WorldWideScience

Sample records for actinium ions

  1. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes.

    Science.gov (United States)

    Radchenko, V; Engle, J W; Wilson, J J; Maassen, J R; Nortier, F M; Taylor, W A; Birnbaum, E R; Hudston, L A; John, K D; Fassbender, M E

    2015-02-06

    Actinium-225 (t1/2=9.92d) is an α-emitting radionuclide with nuclear properties well-suited for use in targeted alpha therapy (TAT), a powerful treatment method for malignant tumors. Actinium-225 can also be utilized as a generator for (213)Bi (t1/2 45.6 min), which is another valuable candidate for TAT. Actinium-225 can be produced via proton irradiation of thorium metal; however, long-lived (227)Ac (t1/2=21.8a, 99% β(-), 1% α) is co-produced during this process and will impact the quality of the final product. Thus, accurate assays are needed to determine the (225)Ac/(227)Ac ratio, which is dependent on beam energy, irradiation time and target design. Accurate actinium assays, in turn, require efficient separation of actinium isotopes from both the Th matrix and highly radioactive activation by-products, especially radiolanthanides formed from proton-induced fission. In this study, we introduce a novel, selective chromatographic technique for the recovery and purification of actinium isotopes from irradiated Th matrices. A two-step sequence of cation exchange and extraction chromatography was implemented. Radiolanthanides were quantitatively removed from Ac, and no non-Ac radionuclidic impurities were detected in the final Ac fraction. An (225)Ac spike added prior to separation was recovered at ≥ 98%, and Ac decontamination from Th was found to be ≥ 10(6). The purified actinium fraction allowed for highly accurate (227)Ac determination at analytical scales, i.e., at (227)Ac activities of 1-100 kBq (27 nCi to 2.7 μCi). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Spectroscopic and computational investigation of actinium coordination chemistry

    Science.gov (United States)

    Ferrier, Maryline G.; Batista, Enrique R.; Berg, John M.; Birnbaum, Eva R.; Cross, Justin N.; Engle, Jonathan W.; La Pierre, Henry S.; Kozimor, Stosh A.; Lezama Pacheco, Juan S.; Stein, Benjamin W.; Stieber, S. Chantal E.; Wilson, Justin J.

    2016-08-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac-Cl and Ac-OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1- ligands (3.2+/-1.1) than AmIII (0.8+/-0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour.

  3. Spectroscopic and computational investigation of actinium coordination chemistry

    Science.gov (United States)

    Ferrier, Maryline G.; Batista, Enrique R.; Berg, John M.; Birnbaum, Eva R.; Cross, Justin N.; Engle, Jonathan W.; La Pierre, Henry S.; Kozimor, Stosh A.; Lezama Pacheco, Juan S.; Stein, Benjamin W.; Stieber, S. Chantal E.; Wilson, Justin J.

    2016-01-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac–Cl and Ac–OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1– ligands (3.2±1.1) than AmIII (0.8±0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour. PMID:27531582

  4. Discovery of the actinium, thorium, protactinium, and uranium isotopes

    CERN Document Server

    Fry, C

    2012-01-01

    Currently, 31 actinium, 31 thorium, 28 protactinium, and 23 uranium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  5. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources.

    Science.gov (United States)

    Soderquist, Chuck Z; McNamara, Bruce K; Fisher, Darrell R

    2012-07-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclide with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing (223)Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity (223)Ra from (227)Ac. We obtained (227)Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity (223)Ra. We extracted (223)Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free (223)Ra product, and does not disturb the (227)Ac/(227)Th equilibrium. A high purity, carrier-free (227)Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of (223)Ra for research and new alpha-emitter radiopharmaceutical development.

  6. Relativistic small-core pseudopotentials for actinium, thorium, and protactinium.

    Science.gov (United States)

    Weigand, Anna; Cao, Xiaoyan; Hangele, Tim; Dolg, Michael

    2014-04-03

    Small-core pseudopotentials for actinium, thorium, and protactinium have been energy-adjusted to multiconfiguration Dirac-Hartree-Fock reference data based on the Dirac-Coulomb-Breit Hamiltonian and the Fermi nucleus model. Corresponding optimized valence basis sets of polarized valence quadruple-ζ quality are presented. Atomic test calculations for the first four ionization potentials show satisfactory results at both the Hartree-Fock and the multireference averaged coupled-pair functional level. Highly correlated Fock-space coupled cluster calculations demonstrate that the new pseudopotentials yield ionization potentials, which are in excellent agreement with corresponding all-electron results and experimental data. The pseudopotentials and basis sets supplement a similar set previously published for uranium.

  7. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, S., E-mail: s.raeder@gsi.de [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Bastin, B. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Block, M. [Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Institut für Kernchemie, Johannes Gutenberg Universität, 55128 Mainz (Germany); Creemers, P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Delahaye, P. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Ferrer, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Fléchard, X. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Franchoo, S. [Institute de Physique Nucléaire (IPN) d’Orsay, 91406 Orsay, Cedex (France); Ghys, L. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol (Belgium); Gaffney, L.P.; Granados, C. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heinke, R. [Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz (Germany); Hijazi, L. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); and others

    2016-06-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  8. Effects of spin-orbit coupling on actinium under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Ponce, A.; Rivera, J. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico (Mexico); Olguin, D. [Departamento de Fi sica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico (Mexico)

    2015-04-15

    Actinium (Ac) is a radioactive metal and the first element of the actinide series. At ambient conditions Ac crystallizes in the fcc lattice, however, up to date its phase diagram is unknown. In the present work, we have studied the structural and electronic properties of Ac under hydrostatic pressure assuming the fcc structure as well as three hypothetical structures, namely the hcp, bcc, and sc, and for pressures up to 100 GPa. From our calculations, we found only one structural transition allowed, from the fcc to hcp, our calculated pressure was 39.85 GPa. The calculations were performed by means of the full potential linearized augmented plane wave (FLAPW) method and the generalized gradient approximation (GGA) for the exchange-correlation energy, where we have included in our study the spin-orbit coupling which is important for heavy elements. The total energy results were fitted to the third order Birch-Murnaghan's equation of state. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  10. Report for General Research September 18 to December 11, 1950 (Actinium Volume)

    Energy Technology Data Exchange (ETDEWEB)

    Haring, M.M.

    1951-01-15

    The purpose of the research work presented in this volume is to develop a process for the separation and purification of actinium-227 produced by neutron bombardment of radium-226 and to develop methods by which uniform films of actinium metal may be deposited on metallic surfaces. The design work on the cave structure and mechanical equipment used in the actinium separation is proceeding on schedule. As the mechanical design phase is nearing completion the emphasis is being directed toward processing equipment. The process as well as the mechanical equipment has been adapted from the research work of F. T. Hagemann and the Remote Control Group at Argonne National Laboratory. Consequently, one of the first objectives is to become familiary with the chemistry of the process and the operation of the mechanical equipment. Cold runs have been made on the T.T.A. benzene extraction using lanthanum and barium in place of actinium and radium. No difficulty with the operation was observed. The formation of precipitates was one of the difficulties encountered with the process as the precipitates carry radium. It has been found that metals such as nickel cause these precipitates to form and should, therefore, be avoided in the construction of equipment. it was also found that a T.T.A. solution exposed to 0.5 curie of polonium over a period of days develops a precipitate. Some new mechanical features hav eshown promise. The use of copper-coated glassware which will hold together even though the glass is cracked has made it possible to replace custom-built heaters with standard heating mantles. A new graphite, silicone grease mixture appears to hold up in stopcocks handling benzene and, as a result, may eliminate the necessary of entering the cave for regreasing. Tests on the preparation of dense concrete have given results which meet the shielding requirements for the cave. A strippable paint and tape combination has been studied and specified to provide for decontamination of

  11. Analysis of the gamma spectra of the uranium, actinium, and thorium decay series

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M.H.

    1981-09-01

    This report describes the identification of radionuclides in the uranium, actinium, and thorium series by analysis of gamma spectra in the energy range of 40 to 1400 keV. Energies and absolute efficiencies for each gamma line were measured by means of a high-resolution germanium detector and compared with those in the literature. A gamma spectroscopy method, which utilizes an on-line computer for deconvolution of spectra, search and identification of each line, and estimation of activity for each radionuclide, was used to analyze soil and uranium tailings, and ore.

  12. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents.

    Science.gov (United States)

    Henriksen, Gjermund; Bruland, Oyvind S; Larsen, Roy H

    2004-01-01

    The present study explores the use of alpha-particle-emitting, bone-seeking agents as candidates for targeted radiotherapy. Actinium and thorium 1,4,7,10 tetraazacyclododecane N,N',N'',N''' 1,4,7,10-tetra(methylene) phosphonic acid (DOTMP) and thorium-diethylene triamine N,N',N'' penta(methylene) phosphonic acid (DTMP) were prepared and their biodistribution evaluated in conventional Balb/C mice at four hours after injection. All three bone-seeking agents showed a high uptake in bone and a low uptake in soft tissues. Among the soft tissue organs, only kidney had a relatively high uptake. The femur/kidney ratios for 227Th-DTMP, 228-Ac-DOTMP and 227Th-DOTMP were 14.2, 7.6 and 6.0, respectively. A higher liver uptake of 228Ac-DOTMP was seen than for 227Th-DTMP and 227Th-DOTMP. This suggests that some demetallation of the 228Ac-DOTMP complex had occurred. The results indicate that 225Ac-DOTMP, 227Th-DOTMP and 227Th-DTMP have promising properties as potential therapeutic bone-seeking agents.

  13. Radium-228 analysis of natural waters by Cherenkov counting of Actinium-228

    Energy Technology Data Exchange (ETDEWEB)

    Aleissa, Khalid A.; Almasoud, Fahad I.; Islam, Mohammed S. [Atomic Energy Research Institute, King Abdul Aziz City for Science and Technology, P.O. Box 6086, Riyadh 11442 (Saudi Arabia); L' Annunziata, Michael F. [IAEA Expert, Montague Group, P.O. Box 5033, Oceanside, CA 92052-5033 (United States)], E-mail: mlannunziata@cox.net

    2008-12-15

    The activities of {sup 228}Ra in natural waters were determined by the Cherenkov counting of the daughter nuclide {sup 228}Ac. The radium was pre-concentrated on MnO{sub 2} and the radium purified via ion exchange and, after a 2-day period of incubation to allow for secular equilibrium between the parent-daughter {sup 228}Ra({sup 228}Ac), the daughter nuclide {sup 228}Ac was isolated by ion exchange according to the method of Nour et al. [2004. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Appl. Radiat. Isot. 61, 1173-1178]. The Cherenkov photons produced by {sup 228}Ac were counted directly without the addition of any scintillation reagents. The optimum Cherenkov counting window, sample volume, and vial type were determined experimentally to achieve optimum Cherenkov photon detection efficiency and lowest background count rates. An optimum detection efficiency of 10.9{+-}0.1% was measured for {sup 228}Ac by Cherenkov counting with a very low Cherenkov photon background of 0.317{+-}0.013 cpm. The addition of sodium salicylate into the sample counting vial at a concentration of 0.1 g/mL yielded a more than 3-fold increase in the Cherenkov detection efficiency of {sup 228}Ac to 38%. Tests of the Cherenkov counting technique were conducted with several water standards of known activity and the results obtained compared closely with a conventional liquid scintillation counting technique. The advantages and disadvantages of Cherenkov counting compared to liquid scintillation counting methods are discussed. Advantages include much lower Cherenkov background count rates and consequently lower minimal detectable activities for {sup 228}Ra and no need for expensive environmentally unfriendly liquid scintillation cocktails. The disadvantages of the Cherenkov counting method include the need to measure {sup 228}Ac Cherenkov photon detection efficiency and optimum Cherenkov counting volume

  14. Radium-228 analysis of natural waters by Cherenkov counting of Actinium-228.

    Science.gov (United States)

    Aleissa, Khalid A; Almasoud, Fahad I; Islam, Mohammed S; L'Annunziata, Michael F

    2008-12-01

    The activities of (228)Ra in natural waters were determined by the Cherenkov counting of the daughter nuclide (228)Ac. The radium was pre-concentrated on MnO(2) and the radium purified via ion exchange and, after a 2-day period of incubation to allow for secular equilibrium between the parent-daughter (228)Ra((228)Ac), the daughter nuclide (228)Ac was isolated by ion exchange according to the method of Nour et al. [2004. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Appl. Radiat. Isot. 61, 1173-1178]. The Cherenkov photons produced by (228)Ac were counted directly without the addition of any scintillation reagents. The optimum Cherenkov counting window, sample volume, and vial type were determined experimentally to achieve optimum Cherenkov photon detection efficiency and lowest background count rates. An optimum detection efficiency of 10.9+/-0.1% was measured for (228)Ac by Cherenkov counting with a very low Cherenkov photon background of 0.317+/-0.013cpm. The addition of sodium salicylate into the sample counting vial at a concentration of 0.1g/mL yielded a more than 3-fold increase in the Cherenkov detection efficiency of (228)Ac to 38%. Tests of the Cherenkov counting technique were conducted with several water standards of known activity and the results obtained compared closely with a conventional liquid scintillation counting technique. The advantages and disadvantages of Cherenkov counting compared to liquid scintillation counting methods are discussed. Advantages include much lower Cherenkov background count rates and consequently lower minimal detectable activities for (228)Ra and no need for expensive environmentally unfriendly liquid scintillation cocktails. The disadvantages of the Cherenkov counting method include the need to measure (228)Ac Cherenkov photon detection efficiency and optimum Cherenkov counting volume, which are not at all required when liquid

  15. Transition wavelengths and unresolved transition array statistics of ions with Z = 72-89

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, D, E-mail: Deirdre.Kilbane@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland)

    2011-08-28

    Potential extreme ultraviolet and soft x-ray radiation sources have been identified, using the flexible atomic code (FAC), as emission peaks arising from the 4d-4f and 4p-4d transitions in Pd-like to Rb-like ions of hafnium through actinium. The effects of configuration interaction are investigated and for increasing nuclear charge, these strong emitters are seen to separate and move to shorter wavelengths. Each source is characterized using the unresolved transition array model. They are proposed to complement the currently used nitrogen and argon sources in the 'water window', and as possible successors to tin in next-generation lithography.

  16. Electronic structure and dynamics of ordered clusters with ME or RE ions on oxide surface

    Energy Technology Data Exchange (ETDEWEB)

    Kulagin, N.A., E-mail: nkulagin@bestnet.kharkov.u [Kharkiv National University for Radio Electronics, Avenue Shakespeare 6-48, 61045 Kharkiv (Ukraine)

    2011-03-15

    Selected data of ab initio simulation of the electronic structure and spectral properties of either cluster with ions of iron, rare earth or actinium group elements have been presented here. Appearance of doped Cr{sup +4} ions in oxides, Cu{sup +2} in HTSC, Nd{sup +2} in solids has been discussed. Analysis of experimental data for plasma created ordered structures of crystallites with size of about 10{sup -9} m on surface of separate oxides are given, too. Change in the spectroscopic properties of clusters and nano-structures on surface of strontium titanate crystals discussed shortly using the X-ray line spectroscopy experimental results. - Research highlights: External influence and variation of technology induce changes in valence of nl ions in compounds. Wave function of cluster presented as anti-symmetrical set of ions wave functions. The main equation describes the self-consistent field depending on state of all electrons of cluster. Level scheme of Cr{sup 4+} ions in octo- and tetra-site corresponds to doped oxides spectra after treatment. Plasma treatment effects in appearance of systems of unit crystallites with size of about 10{sup -6}-10{sup -9} m.

  17. An Ion Exchange Study of Possible Hydridized 5f Bonding in theActinides

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.M.; Street, Jr., K.; Seaborg, G.T.

    1951-08-28

    A study has been made of the elution behavior of curium(III), americium(III), plutonium(III), actinium(III), plutonium(IV), neptunium(IV), uraniuM(IV), thorium(IV), neptunium(V), plutonium (VI), uranium (VI), lanthanum(III), cerium(III), europium(III), ytterbium(III), ytterium(III), strontium(II), barium(II), radium(II), cesium(I) with 3.2 M, 6.2 M, 9.3 M, and 12.2 M HCl solutions from Dowex-50 cation exchange resin columns. These elutions show that in high concentrations of hydrochloric acid the actinides form complex ions with chloride ion to a much greater extent than the lanthanides. The strengths of the tripositive actinide complex ions apparently go in the order plutonium > americium> curium, although their ionic radii also decrease in this same order. To explain these results, a partial covalent character may be ascribed to the bonding in the transuranium complex ions. It is shown that a reasonable structure for such covalent bonding involves hybridization of the 5f orbitals in the actinide elements.

  18. Ion-Ion Neutralization.

    Science.gov (United States)

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  19. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  20. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin.

    Science.gov (United States)

    Nour, S; El-Sharkawy, A; Burnett, W C; Horwitz, E P

    2004-12-01

    The objective of this work was to establish a new procedure for 228Ra determination of natural waters via preconcentration of radium on MnO2 and separation of its daughter, 228Ac, using Diphonix ion exchange resin. Following removal of potential interferences via passage through an initial Diphonix Resin column, the first daughter of 228Ra, 228Ac, is isolated by chromatographic separation via a second Diphonix column. A holding time of > 30 h for 228Ac ingrowth in between the two column separations ensures secular equilibrium. Barium-133 is used as a yield tracer. Actinium-228 is eluted from the second Diphonix Resin with 5 ml 1M 1-Hydroxyethane-1,1-diphosphonic acid (HEDPA) and quantified by addition of scintillation cocktail and LSC counting. Radium (and 133Ba) from the load and rinse solutions from the 2nd Diphonix column may be prepared for alpha spectrometry (for determination of 223Ra, 224Ra, and 226Ra) by BaSO4 microprecipitation and filtration. Decontamination tests indicate that U, Th, and Ra series nuclides do not interfere with these measurements, although high contents of 90Sr (90Y) require additional treatment for accurate measurement of 228Ra. Addition of stable Sr as a "hold back" carrier during the initial MnO2 preconcentration step was shown to remove most 90Sr interference.

  1. Ion Chromatography.

    Science.gov (United States)

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  2. Ion focusing

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  3. ION VATAMANU

    Directory of Open Access Journals (Sweden)

    l. Povar

    2012-12-01

    Full Text Available Ion Vatamanu was a chemist, writer and public figure. He was equally passionate about both his chosen fields of activity: chemistry and poetry. Chemistry, with its perfect equilibrium of logic and precision, provided inspiration for lyrical creativity, whereas poetry writing enlivened his imagination and passion for chemistry. He loved his parents. He adored his wife Elena, whom he often gifted a sea of flowers. He loved his daughters Mihaela, Mariana, and Leontina. He loved life, and he loved people.

  4. Electron Beam Ion Sources

    OpenAIRE

    Zschornacka, G.; Schmidt, M.; Thorn, A.

    2014-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviole...

  5. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction...... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....

  6. Instrumentation: Ion Chromatography.

    Science.gov (United States)

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  7. ION GUN

    Science.gov (United States)

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  8. Ion funnel ion trap and process

    Science.gov (United States)

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  9. A negative ion source for alkali ions

    NARCIS (Netherlands)

    Vermeer, A.; Zwol, N.A. van

    1980-01-01

    An ion source is described which delivers negative alkali ions. With this source, which consists of a duoplasmatron and a charge exchange canal with alkali vapour, negative Li, Na and K ions are produced. The oven in which alkali metals are evaporated can reach temperatures up to 575°C.

  10. A negative ion source for alkali ions

    NARCIS (Netherlands)

    Vermeer, A.; Zwol, N.A. van

    1980-01-01

    An ion source is described which delivers negative alkali ions. With this source, which consists of a duoplasmatron and a charge exchange canal with alkali vapour, negative Li, Na and K ions are produced. The oven in which alkali metals are evaporated can reach temperatures up to 575°C.

  11. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  12. Microfabricated ion frequency standard

    Science.gov (United States)

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  13. Multicusp ion sources (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N. (Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States))

    1994-04-01

    During the last decade, different types of multicusp ion sources, such as high current, high concentration H[sup +], H[sup +][sub 2], or N[sup +] ion sources, negative ion sources, radio-frequency-driven sources, and high charge state ion sources have been developed at the Lawrence Berkeley Laboratory. This article reviews the history of the research and development of these ion sources and their applications.

  14. Ion sources for ion implantation technology (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Shigeki, E-mail: sakai-shigeki@nissin.co.jp; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki [Nissin Ion Equipment co., ltd, 575 Kuze-Tonoshiro-cho Minami-ku, Kyoto 601-8205 (Japan)

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  15. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  16. Ions and light

    CERN Document Server

    Bowers, Michael T

    2013-01-01

    Gas Phase Ion Chemistry, Volume 3: Ions and Light discusses how ions are formed by electron impact, ion-molecule reactions, or electrical discharge. This book discusses the use of light emitted by excited molecules to characterize either the chemistry that formed the excited ion, the structure of the excited ion, or both.Organized into 10 chapters, this volume begins with an overview of the extension of the classical flowing afterglow technique to include infrared and chemiluminescence and laser-induced fluorescence detection. This text then examines the experiments involving molecules that ar

  17. Production and ion-ion cooling of highly charged ions in electron string ion source.

    Science.gov (United States)

    Donets, D E; Donets, E D; Donets, E E; Salnikov, V V; Shutov, V B; Syresin, E M

    2009-06-01

    The scheme of an internal injection of Au atoms into the working space of the "Krion-2" electron string ion source (ESIS) was applied and tested. In this scheme Au atoms are evaporated from the thin tungsten wire surface in vicinity of the source electron string. Ion beams with charge states up to Au51+ were produced. Ion-ion cooling with use of C and O coolant ions was studied. It allowed increasing of the Au51+ ion yield by a factor of 2. Ions of Kr up to charge state 28+ were also produced in the source. Electron strings were first formed with injection electron energy up to 6 keV. Methods to increase the ESIS ion output are discussed.

  18. Ion mobility spectrometry

    CERN Document Server

    Eiceman, GA

    2005-01-01

    Key Developments for Faster, More Precise Detection Capabilities Driven by the demand for the rapid and advanced detection of explosives, chemical and biological warfare agents, and narcotics, ion mobility spectrometry (IMS) undergone significant refinements in technology, computational capabilities, and understanding of the principles of gas phase ion chemistry and mobility. Beginning with a thorough discussion of the fundamental theories and physics of ion mobility, Ion Mobility Spectrometry, Second Edition describes the recent advances in instrumentation and newly

  19. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  20. Ion trap simulation tools.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  1. [Development of metal ions analysis by ion chromatography].

    Science.gov (United States)

    Yu, Hong; Wang, Yuxin

    2007-05-01

    Analysis of metal ions by ion chromatography, including cation-exchange ion chromatography, anion-exchange ion chromatography and chelation ion chromatography, is reviewed. The cation-exchange ion chromatography is a main method for the determination of metal ions. Stationary phases in cation-exchange ion chromatography are strong acid cation exchanger (sulfonic) and weak acid cation exchanger (carboxylic). Alkali metal ions, alkaline earth metal ions, transition metal ions, rare earth metal ions, ammonium ions and amines can be analyzed by cation-exchange ion chromatography with a suitable detector. The anion-exchange ion chromatography is suitable for the separation and analysis of alkaline earth metal ions, transition metal ions and rare earth metal ions. The selectivity for analysis of metal ions with anion-exchange ion chromatography is good. Simultaneous determination of metal ions and inorganic anions can be achieved using anion-exchange ion chromatography. Chelation ion chromatography is suitable for the determination of trace metal ions in complex matrices. A total of 125 references are cited.

  2. Ion channels in asthma.

    Science.gov (United States)

    Valverde, Miguel A; Cantero-Recasens, Gerard; Garcia-Elias, Anna; Jung, Carole; Carreras-Sureda, Amado; Vicente, Rubén

    2011-09-23

    Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.

  3. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  4. Crater formation by single ions, cluster ions and ion "showers"

    CERN Document Server

    Djurabekova, Flyura; Timko, Helga; Nordlund, Kai; Calatroni, Sergio; Taborelli, Mauro; Wuensch, Walter

    2011-01-01

    The various craters formed by giant objects, macroscopic collisions and nanoscale impacts exhibit an intriguing resemblance in shapes. At the same time, the arc plasma built up in the presence of sufficiently high electric fields at close look causes very similar damage on the surfaces. Although the plasma–wall interaction is far from a single heavy ion impact over dense metal surfaces or the one of a cluster ion, the craters seen on metal surfaces after a plasma discharge make it possible to link this event to the known mechanisms of the crater formations. During the plasma discharge in a high electric field the surface is subject to high fluxes (~1025 cm-2s-1) of ions with roughly equal energies typically of the order of a few keV. To simulate such a process it is possible to use a cloud of ions of the same energy. In the present work we follow the effect of such a flux of ions impinging the surface in the ‘‘shower’’ manner, to find the transition between the different mechanisms of crater formati...

  5. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  6. Ion sources for heavy ion fusion (invited)

    Science.gov (United States)

    Yu, Simon S.; Eylon, S.; Chupp, W.; Henestroza, E.; Lidia, S.; Peters, C.; Reginato, L.; Tauschwitz, A.; Grote, D.; Deadrick, F.

    1996-03-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K+ ions of 950 mA peak from a 6.7 in. curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 μs. The measured normalized edge emittance of less than 1 π mm mrad is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described.

  7. Production of actinium-225 for alpha particle mediated radioimmunotherapy.

    Science.gov (United States)

    Boll, Rose A; Malkemus, Dairin; Mirzadeh, Saed

    2005-05-01

    The initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the alpha emitter (213)Bi in killing cancer cells. Bismuth-213 is obtained from a radionuclide generator system from decay of 10-days (225)Ac parent. Recent pre-clinical studies have also shown the potential application of both (213)Bi, and the (225)Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. This paper describes our five years of experience in production of (225)Ac in partial support of the on-going clinical trials. A four-step chemical process, consisting of both anion and cation exchange chromatography, is utilized for routine separation of carrier-free (225)Ac from a mixture of (228)Th, (229)Th and (232)Th. The separation of Ra and Ac from Th is achieved using the marcoporous anion exchange resin MP1 in 8M HNO(3) media. Two sequential MP1/NO(3) columns provide a separation factor of approximately 10(6) for Ra and Ac from Th. The separation of Ac from Ra is accomplished on a low cross-linking cation exchange resin AG50-X4 using 1.2M HNO(3) as eluant. Two sequential AG50/NO(3) columns provide a separation factor of approximately 10(2) for Ac from Ra. A 60-day processing schedule has been adopted in order to reduce the processing cost and to provide the highest levels of (225)Ac possible. Over an 8-week campaign, a total of approximately 100 mCi of (225)Ac (approximately 80% of the theoretical yield) is shipped in 5-6 batches, with the first batch typically consisting of approximately 50 mCi. After the initial separation and purification of Ac, the Ra pool is re-processed on a bi-weekly schedule or as needed to provide smaller batches of (225)Ac. The averaged radioisotopic purity of the (225)Ac was 99.6 +/- 0.7% with a (225)Ra content of < or =0.6%, and an average (229)Th content of (4(-4)(+5)) x 10(-5)%.

  8. Isolation of Actinium from Neutron-irradiated Thorium-I

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    Isolation of Actinium from Neutron-irradiated Thorium-I¥YangWeifan;YuanShuanggui;MuWantong;ZhangXueqian;LiZhongweiandZhaoLili...

  9. Negative ions in liquid helium

    Science.gov (United States)

    Khrapak, A. G.; Schmidt, W. F.

    2011-05-01

    The structure of negative ions in liquid 4He is analyzed. The possibility of cluster or bubble formation around impurity ions of both signs is discussed. It is shown that in superfluid helium, bubbles form around negative alkaline earth metal ions and clusters form around halogen ions. The nature of "fast" and "exotic" negative ions is also discussed. It is assumed that "fast" ions are negative ions of helium excimer molecules localized inside bubbles. "Exotic" ions are stable negative impurity ions, which are always present in small amounts in gas discharge plasmas. Bubbles or clusters with radii smaller the radius of electron bubbles develop around these ions.

  10. The acrylonitrile dimer ion

    Science.gov (United States)

    Ervasti, Henri K.; Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. Ae; Terlouw, Johan K.

    2007-04-01

    Large energy barriers prohibit the rearrangement of solitary acrylonitrile ions, CH2CHCN+, into their more stable hydrogen-shift isomers CH2CCNH+ or CHCH-CNH+. This prompted us to examine if these isomerizations occur by self-catalysis in acrylonitrile dimer ions. Such ions, generated by chemical ionization experiments of acrylonitrile with an excess of carbon dioxide, undergo five dissociations in the [mu]s time frame, as witnessed by peaks at m/z 53, 54, 79, 80 and 105 in their metastable ion mass spectrum. Collision experiments on these product ions, deuterium labeling, and a detailed computational analysis using the CBS-QB3 model chemistry lead to the following conclusions: (i) the m/z 54 ions are ions CH2CHCNH+ generated by self-protonation in ion-dipole stabilized hydrogen-bridged dimer ions [CH2CHCN...H-C(CN)CH2]+ and [CH2CHCN...H-C(H)C(H)CN]+; the proton shifts in these ions are associated with a small reverse barrier; (ii) dissociation of the H-bridged ions into CH2CCNH+ or CHCH-CNH+ by self-catalysis is energetically feasible but kinetically improbable: experiment shows that the m/z 53 ions are CH2CHCN+ ions, generated by back dissociation; (iii) the peaks at m/z 79, 80 and 105 correspond with the losses of HCN, C2H2 and H, respectively. The calculations indicate that these ions are generated from dimer ions that have adopted the (much more stable) covalently bound "head-to-tail" structure [CH2CHCN-C(H2)C(H)CN]+; experiments indicate that the m/z 79 (C5H5N) and m/z 105 (C6H6N2) ions have linear structures but the m/z 80 (C4H4N2) ions consist of ionized pyrimidine in admixture with its stable pyrimidine-2-ylidene isomer. Acrylonitrile is a confirmed species in interstellar space and our study provides experimental and computational evidence that its dimer radical cation yields the ionized prebiotic pyrimidine molecule.

  11. Materials analysis fast ions

    CERN Document Server

    Denker, A; Rauschenberg, J; Röhrich, J; Strub, E

    2006-01-01

    Materials analysis with ion beams exploits the interaction of ions with the electrons and nuclei in the sample. Among the vast variety of possible analytical techniques available with ion beams we will restrain to ion beam analysis with ion beams in the energy range from one to several MeV per mass unit. It is possible to use either the back-scattered projectiles (RBS – Rutherford Back Scattering) or the recoiled atoms itself (ERDA – Elastic Recoil Detection Analysis) from the elastic scattering processes. These techniques allow the simultaneous and absolute determination of stoichiometry and depth profiles of the detected elements. The interaction of the ions with the electrons in the sample produces holes in the inner electronic shells of the sample atoms, which recombine and emit X-rays characteristic for the element in question. Particle Induced X-ray Emission (PIXE) has shown to be a fast technique for the analysis of elements with an atomic number above 11.

  12. Correlation ion mobility spectroscopy

    Science.gov (United States)

    Pfeifer, Kent B.; Rohde, Steven B.

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  13. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  14. Peristaltic ion source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1995-08-01

    Conventional ion sources generate energetic ion beams by accelerating the plasma-produced ions through a voltage drop at the extractor, and since it is usual that the ion beam is to propagate in a space which is at ground potential, the plasma source is biased at extractor voltage. For high ion beam energy the plasma source and electrical systems need to be raised to high voltage, a task that adds considerable complexity and expense to the total ion source system. The authors have developed a system which though forming energetic ion beams at ground potential as usual, operates with the plasma source and electronics at ground potential also. Plasma produced by a nearby source streams into a grided chamber that is repetitively pulsed from ground to high positive potential, sequentially accepting plasma into its interior region and ejecting it energetically. They call the device a peristaltic ion source. In preliminary tests they`ve produced nitrogen and titanium ion beams at energies from 1 to 40 keV. Here they describe the philosophy behind the approach, the test embodiment that they have made, and some preliminary results.

  15. Ion Source DECRIS-3

    CERN Document Server

    Efremov, A; Lebedev, A N; Loginov, V N; Yazvitsky, N Yu

    1999-01-01

    The ECR ion source DECRIS-3 is the copy of the mVINIS ion source which was designed and built in Dubna for the TESLA Accelerator Installation (Belgrade, Yugoslavia) in 1997. The assembly of the source was completely finished in the end of 1998 and then it was installed at the FLNR ECR test bench. The source was successfully tested with some gases and metals by using the MIVOC technique. In nearest future the source will be capable of ECR plasma heating using two different frequencies simultaneously. We are also going to use the DECRIS-3 ion source to design 1+ -> n+ technique for the DRIBs (Dubna Radioactive Ion Beams) project.

  16. Heavy ion storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  17. Cold Strontium Ion Source for Ion Interferometry

    Science.gov (United States)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  18. Ion channels in toxicology.

