WorldWideScience

Sample records for actinides transmutation fuel

  1. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6th of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  2. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    Science.gov (United States)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  3. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  4. Fuels and targets for incineration and transmutation of actinides: the ITU programme

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Glatz, J.P.; Haas, D.; Konings, R.J.M.; Somers, J.; Toscano, E.; Walker, C.T.; Wegen, D. [Eurpean Commission, Joint Research Centre, Institute for Transuranium Elements, Kurlsruhe (Germany)

    2000-07-01

    The ITU programme for the development of fuels and targets for transmutation of actinides is presented. The fabrication of various types of oxide fuels/targets by dust-free processes is described. Selected results of post-irradiation examinations of irradiation experiments (SUPERFACT, TRABANT-1, EFTTRA-T4) are presented to demonstrate the irradiation behaviour of these fuels/targets. Finally, the future developments at ITU in this field are described, including the new shielded facility (the MA lab) for fabrication of minor actinide fuels. (authors)

  5. Vaporisation of candidate nuclear fuels and targets for transmutation of minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Gotcu-Freis, P., E-mail: p.gotcu@tudelft.nl [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Delft University of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629 JB Delft (Netherlands); Hiernaut, J.-P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Colle, J.-Y., E-mail: jean-yves.colle@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Naestren, C.; Carretero, A. Fernandez; Konings, R.J.M. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2011-04-15

    The thermal stability and high temperature behaviour of candidate fuels and targets for transmutation of minor actinides has been investigated. Zirconia-based solid solution, MgO-based CERCER and molybdenum-based CERMET fuels containing Am and/or Pu in various concentrations were heated up to 2700 K in a Knudsen cell coupled with a quadrupole mass spectrometer, to measure their vapour pressure and vapour composition. The results reveal that the vaporisation of the actinides from the samples is not only determined by the thermodynamics of the system but is also related to the dynamic evolution of multi-component mixtures with complex composition or microstructure.

  6. Vaporisation of candidate nuclear fuels and targets for transmutation of minor actinides

    International Nuclear Information System (INIS)

    The thermal stability and high temperature behaviour of candidate fuels and targets for transmutation of minor actinides has been investigated. Zirconia-based solid solution, MgO-based CERCER and molybdenum-based CERMET fuels containing Am and/or Pu in various concentrations were heated up to 2700 K in a Knudsen cell coupled with a quadrupole mass spectrometer, to measure their vapour pressure and vapour composition. The results reveal that the vaporisation of the actinides from the samples is not only determined by the thermodynamics of the system but is also related to the dynamic evolution of multi-component mixtures with complex composition or microstructure.

  7. The optimization of an AP1000 fuel assembly for the transmutation of plutonium and minor actinides

    Science.gov (United States)

    Washington, Jeremy A.

    The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a near-term solution. The goal of this thesis is to examine the potential of light water reactors for plutonium and minor actinides transmutation as a near-term solution. This thesis screens the available nuclear isotope database to identify potential absorbers as coatings on a transmutation fuel in a light water reactor. A spectral shift absorber coating tunes the neutron energy spectrum experienced by the underlying target fuel. Eleven different spectral shift absorbers (B4C, CdO, Dy2O3, Er 2O3, Eu2O3, Gd2O3, HfO2, In2O3, Lu2O3, Sm2O3, and TaC) have been selected for further evaluation. A model developed using the NEWT module of SCALE 6.1 code provided performance data for the burnup of the target fuel rods. Irradiation of the target fuels occurs in a Westinghouse 17x17 XL Robust Fuel Assembly over a 1400 Effective Full Power Days (EFPD) interval. The fuels evaluated in this thesis include PuO2, Pu3Si2, PuN, MOX, PuZrH, PuZrHTh, PuZrO 2, and PuUZrH. MOX (5 wt% PuO2), Pu0.31ZrH 1.6Th1.08, and PuZrO2MgO (8 wt%) are selected for detailed analysis in a multi-pin transmutation assembly. A coupled model optimized the resulting transmutation fuel elements. The optimization considered three stages of fuel assemblies containing target fuel pins. The first stage optimized four target fuel pins adjacent to the central instrumentation channel. The second stage evaluated a variety of assemblies with multiple target fuel pins and the third stage re-optimized target fuel pins in the second-stage assembly. A PuZrO2MgO (8 wt%) target fuel with a coating of Lu 2O3 resulted in the greatest reduction in curium-244

  8. Possibility of fusion power reactor to transmute minor actinides of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Serikov, A. E-mail: serikov@nfi.kiae.ru; Shatalov, G.; Sheludjakov, S.; Shpansky, Yu.; Vasiliev, N

    2002-12-01

    A possibility to use fusion power reactor (FPR) is considered for burning long-life elements of spent nuclear fuel in parallel with energy production. In this study a principal design of FPR blanket was examined for transmutation of long-life minor actinides (Np, Am, Cm). A production of minor actinide isotopes is equal to 20-30 kg/1 GW{sub (e)} year for now operating fission reactors, and their amounts will rise with the expected growth of fission reactor power. These isotopes have long-life time and can be dangerous in big amounts in future. Plutonium isotopes are not included in an assumption that they will be used in fission reactors. The major goals of the study were to determine FPR blanket composition corresponding to fast transmutation rate of actinides and tritium self-supply simultaneously. Tritium breeding ratio (TBR) was obtained at level 1.11 for water cooling and reached up 1.56 in variant with helium-cooled assemblies with Np nitride. It was concluded that rows with actinides from processed waste fuel should be arranged near the plasma first wall. Advantages of helium above water cooling are observed in the twice-increased loading of waste fissionable materials and essential increase of achievable TBR. Burnout of Np, Am, Cm would remain at a level {approx}40-50% after 4 full power years.

  9. Fast molten salt reactor-transmuter for closing nuclear fuel cycle on minor actinides

    International Nuclear Information System (INIS)

    Creation fast critical molten salt reactor for burning-out minor actinides and separate long-living fission products in the closed nuclear fuel cycle is the most perspective and actual direction. The reactor on melts salts - molten salt homogeneous reactor with the circulating fuel, working as burner and transmuter long-living radioactive nuclides in closed nuclear fuel cycle, can serve as an effective ecological cordon from contamination of the nature long-living radiotoxic nuclides. High-flux fast critical molten-salt nuclear reactors in structure of the closed nuclear fuel cycle of the future nuclear power can effectively burning-out / transmute dangerous long-living radioactive nuclides, make radioisotopes, partially utilize plutonium and produce thermal and electric energy. Such reactor allows solving the problems constraining development of large-scale nuclear power, including fueling, minimization of radioactive waste and non-proliferation. Burning minor actinides in molten salt reactor is capable to facilitate work solid fuel power reactors in system NP with the closed nuclear fuel cycle and to reduce transient losses at processing and fabrications fuel pins. At substantiation MSR-transmuter/burner as solvents fuel nuclides for molten-salt reactors various salts were examined, for example: LiF - BeF2; NaF - LiF - BeF2; NaF-LiF ; NaF-ZrF4 ; LiF-NaF -KF; NaCl. RRC 'Kurchatov institute' together with other employees have developed the basic design reactor installations with molten salt reactor - burner long-living nuclides for fluoride fuel composition with the limited solubility minor actinides (MAF3 10 mol %) allows to develop in some times more effective molten salt reactor with fast neutron spectrum - burner/ transmuter of the long-living radioactive waste. In high-flux fast reactors on melts salts within a year it is possible to burn ∼300 kg minor actinides per 1 GW thermal power of reactor. The technical and economic estimation given power

  10. Transmutation of minor actinides discharged from LMFBR spent fuel in a high power density fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uebeyli, Mustafa E-mail: mubeyli@gazi.edu.tr

    2004-12-01

    Significant amounts of nuclear wastes consisting of plutonium, minor actinides and long lived fission products are produced during the operation of commercial nuclear power plants. Therefore, the destruction of these wastes is very important with respect to public health, environment and also the future of nuclear energy. In this study, transmutation of minor actinides (MAs) discharged from LMFBR spent fuel in a high power density fusion reactor has been investigated under a neutron wall load of 10 MW/m{sup 2} for an operation period of 10 years. Also, the effect of MA percentage on the transmutation has been examined. The fuel zone, containing MAs as spheres cladded with W-5Re, has been located behind the first wall to utilize the high neutron flux for transmutation effectively. Helium at 40 atm has been used as an energy carrier. At the end of the operation period, the total burning and transmutation are greater than the total buildups in all investigated cases, and very high burnups (420-470 GWd/tHM) are reached, depending on the MA content. The total transmutation rate values are 906 and 979 kg/GW{sub th} year at startup and decrease to 140 and 178 kg/GW{sub th} year at the end of the operation for fuel with 10% and 20% MA, respectively. Over an operation period of 10 years, the effective half lives decrease from 2.38, 2.21 and 3.08 years to 1.95, 1.80 and 2.59 years for {sup 237}Np, {sup 241}Am and {sup 243}Am, respectively. Total atomic densities decrease exponentially during the operation period. The reductions in the total atomic densities with respect to the initial ones are 79%, 81%, 82%, 83%, 85% and 86% for 10%, 12%, 14%, 16%, 18% and 20% MAs, respectively.

  11. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  12. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  13. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  14. Actinide and fission product separation and transmutation

    International Nuclear Information System (INIS)

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  15. Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is strengthening the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies (Articles III-A.1 and III-A.3). The major challenges facing the long term development of nuclear energy as a part of the world's energy mix are improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptability. The concern linked to the long life of many of the radioisotopes generated from fission has led to increased R and D efforts to develop a technology aimed at reducing the amount of long lived radioactive waste through transmutation in fission reactors or accelerator driven hybrids. In recent years, in various countries and at an international level, more and more studies have been carried out on advanced and innovative waste management strategies (i.e. actinide separation and elimination). Within the framework of the Project on Technology Advances in Fast Reactors and Accelerator Driven Systems (http://www.iaea.org/inisnkm/nkm/aws/fnss/index.html), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long lived radioactive waste, accelerator driven systems, thorium fuel options, innovative nuclear reactors and fuel cycles, non-conventional nuclear energy systems, and fusion/fission hybrids. These activities are implemented under the guidance and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Fast Reactors (TWG-FR). This publication compiles the analyses and findings of the Coordinated Research Project (CRP) on Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste (2002

  16. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  17. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  18. Neutronics design study on a minor actinide burner for transmuting spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    1998-08-01

    A liquid metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors. The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the doppler coefficient, and the sodium void worth. Sensitivity studies were performed for homogeneous and decoupled core designs, and a minor actinide burner design was determined to maximize actinide consumption and satisfy safety constraints. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200 MWth core is able to transmute the annual minor actinide inventory of about 16 LWRs and still exhibit reasonable safety characteristics. (author). 34 refs., 22 tabs., 14 figs.

