Zhang, Rong; Sinogeikin, Stanislav; Cai, Weizhao; Deemyad, Shanti

    2017-06-01

    The crystal structure of elements at zero pressure and temperature is the most fundamental information in condensed matter physics. For decades it has been believed that lithium, the simplest metallic element, has a complicated ground-state crystal structure. Using synchrotron x-ray diffraction in diamond anvil cells and multiscale simulations with density functional theory and molecular dynamics, we show that the previously accepted martensitic ground state is metastable. The actual ground state is face-centered cubic (fcc). We find that isotopes of lithium, under similar thermal paths, exhibit a considerable difference in martensitic transition temperature. Lithium exhibits nuclear quantum mechanical effects, serving as a metallic intermediate between helium, with its quantum effect-dominated structures, and the higher-mass elements. By disentangling the quantum kinetic complexities, we prove that fcc lithium is the ground state, and we synthesize it by decompression.

  14. Methane isotope records from Antarctic firn air

    Science.gov (United States)

    Sowers, T. A.; Battle, M.

    2007-12-01

    The earth's climate is directly influenced by changes in the atmospheric loading of trace "greenhouse" gases. Methane is an important greenhouse gas whose atmospheric concentration has doubled over the last century as a result of various anthropogenic activities. Understanding the methane cycle in the recent past is a compelling scientific problem because increasing methane levels in the modern atmosphere will contribute to predicted future warming. The only source of air that allows us to study the long-term cycles of these gases is found in the trapped gases in ice cores and the interstitial pore spaces in firn from the central portions of Greenland and Antarctica. Firn air samples, retrieved from the South Pole in 1995 and 2001, were analyzed for δ13CH4. In December of 2005, another suite of firn air samples was recovered from the new US deep coring site located along the west Antarctic divide (WAIS D) which were analyzed for both δ13C and δ D of CH4. In general, replicate flasks were sampled from each depth from two separate drillings each year. The precision of the δ13C and δ D analyses is generally better than ± 0.2‰ and 2‰, respectively, with surface values in good agreement with NOAA (INSTAAR) biweekly flask measurements from South Pole. In all cases, δ13C and δD values decrease gradually with depth below the convective zone. However, these isotopes and CH4 mixing ratios decline sharply below the "lock-in" depth. The measured firn air profiles are primarily the result of three factors. First, tropospheric changes drive compositional changes in the near-surface convective layer that are subsequently mixed downward due to bulk air-movement within the shallow firn. Secondly, gases are mixed below the convective zone solely by molecular diffusion, leading to the gradual downward propagation of the compositional changes in the convective layer. Finally, differential gravitational settling causes the heavier atmospheric constituents (both elemental

  15. Carbon-isotopic analysis of dissolved acetate.

    Science.gov (United States)

    Gelwicks, J T; Hayes, J M

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  16. Transitional $\\gamma$ strength in Cd isotopes

    CERN Document Server

    Larsen, A C; Bürger, A; Goriely, S; Guttormsen, M; Görgen, A; Hagen, T W; Harissopulos, S; Nyhus, H T; Renstrøm, T; Schiller, A; Siem, S; Tveten, G M; Voinov, A V; Wiedeking, M

    2013-01-01

    The level densities and $\\gamma$-ray strength functions of $^{105,106,111,112}$Cd have been extracted from particle-$\\gamma$ coincidence data using the Oslo method. The level densities are in very good agreement with known levels at low excitation energy. The $\\gamma$-ray strength functions display no strong enhancement for low $\\gamma$ energies. However, more low-energy strength is apparent for $^{105,106}$Cd than for $^{111,112}$Cd. For $\\gamma$ energies above $\\approx$ 4 MeV, there is evidence for some extra strength, similar to what has been previously observed for the Sn isotopes. The origin of this extra strength is unclear; it might be due to $E1$ and $M1$ transitions originating from neutron skin oscillations or the spin-flip resonance, respectively.

  17. Photolytic separation of isotopes in cryogenic solution

    Science.gov (United States)

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  18. Carbon isotope fractionation in protoplanetary disks

    CERN Document Server

    Woods, Paul M

    2008-01-01

    We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of protoplanetary disks. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12C/13C, of the system varies with radius and height in the disk. Different behaviour is seen in the fractionation of different species. We compare our results with 12C/13C ratios in the Solar System comets, and find a stark contrast, indicative of reprocessing.

  19. Potential energy surfaces of Polonium isotopes

    Science.gov (United States)

    Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.; Bartel, J.

    2015-11-01

    The evolution of the potential energy landscape is analysed in detail for ten even-even polonium isotopes in the mass range 188\\lt A\\lt 220 as obtained within the macroscopic-microscopic approach, relying on the Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies for calculating the microscopic shell and pairing corrections. A variant of the modified Funny-Hills nuclear shape parametrization is used to efficiently map possible fission paths. The approach explains the main features of the fragment partition as measured in low-energy fission along the polonium chain. The latter lies in a transitional region of the nuclear chart, and will be essential to consistently understand the evolution of fission properties from neutron-deficient mercury to heavy actinides. The ability of our method to predict fission observables over such an extended region looks promising.

  20. Nonequilibrium clumped isotope signals in microbial methane

    Science.gov (United States)

    Wang, David T.; Gruen, Danielle S.; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C.; Holden, James F.; Hristov, Alexander N.; Pohlman, John W.; Morrill, Penny L.; Könneke, Martin; Delwiche, Kyle B.; Reeves, Eoghan P.; Sutcliffe, Chelsea N.; Ritter, Daniel J.; Seewald, Jeffrey S.; McIntosh, Jennifer C.; Hemond, Harold F.; Kubo, Michael D.; Cardace, Dawn; Hoehler, Tori M.; Ono, Shuhei

    2015-01-01

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.

  1. Milliwatt isotope power source for microspacecraft

    Science.gov (United States)

    Chmielewski, Arthur B.; Borshchevsky, Alexander; Vining, Cronin B.