    Science.gov (United States)

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2010-08-01

    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  19. Metal Ions in Unusual Valency States.

    Science.gov (United States)

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  20. Where do ions solvate?

    Indian Academy of Sciences (India)

    Yan Levin

    2005-06-01

    We study a simple model of ionic solvation inside a water cluster. The cluster is modeled as a spherical dielectric continuum. It is found that unpolarizable ions always prefer the bulk solvation. On the other hand, for polarizable ions, there exists a critical value of polarization above which surface solvation becomes energetically favorable for large enough water clusters.

  1. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  2. Microfabricated cylindrical ion trap

    Science.gov (United States)

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  3. Ion mobility sensor system

    Science.gov (United States)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  4. Lipid Ion Channels

    CERN Document Server

    Heimburg, Thomas

    2010-01-01

    The interpretation electrical phenomena in biomembranes is usually based on the assumption that the experimentally found discrete ion conduction events are due to a particular class of proteins called ion channels while the lipid membrane is considered being an inert electrical insulator. The particular protein structure is thought to be related to ion specificity, specific recognition of drugs by receptors and to macroscopic phenomena as nerve pulse propagation. However, lipid membranes in their chain melting regime are known to be highly permeable to ions, water and small molecules, and are therefore not always inert. In voltage-clamp experiments one finds quantized conduction events through protein-free membranes in their melting regime similar to or even undistinguishable from those attributed to proteins. This constitutes a conceptual problem for the interpretation of electrophysiological data obtained from biological membrane preparations. Here, we review the experimental evidence for lipid ion channels...

  5. Ion-by-ion Cooling efficiencies

    CERN Document Server

    Gnat, Orly

    2011-01-01

    We present ion-by-ion cooling efficiencies for low-density gas. We use Cloudy (ver. 08.00) to estimate the cooling efficiencies for each ion of the first 30 elements (H-Zn) individually. We present results for gas temperatures between 1e4 and 1e8K, assuming low densities and optically thin conditions. When nonequilibrium ionization plays a significant role the ionization states deviate from those that obtain in collisional ionization equilibrium (CIE), and the local cooling efficiency at any given temperature depends on specific non-equilibrium ion fractions. The results presented here allow for an efficient estimate of the total cooling efficiency for any ionic composition. We also list the elemental cooling efficiencies assuming CIE conditions. These can be used to construct CIE cooling efficiencies for non-solar abundance ratios, or to estimate the cooling due to elements not explicitly included in any nonequilibrium computation. All the computational results are listed in convenient online tables.

  6. Laser ion source for high brightness heavy ion beam

    Science.gov (United States)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  7. Ion channels in inflammation.

    Science.gov (United States)

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  8. Polarized negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  9. Ion optics of RHIC electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Kuznetsov, G. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  10. IN MEMORIAM ION VATAMANU

    Directory of Open Access Journals (Sweden)

    S.P. Palii

    2012-12-01

    Full Text Available A dreamer in his creative solitude, an objective and lucid analyst of history and contemporaneity, an energetic and decisive leader with an uncanny ability for crisis management – all these describe Ion Vatamanu. His wife Elena and daughters Mihaela, Mariana, Leontina treasure a personal universe in which the magical spark of Ion Vatamanu’s love and joy of life meld the everyday in and out of poetry. Ion Vatamanu’s instantaneous connection to the audiences and deeply felt words still touch the hearts of his many colleagues and friends. Downloads: 2

  11. Collective Ion Acceleration.

    Science.gov (United States)

    1980-01-01

    Bostick, Appl. Phys. Lett. 35, 296 (1979). 3. S. Humphries, R.N. Sudan, and IV. Condit, Appl. Phys. Lett. 26, 667 (1975). 4. D.S. Prono , J.M. Creedon, I...and to provide a good ion depenently by Creedon, Smith, and Prono ." In both source at the second anode A2. The ion flux from the of these approaches...and Ion Beam Research and Technology, (Ith- Let. 37, 1236 (1977). ac, New York,1977), Vol. 11, p. 819. 72. D. S. Prono , J. W. Shearer, and X J. Briggs

  12. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  13. Ion sound instability driven by ion beam

    CERN Document Server

    Koshkarov, O; Kaganovich, I D; Ilgisonis, V I

    2014-01-01

    In many natural and laboratory conditions, plasmas are often in the non-equilibrium state due to presence of stationary flows, when one particle species (or a special group, such as group of high energy particles, i.e. beam) is mowing with respect to the other plasma components. Such situations are common for a number of different plasma application such as diagnostics with emissive plasma probes, plasma electronics devices and electric propulsion devices. The presence of plasma flows often lead to the instabilities in such systems and subsequent development of large amplitude perturbations. The goal of this work is to develop physical insights and numerical tools for studies of stability of the excitation of the ion sound waves by the ion beam in the configuration similar to the plasma Pierce diode. This systems, in some limiting cases, reduce to mathematically similar equations originally proposed for Pierce instability. The finite length effect are crucial for this instability which generally belong to the...

  14. Ion specificities of artificial macromolecules.

    Science.gov (United States)

    Liu, Lvdan; Kou, Ran; Liu, Guangming

    2016-12-21

    Artificial macromolecules are well-defined synthetic polymers, with a relatively simple structure as compared to naturally occurring macromolecules. This review focuses on the ion specificities of artifical macromolecules. Ion specificities are influenced by solvent-mediated indirect ion-macromolecule interactions and also by direct ion-macromolecule interactions. In aqueous solutions, the role of water-mediated indirect ion-macromolecule interactions will be discussed. The addition of organic solvents to aqueous solutions significantly changes the ion specificities due to the formation of water-organic solvent complexes. For direct ion-macromolecule interactions, we will discuss specific ion-pairing interactions for charged macromolecules and specific ion-neutral site interactions for uncharged macromolecules. When the medium conditions change from dilute solutions to crowded environments, the ion specificities can be modified by either the volume exclusion effect, the variation of dielectric constant, or the interactions between ions, macromolecules, and crowding agents.

  15. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  16. [Particle therapy: carbon ions].

    Science.gov (United States)

    Pommier, Pascal; Hu, Yi; Baron, Marie-Hélène; Chapet, Olivier; Balosso, Jacques

    2010-07-01

    Carbon ion therapy is an innovative radiation therapy. It has been first proposed in the forties by Robert Wilson, however the first dedicated centres for human care have been build up only recently in Japan and Germany. The interest of carbon ion is twofold: 1) the very sharp targeting of the tumour with the so called spread out Bragg peak that delivers most of the beam energy in the tumour and nothing beyond it, sparing very efficiently the healthy tissues; 2) the higher relative biological efficiency compared to X rays or protons, able to kill radioresistant tumour cells. Both properties make carbon ions the elective therapy for non resectable radioresistant tumours loco-regionally threatening. The technical and clinical experience accumulated during the recent decades is summarized in this paper along with a detailed presentation of the elective indications. A short comparison between conventional radiotherapy and hadrontherapy is proposed for the indications which are considered as priority for carbon ions.

  17. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  18. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  19. Atomic negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Brage, T.

    1991-12-31

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given.

  20. Atomic negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Brage, T.

    1991-01-01

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given.

  1. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  2. Miniaturized Ion Mobility Spectrometer

    Science.gov (United States)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  3. Radio frequency ion source

    CERN Document Server

    Shen Guan Ren; Gao Fu; LiuNaiYi

    2001-01-01

    The study on Radio Frequency Ion Source is mainly introduced, which is used for CIAE 600kV ns Pulse Neutron Generator; and obtained result is also presented. The RF ion source consists of a diameter phi 25 mm, length 200 mm, coefficient of expansion =3.5 mA, beam current on target >=1.5 mA, beam spot =100 h.

  4. 2010 ion run: completed!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    After a very fast switchover from protons to lead ions, the LHC has achieved performances that allowed the machine to exceed both peak and integrated luminosity by a factor of three. Thanks to this, experiments have been able to produce high-profile results on ion physics almost immediately, confirming that the LHC was able to keep its promises for ions as well as for protons.   First direct observation of jet quenching. A seminar on 2 December was the opportunity for the ALICE, ATLAS and CMS collaborations to present their first results on ion physics in front of a packed auditorium. These results are important and are already having a major impact on the understanding of the physics processes that involve the basic constituents of matter at high energies. In the ion-ion collisions, the temperature is so high that partons (quarks and gluons), which are usually constrained inside the nucleons, are deconfined to form a highly dense and hot soup known as quark-gluon plasma (QGP). The existence of ...

  5. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  6. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  7. Operation of ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In 2001, ECR ion source was operated for HIRFL about 5138 hours and 8 species of ion beams, such as ~(12)C~(4+), ~(12)C~(5+), ~(36)Ar~(11+),~(13)C~(4+),~(40)Ca~(11+),~(40)Ar~(11+),~(56)Fe~(10+) and ~(18)O~(6+) were provided. Among these ions,~(56)Fe~(10+)is a new ion beam. In this period, 14 experiments of heavy ion physics application and nuclear research were finished.

  8. Clues From Pluto's Ions

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Nearly a year ago, in July 2015, the New Horizons spacecraft passed by the Pluto system. The wealth of data amassed from that flyby is still being analyzed including data from the Solar Wind Around Pluto (SWAP) instrument. Recent examination of this data has revealedinteresting new information about Plutos atmosphere and how the solar wind interacts with it.A Heavy Ion TailThe solar wind is a constant stream of charged particles released by the Sun at speeds of around 400 km/s (thats 1 million mph!). This wind travels out to the far reaches of the solar system, interacting with the bodies it encounters along the way.By modeling the SWAP detections, the authors determine the directions of the IMF that could produce the heavy ions detected. Red pixels represent IMF directions permitted. No possible IMF could reproduce the detections if the ions are nitrogen (bottom panels), and only retrograde IMF directions can produce the detections if the ions are methane. [Adapted from Zirnstein et al. 2016]New Horizons data has revealed that Plutos atmosphere leaks neutral nitrogen, methane, and carbon monoxide molecules that sometimes escape its weak gravitational pull. These molecules become ionized and are subsequently picked up by the passing solar wind, forming a tail of heavy ions behind Pluto. The details of the geometry and composition of this tail, however, had not yet been determined.Escaping MethaneIn a recent study led by Eric Zirnstein (Southwest Research Institute), the latest analysis of data from the SWAP instrument on board New Horizons is reported. The team used SWAPs ion detections from just after New Horizons closest approach to Pluto to better understand how the heavy ions around Pluto behave, and how the solar wind interacts with Plutos atmosphere.In the process of analyzing the SWAP data, Zirnstein and collaborators first establish what the majority of the heavy ions picked up by the solar wind are. Models of the SWAP detections indicate they are unlikely

  9. Molecular ion photofragment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O/sub 2//sup +/(/sup 4/..pi../sub u/) metastable state which is found to consist of two main components: the /sup 4/..pi../sub 5/2/ and /sup 4/..pi../sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the /sup 4/..pi../sub 3/2/ and /sup 4/..pi../sub 1/2/ spin components having a short lifetime (approx. 6 ms).

  10. A Multicusp Ion Source for Radioactive Ion Beams

    Science.gov (United States)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.

    1997-05-01

    In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.

  11. Cassini observations of ion cyclotron waves and ions anisotropy

    Science.gov (United States)

    Crary, F. J.; Dols, V. J.; Cassidy, T. A.; Tokar, R. L.

    2013-12-01

    In Saturn's equatorial, inner magnetosphere, the production of fresh ions in a pick-up distribution generates ion cyclotron waves. These waves are a sensitive indicator of fresh plasma production, but the quantitative relation between wave properties and ionization rates is nontrivial. We present a combined analysis of Cassini MAG and CAPS data, from a variety of equatorial orbits between 2005 and 2012. Using the MAG data, we determine the amplitude and peak frequency of ion cyclotron waves. From the CAPS data we extract the parallel and perpendicular velocity distribution of water group ions. We compare these results with hybrid simulations of the ion cyclotron instability and relate the observed wave amplitudes and ion velocity distributions to the production rate of pickup ions. The resulting relation between wave and plasma properties will allow us to infer ion production rates even at times when no direct ion measurements are available.

  12. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    Science.gov (United States)

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density.

  13. Experimental study of particle formation by ion-ion recombination

    Science.gov (United States)

    Nagato, Kenkichi; Nakauchi, Masataka

    2014-10-01

    Particle formation by ion-ion recombination has been studied using an ion-ion recombination drift tube (IIR-DT). IIR-DT uses two DC corona ionizers to produce positive and negative ions at the ends of the drift tube. The ions of different polarity move in opposite directions along the electric field in the drift tube. We observed significant particle formation using ions generated in purified air containing H2O, SO2, and NH3. Particle formation was suppressed when no drift field was applied. We also observed few particles when we used a single discharge (positive or negative only). These results clearly show that particle formation observed in the IIR-DT was caused by nucleation by ion-ion recombination. Positive and negative ion species produced by corona ionizers were investigated using an atmospheric pressure ionization mass spectrometer. The ions involved in the particle formation were suggested to include H3O+(H2O)n and NH4+(H2O)n for positive ions and sulfur-based ions such as SO5-, SO5-NO2, and HSO4- for negative ions.

  14. ION-1 technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Halbig, J.K.; Caine, J.C.

    1985-07-01

    The portable gamma-ray and neutron detector electronics (ION-1) gives a digital readout of the current-mode response produced by gamma rays in an ion chamber and of amplification and scaling of pulses received from a neutron detector. The primary application is the measurement of gamma-ray and neutron activity of irradiated reactor fuels stored at a reactor or at a storage pond away from a reactor. ION-1 is the first such instrument to use a design that allows communication of procedures, response, and results between instrument and inspector. It prompts the inspector through procedures, carries out programmed measurement steps, calculates results and error estimates, and performs internal diagnostic checks. This Technical Manual describes adjustment procedures and limited technical information that enable the inspector to troubleshoot at the board level. 5 figs., 10 tabs.

  15. Laser ion source for isobaric heavy ion collider experiment.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  16. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  17. Oxygen ion conductors

    Directory of Open Access Journals (Sweden)

    Stephen J Skinner

    2003-03-01

    A very interesting subgroup of this class of materials are the oxides that display oxygen ion conductivity. As well as the intrinsic interest in these materials, there has been a continued drive for their development because of the promise of important technological devices such as the solid oxide fuel cell (SOFC, oxygen separation membranes, and membranes for the conversion of methane to syngas1. All of these devices offer the potential of enormous commercial and ecological benefits provided suitable high performance materials can be developed. In this article we will review the materials currently under development for application in such devices with particular reference to some of the newly discovered oxide ion conductors.

  18. Microwave Discharge Ion Sources

    CERN Document Server

    Celona, L

    2013-01-01

    This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, stability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.

  19. Advanced penning ion source

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Thomas; Ji, Qing; Persaud, Arun; Sy, Amy V.

    2016-11-01

    This disclosure provides systems, methods, and apparatus for ion generation. In one aspect, an apparatus includes an anode, a first cathode, a second cathode, and a plurality of cusp magnets. The anode has a first open end and a second open end. The first cathode is associated with the first open end of the anode. The second cathode is associated with the second open end of the anode. The anode, the first cathode, and the second cathode define a chamber. The second cathode has an open region configured for the passage of ions from the chamber. Each cusp magnet of the plurality of cusp magnets is disposed along a length of the anode.

  20. Uranyl ion coordination

    Science.gov (United States)

    Evans, H.T.

    1963-01-01

    A review of the known crystal structures containing the uranyl ion shows that plane-pentagon coordination is equally as prevalent as plane-square or plane-hexagon. It is suggested that puckered-hexagon configurations of OH - or H2O about the uranyl group will tend to revert to plane-pentagon coordination. The concept of pentagonal coordination is invoked for possible explanations of the complex crystallography of the natural uranyl hydroxides and the unusual behavior of polynuclear ions in hydrolyzed uranyl solutions.

  1. Interferometry with Strontium Ions

    Science.gov (United States)

    Jackson, Jarom; Lambert, Enoch; Otterstrom, Nils; Jones, Tyler; Durfee, Dallin

    2014-05-01

    We describe progress on a cold ion matter-wave interferometer. Cold Strontium atoms are extracted from an LVIS. The atoms will be photo-ionized with a two-photon transition to an auto-ionizing state in the continuum. The ions will be split and recombined using stimulated Raman transitions from a pair of diode lasers injection locked to two beams from a master laser which have been shifted up and down by half the hyperfine splitting. We are developing laser instrumentation for this project including a method to prevent mode-hopping by analyzing laser frequency noise, and an inexpensive, robust wavelength meter. Supported by NSF Award No. 1205736.

  2. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  3. Analytical applications of ion exchangers

    CERN Document Server

    Inczédy, J

    1966-01-01

    Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th

  4. Ion-Acoustic Instabilities in a Multi-Ion Plasma

    Directory of Open Access Journals (Sweden)

    Noble P. Abraham

    2013-01-01

    Full Text Available We have, in this paper, studied the stability of the ion-acoustic wave in a plasma composed of hydrogen, positively and negatively charged oxygen ions, and electrons, which approximates very well the plasma environment around a comet. Modelling each cometary component (H+, O+, and O− by a ring distribution, we find that ion-acoustic waves can be generated at frequencies comparable to the hydrogen ion plasma frequency. The dispersion relation has been solved both analytically and numerically. We find that the ratio of the ring speed (u⊥s to the thermal spread (vts modifies the dispersion characteristics of the ion-acoustic wave. The contrasting behaviour of the phase velocity of the ion-acoustic wave in the presence of O− ions for u⊥s>vts (and vice versa can be used to detect the presence of negatively charged oxygen ions and also their thermalization.

  5. Ion-dust streaming instability with non-Maxwellian ions

    Energy Technology Data Exchange (ETDEWEB)

    Kählert, Hanno, E-mail: kaehlert@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, 24098 Kiel (Germany)

    2015-07-15

    The influence of non-Maxwellian ions on the ion-dust streaming instability in a complex plasma is investigated. The ion susceptibility employed for the calculations self-consistently accounts for the acceleration of the ions by a homogeneous background electric field and their collisions with neutral gas particles via a Bhatnagar-Gross-Krook collision term [e.g., A. V. Ivlev et al., Phys. Rev. E 71, 016405 (2005)], leading to significant deviations from a shifted Maxwellian distribution. The dispersion relation and the properties of the most unstable mode are studied in detail and compared with the Maxwellian case. The largest deviations occur at low to intermediate ion-neutral damping. In particular, the growth rate of the instability for ion streaming below the Bohm speed is found to be lower than in the case of Maxwellian ions, yet remains on a significant level even for fast ion flows above the Bohm speed.

  6. Ion Mass Determination

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (100) is described for determining the mass of ions, the apparatus configured to hold a plasma (101 ) having a plasma potential. The apparatus (100) comprises an electrode (102) having a surface extending in a surface plane and an insulator (104) interfacing with the electrode (102...

  7. Ion implantation in polymers

    Science.gov (United States)

    Wintersgill, M. C.

    1984-02-01

    An introductory overview will be given of the effects of ion implantation on polymers, and certain areas will be examined in more detail. Radiation effects in general and ion implantation in particular, in the field of polymers, present a number of contrasts with those in ionic crystals, the most obvious difference being that the chemical effects of both the implanted species and the energy transfer to the host may profoundly change the nature of the target material. Common effects include crosslinking and scission of polymer chains, gas evolution, double bond formation and the formation of additional free radicals. Research has spanned the chemical processes involved, including polymerization reactions achievable only with the use of radiation, to applied research dealing both with the effects of radiation on polymers already in commercial use and the tailoring of new materials to specific applications. Polymers are commonly divided into two groups, in describing their behavior under irradiation. Group I includes materials which form crosslinks between molecules, whereas Group II materials tend to degrade. In basic research, interest has centered on Group I materials and of these polyethylene has been studied most intensively. Applied materials research has investigated a variety of polymers, particularly those used in cable insulation, and those utilized in ion beam lithography of etch masks. Currently there is also great interest in enhancing the conducting properties of polymers, and these uses would tend to involve the doping capabilities of ion implantation, rather than the energy deposition.

  8. Photo ion spectrometer

    Science.gov (United States)

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  9. Anodes sliced with ions

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2006-01-01

    A detailed image of a complex fuel-cell anode structure, obtained through ion-beam milling, SEM imaging and advanced digital reconstruction, yields an accurate description of the three-dimensional structure, and enables correct prediction of the electrode's properties

  10. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...

  11. Ion transport from plasma ion source at ISOLTRAP

    CERN Document Server

    Steinsberger, Timo Pascal

    2017-01-01

    In this report, my work as CERN Summer Student at the ISOLTRAP experiment at ISOLDE is described. A new plasma ion source used as oine source for calibration and implemented before my arrival was commissioned and transportation settings for the produced ions to the ion traps were found. The cyclotron frequencies of 40Ar and the xenon isotopes 129-132Xe were measured using time-of-flight and phase-imaging ion-cyclotron-resonance mass spectroscopy.

  12. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  13. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  14. Lithium ion sources

    Science.gov (United States)

    Roy, Prabir K.; Greenway, Wayne G.; Grote, Dave P.; Kwan, Joe W.; Lidia, Steven M.; Seidl, Peter A.; Waldron, William L.

    2014-01-01

    A 10.9 cm diameter lithium alumino-silicate ion source has been chosen as a source of ˜100mA lithium ion current for the Neutralized Drift Compression Experiment (NDCX-II) at LBNL. Research and development was carried out on lithium alumino-silicate ion sources prior to NDCX-II source fabrication. Space-charge-limited emission with the current density exceeding 1 mA/cm2 was measured with 0.64 cm diameter lithium alumino-silicate ion sources at 1275 °C. The beam current density is less for the first 10.9 cm diameter NDCX-II source, and it may be due to an issue of surface coverage. The lifetime of a thin coated (on a tungsten substrate) source is varied, roughly 40-50 h, when pulsed at 0.05 Hz and with pulse length of 6μs each, i.e., a duty factor of 3×10-7, at an operating temperature of 1250-1275 °C. The 10.9 cm diameter source lifetime is likely the same as of a 0.64 cm source, but the lifetime of a source with a 2 mm diameter (without a tungsten substrate) is 10-15 h with a duty factor of 1 (DC extraction). The lifetime variation is dependent on the amount of deposition of β-eucryptite mass, and the surface temperature. The amount of mass deposition does not significantly alter the current density. More ion source work is needed to improve the large source performance.

  15. Lithium ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K., E-mail: pkroy@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California CA-94720 (United States); Greenway, Wayne G. [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California CA-94720 (United States); Grote, Dave P. [Lawrence Livermore National Laboratory LLC, CA-94550 (United States); Kwan, Joe W.; Lidia, Steven M.; Seidl, Peter A.; Waldron, William L. [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California CA-94720 (United States)

    2014-01-01

    A 10.9 cm diameter lithium alumino-silicate ion source has been chosen as a source of ∼100mA lithium ion current for the Neutralized Drift Compression Experiment (NDCX-II) at LBNL. Research and development was carried out on lithium alumino-silicate ion sources prior to NDCX-II source fabrication. Space-charge-limited emission with the current density exceeding 1 mA/cm{sup 2} was measured with 0.64 cm diameter lithium alumino-silicate ion sources at 1275 °C. The beam current density is less for the first 10.9 cm diameter NDCX-II source, and it may be due to an issue of surface coverage. The lifetime of a thin coated (on a tungsten substrate) source is varied, roughly 40–50 h, when pulsed at 0.05 Hz and with pulse length of 6μs each, i.e., a duty factor of 3×10{sup −7}, at an operating temperature of 1250–1275 °C. The 10.9 cm diameter source lifetime is likely the same as of a 0.64 cm source, but the lifetime of a source with a 2 mm diameter (without a tungsten substrate) is 10–15 h with a duty factor of 1 (DC extraction). The lifetime variation is dependent on the amount of deposition of β-eucryptite mass, and the surface temperature. The amount of mass deposition does not significantly alter the current density. More ion source work is needed to improve the large source performance.

  16. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  17. Device for separating non-ions from ions

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Yehia M.; Smith, Richard D.

    2017-01-31

    A device for separating non-ions from ions is disclosed. The device includes a plurality of electrodes positioned around a center axis of the device and having apertures therein through which the ions are transmitted. An inner diameter of the apertures varies in length. At least a portion of the center axis between the electrodes is non-linear.

  18. Unstable Electrostatic Ion Cyclotron Waves Exited by an Ion Beam

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Electrostatic ion cyclotron waves were observed in a quiescent cesium plasma into which a low‐energy beam of sodium ions was injected. The instability appeared when the beam velocity was above 12 times the ion thermal velocity. The waves propagated along the magnetic field with a velocity somewhat...

  19. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  20. Prolonging coherence in trapped ions

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available The authors study pulse sequences that dynamically decouple 9Be+ ions from their decohering environment. The noise environment the ions see is artificially synthesized to emulate a variety of physical systems. By incorporating measurement feedback...

  1. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  2. Membranes in lithium ion batteries.

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-07-04

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  3. Observations of Collective Ion Acceleration.

    Science.gov (United States)

    1981-01-01

    possible benefit can be listed. In cancer therapy, radiation produced by ion beams may be more selectively directed into tumors. Ion beams in spallation...34Autoresonant Accelerator Concept," Phys. Rev. Lett. 31, 1234 (1973). 50. S. Humphries, J. J. Lee, and R. N. Sudan, "Generation of Incense Pulsed Ion Beams

  4. Macroreticular chelating ion-exchangers.

    Science.gov (United States)

    Hirsch, R F; E Gancher, R; Russo, F R

    1970-06-01

    Two macroreticular chelating ion-exchangers have been prepared and characterized. One contains the iminodiacetate group and the second contains the arsonate group as the ion-exchanging site. The macroreticular resins show selectivities among metal ions similar to those of the commercially available naicroreticular chelating resins. Chromatographie separations on the new resins are rapid and sharp.

  5. An ion-optical bench for testing ion source lenses

    Science.gov (United States)

    Stoffels, J. J.; Ells, D. R.

    1988-06-01

    An ion-optical bench has been designed and constructed to obtain experimental data on the focusing properties of ion lenses in three dimensions. The heart of the apparatus is a position-sensitive detector (PSD) that gives output signals proportional to the x and y positions of each ion impact. The position signals can be displayed on an oscilloscope screen and analyzed by a two-parameter pulse-height analyzer, thereby giving a visual picture of the ion beam cross section and intensity distribution. The PSD itself is mounted on a track and is movable during operation from a position immediately following the ion lens to 30 cm away. This enables the rapid collection of accurate data on the intensity distribution and divergence angles of ions leaving the source lens. Examples of ion lens measurements are given.

  6. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  7. Ion-ion reactions for charge reduction of biopolymer at atmospheric pressure ambient

    Institute of Scientific and Technical Information of China (English)

    Yue Ming Zhou; Jian Hua Ding; Xie Zhang; Huan Wen Chen

    2007-01-01

    Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.

  8. Improving Ion Computed Tomography

    DEFF Research Database (Denmark)

    Hansen, David Christoffer

    2014-01-01

    -HIT, og de blev tilpasset eksperimentelle tværsnit. Modellerne passede godt med eksperimentelle målinger af kernefragmentation af kulstof i vand, hvorimod der var større afvigelser for neon. I tidligere undersøgelser af ion CT med ioner tungere end brint har dosis altid været meget høj, i flere tilfælde...... der normalt bruges ved røntgen CT, gav både helium og kulstof CT billeder med højere opløsning og mindre støj. Et alternativ til ion CT er "dual energy CT", dvs røntgen CT ved to forskellige bølgelængder. Dette giver også mulighed for en bedre bestemmelse af partiklernes rækkevidde, og der blev derfor...

  9. Trapping ions with lasers

    CERN Document Server

    Cormick, Cecilia; Morigi, Giovanna

    2010-01-01

    This work theoretically addresses the trapping an ionized atom with a single valence electron by means of lasers, analyzing qualitatively and quantitatively the consequences of the net charge of the particle. In our model, the coupling between the ion and the electromagnetic field includes the charge monopole and the internal dipole, within a multipolar expansion of the interaction Hamiltonian. Specifically, we perform a Power-Zienau-Woolley transformation, taking into account the motion of the center of mass. The net charge produces a correction in the atomic dipole which is of order $m_e/M$ with $m_e$ the electron mass and $M$ the total mass of the ion. With respect to neutral atoms, there is also an extra coupling to the laser field which can be approximated by that of the monopole located at the position of the center of mass. These additional effects, however, are shown to be very small compared to the dominant dipolar trapping term.

  10. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  11. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    an inspiring speech at the MIT Physics of Computation 1st Conference in 1981, Feynman proposed the development of a computer that would obey the...on ion trap based 36 quantum computing for physics and computer science students would include lecture notes, slides, lesson plans, a syllabus...reading lists, videos, demonstrations, and laboratories. 37 LIST OF REFERENCES [1] R. P. Feynman , “Simulating physics with computers,” Int. J

  12. Cooled Ion Frequency Standard.

    Science.gov (United States)

    2014-09-26

    when the cooling laser is turned off, the ions are heated by: (1) background gas collisions and (2) a plasma heating process which may be " resonant ...causes heating in our Penning traps. One way resonant particle transport is mediated is by misalignm.nt between the trap’s magnetic and electric axis...using computer solutions. The trap of Fig. 1 is noteworthy because although the inner surfaces of the trap are machined with simple conical cuts, the

  13. Novel laser ion sources

    CERN Document Server

    Fournier, P; Kugler, H; Lisi, N; Scrivens, R; Rodríguez, F V; Düsterer, S; Sauerbrey, R; Schillinger, H; Theobald, W; Veisz, L; Tisch, J W G; Smith, R A

    2000-01-01

    Development in the field of high-power laser systems with repetition rates of several Hz and energies of few joules is highly active and opening, giving new possibilities for the design of laser ions sources. Preliminary investigations on the use of four different laser and target configurations are presented: (1) A small CO/sub 2/ laser (100 mJ, 10.6 mu m) focused onto a polyethylene target to produce C ions at 1 Hz repetition rate (CERN). (2) An excimer XeCl laser (6 J, 308 nm) focused onto solid targets (Frascati). (3) A femtosecond Ti: sapphire laser (250 mJ, 800 nm) directed onto a solid targets (Jena). (4) A picosecond Nd: yttrium-aluminum-garnet (0.3 J, 532 nm) focused into a dense medium of atomic clusters and onto solid targets (London). The preliminary experimental results and the most promising schemes will be discussed with respect to the scaling of the production of high numbers of highly charged ions. Different lasers are compared in terms of current density at 1 m distance for each charge state...

  14. Ion channeling revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corona, Aldo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nguyen, Anh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  15. Ion Collision, Theory

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Anil K.

    2013-09-11

    The outcome of a collision between an ion and neutral species depends on the chemical and physical properties of the two reactants, their relative velocities, and the impact parameter of their trajectories. These include elastic and inelastic scattering of the colliding particles, charge transfer (including dissociative charge transfer), atom abstraction, complex formation and dissociation of the colliding ion. Each of these reactions may be characterized in terms of their energy-dependent rate coefficients, cross sections and reaction kinetics. A theoretical framework that emphasizes simple models and classical mechanics is presented for these processes. Collision processes are addressed in two categories of low-energy and high-energy collisions. Experiments under thermal or quasi-thermal conditions–swarms, drift tubes, chemical ionization and ion cyclotron resonance are strongly influenced by long-range forces and often involve collisions in which atom exchange and extensive energy exchange are common characteristics. High-energy collisions are typically impulsive, involve short-range intermolecular forces and are direct, fast processes.

  16. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  17. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    Energy Technology Data Exchange (ETDEWEB)

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  18. Characterization of ion dynamics in structures for lossless ion manipulations.

    Science.gov (United States)

    Tolmachev, Aleksey V; Webb, Ian K; Ibrahim, Yehia M; Garimella, Sandilya V B; Zhang, Xinyu; Anderson, Gordon A; Smith, Richard D

    2014-09-16

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radiofrequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radiofrequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be "soft" in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply static or transient electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling high quality ion mobility separations.

  19. Ion sources for energy extremes of ion implantation.

    Science.gov (United States)

    Hershcovitch, A; Johnson, B M; Batalin, V A; Kropachev, G N; Kuibeda, R P; Kulevoy, T V; Kolomiets, A A; Pershin, V I; Petrenko, S V; Rudskoy, I; Seleznev, D N; Bugaev, A S; Gushenets, V I; Litovko, I V; Oks, E M; Yushkov, G Yu; Masunov, E S; Polozov, S M; Poole, H J; Storozhenko, P A; Svarovski, A Ya

    2008-02-01

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P(2+) [8.6 pmA (particle milliampere)], P(3+) (1.9 pmA), and P(4+) (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb(3+)Sb(4+), Sb(5+), and Sb(6+) respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  20. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  1. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    Energy Technology Data Exchange (ETDEWEB)

    Segal, M. J., E-mail: mattiti@gmail.com [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); University of Cape Town, Rondebosch, Cape Town 7700 (South Africa); Bark, R. A.; Thomae, R. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A. [Joint Institute for Nuclear Research, Joloit-Curie 6, 141980 Dubna, Moscow Region (Russian Federation)

    2016-02-15

    An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.