  19. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing keff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR keff markedly. The PWR keff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  20. Actinide Partitioning and Transmutation Program. Progress report, April 1--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Tedder, D. W.; Blomeke, J. O. [comps.

    1977-10-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was continued. Summaries of work are given on Purex Process modifications, actinide recovery, Am-Cm recovery, radiation effects on ion exchangers, LMFBR transmutation studies, thermal reactor transmutation studies, fuel cycle studies, and partitioning-transmutation evaluation. (JRD)

  1. Scenarios for the transmutation of actinides in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, Bronwyn, E-mail: hylandb@aecl.ca [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada); Gihm, Brian, E-mail: gihmb@aecl.ca [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

    2011-12-15

    With world stockpiles of used nuclear fuel increasing, the need to address the long-term utilization of this resource is being studied. Many of the transuranic (TRU) actinides in nuclear spent fuel produce decay heat for long durations, resulting in significant nuclear waste management challenges. These actinides can be transmuted to shorter-lived isotopes to reduce the decay heat period or consumed as fuel in a CANDU(R) reactor. Many of the design features of the CANDU reactor make it uniquely adaptable to actinide transmutation. The small, simple fuel bundle simplifies the fabrication and handling of active fuels. Online refuelling allows precise management of core reactivity and separate insertion of the actinides and fuel bundles into the core. The high neutron economy of the CANDU reactor results in high TRU destruction to fissile-loading ratio. This paper provides a summary of actinide transmutation schemes that have been studied in CANDU reactors at AECL, including the works performed in the past. The schemes studied include homogeneous scenarios in which actinides are uniformly distributed in all fuel bundles in the reactor, as well as heterogeneous scenarios in which dedicated channels in the reactor are loaded with actinide targets and the rest of the reactor is loaded with fuel. The transmutation schemes that are presented reflect several different partitioning schemes. Separation of americium, often with curium, from the other actinides enables targeted destruction of americium, which is a main contributor to the decay heat 100-1000 years after discharge from the reactor. Another scheme is group-extracted transuranic elements, in which all of the transuranic elements, plutonium (Pu), neptunium (Np), americium (Am), and curium (Cm) are extracted together and then transmuted. This paper also addresses ways of utilizing the recycled uranium, another stream from the separation of spent nuclear fuel, in order to drive the transmutation of other actinides.

  2. Nuclear data uncertainty analysis on a minor actinide burner for transmuting spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hangbok

    1998-08-01

    A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWt minor actinides burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities of the performance parameters were generated using depletion perturbation methods for the constrained close fuel cycle of the reactor. The uncertainty analysis was performed using the sensitivity and covariance data taken from ENDF-B/V and other published sources. The uncertainty analysis of a liquid metal reactor for burning minor actinide has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180 %, 97 %, and 46 %, respectively. An analysis was performed to prioritize the minor actinide reactions for reducing the uncertainties. (author). 41 refs., 17 tabs., 1 fig.

  3. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  4. A thermodynamic study of actinide oxide targets/fuels for americium transmutation

    International Nuclear Information System (INIS)

    A thermodynamic study was performed on the systems Am-O, AmOx-MgO, AmOx-MgAl2O4, Pu-Mg-O and U-Mg-O. Both experimental work (X-ray analyses, oxygen potential measurements etc.) and calculations on the phase diagrams involved were made. The reaction between americium oxide and spinel is expected to form the compound AmAlO3. Isothermal sections have been calculated for AmOx-(MgO, Al2O3), Pu-Mg-O and U-Mg-O at 2000 K using the software package ''Thermo-Calc''. Thermodynamic equilibrium data were used to predict the behaviour of actinide oxides in a reactor. The implication of the results for the technological application is discussed, with emphasis on the effects of the high oxygen potential of AmO2 as compared to the conventional fuel, i.e. UO2. (author)

  5. Actinide partitioning and transmutation program progress report, October 1, 1976--March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J. O.; Tedder, D. W. [comps.

    1977-01-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was initiated at the various sites. This work included the development of conceptual material balance flowsheets which define integrated waste systems supporting an LWR fuel reprocessing plant and a mixed (U-Pu) oxide fuel refabrication plant. In addition, waste subsystems were defined for experimental evaluation. Computer analysis of partitioning-transmutation, utilizing an LMFBR for transmutation, was completed for both constant and variable waste actinide generation rates.

  6. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  7. First results of the irradiation program of inert matrices, targets and fuels for minor actinides transmutation in fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bonnerot, Jean-Marc; Ferroud-Plattet, Marie-Pierre; Lamontagne, Jerome [CEA Cadarache, Nuclear Energy Direction, Saint-Paul les Durance Cedex, 13108 (France); Warin, Dominique [CEA Valrho, Nuclear Energy Direction, DRCP, Bagnols-sur-Ceze Cedex, 30207 (France); Gosmain, Lionel [CEA Saclay, Nuclear Energy Direction, DMN, Gif sur Yvette, 91190 (France)

    2008-07-01

    A comprehensive irradiation program was started in France in 1992 to demonstrate the technical feasibility of the transmutation of minor actinides in current and future nuclear reactors, by means of inert support targets or dedicated fuels. The first step of the program (MATINA program) consisted in the irradiation of various inert materials intended as support matrix for transmutation targets, in the fast reactor Phenix, to select the best candidates. These inert materials included as well oxide and nitride ceramics - MgO, MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, Y{sub 3}Al{sub 5}O{sub 12} and TiN - as refractory metals - W, Nb, Cr and V- and were irradiated under fast neutron flux at temperatures ranged between 650 and 1040 deg. C. The results show that in comparison to MgO, MgAl{sub 2}O{sub 4} and Al{sub 2}O{sub 3} inert matrices irradiated alone, the composite pellets containing UO{sub 2} particles, showed very different behaviors under irradiation. The swelling of MgO pellets is enhanced in the presence of fissile material whereas it is lowered for the Al{sub 2}O{sub 3}-UO{sub 2} pellets. MgAl{sub 2}O{sub 4}-UO{sub 2} pellets remained stable. The second step of the program aimed at testing the behavior of inert support targets containing americium. A new experiment ECRIX H involving composite pellets with an MgO matrix and AmO{sub 2-x} particles was performed in Phenix and completed in 2006. A rather low elongation of the pellet stack was observed and no significant diameter deformation of cladding was detected after irradiation. The analysis of the filling gas of the pin after puncturing, revealed that respectively 28% and 5% of the He and Xe+Kr created under irradiation were released in the expanding volume of the pin. ECRIX H, which is the first experiment on Am base target in Phenix, will undoubtedly represent a very important step in the general design approach about inert matrix support targets once the complete results should be available by the end of

  8. Actinide partitioning-transmutation program final report. I. Overall assessment

    International Nuclear Information System (INIS)

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of 99Tc and 129I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted

  9. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  10. Minor actinides transmutation strategies in sodium fast reactors

    International Nuclear Information System (INIS)

    In minor actinides transmutation strategies for fast spectrum reactors, different possibilities regarding the core loading are considered. We study both homogeneous patterns (HOM) with various minor actinides (MA) content values and heterogeneous schemes (HET) with higher percentages of MA (Np, Am and Cm) at the periphery of reactor. We analyze the capability of transmutation of each design and the reactivity coefficients such as the Doppler constant, void worth and the fraction of delayed neutrons. The EVOLCODE2 code is the computational tool used in this study. It is based on MCNPX and ORIGEN/ACAB codes and allows carrying out burn-up calculations to get the isotopic evolution of fuel composition. Among the three strategies studied (HOM 2.5 %, HOM 4% and HET 20 %) for a possible design of a Sodium Cooled Fast Breeder Reactor, the one with better transmutation results is the HOM 4%, which shows higher absolute and relative values (12 Kg-MA/TWe, 29% respectively). Concerning transmutation in blankets with 20% MA content, results show a very little or no transmutation values when considering Np, Am and Cm together, though a positive small value for Np and Am is obtained

  11. Why Faster is Better : On Minor Actinide Transmutation in Hard Neutron

    OpenAIRE

    Westlén, Daniel

    2007-01-01

    In this thesis, options for efficient transmutation of transuranium elements are discussed. The focus is on plutonium, americium and curium mainly because of their long-term contribution to the radiotoxicity of spent nuclear fuel. Two innovative helium-cooled core designs are proposed, dedicated to the transmutation of actinides. The performance of the more promising of the two is studied in realistic transient fuel cycle scenarios. During the 1150 day irradiation cycle, a minor actinide cons...

  12. FCRD Transmutation Fuels Handbook 2015

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. It is, therefore, important to understand the properties of U-Pu-Zr alloys, both with and without minor actinide additions. In addition to requiring extensive safety precautions, alloys containing U and Pu are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phase-transformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, and that general acceptance of results sometimes indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, it attempts to provide information about how well the property is known and how much variation exists between measurements. Although the handbook includes some references to publications about modeling

  13. Sensitivity analysis of minor actinides transmutation to physical and technological parameters

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2015-01-01

    Full Text Available Minor actinides transmutation is one of the three main axis defined by the 2006 French law for management of nuclear waste, along with long-term storage and use of a deep geological repository. Transmutation options for critical systems can be divided in two different approaches: (a homogeneous transmutation, in which minor actinides are mixed with the fuel. This exhibits the drawback of “polluting” the entire fuel cycle with minor actinides and also has an important impact on core reactivity coefficients such as Doppler Effect or sodium void worth for fast reactors when the minor actinides fraction increases above 3 to 5% depending on the core; (b heterogeneous transmutation, in which minor actinides are inserted into transmutation targets which can be located in the center or in the periphery of the core. This presents the advantage of decoupling the management of the minor actinides from the conventional fuel and not impacting the core reactivity coefficients. In both cases, the design and analyses of potential transmutation systems have been carried out in the frame of Gen IV fast reactor using a “perturbation” approach in which nominal power reactor parameters are modified to accommodate the loading of minor actinides. However, when designing such a transmutation strategy, parameters from all steps of the fuel cycle must be taken into account, such as spent fuel heat load, gamma or neutron sources or fabrication feasibility. Considering a multi-recycling strategy of minor actinides, an analysis of relevant estimators necessary to fully analyze a transmutation strategy has been performed in this work and a sensitivity analysis of these estimators to a broad choice of reactors and fuel cycle parameters has been carried out. No threshold or percolation effects were observed. Saturation of transmutation rate with regards to several parameters has been observed, namely the minor actinides volume fraction and the irradiation time