    1993-01-01

    Miniature spacecraft offer the potential to greatly reduce mission costs, but today there is no flight qualified power source that could operate a microspacecraft during a journey to the outer planets. This paper describes the Milliwatt Isotope Power Source (MIPS), a concept capable of reliable, long term electrical power generation in the milliwatt range. Utilizing existing Radioisotope Heater Unit (RHU) heat source technology and proven thermoelectric energy conversion module technology, a MIPS package about the size of a D-cell battery could deliver about 30 milliwatts of electrical power for several decades and weigh 70 grams. Such a power source could be used to power miniature instruments such as seismometers, propel a microrover or provide decentralized power aboard a more conventional spacecraft. Also, reliance on flight-qualified heat source technology and the small radioisotope inventory required are attractive safety considerations.

  2. Plutonium isotopes in the atmosphere of Central Europe: Isotopic composition and time evolution vs. circulation factors.

    Science.gov (United States)

    Kierepko, Renata; Mietelski, Jerzy W; Ustrnul, Zbigniew; Anczkiewicz, Robert; Wershofen, Herbert; Holgye, Zoltan; Kapała, Jacek; Isajenko, Krzysztof

    2016-11-01

    This paper reports evidence of Pu isotopes in the lower part of the troposphere of Central Europe. The data were obtained based on atmospheric aerosol fraction samples collected from four places in three countries (participating in the informal European network known as the Ring of Five (Ro5)) forming a cell with a surface area of about 200,000km(2). We compared our original data sets from Krakow (Poland, 1990-2007) and Bialystok (Poland, 1991-2007) with the results from two other locations, Prague (Czech Republic; 1997-2004) and Braunschweig (Germany; 1990-2003) to find time evolution of the Pu isotopes. The levels of the activity concentration for (238)Pu and for ((239+240))Pu were estimated to be a few and some tens of nBqm(-3), respectively. However, we also noted some results were much higher (even about 70 times higher) than the average concentration of (238)Pu in the atmosphere. The achieved complex data sets were used to test a new approach to the problem of solving mixing isotopic traces from various sources (here up to three) in one sample. Results of our model, supported by mesoscale atmospheric circulation parameters, suggest that Pu from nuclear weapon accidents or tests and nuclear burnt-up fuel are present in the air.

  3. Stable carbon isotopic composition of gasolines determined by isotope ratio monitoring gas chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, B.J.; Philp, R.P.; Allen, J.D. [University of Oklahoma, Norman, OK (United States). School of Geology and Geophysics

    2002-07-01

    A large number of underground gasoline storage facilities in the United States continuously leak gasoline into the subsurface, which makes gasoline a major groundwater contaminant. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) are used currently to characterize contaminated groundwater and soils. Correlations of contaminants with suspected source(s) are extremely difficult by these techniques because many gasolines have similar hydrocarbon distributions. The present study applied the technique of isotope ratio monitoring gas chromatography-mass spectrometry (irmGC-MS) to 19 gasoline samples from different areas of the USA. This allows a much better correlation of gasoline contaminants to source. Data obtained indicate a wide range of {sup {delta}}{sup 13}C values for 16 ubiquitous compounds in the gasolines. The majority of samples could be distinguished from each other on the basis of {sup {delta}}{sup 13}C hydrocarbon composition. The oxygenated additive methyl tertiary butyl ether (MTBE) was present in ten of the gasolines analyzed, and had a relatively narrow range of {sup {delta}}{sup 13}C values (-30.4 to -28.3 per mille). Preliminary investigations were also made to determine the extent of carbon isotopic fractionation after simple water washing and evaporation experiments. Results indicate that the majority of compounds did not undergo significant carbon isotopic fractionation as a result of these processes. (author)

  4. Determination of plutonium isotopes in seawater reference materials using isotope-dilution ICP-MS.

    Science.gov (United States)

    Zheng, Jian; Yamada, Masatoshi

    2012-09-01

    We analyzed the activities of (239)Pu, (240)Pu, (239+240)Pu, (241)Pu, the ratio of number of atoms (atom ratio) for (240)Pu/(239)Pu, and the activity ratio of (241)Pu/(239+240)Pu in seawater reference materials, IAEA-443 and IAEA-381, using a highly sensitive isotope dilution sector field inductively coupled plasma mass spectrometry method. With a mean chemical yield of 65% determined with (242)Pu as a tracer, we found that the experimentally established values in IAEA-443 for (239)Pu, (240)Pu, (241)Pu and (239+240)Pu activities are almost the same as those in IAEA-381. Regarding the (239+240)Pu activity, we provided the most precise and accurate result among the twelve laboratories, which participated in the interlaboratory comparison. In addition, for the (240)Pu/(239)Pu atom ratio, our results for IAEA-381 (0.2315±0.0008) and IAEA-443 (0.2325±0.0008) are in good agreement with the IAEA information value (0.229±0.006), but have much smaller uncertainty. Since the new seawater reference material, IAEA-443, is commercially available, it can be used not only for method validation for seawater plutonium isotope ratio and activity analysis, but also for more general use as a plutonium isotope standard for mass discrimination correction for other environmental samples.

  5. Isotopic Signature of the Ancient Biosphere

    Science.gov (United States)

    DesMarais, D. J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The age distribution of 261 field localities, sampled for their well-preserved Archean and Proterozoic sedimentary rocks, revealed a 500-700 Ma episodicity. Assuming that the numbers of sites are a proxy for mass of sediments, the record of well-preserved sediments is more abundant in the intervals 3.5-3.3, 2.8-2.5, 2.1-1.8, 1.5-1.3, and 1.0-0.54 Ga than in the intervening intervals. It is proposed that the crustal inventory of photosynthetic organic carbon was modulated by the volume of sedimentation in sites favorable for the burial and long-term preservation of organic carbon. Tectonic processes controlled this sediment volume. Episodic increases in the organic inventory led to stepwise increases in oxidized reservoirs (e.g., O2, SO4(2-), Fe(3+). The interval 2.9-2.5 Ga recorded a large rise in seawater Sr-87/Sr-86, the oldest-known extensive banded iron formations, and the first evidence (C-13-depleted kerogens) of O2 use by methylotrophic bacteria. The interval 2.2-1.8 Ga has both carbon isotopic evidence for a stepwise increase in the organic reservoir and also paleosol evidence for an O2 increase. The interval 1.1-0.6 Ga shows isotopic evidence for another organic carbon increase. The interval 1.5-1.3 Ga revealed no such increases as yet, perhaps because incomplete rifting of the mid-Proterozoic supercontinent was associated with extensive sedimentation in oxidized continental basins, producing redbeds, coarse clastics, etc. Such sedimentation did not promote the burial of reduced carbon.