  2. Negative Ion Confinement in the Multicusp Ion Source

    Science.gov (United States)

    Khodadadi Azadboni, Fatemeh; Sedaghatizade, Mahmood

    2010-04-01

    To optimize the negative ion source and generate intense beams of negative ions, understanding of transport properties of both electrons and negative ions is indispensable. Transport process of negative hydrogen ions (H-) in a multicusp H- source, has been simulated by three-dimensional Femlab simulation software. Multipolar plasma confinement is known to result in enhanced plasma density, homogeneous plasma of a large volume, and quiescent plasmas. The effect of plasma confinement by applying multi-polar magnetic field was investigated. Results are obtained for ten different configurations of permanent magnet and discussed. Full line cusps are found to give optimum plasma density. Negative ions created on the sidewall hardly can reach the center of the source due to trapping by the multicusp magnetic field. As a result, H- ions created on the sidewall do not have a significant effect on the H- current.

  3. Ion binding to biological macromolecules.

    Science.gov (United States)

    Petukh, Marharyta; Alexov, Emil

    2014-11-01

    Biological macromolecules carry out their functions in water and in the presence of ions. The ions can bind to the macromolecules either specifically or non-specifically, or can simply to be a part of the water phase providing physiological gradient across various membranes. This review outlines the differences between specific and non-specific ion binding in terms of the function and stability of the corresponding macromolecules. Furthermore, the experimental techniques to identify ion positions and computational methods to predict ion binding are reviewed and their advantages compared. It is indicated that specifically bound ions are relatively easier to be revealed while non-specifically associated ions are difficult to predict. In addition, the binding and the residential time of non-specifically bound ions are very much sensitive to the environmental factors in the cells, specifically to the local pH and ion concentration. Since these characteristics differ among the cellular compartments, the non-specific ion binding must be investigated with respect to the sub-cellular localization of the corresponding macromolecule.

  4. Charge Breeding of Radioactive Ions

    CERN Document Server

    Wenander, F J C

    2013-01-01

    Charge breeding is a technique to increase the charge state of ions, in many cases radioactive ions. The singly charged radioactive ions, produced in an isotope separator on-line facility, and extracted with a low kinetic energy of some tens of keV, are injected into a charge breeder, where the charge state is increased to Q. The transformed ions are either directed towards a dedicated experiment requiring highly charged ions, or post-accelerated to higher beam energies. In this paper the physics processes involved in the production of highly charged ions will be introduced, and the injection and extraction beam parameters of the charge breeder defined. A description of the three main charge-breeding methods is given, namely: electron stripping in gas jet or foil; external ion injection into an electron-beam ion source/trap (EBIS/T); and external ion injection into an electron cyclotron resonance ion source (ECRIS). In addition, some preparatory devices for charge breeding and practical beam delivery aspects ...

  5. Ion Channels in Neurological Disorders.

    Science.gov (United States)

    Kumar, Pravir; Kumar, Dhiraj; Jha, Saurabh Kumar; Jha, Niraj Kumar; Ambasta, Rashmi K

    2016-01-01

    The convergent endeavors of the neuroscientist to establish a link between clinical neurology, genetics, loss of function of an important protein, and channelopathies behind neurological disorders are quite intriguing. Growing evidence reveals the impact of ion channels dysfunctioning in neurodegenerative disorders (NDDs). Many neurological/neuromuscular disorders, viz, Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, and age-related disorders are caused due to altered function or mutation in ion channels. To maintain cell homeostasis, ion channels are playing a crucial role which is a large transmembrane protein. Further, these channels are important as it determines the membrane potential and playing critically in the secretion of neurotransmitter. Behind NDDs, losses of pathological proteins and defective ion channels have been reported and are found to aggravate the disease symptoms. Moreover, ion channel dysfunctions are eliciting a range of symptoms, including memory loss, movement disabilities, neuromuscular sprains, and strokes. Since the possible mechanistic role played by aberrant ion channels, their receptor and associated factors in neurodegeneration remained elusive; therefore, it is a challenging task for the neuroscientist to implement the therapeutics for targeting NDDs. This chapter reviews the potential role of the ion channels in membrane physiology and brain homeostasis, where ion channels and their associated factors have been characterized with their functional consequences in neurological diseases. Moreover, mechanistic role of perturbed ion channels has been identified in various NDDs, and finally, ion channel modulators have been investigated for their therapeutic intervention in treating common NDDs.

  6. Gas and metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Oaks, E. [High Current Electronics Institute, Tomsk (Russian Federation)]|[State Academy of Control System and Radioelectronics, Tomsk (Russian Federation); Yushkov, G. [High Current Electronics Institute, Tomsk (Russian Federation)

    1996-08-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of {approximately} 10{sup 17} cm{sup {minus}2} in some tens of minutes. So the average ion current density at the surface under treatment should be over 10{sup {minus}5} A/cm{sup 2}. The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from {approximately}1 kV (for the ion source used for surface sputtering) to {approximately}100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation).

  7. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  8. Ion channels in plants

    Science.gov (United States)

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742

  9. Carbon Ion Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Herrmann, Rochus;

    On the importance of choice of target size for selective boosting of hypoxic tumor subvolumina in carbon ion therapy Purpose: Functional imaging methods in radiotherapy are maturing and can to some extent uncover radio resistant structures found within a tumour entity. Selective boost of identified...... size and PTV position. Methods: Several treatment plans are produced with TRiP, using a 256x256x256 mm3 water phantom and SOBP optimization on physical dose. Box formed PTV volumes between 0.15 - 1010 cm3, and PTV positions ranging from 3 cm to 200 cm depth (relative...

  10. Surface Production of Ions

    Science.gov (United States)

    1992-05-26

    Hill, New York 1938) p. 60-64. 21. S. Dushman, Scientific Foundations of Vacuum Technique, Second Edition (John Wiley & Sons, New York, 1962) p. 91...hydrogen atom (or H + ion) from a metal surface is of funda- Liouville equation, whose solution involves the coupling ma- ’ Jonh . mental interest both from a...Appi. Phys. 50 (4), April 1979 IsB Chapman Glow Discharge Processes John Wiley and Sons New York, 1980 pp 114-115. -H. L. Cui, J. Vac. Sci. Tech. A 9

  11. A novel planar ion funnel design for miniature ion optics

    Science.gov (United States)

    Chaudhary, A.; van Amerom, Friso H. W.; Short, R. T.

    2014-10-01

    The novel planar ion funnel (PIF) design presented in this article emphasizes simple fabrication, assembly, and operation, making it amenable to extreme miniaturization. Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was fabricated on a 35 × 35 mm custom-designed printed circuit board (PCB) with a center hole for ions to pass through and a series of concentric circular metal rings of increasing diameter on the front side of the PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential divider that was soldered on the back of the PCB. The PIF was tested at 5.5 × 10-6 Torr in a vacuum test setup that was equipped with a broad-beam ion source on the front and a micro channel plate (MCP) ion detector on the back of the PIF. The ion current recorded on the MCP anode during testing indicated a 23× increase in the ion transmission through the PIF when electric potentials were applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel design with a much smaller footprint and simpler driving electronics than conventional 3D ion funnels. Future directions to improve the design and a possible micromachining approach to fabrication are discussed in the conclusions.

  12. Electron beam ion source and electron beam ion trap (invited).

    Science.gov (United States)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  13. Electron beam ion source and electron beam ion trap (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  14. Enhanced secondary ion emission with a bismuth cluster ion source

    Science.gov (United States)

    Nagy, G.; Walker, A. V.

    2007-04-01

    We have investigated the mechanism of secondary ion yield enhancement using Bin+ (n = 1-6) primary ions and three different samples - dl-phenylalanine, Irganox 1010 and polystyrene - adsorbed on Al, Si and Ag substrates. The largest changes in secondary ion yields are observed for Bi2+ and Bi3+ primary ions. Smaller increases in secondary ion yield are found using Bi4+, Bi5+ and Bi6+ projectiles. The secondary ion yield enhancements are generally larger on Si than on Al. Using Bin+ structures obtained from density functional theory (DFT) calculations we demonstrate that the yield enhancements cannot be explained by an increase in the deposited energy density (energy per area) into the substrate. These data show that the mechanism of Bin+ sputtering is very similar to that for Aun+ primary ion beams. When a polyatomic primary ion strikes the substrate, its constituent atoms are likely to remain near to each other, and so a substrate atom can be struck simultaneously by multiple atoms. The action of these multiple concerted impacts leads to efficient energy transfer in the near surface region and an increase in the number of secondary ions ejected from the surface. Such concerted impacts involve one, two or three projectile atoms, which explains well the nonlinear yield enhancements observed going from Bi+ to Bi2+ to Bi3+.

  15. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  16. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  17. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  18. Negative hydrogen ion production mechanisms

    Science.gov (United States)

    Bacal, M.; Wada, M.

    2015-06-01

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  19. Rectangular ion funnel: a new ion funnel interface for structures for lossless ion manipulations.

    Science.gov (United States)

    Chen, Tsung-Chi; Webb, Ian K; Prost, Spencer A; Harrer, Marques B; Norheim, Randolph V; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D

    2015-01-06

    Structures for lossless ion manipulations (SLIM) have recently demonstrated the ability for near lossless ion focusing, transfer, and trapping in subatmospheric pressure regions. While lossless ion manipulations are advantageously applied to the applications of ion mobility separations and gas phase reactions, ion introduction through ring electrode ion funnels or more conventional ion optics to SLIM can involve discontinuities in electric fields or other perturbations that result in ion losses. In this work, we developed and investigated a new funnel design that aims to seamlessly couple to SLIM at the funnel exit. This rectangular ion funnel (RIF) was initially evaluated by ion simulations, fabricated utilizing printed circuit board technology, and tested experimentally. The RIF was integrated to a SLIM-time of flight (TOF) MS system, and the operating parameters, including RF, DC bias of the RIF electrodes, and electric fields for effectively interfacing with a SLIM, were characterized. The RIF provided a 2-fold sensitivity increase without significant discrimination over a wide m/z range and well matched to that of SLIM, along with greatly improved SLIM operational stability.

  20. Electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M.A. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  1. Ion-atom hybrid systems

    CERN Document Server

    Willitsch, Stefan

    2014-01-01

    The study of interactions between simultaneously trapped cold ions and atoms has emerged as a new research direction in recent years. The development of ion-atom hybrid experiments has paved the way for investigating elastic, inelastic and reactive collisions between these species at very low temperatures, for exploring new cooling mechanisms of ions by atoms and for implementing new hybrid quantum systems. The present lecture reviews experimental methods, recent results and upcoming developments in this emerging field.

  2. Bucharest heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceausescu, V.; Dobrescu, S.; Duma, M.; Indreas, G.; Ivascu, M.; Papureanu, S.; Pascovici, G.; Semenescu, G.

    1986-02-15

    The heavy ion accelerator facility of the Heavy Ion Physics Department at the Institute of Physics and Nuclear Engineering in Bucharest is described. The Tandem accelerator development and the operation of the first stage of the heavy ion postaccelerating system are discussed. Details are given concerning the resonance cavities, the pulsing system matching the dc beam to the RF cavities and the computer control system.

  3. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  4. Experimental investigation of ion-ion recombination at atmospheric conditions

    Directory of Open Access Journals (Sweden)

    A. Franchin

    2015-02-01

    Full Text Available We present the results of laboratory measurements of the ion-ion recombination coefficient at different temperatures, relative humidities and concentrations of ozone and sulfur dioxide. The experiments were carried out using the Cosmics Leaving OUtdoor Droplets (CLOUD chamber at CERN, the walls of which are made of conductive material, making it possible to measure small ions. We produced ions in the chamber using a 3.5 GeV c−1 beam of positively-charged pions (π+ from the CERN Proton Synchrotron (PS and with galactic cosmic rays, when the PS was switched off. The range of the ion production rate varied from 2 to 100 cm−3s−1, covering the typical range of ionization throughout the troposphere. The temperature ranged from −55 to 20 °C, the relative humidity from 0 to 70%, the SO2 concentration from 0 to 40 ppb, and the ozone concentration from 200 to 700 ppb. At 20 °C and 40% RH, the retrieved ion-ion recombination coefficient was (2.3 ± 0.7 × 10−6cm3s−1. We observed no dependency of the ion-ion recombination coefficient on ozone concentration and a weak variation with sulfur dioxide concentration. However, we found a strong dependency of the ion-ion recombination coefficient on temperature. We compared our results with three different models and found an overall agreement for temperatures above 0 °C, but a disagreement at lower temperatures. We observed a strong dependency of the recombination coefficient on relative humidity, which has not been reported previously.

  5. Pattern formation with trapped ions

    CERN Document Server

    Lee, Tony E

    2010-01-01

    We propose an experiment to study collective behavior in a nonlinear medium of trapped ions. Using laser cooling and heating and an anharmonic trap potential, one can turn an ion into a nonlinear van der Pol-Duffing oscillator. A chain of ions interacting electrostatically has stable plane waves for all parameters. The system also behaves like an excitable medium, since a sufficiently large perturbation generates a travelling pulse. Small chains exhibit multistability and limit cycles. We account for noise from spontaneous emission in the amplitude equation and find that the patterns are observable for realistic experimental parameters. The tunability of ion traps makes them an exciting setting to study nonequilibrium statistical physics.

  6. The Toledo heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Haar, R.R. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Beideck, D.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Curtis, L.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Kvale, T.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Sen, A. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Schectman, R.M. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Stevens, H.W. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States))

    1993-06-01

    The recently installed 330 kV electrostatic positive ion accelerator at the University of Toledo is described. Experiments have been performed using ions ranging from H[sup +] to Hg[sup 2+] and exotic molecules such as HeH[sup +]. Most of these experiments involve the beam-foil studies of the lifetimes of excited atomic states and the apparatus used for these experiments is also described. Another beamline is available for ion-implantation. The Toledo heavy ion accelerator facility welcomes outside users. (orig.)

  7. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  8. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Branch of Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S. [Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Dugin, S.; Alexeyenko, O. [State Scientific Center of the Russian Federation State Research Institute for Chemistry and Technology of Organoelement Compounds, Moscow (Russian Federation)

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  9. Vaporization wave model for ion-ion central collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M.; Giansiracusa, G.; Piccitto, G. (Catania Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Catania (Italy))

    1983-09-24

    We propose a simple model for central or nearly central ion-ion collisions at intermediate energies. It is based on the ''vaporization wave model'' developed by Bennett for macroscopic objects. The model offers a simple explanation of the observed deuteron/proton abundancy ratio as a function of the beam energy.

  10. Vaporization wave model for ion-ion central collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M.; Giansiracusa, G.; Piccitto, G. (Catania Univ. (Italy). Ist. di Fisica)

    1983-09-24

    A simple model for central or nearly central ion-ion collisions at intermediate energies is proposed. It is based on the ''vaporization wave model'' developed by Bennet for macroscopic objects. The model offers a simple explanation of the observed deuteron/proton abundancy ratio as a function of the beam energy.

  11. Nonlinear Evolution of the Ion-Ion Beam Instability

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.

    1982-01-01

    The criterion for the existence of vortexlike ion phase-space configurations, as obtained by a standard pseudopotential method, is found to coincide with the criterion for the linear instability for two (cold) counterstreaming ion beams. A nonlinear equation is derived, which demonstrates...

  12. Ion-Bombardment of X-Ray Multilayer Coatings - Comparison of Ion Etching and Ion Assisted Deposition

    NARCIS (Netherlands)

    Puik, E. J.; van der Wiel, M. J.; Zeijlemaker, H.; Verhoeven, J.

    1991-01-01

    The effects of two forms of ion bombardment treatment on the reflectivity of multilayer X-ray coatings were compared: ion etching of the metal layers, taking place after deposition, and ion bombardment during deposition, the so-called ion assisted deposition. The ion beam was an Ar+ beam of 200 eV,

  13. Effects of ion/ion proton transfer reactions on conformation of gas-phase cytochrome c ions.

    Science.gov (United States)

    Zhao, Qin; Schieffer, Gregg M; Soyk, Matthew W; Anderson, Timothy J; Houk, R S; Badman, Ethan R

    2010-07-01

    Positive ions from cytochrome c are studied in a 3-D ion trap/ion mobility (IM)/quadrupole-time-of-flight (TOF) instrument with three independent ion sources. The IM separation allows measurement of the cross section of the ions. Ion/ion reactions in the 3-D ion trap that remove protons cause the cytochrome c ions to refold gently without other degradation of protein structure, i.e., fragmentation or loss of heme group or metal ion. The conformation(s) of the product ions generated by ion/ion reactions in a given charge state are similar regardless of whether the cytochrome c ions are originally in +8 or +9 charge states. In the lower charge states (+1 to +5) cytochrome c ions made by the ion/ion reaction yield a single IM peak with cross section of approximately 1110 to 1180 A(2), even if the original +8 ion started with multiple conformations. The conformation expands slightly when the charge state is reduced from +5 to +1. For product ions in the +6 to +8 charge states, ions created from higher charge states (+9 to +16) by ion/ion reaction produce more compact conformation(s) in somewhat higher abundances compared with those produced directly by the electrospray ionization (ESI) source. For ions in intermediate charge states that have a variety of resolvable conformers, the voltage used to inject the ions into the drift tube, and the voltage and duration of the pulse that extracts ions from the ion trap, can affect the observed abundances of various conformers.

  14. Negative chlorine ions from multicusp radio frequency ion source for heavy ion fusion applications

    Science.gov (United States)

    Hahto, S. K.; Hahto, S. T.; Kwan, J. W.; Leung, K. N.; Grisham, L. R.

    2003-06-01

    Use of high mass atomic neutral beams produced from negative ions as drivers for inertial confinement fusion has been suggested recently. Best candidates for the negative ions would be bromine and iodine with sufficiently high mass and electron affinity. These materials require a heated vapor ion source. Chlorine was selected for initial testing because it has similar electron affinity to those of bromine and iodine, and is available in gaseous form. An experiment was set up by the Plasma and Ion Source Technology Group in Lawrence Berkeley National Laboratory to measure achievable current densities and other beam parameters by using a rf driven multicusp ion source [K. N. Leung, Rev. Sci. Instrum. 65, 1165 (1994); Q. Ji et al., Rev. Sci. Instrum. 73, 822 (2002)]. Current density of 45 mA/cm2 was achieved with 99.5% of the beam as atomic negative chlorine at 2.2 kW of rf power. An electron to negative ion ratio as low as 7 to 1 was observed, while the ratio of positive and negative chlorine ion currents was 1.3. This in addition to the fact that the front plate biasing had almost no effect to the negative chlorine ion and electron currents indicates that a very high percentage of the negative charge in the extraction area of the ion source was in form of Cl- ions. A comparison of positive and negative chlorine ion temperatures was conducted with the pepper pot emittance measurement technique and very similar transverse temperature values were obtained for positive and negative chlorine ions.

  15. Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.; Draeger, Erik W.; Pascucci, Valerio; Bremer, Peer-Timo; Lordi, Vincenzo; Pask, John E.

    2017-03-16

    Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvation structure, while the counterion, PF6– undergoes more Brownian-like motion. Our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.

  16. New Developments of a Laser Ion Source for Ion Synchrotrons

    CERN Document Server

    Kondrashev, S; Konukov, K; Sharkov, B Yu; Shumshurov, A V; Camut, O; Chamings, J A; Kugler, H; Scrivens, R; Charushin, A; Makarov, K; Satov, Yu; Smakovskii, Yu

    2004-01-01

    Laser Ion Sources (LIS) are well suited to filling synchrotron rings with highly charged ions of almost any element in a single turn injection mode. We report the first measurements of the LIS output parameters for Pb27+ ions generated by the new 100 J/1 Hz Master Oscillator - Power Amplifier CO2-laser system. A new LIS has been designed, built and tested at CERN, as an ion source for ITEP-TWAC accelerator/accumulator facility, and as a possible future source for an upgrade of the Large Hadron Collider (LHC) injector chain. The use of the LIS based on 100 J/1 Hz CO2-laser together with the new ion LINAC, as injector for ITEP-TWAC project, is discussed..

  17. Ion-conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard L.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2016-06-21

    An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-R.sub.s. R.sub.s is selected from the group consisting of imidazoliums and pyridiniums. The composition contains 10%-90% by weight of vinylbenzyl-R.sub.s. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  18. Optical Barium Ion Qubit

    CERN Document Server

    Yum, Dahyun; Dutta, Tarun; Mukherjee, Manas

    2016-01-01

    We demonstrate an optical single qubit based on 6S1/2 to 5D5/2 quadrupole transition of a single Ba+ ion operated by diode based lasers only. The resonance wavelength of the 6S1/2 to 5D5/2 quadrupole transition is about 1762 nm which suitably falls close to the U-band of the telecommunication wavelength. Thus this qubit is a naturally attractive choice towards implementation of quantum repeater or quantum networks using existing telecommunication networks. We observe continuous bit-flip oscillations at a rate of about 250 kHz which is fast enough for the qubit operation as compared to the measured coherence time of over 3 ms. We also present a technique to quantify the bit-flip error in each qubit NOT gate operation.

  19. Ion-proton pulsars

    Science.gov (United States)

    Jones, P. B.

    2016-07-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  20. Ion-conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2017-02-28

    An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-R.sub.s. R.sub.s is selected from the group consisting of imidazoliums, pyridiniums, pyrazoliums, pyrrolidiniums, pyrroliums, pyrimidiums, piperidiniums, indoliums, and triaziniums. The composition contains 10%-90% by weight of vinylbenzyl-R.sub.s. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  1. Ion-proton pulsars

    CERN Document Server

    Jones, P B

    2016-01-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  2. Nanobeam production with the multicusp ion source

    Science.gov (United States)

    Lee, Y.; Ji, Q.; Leung, K. N.; Zahir, N.

    2000-02-01

    A 1.8-cm-diam multicusp ion source to be used for focused ion beam applications has been tested for Xe, He, Ne, Ar, and Kr ions. The extractable ion and electron currents were measured. The extractable ion current is similar for all these ion species except for Ne+, but the extractable electron current behaves quite differently. The multicusp ion source will be used with a combined extractor-collimator electrode system that can provide a few hundred nA of Xe+ or Kr+ ions. Ion optics computation indicates that these beams can be further focused with an electrostatic column to a beam spot size of ˜100 nm.

  3. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  4. Ion beams in materials processing and analysis

    CERN Document Server

    Schmidt, Bernd

    2012-01-01

    This book covers ion beam application in modern materials research, offering the basics of ion beam physics and technology and a detailed account of the physics of ion-solid interactions for ion implantation, ion beam synthesis, sputtering and nano-patterning.

  5. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I d

  6. Quantum computing with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  7. Ion-selective electrodes, 3

    Energy Technology Data Exchange (ETDEWEB)

    Pungor, E. (ed.)

    1981-01-01

    Thirty-two papers which were presented at the Third Symposium on Ion-Selective Electrodes are presented in this Proceedings. These papers dealt with standardization, fabrication, chemical properties of ion-selective electrodes and their application. Selected papers have been abstracted and indexed separately for the data base. (ATT)

  8. Energetic ions in ITER plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pinches, S. D. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul-lez-Durance Cedex (France); Chapman, I. T.; Sharapov, S. E. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Lauber, Ph. W. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmanstraße 2, D-85748 Garching (Germany); Oliver, H. J. C. [H H Wills Physics Laboratory, University of Bristol, Royal Fort, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shinohara, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Tani, K. [Nippon Advanced Technology Co., Ltd, Naka, Ibaraki 311-0102 (Japan)

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  9. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  10. Hooded arc ion-source

    CERN Multimedia

    1972-01-01

    The positioning system for the hooded arc ion-source, shown prior to mounting, consists of four excentric shafts to locate the ion-source and central electrodes. It will be placed on the axis of the SC and introduced into the vacuum tank via the air locks visible in the foreground.

  11. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  12. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.

    2009-01-01

    Transmission of a few keV impact energy Ne ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we...

  13. Cryogenic silicon surface ion trap

    CERN Document Server

    Niedermayr, Michael; Kumph, Muir; Partel, Stefan; Edlinger, Johannes; Brownnutt, Michael; Blatt, Rainer

    2014-01-01

    Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise the full potential of such systems and make scalable trapped-ion quantum computing a reality, there exist a number of practical problems which must be solved. These include tackling the observed high ion-heating rates and creating scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single $^{40}$Ca$^+$ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as $\\dot{\\bar{n}}=$ 0.33 phonons/s at an ion-electrode distance of 230 $\\mu$m. These results open many new avenues to arrays of micro-fabricated ion traps.

  14. Energetic ions in ITER plasmas

    Science.gov (United States)

    Pinches, S. D.; Chapman, I. T.; Lauber, Ph. W.; Oliver, H. J. C.; Sharapov, S. E.; Shinohara, K.; Tani, K.

    2015-02-01

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma ( r / a > 0.5 ) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  15. Analyzing ion distributions around DNA.

    Science.gov (United States)

    Lavery, Richard; Maddocks, John H; Pasi, Marco; Zakrzewska, Krystyna

    2014-07-01

    We present a new method for analyzing ion, or molecule, distributions around helical nucleic acids and illustrate the approach by analyzing data derived from molecular dynamics simulations. The analysis is based on the use of curvilinear helicoidal coordinates and leads to highly localized ion densities compared to those obtained by simply superposing molecular dynamics snapshots in Cartesian space. The results identify highly populated and sequence-dependent regions where ions strongly interact with the nucleic and are coupled to its conformational fluctuations. The data from this approach is presented as ion populations or ion densities (in units of molarity) and can be analyzed in radial, angular and longitudinal coordinates using 1D or 2D graphics. It is also possible to regenerate 3D densities in Cartesian space. This approach makes it easy to understand and compare ion distributions and also allows the calculation of average ion populations in any desired zone surrounding a nucleic acid without requiring references to its constituent atoms. The method is illustrated using microsecond molecular dynamics simulations for two different DNA oligomers in the presence of 0.15 M potassium chloride. We discuss the results in terms of convergence, sequence-specific ion binding and coupling with DNA conformation.

  16. Bundle Security Protocol for ION

    Science.gov (United States)

    Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher

    2011-01-01

    This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.

  17. Ion sources for cyclotron applications

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N.; Bachman, D.A.; McDonald, D.S.; Young, A.T.

    1992-07-01

    The use of a multicusp plasma generator as an ion source has many advantages. The development of both positive and negative ion beams based on the multicusp source geometry is presented. It is shown that these sources can be operated at steady state or cw mode. As a result they are very suitable for cyclotron operations.

  18. Ion bombardment of polyimide films

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, B. J.; Vasile, M. J.

    1989-07-01

    Surface modification techniques such as wet chemical etching, oxidizing flames, and plasma treatments (inert ion sputtering and reactive ion etching) have been used to change the surface chemistry of polymers and improve adhesion. With an increase in the use of polyimides for microelectronic applications, the technique of ion sputtering to enhance polymer-to-metal adhesion is receiving increased attention. For this study, the argon-ion bombardment surfaces of pyromellitic dianhydride and oxydianiline (PMDA--ODA) and biphenyl tetracarboxylic dianhydride and phenylene diamine (BPDA--PDA) polyimide films were characterized with x-ray photoelectron spectroscopy (XPS) as a function of ion dose. Graphite and high-density polyethylene were also examined by XPS for comparison of C 1/ital s/ peak width and binding-energy assignments. Results indicate that at low ion doses the surface of the polyimide does not change chemically, although adsorbed species are eliminated. At higher doses the chemical composition is altered and is dramatically reflected in the C 1/ital s/ spectra where graphiticlike structures become evident and the prominent carbonyl peak is reduced significantly. Both polyimides demonstrate similar chemical changes after heavy ion bombardment. Atomic composition of PMDA--ODA and BPDA--PDA polymers are almost identical after heavy ion bombardment.

  19. Lithium ion storage between graphenes

    Directory of Open Access Journals (Sweden)

    Chan Yue

    2011-01-01

    Full Text Available Abstract In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.

  20. RHIC heavy ion operations performance

    CERN Document Server

    Satogata, T; Ferrone, R; Pilat, F

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) completed its fifth year of operation in 2005, colliding copper ion beams with ps=200 GeV/u and 62.4 GeV/u[1]. Previous heavy ion runs have collided gold ions at ps=130 GeV/u, 200 GeV/u, and 62.4 GeV/u[2], and deuterons and gold ions at ps=200 GeV/u[3]. This paper discusses operational performance statistics of this facility, including Cu- Cu delivered luminosity, availability, calendar time spent in physics stores, and time between physics stores. We summarize the major factors affecting operations efficiency, and characterize machine activities between physics stores.

  1. The ATLAS positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs.

  2. Logic Gates with Ion Transistors

    CERN Document Server

    Grebel, Haim

    2016-01-01

    Electronic logic gates are the basic building blocks of every computing and micro controlling system. Logic gates are made of switches, such as diodes and transistors. Ion-selective, ionic switches may emulate electronic switches [1-8]. If we ever want to create artificial bio-chemical circuitry, then we need to move a step further towards ion-logic circuitry. Here we demonstrate ion XOR and OR gates with electrochemical cells, and specifically, with two wet-cell batteries. In parallel to vacuum tubes, the batteries were modified to include a third, permeable and conductive mid electrode (the gate), which was placed between the anode and cathode in order to affect the ion flow through it. The key is to control the cell output with a much smaller biasing power, as demonstrated here. A successful demonstration points to self-powered ion logic gates.

  3. Ion chamber based neutron detectors

    Science.gov (United States)

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  4. Nanofriction in cold ion traps.

    Science.gov (United States)

    Benassi, A; Vanossi, A; Tosatti, E

    2011-01-01

    Sliding friction between crystal lattices and the physics of cold ion traps are so far non-overlapping fields. Two sliding lattices may either stick and show static friction or slip with dynamic friction; cold ions are known to form static chains, helices or clusters, depending on the trapping conditions. Here we show, based on simulations, that much could be learnt about friction by sliding, through, for example, an electric field, the trapped ion chains over a corrugated potential. Unlike infinite chains, in which the theoretically predicted Aubry transition to free sliding may take place, trapped chains are always pinned. Yet, a properly defined static friction still vanishes Aubry-like at a symmetric-asymmetric structural transition, found for decreasing corrugation in both straight and zig-zag trapped chains. Dynamic friction is also accessible in ringdown oscillations of the ion trap. Long theorized static and dynamic one-dimensional friction phenomena could thus become accessible in future cold ion tribology.

  5. Apparatus and method of dissociating ions in a multipole ion guide

    Science.gov (United States)

    Webb, Ian K.; Tang, Keqi; Smith, Richard D.; Ibrahim, Yehia M.; Anderson, Gordon A.

    2014-07-08

    A method of dissociating ions in a multipole ion guide is disclosed. A stream of charged ions is supplied to the ion guide. A main RF field is applied to the ion guide to confine the ions through the ion guide. An excitation RF field is applied to one pair of rods of the ion guide. The ions undergo dissociation when the applied excitation RF field is resonant with a secular frequency of the ions. The multipole ion guide is, but not limited to, a quadrupole, a hexapole, and an octopole.

  6. Response of thermal ions to electromagnetic ion cyclotron waves

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  7. Response of thermal ions to electromagnetic ion cyclotron waves

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  8. Energy spread of ion beams generated in multicusp ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Sarstedt, M.; Herz, P.; Kunkel, W.B. [and others

    1995-04-01

    For the production of future microelectronics devices, various alternate methods are currently being considered to replace the presently used method of lithography with ion beam lithography. One of these methods is the Ion Projection Lithography (IPL), which aims at the possibility of projecting sub-0.25 {mu}m patterns of a stencil mask onto a wafer substrate. In order to keep the chromatic aberrations below 25 nm, an ion source which delivers a beam with energy spread of less than 3 eV is desired. For this application, multicusp ion sources are being considered. We measure the longitudinal energy spread of the plasma ions by using a two-grid electrostatic energy analyzer. The energy spread of the extracted beam is measured by a high-voltage retarding-field energy analyzer. In order to obtain the transverse ion temperature, a parallel-plate scanner is being set up to study the beam emittance. In this paper, comparisons are made for different ion source configurations.