  14. Actinides transmutation - a comparison of results for PWR benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Claro, Luiz H. [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil)], e-mail: luizhenu@ieav.cta.br

    2009-07-01

    The physical aspects involved in the Partitioning and Transmutation (P and T) of minor actinides (MA) and fission products (FP) generated by reactors PWR are of great interest in the nuclear industry. Besides these the reduction in the storage of radioactive wastes are related with the acceptability of the nuclear electric power. From the several concepts for partitioning and transmutation suggested in literature, one of them involves PWR reactors to burn the fuel containing plutonium and minor actinides reprocessed of UO{sub 2} used in previous stages. In this work are presented the results of the calculations of a benchmark in P and T carried with WIMSD5B program using its new cross sections library generated from the ENDF-B-VII and the comparison with the results published in literature by other calculations. For comparison, was used the benchmark transmutation concept based in a typical PWR cell and the analyzed results were the k{infinity} and the atomic density of the isotopes Np-239, Pu-241, Pu-242 and Am-242m, as function of burnup considering discharge of 50 GWd/tHM. (author)

  15. Status report on actinide and fission product transmutation studies

    International Nuclear Information System (INIS)

    The management of radioactive waste is one of the key issues in today's political and public discussions on nuclear energy. One of the fields that looks into the future possibilities of nuclear technology is the neutronic transmutation of actinides and of some most important fission products. Studies on transmutation of actinides are carried out in various countries and at an international level. This status report which gives an up-to-date general overview of current and planned research on transmutation of actinides and fission products in non-OECD countries, has been prepared by a Technical Committee meeting organized by the IAEA in September 1995. 168 refs, 16 figs, 34 tabs

  16. Calculations of the actinide transmutation with HELIOS for fuels of light water reactors; Calculos de la transmutacion de actinidos con HELIOS para combustibles de reactores de agua ligera

    Energy Technology Data Exchange (ETDEWEB)

    Francois L, J.L.; Guzman A, J.R. [UNAM-FI, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jlfl@fi-b.unam.mx

    2006-07-01

    In this work a comparison of the obtained results with the HELIOS code is made and those obtained by other similar codes, used in the international community, respect to the transmutation of smaller actinides. For this the one it is analyzed the international benchmark: 'Calculations of Different Transmutation Concepts', of the Nuclear Energy Agency. In this benchmark two cell types are analyzed: one small corresponding to a PWR standard, and another big one corresponding to a PWR highly moderated. Its are considered two types of burnt of discharge: 33 GWd/tHM and 50 GWd/tHM. The following types of results are approached: the k{sub eff} like a function of the burnt one, the atomic densities of the main isotopes of the actinides, the radioactivities in the moment in that the reactor it is off and in the times of cooling from 7 up to 50000 years, the reactivity by holes and the Doppler reactivity. The results are compared with those obtained by the following institutions: FZK (Germany), JAERI (Japan), ITEP (Russia) and IPPE (Russian Federation). In the case of the eigenvalue, the obtained results with HELIOS showed a discrepancy around 3% {delta}k/k, which was also among other participants. For the isotopic concentrations: {sup 241}Pu, {sup 242} Pu and {sup 242m} Am the results of all the institutions present a discrepancy bigger every time, as the burnt one increases. Regarding the activities, the discrepancy of results is acceptable, except in the case of the {sup 241} Pu. In the case of the Doppler coefficients the discrepancy of results is acceptable, except for the cells with high moderation; in the case of the holes coefficients, the discrepancy of results increases in agreement with the holes fraction increases, being quite high to 95% of holes. In general, the results are consistent and in good agreement with those obtained by all the participants in the benchmark. The results are inside of the established limits by the work group on Plutonium Fuels

  17. Assessment of Partitioning Processes for Transmutation of Actinides

    International Nuclear Information System (INIS)

    To obtain public acceptance of future nuclear fuel cycle technology, new and innovative concepts must overcome the present concerns with respect to both environmental compliance and proliferation of fissile materials. Both these concerns can be addressed through the multiple recycling of all transuranic elements (TRUs) in fast neutron reactor. This is only possible through a process known as partitioning and transmutation scheme (P and T) as this scheme is expected to reduce the long term radio-toxicity as well as the radiogenic heat production of the nuclear waste. Proliferation resistance of separated plutonium could further be enhanced by mixing with self-generated minor actinides. In addition, P and T scheme is expected to extend the nuclear fuel resources on earth about 100 times because of the recycle and reuse of fissile actinides. Several Member States are actively pursuing the research in the field of P and T and consequently several IAEA publications have addressed this topic. The present coordinated research project (CRP) focuses on the potentials in minimizing the residual TRU inventories of the discharged nuclear waste and in enhancing the proliferation resistance of the future civil nuclear fuel cycle. Partitioning approaches can be grouped into aqueous- (hydrometallurgical) and pyroprocesses. Several aqueous processes based on sequential separation of actinides from spent nuclear fuel have been developed and tested at pilot plant scale. In view of the proliferation resistance of the intermediate and final products of a P and T scheme, a group separation of all actinides together is preferable. The present CRP has gathered experts from different organisations and institutes actively involved in developing P and T scheme as mentioned in the list of contributors and also taken into consideration the studies underway in France and the UK. The scientific objectives of the CRP are: To minimize the environmental impact of actinides in the waste stream; To

  18. Minor actinides partitioning and transmutation technology in France

    International Nuclear Information System (INIS)

    The global energy context pleads in favour of a sustainable development of nuclear energy. It is a technology with a future since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel sources. How we deal with radioactive waste is crucial in this context. From the start, the CEA has devoted considerable effort to management of the back end of the cycle. It furnished the process and techniques used in the La Hague facility to extract the re-usable materials, uranium and plutonium, and condition the resulting waste. Towards the end of the 1960's, it developed the process of vitrification for highly active waste that has become the world reference. French industry was responsible for the introduction of standard international practices with respect to waste conditioned during the processing of spent fuels. The specifications for the packages are approved by more than ten countries across the world.The law of 1991 specifically gave new momentum to the research into waste by requesting exploration not only into deep geological storage repositories, but also into reducing the quantity and toxicity of the long-life radioactive elements present in the waste by separation and transmutation and studying their conditioning for long-term disposal. All of the above-mentioned research has been conducted in close collaboration with partners from industry (ANDRA, EDF, COGEMA, FRAMATOME), with the CNRS (France) and various universities.A review of the situation ten years on indicates a number of significant results that have changed the prospects for nuclear waste management. The paper will focus on separation and transmutation R and D programme and main results at CEA. Over the past 10 years the CEA has been conducting a massive research programme on enhanced separation, supported by broad international co-operation. This year, 2001, saw some vital progress. Based on

  19. Overall assessment of actinide partitioning and transmutation for waste management purposes

    International Nuclear Information System (INIS)

    A program to establish the technical feasibility and incentives for partitioning (i.e., recovering) actinides from fuel cycle wastes and then transmuting them in power reactors to shorter-lived or stable nuclides has recently been concluded at the Oak Ridge National Laboratory. The feasibility was established by experimentally investigating the reduction that can be practicably achieved in the actinide content of the wastes sent to a geologic repository, and the incentives for implementing this concept were defined by determining the incremental costs, risks, and benefits. Eight US Department of Energy laboratories and three private companies participated in the program over its 3-year duration. A reference fuel cycle was chosen based on a self-generated plutonium recycle PWR, and chemical flowsheets based on solvent extraction and ion-exchange techniques were generated that have the potential to reduce actinides in fuel fabrication and reprocessing plant wastes to less than 0.25% of those in the spent fuel. Waste treatment facilities utilizing these flowsheets were designed conceptually, and their costs were estimated. Finally, the short-term (contemporary) risks from fuel cycle operations and long-term (future) risks from deep geologic disposal of the wastes were estimated for cases with and without partitioning and transmutation. It was concluded that, while both actinide partitioning from wastes and transmutation in power reactors appear to be feasible using currently identified and studied technology, implementation of this concept cannot be justified because of the small long-term benefits and substantially increased costs of the concept

  20. Status of development of actinide blanket processing flowsheets for accelerator transmutation of nuclear waste

    International Nuclear Information System (INIS)

    An accelerator-driven subcritical nuclear system is briefly described that transmutes actinides and selected long-lived fission products. An application of this accelerator transmutation of nuclear waste (ATW) concept to spent fuel from a commercial nuclear power plant is presented as an example. The emphasis here is on a possible aqueous processing flowsheet to separate the actinides and selected long-lived fission products from the remaining fission products within the transmutation system. In the proposed system the actinides circulate through the thermal neutron flux as a slurry of oxide particles in heavy water in two loops with different average residence times: one loop for neptunium and plutonium and one for americium and curium. Material from the Np/Pu loop is processed with a short cooling time (5-10 days) because of the need to keep the total actinide inventory, low for this particular ATW application. The high radiation and thermal load from the irradiated material places severe constraints on the separation processes that can be used. The oxide particles are dissolved in nitric acid and a quarternary, ammonium anion exchanger is used to extract neptunium, plutonium, technetium, and palladium. After further cooling (about 90 days), the Am, Cm and higher actinides are extracted using a TALSPEAK-type process. The proposed operations were chosen because they have been successfully tested for processing high-level radioactive fuels or wastes in gram to kilogram quantities

  1. Gas core reactors for actinide transmutation and breeder applications. Annual report

    International Nuclear Information System (INIS)

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions

  2. Status of the French research programme for actinides and fission products partitioning and transmutation

    International Nuclear Information System (INIS)

    The paper focus on separation and transmutation research and development programme and main results over these ten last years. The massive research programme on enhanced separation, conducted by CEA and supported by broad international cooperation, has recently achieved some vital progress. Based on real solutions derived from the La Hague process, the CEA demonstrated the lab-scale feasibility of extracting minor actinides and some fission products (I, Cs and Tc) using an hydrometallurgical process that can be extrapolated on the industrial scale. The CEA also conducted programmes proving the technical feasibility of the elimination of minor actinides and fission products by transmutation: fabrication of specific targets and fuels for transmutation tests in the HFR and Phenix reactors, neutronics and technology studies for ADS developments in order to support the MEGAPIE, TRADE and MYRRHA experiments and the future 100 MW international ADS demonstrator. Scenarios studies aimed at stabilizing the inventory with long-lived radionuclides, plutonium, minor actinides and certain long-lived fission products in different nuclear power plant parks and to verify the feasibility at the level of the cycle facilities and fuels involved in those scenarios. Three French Research Groups CEA-CNRS carry out partitioning (PRACTIS) and transmutation (NOMADE and GEDEON) more basic studies. (author)

  3. Gas core reactors for actinide transmutation. [uranium hexafluoride

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  4. Neutronic study regarding transmutation fuel research at Jules Horowitz Reactor