  6. Oxygen isotopic composition of low-temperature authigenic clinoptilolite

    Science.gov (United States)

    Nähr, T.; Botz, R.; Bohrmann, G.; Schmidt, M.

    1998-08-01

    Oxygen isotope ratios were obtained from authigenic clinoptilolites from Barbados Accretionary Complex, Yamato Basin, and Exmouth Plateau sediments (ODP Sites 672, 797, and 762) in order to investigate the isotopic fractionation between clinoptilolite and pore water at early diagenetic stages and low temperatures. Dehydrated clinoptilolites display isotopic ratios for the zeolite framework ( δ18O f) that extend from +18.7‰ to +32.8‰ (vs. SMOW). In combination with associated pore water isotope data, the oxygen isotopic fractionation between clinoptilolite and pore fluids could be assessed in the temperature range from 25°C to 40°C. The resulting fractionation factors of 1.032 at 25°C and 1.027 at 40°C are in good agreement with the theoretically determined oxygen isotope fractionation between clinoptilolite and water. Calculations of isotopic temperatures illustrate that clinoptilolite formation occurred at relatively low temperatures of 17°C to 29°C in Barbados Ridge sediments and at 33°C to 62°C in the Yamato Basin. These data support a low-temperature origin of clinoptilolite and contradict the assumption that elevated temperatures are the main controlling factor for authigenic clinoptilolite formation. Increasing clinoptilolite δ18O f values with depth indicate that clinoptilolites which are now in the deeper parts of the zeolite-bearing intervals had either formed at lower temperatures (17-20°C) or under closed system conditions.

  7. Stable isotope ecology in the Omo-Turkana Basin.

    Science.gov (United States)

    Cerling, Thure E; Levin, Naomi E; Passey, Benjamin H

    2011-01-01

    Stable isotopes provide an independent assessment of paleoenvironments in the Omo-Turkana Basin. Stable isotopes track the flow of oxygen and carbon through ecosystems and accordingly are not directly related to changes in mammalian faunal composition or sedimentology. Therefore, isotope studies give insight into the paleoenvironmental conditions in which human evolutionary trends have been recorded. The development of stable isotopes as indicators of continental environmental conditions has proceeded in parallel with questions about the conditions of human environment. What was the vegetation? How hot was it? How dry? What were the diets of animals living among early humans? And most persistently, how important were "savannas" to early hominids? In this review, we take the opportunity to provide extensive background on the use of isotopes in anthropological sites. The application of stable isotope ecology to anthropological sites in the Turkana Basin has a long history, but in many ways the Omo-Turkana Basin has been a proving ground for the development of new proxy methods for understanding tropical terrestrial environments in the Neogene and Quaternary. For that reason, we also describe some of the fundamental aspects of isotope ecology that developed outside the field of paleoanthropology. Copyright © 2011 Wiley Periodicals, Inc.

  8. Metal stable isotope signatures as tracers in environmental geochemistry.

    Science.gov (United States)

    Wiederhold, Jan G

    2015-03-03

    The biogeochemical cycling of metals in natural systems is often accompanied by stable isotope fractionation which can now be measured due to recent analytical advances. In consequence, a new research field has emerged over the last two decades, complementing the traditional stable isotope systems (H, C, O, N, S) with many more elements across the periodic table (Li, B, Mg, Si, Cl, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, W, Pt, Hg, Tl, U) which are being explored and potentially applicable as novel geochemical tracers. This review presents the application of metal stable isotopes as source and process tracers in environmental studies, in particular by using mixing and Rayleigh model approaches. The most important concepts of mass-dependent and mass-independent metal stable isotope fractionation are introduced, and the extent of natural isotopic variations for different elements is compared. A particular focus lies on a discussion of processes (redox transformations, complexation, sorption, precipitation, dissolution, evaporation, diffusion, biological cycling) which are able to induce metal stable isotope fractionation in environmental systems. Additionally, the usefulness and limitations of metal stable isotope signatures as tracers in environmental geochemistry are discussed and future perspectives presented.

  9. Hydrogen Isotope Exchange Properties of Porous Solids Containing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    HEUNG, LEUNGK.

    2004-08-18

    Porous solids such as activated alumina, silica and molecular sieves generally contain significant amounts of hydrogen atoms in the form of H2O or OH even at high temperature and low humidity environment. A significant amount of this hydrogen is available for reversible isotopic exchange. This exchange reaction is slow under normal conditions and does not render itself to practical applications. But if the exchange kinetics is improved this reaction has the potential to be used for tritium removal from gas streams or for hydrogen isotopic separation.The use of catalysts to improve the exchange kinetics between hydrogen isotope in the gas phase and that in the solid phase was investigated. Granules of alumina, silica and molecular sieve were coated with platinum or palladium as the catalyst. The granules were packed in a 2-cm diameter column for isotope exchange tests. Gas streams containing different concentrations of deuterium in nitrogen or argon were fed through the protium saturated column. Isotope concentration in column effluent was monitored to generate isotope break-through curves. The curves were analyzed to produce information on the kinetics and capacity of the material. The results showed that all materials tested provided some extent of isotope exchange but some were superior both in kinetics and capacity. This paper will present the test results.

  10. The Late Quaternary Oxygen Isotope Composition of Lake Michigan

    Science.gov (United States)

    MacDonald, R. A.; Longstaffe, F. J.; Crowe, A. S.

    2007-12-01

    We present stable isotope records for porewater (oxygen, hydrogen) and biogenic carbonates (oxygen, carbon; ostracode and clam shells) in sediment cores from the Chippewa, Milwaukee and South Chippewa Basins of Lake Michigan. The oxygen and hydrogen isotope compositions of porewater from the South Chippewa Basin core showed very little variation with depth. At the maximum depth of 16.6m, δ18O values were within 2‰ and δD values were within 12‰ of modern Lake Michigan water (average δ18O = -5.9‰; average δD = -45‰); original porewater compositions have not been preserved. The oxygen isotope results for the biogenic carbonates, by comparison, provide a record of the isotopic composition of Lake Michigan over the last ~11,000 years, including significant incursions of very low-18O water, as first reported by Colman et al. (1990) and Forester et al. (1994). The low-18O waters originated from the retreating Laurentide ice sheet and may have been routed through Lakes Agassiz and Superior and discharged as large volumes over very short intervals of time. Periods characterized by much higher oxygen isotope compositions likely record the isotopic composition of regional precipitation over the catchment area. In summary, the large variations in the oxygen isotope composition of early Lake Michigan water arose from regional climate change and changing water sources during the times of ice-sheet retreat.