  9. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  10. Ions kinematics in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2004-06-01

    In this study, I have tried to provide a better understanding of the dynamics of ions inside an electrostatic ion beam trap. The electrostatic ion trap allows to store ions moving between two electrostatic mirrors. Although the trap has been developed already seven years ago, no direct measurement of the transversal velocity distribution of the ions has been performed. Such quantity is central for understanding the conditions under which a beam should be produced (mainly emittance) in order to be trapped by such a device. The data I have obtained during the course of this work are based on an experimental technique which relies on the direct imaging of the particles exiting the trap, as well as on numerical simulations of the ion trajectories inside the trap. I have personally been involved in the hardware development of the imaging system, the data acquisition and analysis of the data as well as il all numerical calculations presented here. These results allow us to obtain, for the first time, experimental information on the transverse phase space of the trap, and contribute to the overall understanding of the ion motion in this system. (author)

  11. Ion Rings for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation

  12. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  13. Development of a microwave ion source for ion implantations

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N., E-mail: Nbk-Takahashi@shi.co.jp; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T. [Technology Research Center, Sumitomo Heavy Industries Ltd., Yokosuka, Kanagawa 237-8555 (Japan)

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  14. Characterization of a DAPI-RIT-DAPI System for Gas-Phase Ion/Molecule and Ion/Ion Reactions

    Science.gov (United States)

    Lin, Ziqing; Tan, Lei; Garimella, Sandilya; Li, Linfan; Chen, Tsung-Chi; Xu, Wei; Xia, Yu; Ouyang, Zheng

    2014-01-01

    The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10-1 Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.

  15. Characterization of a DAPI-RIT-DAPI system for gas-phase ion/molecule and ion/ion reactions.

    Science.gov (United States)

    Lin, Ziqing; Tan, Lei; Garimella, Sandilya; Li, Linfan; Chen, Tsung-Chi; Xu, Wei; Xia, Yu; Ouyang, Zheng

    2014-01-01

    The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10(-1) Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.

  16. Rearrangement reactions in ion-ion and ion-atom collisions: results and problems

    Energy Technology Data Exchange (ETDEWEB)

    Presnyakov, L.P. [Lebedev Physical Institute, Moscow (Russian Federation); Tawara, H.

    1997-01-01

    Recent experimental and theoretical results are discussed for ionic collisions with large cross sections at intermediate and small energies of the relative motion. Single- and double-electron removal from H{sup -} ions in slow collisions with other ions is considered in more details. The theoretical methods are discussed from the viewpoint of general requirements of scattering theory. (author)

  17. The DCU laser ion source.

    Science.gov (United States)

    Yeates, P; Costello, J T; Kennedy, E T

    2010-04-01

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I approximately 10(8)-10(11) W cm(-2)) and fluences (F=0.1-3.9 kJ cm(-2)) from a Q-switched ruby laser (full-width half-maximum pulse duration approximately 35 ns, lambda=694 nm) were used to generate a copper plasma. In "basic operating mode," laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I approximately 600 microA for Cu(+) to Cu(3+) ions were recorded. The maximum collected charge reached 94 pC (Cu(2+)). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a "continuous einzel array" were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at "high pressure." In "enhanced operating mode," peak currents of 3.26 mA (Cu(2+)) were recorded. The collected currents of more highly charged ions (Cu(4+)-Cu(6+)) increased considerably in this mode of operation.

  18. Ion clearing in an ERL

    Science.gov (United States)

    Hoffstaetter, Georg H.; Liepe, Matthias

    2006-02-01

    The rest-gas in the beam-pipe of a particle accelerator is readily ionized by effects like collisions, synchrotron radiation and field emission. Positive ions are attracted to electron beams and create a nonlinear potential in the vicinity of the beam which can lead to beam halo, particle loss, optical errors or transverse and longitudinal instabilities. In an energy recovery linac (ERL) where beam-loss has to be minimal, and where beam positions and emittances have to be very stable in time, these ion effects have to be avoided. Here we investigate three measures of avoiding ion accumulation: (a) A long gap between linac bunch trains that allows ions to drift out of the beam region, a measure regularly applied in linacs; (b) a short ion clearing gap in the beam that leads to a time varying beam potential and produces large excited oscillations of ions around the electron beam, a measure regularly applied in storage rings; (c) Clearing electrodes that create a sufficient voltage to draw ions out of the beam potential, a measure used for DC electron beams and for antiproton beams. For the parameters of the X-ray ERL planned at Cornell University we show that method (a) cannot be applied, method (b) is technically cumbersome, and (c) should be most easily applicable.

  19. Electrically Switched Cesium Ion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  20. LHC Report: Ion Age

    CERN Multimedia

    John Jowett for the LHC team

    2013-01-01

    The LHC starts the New Year facing a new challenge: proton-lead collisions in the last month before the shutdown in mid-February.    Commissioning this new and almost unprecedented mode of collider operation is a major challenge both for the LHC and its injector chain. Moreover, it has to be done very quickly to achieve a whole series of physics goals, requiring modifications of the LHC configuration, in a very short time. These include a switch of the beam directions halfway through the run, polarity reversals of the ALICE spectrometer magnet and Van der Meer scans.    The Linac3 team kept the lead source running throughout the end-of-year technical stop, and recovery of the accelerator complex was very quick. New proton and lead beams were soon ready, with a bunch filling pattern that ensures they will eventually match up in the LHC. The LEIR machine has even attained a new ion beam intensity record.  On Friday 11 January the first single bunches o...

  1. Semiconductor Ion Implanters

    Science.gov (United States)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  2. The Pickup Ion Composition Spectrometer

    Science.gov (United States)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  3. Ion beam measurements at the superconducting ECR ion source SECRAL

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Jan; Rossbach, Jon; Lang, Ralf; Maimone, Fabio; Spaedtke, Peter; Tinschert, Klaus [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Sun, Liangting; Cao, Yun; Zhao, Hongwei [Institute of Modern Physics, Lanzhou, GS (China)

    2009-08-15

    Measurement of the charge-state distribution, the beam profile, the beam emittance of the named ion source are presented. Furthermore computer simulations of the magnetic flux-density distribution in this source are described. (HSI)

  4. Streaming instability in negative ion plasma

    Science.gov (United States)

    Kumar, Ajith; Mathew, Vincent

    2017-09-01

    The streaming instability in an unmagnetized negative ion plasma has been studied by computational and theoretical methods. A one dimensional electrostatic Particle In Cell Simulation and fluid dynamical description of negative ion plasma showed that, if the positive ions are having a relative streaming velocity, four different wave modes corresponding to Langmuir wave, fast and slow ion waves and ion acoustic waves are produced. Below a critical wave number, instead of two distinct fast and slow ion waves, we observed a coupled wave mode. The value of the critical wave number is strongly determined by the ion streaming velocity. The thermal velocities of electrons and ions influence the growth rate of instability.

  5. Ion Exchange and Liquid Column Chromatography.

    Science.gov (United States)

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  6. Laser ion source studies at CERN

    CERN Document Server

    Tambini, J

    1995-01-01

    The plasma produced when a powerful laser pulse is focused onto a target surface in vacuum can provide a copious source of highly charged ions. Ions can then be extracted from the plasma to form a high current, short pulse length ion beam. Experimental laser ion sources have been the subject of investigation in medical physics and particle accelerator applications; a laser ion source is an option for the injection system of heavy ions for the Large Hadron Collider at CERN where a high intensity lead ion beam is required. This paper describes work carried out at CERN to develop a CO2 laser ion source.

  7. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  8. Ion channels in neuronal survival

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The study of ion channels represents one of the most active fields in neuroscience research in China.In the last 10 years,active research in various Chinese neuroscience institutions has sought to understand the mechanisms responsible for sensory processing,neural development and neurogenesis,neural plasticity,as well as pathogenesis.In addition,extensive studies have been directed to measure ion channel activity,structure-function relationships,as well as many other biophysical and biochemical properties.This review focuses on the progress achieved in the investigation of ion channels in neuronal survival during the past 10 years in China.

  9. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  10. Ion Outflow at Mars Using MEX Ion And Electron Data

    Science.gov (United States)

    Fowler, C. M.; Andersson, L.; Frahm, R. A.; Lundin, R. N.

    2013-12-01

    It is widely believed that Mars once hosted a significant amount of water on its surface that is no longer present. Identifying and constraining various escape channels for the Martian atmosphere into space is critical in helping determine the evolution of the planet and its water content. Previous authors have looked for significant ion escape at Mars. Using higher energy (10-50eV) ion data from the ESA MEX spacecraft, significant ion escape was observed in the northern hemisphere but not in the southern. One possible explanation that has been put forward to explain this is that the magnetic crustal fields located primarily in the southern hemisphere at Mars trap ions and recycle them back to the planet as Mars rotates from day to night. Here we propose a different escape channel previously not considered for ions. Estimations suggest that the proposed channel contains at least three times as many ions in the southern hemisphere as in the northern. During strong solar wind compression events this channel could potentially contain as many ions as observed flowing tail ward in nominal solar wind conditions. Data also suggest that differences between northern and southern hemispheres are in part dependent on the ion energies analyzed and provide information regarding the relative importance of physical processes present there. Particle tracing simulations support the data analysis and demonstrate the possibility of this escape channel. The results and implications of these studies are presented along with discussion of the importance of various factors involved in the data analysis and simulations.

  11. Fully variational average atom model with ion-ion correlations.

    Science.gov (United States)

    Starrett, C E; Saumon, D

    2012-02-01

    An average atom model for dense ionized fluids that includes ion correlations is presented. The model assumes spherical symmetry and is based on density functional theory, the integral equations for uniform fluids, and a variational principle applied to the grand potential. Starting from density functional theory for a mixture of classical ions and quantum mechanical electrons, an approximate grand potential is developed, with an external field being created by a central nucleus fixed at the origin. Minimization of this grand potential with respect to electron and ion densities is carried out, resulting in equations for effective interaction potentials. A third condition resulting from minimizing the grand potential with respect to the average ion charge determines the noninteracting electron chemical potential. This system is coupled to a system of point ions and electrons with an ion fixed at the origin, and a closed set of equations is obtained. Solution of these equations results in a self-consistent electronic and ionic structure for the plasma as well as the average ionization, which is continuous as a function of temperature and density. Other average atom models are recovered by application of simplifying assumptions.

  12. Ion coalescence of neutron encoded TMT 10-plex reporter ions.

    Science.gov (United States)

    Werner, Thilo; Sweetman, Gavain; Savitski, Maria Fälth; Mathieson, Toby; Bantscheff, Marcus; Savitski, Mikhail M

    2014-04-01

    Isobaric mass tag-based quantitative proteomics strategies such as iTRAQ and TMT utilize reporter ions in the low mass range of tandem MS spectra for relative quantification. The recent extension of TMT multiplexing to 10 conditions has been enabled by utilizing neutron encoded tags with reporter ion m/z differences of 6 mDa. The baseline resolution of these closely spaced tags is possible due to the high resolving power of current day mass spectrometers. In this work we evaluated the performance of the TMT10 isobaric mass tags on the Q Exactive Orbitrap mass spectrometers for the first time and demonstrated comparable quantification accuracy and precision to what can be achieved on the Orbitrap Elite mass spectrometers. However, we discovered, upon analysis of complex proteomics samples on the Q Exactive Orbitrap mass spectrometers, that the proximate TMT10 reporter ion pairs become prone to coalescence. The fusion of the different reporter ion signals into a single measurable entity has a detrimental effect on peptide and protein quantification. We established that the main reason for coalescence is the commonly accepted maximum ion target for MS2 spectra of 1e6 on the Q Exactive instruments. The coalescence artifact was completely removed by lowering the maximum ion target for MS2 spectra from 1e6 to 2e5 without any losses in identification depth or quantification quality of proteins.

  13. Main magnetic focus ion source with the radial extraction of ions

    CERN Document Server

    Ovsyannikov, V P

    2015-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir$^{44+}$ and Ar$^{16+}$ ions. The ion source can operate as the ion trap for X-ray spectroscopy, as the ion source for the production of highly charged ions and also as the ion source of high brightness.

  14. Sampling of ions at atmospheric pressure: ion transmission and ion energy studied by simulation and experiment

    Science.gov (United States)

    Große-Kreul, Simon; Hübner, Simon; Benedikt, Jan; von Keudell, Achim

    2016-04-01

    Mass spectrometry of ions from atmospheric pressure plasmas is a challenging diagnostic method that has been applied to a large variety of cold plasma sources in the past. However, absolute densities can usually not be obtained, moreover, the process of sampling of ions and neutrals from such a plasma inherently influences the measured composition. These issues are studied in this contribution by a combination of experimental and numerical methods. Different numerical domains are sequentially coupled to calculate the ion transmission from the source to the mass analyzer. It is found that the energy of the sampled ions created by a radio-frequency microplasma operated in a He-N2 mixture at atmospheric pressure is of the order of 0.1 eV and that it depends linearly on the ion mass in good agreement with the expectation for seeded particles accelerated in a supersonic expansion. Moreover, the measured ion energy distribution from an afterglow of an atmospheric pressure plasma can be reproduced on basis of the particle trajectories in the sampling system. Eventually, an estimation of the absolute flux of ions to the detector is deduced.

  15. Oxidation of methionine residues in polypeptide ions via gas-phase ion/ion chemistry.

    Science.gov (United States)

    Pilo, Alice L; McLuckey, Scott A

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O](+)), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O](+) product is observed at a much greater abundance than the proton transfer product (viz., [M + H](+)). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to 'label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  16. Ion bombardment in RF photoguns

    Energy Technology Data Exchange (ETDEWEB)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V. N.

    2009-05-04

    A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the Rf field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

  17. Emissive Ion Thruster -EMIT Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A propulsion system is proposed that is based on acceleration of ions emitted from a thin, solid-state electrochemical ceramic membrane. This technology would...

  18. Ion Atmosphere Near Nucleic Acids

    Science.gov (United States)

    Mohanty, Udayan

    2015-03-01

    We will discuss all­atom structure based model that explicitly includes ionic effects, i.e., electrostatic interactions with explicit magnesium ions and implicit KCl that allow us to carry out explicit solvent molecular dynamics simulations of adenine riboswitch and SAM­I riboswitch. Our predictions for the excess ions around the riboswitch, and the magnesium­RNA interaction free energy will be compared with experimental data. We will provide upper and lower bounds for preferential interaction coefficient, a statistical mechanical quantity that is a measure of excess ion atmosphere around a polyelectrolyte. We will discuss the role of surface charge density of mobile ions from added salt in determining the counterion release entropy associated with chain collapse. Finally, the Poisson's ratio of oligomeric DNA will be determined. (Work done in collaboration with R. Hayes, J. Noel, P. Whitford, S. Hennelly, J. Onuchic, and K. Sanbonmatsu.) Work supported by fellowship from John Simon Guggenheim Memorial Foundation.

  19. Quantum logic with molecular ions

    CERN Document Server

    Wolf, Fabian; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2015-01-01

    Laser spectroscopy of cold and trapped molecular ions is a powerful tool for fundamental physics, including the determination of fundamental constants, the laboratory test for their possible variation, and the search for a possible electric dipole moment of the electron. Optical clocks based on molecular ions sensitive to some of these effects are expected to achieve uncertainties approaching the $10^{-18}$ level. While the complexity of molecular structure facilitates these applications, the absence of cycling transitions poses a challenge for direct laser cooling, quantum state control, and detection. Previously employed state detection techniques based on photo-dissociation or chemical reactions are destructive and therefore inefficient. Here we experimentally demonstrate non-destructive state detection of a single trapped molecular ion through its strong Coulomb coupling to a well-controlled co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force(ODF) changes the internal state...

  20. Ion Cyclotron Resonance Facility (ICR)

    Data.gov (United States)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  1. Ion-ion Recombination and Chemiion Concentrations In Aircraft Exhaust

    Science.gov (United States)

    Turco, R. P.; Yu, F.

    Jet aircraft emit large quantities of ultrafine volatile aerosols, as well as soot parti- cles, into the environment. To determine the long-term effects of these emissions, a better understanding of the mechanisms that control particle formation and evolution is needed, including the number and size dispersion. A recent explanation for aerosol nucleation in a jet wake involves the condensation of sulfuric acid vapor, and cer- tain organic compounds, onto charged molecular clusters (chemiions) generated in the engine combustors (Yu and Turco, 1997). Massive charged aggregates, along with sulfuric acid and organic precursor vapors, have been detected in jet plumes under cruise conditions. In developing the chemiion nucleation theory, Yu and Turco noted that ion-ion recombination in the engine train and jet core should limit the chemiion emission index to 1017/kg-fuel. This value is consistent with ion-ion recombination coefficients of 1×10-7 cm3/s over time scales of 10-2 s. However, the evolution of the ions through the engine has not been adequately studied. The conditions at the combustor exit are extreme-temperatures approach 1500 K, and pressures can reach 30 atmospheres. In this presentation, we show that as the combustion gases expand and cool, two- and three-body ion-ion recombination processes control the chemiion concentration. The concepts of mutual neutralization and Thomson recombination are first summarized, and appropriate temperature and pressure dependent recombination rate coefficients are derived for the aircraft problem. A model for ion losses in jet exhaust is then formulated using an "invariance" principle discussed by Turco and Yu (1997) in the context of a coagulating aerosol in an expanding plume. This recombina- tion model is applied to estimate chemiion emission indices for a range of operational engine conditions. The predicted ion emission rates are found to be consistent with observations. We discuss the sources of variance in chemiion

  2. Separators for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    G.C.Li; H.P.Zhang; Y.P.Wu

    2007-01-01

    1 Results A separator for rechargeable batteries is a microporous membrane placed between electrodes of opposite polarity, keeping them apart to prevent electrical short circuits and at the same time allowing rapid transport of lithium ions that are needed to complete the circuit during the passage of current in an electrochemical cell, and thus plays a key role in determining the performance of the lithium ion battery. Here provides a comprehensive overview of various types of separators for lithium io...

  3. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  4. Ion selectivity of graphene nanopores

    OpenAIRE

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-01-01

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores prefer...

  5. Ion association in natural brines

    Science.gov (United States)

    Truesdell, A.H.; Jones, B.F.

    1969-01-01

    Natural brines, both surface and subsurface, are highly associated aqueous solutions. Ion complexes in brines may be ion pairs in which the cation remains fully hydrated and the bond between the ions is essentially electrostatic, or coordination complexes in which one or more of the hydration water molecules are replaced by covalent bonds to the anion. Except for Cl-, the major simple ions in natural brines form ion pairs; trace and minor metals in brines form mainly coordination complexes. Limitations of the Debye-Hu??ckel relations for activity coefficients and lack of data on definition and stability of all associated species in concentrated solutions tend to produce underestimates of the degree of ion association, except where the brines contain a very high proportion of Cl-. Data and calculations on closed basin brines of highly varied composition have been coupled with electrode measurements of single-ion activities in an attempt to quantify the degree of ion association. Such data emphasize the role of magnesium complexes. Trace metal contents of closed basin brines are related to complexes formed with major anions. Alkaline sulfo- or chlorocarbonate brines (western Great Basin) carry significant trace metal contents apparently as hydroxides or hydroxy polyions. Neutral high chloride brines (Bonneville Basin) are generally deficient in trace metals. With a knowledge of the thermodynamic properties of a natural water, many possible reactions with other phases (solids, gases, other liquids) may be predicted. A knowledge of these reactions is particularly important in the study of natural brines which may be saturated with many solid phases (silicates, carbonates, sulfates, etc.), which may have a high pH and bring about dissolution of other phases (silica, amphoteric hydroxides, CO2, etc.), and which because of their high density may form relatively stable interfaces with dilute waters. ?? 1969.

  6. Heavy ion therapy: Bevalac epoch

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  7. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  8. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  9. Ion Bernstein wave heating research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki.

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW's that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  10. Ion Bernstein wave heating research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW`s low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much_lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW`s that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW`s can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  11. Ion mixing and phase diagrams

    Science.gov (United States)

    Lau, S. S.; Liu, B. X.; Nicolet, M.-A.

    1983-05-01

    Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynamical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation. Ion-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures, extension of terminal solubility from both sides of the phase diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that from metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

  12. Response of thermal ions to electromagnetic ion cyclotron waves

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.J. [Johns Hopkins Univ., Laurel, MD (United States); Fuselier, S.A. [Lockheed Palo Alto Research Lab., CA (United States)

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10-50 keV protons in the Earth`s equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. The authors examine H{sup +} and He{sup +} distribution functions from {approx} 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicularly heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90{degrees} pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He{sup +} temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He{sup +} ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He{sup +} distributions are consistent with a gyroresonant interaction off the equator. The concentration of He{sup +} relative to H{sup +} is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He{sup +} accounts for the apparent increase in relative He{sup +} concentration by increasing the proportion of He{sup +} detected by the ion instrument. 35 refs., 8 figs., 1 tab.

  13. Multicusp sources for ion beam lithography applications

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N.; Herz, P.; Kunkel, W.B.; Lee, Y.; Perkins, L.; Pickard, D.; Sarstedt, M.; Weber, M.; Williams, M.D.

    1995-05-01

    Application of the multicusp source for Ion Projection Lithography is described. It is shown that the longitudinal energy spread of the positive ions at the extraction aperture can be reduced by employing a magnetic filter. The advantages of using volume-produced H{sup {minus}} ions for ion beam lithography is also discussed.

  14. Multicusp sources for ion beam lithography applications

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N.; Herz, P.; Kunkel, W.B.; Lee, Y.; Perkins, L.; Pickard, D.; Sarstedt, M.; Weber, M.; Williams, M.D. [Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)

    1995-11-01

    Application of the multicusp source for ion projection lithography is described. It is shown that the longitudinal energy spread of the positive ions at the extraction aperture can be reduced by employing a magnetic filter. The advantages of using volume-produced H{sup {minus}} ions for ion beam lithography are also discussed. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  15. IonControl v. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-15

    The IonControl software is a set of python scripts and Field-Programmable-Gate-Array (FPGA) code designed to control a trapped ion research experiment. It enables one to generate the pulses (time resolution: 20ns) necessary to control the quantum states of trapped ions and allows one to collect and analyze measurement results from trapped ion systems.

  16. Controllability of intense-laser ion acceleration

    Institute of Scientific and Technical Information of China (English)

    Shigeo; Kawata; Toshihiro; Nagashima; Masahiro; Takano; Takeshi; Izumiyama; Daiki; Kamiyama; Daisuke; Barada; Qing; Kong; Yan; Jun; Gu; Ping; Xiao; Wang; Yan; Yun; Ma; Wei; Ming; Wang; Wu; Zhang; Jiang; Xie; Huiran; Zhang; Dongbo; Dai

    2014-01-01

    An ion beam has the unique feature of being able to deposit its main energy inside a human body to kill cancer cells or inside material. However, conventional ion accelerators tend to be huge in size and cost. In this paper, a future intenselaser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, and the ion particle energy control. In the study, each component is designed to control the ion beam quality by particle simulations. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical-density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser–target interaction.

  17. Orthogonal ion injection apparatus and process

    Science.gov (United States)

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  18. A sensitive fluorescent sensor of lanthanide ions

    CERN Document Server

    Bekiari, V; Lianos, P

    2003-01-01

    A fluorescent probe bearing a diazostilbene chromophore and a benzo-15-crown-5 ether moiety is a very efficient sensor of lanthanide ions. The ligand emits strong fluorescence only in the presence of specific ions, namely lanthanide ions, while the emission wavelength is associated with a particular ion providing high sensitivity and resolution.

  19. Identification and Manipulations of Impurity Ions in Magnesium Ion Plasma

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; Dubin, D. H. E.

    2011-10-01

    A nominally ``pure'' Mg24+ ion plasma accumulates impurity ions over periods of hours to days by charge exchange with residual background gas (P ~10-10 Torr) in a Penning-Malmberg trap. We use thermal cyclotron spectroscopy (TCS) to identify ion impurities, and observe spatial separation at low temperatures. TCS consists of applying rf bursts at the impurity cyclotron frequencies, with LIF measurement of the majority species heating due to collisions with the heated impurites. We find that for short bursts the heating is proportional to the burst amplitude squared, and to the square of the burst duration, as predicted by a simple single particle model. We spatially separate the impurities from the Magnesium ions by two different techniques: a) With laser cooling to T ions at larger radii. We typically observe a 5-20% ``hole'' in the center of the Mg plasma where the ``dark'' lower-mass impurities reside; and we directly observe the Mg25 and Mg26 at the outer edge of the Mg24 column. b) Resonant laser pressure in the z-direction pushes on the Mg24, and the species separates longitudinally when this laser force is greater than the mass-dependent centrifugal force. Supported by NSF PHY-0903877 and DOE DE-SC0002451.

  20. Observations of strong ion-ion correlations in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T., E-mail: ma8@llnl.gov; Pak, A.; Landen, O. L.; Le Pape, S.; Turnbull, D.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Fletcher, L.; Galtier, E.; Hastings, J.; Lee, H. J.; Nagler, B.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chapman, D. A. [Plasma Physics Group, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Falcone, R. W. [Physics Department, University of California, Berkeley, California 94720 (United States); Fortmann, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G.; White, T. G. [University of Oxford, Clarendon Laboratory, Oxford OX1 3PU (United Kingdom); Neumayer, P. [Extreme Matter Institute, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Vorberger, J. [Max Planck Institut für Physik komplexer Systeme, Nötthnizer Straße 38, 01187 Dresden (Germany); and others

    2014-05-15

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å{sup −1}. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  1. Ion trapping for quantum information processing

    Institute of Scientific and Technical Information of China (English)

    WAN Jin-yin; WANG Yu-zhu; LIU Liang

    2007-01-01

    In this paper we have reviewed the recent pro-gresses on the ion trapping for quantum information process-ing and quantum computation. We have first discussed the basic principle of quantum information theory and then fo-cused on ion trapping for quantum information processing.Many variations, especially the techniques of ion chips, have been investigated since the original ion trap quantum compu-tation scheme was proposed. Full two-dimensional control of multiple ions on an ion chip is promising for the realization of scalable ion trap quantum computation and the implemen-tation of quantum networks.

  2. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  3. Modification of graphene by ion beam

    Science.gov (United States)

    Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J.

    2017-09-01

    Ion induced defect generation in graphene was analyzed using Raman spectroscopy. A single layer graphene membrane produced by chemical vapor deposition (CVD) on copper foil and then transferred on glass substrate was subjected to helium, carbon, nitrogen, argon and krypton ions bombardment at energies from the range 25 keV to 100 keV. A density of ion induced defects and theirs mean size were estimated by using Raman measurements. Increasing number of defects generated by ion with increase of ion mass and decrease of ion energy was observed. Dependence of ion defect efficiency (defects/ion) on ion mass end energy was proportional to nuclear stopping power simulated by SRIM. No correlation between ion defect efficiency and electronic stopping power was observed.

  4. Dual mode ion mobility spectrometer and method for ion mobility spectrometry

    Science.gov (United States)

    Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2007-08-21

    Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.

  5. Desorption of cluster ions from solid Ne by low-energy ion impact.

    Science.gov (United States)

    Tachibana, T; Fukai, K; Koizumi, T; Hirayama, T

    2010-12-01

    We investigated Ne(+) ions and Ne(n)(+) (n = 2-20) cluster ions desorbed from the surface of solid Ne by 1.0 keV Ar(+) ion impact. Kinetic energy analysis shows a considerably narrower energy distribution for Ne(n)(+) (n ≥ 3) ions than for Ne(n)(+) (n = 1, 2) ions. The dependence of ion yields on Ne film thickness indicates that cluster ions (n ≥ 3) are desorbed only from relatively thick films. We conclude that desorbed ions grow into large cluster ions during the outflow of deep bulk atoms to the vacuum.

  6. Telecloning Quantum States with Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a scheme for telecloning quantum states with trapped ions. The scheme is based on a single ion interacting with a single laser pulse. In the protocol, an ion is firstly measured to determine whether the telecloning succeeds or not, and then another ion is detected to complete the whole procedure. The required experimental techniques are within the scope of what can be obtained in the ion-trap setup.

  7. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    Science.gov (United States)

    Khazanov, George V.

    2002-01-01

    A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.

  8. DIFFUSIVITY OF ARRE EARTH ION IN POROUS ION EXCHANGE RESINS

    Institute of Scientific and Technical Information of China (English)

    LingDaren; LiuYucheng; 等

    1997-01-01

    The self-diffusion of Eu3+ ion in porous resins D72 and D751 was studied by isotope exchange reaction.Applying Kataoka's bidisperse pore model,the intraparticle effective diffusivity De were resolved into a solid diffusivity Dg and a macropore diffusivity Dp.The experiments show that De.Dp and Dg all increase with the increase of reaction temperature;the response Dp and Dg of D751 resin is smaller than that of D72 resin;the diffusivity of Eu3+ ion in solution is larger than Dp,which leads to the conclusion that the diffusion of ion in the pore of resin can not completely be equal to that in solution.

  9. Novel Ion Trap Design for Strong Ion-Cavity Coupling

    Directory of Open Access Journals (Sweden)

    Alejandro Márquez Seco

    2016-04-01

    Full Text Available We present a novel ion trap design which facilitates the integration of an optical fiber cavity into the trap structure. The optical fibers are confined inside hollow electrodes in such a way that tight shielding and free movement of the fibers are simultaneously achievable. The latter enables in situ optimization of the overlap between the trapped ions and the cavity field. Through numerical simulations, we systematically analyze the effects of the electrode geometry on the trapping characteristics such as trap depths, secular frequencies and the optical access angle. Additionally, we simulate the effects of the presence of the fibers and confirm the robustness of the trapping potential. Based on these simulations and other technical considerations, we devise a practical trap configuration that isviable to achieve strong coupling of a single ion.

  10. Proton-bound cluster ions in ion mobility spectrometry.

    Science.gov (United States)

    Ewing, R G; Eiceman, G A; Stone, J A

    1999-10-28

    Gaseous oxygen and nitrogen bases, both singly and as binary mixtures, have been introduced into ion mobility spectrometers to study the appearance of protonated molecules, and proton-bound dimers and trimers. At ambient temperature it was possible to simultaneously observe, following the introduction of molecule A, comparable intensities of peaks ascribable to the reactant ion (H2O)nH+, the protonated molecule AH+ and AH+ H2O, and the symmetrical proton bound dimer A2H+. Mass spectral identification confirmed the identifications and also showed that the majority of the protonated molecules were hydrated and that the proton-bound dimers were hydrated to a much lesser extent. No significant peaks ascribable to proton-bound trimers were obtained no matter how high the sample concentration. Binary mixtures containing molecules A and B, in some cases gave not only the peaks unique to the individual compounds but also peaks due to asymmetrical proton bound dimers AHB+. Such ions were always present in the spectra of mixtures of oxygen bases but were not observed for several mixtures of oxygen and nitrogen bases. The dimers, which were not observable, notable for their low hydrogen bond strengths, must have decomposed in their passage from the ion source to the detector, i.e. in a time less than approximately 5 ms. When the temperature was lowered to -20 degrees C, trimers, both homogeneous and mixed, were observed with mixtures of alcohols. The importance of hydrogen bond energy, and hence operating temperature, in determining the degree of solvation of the ions that will be observed in an ion mobility spectrometer is stressed. The possibility is discussed that a displacement reaction involving ambient water plays a role in the dissociation.

  11. Ion trap system for radioactive ions at JYFL

    Energy Technology Data Exchange (ETDEWEB)

    Kolhinen, V.S.; Jokinen, A.; Rinta-Antila, S.; Szerypo, J. [University of Jyvaeskylae, Department of Physics (Finland); Aeystoe, J. [CERN, Geneva (Switzerland)

    2001-07-01

    The goal of the ion trap project in Jyvaeskylae is to improve the quality of radioactive beams at IGISOL (Ion Guide Isotope Separator On-Line), in terms of transverse emittance, energy spread and purity. This improvement is achieved with an aid of an RFQ cooler/buncher and a mass-selective cylindrical Penning trap (mass resolving power up to 10{sup 5}). Their final purpose is to produce cooled isobarically pure beams of exotic radioactivities mainly of exotic neutron-rich isotopes from fission (including refractory elements). In the Penning trap ions are confined in three dimensions in a superposition of static quadrupole electric and homogeneous magnetic fields. The magnetic field confines the ions in two dimensions in a plane perpendicular to the field direction. A confinement in the third, magnetic field direction (parallel to the trap axis) is done by a quadrupole electric field. The Penning trap system in Jyvaeskylae (JYFLTRAP) will contain two cylindrical Penning traps placed inside the same superconducting magnet (B=7 T). The first, purification trap, will accept cooled (continuous or bunched) beams from the RFQ cooler/buncher and perform the isobaric purification. The latter is - done using a combination of a buffer gas cooling and an azimuthal quadrupole RF-field providing mass- dependent centering of ions. This, in turn, allows mass-selective ejection of ions in short pulses. Clean monoisotopic bunched beams will be delivered for the nuclear spectroscopy studies, collinear laser spectroscopy experiments and precise nuclear mass measurements (10{sup -7} precision). The latter will be performed in the second, precision Penning trap (author)

  12. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The

  13. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  14. Marine Toxins Targeting Ion Channels

    Directory of Open Access Journals (Sweden)

    Hugo R. Arias

    2006-04-01

    Full Text Available Abstract: This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs, as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs, are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV, Ca2+ (CaV, and K+ (KV channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR, and the ATP-activated (P2XnR receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+, whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−. In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers of ion channel functions to treat or to alleviate a specific

  15. Industrial ion sources broadbeam gridless ion source technology

    CERN Document Server

    Zhurin, Viacheslav V

    2012-01-01

    Due to the large number of uses of ion sources in academia and industry, those who utilize these sources need up to date and coherent information to keep themselves abreast of developments and options, and to chose ideal solutions for quality and cost-effectiveness. This book, written by an author with a strong industrial background and excellent standing, is the comprehensive guide users and developers of ion sources have been waiting for. Providing a thorough refresher on the physics involved, this resource systematically covers the source types, components, and the operational parameters.