    International Nuclear Information System (INIS)

    In order to estimate the possibilities for transmutation experiments at the Jules Horowitz Reactor several ideas for neutronic and fuel behaviour studies are investigated at CEA Cadarache. Naturally an exact replication of the burning of minor actinides in fast reactors, as expected in most transmutation scenarios, is impossible, but some key transmutation parameters can be investigated in a MTR neutron spectrum. In this paper a parametric study regarding fuel damage by He and fission products in AmUO2 is presented. By varying flux level, uranium enrichment and americium content of the sample in the JHR reflector a He production to fission ratio comparable to reference samples in the core of a SFR can be achieved. The calculations were done with the depletion code DARWIN2.2 using JEF2.2 data and spectra from a TRIPOLI model of JHR and an ERANOS model for the SFR respectively. (author)

  5. Actinide partitioning-transmutation program. Final report. VII. Long-term risk analysis of the geologic repository (appendix)

    International Nuclear Information System (INIS)

    The Chemical Technology Division of ORNL has prepared a set of documents that evaluate a partitioning-transmutation (PT) fuel cycle relative to a reference cycle employing conventional fuel-material recovery methods. The PT cycle uses enhanced recovery methods so that most of the long-lived actinides are recycled to nuclear power plants and transmuted to shorter-lived materials, thereby reducing waste toxicity. Data pertaining to the long-term risk analysis of waste generated from the PT fuel cycle are presented

  6. Technical meeting on 'Review of solid and mobile fuels for partitioning and transmutation systems'. Working material

    International Nuclear Information System (INIS)

    The topics covered during the Meeting were divided into two Sessions. Session 1 - Qualification of Solid and Mobile Fuels delt with: Neutronic, fuel and material properties of a molten salt transmuter; and Preliminary analysis of transmutation fuels for KALIMER. Session 2 - Reactor Physics and Safety Characteristics of Transmutation Systems based on Solid and Mobile Fuel Types included the following: Activity in NEA for P and T area; IAEA activities in the area of partitioning and transmutation; The R and D activity in Brazil: A conceptual fast energy amplifier ADS cooled by helium double stata Th/U fuel cycle; Closed fuel cycle and contemporary tendencies of the nuclear facilities development; Current Russian activities in P and T area; Pyrochemical reprocessing and nuclear spent fuel disposal project; Fuel selection criteria specific for double stratum minor actinide burners

  7. Neutronics design of transmutation of minor actinides in a fusion reactor

    International Nuclear Information System (INIS)

    A concept of transmutation of Minor Actinide (MA) nuclear waste based on the spherical torus (ST) tokamak reactor, FDTR, is put forward. A set of plasma parameter was decided suitable for the ST transmuting nuclear waste blanket. The 2-D neutron transport code TWODANT, 3-D Monte Carlo code MCNP-4B and 1-D burn-up calculation code BISON3.0 and their associated data libraries are used to calculate the transmutation rate, the energy multiplication factor and the tritium breeding rate of the transmutation blanket. The calculation results of the system parameters and the actinide series isotopes for different operation times are also given. The engineering feasibility of the center-post of FDTR is investigated. Relevant results are also given. A preliminary neutronics calculation based on ST transmutation blanket shows that proposed system has high transmuting ability for MA wastes

  8. Design concepts and process analysis for transmuter fuel manufacturing

    International Nuclear Information System (INIS)

    The large-scale deployment of remote fabrication and re-fabrication processes (approx. 100 tons of Minor Actinides (MA) annually) will be required for all transmutation scenarios. Process automation has the potential to decrease the cost of remote fuel fabrication and to make transmutation a more economically viable process. The paper describes the design of hot cell fuel manufacturing processes using robotic equipment in hot cells. The dynamics of the robots and the objects handled by them are analyzed in detail using state of the art software tools. In addition to the evaluation and testing of normal assembly operations, the 3D simulation provides for a comprehensive analysis of normal work flows and atypical events such as collisions. The results permit a detailed analysis of the robotic assembly process in terms of forces, torques, and accidents. Detailed simulation results for several operations are presented. (author)

  9. Present status of research activities on transmutation of actinides in Japan

    International Nuclear Information System (INIS)

    In Japan, the idea to make use of transmutation for the final disposal method of HLW was first examined by Ichimiya, Amano, Hamada et al., when the Japan Atomic Industry forum had organized a study committee for HLW treatment in 1973. This article has the scope to outline the present research activities on transmutation of actinides in Japan

  10. Proceedings of the Eleventh Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    Partitioning and transmutation (P and T) is one of the key technologies for reducing the radiotoxicity and volume of radioactive waste arisings. Recent developments indicate the need for embedding P and T strategies in advanced fuel cycles considering both waste management and economic issues. In order to provide experts a forum to present and discuss state-of-the-art developments in the P and T field, the OECD/NEA has been organising biennial information exchange meetings on actinide and fission product partitioning and transmutation since 1990. The previous meetings were held in Mito (Japan) in 1990, at Argonne (United States) in 1992, in Cadarache (France) in 1994, in Mito (Japan) in 1996, in Mol (Belgium) in 1998, in Madrid (Spain) in 2000, in Jeju (Korea) in 2002, in Las Vegas (United States) in 2004, in Nimes (France) in 2006 and in Mito (Japan) in 2008. They have often been co-sponsored by the European Commission (EC) and the International Atomic Energy Agency (IAEA). The 11. Information Exchange Meeting was held in San Francisco, California, United States on 1-4 November 2010, comprising a plenary session on national P and T programmes and six technical sessions covering various fields of P and T. The meeting was hosted by the Idaho National Laboratory (INL), United States. The information exchange meetings on P and T form an integral part of NEA activities on advanced nuclear fuel cycles. The meeting covered scientific as well as strategic/policy developments in the field of P and T, such as: fuel cycle strategies and transition scenarios; radioactive waste forms; the impact of P and T on geological disposal; radioactive waste management strategies (including secondary wastes); transmutation fuels and targets; pyro and aqueous separation processes; materials, spallation targets and coolants; transmutation physics, experiments and nuclear data; transmutation systems (design, performance and safety); handling and transportation of transmutation fuels; and

  11. Fabrication of fuel and recycling of minor actinides in fast reactors

    OpenAIRE

    Somers, Joseph

    2010-01-01

    Fuels for future fast reactors will not only produce energy, but they must also actively contribute to the minimisation of long lived wastes produced by these, and other reactor systems. The fuels must incorporate minor actinides (MA = Np, Am, Cm) for neutron transmutation into short lived isotopes. Within Europe oxide fuels are favoured. Transmutation can be considered in homogeneous or heterogeneous reactor recycle modes (i.e. in fuels or targets, respectively). Fabrication of such fuels...

  12. Transmutation Fuels Campaign FY-09 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Lori Braase

    2009-09-01

    This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

  13. Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.

    Science.gov (United States)

    Chang, G S; Ambrosek, R G

    2005-01-01

    The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.

  14. Status of the French research program for actinides and fission products partitioning and transmutation

    International Nuclear Information System (INIS)

    currently presented to French Ministries of Research and Industry and to the National Parliament which plans to pass a new waste management law in 2006 asking for new prospects for P and T further implementation. The massive research programme on enhanced separation, conducted by CEA and supported by broad international cooperation, has recently achieved some vital progress. Based on real solutions derived from the La Hague process, the CEA demonstrated in 2001 the lab-scale feasibility of extracting minor actinides and some fission products (I, Cs and Tc) using an hydrometallurgical process. Then, the 2002-2005 program has encompassed technological demonstration of the selected liquid-liquid process, with representative equipment which have been set up for this purpose in new shielded cells inside the Atalante facility. CEA also conducted programmes proving the feasibility of the elimination of minor actinides and fission products by transmutation: fabrication of specific targets and fuels for transmutation test in the HFR and Phenix reactors, neutronics and technology studies for critical reactors and ADS developments. The scenario studies aimed at examining the possibilities of reducing significantly the final waste inventory and at quantifying the inventories of plutonium, minor actinides and certain long-lived fission products in various nuclear-power-plant geometries; they also allowed to verify the feasibility at the level of the cycle facilities and fuels involved in those scenarios. (author)

  15. NSC-WPFC task force on potential benefits and impacts of advanced fuel cycles with actinide partitioning and transmutation (WPFC/TFPT)

    International Nuclear Information System (INIS)

    A study has been performed by a Task Force within the Working Party on Scientific Issues of the Fuel Cycle (WPFC) of the OECD NEA Nuclear Science Committee with the objective to gather and analyze results of different studies performed to assess the potential impact of P and T on different types of repositories in different licensing and regulatory environments. The present paper summarizes the approach and the main finding of that study and reviews the extent to which P and T will impact geological disposal depending on the disposal environment and the details of the P and T approach. (author)

  16. Fabrication of actinide mononitride fuel

    International Nuclear Information System (INIS)

    Fabrication of actinide mononitride fuel in JAERI is summarized. Actinide mononitride and their solid solutions were fabricated by carbothermic reduction of the oxides in N2 or N2-H2 mixed gas stream. Sintering study was also performed for the preparation of pellets for the property measurements and irradiation tests. The products were characterized to be high-purity mononitride with a single phase of NaCl-type structure. Moreover, fuel pins containing uranium-plutonium mixed nitride pellets were fabricated for the irradiation tests in JMTR and JOYO. (author)

  17. Post-irradiation examinations of THERMHET composite fuels for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J. E-mail: jnoirot@cea.fr; Desgranges, L.; Chauvin, N.; Georgenthum, V

    2003-07-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl{sub 2}O{sub 4} spinel inert matrix and around 40% weight of UO{sub 2} to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.

  18. Safety and environmental aspects of partitioning and transmutation of actinides and fission products. Proceedings of a technical committee meeting held in Vienna, 29 November - 2 December 1993

    International Nuclear Information System (INIS)

    There is considerable interest in many countries in the partitioning and transmutation of long lived radionuclides as a potential complement to the closed fuel cycle. Recognizing this, the IAEA organized a Technical Committee Meeting on Safety and Environmental Aspects of Partitioning and Transmutation of Actinides and Fission Products, to review the current status of progress of national and international programmes and identify the most important directions of co-operation. The results of the Technical Committee meeting are presented in this document. Refs, figs and tabs

  19. The role of Z-pinch fusion transmutation of waste in the nuclear fuel cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James Dean; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Rochau, Gary Eugene; Martin, William Joseph; Kamery, William (Hobart & William Smith College, Geneva, NY); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Cipiti, Benjamin B.; Wilson, Paul Philip Hood (University of Wisconsin, Madison, WI); Mehlhorn, Thomas Alan; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX)

    2007-10-01

    The resurgence of interest in reprocessing in the United States with the Global Nuclear Energy Partnership has led to a renewed look at technologies for transmuting nuclear waste. Sandia National Laboratories has been investigating the use of a Z-Pinch fusion driver to burn actinide waste in a sub-critical reactor. The baseline design has been modified to solve some of the engineering issues that were identified in the first year of work, including neutron damage and fuel heating. An on-line control feature was added to the reactor to maintain a constant neutron multiplication with time. The transmutation modeling effort has been optimized to produce more accurate results. In addition, more attention was focused on the integration of this burner option within the fuel cycle including an investigation of overall costs. This report presents the updated reactor design, which is able to burn 1320 kg of actinides per year while producing 3,000 MWth.