  11. Temperature dependence of carbon isotope fractionation in CAM plants

    Energy Technology Data Exchange (ETDEWEB)

    Deleens, E.; Treichel, I.; O' Leary, M.H.

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoe daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17/sup 0/C nights, 23/sup 0/C days), the isotope fractionation for both plants is -4% per thousand (that is, malate is enriched in /sup 13/C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0% per thousand at 27/sup 0/C/33/sup 0/C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. 28 references, 1 figure, 4 tables.

  12. Inferring foliar water uptake using stable isotopes of water.

    Science.gov (United States)

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-07-22

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  13. Hydrogen isotope type-curves of very hot crude oils.

    Science.gov (United States)

    Fekete, József; Sajgó, Csanád; Demény, Attila

    2011-01-15

    Several crude oil accumulations in the Pannonian Basin are trapped in uncommonly hot (>170°C) reservoirs. Their maturities range from mature to very mature on the basis of cracking parameters of their biological marker homologous series (ratio of products to reactants). A stable carbon isotopic study of these oils, poor in biological markers commonly used for correlation purposes, did not provide a reliable oil-to-oil correlation. As an alternative tool, the hydrogen isotope compositions of oil fractions separated on the basis of different polarities were measured, and hydrogen isotope type-curves were generated for a set of mature to very mature crude oil samples. This method of presenting hydrogen isotope composition of fractions as type-curves is novel. Nineteen samples (17 crude oils from SE-Hungary, 1 oil condensate and 1 artificial oil) were chosen for the present study. The aim was to examine the applicability of hydrogen isotope type-curves in oil-to-oil correlation and to test the simultaneous application of carbon and hydrogen isotope type-curves in the field of petroleum geochemistry. We have shown that, although the conventionally used co-variation plots proved to be inadequate for the correlation of these hot and mature oils, the simultaneous use of carbon and the newly introduced hydrogen isotope type-curves allows us to group and distinguish oils of different origins.

  14. Production of platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP

    Directory of Open Access Journals (Sweden)

    Smith Suzanne V.

    2017-01-01

    Full Text Available The accelerator production of platinum isotopes was investigated at the Brookhaven Linac Isotope Producer (BLIP. In this study high purity natural platinum foils were irradiated at 53.2, 65.7, 105.2, 151.9, 162.9 and 173.3.MeV. The irradiated foils were digested in aqua regia and then converted to their hydrochloride salt with concentrated hydrochloric acid before analyzing by gamma spectrometry periodically for at least 10 days post end of bombardment. A wide range of platinum (Pt, gold (Au and iridium (Ir isotopes were identified. Effective cross sections at BLIP for Pt-188, Pt-189, Pt-191 and Pt-195m were compared to literature and theoretical cross sections determined using Empire-3.2. The majority of the effective cross sections (<70 MeV confirm those reported in the literature. While the absolute values of the theoretical cross sections were up to a factor of 3 lower, Empire 3.2 modeled thresholds and maxima correlated well with experimental values. Preliminary evaluation into a rapid separation of Pt isotopes from high levels of Ir and Au isotopes proved to be a promising approach for large scale production. In conclusion, this study demonstrated that with the use of isotopically enriched target material accelerator production of selected platinum isotopes is feasible over a wide proton energy range.

  15. Strontium isotope characterization of wines from Quebec, Canada.

    Science.gov (United States)

    Vinciguerra, Victor; Stevenson, Ross; Pedneault, Karine; Poirier, André; Hélie, Jean-François; Widory, David

    2016-11-01

    The (87)Sr/(86)Sr isotope ratios were measured on grape, wine and soil samples collected in 13 commercial vineyards located in three major wine producing areas of Quebec (Canada). The soils yield Sr isotope ratios that are intimately related to the local geology and unambiguously discriminate the different producing areas. A strong relationship exists between the (87)Sr/(86)Sr isotope ratios of the wine and the grapes. This suggests that the vinification process does not alter the overall Sr budget. Although the Sr isotope ratios of the grapes do not show a strong correlation with the bulk Sr isotope composition of the soil, they do correlate strongly with the Sr isotope composition contained in the labile fraction of the soil. This indicates that the labile fraction of the soil represents the Sr reservoir available to the plant during its growth. This study demonstrates that the Sr isotope approach can be used as a viable tool in forensic science for investigating the provenance of commercial wines.

  16. Tracing source pollution in soils using cadmium and lead isotopes.

    Science.gov (United States)

    Cloquet, C; Carignan, J; Libourel, G; Sterckeman, T; Perdrix, E

    2006-04-15

    Tracing the source of heavy metals in the environment is of key importance for our understanding of their pollution and natural cycles in the surface Earth reservoirs. Up to now, most exclusively Pb isotopes were used to effectively trace metal pollution sources in the environment. Here we report systematic variations of Cd isotope ratios measured in polluted topsoils surrounding a Pb-Zn refinery plant in northern France. Fractionated Cd was measured in soil samples surrounding the refinery, and this fractionation can be attributed to the refining processes. Despite the Cd isotopic ratios being precisely measured, the obtained uncertainties are still large compared to the total isotopic variation. Nevertheless, for the first time, Cd isotopically fractionated by industrial processes may be traced in the environment. On the same samples, Pb isotope systematics suggested that materials actually used by the refinery were not the major source of Pb in soils, probably because refined ore origins changed over the 100 years of operation. On the other hand, Cd isotopes and concentrations measured in topsoils allowed identification of three main origins (industrial dust and slag and agriculture), assuming that all Cd ores are not fractionated, as suggested by terrestrial rocks so far analyzed, and calculation of their relative contributions for each sampling point. Understanding that this refinery context was an ideal situation for such a study, our results lead to the possibility of tracing sources of anthropogenic Cd and better constrain mixing processes, fluxes, transport, and phasing out of industrial input in nature.

  17. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    Science.gov (United States)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  18. The new face of isotopic NMR at natural abundance.