  16. Characterization of ISOLDE ion source and ion source chemistry

    CERN Document Server

    Barbeau, Marion

    2014-01-01

    This report presents results of measurements made with the ISOLDE OFF-LINE mass separator [1]. The first part shows measurements of the ionization characteristics of noble gases in a VADIS ion source. The goal of the measurements was to determine the dependency of the extractable current of first and second noble gases ions with the electron energy. In the second part, investigation on in-target chemistry are presented. Here, the effect of injected sulfur hexafluoride ($SF_6$) on the release of oxygen from aluminium oxide ($Al_2 O_3$) was studied.

  17. Cold Ion Escape from Mars

    Science.gov (United States)

    Fränz, M.; Dubinin, E.; Wei, Y.; Morgan, D.; Andrews, D.; Barabash, S.; Lundin, R.; Fedorov, A.

    2013-09-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express in combination with the MARSIS radar experiment. We first compare calculations of the mean ion flux observed by ASPERA-3 alone with previously published results. We then combine observations of the cold ion velocity by ASPERA-3 with observations of the cold plasma density by MARSIS since ASPERA-3 misses the cold core of the ion distribution. We show that the mean density of the nightside plasma observed by MARSIS is about two orders higher than observed by ASPERA-3 (Fig.1). Combining both datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars (Fig. 2). At a distance of about 0.5 R_M the flux settles at a constant value (Fig. 3) which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  18. Heavy-ion nucleus scattering

    CERN Document Server

    Rahman, M A; Haque, S

    2003-01-01

    Heavy ion-nucleus scattering is an excellent laboratory to probe high spin phenomena, exotic nuclei and for the analysis of various exit channels. The Strong Absorption Model or the generalized diffraction models, which are semi-classical in nature, have been employed in the description of various heavy ion-nucleus scattering phenomena with reasonable success. But one needs to treat the deflection function (scattering angles) quantum mechanically in the Wave Mechanical picture for the appropriate description of the heavy-ion nucleus scattering phenomena. We have brought the mathematics for the cross-section of the heavy-ion nucleus scattering to an analytic expression taking account of the deflection function (scattering angles) quantum mechanically. sup 9 Be, sup 1 sup 6 O, sup 2 sup 0 Ne and sup 3 sup 2 S heavy-ion beams elastic scattering from sup 2 sup 8 Si, sup 2 sup 4 Mg and sup 4 sup 0 Ca target nuclei at various projectile energies over the range 20-151 MeV have been analysed in terms of the 2-paramet...

  19. Cholesterol binding to ion channels

    Directory of Open Access Journals (Sweden)

    Irena eLevitan

    2014-02-01

    Full Text Available Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.

  20. Results of heavy ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R. [Lawrence Berkeley Lab., CA (United States). Life Sciences Div.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.

  1. Nonlinear ion trap stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Bogdan M; Visan, Gina G, E-mail: bmihal@infim.r [Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomistilor Str. Nr. 409, 077125 Magurele-Bucharest, Jud. Ilfov (Romania)

    2010-09-01

    This paper investigates the dynamics of an ion confined in a nonlinear Paul trap. The equation of motion for the ion is shown to be consistent with the equation describing a damped, forced Duffing oscillator. All perturbing factors are taken into consideration in the approach. Moreover, the ion is considered to undergo interaction with an external electromagnetic field. The method is based on numerical integration of the equation of motion, as the system under investigation is highly nonlinear. Phase portraits and Poincare sections show that chaos is present in the associated dynamics. The system of interest exhibits fractal properties and strange attractors. The bifurcation diagrams emphasize qualitative changes of the dynamics and the onset of chaos.

  2. Micron-focused ion beamlets

    Science.gov (United States)

    Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2010-05-01

    A multiple beam electrode system (MBES) is used to provide focused ion beamlets of elements from a compact microwave plasma. In this study, a honeycomb patterned plasma electrode with micron size apertures for extracting ion beamlets is investigated. The performance of the MBES is evaluated with the help of two widely adopted and commercially available beam simulation tools, AXCEL-INP and SIMION, where the input parameters are obtained from our experiments. A simple theoretical model based upon electrostatic ray optics is employed to compare the results of the simulations. It is found that the results for the beam focal length agree reasonably well. Different geometries are used to optimize the beam spot size and a beam spot ˜5-10 μm is obtained. The multiple ion beamlets will be used to produce microfunctional surfaces on soft matter like polymers. Additionally, the experimental set-up and plans are presented in the light of above applications.

  3. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  4. Tachyon Physics with Trapped Ions

    CERN Document Server

    Lee, Tony E; Cheng, Xiao-Hang; Lamata, Lucas; Solano, Enrique

    2015-01-01

    It has been predicted that particles with imaginary mass, called tachyons, would be able to travel faster than the speed of light. So far, there has not been any experimental evidence for tachyons in either natural or engineered systems. Here, we propose how to experimentally simulate Dirac tachyons with trapped ions. Quantum measurement on a Dirac particle simulated by a trapped ion causes it to have an imaginary mass so that it may travel faster than the effective speed of light. We show that a Dirac tachyon must have spinor-motion entanglement in order to be superluminal. We also show that it exhibits significantly more Klein tunneling than a normal Dirac particle. We provide numerical simulations with realistic ion systems and show that our scheme is feasible with current technology.

  5. Miniature Bipolar Electrostatic Ion Thruster

    Science.gov (United States)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  6. Improvement of penning ion sources

    CERN Document Server

    Bizyukov, A A; Kashaba, A Y; Sereda, K N

    2000-01-01

    It is shown that the loss of a longitudinal symmetry of magnetic field distribution in respect to the centre of the Penning discharge system causes change of electrostatic potential distribution in the discharge gap leads to appearance of asymmetry of current magnitude to the cathodes of the Penning cell,change of magnitude of current density and energy distribution of the ion beam extracted in a longitudinal direction.The use of an inhomogeneous magnetic field which is longitudinally asymmetrical concerning electrodes of the system allows to increase current efficiency of Penning ion sources from 0,2 to 0,55.

  7. Hydration of highly charged ions.

    Science.gov (United States)

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  8. Rotation sensing with trapped ions

    CERN Document Server

    Campbell, W C

    2016-01-01

    We present a protocol for using trapped ions to measure rotations via matter-wave Sagnac interferometry. The trap allows the interferometer to enclose a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without losing contrast. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, thermal states with many phonons should be sufficient for operation.

  9. Nanobeam production with the multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Ji, Q. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Leung, K. N. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Zahir, N. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2000-02-01

    A 1.8-cm-diam multicusp ion source to be used for focused ion beam applications has been tested for Xe, He, Ne, Ar, and Kr ions. The extractable ion and electron currents were measured. The extractable ion current is similar for all these ion species except for Ne{sup +}, but the extractable electron current behaves quite differently. The multicusp ion source will be used with a combined extractor-collimator electrode system that can provide a few hundred nA of Xe{sup +} or Kr{sup +} ions. Ion optics computation indicates that these beams can be further focused with an electrostatic column to a beam spot size of {approx}100 nm. (c) 2000 American Institute of Physics.

  10. Ion Implantation and Synthesis of Materials

    CERN Document Server

    Nastasi, Michael

    2006-01-01

    Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification, such as ion-beam mixing, stresses, and sputtering, are also described.

  11. Resonance methods in quadrupole ion traps

    Science.gov (United States)

    Snyder, Dalton T.; Peng, Wen-Ping; Cooks, R. Graham

    2017-01-01

    The quadrupole ion trap is widely used in the chemical physics community for making measurements on dynamical systems, both intramolecular (e.g. ion fragmentation reactions) and intermolecular (e.g. ion/molecule reactions). In this review, we discuss linear and nonlinear resonances in quadrupole ion traps, an understanding of which is critical for operation of these devices and interpretation of the data which they provide. The effect of quadrupole field nonlinearity is addressed, with important implications for promoting fragmentation and achieving unique methods of mass scanning. Methods that depend on ion resonances (i.e. matching an external perturbation with an ion's induced frequency of motion) are discussed, including ion isolation, ion activation, and ion ejection.

  12. Ion channels in development and cancer.

    Science.gov (United States)

    Bates, Emily

    2015-01-01

    Ion channels have emerged as regulators of developmental processes. In model organisms and in people with mutations in ion channels, disruption of ion channel function can affect cell proliferation, cell migration, and craniofacial and limb patterning. Alterations of ion channel function affect morphogenesis in fish, frogs, mammals, and flies, demonstrating that ion channels have conserved roles in developmental processes. One model suggests that ion channels affect proliferation and migration through changes in cell volume. However, ion channels have not explicitly been placed in canonical developmental signaling cascades until recently. This review gives examples of ion channels that influence developmental processes, offers a potential underlying molecular mechanism involving bone morphogenetic protein (BMP) signaling, and finally explores exciting possibilities for manipulating ion channels to influence cell fate for regenerative medicine and to impact disease.

  13. Ion-Beam-Excited Electrostatic Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  14. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  15. Fast ion-atom and ion-molecule collisions

    CERN Document Server

    2013-01-01

    The principal goal of this book is to provide state-of-the art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this fiel...

  16. Ion-Beam-Excited, Electrostatic, Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  17. Recombination characteristics of therapeutic ion beams on ion chamber dosimetry

    Science.gov (United States)

    Matsufuji, Naruhiro; Matsuyama, Tetsuharu; Sato, Shinji; Kohno, Toshiyuki

    2016-09-01

    In heavy ion radiotherapy, ionization chambers are regarded as a standard for determining the absorbed dose given to patients. In ion dosimetry, it is necessary to correct the radiation quality, which depends on the initial recombination effect. This study reveals for the radiation quality dependence of the initial recombination in air in ion dosimetry. Ionization charge was measured for the beams of protons at 40-160 MeV, carbon at 21-400 MeV/n, and iron at 23.5-500 MeV/n using two identical parallel-plate ionization chambers placed in series along the beam axis. The downstream chamber was used as a monitor operated with a constant applied voltage, while the other chamber was used for recombination measurement by changing the voltage. The ratio of the ionization charge measured by the two ionization chambers showed a linear relationship with the inverse of the voltage in the high-voltage region. The initial recombination factor was estimated by extrapolating the obtained linear relationship to infinite voltage. The extent of the initial recombination was found to increase with decreasing incident energy or increasing atomic number of the beam. This behavior can be explained with an amorphous track structure model: the increase of ionization density in the core region of the track due to decreasing kinetic energy or increasing atomic number leads to denser initial ion production and results in a higher recombination probability. For therapeutic carbon ion beams, the extent of the initial recombination was not constant but changed by 0.6% even in the target region. This tendency was quantitatively well reproduced with the track-structure based on the initial recombination model; however, the transitional change in the track structure is considered to play an important role in further understanding of the characteristics of the initial recombination.

  18. Nonlinear dust-ion-acoustic waves in a multi-ion plasma with trapped electrons

    Indian Academy of Sciences (India)

    S S Duha; B Shikha; A A Mamun

    2011-08-01

    A dusty multi-ion plasma system consisting of non-isothermal (trapped) electrons, Maxwellian (isothermal) light positive ions, warm heavy negative ions and extremely massive charge fluctuating stationary dust have been considered. The dust-ion-acoustic solitary and shock waves associated with negative ion dynamics, Maxwellian (isothermal) positive ions, trapped electrons and charge fluctuating stationary dust have been investigated by employing the reductive perturbation method. The basic features of such dust-ion-acoustic solitary and shock waves have been identified. The implications of our findings in space and laboratory dusty multi-ion plasmas are discussed.

  19. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  20. A fast beam-ion instability

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G.V. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. Results of the study of a beam-ion instability are presented for a multi-bunch train taking into account the decoherence of ion oscillations due to the ion frequency spread and spatial variation of the ion frequency. It is shown that the combination of both effects can substantially reduce the growth rate of the instability. (author)

  1. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  2. Infrared spectroscopy of weakly bound molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lisa I-Ching

    1988-11-01

    The infrared spectra of a series of hydrated hydronium cluster ions and of protonated ethane ion are presented. A tandem mass spectrometer is ideally suited to obtaining the spectra of such weakly bound molecular ions. Traditional absorption spectroscopy is not feasible in these situations, so the techniques described in this thesis make use of some consequence of photon absorption with higher sensitivity than simply attenuation of laser power. That consequence is dissociation. By first mass selecting the parent ion under study and then mass selecting the fragment ion formed from dissociation, the near unit detection efficiency of ion counting methods has been used to full advantage.

  3. Microfabricated linear Paul-Straubel ion trap

    Science.gov (United States)

    Mangan, Michael A.; Blain, Matthew G.; Tigges, Chris P.; Linker, Kevin L.

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  4. The physics of Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.; Cocke, C.L.

    1990-01-01

    There are 13 Electron Beam Ion Sources in operation which produce highly charged ions, up to Th[sup 80+] and Xe[sup 53+]. Most of the sources are used to study these ions under electron impact or when recombining with gaseous or solid targets. That provides an insight into the atomic physics of these highly charged ions and into the physics of the plasma in which such ions can be found. This paper reviews the present knowledge of atomic processes, important in the production of such ions with an EBIS.

  5. The physics of Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.; Cocke, C.L.

    1990-12-31

    There are 13 Electron Beam Ion Sources in operation which produce highly charged ions, up to Th{sup 80+} and Xe{sup 53+}. Most of the sources are used to study these ions under electron impact or when recombining with gaseous or solid targets. That provides an insight into the atomic physics of these highly charged ions and into the physics of the plasma in which such ions can be found. This paper reviews the present knowledge of atomic processes, important in the production of such ions with an EBIS.

  6. Ion implanted dielectric elastomer circuits

    Science.gov (United States)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  7. Inorganic ion composition in Tardigrada

    DEFF Research Database (Denmark)

    Halberg, Kenneth Agerlin; Larsen, Kristine Wulff; Jørgensen, Aslak

    2013-01-01

    are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis....

  8. Ion Temperature Measurements in SSPX

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, D W; Hill, D N; McLean, H S

    2001-08-24

    The Ion Doppler Spectrometer instrument on the Sustained Spheromak Physics experiment is described, along with background about it's operation. Results are presented from recent experimental runs, and the data is compared to the results of simple statistical models of heat exchange in two species gasses.

  9. Improved Ion-Channel Biosensors

    Science.gov (United States)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  10. Focused ion beams in biology.

    Science.gov (United States)

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.

  11. Ion transport across transmembrane pores

    NARCIS (Netherlands)

    Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert-Jan

    2007-01-01

    To study the pore-mediated transport of ionic species across a lipid membrane, a series of molecular dynamics simulations have been performed of a dipalmitoyl-phosphatidyl-choline bilayer containing a preformed water pore in the presence of sodium and chloride ions. It is found that the stability of

  12. Thomson parabola ion energy analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James A [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Letzring, Samuel A [Los Alamos National Laboratory; Lopez, Frank E [Los Alamos National Laboratory; Offermann, Dustin T [Los Alamos National Laboratory; Oertel, John A [Los Alamos National Laboratory; Mastrosimone, Dino [UNIV OF ROCHESTER

    2010-01-01

    A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed and constructed for use at the OMEGA-EP facility. Multi-MeV ions from EP targets are transmitted through a W pinhole into a (5- or 8-kG) magnetic field and subsequently through a parallel electric field of up to 30 kV/cm. The ion drift region may have a user-selected length of 10, 50, or 80 cm. With the highest fields, 500-Me V C{sup 6+} and C{sup 5+} may be resolved. TPIE is TIM-mounted at OMEGA-EP and is qualified in all existing TIMs. The instrument runs on pressure-interlocked 15-VDC power available in EP TIM carts. It may be inserted to within several inches of the target to attain sufficient flux for a measurement. For additional flux control, the user may select a square-aperture W pinhole of 0.004-inch or 0.010-inch. The detector consists of CR-39 backed by an image plate. The fully relativistic design code and design features are discussed. Ion spectral results from first use at OMEGA-EP are expected.

  13. Barium Ions for Quantum Computation

    CERN Document Server

    Dietrich, M R; Bowler, R; Kurz, N; Salacka, J S; Shu, G; Blinov, B B

    2009-01-01

    Individually trapped 137Ba+ in an RF Paul trap is proposed as a qubit ca ndidate, and its various benefits are compared to other ionic qubits. We report the current experimental status of using this ion for quantum computation. Fut ure plans and prospects are discussed.

  14. Quantum Games in ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Buluta, Iulia Maria [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: noa@lyman.q.t.u-tokyo.ac.jp; Fujiwara, Shingo [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: fujiwara@lyman.q.t.u-tokyo.ac.jp; Hasegawa, Shuichi [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: hasegawa@q.t.u-tokyo.ac.jp

    2006-10-09

    We propose a general, scalable framework for implementing two-choices-multiplayer Quantum Games in ion traps. In particular, we discuss two famous examples: the Quantum Prisoners' Dilemma and the Quantum Minority Game. An analysis of decoherence due to intensity fluctuations in the applied laser fields is also provided.

  15. Ferritin Protein Nanocage Ion Channels

    Science.gov (United States)

    Tosha, Takehiko; Behera, Rabindra K.; Ng, Ho-Leung; Bhattasali, Onita; Alber, Tom; Theil, Elizabeth C.

    2012-01-01

    Ferritin protein nanocages, self-assembled from four-α-helix bundle subunits, use Fe2+ and oxygen to synthesize encapsulated, ferric oxide minerals. Ferritin minerals are iron concentrates stored for cell growth. Ferritins are also antioxidants, scavenging Fenton chemistry reactants. Channels for iron entry and exit consist of helical hairpin segments surrounding the 3-fold symmetry axes of the ferritin nanocages. We now report structural differences caused by amino acid substitutions in the Fe2+ ion entry and exit channels and at the cytoplasmic pores, from high resolution (1.3–1.8 Å) protein crystal structures of the eukaryotic model ferritin, frog M. Mutations that eliminate conserved ionic or hydrophobic interactions between Arg-72 and Asp-122 and between Leu-110 and Leu-134 increase flexibility in the ion channels, cytoplasmic pores, and/or the N-terminal extensions of the helix bundles. Decreased ion binding in the channels and changes in ordered water are also observed. Protein structural changes coincide with increased Fe2+ exit from dissolved, ferric minerals inside ferritin protein cages; Fe2+ exit from ferritin cages depends on a complex, surface-limited process to reduce and dissolve the ferric mineral. High concentrations of bovine serum albumin or lysozyme (protein crowders) to mimic the cytoplasm restored Fe2+ exit in the variants to wild type. The data suggest that fluctuations in pore structure control gating. The newly identified role of the ferritin subunit N-terminal extensions in gating Fe2+ exit from the cytoplasmic pores strengthens the structural and functional analogies between ferritin ion channels in the water-soluble protein assembly and membrane protein ion channels gated by cytoplasmic N-terminal peptides. PMID:22362775

  16. Transmission secondary ion mass spectrometry using 5 MeV C60+ ions

    Science.gov (United States)

    Nakajima, K.; Nagano, K.; Suzuki, M.; Narumi, K.; Saitoh, Y.; Hirata, K.; Kimura, K.

    2014-03-01

    In the secondary ion mass spectrometry (SIMS), use of cluster ions has an advantage of producing a high sensitivity of intact large molecular ions over monatomic ions. This paper presents further yield enhancement of the intact biomolecular ions by measuring the secondary ions emitted in the forward direction. Phenylalanine amino acid films deposited on self-supporting thin Si3N4 films were bombarded with 5 MeV C60 ions. Secondary ions emitted in the forward and backward directions were measured. The yield of intact phenylalanine molecular ions emitted in the forward direction is significantly enhanced compared to the backward direction while fragment ions are suppressed. This suggests a large potential of using transmission cluster ion SIMS for the analysis of biological materials.

  17. Single ion implantation in semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Niepelt, Raphael; Johannes, Andreas; Gnauck, Martin; Slowik, Irma; Geburt, Sebastian; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet, Jena (Germany)

    2011-07-01

    Ion implantation is well established as a standard doping technique for semiconductor nanowires. The concentration of dopant atoms per area is typically determined by total beam current monitoring during the irradiation. However, at extremely low ion fluencies, it is not possible to distinguish the exact number of implanted ions in a nanometer sized structure, as the ions are distributed statistically over the irradiated area that is usually far wider than the nanostructure of interest. In our experiments we implanted electrically contacted semiconductor nanostructures that were connected to a preamplifier/amplifier setup. As with every impinging ion a certain amount of energy is deposited inside the material, one can detect signals directly induced by the ion implantation and the nanostructures themselves can act as a radiation sensor. This leads to a countable and very precisely adjustable ion dose during the implantation down to doping with single ions.

  18. Scaling ion traps for quantum computing

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available The design, fabrication and preliminary testing of a chipscale, multi-zone, surface electrode ion trap is reported. The modular design and fabrication techniques used are anticipated to advance scalability of ion trap quantum computing architectures...

  19. Oxford ion-trap quantum computing project.

    Science.gov (United States)

    Lucas, D M; Donald, C J S; Home, J P; McDonnell, M J; Ramos, A; Stacey, D N; Stacey, J-P; Steane, A M; Webster, S C

    2003-07-15

    We describe recent progress in the development of an ion-trap quantum information processor. We discuss the choice of ion species and describe recent experiments on read-out for a ground-state qubit and photoionization trap loading.

  20. Process in high energy heavy ion acceleration

    Science.gov (United States)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  1. On a cryogenic noble gas ion catcher

    CERN Document Server

    Dendooven, P; Purushothaman, S

    2006-01-01

    In-situ purification of the gas used as stopping medium in a noble gas ion catcher by operating the device at low temperatures of 60 to 150 K was investigated. Alpha-decay recoil ions from a 223Ra source served as energetic probes. The combined ion survival and transport efficiencies for 219Rn ions saturated below about 90 K, reaching 28.7(17) % in helium, 22.1(13) % in neon, and 17.0(10) % in argon. These values may well reflect the charge exchange and stripping cross sections during the slowing down of the ions, and thus represent a fundamental upper limit for the efficiency of noble gas ion catcher devices. We suggest the cryogenic noble gas ion catcher as a technically simpler alternative to the ultra-high purity noble gas ion catcher operating at room temperature.

  2. Control System of the H~- Ion Source

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The control system is of primary importance to the accelerator operation. This paper presents a brief introduction to the new ion source control system. The research is to build a new H- ion source based on

  3. Laser ion source with solenoid field

    Science.gov (United States)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  4. Divergent Field Annular Ion Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In this...

  5. Coulomb crystallization of highly charged ions

    National Research Council Canada - National Science Library

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-01-01

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs...

  6. Additive Manufacturing of Ion Thruster Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma Controls will manufacture and test a set of ion optics for electric propulsion ion thrusters using additive manufacturing technology, also known as 3D...

  7. Specification For ST-5 Li Ion Battery

    Science.gov (United States)

    Castell, Karen D.; Day, John H. (Technical Monitor)

    2000-01-01

    This Specification defines the general requirements for rechargeable Space Flight batteries intended for use in the ST-5 program. The battery chemistry chosen for this mission is lithium ion (Li-Ion).

  8. All-optical ion generation for ion trap loading

    CERN Document Server

    Sheridan, Kevin; Keller, Matthias; 10.1007/s00340-011-4563-7

    2011-01-01

    We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell-Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is composed exclusively of ground state atoms. For higher fluences ions and excited atoms are generated.

  9. Development of laser ion source for heavy ion applications

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Shinji, E-mail: shibuya@aec-beam.co.jp [Accelerator Engineering Corporation, 3-8-5 Konakadai, Inage-ku, Chiba 263-0043 (Japan); Hattori, Toshiyuki, E-mail: thattori@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Hayashizaki, Noriyosu, E-mail: nhayashi@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Kashiwagi, Hirotsugu, E-mail: hirotsugu.kashiwagi@jaea.go.jp [Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Maruyama, Toshiyuki, E-mail: t-maruyama@toyama-jp.com [Toyama Co., Ltd., 4-13-16 Hibarigaoka, Zama-shi, Kanagawa 252-0003 (Japan); Mochizuki, Tetsuro, E-mail: Mochizuki@toyama-jp.com [Toyama Co., Ltd., 4-13-16 Hibarigaoka, Zama-shi, Kanagawa 252-0003 (Japan); Momota, Sadao, E-mail: momota.sadao@kochi-tech.ac.jp [Kochi University of Technology, 185 Tosa-yamada-cyo, Kami-shi, Kochi 782-8502 (Japan); Nakagawa, Jun, E-mail: nakagawa@toyama-jp.com [Toyama Co., Ltd., 4-13-16 Hibarigaoka, Zama-shi, Kanagawa 252-0003 (Japan); Takeuchi, Takeshi, E-mail: aec2g@nirs.go.jp [Accelerator Engineering Corporation, 3-8-5 Konakadai, Inage-ku, Chiba 263-0043 (Japan)

    2011-12-15

    We have been developing a high-performance laser ion source (LIS) for practical applications since 2009. Ideally, the LIS should generate a carbon beam with a peak current of 20 mA and a pulse duration of over 1 {mu}s. We selected a Nd:YAG laser with a Gaussian-coupled resonator as the laser source based on our experience of generating high-charge-state ion beams. This laser can produce fundamental pulses with a power of 650 mJ and durations of about 6 ns. The graphite target used is 10 cm high and 10 cm in diameter, as it can be irradiated with up to 10{sup 5} laser shots. The maximum extraction voltage was designed to be 50 kV. We have already finished designing the LIS and we commenced fabrication. We intend to measure the source performance by performing plasma and beam tests up to the end of March 2011.

  10. Cluster Ions and Atmospheric Processes

    Science.gov (United States)

    D'Auria, R.; Turco, R. P.

    We investigate the properties and possible roles of naturally occurring ions under at- mospheric conditions. Among other things, the formation of stable charged molecular clusters represents the initial stages of aerosol nucleation [e.g., Keesee and Castle- man, 1982], while the conversion of vapor to aggregates is the first step in certain atmospheric phase transitions [e.g. Hamill and Turco, 2000]. We analyze the stability and size distributions of common ionic clusters by solving the differential equations describing their growth and loss. The necessary reaction rate coefficients are deter- mined using kinetic and thermodynamic data. The latter are derived from direct labo- ratory measurements of equilibrium constants, from the classical charged liquid drop model applied to large aggregates (i.e., the Thomson model [Thomson, 1906]), and from quantum mechanical calculations of the thermodynamic potentials associated with the cluster structures. This approach allows us to characterize molecular clusters across the entire size range from true molecular species to larger aggregates exhibiting macroscopic behavior [D'Auria, 2001]. Cluster systems discussed in this talk include the proton hydrates (PHs) and nitrate-water and nitrate-nitric acid series [D'Auria and Turco, 2001]. These ions have frequently been detected in the stratosphere and tropo- sphere [e.g., Arnold et al., 1977; Viggiano and Arnold, 1981]. We show how the pro- posed hybrid cluster model can be extended to a wide range of ion systems, including non-proton hydrates (NPHs), mixed-ligand clusters such as nitrate-water-nitric acid and sulfate-sulfuric acid-water, as well as more exotic species containing ammonia, pyridine and other organic compounds found on ions [e.g., Eisele, 1988; Tanner and Eisele, 1991]. References: Arnold, F., D. Krankowsky and K. H. Marien, First mass spectrometric measurements of posi- tive ions in the stratosphere, Nature, 267, 30-32, 1977. D'Auria, R., A study of ionic

  11. Multicusp sources for ion beam projection lithography

    Science.gov (United States)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Vujic, J.; Williams, M. D.; Wutte, D.; Zahir, N.

    1998-02-01

    Multicusp ion sources are capable of producing positive and negative ions with good beam quality and low energy spread. The ion energy spread of multicusp sources has been measured by three different techniques. The axial ion energy spread has been reduced by introducing a magnetic filter inside the multicusp source chamber which adjusts the plasma potential distribution. The axial energy spread is further reduced by optimizing the source configuration. Values as low as 0.8 eV have been achieved.

  12. Mass spectrometry in a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mullan, A.A. (Applied Physical Science, University of Ulster, Coleraine (Northern Ireland)); Graham, W.G. (Physics Department, Queen' s University, Belfast, (Northern Ireland))

    1990-08-05

    Mass spectrometry has been used for the detection of positive and negative ions in a multicusp ion source operating with both hydrogen and deuterium gas. The mass spectrometer operation has been optimized and it is shown that applying ion extraction voltages can disturb the discharge. Using this technique combined with a Langmuir probe technique we are able to study the positive ionic fractions present when operating with both gases (and the negative ion densities.)

  13. Chaotic ion motion in magnetosonic plasma waves

    Science.gov (United States)

    Varvoglis, H.

    1984-01-01

    The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.

  14. Production of translationally cold barium monohalide ions

    CERN Document Server

    DePalatis, M V

    2013-01-01

    We have produced sympathetically cooled barium monohalide ions BaX$^+$ (X = F, Cl, Br) by reacting trapped, laser cooled Ba$^+$ ions with room temperature gas phase neutral halogen-containing molecules. Reaction rates for two of these (SF$_6$ and CH$_3$Cl) have been measured and are in agreement with classical models. BaX$^+$ ions are promising candidates for cooling to the rovibrational ground state, and our method presents a straightforward way to produce these polar molecular ions.

  15. The ANSTO high energy heavy ion microprobe

    Science.gov (United States)

    Siegele, Rainer; Cohen, David D.; Dytlewski, Nick

    1999-10-01

    Recently the construction of the ANSTO High Energy Heavy Ion Microprobe (HIMP) at the 10 MV ANTARES tandem accelerator has been completed. The high energy heavy ion microprobe focuses not only light ions at energies of 2-3 MeV, but is also capable of focusing heavy ions at high energies with ME/ q2 values up to 150 MeV amu and greater. First performance tests and results are reported here.

  16. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  17. Rational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth N.; Xu, Jide; Gramer, Christine

    1999-06-01

    This project addresses the fundamental issues and requirements for developing hazardous metal ion separation technologies applicable to the treatment and disposal of radioactive waste. Our research encompasses the following areas: the design and synthesis of metal ion specific sequestering ligands, structural and thermodynamic investigations of these ligand and the complexes formed with targeted metal ions, and the development and incorporation of these ligands into applied separation technologies as highly effective materials for hazardous metal ion decontamination.

  18. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    OpenAIRE

    E. G. Morozov; V.M. Nikol`skii; T.V. Saprunova; A.A. Yakovlev

    2012-01-01

    The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity t...

  19. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  20. Ion-batterier - "The Next Generation"

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Becker, Jacob; Shen, Yanbin;

    2014-01-01

    Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på.......Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på....

  1. Ion-batterier - "The Next Generation"

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Becker, Jacob; Shen, Yanbin

    2014-01-01

    Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på.......Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på....

  2. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    Sonia Kabana

    2012-10-01

    We review selected highlights from the experiments at the Relativistic Heavy Ion Collider (RHIC) exploring the QCD phase diagram. A wealth of new results appeared recently from RHIC due to major recent upgrades, like for example the $\\Upsilon$ suppression in central nucleus-nucleus collisions which has been discovered recently in both RHIC and LHC. Furthermore, we discuss RHIC results from the beam energy scan (BES) program aiming to search for a possible critical point and to map out the QCD phase diagram.

  3. Energy landscapes for mobile ions in ion conducting solids

    Indian Academy of Sciences (India)

    S Adams

    2006-11-01

    Structure property function relationships provide valuable guidelines in the systematic development of advanced functional materials with tailored properties. It is demonstrated that an augmented bond valence approach can be effectively used to establish such relationships for solid electrolytes. A bond valence analysis of local structure models for disordered systems or interfaces based on reverse Monte Carlo (RMC) fits or molecular dynamics (MD) simulations yields quantitative predictions of the ion transport characteristics. As demonstrated here for a range of metaphosphate and diborate glasses, the complete description of the energy landscape for mobile ions also provides an effective tool for achieving a more detailed understanding of ion transport in glasses. The investigation of time evolutions can be included, if the bond valence analysis is based on MD trajectories. In principle, this allows quantifying the time and temperature dependence of pathway characteristics, provided that a suitable empirical force-field is available. For the example of LiPO3, the remaining differences between simulated and experimental structures are investigated and a compensation method is discussed.