  20. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    OpenAIRE

    Bourg Stéphane; Geist Andreas; Narbutt Jerzy

    2015-01-01

    Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities strivin...

  1. Engineering assessment studies on the JRC's actinides partitioning processes for transmutation

    International Nuclear Information System (INIS)

    Three conceptual processes have been studied and investigated for the feasibility of removing actinides from high active waste. Two of the flowsheets rely completely on counter current techniques for the actinides separation namely the TBP and HDEHP processes, whereas the third process OXAL, uses a precipitation technique in the first instance followed by dissolution of the actinides and rare-earths (RE) for further treatment using a modified HDEHP process. Many important factors such as 'direct' or 'delayed', concentrated or unconcentrated HAW, storage time, activity and heat release levels, solvent irradiation DF's, safety and steady-state recycling conditions for U-LWR, Pu-LWR and FBRs for possible transmutation scenarios have been taken into consideration

  2. Description of Transmutation Library for Fuel Cycle System Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Samuel E. Bays; Edward A. Hoffman

    2010-08-01

    This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.[Piet2008] The Transmutation Library has the following objectives: • Assemble past and future transmutation cases for system analyses. • For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. • Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. • Provide mass fractions at input (charge) and output (discharge) for each case. • Eliminate the need for either “fission product other” or “actinide other” while conserving mass. Assessments of waste and separation cannot use “fission product other” or “actinide other” as their chemical behavior is undefined. • Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. • Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: • Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. • Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo

  3. Transmutation Strategy Using Thorium-Reprocessed Fuel ADS for Future Reactors in Vietnam

    Directory of Open Access Journals (Sweden)

    Thanh Mai Vu

    2013-01-01

    Full Text Available Nuclear power is believed to be a key to the energy security for a developing country like Vietnam where the power demanding increases rapidly every year. Nevertheless, spent nuclear fuel from nuclear power plants is the source of radiotoxic and proliferation risk. A conceptual design of ADS utilizing thorium fuel as a based fuel and reprocessed fuel as a seed for nuclear waste transmutation and energy production is proposed as one of the clean, safe, and economical solutions for the problem. In the design, 96 seed assemblies and 84 blanket assemblies were inserted into the core to make a heterogeneous subcritical core configuration. Introducing thorium fuel into the core offers an effective way to transmute plutonium and minor actinide (MA and gain energy from this process. Transmutation rate as a function of burnup is estimated using MCNPX 2.7.0 code. Results show that by using the seed-blanket designed ADS, at 40 GWd/t burnup, 192 kg of plutonium and 156 kg of MA can be eliminated. Equivalently, 1  ADS can be able to transmute the transuranic (TRU waste from 2  LWRs. 14 units of ADS would be required to eliminate TRUs from the future reactors to be constructed in Vietnam.

  4. Fuel and target programs for the transmutation at Phenix and other reactors; Programmes combustibles et cibles pour la transmutation dans Phenix et autres reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard-Groleas, G

    2002-07-01

    The fuels and targets program for transmutation, performed in the framework of the axis 1 of the December 1991 law about the researches on the management of long-lived radioactive wastes, is in perfect consistency with the transmutation scenario studies carried out in the same framework. These studies put forward the advantage of fast breeder reactors (FBR) in the incineration of minor actinides and long-lived fission products. The program includes exploratory and technological demonstration studies covering the different design options. It aims at enhancing our knowledge of the behaviour of materials under irradiation and at ensuring the mastery of processes. The goals of the different experiments foreseen at Phenix reactor are presented. The main goal is to supply a set of results allowing to precise the conditions of the technical feasibility of minor actinides and long-lived fission products incineration in FBRs. (J.S.)

  5. AFC-1 Transmutation Fuels Post-Irradiation Hot Cell Examination 4-8 at.% - Final Report (Irradiation Experiments AFC-1B, -1F and -1Æ)

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Hilton; Douglas Porter; Steven Hayes

    2006-09-01

    The AFC-1B, AFC-1F and AFC-1Æ irradiation tests are part of a series of test irradiations designed to evaluate the feasibility of the use of actinide bearing fuel forms in advanced fuel cycles for the transmutation of transuranic elements from nuclear waste. The tests were irradiated in the Idaho National Laboratory’s (INL) Advanced Test Reactor (ATR) to an intermediate burnup of 4 to 8 at% (2.7 - 6.8 x 1020 fiss/cm3). The tests contain metallic and nitride fuel forms with non-fertile (i.e., no uranium) and low-fertile (i.e., uranium bearing) compositions. Results of postirradiation hot cell examinations of AFC-1 irradiation tests are reported for eleven metallic alloy transmutation fuel rodlets and five nitride transmutation fuel rodlets. Non-destructive examinations included visual examination, dimensional inspection, gamma scan analysis, and neutron radiography. Detailed examinations, including fission gas puncture and analysis, metallography / ceramography and isotopics and burnup analyses, were performed on five metallic alloy and three nitride transmutation fuels. Fuel performance of both metallic alloy and nitride fuel forms was best correlated with fission density as a burnup metric rather than at.% depletion. The actinide bearing transmutation metallic alloy compositions exhibit irradiation performance very similar to U-xPu-10Zr fuel at equivalent fission densities. The irradiation performance of nitride transmutation fuels was comparable to limited data published on mixed nitride systems.

  6. The nuclear fuel cycle for transmutation: a critical review

    Energy Technology Data Exchange (ETDEWEB)

    Kuster, H.; Kienzler, B.; Kolarik, Z.; Wiese, H.W. [Forschungszentrum Karlsruhe, FZK (Germany); Segev, M. [Ben Gurion University, Beer Sheba (Israel); Salvadores, M.; Slesarev, I.; Zaetta, A. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1995-12-31

    This review presents a critical common FZK and CEA discussion of the transmutation possibilities of actinide nuclei and of fission products as Tc and I in reactors (PWRs and FBRs) and in accelerator-driven subcritical configurations. The activities in the Research Center Karlsruhe in the chemical area are briefly discussed. Activities in the chemical area at CEA are presented elsewhere at this conference. The alternate waste disposal with transmutation is compared to the direct disposal option, as seen from the FZK point of view. Work in France on this point is still underway according to a law, voted in the French Parliament in 1991. The aim of this study is to evaluate, how the short-term and long-term risks of nuclear waste, including both direct disposal and transmutation scenarios, realistically could be minimized. (authors) 30 refs.

  7. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economic estimates

    International Nuclear Information System (INIS)

    Highlights: • Four fuel cycle scenarios have been analyzed in resources and economic terms. • Scenarios involve Once-Through, Pu burning, and MA transmutation strategies. • No restrictions were found in terms of uranium and plutonium availability. • The best case cost and the impact of their uncertainties to the LCOE were analyzed. - Abstract: Four European fuel cycle scenarios involving transmutation options (in coherence with PATEROS and CP-ESFR EU projects) have been addressed from a point of view of resources utilization and economic estimates. Scenarios include: (i) the current fleet using Light Water Reactor (LWR) technology and open fuel cycle, (ii) full replacement of the initial fleet with Fast Reactors (FR) burning U–Pu MOX fuel, (iii) closed fuel cycle with Minor Actinide (MA) transmutation in a fraction of the FR fleet, and (iv) closed fuel cycle with MA transmutation in dedicated Accelerator Driven Systems (ADS). All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for 200 years, looking for long term equilibrium mass flow achievement. The simulations were made using the TREVOL code, capable to assess the management of the nuclear mass streams in the scenario as well as economics for the estimation of the levelized cost of electricity (LCOE) and other costs. Results reveal that all scenarios are feasible according to nuclear resources demand (natural and depleted U, and Pu). Additionally, we have found as expected that the FR scenario reduces considerably the Pu inventory in repositories compared to the reference scenario. The elimination of the LWR MA legacy requires a maximum of 55% fraction (i.e., a peak value of 44 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation) or an average of 28 units of ADS plants (i.e., a peak value of 51 ADS units). Regarding the economic analysis, the main usefulness of the provided economic results is for relative comparison of

  8. Actinide partitioning-transmutation program final report. VI. Short-term risk analysis of reprocessing, refabrication, and transportation: appendix

    International Nuclear Information System (INIS)

    The Chemical Technology Division of the Oak Ridge National Laboratory has prepared a set of documents that evaluate a Partitioning-Transmutation (PT) fuel cycle relative to a Reference cycle employing conventional fuel-material recovery methods. The PT cycle uses enhanced recovery methods so that most of the long-lived actinides are recycled to nuclear power plants and transmuted to shorter-lived materials, thereby reducing the waste toxicity. This report compares the two fuel cycles on the basis of the short-term radiological and nonradiological risks they present to the public and to workers. The accidental radiological risk to the public is analyzed by estimating the probabilities of sets of accidents; the consequences are calculated using the CRAC code appropriately modified for the material composition. Routine radiological risks to the public are estimated from the calculated release amounts; the effects are calculated using the CRAC code. Radiological occupational risks are determined from prior experience, projected standards, and estimates of accident risk. Nonradiological risks are calculated from the number of personnel involved, historical experience, and epidemiological studies. The result of this analysis is that the short-term risk of PT is 2.9 times greater than that of the Reference cycle, primarily due to the larger amount of industry. This conclusion is strongly dominated by the nonradiological risk, which is about 150 times greater than the radiological risk. The absolute risk as estimated for the fuel cycle portions considered in this report is 0.91 fatalities/GWe-year for the PT cycle and 0.34 fatalities/GWe-year for the Reference cycle. This should be compared with Inhaber's estimate of 1.5 for nuclear and 150 for coal. All of the risks assumed here are associated with the production of one billion watts of electricity (GWe) per year

  9. Actinide partitioning-transmutation program final report. VI. Short-term risk analysis of reprocessing, refabrication, and transportation: appendix

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, R.R.; Jackson, R.