    Science.gov (United States)

    Jézéquel, Tangi; Joubert, Valentin; Giraudeau, Patrick; Remaud, Gérald S; Akoka, Serge

    2017-02-01

    The most widely used method for isotope analysis at natural abundance is isotope ratio monitoring by Mass Spectrometry (irm-MS) which provides bulk isotopic composition in (2) H, (13) C, (15) N, (18) O or (34) S. However, in the 1980s, the direct access to Site-specific Natural Isotope Fractionation by Nuclear Magnetic Resonance (SNIF-NMR(TM) ) was immediately recognized as a powerful technique to authenticate the origin of natural or synthetic products. The initial - and still most popular - application consisted in detecting the chaptalization of wines by irm-(2) H NMR. The approach has been extended to a wide range of methodologies over the last decade, paving the way to a wide range of applications, not only in the field of authentication but also to study metabolism. In particular, the emerging irm-(13) C NMR approach delivers direct access to position-specific (13) C isotope content at natural abundance. After highlighting the application scope of irm-NMR ((2) H and (13) C), this article describes the major improvements which made possible to reach the required accuracy of 1‰ (0.1%) in irm-(13) C NMR. The last part of the manuscript summarizes the different steps to perform isotope analysis as a function of the sample properties (concentration, peak overlap) and the kind of targeted isotopic information (authentication, affiliation). Copyright © 2016 John Wiley & Sons, Ltd.

  19. The oxygen isotope equilibrium fractionation between sulfite species and water

    Science.gov (United States)

    Müller, Inigo A.; Brunner, Benjamin; Breuer, Christian; Coleman, Max; Bach, Wolfgang

    2013-11-01

    Sulfite is an important sulfoxy intermediate in oxidative and reductive sulfur cycling in the marine and terrestrial environment. Different aqueous sulfite species exist, such as dissolved sulfur dioxide (SO2), bisulfite (HSO3-), pyrosulfite (S2O52-) and sulfite sensu stricto (SO32-), whereas their relative abundance in solution depends on the concentration and the pH. Conversion of one species into another is rapid and involves in many cases incorporation of oxygen from, or release of oxygen to, water (e.g. SO2 + H2O ↔ HSO3- + H+), resulting in rapid oxygen isotope exchange between sulfite species and water. Consequently, the oxygen isotope composition of sulfite is strongly influenced by the oxygen isotope composition of water. Since sulfate does not exchange oxygen isotopes with water under most earth surface conditions, it can preserve the sulfite oxygen isotope signature that it inherits via oxidative and reductive sulfur cycling. Therefore, interpretation of δO values strongly hinges on the oxygen isotope equilibrium fractionation between sulfite and water which is poorly constrained. This is in large part due to technical difficulties in extraction of sulfite from solution for oxygen isotope analysis.

  20. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-12-31

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the {sup 13}C content of soil CO{sub 2}, CaCO{sub 3}, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The {sup 13}C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing {sup 13}C content with depth decreasing {sup 13}C with altitude and reduced {sup 13}C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO{sub 2} loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids.

  1. Intramolecular carbon isotope distribution of acetic acid in vinegar.

    Science.gov (United States)

    Hattori, Ryota; Yamada, Keita; Kikuchi, Makiko; Hirano, Satoshi; Yoshida, Naohiro

    2011-09-14

    Compound-specific carbon isotope analysis of acetic acid is useful for origin discrimination and quality control of vinegar. Intramolecular carbon isotope distributions, which are each carbon isotope ratios of the methyl and carboxyl carbons in the acetic acid molecule, may be required to obtain more detailed information to discriminate such origin. In this study, improved gas chromatography-pyrolysis-gas chromatography-combustion-isotope ratio mass spectrometry (GC-Py-GC-C-IRMS) combined with headspace solid-phase microextraction (HS-SPME) was used to measure the intramolecular carbon isotope distributions of acetic acid in 14 Japanese vinegars. The results demonstrated that the methyl carbons of acetic acid molecules in vinegars produced from plants were mostly isotopically depleted in (13)C relative to the carboxyl carbon. Moreover, isotopic differences (δ(13)C(carboxyl) - δ(13)C(methyl)) had a wide range from -0.3 to 18.2‰, and these values differed among botanical origins, C3, C4, and CAM plants.

  2. Kinetic 15N-isotope effects on algal growth

    Science.gov (United States)

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-03-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies.

  3. Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations

    Science.gov (United States)

    Steen-Larsen, H. C.; Risi, C.; Werner, M.; Yoshimura, K.; Masson-Delmotte, V.

    2017-01-01

    The skills of isotope-enabled general circulation models are evaluated against atmospheric water vapor isotopes. We have combined in situ observations of surface water vapor isotopes spanning multiple field seasons (2010, 2011, and 2012) from the top of the Greenland Ice Sheet (NEEM site: 77.45°N, 51.05°W, 2484 m above sea level) with observations from the marine boundary layer of the North Atlantic and Arctic Ocean (Bermuda Islands 32.26°N, 64.88°W, year: 2012; south coast of Iceland 63.83°N, 21.47°W, year: 2012; South Greenland 61.21°N, 47.17°W, year: 2012; Svalbard 78.92°N, 11.92°E, year: 2014). This allows us to benchmark the ability to simulate the daily water vapor isotope variations from five different simulations using isotope-enabled general circulation models. Our model-data comparison documents clear isotope biases both on top of the Greenland Ice Sheet (1-11‰ for δ18O and 4-19‰ for d-excess depending on model and season) and in the marine boundary layer (maximum differences for the following: Bermuda δ18O = 1‰, d-excess = 3‰; South coast of Iceland δ18O = 2‰, d-excess = 5‰; South Greenland δ18O = 4‰, d-excess = 7‰; Svalbard δ18O = 2‰, d-excess = 7‰). We find that the simulated isotope biases are not just explained by simulated biases in temperature and humidity. Instead, we argue that these isotope biases are related to a poor simulation of the spatial structure of the marine boundary layer water vapor isotopic composition. Furthermore, we specifically show that the marine boundary layer water vapor isotopes of the Baffin Bay region show strong influence on the water vapor isotopes at the NEEM deep ice core-drilling site in northwest Greenland. Our evaluation of the simulations using isotope-enabled general circulation models also documents wide intermodel spatial variability in the Arctic. This stresses the importance of a coordinated water vapor isotope-monitoring network in order to discriminate amongst these model

  4. IUPAC Project: Terminology and definition of quantities related to the isotope distribution in elements with more than two stable isotopes

    Science.gov (United States)

    Kaiser, J.; Angert, A.; Bergquist, B.; Brand, W.; Ono, S.; Röckmann, T.; Savarino, J.