  4. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    Samiran Ghosh; Nikhil Chakrabarti; Manoranjan Khan; M R Gupta

    2013-02-01

    The conditions for the existence of low-frequency electrostatic drift wave in pair-ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.

  5. Ion heat transport studies in JET

    DEFF Research Database (Denmark)

    Mantica, P; Angioni, C; Baiocchi, B

    2011-01-01

    Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold a...

  6. Pharmaceutical Applications of Ion-Exchange Resins

    Science.gov (United States)

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  7. Electron beam ion traps and their applications

    Institute of Scientific and Technical Information of China (English)

    ZOU Ya-Ming; Roger HUTTON

    2003-01-01

    A brief introduction to the historical background and current status of electron beam ion traps (EBITs)is presented. The structure and principles of an EBIT for producing highly charged ions are described. Finally,EBITs as a potential tool in hot-plasma diagnostics and in studying frontier problems of highly charged ion physicsare discussed.

  8. Ion-exchange chromatographic protein refolding

    NARCIS (Netherlands)

    Freydell, E.; Wielen, van der L.; Eppink, M.H.M.; Ottens, M.

    2010-01-01

    The application of ion-exchange (IEX) chromatography to protein refolding (IExR) has been successfully proven, as supported by various studies using different model proteins, ion-exchange media and flow configurations. Ion-exchange refolding offers a relatively high degree of process

  9. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van Veldhoven, E.; Chen, P.; Sidorkin, V; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2009-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  10. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van veldhoven, E.; Chen, P.; Sidorkin, V.; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2010-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  11. The mean excitation energy of atomic ions

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Oddershede, Jens

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  12. Negative Halogen Ions for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

  13. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van veldhoven, E.; Chen, P.; Sidorkin, V.; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2010-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  14. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van Veldhoven, E.; Chen, P.; Sidorkin, V; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2009-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  15. Performance of an inverted ion source

    Energy Technology Data Exchange (ETDEWEB)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E. [Institute of Physics, University of Sao Paulo, C.P. 66318, CEP 05315-970, Sao Paulo S.P. (Brazil); Oks, E. M. [State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Brown, I. G. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2013-02-15

    Whereas energetic ion beams are conventionally produced by extracting ions (say, positive ions) from a plasma that is held at high (positive) potential, with ion energy determined by the potential drop through which the ions fall in the beam formation electrode system, in the device described here the plasma and its electronics are held at ground potential and the ion beam is formed and injected energetically into a space maintained at high (negative) potential. We refer to this configuration as an 'inverted ion source.' This approach allows considerable savings both technologically and economically, rendering feasible some ion beam applications, in particular small-scale ion implantation, that might otherwise not be possible for many researchers and laboratories. We have developed a device of this kind utilizing a metal vapor vacuum arc plasma source, and explored its operation and beam characteristics over a range of parameter variation. The downstream beam current has been measured as a function of extraction voltage (5-35 kV), arc current (50-230 A), metal ion species (Ti, Nb, Au), and extractor grid spacing and beamlet aperture size (3, 4, and 5 mm). The downstream ion beam current as measured by a magnetically-suppressed Faraday cup was up to as high as 600 mA, and with parametric variation quite similar to that found for the more conventional metal vapor vacuum arc ion source.

  16. Recent progress in heavy ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.J.

    1977-03-01

    A summary is given of the progress during the last several years in the technology of sources of high charge state positive heavy ions and negative heavy ions. Subjects covered include recent results in ECR and EBIS source development and comparison of various source types for high charge state heavy ions.

  17. Trapping and Sympathetic Cooling of Boron Ions

    CERN Document Server

    Rugango, Rene; Shu, Gang; Brown, Kenneth R

    2016-01-01

    We demonstrate the trapping and sympathetic cooling of B$^{+}$ ions in a Coulomb crystal of laser-cooled Ca$^{+}$, We non-destructively confirm the presence of the both B$^+$ isotopes by resonant excitation of the secular motion. The B$^{+}$ ions are loaded by ablation of boron and the secular excitation spectrum also reveals features consistent with ions of the form B$_{n}^{+}$.

  18. Ion-exchange chromatographic protein refolding

    NARCIS (Netherlands)

    Freydell, E.; Wielen, van der L.; Eppink, M.H.M.; Ottens, M.

    2010-01-01

    The application of ion-exchange (IEX) chromatography to protein refolding (IExR) has been successfully proven, as supported by various studies using different model proteins, ion-exchange media and flow configurations. Ion-exchange refolding offers a relatively high degree of process intensification

  19. Characterization of the internal ion environment of biofilms based on charge density and shape of ion.

    Science.gov (United States)

    Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao

    2015-12-01

    Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment.

  20. ELECTRON TRANSFER COLLISION OF NEON IONS WITH Ne IN A RF ION TRAP

    Institute of Scientific and Technical Information of China (English)

    满宝元; 王象泰; 等

    1995-01-01

    The pulsed electron beam rf ion stroage system is used to study neon ions electron transfer,The rate coefficients for electron transfer of the neon ions with the neon gas are measured.the results are better than those in other ion storage system.

  1. The first experimental results on laser ion loading into superconducting ECR ion source at RIKEN

    CERN Document Server

    Arzumanyan, G M; Shirkov, G D; Yano, Y

    2002-01-01

    The first experimental results on ions and neutrals injection by means of laser ablation from metal targets into the RIKEN 18 GHz superconducting electron cyclotron resonance ion source (SC ECRIS) are presented. Pulsed aluminium ion currents up to Al sup 8 sup + were generated in the source. The difference in pulse shapes of various charge states of the extracted ion currents is registered

  2. Effects of metal ion adduction on the gas-phase conformations of protein ions.

    Science.gov (United States)

    Flick, Tawnya G; Merenbloom, Samuel I; Williams, Evan R

    2013-11-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.

  3. Measurement of negative ion density in a pulsed multicusp negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Coonan, B.; Mellon, K.N.; Hopkins, M.B. (Dublin City University, Dublin (Ireland))

    1992-10-05

    The production of negative ion beams for use in neutral beam injection heating has become an important area of research in recent years. This paper discusses the negative ion densities measured in a pulsed multicusp volume ion source using photodetachment diagnostic technique. A pulse modulated negative ion source is being used as an alternative to the tandem source and an increase in negative ion extracted current has previously been observed by Hopkins and Mellon. Work with photodetachment quoted in this paper shows an increase in negative ion density during the post discharge similar to previous results obtained using an accelerator to extract the negative ions.

  4. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  5. Envelope Soliton in Multi-ion Plasma and Ion-Ion Hybrid Wave Excited by Energetic Electron Beam

    Institute of Scientific and Technical Information of China (English)

    WANG De-Yu; HUANG Guang-Li

    2001-01-01

    Another envelope soliton event below the H+ gyrofrequency and localized density depletion has been discoveredin the low auroral region (~1760 kin) by the Freja satellite. This envelope soliton has a characteristic frequencyat ~190 Hz, which is also close to the resonance frequency of hydrogen ion-oxygen ion hybrid wave. This event iscorrelated in time with the observations of the sharp increase of the ratio of oxygen ion density to hydrogen andwith the electron energization along the magnetic field. A theoretical model on the ion-ion hybrid wave excitedby an energetic electron beam has also been presented. It is found that the ion-ion hybrid wave is mainly excitedby the Cherenkov instability in the auroral region.

  6. Ion channels-related diseases.

    Science.gov (United States)

    Dworakowska, B; Dołowy, K

    2000-01-01

    There are many diseases related to ion channels. Mutations in muscle voltage-gated sodium, potassium, calcium and chloride channels, and acetylcholine-gated channel may lead to such physiological disorders as hyper- and hypokalemic periodic paralysis, myotonias, long QT syndrome, Brugada syndrome, malignant hyperthermia and myasthenia. Neuronal disorders, e.g., epilepsy, episodic ataxia, familial hemiplegic migraine, Lambert-Eaton myasthenic syndrome, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia may result from dysfunction of voltage-gated sodium, potassium and calcium channels, or acetylcholine- and glycine-gated channels. Some kidney disorders, e.g., Bartter's syndrome, policystic kidney disease and Dent's disease, secretion disorders, e.g., hyperinsulinemic hypoglycemia of infancy and cystic fibrosis, vision disorders, e.g., congenital stationary night blindness and total colour-blindness may also be linked to mutations in ion channels.

  7. Semiholography for heavy ion collisions

    Science.gov (United States)

    Mukhopadhyay, Ayan; Preis, Florian

    2017-03-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  8. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2016-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  9. Relativistic heavy-ion collisions

    CERN Document Server

    Bhalerao, Rajeev S

    2014-01-01

    The field of relativistic heavy-ion collisions is introduced to the high-energy physics students with no prior knowledge in this area. The emphasis is on the two most important observables, namely the azimuthal collective flow and jet quenching, and on the role fluid dynamics plays in the interpretation of the data. Other important observables described briefly are constituent quark number scaling, ratios of particle abundances, strangeness enhancement, and sequential melting of heavy quarkonia. Comparison is made of some of the basic heavy-ion results obtained at LHC with those obtained at RHIC. Initial findings at LHC which seem to be in apparent conflict with the accumulated RHIC data are highlighted.

  10. Ion selectivity of graphene nanopores

    Science.gov (United States)

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-04-01

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K+ cations over Cl- anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Surprisingly, the observed K+/Cl- selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.

  11. Composite oxygen ion transport element

    Science.gov (United States)

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  12. Ion Polarization Scheme for MEIC

    CERN Document Server

    Kondratenko, A M; Filatov, Yu N; Derbenev, Ya S; Lin, F; Morozov, V S; Zhang, Y

    2016-01-01

    The choice of a figure 8 shape for the booster and collider rings of MEIC opens wide possibilities for preservation of the ion polarization during beam acceleration as well as for control of the polarization at the collider's interaction points. As in the case of accelerators with Siberian snakes, the spin tune is energy independent but is equal to zero instead of one half. The figure-8 topology eliminates the effect of arcs on the spin motion. There appears a unique opportunity to control the polarization of any particle species including deuterons, using longitudinal fields of small integrated strength (weak solenoids). Contrary to existing schemes, using weak solenoids in figure-8 colliders, one can control the polarization at the interaction points without essentially any effect on the beam's orbital characteristics. A universal scheme for control of the polarization using weak solenoids provides an elegant solution to the problem of ion acceleration completely eliminating resonant beam depolarization. It...

  13. Ion channelopathies and migraine pathogenesis.

    Science.gov (United States)

    Albury, Cassie L; Stuart, Shani; Haupt, Larisa M; Griffiths, Lyn R

    2017-08-01

    Migraine is a common neurological disorder that affects approximately 12-20% of the general adult population. Migraine pathogenesis is complex and not wholly understood. Molecular genetic investigations, imaging and biochemical studies, have unveiled a number of interconnected neurological pathways which seem to have a cause and effect component integral to its cause. Much weight of migraine attack initiation can be placed on the initial trigger and the pathways involved in its neuronal counter reaction. Ion channels play a large role in the generation, portrayal and mitigation of the brains response to external triggers. Several genetic studies have identified and implicated a number of ion channelopathy genes which may contribute to this generalised process. This review will focus on the genetics of migraine with particular emphasis placed on the potentially important role genes HEPH (responsible for iron transport and homeostasis) and KCNK18 (important for the transport and homeostasis of potassium) play in migraine cause.

  14. Heavy Ion Physics in CMS

    CERN Document Server

    Baur, G; Chatrchyan, Serguei; Contardo, Didier; Damgov, Jordan; De Min, Alberto; Denegri, Daniel; Drapier, Olivier; Geist, Walter; Genchev, Vladimir; Haroutunian, Roger; Hayrapetyan, M G; Hencken, K; Jenkovszky, L L; Kartvelishvili, Vakhtang; Kharlov, Yuri; Kodolova, Olga; Kotlinski, Danek; Kruglov, Nikolai A; Kva, R

    2000-01-01

    This note summarizes the CMS potential for Heavy Ions Collisions studies. The main physics topic is the study of Y to muon pair decays in view of Y family supression studies, with a detailed discussion of muon reconstruction efficiencies and purities in conditions of central Pb-Pb collisions. We also discuss energy flow and impact parameter measurements, the observability of continuum muon pairs and of Z to mu + mu decays, and of jets and hard direct photons as a means to study jet quenching. We also discuss pA interactions as well as gamma-gamma physics. The instrumental specificities of CMS for heavy ion running are discussed, including trigger and data acquisition aspects.

  15. Timescales in heavy ion collisions

    CERN Document Server

    Lisa, Mike

    2016-01-01

    The study of high energy collisions between heavy nuclei is a field unto itself, distinct from nuclear and particle physics. A defining aspect of heavy ion physics is the importance of a bulk, self-interacting system with a rich space-time substructure. I focus on the issue of timescales in heavy ion collisions, starting with proof from low-energy collisions that femtoscopy can, indeed, measure very long timescales. I then discuss the relativistic case, where detailed measurements over three orders of magnitude in energy reveal a timescale increase that might be due to a first-order phase transition. I discuss also consistency in evolution timescales as determined from traditional longitudinal sizes and a novel analysis using shape information.

  16. Cryogenic ion chemistry and spectroscopy.

    Science.gov (United States)

    Wolk, Arron B; Leavitt, Christopher M; Garand, Etienne; Johnson, Mark A

    2014-01-21

    The use of mass spectrometry in macromolecular analysis is an incredibly important technique and has allowed efficient identification of secondary and tertiary protein structures. Over 20 years ago, Chemistry Nobelist John Fenn and co-workers revolutionized mass spectrometry by developing ways to non-destructively extract large molecules directly from solution into the gas phase. This advance, in turn, enabled rapid sequencing of biopolymers through tandem mass spectrometry at the heart of the burgeoning field of proteomics. In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. This is accomplished by first cooling the ions close to 10 K and condensing onto them weakly bound, chemically inert small molecules or rare gas atoms. This assembly can then be used as a medium in which to quench reactive encounters by rapid evaporation of the adducts, as well as provide a universal means for acquiring highly resolved vibrational action spectra of the embedded species by photoinduced mass loss. Moreover, the spectroscopic measurements can be obtained with readily available, broadly tunable pulsed infrared lasers because absorption of a single photon is sufficient to induce evaporation. We discuss the implementation of these methods with a new type of hybrid photofragmentation mass spectrometer involving two stages of mass selection with two laser excitation regions interfaced to the cryogenic ion source. We illustrate several capabilities of the cryogenic ion spectrometer by presenting recent applications to peptides, a biomimetic catalyst, a large antibiotic molecule (vancomycin), and reaction intermediates pertinent to the chemistry of the ionosphere. First, we demonstrate how site-specific isotopic substitution can be used to identify bands due to local functional groups in a protonated tripeptide designed to

  17. Ion thermal effects on slow mode solitary waves in plasmas with two adiabatic ion species

    Energy Technology Data Exchange (ETDEWEB)

    Nsengiyumva, F., E-mail: franco.nseng@gmail.com; Hellberg, M. A., E-mail: hellberg@ukzn.ac.za; Mace, R. L., E-mail: macer@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2015-09-15

    Using both the Sagdeev and Korteweg-de Vries (KdV) methods, ion thermal effects on slow mode ion acoustic solitons and double layers are investigated in a plasma with two adiabatic positive ion species. It is found that reducing the gap between the two ion thermal speeds by increasing the relative temperature of the cool ions increases the typical soliton/double layer speeds for all values of the ion-ion density ratio and reduces the range in the density ratio that supports double layers. The effect of increasing the relative cool ion temperature on the soliton/double layer amplitudes depends on the relative densities. For lower values of the ion density ratio, an increase in cool ion temperature leads to a significant decrease in soliton/double layer amplitude, so one may find that solitons of all permissible speeds lie within the range of KdV theory.

  18. Influence of ion species ratio on grid-enhanced plasma source ion implantation

    Institute of Scientific and Technical Information of China (English)

    Wang Jiu-Li; Zhang Gu-Ling; Liu Yuan-Fu; Wang You-Nian; Liu Chi-Zi; Yang Si-Ze

    2004-01-01

    @@ Grid-enhanced plasma source ion implantation (GEPSII) is a newly proposed technique to modify the inner-surface properties of a cylindrical bore. In this paper, a two-ion fluid model describing nitrogen molecular ions N2+ and atomic ions N+ is used to investigate the ion sheath dynamics between the grid electrode and the inner surface of a cylindrical bore during the GEPSII process, which is an extension of our previous calculations in which only N2+ was considered.Calculations are concentrated on the results of ion dose and impact energy on the target for different ion species ratios in the core plasma. The calculated results show that more atomic ions N+ in the core plasma can raise the ion impact energy and reduce the ion dose on the target.

  19. Development of the RF Ion Sources for Focused Ion Beam Accelerators

    Directory of Open Access Journals (Sweden)

    V. Voznyi

    2014-01-01

    Full Text Available The paper presents the results of investigations of ion sources developed in the IAP of NAS of Ukraine for generation of high brightness ion beams with small energy spread. A series of RF ion sources operated at the frequency of 27.12 MHz were studied: the inductive RF ion source, the helicon ion source, the multi-cusp RF ion source, and the sputter type RF source of metal ions. A global model and transformer model were applied for calculation of RF source plasma parameters. Ion energy spread, ion mass, and ion current density of some sources were measured in the wide range of RF power, extraction voltage and gas pres-sure.

  20. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    Energy Technology Data Exchange (ETDEWEB)

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  1. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  2. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  3. Electrically controlled cesium ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    Several sites within the DOE complex (Savannah River, Idaho, Oak Ridge and Hanford) have underground storage tanks containing high-level waste resulting from nuclear engineering activities. To facilitate final disposal of the tank waste, it is advantageous to separate and concentrate the radionuclides for final immobilization in a vitrified glass matrix. This task proposes a new approach for radionuclide separation by combining ion exchange (IX) and electrochemistry to provide a selective and economic separation method.

  4. Central collisions of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Sun-yiu.

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

  5. Ion cyclotron waves at Titan

    Science.gov (United States)

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.

    2016-03-01

    During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

  6. Multi-Ion Ambipolar Diffusion

    Science.gov (United States)

    1992-07-01

    recombination rate. For that assumption to be valid, the momentum transfer collision frequency vc must be greater than the recombination frequency for...each affected species. For ions, the recombination frequency is given by o-Ne ; the corresponding electron recombination frequency is aN 2 . The...produced a value in excess of 108 Hz for v, , while the recombination frequency was less than 107 Hz. The electron collision frequency can be

  7. Experimental Observations of Ion Phase-Space Vortices

    DEFF Research Database (Denmark)

    Pécseli, Hans; Armstrong, R. J.; Trulsen, J.

    1981-01-01

    Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies....

  8. Progress Toward Heavy Ion IFE

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R; Logan, B G; Waldron, W L; Sabbi, G L; Callahan-Miller, D A; Peterson, P F; Goodin, D T

    2002-01-17

    Successful development of Heavy Ion Fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy ion targets indicates that high gain (60-130) may be possible with a -3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLEE-II design, which uses an array of flibe jets to protect chamber structures from x-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLEE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HE. A target injector experiment capable of > 5 Hz operation has been designed and construction will start in 2002. Methods for mass production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed.

  9. Cooperative gating between ion channels.

    Science.gov (United States)

    Choi, Kee-Hyun

    2014-01-01

    Cooperative gating between ion channels, i.e. the gating of one channel directly coupled to the gating of neighboring channels, has been observed in diverse channel types at the single-channel level. Positively coupled gating could enhance channel-mediated signaling while negative coupling may effectively reduce channel gating noise. Indeed, the physiological significance of cooperative channel gating in signal transduction has been recognized in several in vivo studies. Moreover, coupled gating of ion channels was reported to be associated with some human disease states. In this review, physiological roles for channel cooperativity and channel clustering observed in vitro and in vivo are introduced, and stimulation-induced channel clustering and direct channel cross linking are suggested as the physical mechanisms of channel assembly. Along with physical clustering, several molecular mechanisms proposed as the molecular basis for functional coupling of neighboring channels are covered: permeant ions as a channel coupling mediator, concerted channel activation through the membrane, and allosteric mechanisms. Also, single-channel analysis methods for cooperative gating such as the binomial analysis, the variance analysis, the conditional dwell time density analysis, and the maximum likelihood fitting analysis are reviewed and discussed.

  10. Ion-Pumping Microbial Rhodopsins

    Directory of Open Access Journals (Sweden)

    Hideki eKandori

    2015-09-01

    Full Text Available Rhodopsins are light-sensing proteins used in optogenetics. The word rhodopsin originates from the Greek words rhodo and opsis, indicating rose and sight, respectively. Although the classical meaning of rhodopsin is the red-colored pigment in our eyes, the modern meaning of rhodopsin encompasses photoactive proteins containing a retinal chromophore in animals and microbes. Animal and microbial rhodopsins possess 11-cis and all-trans retinal, respectively, to capture light in seven transmembrane α-helices, and photoisomerizations into all-trans and 13-cis forms, respectively, initiate each function. Ion-transporting proteins can be found in microbial rhodopsins, such as light-gated channels and light-driven pumps, which are the main tools in optogenetics. Light-driven pumps, such as archaeal H+ pump bacteriorhodopsin (BR and Cl- pump halorhodopsin (HR, were discovered in the 1970s, and their mechanism has been extensively studied. On the other hand, different kinds of H+ and Cl- pumps have been found in marine bacteria, such as proteorhodopsin (PR and Fulvimarina pelagi rhodopsin (FR, respectively. In addition, a light-driven Na+ pump was found, Krokinobacter eikastus rhodopsin 2 (KR2. These light-driven ion-pumping microbial rhodopsins are classified as DTD, TSA, DTE, NTQ and NDQ rhodopsins for BR, HR, PR, FR and KR2, respectively. Recent understanding of ion-pumping microbial rhodopsins is reviewed in this paper.

  11. The Physics and Technology of Ion Sources

    CERN Document Server

    2004-01-01

    The first edition of this title has become a well-known reference book on ion sources. The field is evolving constantly and rapidly, calling for a new, up-to-date version of the book. In the second edition of this significant title, editor Ian Brown, himself an authority in the field, compiles yet again articles written by renowned experts covering various aspects of ion source physics and technology. The book contains full chapters on the plasma physics of ion sources, ion beam formation, beam transport, computer modeling, and treats many different specific kinds of ion sources in sufficient detail to serve as a valuable reference text

  12. Laser spectroscopy of trapped Th^3+ ions

    Science.gov (United States)

    Steele, Adam; Campbell, Corey; Churchill, Layne; Depalatis, Michael; Naylor, David; Kuzmich, Alex; Chapman, Michael

    2008-05-01

    We are applying the techniques of laser cooling and ion trapping to investigate the low lying nuclear isomeric state in ^229Th. We will confine Th^3+ atoms in an RF trap [1] and sympathetically cool them with barium ions. The ions are produced by laser ablation from a thorium metal target by the third harmonic of a Q-switched YAG laser. Using mass-spectroscopic techniques we separate out the Th^3+ ions from the plume of ablation products. We once trapped we will observe fluorescence from the trapped ions using transitions at 984 nm and 690 nm. [1] Peik E. and Tamm Chr., Europhysics Letters, 61 (2) (2003)

  13. Collisionless ion dynamics in the shock front

    Science.gov (United States)

    Gedalin, Michael

    2016-07-01

    In the vicinity of the shock front the dynamics of ions is governed by the macroscopic regular electric and magnetic field of the shock. Upon crossing the shock the thermal ions form a non-gyrotropic distribution. The pressure of these non-gyrotropic ions shapes the downstream magnetic field. High-energy ions behave in the shock front as test particles under the influence on the macroscopic fields. The reflection and transmission coefficients of high-energy ions at an oblique shock front is not sensitive to the shock structure and depends only on the global magnetic field change at the shock.

  14. Review of polarized ion sources (invited).

    Science.gov (United States)

    Zelenski, A

    2010-02-01

    Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H(-) ion (proton), D(-) (D(+)), and (3)He(++) ion beams are discussed. Feasibility studies of these techniques are in progress at BNL and other laboratories. Polarized deuteron beams will be required for the polarization program at the Dubna Nuclotron and at the deuteron electric dipole moment experiment at BNL. Experiments with polarized (3)He(++) ion beams are a part of the experimental program at the future electron ion collider.

  15. Gas-Phase Covalent And Non-Covalent Ion/ion Chemistry Of Biological Macromolecules

    OpenAIRE

    Stutzman, John Robert

    2013-01-01

    Gas-phase ion/ion chemistry involves the interaction of oppositely charged ions inside of the mass spectrometer. During this gas-phase chemistry, particle transfer (i.e., proton and electron) or synthesis can occur at rapid reaction rates. Particle transfer represents a mature area of ion/ion chemistry, while selective covalent modification represents a fairly new area of gas-phase chemistry. Gas-phase covalent chemistry is based on traditional solution phase organic chemistry. The work de...

  16. Evaporative cooling of highly charged ions in EBIT (Electron Beam Ion Trap): An experimental realization

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.B.; Levine, M.A.; Bennett, C.L.; Henderson, J.R.; Knapp, D.A.; Marrs, R.E.

    1988-12-01

    Both the total number and trapping lifetime of near-neon-like gold ions held in an electron beam ion trap have been greatly increased by a process of 'evaporative cooling'. A continuous flow of low-charge-state ions into the trap cools the high-charge-state ions in the trap. Preliminary experimental results using titanium ions as a coolant are presented. 8 refs., 6 figs., 2 tabs.

  17. Determination of ammonium ion in biological nitrification-denitrification process water by ion exclusion chromatography with ion exchange enhancement of conductivity detection.

    OpenAIRE

    田中, 一彦; 黒川, 利一; 中島, 良三; Fritz, James S.

    1988-01-01

    Ammonium ion in biological nitrification-denitrification process with batchwise treatment was determined by ion exclusion chromatography using water as an eluent with ion exchange enhancement of conductivity. Ammonium ion was selectively separated by ion exclusion from alkali metal and alkaline earth metal cations. The detection sensitivity of the ammonium ion was improved about 11-fold with two ion exchange enhancement columns inserted in series between the separation column packed with OH--...

  18. Peltier Refrigerators for Molecular Ion Sources

    Science.gov (United States)

    Hershcovitch, Ady

    2008-11-01

    Molecular ion sources have been considered for various applications. In particular, there is considerable effort to develop decaborane and octadecaborane ion sources for the semiconductor industry. Since the invention of the transistor, the trend has been to miniaturize semiconductor devices. As semiconductors become smaller (and get miniaturized), ion energy needed for implantation decreases, since shallow implantation is desired. But, due to space charge (intra-ion repulsion) effects, forming and transporting ion beams becomes a rather difficult task. These problems associated with lower energy ion beams limit implanter ion currents, thus leading to low production rates. One way to tackle the space charge problem is to use singly charged molecular ions. A crucial aspect in generating large molecular ion beam currents is ion source temperature control. Peltier coolers, which have in the past successfully utilized in BaF2 and CSI gamma ray detectors, may be ideal for this application. Clogging prevention of molecular ion sources is also a hurdle, which was overcome with special slots. Both topics are to be presented.

  19. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    Science.gov (United States)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  20. Negative Ions for Emerging Interdisciplinary Applications

    Science.gov (United States)

    Guharay, Samar K.

    2011-09-01

    In many applications related to ion beam-materials interactions negative ions are particularly desirable due to its merit to yield a very low surface charge-up voltage, ˜ a few volts, for both electrically isolated surfaces and insulators. Some important applications pertaining to ion beam-material interactions include surface analysis by secondary ion mass spectrometry (SIMS), voltage-contrast microscopy for semiconductor device inspection, materials processing, and ion beam lithography. These applications primarily require vacuum environments. On the other hand, a distinct area of activities constitutes formation of ions and ion transport in ambient environmental conditions, i.e., at atmospheric pressures. In this context, ion mobility spectrometry (IMS) is an important analytical device that uses negative ions and operates at ambient conditions. IMS is widely used in both physical and biological sciences including monitoring environmental conditions, security screening and disease detection. This article highlights several critical issues related to the ionization sources and ion transport in IMS. Additionally, the critical issues related to ion sources, transport and focusing are discussed in the context of SIMS with sub-micrometer spatial resolution.

  1. Laser Ion Acceleration Toward Future Ion Beam Cancer Therapy - Numerical Simulation Sudy-

    CERN Document Server

    Kawata, Shigeo; Nagashima, Toshihiro; Takano, Masahiro; Barada, Daisuke; Kong, Qing; Gu, Yan Jun; Wang, Ping Xiao; Ma, Yan Yun; Wang, Wei Ming

    2013-01-01

    Ion beam has been used in cancer treatment, and has a unique preferable feature to deposit its main energy inside a human body so that cancer cell could be killed by the ion beam. However, conventional ion accelerator tends to be huge in its size and its cost. In this paper a future intense-laser ion accelerator is proposed to make the ion accelerator compact. An intense femtosecond pulsed laser was employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching and the ion particle energy control. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions ...

  2. Ion Elevators and Escalators in Multilevel Structures for Lossless Ion Manipulations

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Yehia M.; Hamid, Ahmed M.; Cox, Jonathan T.; Garimella, Sandilya V. B.; Smith, Richard D.

    2017-01-19

    We describe two approaches based upon ion ‘elevator’ and ‘escalator’ components that allow moving ions to different levels in structures for lossless ion manipulations (SLIM). Guided by ion motion simulations we designed elevator and escalator components providing essentially lossless transmission in multi-level designs based upon ion current measurements. The ion elevator design allowed ions to efficiently bridge a 4 mm gap between levels. The component was integrated in a SLIM and coupled to a QTOF mass spectrometer using an ion funnel interface to evaluate the m/z range transmitted as compared to transmission within a level (e.g. in a linear section). Mass spectra for singly-charged ions of m/z 600-2700 produced similar mass spectra for both elevator and straight (linear motion) components. In the ion escalator design, traveling waves (TW) were utilized to transport ions efficiently between two SLIM levels. Ion current measurements and ion mobility (IM) spectrometry analysis illustrated that ions can be transported between TW-SLIM levels with no significant loss of either ions or IM resolution. These developments provide a path for the development of multilevel designs providing e.g. much longer IM path lengths, more compact designs, and the implementation of much more complex SLIM devices in which e.g. different levels may operate at different temperatures or with different gases.

  3. Ion Elevators and Escalators in Multilevel Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Ibrahim, Yehia M; Hamid, Ahmed M; Cox, Jonathan T; Garimella, Sandilya V B; Smith, Richard D

    2017-02-07

    We describe two approaches based upon ion "elevator" and "escalator" components that allow moving ions to different levels in structures for lossless ion manipulations (SLIM). Guided by ion motion simulations, we designed elevator and escalator components based upon ion current measurements providing essentially lossless transmission in multilevel designs. The ion elevator design allowed ions to efficiently bridge a 4 mm gap between levels. The component was integrated in a SLIM and coupled to a QTOF mass spectrometer using an ion funnel interface to evaluate the m/z range transmitted as compared to transmission within a level (e.g., in a linear section). The analysis of singly charged ions of m/z 600-2700 produced similar mass spectra for both elevator and straight (linear motion) components. In the ion escalator design, traveling waves (TW) were utilized to transport ions efficiently between two SLIM levels. Ion current measurements and ion mobility (IM) spectrometry analysis illustrated that ions can be transported between TW-SLIM levels with no significant loss of either ions or IM resolution. These developments provide a path for the development of multilevel designs providing, e.g., much longer IM path lengths, more compact designs, and the implementation of much more complex SLIM devices in which, e.g., different levels may operate at different temperatures or with different gases.

  4. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  5. Characterization of ions at Alpine waterfalls

    Directory of Open Access Journals (Sweden)

    P. Kolarž

    2011-09-01

    Full Text Available During a three-year field campaign of measuring waterfall generated ions, we monitored five different waterfalls in the Austrian Alps. Most measurements were performed at the Krimml waterfall (Salzburg, which is the biggest and most visited one in Europe and the Gartl waterfall (Mölltal, Carinthia. Smallest ion sizes (0.9–2 nm were measured with a cylindrical air ion detector (CDI-06 while ion sizes from 5.5 to 350 nm were measured using a modified Grimm SMPS aerosol spectrometer. Measurements showed high negative ion gradients nearby waterfalls whereas positive ions showed only a moderate increase. The most abundant sizes of nano-sized and sub-micrometer ions measured were at 2 nm and of the larger and heavier ones at 120 nm.

  6. Ion distributions in plane and cylindrical chambers.

    Science.gov (United States)

    Rosen, R; George, E P

    1975-11-01

    The ion chamber equations of Thomson include both ion recombination and space-charge terms. Neglecting the space-charge term, an exact solution is obtained for the ion densities across a plane ionization chamber. The method is extended to the cylindrical chamber, and examples are given of the expected ion distributions in both geometries. Current-voltage relationships are derived for both chambers and compared with those of other workers. If the space-charge term is retained, the ion chamber equations for both geometries are not soluble in closed form. The cylindrical chamber is considered and a computer solution is obtained for the ion distributions and current. Comparison with the nonspace-charge solution shows that while there is only a small difference in the current-voltage relationship, a significant difference can occur in the ion concentrations.