    1980-01-01

    The Chemical Technology Division of the Oak Ridge National Laboratory has prepared a set of documents that evaluate a Partitioning-Transmutation (PT) fuel cycle relative to a Reference cycle employing conventional fuel-material recovery methods. The PT cycle uses enhanced recovery methods so that most of the long-lived actinides are recycled to nuclear power plants and transmuted to shorter-lived materials, thereby reducing the waste toxicity. This report compares the two fuel cycles on the basis of the short-term radiological and nonradiological risks they present to the public and to workers. The accidental radiological risk to the public is analyzed by estimating the probabilities of sets of accidents; the consequences are calculated using the CRAC code appropriately modified for the material composition. Routine radiological risks to the public are estimated from the calculated release amounts; the effects are calculated using the CRAC code. Radiological occupational risks are determined from prior experience, projected standards, and estimates of accident risk. Nonradiological risks are calculated from the number of personnel involved, historical experience, and epidemiological studies. The result of this analysis is that the short-term risk of PT is 2.9 times greater than that of the Reference cycle, primarily due to the larger amount of industry. This conclusion is strongly dominated by the nonradiological risk, which is about 150 times greater than the radiological risk. The absolute risk as estimated for the fuel cycle portions considered in this report is 0.91 fatalities/GWe-year for the PT cycle and 0.34 fatalities/GWe-year for the Reference cycle. This should be compared with Inhaber's estimate of 1.5 for nuclear and 150 for coal. All of the risks assumed here are associated with the production of one billion watts of electricity (GWe) per year.

  10. Proceedings of the Twelfth Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    Partitioning and transmutation (P and T) is one of the key technologies for reducing the radiotoxicity and volume of radioactive waste produced by the nuclear power industry. Recent developments indicate the advantages to be realised by embedding P and T strategies into advanced fuel cycles considering both waste management and economic issues. In this context, the OECD Nuclear Energy Agency (NEA) has been organising a series of biennial information exchange meetings to provide experts with a forum to present and discuss state-of-the-art developments in the field of partitioning and transmutation since 1990. Previous meetings were held in Mito (Japan) in 1990, at ANL (United States) in 1992, in Cadarache (France) in 1994, in Mito (Japan) in 1996, in Mol (Belgium) in 1998, in Madrid (Spain) in 2000, in Jeju (Korea) in 2002, in Las Vegas (United States) in 2004, in Nimes (France) in 2006, in Mito (Japan) in 2008, in San Francisco (United States) in 2010 and have been co-sponsored by the European Commission (EC) and the International Atomic Energy Agency (IAEA). The 12. Information Exchange Meeting was held in Prague, Czech Republic on 24-27 September 2012, hosted by the Radioactive Waste Repository Authority (RAWRA). The workshop comprised a plenary session on national and international programmes followed by technical sessions and a poster session covering various aspects of P and T. The information exchange meetings on P and T form a part of NEA programme of work in the field of advanced nuclear fuel cycles. The titles of the eight technical sessions are: International and National Programmes; Fuel Cycle Strategies and Transition Scenarios; Impact of P and T on Geological Disposal; Transmutation Systems: Design, Performance and Safety; Pyro and Aqueous Separation Processes; Transmutation Fuels and Targets; Transmutation Physics, Experiments and Nuclear Data; Economics of P and T. Poster session contributions to this meeting are also available at http

  11. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    Directory of Open Access Journals (Sweden)

    Bourg Stéphane

    2015-12-01

    Full Text Available Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities striving to meet these challenges, carried out under the Euratom FP7 collaborative project SACSESS (Safety of Actinide Separation Processes. Emphasis is put on the safety issues of fuel reprocessing and waste storage. Two types of actinide separation processes, hydrometallurgical and pyrometallurgical, are considered, as well as related aspects of material studies, process modeling and the radiolytic stability of solvent extraction systems. Education and training of young researchers in nuclear chemistry is of particular importance for further development of this field.

  12. Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R; Moir, R W; Abbott, R

    2006-09-19

    This report documents results of LLNL's work in support of two studies being conducted by Sandia National Laboratories (SNL): the development of the Z-pinch driven inertial fusion energy (Z-IFE), and the use of Z-pinch driven inertial fusion as a neutron source to destroy actinides from fission reactor spent fuel. LLNL's efforts in FY06 included: (1) Development of a systems code for Z-IFE and use of the code to examine the operating parameter space in terms of design variables such as the Z-pinch driver energy, the chamber pulse repetition rate, the number of chambers making up the power plant, and the total net electric power of the plant. This is covered in Section 3 with full documentation of the model in Appendix A. (2) Continued development of innovative concepts for the design and operation of the recyclable transmission line (RTL) and chamber for Z-IFE. The work, which builds on our FY04 and FY05 contributions, emphasizes design features that are likely to lead to a more attractive power plant including: liquid jets to protect all structures from direct exposure to neutrons, rapid insertion of the RTL to maximize the potential chamber rep-rate, and use of cast flibe for the RTL to reduce recycling and remanufacturing costs and power needs. See Section 4 and Appendix B. (3) Description of potential figures of merit (FOMs) for actinide transmutation technologies and a discussion of how these FOMs apply and can be used in the ongoing evaluation of the Z-pinch actinide burner, referred to as the In-Zinerator. See Section 5. (4) A critique of, and suggested improvements to, the In-Zinerator chamber design in response to the SNL design team's request for feedback on its preliminary design. This is covered in Section 6.

  13. Advanced Recycling Reactor with Minor Actinide Fuel

    International Nuclear Information System (INIS)

    The Advanced Recycling Reactor (ARR) with minor actinide fuel has been studied. This paper presents the pre-conceptual design of the ARR proposed by the International Nuclear Recycling Alliance (INRA) for FOA study sponsored by DOE of the United States of America (U.S.). Although the basic reactor concept is technically mature, it is not suitable for commercial use due to the need to reduce capital costs. As a result of INRA's extensive experience, it is anticipated that a non-commercial ARR1 will be viable and meet U.S. requirements by 2025. Commercial Advanced Recycling Reactor (ARR) operations are expected to be feasible in competition with LWRs by 2050, based on construction of ARR2 in 2035. The ARR based on the Japan Sodium-cooled Fast Reactor (JSFR) is a loop-typed sodium cooled reactor with MOX fuel that is selected because of much experience of SFRs in the world. Major features of key technology enhancements incorporated into the ARR are the following: Decay heat can be removed by natural circulation to improve safety. The primary cooling system consists of two-loop system and the integrated IHX/Pump to improve economics. The steam generator with the straight double-walled tube is used to improve reliability. The reactor core of the ARR1 is 70 cm high and the volume fraction of fuel is 31.6%. The conversion ratio of fissile is set up less than 0.65 and the amount of burned TRU is 45-51 kg/TWeh. According to survey of more effective TRU burning core, the oxide fuel core containing high TRU (MA 15%, Pu 35% average) with moderate pins of 12% arranged driver fuel assemblies can decrease TRU conversion ratio to 0.33 and improve TRU burning capability to 67 kg/TWeh. The moderator can enhance TRU burning, while increasing the Doppler effect and reducing the positive sodium void effect. High TRU fraction promotes TRU burning by curbing plutonium production. High Am fraction and Am blanket promote Am transmutation. The ARR1 consists of a reactor building (including

  14. The Use of Molybdenum-Based Ceramic-Metal (CerMet) Fuel for the Actinide Management in LWRs

    International Nuclear Information System (INIS)

    The technical and economic aspects of the use of molybdenum depleted in the isotope 95Mo (DepMo) for the transmutation of actinides in a light water reactor are discussed. DepMo has a low neutron absorption cross section and good physical and chemical properties. Therefore, DepMo is expected to be a good inert matrix in ceramic-metal fuel. The costs of the use of DepMo have been assessed, and it was concluded that these costs can be justified for the transmutation of the actinides neptunium, americium, and plutonium

  15. Comparative assessment of the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ads

    International Nuclear Information System (INIS)

    A preliminary comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides has been performed in the case of ANSALDO's Energy Amplifier Demonstration Facility based on molten lead-bismuth eutectic cooling, classical MOX-fuel technology and operating at 80 MWth. The neutronic calculations presented in this paper are a result of a state-of-the-art computer code package, EA-MC, developed by C. Rubbia and his group at CERN. Both high-energy particle interactions and low-energy neutron transport are treated with a sophisticated method based on a full Monte Carlo simulation, together with modern nuclear data libraries. Detailed Monte Carlo transport calculations were performed for different types of external neutron sources: D-D and D-T fusion sources and proton induced spallation neutron sources. The fuel core was described on a pin-by- pin basis allowing for detailed scans of the main neutronic properties, e.g. neutron flux spectra and power density distributions. (author)

  16. Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Timothy A. Hyde

    2012-06-01

    The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

  17. Actinide partitioning-transmutation program final report. VII. Long-term risk analysis of the geologic repository

    International Nuclear Information System (INIS)

    This report supports the overall assessment by Oak Ridge National Laboratory of actinide partitioning and transmutation by providing an analysis of the long-term risks associated with the terminal storage of wastes from a fuel cycle which incorporates partitioning and transmutation (P-T) and wastes from a cycle which does not. The system model and associated computer code, called AMRAW (Assessment Method for Radioactive Waste), are used for the analysis and are applied to the Los Medanos area in southeastern New Mexico. Because a conservative approach is used throughout, calculated results are believed to be consistently higher than reasonable expectations from actual disruptive incidents at the site and therefore are not directly suited for comparison with other analyses of the particular geologic location. The assessment is made with (1) the probabilistic, or risk, mode that uses combinations of reasonable possible release incidents with their probability of occurrence distributed and applied throughout the assessment period, and (2) the consequence mode that forces discrete release events to occur at specific times. An assessment period of 1 million years is used. The principal results are: (1) In all but the expulsive modes, 99Tc and 129I completely dominate cumulative effects based on their transport to man through leaching and movement with groundwater, effecting about 33,000 health effects (deaths) over the 1 million years; (2) P-T has only limited effectiveness in reducing long-term risk from a radionuclide waste repository under the conditions studied, and such effectiveness is essentially confined to the extremely unlikely (probability of occurrence 10-12/year) expulsive events; (3) Removal or immobilization of 99Tc and 129I might provide benefits sufficiently tangible to warrant special consideration

  18. Comparison of different options for minor actinide transmutation in the frame of the French law for waste management

    International Nuclear Information System (INIS)