    2012-04-01

    The objective of IUPAC Project 2009-046-2-200 (http://www.iupac.org/web/ins/2009-046-2-200) is to define terminology and to identify the most suitable definitions of quantities that characterise the isotope distribution in elements with more than two stable isotopes, including so-called mass-independent fractionation, non-mass dependent fractionation, isotope anomaly, 17O excess, etc. Most atmospheric oxygen-bearing species show deviations in their triple oxygen isotope ratios from mass-dependent fractionation (MDF) relationships predicted by the theories of Urey, Bigeleisen and Mayer. Similar deviations have also been found in sulphur and other elements with more than two stables isotopes (e.g. Hg, Cd, Zn), often preserved in non-atmospheric reservoirs, including rocks, minerals, soils, ice and waters. Despite the ubiquity of this type of isotope anomaly, there has never been an attempt to clearly define the terminology and physical quantities used to measure these anomalies and the processes that lead to their formation. Terms like mass-independent fractionation, non-mass dependent fractionation, isotope anomaly, isotope excess etc. have been used in the historic and recent literature, but are often not carefully distinguished. The realisation that MDF comprises a range of possible relationships between the isotopes of one element led to further complications because it meant that apparent isotope anomalies could be created by a combination of different MDF processes. At the moment, at least four different definitions to quantify isotope anomalies are being used. Furthermore, coefficients used in these definitions vary, which makes the comparison of data from different sources very difficult, even for experts. A consistent set of recommendations on how to express and quantify the isotope distribution in elements with more than two stable isotopes is highly warranted. From our experience as academic teachers, we are woefully aware how impenetrable the field is for

  5. Stable Isotope Mapping of Alaskan Grasses and Marijuana

    Science.gov (United States)

    Booth, A. L.; Wooller, M. J.

    2008-12-01

    The spatial variation of isotope signatures in organic material is a useful forensic tool, particularly when applied to the task of tracking the production and distribution of plant-derived illicit drugs. In order to identify the likely grow-locations of drugs such as marijuana from unknown locations (i.e., confiscated during trafficking), base isotope maps are needed that include measurements of plants from known grow-locations. This task is logistically challenging in remote, large regions such as Alaska. We are therefore investigating the potential of supplementing our base (marijuana) isotope maps with data derived from other plants from known locations and with greater spatial coverage in Alaska. These currently include >150 samples of modern C3 grasses (Poaceae) as well as marijuana samples (n = 18) from known grow-locations across the state. We conducted oxygen, carbon and nitrogen stable isotope analyses of marijuana and grasses (Poaceae). Poaceae samples were obtained from the University of Alaska Fairbanks (UAF) Museum of the North herbarium collection, originally collected by field botanists from around Alaska. Results indicate that the oxygen isotopic composition of these grasses range from 10‰ to 30‰, and broadly mirror the spatial pattern of water isotopes in Alaska. Our marijuana samples were confiscated around the state of Alaska and supplied to us by the UAF Police Department. δ13C, δ15N and δ18O values exhibit geographic patterns similar to the modern grasses, but carbon and nitrogen isotopes of some marijuana plants appear to be influenced by additional factors related to indoor growing conditions (supplementary CO2 sources and the application of organic fertilizer). As well as providing a potential forensic resource, our Poaceae isotope maps could serve additional value by providing resources for studying ecosystem nutrient cycling, for tracing natural ecological processes (i.e., animal migration and food web dynamics) and providing

  6. Continuous in situ measurements of stable isotopes in liquid water

    Science.gov (United States)

    Herbstritt, Barbara; Gralher, Benjamin; Weiler, Markus

    2012-03-01

    We developed a method to measure in situ the isotopic composition of liquid water with minimal supervision and, most important, with a temporal resolution of less than a minute. For this purpose a microporous hydrophobic membrane contactor (Membrana) was combined with an isotope laser spectrometer (Picarro). The contactor, originally designed for degassing liquids, was used with N2 as a carrier gas in order to transform a small fraction of liquid water to water vapor. The generated water vapor was then analyzed continuously by the Picarro analyzer. To prove the membrane's applicability, we determined the specific isotope fractionation factor for the phase change through the contactor's membrane across an extended temperature range (8°C-21°C) and with different waters of known isotopic compositions. This fractionation factor is needed to subsequently derive the liquid water isotope ratio from the measured water vapor isotope ratios. The system was tested with a soil column experiment, where the isotope values derived with the new method corresponded well (R2 = 0.998 for δ18O and R2 = 0.997 for δ2H) with those of liquid water samples taken simultaneously and analyzed with a conventional method (cavity ring-down spectroscopy). The new method supersedes taking liquid samples and employs only relatively cheap and readily available components. This makes it a relatively inexpensive, fast, user-friendly, and easily reproducible method. It can be applied in both the field and laboratory wherever a water vapor isotope analyzer can be run and whenever real-time isotope data of liquid water are required at high temporal resolution.

  7. Phanerozoic and Neoproterozoic Negative Carbon Isotope Excursions, Diagenesis and Terrestrialization

    Science.gov (United States)

    Paul, K.; Kennedy, M. J.