  7. Interfacial transport in lithium-ion conductors

    Science.gov (United States)

    Shaofei, Wang; Liquan, Chen

    2016-01-01

    Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance. Project supported by the Beijing S&T Project, China (Grant No. Z13111000340000), the National Natural Science Foundation of China (Grant Nos. 51325206 and 11234013) and the National Basic Research Program of China (Grant No. 2012CB932900).

  8. Cold molecular ions on a chip

    CERN Document Server

    Mokhberi, A

    2014-01-01

    We report the sympathetic cooling and Coulomb crystallization of molecular ions above the surface of an ion-trap chip. N$_2^+$ and CaH$^+$ ions were confined in a surface-electrode radiofrequency ion trap and cooled by the interaction with laser-cooled Ca$^{+}$ ions to secular translational temperatures in the millikelvin range. The configuration of trapping potentials generated by the surface electrodes enabled the formation of planar bicomponent Coulomb crystals and the spatial separation of the molecular from the atomic ions on the chip. The structural and thermal properties of the Coulomb crystals were characterized using molecular dynamics simulations. The present study extends chip-based trapping techniques to Coulomb-crystallized molecular ions with potential applications in mass spectrometry, cold chemistry, quantum information science and spectroscopy.

  9. Numerical calculation of ion runaway distributions

    CERN Document Server

    Embréus, Ola; Stahl, Adam; Hirvijoki, Eero; Fülöp, Tünde

    2015-01-01

    Ions accelerated by electric fields (so-called runaway ions) in plasmas may explain observations in solar flares and fusion experiments, however limitations of previous analytic work have prevented definite conclusions. In this work we describe a numerical solver of the 2D non-relativistic linearized Fokker-Planck equation for ions. It solves the initial value problem in velocity space with a spectral-Eulerian discretization scheme, allowing arbitrary plasma composition and time-varying electric fields and background plasma parameters. The numerical ion distribution function is then used to consider the conditions for runaway ion acceleration in solar flares and tokamak plasmas. Typical time scales and electric fields required for ion acceleration are determined for various plasma compositions, ion species and temperatures, and the potential for excitation of toroidal Alfv\\'en eigenmodes during tokamak disruptions is considered.

  10. Ions Preheated in 3He-Rich Solar Particle Events

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2003-01-01

    A wave-particle resonance absorption model in the two-ion plasma is suggested in explanation to the coronal ions preheating in 3He-rich solar particle events. It is found that 3He and Fe ions are preferably preheated by the ion-ion hybrid waves at their fundamental and second harmonic ion cyclotron frequencies, respectively.

  11. Purification of selenium from thorium, uranium, radium, actinium and potassium impurities for low background measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rakhimov, A.V. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Uzbek Academy of Sciences, Tashkent (Uzbekistan). Inst. of Nuclear Physics (INP AS RUz); Warot, G. [CEA-CNRS, Modane (France). Laboratoire Souterrain de Modane (LSM); Karaivanov, D.V. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Institute for Nuclear Research and Nuclear Energy (INRNE), Sofia (Bulgaria); Kochetov, O.I.; Lebedev, N.A.; Filosofov, D.V. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Mukhamedshina, N.M.; Sadikov, I.I. [Uzbek Academy of Sciences, Tashkent (Uzbekistan). Inst. of Nuclear Physics (INP AS RUz)

    2013-07-01

    A technique of selenium purification from {sup 232}Th, {sup 238}U, {sup 226,228}Ra, {sup 227}Ac and {sup 40}K was developed. This technique is simple to perform and employs a minimum number of highly pure reagents (bidistilled water, nitric acid). Operations carried out during purification (elution, evaporation) practically exclude losses of the target product (chemical yields of Se > 99%). A test purification of 100 g of selenium was carried out using this technique. The efficiency of this technique was confirmed by low background gamma spectrometry of the purified selenium sample. Distribution coefficients of Th, U, Ra and Ac on DOWEX 50W- x 8 cation-exchange resin at different concentrations of selenium and nitric acid were experimentally determinated. Instrumental neutron activation analysis of bidistilled water, deionized water and nitric acid was performed. (orig.)

  12. The release of dissolved actinium to the ocean: A global comparison of different end-members

    Science.gov (United States)

    Geibert, W.; Charette, M.; Kim, G.; Moore, W.S.; Street, J.; Young, M.; Paytan, A.

    2008-01-01

    The measurement of short-lived 223Ra often involves a second measurement for supported activities, which represents 227Ac in the sample. Here we exploit this fact, presenting a set of 284 values on the oceanic distribution of 227Ac, which was collected when analyzing water samples for short-lived radium isotopes by the radium delayed coincidence counting system. The present work compiles 227Ac data from coastal regions all over the northern hemisphere, including values from ground water, from estuaries and lagoons, and from marine end-members. Deep-sea samples from a continental slope off Puerto Rico and from an active vent site near Hawaii complete the overview of 227Ac near its potential sources. The average 227Ac activities of nearshore marine end-members range from 0.4??dpm m- 3 at the Gulf of Mexico to 3.0??dpm m- 3 in the coastal waters of the Korean Strait. In analogy to 228Ra, we find the extension of adjacent shelf regions to play a substantial role for 227Ac activities, although less pronounced than for radium, due to its weaker shelf source. Based on previously published values, we calculate an open ocean 227Ac inventory of 1.35 * 1018??dpm 227Acex in the ocean, which corresponds to 37??moles, or 8.4??kg. This implies a flux of 127??dpm m-2 y- 1 from the deep-sea floor. For the shelf regions, we obtain a global inventory of 227Ac of 4.5 * 1015??dpm, which cannot be converted directly into a flux value, as the regional loss term of 227Ac to the open ocean would have to be included. Ac has so far been considered to behave similarly to Ra in the marine environment, with the exception of a strong Ac source in the deep-sea due to 231Paex. Here, we present evidence of geochemical differences between Ac, which is retained in a warm vent system, and Ra, which is readily released [Moore, W.S., Ussler, W. and Paull, C.K., 2008-this issue. Short-lived radium isotopes in the Hawaiian margin: Evidence for large fluid fluxes through the Puna Ridge. Marine Chemistry]. Another potential mechanism of producing deviations in 227Ac/228Ra and daughter isotope ratios from the expected production value of lithogenic material is observed at reducing environments, where enrichment in uranium may occur. The presented data here may serve as a reference for including 227Ac in circulation models, and the overview provides values for some end-members that contribute to the global Ac distribution. ?? 2007 Elsevier B.V. All rights reserved.

  13. Ion beam modification of solids ion-solid interaction and radiation damage

    CERN Document Server

    Wesch, Werner

    2016-01-01

    This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for ins...

  14. A singly charged ion source for radioactive {sup 11}C ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2016-02-15

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  15. Ge and Ti post-ion acceleration from laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: Lorenzo.Torrisi@unime.i [INFN-LNS di Catania, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica, Universita di Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy); Giuffrida, L. [INFN-LNS di Catania, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica, Universita di Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy); Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, 23 Hery Str. 01-497 Warsaw (Poland); Schallhorn, C. [Department of Physics, University of California, Portola Plaza 430, 90095 Los Angeles, CA (United States)

    2010-09-15

    Laser ion sources (LIS) are employed with success to generate, in vacuum, Ge and Ti ion beams with high current, ion energy, charge states and directivity. Nanoseconds infrared laser pulses, with intensities of the order of 10{sup 10} W/cm{sup 2}, induce high ablation in Ge and Ti targets. Ions are produced in vacuum with energy distribution following the Coulomb-Boltzmann-shifted distribution and they are ejected mainly along the normal to the target surface. The free ion expansion process occurs in a constant-potential chamber placed at 30 kV positive voltage. An electric field of 5 kV/cm was used to accelerate the ions emitted from the plasma at INFN-LNS laser facility. Time-of-flight technique is employed to measure the mean ion energies of the post-accelerated particles. Ion charge states and energy distributions were measured through an ion energy spectrometer.

  16. Ge and Ti post-ion acceleration from laser ion source

    Science.gov (United States)

    Torrisi, L.; Giuffrida, L.; Rosinski, M.; Schallhorn, C.

    2010-09-01

    Laser ion sources (LIS) are employed with success to generate, in vacuum, Ge and Ti ion beams with high current, ion energy, charge states and directivity. Nanoseconds infrared laser pulses, with intensities of the order of 10 10 W/cm 2, induce high ablation in Ge and Ti targets. Ions are produced in vacuum with energy distribution following the Coulomb-Boltzmann-shifted distribution and they are ejected mainly along the normal to the target surface. The free ion expansion process occurs in a constant-potential chamber placed at 30 kV positive voltage. An electric field of 5 kV/cm was used to accelerate the ions emitted from the plasma at INFN-LNS laser facility. Time-of-flight technique is employed to measure the mean ion energies of the post-accelerated particles. Ion charge states and energy distributions were measured through an ion energy spectrometer.

  17. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maharaj, S. K., E-mail: smaharaj@sansa.org.za [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Robert Sobukwe Road, Bellville, 7535 (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India)

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  18. A singly charged ion source for radioactive 11C ion acceleration

    Science.gov (United States)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  19. The Kadomtsev-Petviashvili equation for dust ion-acoustic solitons in pair-ion plasmas

    Institute of Scientific and Technical Information of China (English)

    Hafeez Ur-Rehman

    2013-01-01

    Using the reductive perturbation method,we have derived the Kadomtsev-Petviashvili (KP) equation to study the nonlinear properties of electrostatic collisionless dust ion-acoustic solitons in pair-ion (p-i) plasmas.We have chosen the fluid model for the positive ions,the negative ions,and a fraction of static charged (both positively and negatively) dust particles.Numerical solutions of these dust ion-acoustic solitons are plotted and their characteristics are discussed.It is found that only the amplitudes of the electrostatic dust ion-acoustic solitons vary when the dust is introduced in the pair-ion plasma.It is also noticed that the amplitude and the width of these solitons both vary when the thermal energy of the positive or negative ions is varied.It is shown that potential hump structures are formed when the temperature of the negative ions is higher than that of the positive ions,and potential dip structures are observed when the temperature of the positive ions supersedes that of the negative ions.As the pair-ion plasma mimics the electron-positron plasma,thus our results might be helpful in understanding the nonlinear dust ion acoustic solitary waves in super dense astronomical bodies.

  20. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection

    Science.gov (United States)

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time.

  1. Ion current rectification inversion in conic nanopores: nonequilibrium ion transport biased by ion selectivity and spatial asymmetry.

    Science.gov (United States)

    Yan, Yu; Wang, Lin; Xue, Jianming; Chang, Hsueh-Chia

    2013-01-28

    We show both theoretically and experimentally that the ion-selectivity of a conic nanopore, as defined by a normalized density of the surface charge, significantly affects ion current rectification across the pore. For weakly selective negatively charged pores, intra-pore ion transport controls the current and internal ion enrichment/depletion at positive/reverse biased voltage (current enters/leaves through the tip, respectively), which is responsible for current rectification. For strongly selective negatively charged pores under positive bias, the current can be reduced by external field focusing and concentration depletion at the tip at low ionic strengths and high voltages, respectively. These external phenomena produce a rectification inversion for highly selective pores at high (low) voltage (ionic strength). With an asymptotic analysis of the intra-pore and external ion transport, we derive simple scaling laws to quantitatively capture empirical and numerical data for ion current rectification and rectification inversion of conic nanopores.

  2. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    Science.gov (United States)

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Spectroscopy with trapped highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  4. Ion flux profiles observed at Mars

    Science.gov (United States)

    Fowler, C. M.; Andersson, L.; Lundin, R. N.; Frahm, R. A.

    2012-12-01

    How Mars lost it's water and atmosphere is still an important question. Many studies have investigated high-energy ion fluxes (>10 eV) surrounding the planet and derived ion outflow rates in order to determine atmospheric loss. These rates suggest that the outflow from high-energy ions is not the dominant escape path for atmospheric loss. Over the years increasing evidence has indicated that the loss of low-energy ions are more important than the high-energy ion loss. In this presentation ion observations (down to the spacecraft potential) from the Mars Express (MEX) mission (2010/11), are used to describe the ion altitude distribution at Mars. The focus of this study is below the altitude of ~1000 km. Within the Mars environment, using the MEX electron observations different plasma regions was identified. Supported by electron identification, different altitude profiles of ion fluxes have been analyzed from the different plasma regions. One of the results from this study is that the altitude profile of the ion flux observed below the photoelectron boundary is different when comparing the northern and the southern hemispheres. The ion distributions, resulting altitude profile, the influence of the crustal magnetic field at Mars, and the implications relating to plasma outflow will be discussed in this presentation.

  5. Intense Pulsed Heavy Ion Beam Technology

    Science.gov (United States)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  6. ION BEAM TECHNOLOGY IN MATERIALS SCIENCE

    Directory of Open Access Journals (Sweden)

    M.B. Dutt

    2009-07-01

    Full Text Available Ion beam processing of materials in general and semiconductors in particular, started with ion implantation in semiconductors; first used by Ohl at Bell Labs in 1952 toimprove the electrical characteristics of silicon point contact diodes by implanting H, He, N and Ar ions.The improvement was obvious but it was caused by surface damage and notthe ion implantation. However, in the process, ion implantation had an entry and slowly it became popular among the scientists and the technocrats. Thus, over the last six decades, demands continued for new and improved materials and devices that has pushed ion implanter to expand to ion beam technology. In the semiconductor industry alone, the processes have evolved so much so that in today’s world, there are morethan 4000 ion implanters in the IC fab lines apart from otherion beam-assisted processing machines. Ion beam deposition techniques, ion beam lithography, ion beam etching, ion beammilling are all ion beam beam-assisted techniques that arebeing extensively used in semiconductor industries. In this backdrop, it was thought that a compilation of uses of allthese techniques together with relevant tools of analysis toserve as a guide to the semiconductor scientists and technologists for a glimpse of the ongoing efforts being madein this direction. Fortunately enough, Indian research is not lagging in use of all these modern day technologies that will be evident as the reader will go from one article to the other of this special volume.Defence Science Journal, 2009, 59(4, pp.328-328, DOI:http://dx.doi.org/10.14429/dsj.59.1530

  7. IOOC Organizational Network (ION) Project

    Science.gov (United States)

    Dean, H.

    2013-12-01

    In order to meet the growing need for ocean information, research communities at the national and international levels have responded most recently by developing organizational frameworks that can help to integrate information across systems of existing networks and standardize methods of data gathering, management, and processing that facilitate integration. To address recommendations and identified challenges related to the need for a better understanding of ocean observing networks, members of the U.S. Interagency Ocean Observation Committee (IOOC) supported pursuing a project that came to be titled the IOOC Organizational Network (ION). The ION tool employs network mapping approaches which mirror approaches developed in academic literature aimed at understanding political networks. Researchers gathered data on the list of global ocean observing organizations included in the Framework for Ocean Observing (FOO), developed in 2012 by the international Task Team for an Integrated Framework for Sustained Ocean Observing. At the international scale, researchers reviewed organizational research plans and documents, websites, and formal international agreement documents. At the U.S. national scale, researchers analyzed legislation, formal inter-agency agreements, work plans, charters, and policy documents. Researchers based analysis of relationships among global organizations and national federal organizations on four broad relationship categories: Communications, Data, Infrastructure, and Human Resources. In addition to the four broad relationship categories, researchers also gathered data on relationship instrument types, strength of relationships, and (at the global level) ocean observing variables. Using network visualization software, researchers then developed a series of dynamic webpages. Researchers used the tool to address questions identified by the ocean observing community, including identifying gaps in global relationships and the types of tools used to

  8. Scattering of electromagnetic waves from a plasma: Enhanced ion acoustic fluctuations due to ion-ion two-stream instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Wahlund, J.E.; Opgenoorth, H.J.; Persson, M.A.L. (Swedish Institute of Space Physics, Uppsala (Sweden)); Mishin, E.V.; Volokitin, A.S. (IZMIRAN, Troitsk, Moscow Region (Russian Federation)); Forme, F.R.E. (CNRS/CRPE (France))

    1992-10-02

    The authors propose an explanation for ion acoustic line spectra which have been observed by the EISCAT and Millstone Hill radars in the topside auroral ionosphere. They show that such lines can be generated in plasmas which are unstable to the ion-ion two-stream instability. This mechanism has the advantage of explaining the observed phenomena, and being consistent with typical conditions in the topside ionosphere.

  9. Cobalt ion-containing epoxies

    Science.gov (United States)

    Stoakley, D. M.; St.clair, A. K.

    1983-01-01

    Varying concentrations of an organometallic cobalt complex were added to an epoxy system currently used by the aerospace industry as a composite matrix resin. Methods for combining cobalt (III) acetylacetonate with a tetraglycidyl 4,4 prime - diaminodiphenylmethane-based epoxy were investigated. The effects of increasing cobalt ion concentration on the epoxy cure were demonstrated by epoxy gel times and differential scanning calorimetry cure exotherms. Analysis on cured cobalt-containing epoxy castings included determination of glass transition temperatures by thermomechanical analysis, thermooxidative stabilities by thermogravimetric analysis, and densities in a density gradient column. Flexural strength and stiffness were also measured on the neat resin castings.

  10. Radioactive Ion Beams and Radiopharmaceuticals

    Science.gov (United States)

    Laxdal, R. E.; Morton, A. C.; Schaffer, P.

    2014-02-01

    Experiments performed at radioactive ion beam facilities shed new light on nuclear physics and nuclear structure, as well as nuclear astrophysics, materials science and medical science. The many existing facilities, as well as the new generation of facilities being built and those proposed for the future, are a testament to the high interest in this rapidly expanding field. The opportunities inherent in radioactive beam facilities have enabled the search for radioisotopes suitable for medical diagnosis or therapy. In this article, an overview of the production techniques and the current status of RIB facilities and proposals will be presented. In addition, accelerator-generated radiopharmaceuticals will be reviewed.

  11. Synthesis of elusive chloropnictenium ions.

    Science.gov (United States)

    Hering-Junghans, Christian; Thomas, Max; Villinger, Alexander; Schulz, Axel

    2015-04-27

    This work describes the synthesis and full characterization of elusive chloropnictenium ion salts of the type [(R)Ar*N(SiMe)ECl][A] ((R)Ar* = 2,6-(CHPh2)-4-R-C6H2, R = Me, tBu; E = Sb, Bi; A(-) = GaCl4, Al(OCH(CF3)2)4). In these species the cation is significantly stabilized by weak arene interactions to flanking phenyl groups of the (R)Ar* moiety. In this context the bonding situation has been studied by computational means and the reactivity towards the Lewis base 4-dimethylaminopyridine (dmap) was investigated.

  12. Demystifying Mechanosensitive Piezo Ion Channels.

    Science.gov (United States)

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel.

  13. Nanofabrication by Focused Ion Beam

    Science.gov (United States)

    1993-09-28

    MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES AD-A271 290 )N PAGE orhan Sand .01fMI.,r re ~’.nq tn., Oiurda N0o.me 0& Of .018l 04v~~t P - .L...Institute of Technology Cambridge, MA 02139 APPROVED FOR PUBLIC RELEASE; N, S c; . DISTRIBUTION UNLIMITED u..d.. `. B y .. . . . . . .. Dist A-jr I...defined sidewalls indicate that much finer lithography would be possible with a1 more optimum beam. b ) Preferential Oxide growth after ion exposure. (In

  14. GISELE: A resonant ionization laser ion source for the production of radioactive ions at GANIL

    Energy Technology Data Exchange (ETDEWEB)

    Lecesne, N.; Alves-Conde, R.; De Oliveira, F.; Dubois, M.; Flambard, J. L.; Franberg, H.; Jardin, P.; Leroy, R.; Pacquet, J. Y.; Pichard, A.; Saint-Laurent, M. G. [GANIL, BP 55027, 14076 Caen Cedex 5 (France); Coterreau, E.; Le Blanc, F.; Olivier, A. [IPN Orsay, BP 1-91406 Orsay (France); Gottwald, T.; Mattolat, C.; Wendt, K. [Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, 55099 Mainz (Germany); Lassen, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Rothe, S. [Department of Engineering, CERN, CH-1211 Geneva 23 (Switzerland)

    2010-02-15

    SPIRAL2 is the new project under construction at GANIL to produce radioactive ion beams and in particular neutron rich ion beams. For the past 10 yr SPIRAL1 at GANIL has been delivering accelerated radioactive ion beams of gases. Both facilities now need to extend the range of radioactive ion beams produced to condensable elements. For that purpose, a resonant ionization laser ion source, funded by the French Research National Agency, is under development at GANIL, in collaboration with IPN Orsay, University of Mainz (Germany) and TRIUMF, Vancouver (Canada). A description of this project called GISELE (GANIL Ion Source using Electron Laser Excitation) is presented.

  15. Quasi-periodic behavior of ion acoustic solitary waves in electron-ion quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit [Department of Mathematics, West Bengal State University Barasat, Kolkata-700126 (India); Poria, Swarup [Department of Applied Mathematics, University of Calcutta Kolkata-700009 (India); Narayan Ghosh, Uday [Department of Mathematics, Siksha Bhavana, Visva Bharati University Santiniketan (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics Unit, Indian Statistical Institute Kolkata-700108 (India)

    2012-05-15

    The ion acoustic solitary waves are investigated in an unmagnetized electron-ion quantum plasmas. The one dimensional quantum hydrodynamic model is used to study small as well as arbitrary amplitude ion acoustic waves in quantum plasmas. It is shown that ion temperature plays a critical role in the dynamics of quantum electron ion plasma, especially for arbitrary amplitude nonlinear waves. In the small amplitude region Korteweg-de Vries equation describes the solitonic nature of the waves. However, for arbitrary amplitude waves, in the fully nonlinear regime, the system exhibits possible existence of quasi-periodic behavior for small values of ion temperature.

  16. Nonlinear ion dynamics in Hall thruster plasma source by ion transit-time instability

    Science.gov (United States)

    Lim, Youbong; Choe, Wonho; Mazouffre, Stéphane; Park, Jae Sun; Kim, Holak; Seon, Jongho; Garrigues, L.

    2017-03-01

    High-energy tail formation in an ion energy distribution function (IEDF) is explained in a Hall thruster plasma with the stationary crossed electric and magnetic fields whose discharge current is oscillated at the ion transit-time scale with a frequency of 360 kHz. Among ions in different charge states, singly charged Xe ions (Xe+) have an IEDF that is significantly broadened and shifted toward the high-energy side, which contributes to tail formation in the entire IEDF. Analytical and numerical investigations confirm that the IEDF tail is due to nonlinear ion dynamics in the ion transit-time oscillation.

  17. Simulation methods of ion sheath dynamics in plasma source ion implantation

    Institute of Scientific and Technical Information of China (English)

    WANG Jiuli; ZHANG Guling; WANG Younian; LIU Yuanfu; LIU Chizi; YANG Size

    2004-01-01

    Progress of the theoretical studies on the ion sheath dynamics in plasma source ion implantation (PSII) is reviewed in this paper. Several models for simulating the ion sheath dynamics in PSII are provided. The main problem of nonuniform ion implantation on the target in PSII is discussed by analyzing some calculated results. In addition, based on the relative researches in our laboratory, some calculated results of the ion sheath dynamics in PSII for inner surface modification of a cylindrical bore are presented. Finally, new ideas and tendency for future researches on ion sheath dynamics in PSII are proposed.

  18. GISELE: A resonant ionization laser ion source for the production of radioactive ions at GANIL

    CERN Document Server

    Lecesne, N; Wendt, K; Mattolat, C; Rothe, S; Pichard, A; Pacquet, J Y; Dubois, M; Coterreau, E; Franberg, H; Leroy, R; Gottwald, T; Alves-Conde, R; Flambard, J L; De Oliveira, F; Le Blanc, F; Jardin, P; Olivier, A; Lassen, J

    2010-01-01

    SPIRAL2 is the new project under construction at GANIL to produce radioactive ion beams and in particular neutron rich ion beams. For the past 10 yr SPIRAL1 at GANIL has been delivering accelerated radioactive ion beams of gases. Both facilities now need to extend the range of radioactive ion beams produced to condensable elements. For that purpose, a resonant ionization laser ion source, funded by the French Research National Agency, is under development at GANIL, in collaboration with IPN Orsay, University of Mainz (Germany) and TRIUMF, Vancouver (Canada). A description of this project called GISELE (GANIL Ion Source using Electron Laser Excitation) is presented.

  19. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sok; Lee, Chan young; Lee, Jae Sang [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction.

  20. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  1. A Plasma Ion Source for ISOLTRAP

    CERN Document Server

    Skov, Thomas Guldager

    2016-01-01

    In this report, my work testing the new Penning ion source as a summer student at ISOLTRAP is described. The project was composed of three stages: (1) Setting up a test laboratory in building 275, (2) characterizing the ion source, and (3) implementing and testing the source in the ISOLTRAP setup. After setting up the test laboratory, the ion source was tested in a constant pressure environment with produced ion currents in the range of nA . An extensive scan of the source ion current versus operating parameters (pressure, voltage) was performed. A setup with pulsed gas flow was also tested, allowing a reduction of the gas load on the vacuum system. The behavior of the ion source together with the ISOLTRAP setup was also investigated, allowing to understand current limitations and future directions of improvement.

  2. Coulomb crystallization of highly charged ions.

    Science.gov (United States)

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-03-13

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.

  3. Heavy Ion Acceleration in Impulsive Solar Flares

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2002-01-01

    The abundance enhancements of heavy ions Ne, Mg, Si and Fe in impulsive solar energetic particle (SEP) eventsare explained by a plasma acceleration mechanism. In consideration of the fact that the coronal plasma is mainlycomposed of hydrogen and helium ions, we think that theion-ion hybrid wave and quasi-perpendicular wave can.be excited by the energetic electron beam in impulsive solar flares. These waves may resonantly be absorbed byheavy ions when the frequencies of these waves are close to the second-harmonic gyrofrequencies of these heavyions. This requires the coronal plasma temperature to be located in the range ofT ~ (5 - 9) × 106 K in impulsivesolar flares and makes the average ionic charge state of these heavy ions in impulsive SEP events higher than theaverage ionic charge state of these heavy ions in gradual SEP events. These pre-heated and enhanced heavy ionsin impulsive SEP events.

  4. Confined ion beam sputtering device and method

    Science.gov (United States)

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  5. Negative electrodes for Na-ion batteries.

    Science.gov (United States)

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  6. Space-time crystals of trapped ions.

    Science.gov (United States)

    Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H T; Yin, Xiaobo; Zhang, Peng; Duan, L-M; Zhang, Xiang

    2012-10-19

    Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space-time crystal of trapped ions and a method to realize it experimentally by confining ions in a ring-shaped trapping potential with a static magnetic field. The ions spontaneously form a spatial ring crystal due to Coulomb repulsion. This ion crystal can rotate persistently at the lowest quantum energy state in magnetic fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space-time crystal. We show that these space-time crystals are robust for direct experimental observation. We also study the effects of finite temperatures on the persistent rotation. The proposed space-time crystals of trapped ions provide a new dimension for exploring many-body physics and emerging properties of matter.

  7. Robust Collimation Control of Laser-Generated Ion Beam

    CERN Document Server

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  8. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  9. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Science.gov (United States)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  10. A vacuum spark ion source: High charge state metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  11. Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution.

    Science.gov (United States)

    Chremos, Alexandros; Douglas, Jack F

    2016-04-28

    We investigate the influence of counter-ion valency on the flexibility of highly charged flexible polymer chains using molecular dynamics simulations that include both salt and an explicit solvent. As observed experimentally, we find that divalent counter-ions greatly reduce the chain persistence length, lp, in comparison with monovalent counter-ions. On the other hand, polyelectrolyte chains having trivalent counter-ions adopt a much more compact conformation than polyelectrolytes having monovalent and divalent counter-ions. We demonstrate that the tendency of polyelectrolyte chains to become deformed by proximal high valence counter-ions is due to chain "coiling" around the counter-ions. In particular, we find that the number of contacts that the proximal counter-ions have with the polyelectrolyte dictates the extent of chain coiling. This ion-binding induced coiling mechanism influences not only the conformational properties of the polyelectrolyte, but also the counter-ion distribution around the chain. Specifically, we find that higher valent counter-ions lead both to a counter-ion enrichment in close proximity to the polyelectrolyte and to a significant reduction in the spatial extent of the diffuse counter-ion cloud around the polyelectrolyte.

  12. Extending ion-track lithography to the low-energy ion regime

    Energy Technology Data Exchange (ETDEWEB)

    Musket, R G

    2005-10-14

    Ion tracking and ion-track lithography have been performed almost exclusively using ions with energies near or above the maximum in electronic stopping, which occurs at {approx}1 MeV/amu. In this paper, ion-track lithography using ions with energies well below this maximum is discussed. The results of etching ion tracks created in polycarbonate films by ions with energies just above the anticipated threshold for creating etchable latent tracks with cylindrical geometry have been examined. Low-energy neon and argon ions with 18-60 keV/amu and fluences of {approx}10{sup 8}/cm{sup 2} were used to examine the limits for producing useful, etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., {approx}20 nm < SEM hole diameter < {approx}100 nm), the energy deposition calculated for the incident ion was correlated with the creation of etchable tracks. The experimental results are discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness of the films. The probability distributions for large-angle scattering events were calculated to assess their importance as a function of ion energy. All these results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications of ion tracking.

  13. Ionic force field optimization based on single-ion and ion-pair solvation properties

    CERN Document Server

    Fyta, Maria; Dzubiella, Joachim; Vrbka, Lubos; Netz, Roland R

    2009-01-01

    Molecular dynamics simulations of ionic solutions depend sensitively on the force fields employed for the ions. To resolve the fine differences between ions of the same valence and roughly similar size and in particular to correctly describe ion-specific effects, it is clear that accurate force fields are necessary. In the past, optimization strategies for ionic force fields either considered single-ion properties (such as the solvation free energy at infinite dilution or the ion-water structure) or ion-pair properties (in the form of ion-ion distribution functions). In this paper we investigate strategies to optimize ionic force fields based on single-ion and ion-pair properties simultaneously. To that end, we simulate five different salt solutions, namely CsCl, KCl, NaI, KF, and CsI, at finite ion concentration. The force fields of these ions are systematically varied under the constraint that the single-ion solvation free energy matches the experimental value, which reduces the two-dimensional $\\{\\sigma,\\e...

  14. Predicting ion flux uniformity at the ion extraction plate in a 3D ICP reactor

    Science.gov (United States)

    Roy, Abhra; Bhoj, Ananth

    2016-09-01

    In order to achieve better control in processing the wafer surface, the ion fluxes in a remote plasma system are often focused through one or more ion extraction plates between the main plasma chamber and the downstream wafer plane. The ion extraction plates are typically of showerhead pattern with multiple holes. The focus of this particular study is to predict the ion flux uniformity over the ion extraction plate for a full 3D inductively coupled discharge reactor model using Argon chemistry. We will use the commercial modeling tool, CFD-ACE +, which can address such a process involving gas flow, heat transfer, plasma physics, reaction chemistry and electromagnetics in a coupled fashion. The plasma characteristics in the chamber and uniformity of the ion fluxes at ion extraction plate are discussed. Parametric studies varying the geometrical dimensions and process conditions to determine the effect on ion flux uniformity are presented. The showerhead-like ion extraction plate will be modeled as a porous media with a specified porosity. Further, a spatially varying porosity of the ion extraction plate is used to simulate ion recombination in order to reduce the ion flux non-uniformity. The goal is to optimize the system maximizing the ion flux while maintaining the uniformity.

  15. A vacuum spark ion source: High charge state metal ion beams

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  16. Ion permeable microcapsules for the release of biologically available ions for remineralization.

    Science.gov (United States)

    Davidson, Michael T; Greving, Theresa A; McHale, William A; Latta, Mark A; Gross, Stephen M

    2012-03-01

    The objective of this study was to investigate the effect of chemical structure, ion concentration, and ion type on the release rate of biologically available ions useful for remineralization from microcapsules with ion permeable membranes. A heterogeneous polymerization technique was utilized to prepare microcapsules containing either an aqueous solution of K₂HPO₄, Ca(NO₃)₂, or NaF. Six different polyurethane-based microcapsule shells were prepared and characterized based on ethylene glycol, butanediol, hexanediol, octanediol, triethylene glycol, and bisphenol A structural units. Ion release profiles were measured as a function of initial ion concentration within the microcapsule, ion type, and microcapsule chemical structure. The rate of ion release increased with initial concentration of ion stored in the microcapsule over a range of 0.5-3.0M. The monomer used in the synthesis of the membrane had a significant effect on ion release rates at 3.0 M salt concentration. At 1.0 M, the ethylene glycol released ions significantly faster than the hexanediol-, octanediol-, and butanediol-based microcapsules. Ion release was fastest for fluoride and slowest for phosphate for the salts used in this study. It was concluded that the microcapsules are capable of releasing calcium, phosphate, and fluoride ions in their biologically available form.