    In the frame of the French Act for waste management which has been passed by French Parliament on June 28th, 2006, it is requested to obtain in 2012 an assessment of industrial perspectives of partitioning and transmutation of long-lived elements. These studies must be carried out in tight connection with GENIV systems development. The expected results must include the evaluation of technical and economic scenarios taking into account the optimization options between the minor actinide transmutation processes, their interim storage and geological disposal, including an analysis of several criteria. In this perspective, the CEA has established a working group named 'GT TES' (Working Group on Technical and Economic Scenarios) involving EDF and AREVA to define scenarios, the various criteria to evaluate them, to conduct these evaluations and then to highlight the key results. The group also relied on ANDRA for the geological storage studies. The scenarios evaluations take place in the French context. The nuclear energy production is supposed to remain constant during the scenarios and equal to 430 TWhe/year in accordance with the current French nuclear power installed capacity of 60 GW(e). The deployment of the first Sodium-cooled Fast Reactor (SFR) starts in 2040, considering that at this date the SFR technology should be mature. Several management schemes of minor actinides have been studied: Plutonium recycling in SFR (minor actinides are sent to the waste). Plutonium recycling and minor actinide (or Am alone) transmutation in SFR and in homogeneous mode ('Hom.'). Plutonium recycling and minor actinide (or Am alone) transmutation in SFR and in heterogeneous mode ('Het.'). Plutonium recycling in SFR and minor actinide transmutation in Accelerator-Driven-System (ADS). The criteria used to analyze these different scenarios, should take into account the viewpoint of scientists, industrials, administrations, and the general public. They are listed below: Inventories and

  19. AECL/U.S. INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors Fuel Requirements and Down-Select Report

    Energy Technology Data Exchange (ETDEWEB)

    William Carmack; Randy Fielding; Pavel Medvedev; Mitch Meyer

    2005-08-01

    This report documents the first milestone of the International Nuclear Energy Research Initiative (INERI) U.S./Euratom Joint Proposal 1.8 entitled “Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Light-Water Reactors.” The milestone represents the assessment and preliminary study of a variety of fuels that hold promise as transmutation and minor actinide burning fuel compositions for light-water reactors. The most promising fuels of interest to the participants on this INERI program have been selected for further study. These fuel compositions are discussed in this report.

  20. U.S./EURATOM INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in LWRs -- Fuel Requirements and Down-Select Report

    Energy Technology Data Exchange (ETDEWEB)

    William Carmack; Randy Fielding; Pavel Medvedev; Mitch Meyer

    2005-08-01

    This report documents the first milestone of the International Nuclear Energy Research Initiative (INERI) U.S./Canada Joint Proposal entitled “Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors.” The milestone represents the assessment and preliminary study of a variety of fuels that hold promise as transmutation and minor actinide burning fuel compositions for light water reactors. The most promising fuels of interest to the participants on this INERI program have been selected for further study. These fuel compositions are discussed in this report.

  1. Performance comparison of metallic, actinide burning fuel in lead-bismuth and sodium cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, K.D.; Herring, J.S.; Macdonald, P.E. [Idaho National Engineering and Environment Lab., Advanced Nuclear Energy, Idaho (United States)

    2001-07-01

    Various methods have been proposed to ''incinerate'' or ''transmute'' the current inventory of transuranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years. (author)

  2. Prognosis and comparison of performances of composite CERCER and CERMET fuels dedicated to transmutation of TRU in an EFIT ADS

    Science.gov (United States)

    Sobolev, V.; Uyttenhove, W.; Thetford, R.; Maschek, W.

    2011-07-01

    The neutronic and thermomechanical performances of two composite fuel systems: CERCER with (Pu,Np,Am,Cm)O 2-x fuel particles in ceramic MgO matrix and CERMET with metallic Mo matrix, selected for transmutation of minor actinides in the European Facility for Industrial Transmutation (EFIT), were analysed aiming at their optimisation. The ALEPH burnup code system, based on MNCPX and ORIGEN codes and JEFF3.1 nuclear data library, and the modern version of the fuel rod performance code TRAFIC were used for this analysis. Because experimental data on the properties of the mixed minor-actinide oxides are scarce, and the in-reactor behaviour of the T91 steel chosen as cladding, as well as of the corrosion protective layer, is still not well-known, a set of "best estimates" provided the properties used in the code. The obtained results indicate that both fuel candidates, CERCER and CERMET, can satisfy the fuel design and safety criteria of EFIT. The residence time for both types of fuel elements can reach about 5 years with the reactivity swing within ±1000 pcm, and about 22% of the loaded MA is transmuted during this period. However, the fuel centreline temperature in the hottest CERCER fuel rod is close to the temperature above which MgO matrix becomes chemically instable. Moreover, a weak PCMI can appear in about 3 years of operation. The CERMET fuel can provide larger safety margins: the fuel temperature is more than 1000 K below the permitted level of 2380 K and the pellet-cladding gap remains open until the end of operation.

  3. Program on fuels for transmutation: present status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Rouault, J.; Garnier, J.C.; Chauvin, N.; Pillon, S. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Combustibles

    2001-07-01

    The performance calculations of appropriate fuel cycle facilities and reactor configurations (scenarios) relying on current reactor technologies (Pressurized Water Reactor and Fast neutrons Reactors) or innovative reactors (Accelerator Driven Systems) have proved the scientific feasibility of some P and T strategies. To insure the technological feasibility, a large program on fuels and materials is underway, including advanced concepts for PWRs and the development of specific targets (dispersed fuels) for transmutation in Fast Reactors. Experiments in different reactors including Phenix are being prepared. The program is presented and recent results are given. (author)

  4. Transmutation Fuel Performance Code Thermal Model Verification

    Energy Technology Data Exchange (ETDEWEB)

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  5. Design and safety studies on the European Facility for Industrial Transmutation (EFIT) with CERMET fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.N.; Rineiski, A.; Liu, P.; Matzerath Boccaccini, C.; Flad, M.; Gabrielli, F.; Maschek, W. [Forschungszentrum Karlsruhe (Germany). IKET; Morita, K. [Kyushu Univ. (Japan). Dept. of Applied Quantum Physics and Nuclear Engineering

    2008-07-01

    European R and D for ADS design and fuel development is driven in the 6{sup th} FP of the EU by the EUROTRANS Programme [1]. In EUROTRANS two ADS design routes are followed, the XT-ADS and the EFIT. The XT-ADS is designed to provide the experimental demonstration of transmutation in an Accelerator Driven System. The EFIT development, the European Facility for Industrial Transmutation, aims at a generic conceptual design of a full transmuter. A key issue of the R and D work is the choice of an adequate fuel to be used in an Accelerator Driven Transmuter (ADT) like EFIT. Various fuel forms have been assessed. CERCER and CERMET fuels, specifically with the matrices MgO and Mo, have finally been selected and are now under closer investigation. Within EUROTRANS, a special domain named 'AFTRA', is responsible to more deeply assess the behavior of these dedicated fuels and to provide the fuel data base for the core design of the EFIT. The EFIT concept has to be optimized towards: a good transmutation efficiency, high burnup, low reactivity swing, low power peaking, adequate subcriticality, reasonable beam requirements and a high safety level. The final recommendation on fuels by AFTRA gave a ranking of these fuels based on the mentioned criteria. The composite CERMET fuel (Pu{sub 0.5},Am{sub 0.5})O{sub 2-x} - Mo (with the isotope {sup 92}Mo comprising 93% of the molybdenum) has been recommended as the primary candidate for the EFIT. This CERMET fuel fulfils adopted criteria for fabrication and reprocessing, and provides excellent safety margins. Disadvantages include the cost for enrichment of {sup 92}Mo and a lower specific transmutation rate of minor actinides, because of the higher neutron absorption cross-section of the matrix. The composite CERCER fuel (Pu{sub 0.4},Am{sub 0.6})O{sub 2-x} - MgO has therefore been recommended as a backup solution as it might offer a higher consumption rate of minor actinides, and can be manufactured for a lower unit cost

  6. Conceptual study of fusion-driven system for nuclear waste transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B.G., E-mail: bghong@jbnu.ac.kr

    2014-10-15

    A conceptual study of a fusion-driven system for nuclear waste transmutation using a low aspect ratio (LAR) tokamak as a neutron source is performed. A configuration of the LAR tokamak neutron source optimised with respect to both transmutation rate and the tritium breeding ratio for aspect ratio A in the range of 1.5–2.0 is found. The transmutation characteristics of both transuranic actinides and minor actinides are investigated and compared. When the transuranic actinides are loaded in the blanket, the neutron multiplication factor decreases from its initial value, k{sub eff} = 0.95, but with the minor actinides loaded in the blanket, the neutron multiplication factor shows a peak value during burn-up. The peak value can be controlled by adjusting the blanket dimensions. To transmute the nuclear waste effectively, an equilibrium fuel cycle is developed for both transuranic actinide and minor actinide transmutation.

  7. Study of the fuel behavior, safety characteristics and transmutation performance of a gas cooled accelerator driven system (ADS)

    International Nuclear Information System (INIS)

    The neutronic behavior of an ADS system based on gas cooling is examined in this work by using the simulation tools MCNPX and ORIGEN. The main character of the MCNPX code is the use of the Monte-Carlo method allowing a high dimensional simulation of the physical processes. The whole model of the core is represented in 3 dimensional zones including the target structure, which provides the initial spallation neutrons for the chain reaction in the fuel zone. At the beginning, MOX fuel with 19.5 wt. Pu/(Pu+U) is loaded in order to investigate the technical feasibility of a test facility. The fuel assemblies are replaced step by step with Plutonium and minor actinides (PuMa) uranium free fuel according to a loading and shuffling pattern. The designed test facility consists of 120 fuel assemblies each 91 fuel rods which are arranged around the spallation target. For a thermal power of 100 MW the burn-up and transmutation rate is studied. The first results for the MOX and partially PuMa fuel loaded core are presented in this paper. For the PuMa fuel two compositions are investigated. Both fuel types chosen for the analysis demonstrate the capability of the incineration of americium. The simulations show that the initial composition has significant influence on the transmutation rate. The deployment of MOX type fuel in the ADS core causes a considerable consumption of Pu but also a significant generation of americium

  8. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    International Nuclear Information System (INIS)

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  9. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  10. A Fast Numerical Method for the Calculation of the Equilibrium Isotopic Composition of a Transmutation System in an Advanced Fuel Cycle

    Directory of Open Access Journals (Sweden)

    F. Álvarez-Velarde

    2012-01-01

    Full Text Available A fast numerical method for the calculation in a zero-dimensional approach of the equilibrium isotopic composition of an iteratively used transmutation system in an advanced fuel cycle, based on the Banach fixed point theorem, is described in this paper. The method divides the fuel cycle in successive stages: fuel fabrication, storage, irradiation inside the transmutation system, cooling, reprocessing, and incorporation of the external material into the new fresh fuel. The change of the fuel isotopic composition, represented by an isotope vector, is described in a matrix formulation. The resulting matrix equations are solved using direct methods with arbitrary precision arithmetic. The method has been successfully applied to a double-strata fuel cycle with light water reactors and accelerator-driven subcritical systems. After comparison to the results of the EVOLCODE 2.0 burn-up code, the observed differences are about a few percents in the mass estimations of the main actinides.