    2008-12-01

    Comprehensive data sets of Phanerozoic and late Precambrian carbon isotope data derived from carbonate rocks show a similar positive relation when cross-plotted with oxygen isotope values. The range and slope between the time periods is identical and the processes responsible for the relation have been well documented in Quaternary sediments. These processes include the stabilization of isotope values to ambient meteoric water values during shallow burial and flushing of carbonate sediments. Both data sets show strongly depleted carbon (-9 per mil PDB) and oxygen isotope values that retain seemingly systematic stratigraphic patterns with the Quaternary and Phanerozoic examples that demonstrably record meteroric water values. Similar values and patterns in the Precambrian are interpreted as primary marine in origin with significant implications for an ocean carbon mass balance not possible in the Phanerozoic carbon cycle. A similar compilation of carbonates older than one billion years do not show a relation between carbon and oxygen isotopes, lacking the negative carbon values evident in the younger record. We hypothesize that this difference records the onset of significant organic carbon on the land surface and the alteration of meteoric waters toward Phanerozoic values. We demonstrate the meteoric affinities of Neoproterozoic carbonates containing prominent negative isotope excursions recorded in the Shuram and Wonoka Formations of Oman and South Australia commonly attributed to whole ocean isotope variation. The conspicuous absence of negative carbon isotope values with normal marine oxygenisotope values in the Phanerozoic and Neoproterozic identifies a consistent relation between these time intervals and suggests that, as well accepted in the Phanerozoic, negative carbon isotope excursions less than -3 per mil are not a record of marine processes, but rather the later terrestrial biotic influence on meteoric water values.

  8. Isotopes in North American Rocky Mountain snowpack 1993–2014

    Science.gov (United States)

    Anderson, Lesleigh; Max Berkelhammer,; Mast, M. Alisa

    2015-01-01

    We present ∼1300 new isotopic measurements (δ18O and δ2H) from a network of snowpack sites in the Rocky Mountains that have been sampled since 1993. The network includes 177 locations where depth-integrated snow samples are collected each spring near peak accumulation. At 57 of these locations snowpack samples were obtained for 10–21 years and their isotopic measurements provide unprecedented spatial and temporal documentation of snowpack isotope values at mid-latitudes. For environments where snowfall accounts for the majority of annual precipitation, snowmelt is likely to have the strongest influence on isotope values retained in proxy archives. In this first presentation of the dataset we (1) describe the basic features of the isotope values in relation to the Global Meteoric Water Line (GMWL), (2) evaluate space for time substitutions traditionally used to establish δ18O-temperature relations, (3) evaluate site-to-site similarities across the network and identify those that are the most regionally representative, (4) examine atmospheric circulation patterns for several years with spatially coherent isotope patterns, and (5) provide examples of the implications this new dataset has for interpreting paleoclimate records (Bison Lake, Colorado and Minnetonka Cave, Idaho). Results indicate that snowpack δ18O is rarely a simple proxy of temperature. Instead, it exhibits a high degree of spatial heterogeneity and temporal variance that reflect additional processes such as vapor transport and post-depositional modification. Despite these complexities we identify consistent climate-isotope patterns and regionally representative locations that serve to better define Holocene hydroclimate estimates and their uncertainty. Climate change has and will affect western U.S. snowpack and we suggest these changes can be better understood and anticipated by oxygen and hydrogen isotope-based reconstructions of Holocene hydroclimate using a process-based understanding of the

  9. Analysis of Hydrogen Isotopic Exchange: Lava Creek Tuff Ash and Isotopically Labeled Water

    Science.gov (United States)

    Ross, A. M.; Seligman, A. N.; Bindeman, I. N.; Nolan, G. S.

    2015-12-01

    Nolan and Bindeman (2013) placed secondarily hydrated ash from the 7.7 ka eruption of Mt. Mazama (δD=-149‰, 2.3wt% H2Ot) in isotopically labeled water (+650 ‰ δD, +56 ‰ δ18O) and observed that the H2Ot and δ18O values remained constant, but the δD values of ash increased with the surrounding water at 20, 40 and 70 °C. We expand on this work by conducting a similar experiment with ash from the 640 ka Lava Creek Tuff (LCT, δD of -128 ‰; 2.1 wt.% H2Ot) eruption of Yellowstone to see if significantly older glass (with a hypothesized gel layer on the surface shielding the interior from alteration) produces the same results. We have experiments running at 70, 24, and 5 °C, and periodically remove ~1.5 mg of glass to measure the δD (‰) and H2Ot (wt.%) of water extracted from the glass on a TC/EA MAT 253 continuous flow system. After 600 hours, the δD of the samples left at 5 and 24 °C remains at -128 ‰, but increased 8‰ for the 70 °C run series. However, there is no measurable change in wt.% of H2Ot, indicating that hydrogen exchange is not dictated by the addition of water. We are measuring and will report further progress of isotope exchange. We also plan to analyze the water in the LCT glass for δ18O (‰) to see if, as is the case for the Mt. Mazama glass, the δ18O (‰) remains constant. We also analyzed Mt. Mazama glass from the Nolan and Bindeman (2013) experiments that have now been sitting in isotopically labeled water at room temperature for ~5 years. The water concentration is still unchanged (2.3 wt.% H2Ot), and the δD of the water in the glass is now -111 ‰, causing an increase of 38 ‰. Our preliminary results show that exchange of hydrogen isotopes of hydrated glass is not limited by the age of the glass, and that the testing of hydrogen isotopes of secondarily hydrated glass, regardless of age, may not be a reliable paleoclimate indicator.

  10. Shell Model Description of Neutron-Deficient Sn Isotopes

    Institute of Scientific and Technical Information of China (English)

    Erdal Dikmen

    2009-01-01

    The shell model calculations in the sdgh major shell for the neutron-deficient 106,107,108,109Sn isotopes have been carried out by using CD-Bonn and Nijmegenl two-body effective nucleon-nucleon interactions. The single-shell states and the corresponding matrix elements needed for describing Sn isotopes are reconstructed to calculate the coefficient of fractional parantage by reducing the calculation requirements. This reconstruction allows us to do the shell model calculations of the neutron deficient Sn isotopes in very reasonable time. The results are compared to the recent high-resolution experimental data and found to be in good agreement with experiments.

  11. Isotopic mass-dependence of noble gas diffusion coefficients inwater

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2007-06-25

    Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.

  12. Chromatographic zinc isotope separation by phenol formaldehyde benzo crown resin.

    Science.gov (United States)

    Ding, Xingcheng; Nomura, Masao; Suzuki, Tatsuya; Sugiyama, Yuichi; Kaneshiki, Toshitaka; Fujii, Yasuhiko

    2006-04-28

    New types of phenol formaldehyde resin having benzo crown as a functional group were synthesized and applied to zinc isotope chromatographic operation. Zinc adsorption and isotope separation capacities were dramatically improved by using phenol formaldehyde benzo-15-crown-5 resin. Zinc batch adsorption tests were performed by various dehydrated organic solvents. Separation coefficient, epsilon 8.1 x 10(-4) and height equivalent to a theoretical plate (HETP) 0.105 cm for the isotopic pair of 68Zn/64Zn in phenol formaldehyde benzo-15-crown-5 resin were obtained in the case of acetone as the solvent at 298+/-1K.