  17. LHC Report: Ions cross protons

    CERN Multimedia

    Reyes Alemany Fernandez for the LHC team

    2013-01-01

    The LHC starts the New Year facing a new challenge: proton-lead collisions in the last month before the shutdown in mid-February.    The first stable beams were achieved on 20 January with 13 individual bunches per beam. In the next fill, the first bunch-trains were injected and stable beams were achieved with 96 proton on 120 ion bunches.  This fill was very important because we were able to study the so-called moving long-range beam-beam encounters. Long-range encounters, which are also seen in proton-proton runs, occur when the bunches in the two beams “see” each other as they travel in the same vacuum chamber at either side of the experiments.  The situation becomes more complicated with proton-lead ions because the two species have different revolution times (until the frequencies are locked at top energy- see “Cogging exercises”) and thus these encounters move. We found that this effect does not cause significant beam losses...

  18. LHC Report: Positive ion run!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    The current LHC ion run has been progressing very well. The first fill with 358 bunches per beam - the maximum number for the year - was on Tuesday, 15 November and was followed by an extended period of steady running. The quality of the beam delivered by the heavy-ion injector chain has been excellent, and this is reflected in both the peak and the integrated luminosity.   The peak luminosity in ATLAS reached 5x1026 cm-2s-1, which is a factor of ~16 more than last year's peak of 3x1025 cm-2s-1. The integrated luminosity in each of ALICE, ATLAS and CMS is now around 100 inverse microbarn, already comfortably over the nominal target for the run. The polarity of the ALICE spectrometer and solenoid magnets was reversed on Monday, 28 November with the aim of delivering another sizeable amount of luminosity in this configuration. On the whole, the LHC has been behaving very well recently, ensuring good machine availability. On Monday evening, however, a faulty level sensor in the cooling towe...

  19. The Relativistic Heavy Ion Collider

    Science.gov (United States)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  20. Heavy Ion Physics at CMS

    CERN Document Server

    Veres, Gabor

    2017-01-01

    In the present proceedings recent heavy ion results from the Compact Muon Solenoid collaboration at the LHC are presented. These contain comparisons between small and large collision systems, as well as studies of energy evolution, thus include data collected in proton-proton collisions at 13 TeV (2015 and 2016), proton-proton and lead-lead collisions at 5 TeV (2015), and proton-lead collisions at 5 TeV and 8 TeV (2016) center-of-mass energy per nucleon pair. They provide new insights into the properties of the extremely high density and high temperature matter created in heavy ion collisions, while pointing out similarities and differences in comparison to smaller collision systems. These include gluon distribution functions in the lead nucleus; the azimuthal anisotropy of final state particle distributions in all the three different collision systems; charge separation signals from proton-lead collisions and consequences for the Chiral Magnetic Effect; new studies of parton energy loss and its dependence on...

  1. Spectroscopic studies of ion implanted PPV films

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, C. (Cavendish Lab., Univ. of Cambridge (United Kingdom)); Friend, R.H. (Cavendish Lab., Univ. of Cambridge (United Kingdom)); Sarnecki, G.J. (Cavendish Lab., Univ. of Cambridge (United Kingdom)); Lucas, B. (LEPOFI, Faculte des Sciences, 87 - Limoges (France)); Moliton, A. (LEPOFI, Faculte des Sciences, 87 - Limoges (France)); Ratier, B. (LEPOFI, Faculte des Sciences, 87 - Limoges (France)); Belorgeot, C. (Lab. de Physique Moleculaire, Faculte des Sciences, 87 - Limoges (France))

    1993-03-15

    The main results of the spectroscopic analyses (infrared and ultraviolet - visible - near infrared) carried out on PPV films before and after ion implantation with halogen and alkali ions are presented in this paper. The influence of both ions nature and implantation parameters on optical properties of this polymer have been pointed out and the appearance of a weak band due to doping has been observed by infrared spectroscopy. (orig.)

  2. Atomic absorption spectroscopy in ion channel screening.

    Science.gov (United States)

    Stankovich, Larisa; Wicks, David; Despotovski, Sasko; Liang, Dong

    2004-10-01

    This article examines the utility of atomic absorption spectroscopy, in conjunction with cold flux assays, to ion channel screening. The multiplicity of ion channels that can be interrogated using cold flux assays and atomic absorption spectroscopy is summarized. The importance of atomic absorption spectroscopy as a screening tool is further elaborated upon by providing examples of the relevance of ion channels to various physiological processes and targeted diseases.

  3. Chloride Ion Critical Content in Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chloride ion critical content was studied under soaking and cycle of dry and wet conditions,with three electrochemical nondestructive measuring techniques, i e, half-cell potential, A C impedance, and time potential. The experimental results show that chloride ion critical content is primarily determined by the water cement ratio, while for the same concrete mixture the chloride ion critical content in soaking conditions is larger than that in a cycle of dry and wet conditions.

  4. Novel Electrolytes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Brett L. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Chemistry

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  5. Quantum Logic Between Distant Trapped Ions

    CERN Document Server

    Olmschenk, S; Matsukevich, D N; Maunz, P; Moehring, D L; Monroe, C

    2009-01-01

    Trapped atomic ions have proven to be one of the most promising candidates for the realization of quantum computation due to their long trapping times, excellent coherence properties, and exquisite control of the internal atomic states. Integrating ions (quantum memory) with photons (distance link) offers a unique path to large-scale quantum computation and long-distance quantum communication. In this article, we present a detailed review of the experimental implementation of a heralded photon-mediated quantum gate between remote ions, and the employment of this gate to perform a teleportation protocol between two ions separated by a distance of about one meter.

  6. Ion Sources for MedAustron

    CERN Document Server

    Lettry, J; Wallner, J; Sargsyan, E; CERN. Geneva. BE Department

    2010-01-01

    The MedAustron Ion therapy center will be constructed in Wiener Neustadt (Austria) in the vicinity of Vienna. Its accelerator complex consists of four ion sources, a linear accelerator, a synchrotron and a beam delivery system to the three medical treatment rooms and to the research irradiation room. The ion sources shall deliver beams of H31+, C4+ and light ions with utmost reliability and stability. This paper describes the features of the ion sources presently planned for the MedAustron facility; such as ion source main parameters, gas injection, temperature control and cooling systems. A dedicated beam diagnostics technique is proposed in order to characterize ECR ions beams; in the first drift region after the ion source, a fraction of the mixed beam is selected via moveable aperture. With standard beam diagnostics, we then aim to produce position-dependant observables such as ion-current density, beam energy distribution and emittance for each charge states to be compared to simulations of ECR e-heating...

  7. Heavy ion physics at the LHC

    CERN Document Server

    Schükraft, Jürgen

    2002-01-01

    The field of ultra-relativistic heavy ion physics, which started some 15 years ago at the Brookhaven AGS and the CERN SPS with fixed target experiments, is entering today a new era with the recent start-up of the Relativistic Heavy Ion Collider RHIC and preparations well under way for a new large heavy ion experiment at the Large Hadron Collider (LHC). At this crossroads, the article will give a summary of the experimental program and our current view of heavy ion physics at the LHC, concentrating in particular on physics topics that are different or unique compared to current facilities.

  8. Multicusp sources for ion beam projection lithography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wutte, D.; Zahir, N. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    1998-02-01

    Multicusp ion sources are capable of producing positive and negative ions with good beam quality and low energy spread. The ion energy spread of multicusp sources has been measured by three different techniques. The axial ion energy spread has been reduced by introducing a magnetic filter inside the multicusp source chamber which adjusts the plasma potential distribution. The axial energy spread is further reduced by optimizing the source configuration. Values as low as 0.8 eV have been achieved. {copyright} {ital 1998 American Institute of Physics.}

  9. Ion Correlations at Electrified Soft Matter Interfaces

    Science.gov (United States)

    Laanait, Nouamane

    2011-07-01

    Ion correlations have been suggested as the underlying mechanism of a number of counterintuitive phenomena in soft condensed-matter, such as like-charge attraction. Recently, several theoretical models have emerged, attempting to address these electrostatic correlations, beyond the mean field description of the Poisson-Boltzmann theory. The central prediction of these theories, the ion density profile, has remained untested by measurements with microscopic resolution. In this work, we present the first molecular-level tests of an ion correlations model. Analysis of synchrotron x-ray reflectivity using a phenomenological model reveals ion condensation at the liquid/liquid interface, when polarized with an electric field. Tuning the density of this ionic layer allows for a detailed study of ion correlations as a function of the Coulomb coupling strength in the system. We propose a density functional theory that aims to describe electrostatic ion correlations and explicitly includes solvent effects through an ion-solvent interaction potential, mapped out using Molecular Dynamics simulations. The proposed model predicts global electrostatic properties of the system that are in excellent agreement with thermodynamic measurements of the interfacial excess charge, with no adjustable parameters. Comparison of the density profiles to the x-ray data indicates that a nonlocal free functional based on the Debye-Hückel-Hole theory of a one-component plasma, adequately describes ion-ion interactions up to a correlation strength of 4 kBT. We anticipate this result to be of relevance in other strongly correlated soft matter systems.

  10. Surface nanostructures by single highly charged ions.

    Science.gov (United States)

    Facsko, S; Heller, R; El-Said, A S; Meissl, W; Aumayr, F

    2009-06-03

    It has recently been demonstrated that the impact of individual, slow but highly charged ions on various surfaces can induce surface modifications with nanometer dimensions. Generally, the size of these surface modifications (blisters, hillocks, craters or pits) increases dramatically with the potential energy of the highly charged ion, while the kinetic energy of the projectile ions seems to be of little importance. This paper presents the currently available experimental evidence and theoretical models and discusses the circumstances and conditions under which nanosized features on different surfaces due to the impact of slow highly charged ions can be produced.

  11. Handbook for highly charged ion spectroscopic research

    CERN Document Server

    Hutton, Roger; Currell, Fred; Martinson, Indrek; Hagmann, Siegbert

    2011-01-01

    Highly charged ions are key research objects in atomic physics. Precision spectroscopy of such ions provides a powerful tool for exploring relativistic and quantum electrodynamics effects. Additionally, the interaction of high-energy heavy-ions with matter is itself a topic of importance in many areas of applied physics, including fusion and plasma physics, accelerator physics, materials science and semiconductor device preparation and behavior. This work provides a complete overview of modern methods of studying highly charged ions. With chapters covering everything from the essential backgro

  12. Perpendicular ion acceleration in whistler turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Saito, S. [Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601 (Japan); Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190, Toyama 930-8555 (Japan)

    2014-04-15

    Whistler turbulence is an important contributor to solar wind turbulence dissipation. This turbulence contains obliquely propagating whistler waves at electron scales, and these waves have electrostatic components perpendicular to the mean magnetic field. In this paper, a full kinetic, two-dimensional particle-in-cell simulation shows that whistler turbulence can accelerate ions in the direction perpendicular to the mean magnetic field. When the ions pass through wave-particle resonances region in the phase space during their cyclotron motion, the ions are effectively accelerated in the perpendicular direction. The simulation results suggest that whistler turbulence contributes to the perpendicular heating of ions observed in the solar wind.

  13. Plasma ion stratification by weak planar shocks

    Science.gov (United States)

    Simakov, Andrei N.; Keenan, Brett D.; Taitano, William T.; Chacón, Luis

    2017-09-01

    We derive fluid equations for describing steady-state planar shocks of a moderate strength ( 0 shock Mach number) propagating through an unmagnetized quasineutral collisional plasma comprising two separate ion species. In addition to the standard fluid shock quantities, such as the total mass density, mass-flow velocity, and electron and average ion temperatures, the equations describe shock stratification in terms of variations in the relative concentrations and temperatures of the two ion species along the shock propagation direction. We have solved these equations analytically for weak shocks ( 0 shocks, and they have been used to verify kinetic simulations of shocks in multi-ion plasmas.

  14. Pair creation in heavy ion channeling

    Directory of Open Access Journals (Sweden)

    N.A. Belov

    2016-04-01

    Full Text Available Heavy ions channeled through crystals with multi-GeV kinetic energies can create electron–positron pairs. In the framework of the ion, the energy of virtual photons arising from the periodic crystal potential may exceed the threshold 2mec2. The repeated periodic collisions with the crystal ions yield high pair production rates. When the virtual photon frequency matches a nuclear transition in the ion, the production rate can be resonantly increased. In this two-step excitation-pair conversion scheme, the excitation rates are coherently enhanced, and scale approximately quadratically with the number of crystal sites along the channel.

  15. Fluorine ion transmission through thin biological samples

    Institute of Scientific and Technical Information of China (English)

    XueJian-Ming; WangYu-Gang; 等

    1998-01-01

    F2+ beam with 3MeV is used to irradiate thin biological samples(onion inner suface membrane and kidney bean coat)in the transmission measurement ,its current density is 400-800nA/cm2,Results show that the onion samples can be broken up quickly under ion irradiating;as to kidney bean samples,about 60% of the implanted ions penetrate the samples,most of them lose part of their eneregy,fewer ions are found to be able to transmit through the sample without energy loss.SEM experiments are carried out to study sample's damage induced by the ions irradiation.

  16. 11. international conference on ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, D.; Lyneis, C.; Cheng, D.; Galloway, M.L.; Leitner, M.; Todd, D.S.; Ciavola, G.; Gammino, S.; Celona, L.; Ando, L.; Torrisi, L.; Cavenago, M.; Galata, A.; Spaedtke, P.; Tinschert, K.; Lang, R.; Iannucci, R.; Leroy, R.; Barue, C.; Hitz, D.; Koivisto, H.; Suominen, P.; Tarvainen, O.; Beijers, H.; Brandenburg, S.; Vanrooyen, D.; Hillo, C.; Kuchler, D.; Homeyer, H.; Rohrich, J.; Schachter, L.; Dobrescu, S.; Nakagawa, T.; Higurashi, Y.; Kidera, M.; Aihara, T.; Kase, M.; Goto, A.; Yang, Y.; Zhao, H.W.; Zhang, Z.M.; Zhang, X.Z.; Guo, X.H.; He, W.E.; Sun, L.T.; Yuan, P.; Song, M.T.; Xie, Z.Q.; Cao, Y.; Zhan, W.L.; Wei, B.W.; Bricault, P.; Lau, C.; Essabaa, S.; Cheikh Mhamed, M.; Bajeat, O.; Ducourtieux, M.; Lefort, H.; Panteleev, V.N.; Barzakh, A.E.; Fedorov, D.V.; Ionan, A.M.; Mezilev, K.A.; Moroz, F.V.; Orlov, S.Y.; Volkov, Y.M.; Andrighetto, A.; Lhersonneau, G.; Rizzi, V.; Tecchio, L.B.; Dubois, M.; Gaubert, G.; Jardins, P.; Lecesne, N.; Leroy, R.; Pacquet, J.Y.; Saint Laurent, M.G.; Villari, A.C.O.; Bajeat, O.; Essabaa, S.; Lau, C.; Menna, M.; Franberg, H.; Ammann, M.; Gdggeler, H.W.; Koster, U.; Allen, F.; Biedermann, C.; Radtke, R.; Ames, F.; Baartman, R.; Bricault, P.; Jayamanna, K.; Lamy, T.; McDonald, M.; Olivo, M.; Schmorl, P.; Yuan, D.H.L.; Asaji, T.; Sasaki, H.; Kato, Y.; Atabaev, B.; Radjabov, S.S.; Akhmadjanova, M.K.; Yuzikaeva, F.R.; Baoqun, Cui; Liqiang, Li; Yingjun, Ma; Shengyun, Zhu; Cong, Jiang

    2005-07-01

    This document gathers the summaries of the presentations made at ICIS05 (international conference on ion sources). It can be organized into 3 main topics: 1) 'fundamentals and theory' that deals with plasma, beam extraction, transport and emittance, diagnostics and simulation; 2) 'various types of ion sources' that include ECRIS, EBIS, microwave, negative, radioactive, polarized and laser ion sources, and charge breeders; and 3) 'ion sources and applications' in fields like accelerator injection, fusion energy, space propulsion, mass spectrometry, and neutron and cluster and rare nuclide production.

  17. Hybrid ion chains inside an optical cavity

    Science.gov (United States)

    Zhou, Zichao; Siverns, James; Quraishi, Qudsia

    2016-05-01

    Trapped ions remain a leading candidate for the implementation of large-scale quantum networks. These networks require nodes that can store and process quantum information as well as communicate with each other though photonic flying qubits. We propose to use hybrid ion chains of barium, for communication, and ytterbium, for quantum information processing. We report on progress in setting up a hybrid ion chain in a versatile four-blade trap using high numerical aperture collection optics. Although the visible photons produced from barium ions are more favorable as they are not suitable for long distance fiber communication. With this in mind, we intend to implement frequency conversion to overcome this issue. Also, with the view toward increasing the flying-qubit production rate, we propose a cavity-based system to enhance interactions between the ions and photons. The cavity axis is to be placed along the axial direction of the trap allowing a chain of multiple ions to interact with the cavity at the same time. With this configuration the atom-photon coupling strength can be improved by sqrt(N), where N is the number of ions. Experiments will focus on exploring the dynamics of hybrid ion chain, dual species quantum information processing, two-colour entanglement and phase gates assisted by the ion-cavity coupling are to be explored.

  18. Ion-gap sensing for engine control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This article reports that in addition to detecting misfire to conform with California onboard diagnostic (OBD II) regulations, Delco Electronics and Mecel AB engineers are looking at ion-gap sensing to control knock, A/F ratio, and other possible engine control parameters. The combustion of fuel in an engine cylinder produces ions. Detection of those ions by the spark plug (ion-gap sensing), and use of the resulting ion currents, has been employed in engine management systems since 1988. Saab introduced the first application, for cam-phase sensing. The main driving force for ion-gap sensing is OBD II requirements for 100% misfire detection at all speeds and loads. The technique has been expanded in subsequent applications to include misfire, knock, and pre-ignition detection and control, and more recently in combustion-ion detection using a capacitance-type, ion-current measurement method. Use of the ion current`s wave shape to control knock allows elimination of the separate piezoelectric type (PZT) sensor. Future applications could provide additional engine-control features including air/fuel ratio measurement and control.

  19. Surface Production of Negative Hydrogen Ions.

    Science.gov (United States)

    2014-09-26

    V_ _" MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) Uncl assified ISa . DECL ASSI FICATION...x 10 Ions/cm2 A After 132 min. of sputtering CS + Dosige =1.3 x .118Ions/cm2 After 230 min. of sputtering CS + Dosage =2.4 x 101 Ions/cm2 Figure 14...approximately 1019 ions/an. 34 Figure ]I. SEM Picture of a sputtered No surface magnified 500 times. The target was sputtered with a Cs+ dosage of 3.6 x 101

  20. Surface modification using ionic liquid ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Gikan H.; Hamaguchi, Takuya; Takeuchi, Mitsuaki; Ryuto, Hiromichi

    2014-12-15

    We developed an ionic liquid (IL) ion source using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF{sub 6}) and produced IL ion beams by applying a high electric field between the tip and the extractor. Time-of-flight measurements showed that small cluster and fragment ions were contained in the positive and negative ion beams. The positive and negative cluster ions were deposited on Si(1 0 0) substrates. X-ray photoelectron spectroscopy measurements showed that the composition of the deposited layers was similar to that of an IL solvent. This suggests that a cation (A{sup +}) or an anion (B{sup −}) was attached to an IL cluster (AB){sub n}, resulting in the formation of positive cluster ions (AB){sub n}A{sup +} or negative cluster ions (AB){sub n}B{sup −}, respectively. The surfaces of the IL layers deposited on Si(1 0 0) substrates were flat at an atomic level for positive and negative cluster ion irradiation. Moreover, the contact angles of the deposited layers were similar to that of the IL solvent. Thus, surface modification of Si(1 0 0) substrates was successfully demonstrated with BMIM-PF{sub 6} cluster ion beams.

  1. CERN PS laser ion source development

    CERN Document Server

    Fournier, P; Haseroth, H; Khomenko, S; Kondrashev, S A; Kugler, H; Lisi, N; Lombardi, A M; Makarov, K; Meyer, C; Ostroumov, P N; Pirkl, Werner; Rörich, V; Roudskoy, I; Satov, Yu A; Schnuriger, J C; Scrivens, R; Sharkov, B Yu; Shumshurov, A V; Stepanov, A; Tenishev, V; Varelá-Rodriguez, F

    1999-01-01

    CERN, together with ITEP and TRINITI (Russia), is developing a CO2 laser ion source. The key design parameters are: 1.4 1010 ions of Pb25+ in a pulse of 5.5 ms, with a 4-rms emittance of 0.2 10-6 rad m, working at a repetition rate of 1 Hz. This device is considered as one candidate source for LHC heavy ion operation. The status of the laser development, the experimental set-up of the source consisting of the target area and its illumination, the plasma expansion area and extraction, beam transport and ion pre-acceleration by an RFQ, will be given.

  2. Experimental recombination rates for highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold Schuch [Dept. of Atomic Physics, Stockholm Univ., Frescativ., Stockholm (Sweden)

    2000-01-01

    Recent studies of recombination between free electrons and highly charged ions using electron coolers of heavy-ion storage rings have produced accurate rate coefficients of interest for plasma modeling and diagnostics. Some surprises were discovered which can lead to revisions of recombination models. With bare ions one finds at low energy a strong and puzzling deviation from radiative recombination theory. Dielectronic recombination with C3+, N4+ show that jj coupling gives essential contributions to the cross section also for light ions. (author)

  3. Laser ion acceleration for hadron therapy

    Science.gov (United States)

    Bulanov, S. V.; Wilkens, J. J.; Esirkepov, T. Zh; Korn, G.; Kraft, G.; Kraft, S. D.; Molls, M.; Khoroshkov, V. S.

    2014-12-01

    The paper examines the prospects of using laser plasma as a source of high-energy ions for the purpose of hadron beam therapy — an approach which is based on both theory and experimental results (ions are routinely observed to be accelerated in the interaction of high-power laser radiation with matter). Compared to therapy accelerators like synchrotrons and cyclotrons, laser technology is advantageous in that it is more compact and is simpler in delivering ions from the accelerator to the treatment room. Special target designs allow radiation therapy requirements for ion beam quality to be satisfied.

  4. Ion Acceleration by Short Chirped Laser Pulses

    Directory of Open Access Journals (Sweden)

    Jian-Xing Li

    2015-02-01

    Full Text Available Direct laser acceleration of ions by short frequency chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1% can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies in the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e., higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  5. Ion Acceleration by Short Chirped Laser Pulses

    CERN Document Server

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  6. Ion implantation of superhard ceramic cutting tools

    Science.gov (United States)

    Chou, Y. Kevin; Liu, Jie

    2004-08-01

    Despite numerous reports of tool life increase by ion implantation in machining operations, ion implantation applications of cutting tools remain limited, especially for ceramic tools. Mechanisms of tool-life improvement by implantation are not clearly established due to complexity of both implantation and tool-wear processes. In an attempt to improve performance of cubic boron nitride (CBN) tools for hard machining by ion implantation, a literature survey of ion-implanted cutting tools was carried out with a focus on mechanisms of tool-wear reduction by ion implantation. Implantation and machining experiments were then conducted to investigate implantation effects on CBN tools in hard machining. A batch of CBN tools was implanted with nitrogen ions at 150 keV and 2.5×1017 ions/cm2 and further used to cut 61 HRc AISI 52100 steel at different conditions. Results show that ion implantation has strong effects on partsurface finish, moderate effect on cutting forces, but an insignificant impact on tool wear. Friction coefficients, estimated from measured cutting forces, are possibly reduced by ion implantation, which may improve surface finish. However, surprisingly, 2-D orthogonal cutting to evaluate tribological loading in hard machining showed no difference on contact stresses and friction coefficients between implanted and nonimplanted CBN tools.

  7. Lithium-ion batteries fundamentals and applications

    CERN Document Server

    Wu, Yuping

    2015-01-01

    Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph:Introduces the underlying theory and history of lithium-ion batteriesDescribes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separatorsDiscusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current col

  8. Plasma immersion ion implantation for reducing metal ion release

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  9. Molecular and negative ion production by a standard electron cyclotron resonance ion source.

    Science.gov (United States)

    Rácz, R; Biri, S; Juhász, Z; Sulik, B; Pálinkás, J

    2012-02-01

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H(-), O(-), OH(-), O(2)(-), C(-), C(60)(-) negative ions and H(2)(+), H(3)(+), OH(+), H(2)O(+), H(3)O(+), O(2)(+) positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several μA and positive molecular ion beams in the mA range were successfully obtained.

  10. Na+ Cl- ion pair association in water-DMSO mixtures: Effect of ion pair model potentials

    Indian Academy of Sciences (India)

    ATANU SARKAR; ANUPAM CHATTERJEE; S C TIWARI; B L TEMBE

    2016-06-01

    Potentials of Mean Force (PMF) for the Na+ Cl- ion pair in water–dimethyl sulfoxide (DMSO)mixtures for three DMSO mole fractions have been computed using constrained Molecular Dynamics (MD)simulations and confirmed by dynamical trajectories and residence times of the ion pair at various inter-ionicseparations. The three ion-ion direct potentials used are 12-6-1, exp-6-1 and exp-8-6-1. The physical picturethat emerges is that there is a strong contact ion pair (CIP) and strong to moderate solvent separated ion pair(SSIP) in these solutions. Analysis of local ion clusters shows that ions are dominantly solvated by watermolecules. The 12-6-1 potential model predicts running coordination numbers closest to experimental data.

  11. Bands of ions and angular V's - A conjugate manifestation of ionospheric ion acceleration

    Science.gov (United States)

    Winningham, J. D.; Burch, J. L.; Frahm, R. A.

    1984-01-01

    Data from the hot plasma instruments on Dynamics Explorer 1 and 2 spacecraft have been used to study the injection, drift, and subsequent precipitation of suprathermal positive ions in the auroral zone. The observation at both high and low altitudes of electron inverted 'V' events in the boundary plasma sheet (BPS) and of ion 'bands' (energy decreasing with decreasing latitude) in the adjacent central plasma sheet (CPS) leads to the following ion injection model: upward-moving energetic ion beams are injected onto BPS magnetic field lines by the electrostatic potential drops associated with electron inverted V's. As the ion beams move toward the equator and into the conjugate hemisphere they are convected to lower latitudes and into the CPS. The energy-latitude dependence of the ion bands, coupled with concurrent ion convection measurements, indicate that the ion distributions are primarily O(+), in agreement with their postulated ionospheric source.

  12. A New Three-Dimensional Code for Simulation of Ion Beam Extraction: Ion Optics Simulator

    Institute of Scientific and Technical Information of China (English)

    JIN Dazhi; HUANG Tao; HU Quan; YANG Zhonghai

    2008-01-01

    A new thee-dimensional code, ion optics simulator (IOS), to simulate ion beam extraction is developed in visual C++ language. The theoretical model, the flowchart of code, and the results of calculation as an example are presented.

  13. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  14. Ion-binding of glycine zwitterion with inorganic ions in biologically relevant aqueous electrolyte solutions.

    Science.gov (United States)

    Fedotova, Marina V; Kruchinin, Sergey E

    2014-06-01

    The ion-binding between inorganic ions and charged functional groups of glycine zwitter-ion in NaCl(aq), KCl(aq), MgCl2(aq), and CaCl2(aq) has been investigated over a wide salt concentration range by using integral equation theory in the 3D-RISM approach. These systems mimic biological systems where binding of ions to charged residues at protein surfaces is relevant. It has been found that the stability of ion pairs formed by the carboxylate group and added inorganic cations decreases in the sequence Mg(2+)>Ca(2+)>Na(+)>K(+). However, all formed ion pairs are weak and decrease in stability with increasing salt concentration. On the other hand, at a given salt concentration the stability of (-NH3(+):Cl(-))aq ion pairs is similar in all studied systems. The features of ion-binding and the salt concentration effect on this process are discussed.

  15. Hybrid Lithium-ion Capacitor / Lithium-ion Battery System for Extended Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The work focused on testing the Li-ion supercapacitors to confirm their performance and safety.  The li-ion supercaps were found to be safe under several...

  16. Ion acoustic solitons/double layers in two-ion plasma revisited

    Energy Technology Data Exchange (ETDEWEB)

    Lakhina, G. S., E-mail: gslakhina@gmail.com; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Kakad, A. P., E-mail: amar@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai 410218 (India)

    2014-06-15

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M > 1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M < 1). The slow ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.

  17. Selective Gas-Phase Oxidation and Localization of Alkylated Cysteine Residues in Polypeptide Ions via Ion/Ion Chemistry.

    Science.gov (United States)

    Pilo, Alice L; Zhao, Feifei; McLuckey, Scott A

    2016-09-01

    The thiol group in cysteine residues is susceptible to several post-translational modifications (PTMs), including prenylation, nitrosylation, palmitoylation, and the formation of disulfide bonds. Additionally, cysteine residues involved in disulfide bonds are commonly reduced and alkylated prior to mass spectrometric analysis. Several of these cysteine modifications, specifically S-alkyl modifications, are susceptible to gas-phase oxidation via selective ion/ion reactions with periodate anions. Multiply protonated peptides containing modified cysteine residues undergo complex formation upon ion/ion reaction with periodate anions. Activation of the ion/ion complexes results in oxygen transfer from the reagent to the modified sulfur residue to create a sulfoxide functionality. Further activation of the sulfoxide derivative yields abundant losses of the modification with the oxidized sulfur as a sulfenic acid (namely, XSOH) to generate a dehydroalanine residue. This loss immediately indicates the presence of an S-alkyl cysteine residue, and the mass of the loss can be used to easily deduce the type of modification. An additional step of activation can be used to localize the modification to a specific residue within the peptide. Selective cleavage to create c- and z-ions N-terminal to the dehydroalanine residue is often noted. As these types of ions are not typically observed upon collision-induced dissociation (CID), they can be used to immediately indicate where in the peptide the PTM was originally located.

  18. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.Y.; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Coppi, B. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Research Lab. of Electronics

    1992-08-01

    Experiments show that the observed radial profiles of the ion thermal conductivity {chi}{sub i} have the opposite shapes with those obtained from the ion temperature gradient mode ({eta}{sub i} mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal {eta}{sub i} mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal {eta}{sub i} mode, and that the observed reduction of {chi}{sub i}(r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the {chi}{sub i}. It is shown the new formula fits well the observed {chi}{sub i}(r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula.

  19. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.Y.; Horton, W. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Coppi, B. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Research Lab. of Electronics)

    1992-01-01

    Experiments show that the observed radial profiles of the ion thermal conductivity {chi}{sub i} have the opposite shapes with those obtained from the ion temperature gradient mode ({eta}{sub i} mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal {eta}{sub i} mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal {eta}{sub i} mode, and that the observed reduction of {chi}{sub i}(r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the {chi}{sub i}. It is shown the new formula fits well the observed {chi}{sub i}(r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula.

  20. Plasma-Based Ion Beam Sources

    Energy Technology Data Exchange (ETDEWEB)

    Loeb, H. W.

    2005-07-01

    Ion beam sources cover a broad spectrum of scientific and technical applications delivering ion currents between less than 1 mA and about 100 A at acceleration voltages between 100 V and 100 kV. The ions are mostly generated by electron collisions in a gas discharge and then extracted from the discharge plasma, focused and post-accelerated by single- or multi-aperture electrode systems. Some important applications require the neutralization of the exhausted beam either by charge exchange or by admixture of electrons. In the first part of the paper, the theory of ionization by electron impact, the energy and carrier balances in the plasma, and the extraction and focusing mechanisms will be outlined. The principles of the preferred gas discharges and of the ion beam sources based on them are discussed; i.e. of the Penning, bombardment, arc, duoplasmatron, radio frequency, and microwave types. In the second part of the paper, the special requirements of the different applications are described together with the related source hardware. One distinguishes: 1. Single-aperture ion sources producing protons, heavy ions, isotope ions, etc. for particle accelerators, ion microprobes, mass spectrometers, isotope separators, etc.; quality determinative quantities are brightness, emittance, energy width, etc. 2. Broad-beam multi-aperture injector sources for fusion machines with positive or negative deuterium ions; very high beam densities, small portions of molecular ions, flat beam profiles with small divergence angles, etc. are required. 3. Broad-beam multi-aperture ion thrusters for space propulsion operated with singly charged xenon ions; high efficiencies, reliable operation, and long lifetimes are most important. Spin-offs are applied in industry for material processing. Referring to these applications, the following sources will be described in some detail: 1. Cold cathode and filament driven sources, capillary arc and plasmatron types, microwave and ECR-sources. 2