  13. Isotope and Nuclear Chemistry Division annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  14. Reduced thermal conductivity of isotopically modulated silicon multilayer structures

    DEFF Research Database (Denmark)

    Bracht, H.; Wehmeier, N.; Eon, S.;

    2012-01-01

    We report measurements of the thermal conductivity of isotopically modulated silicon that consists of alternating layers of highly enriched silicon-28 and silicon-29. A reduced thermal conductivity of the isotopically modulated silicon compared to natural silicon was measured by means of time......-resolved x-ray scattering. Comparison of the experimental results to numerical solutions of the corresponding heat diffusion equations reveals a factor of three lower thermal conductivity of the isotope structure compared to natural Si. Our results demonstrate that the thermal conductivity of silicon can...

  15. Analysis of uranium isotope separation by redox chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Fujine, S.; Naruse, Y.; Shiba, K.

    1983-09-01

    Uranium isotope separation by redox chromatography is analytically studied. The periodic withdrawal of products and tails and the introduction of natural feed are simulated on the assumption of a square cascade for a uranium adsorption band. The influences on the separative power and the lead time until product withdrawal are investigated by varying the magnitude of the isotope separation factor, uranium band length, tails concentration, and so on. Simulating calculations indicate that using ion-exchange resins to achieve uranium isotope separation requires a very long lead time for the production of highly enriched uranium.

  16. Calcium isotopic compositions of mid-ocean ridge basalts

    Science.gov (United States)

    Zhu, H.; Zhang, Z.; Sun, W.; Wang, G. Q.

    2015-12-01

    Previous studies have demonstrated that Earth's mantle has heterogeneous calcium isotopic compositions. But the reason why mantle has its heterogeneity remains uncertain. In general, δ44/40Ca values of mantle xenolith samples have a variation of >0.45‰. While ultramafic rocks, especially dunites, have higher δ44/40Ca values than volcanic rocks, and there is a positive correlation between δ44/40Ca and Ca/Mg. These phenomena imply that the heterogeneity of Ca isotopic compositions of mantle xenolith samples might result from different degrees of melt extraction, as indicated by large Ca isotopic fractionation between co-existing clinopyroxene and orthopyroxene. However, because ancient marine carbonate has its own unique calcium isotopic characteristics, recycling of even a small amount of ancient marine carbonates into the mantle could also cause the heterogeneity of Ca isotopes in Earth's mantle. This could be the reason why oceanic island basalts (OIB) have lighter Ca isotopic compositions than the mantle xenolith. Thus, the lighter Ca isotopic compositions in the mantle source cannot only be ascribed to magmatic processes. Therefore, it is more important to know calcium isotopic characteristics during partial melting and oceanic crust contamination.Mid-ocean ridge basalts (MORB) are formed from the partial melts of the upper mantle and are rarely affected by crustal contamination. Different types of MORB, including D-MORB, N-MORB and E-MORB, have experienced different degrees of partial melting and contamination of enriched end-members. Here we report calcium isotopic characteristic of different types of MORB, we believe it will be very helpful to understand the behaviors of Ca isotopes during partial melting and it is possible to provide further information to discover the reason why calcium isotopic compositions is heterogeneous in Earth's mantle. This work was supported by Natural Science Foundation of China (No. 41373007, No. 41490632 and No. 91328204

  17. The effect of dipolar interaction on the magnetic isotope effect

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pedersen, Jørgen Boiden; Lukzen, Nikita

    2010-01-01

    A multi-channel kinetic description is used to study the magnetic isotope effect (MIE) in zero magnetic field. The maximal isotope effect is equal to the number of channels, two for the hyperfine interaction but four for the electron spin dipole–dipole interaction of the intermediate radical pair....... Quantum mechanical calculations agree with these conclusion and show that large MIE may be obtained even in the presence of a strong exchange interaction. The observed magnesium isotope effect on the rate of enzymatic synthesis of adenosine triphosphate (ATP) is approximately 3 implying that the dipolar...

  18. Laser spectroscopy of gallium isotopes using the ISCOOL RFQ cooler

    CERN Multimedia

    Blaum, K; Kowalska, M; Ware, T; Procter, T J

    2007-01-01

    We propose to study the radioisotopes of gallium (Z=31) by collinear laser spectroscopy using the ISCOOL RFQ ion cooler. The proposed measurements on $^{62-83}$Ga will span both neutron-deficient and neutron-rich isotopes. Of key interest is the suggested development of a proton-skin in the neutron-deficient isotopes. The isotope shifts measured by laser spectroscopy will be uniquely sensitive to this feature. The measurements will also provide a wealth of new information on the gallium nuclear spins, static moments and nuclear charge radii.

  19. A first isotopic dietary study of the Greenlandic Thule Culture

    DEFF Research Database (Denmark)

    Nelson, D.E.; Lynnerup, Niels; Arneborg, J.

    2012-01-01

    The isotopic dietary method has been applied to samples of some 65 Thule Culture individuals from existing archaeological collections of Greenlandic human skeletal material. The aim was to use the Greenlandic Thule Culture as a test of the isotopic method, in that we know they were heavily...... was used as the basis for analysis. As expected, the results indicate that these people were almost entirely dependent on the marine biosphere for their protein. An exception is those from Northeast Greenland, whose isotopic signatures show evidence for consumption of terrestrial protein as well...

  20. Isotopic compositional Characteristics of Terrigenous Natural Gases in China

    Institute of Scientific and Technical Information of China (English)

    沈平; 徐永昌

    1993-01-01

    The C and H isotopic compositions of the methane in more than 160 gas samples from 10 basins in China are presented in this paper.The natural gases are classified as four types: biogenic gas ,bio-thermocatalytic transitional gas, gas associated with condensate oil ,and coal-type gas. The isotopic compositions of these gases closely related to the depositional basins, the types of organic matter,the stages of thermal evolution and the genetic characteristics of different gas reservoirs.Studies of the C and H isotopic compositions of terrigenous natural gases will provide valua-ble information on the prospecting and development of natural gases of different genetic types.