  11. Safe management of actinides in the nuclear fuel cycle: Role of mineralogy

    Science.gov (United States)

    Ewing, Rodney C.

    2011-02-01

    During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239Pu and 237Np). There are two basic strategies for the disposition of these heavy elements: (1) to "burn" or transmute the actinides using nuclear reactors or accelerators; (2) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A 2B 2O 7 (A = rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms.

  12. Numerical analysis on reduction of radioactive actinides by recycling of nuclear fuel

    International Nuclear Information System (INIS)

    Worldwide, human growth has reached unparalleled levels historically, this implies a need for more energy, and just in 2007 was consumed in the USA 4157 x 109 kWh of electricity and there were 6 x 109 metric tons of carbon dioxide, which causes a devastating effect on our environment. To this problem, a solution to the demand for non-fossil energy is nuclear energy, which is one of the least polluting and the cheapest among non-fossil energy; however, a problem remains unresolved the waste generation of nuclear fuels. In this work the option of a possible transmutation of actinides in a nuclear reactor of BWR was analyzed, an example of this are the nuclear reactors at the Laguna Verde nuclear power plant, which have generated spent fuel stored in pools awaiting a decision for final disposal or any other existing alternative. Assuming that the spent fuel was reprocessed to separate useful materials and actinides such as plutonium and uranium remaining, could take these actinides and to recycle them inside the same reactor that produced them, so il will be reduced the radiotoxicity of spent fuel. The main idea of this paper is to evaluate by means of numeric simulation (using the Core Management System (CMS)) the reduction of minor actinides in the case of being recycled in fresh fuel of the type BWR. The actinides were introduced hypothetically in the fuel pellets to 6% by weight, and then use a burned in the range of 0-65 G Wd/Tm, in order to have a better panorama of their behavior and thus know which it is the best choice for maximum reduction of actinides. Several cases were studied, that is to say were used as fuels; the UO2 and MOX. Six different cases were also studied to see the behavior of actinides in different situations. The CMS platform calculation was used for the analysis of the cases presented. Favorable results were obtained, having decreased from a range of 35% to 65% of minor actinides initially introduced in the fuel rods, reducing the

  13. Performance Comparison of Metallic, Actinide Burning Fuel in Lead-Bismuth and Sodium Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Herring, James Stephen; Mac Donald, Philip Elsworth

    2001-04-01

    Various methods have been proposed to “incinerate” or “transmutate” the current inventory of trans-uranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non-fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years.

  14. Transmutation of Minor Actinides in a Spherical Torus Tokamak Fusion Reactor

    Institute of Scientific and Technical Information of China (English)

    FENGKaiming; ZHANGGuoshu

    2002-01-01

    Fusion energy will be a long-term energy source. Great efforts have been devoted to fusion research in the past 50 years, and there is still a long way to go. Transmutation of high-level waste (HLW) utilizing D-T fusion neutrons is a good choice for an early application of fusion.

  15. Enhanced minor actinide burning core for closed fuel cycle

    International Nuclear Information System (INIS)

    This paper presents core concepts enhancing TRU burning or MA transmutation in sodium cooled reactor satisfying the void reactivity requirements. In this study, two concepts of transmutation system are considered; in the first system TRUs are burned only by ARR whose target is maximizing TRU burning. The second is a system that Pu is burned by LWR and ARR, Am is transmuted by ARR whose target is maximizing Am transmutation. Therefore some innovative and challenging technologies have been examined under the safety requirements; MA burning fuel with 50% TRU fraction, moderator pin, fuel of high Am fraction, and Am blanket. According to the detailed calculation of high TRU contained oxide core with moderator pins of 12% arranged driver fuel assemblies, the TRU conversion ratio decreases to 0.33 and the TRU burning capability is improved to 67 kg/TWeh. Deploying Am blanket which is oxide fuel with Am 50% and U 50%, the total of Am transmutation capability of oxide fueled core becomes 69 kg/TWeh. (author)

  16. Separation of actinides from spent nuclear fuel: A review.

    Science.gov (United States)

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials.

  17. Separation of actinides from spent nuclear fuel: A review.

    Science.gov (United States)

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials. PMID:27427893

  18. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes

    International Nuclear Information System (INIS)

    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of 241Am and 237Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the 241Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  19. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Directory of Open Access Journals (Sweden)

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  20. Criticality investigations for the fixed bed nuclear reactor using thorium fuel mixed with plutonium or minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Beykoz Lojistik Meslek Yueksekokulu, Beykoz, Istanbul (Turkey)], E-mail: sumer@gazi.edu.tr; Sahin, Haci Mehmet; Acir, Adem [Beykoz Lojistik Meslek Yueksekokulu, Istanbul (Turkey); Al-Kusayer, Tawfik Ahmed [King Saud University, College of Engineering, P.O. Box 800, Riyadh 11421 (Saudi Arabia)

    2009-08-15

    Prospective fuels for a new reactor type, the so called fixed bed nuclear reactor (FBNR) are investigated with respect to reactor criticality. These are (1) low enriched uranium (LEU); (2) weapon grade plutonium + ThO{sub 2}; (3) reactor grade plutonium + ThO{sub 2}; and (4) minor actinides in the spent fuel of light water reactors (LWRs) + ThO{sub 2}. Reactor grade plutonium and minor actinides are considered as highly radio-active and radio-toxic nuclear waste products so that one can expect that they will have negative fuel costs. The criticality calculations are conducted with SCALE5.1 using S{sub 8}-P{sub 3} approximation in 238 neutron energy groups with 90 groups in thermal energy region. The study has shown that the reactor criticality has lower values with uranium fuel and increases passing to minor actinides, reactor grade plutonium and weapon grade plutonium. Using LEU, an enrichment grade of 9% has resulted with k{sub eff} = 1.2744. Mixed fuel with weapon grade plutonium made of 20% PuO{sub 2} + 80% ThO{sub 2} yields k{sub eff} = 1.2864. Whereas a mixed fuel with reactor grade plutonium made of 35% PuO{sub 2} + 65% ThO{sub 2} brings it to k{sub eff} = 1.267. Even the very hazardous nuclear waste of LWRs, namely minor actinides turn out to be high quality nuclear fuel due to the excellent neutron economy of FBNR. A relatively high reactor criticality of k{sub eff} = 1.2673 is achieved by 50% MAO{sub 2} + 50% ThO{sub 2}. The hazardous actinide nuclear waste products can be transmuted and utilized as fuel in situ. A further output of the study is the possibility of using thorium as breeding material in combination with these new alternative fuels.

  1. Current US plans for development of fuels for accelerator transmutation of waste

    International Nuclear Information System (INIS)

    The United States is currently investigating the feasibility of proposed technologies for the Accelerator Transmutation of Waste (ATW) concept, which is funded as part of the U.S. Department of Energy's Advanced Accelerator Applications (AAA) Program. The ATW concept is proposed as a means to transmute transuranic isotopes and, perhaps, long-lived fission products removed from light water reactor spent fuel to shorter-lived fission products. To attain maximum possible transmutation rates, no fertile material (i.e., U-238 or Th-232) is to be incorporated into the fuel. Fuel forms currently proposed for ATW application include non-fertile dispersions of metal alloy or nitride fuel particles in a metal matrix, a non-fertile metal alloy, or non-fertile nitride pellets for a fast-spectrum, liquid metal-cooled transmuter, and non-fertile TRISO-coated particles dispersed in graphite compacts for a thermal-spectrum, gas-cooled transmuter. There is little or no experience with these non-fertile fuels, so an extensive fuel development program is envisioned. Current plans call for initial effort to demonstrate feasibility of the proposed fuel forms by the end of 2005, consistent with AAA program decision milestones. Feasibility research and development will consist of the following: Development of fabrication processes to demonstrate fabricability of the proposed fuel forms; Simple irradiation tests to screen samples of each fuel type for unexpected or poor performance; and Determination of intrinsic properties or characteristics (e.g., out-of pile interdiffusion behavior of fuel and constituents and thermophysical properties). If the decision is made to continue development of the ATW concept beyond 2005, then of the successful candidate forms, one or two will be selected for further development, with more extensive irradiation testing and fuel property characterization. (author)

  2. INERT-MATRIX FUEL: ACTINIDE ''BURNING'' AND DIRECT DISPOSAL

    International Nuclear Information System (INIS)

    Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am, 244 Cm and 237 Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burnup of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-cycle of burn-up. Direct disposal can considerably reduce cost, processing requirements, and radiation exposure to workers

  3. Research on Actinides in Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  4. Studies on the safety and transmutation behaviour of innovative fuels for light water reactors; Untersuchungen zum Sicherheits- und Transmutationsverhalten innovativer Brennstoffe fuer Leichtwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Schitthelm, Oliver

    2012-07-01

    Nuclear power plants contribute a substantial part to the energy demand in industry. Today the most common fuel cycle uses enriched uranium which produces plutonium due to its {sup 238}U content. With respect to the long-term waste disposal Plutonium is an issue due to its heat production and radiotoxicity. This thesis consists of three main parts. In the first part the development and validation of a new code package MCBURN for spatial high resolution burnup simulations is presented. In the second part several innovative uranium-free and plutonium-burning fuels are evaluated on assembly level. Candidates for these fuels are a thorium/plutonium fuel and an inert matrix fuel consisting of plutonium dispersed in an enriched molybdenum matrix. The performance of these fuels is evaluated against existing MOX and enriched uranium fuels considering the safety and transmutation behaviour. The evaluation contains the boron efficiency, the void coefficient, the doppler coefficient and the net balances of every radionuclide. In the third part these innovative fuels are introduced into a German KONVOI reactor core. Considering todays approved usage of MOX fuels a partial loading of one third of innovative fuels and two third of classical uranium fuels was analysed. The efficiency of the plutonium depletion is determined by the ratio of the production of higher isotopes compared to the plutonium depletion. Todays MOX-fuels transmutate about 25% to 30% into higher actinides as Americium or Curium. In uranium-free fuels this ratio is about 10% due to the lack of additional plutonium production. The analyses of the reactor core have shown that one third of MOX fuel is not capable of a net reduction of plutonium. On the other hand a partial loading with thorium/plutonium fuel incinerates about half the amount of plutonium produced by an uranium only core. If IMF is used the ratio increases to about 75%. Considering the safety behavior all fuels have shown comparable results.

  5. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes; Mesures des sections efficaces de capture et potentiels d'incineration des actinides mineurs dans les hauts flux de neutrons: Impact sur la transmutation des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O

    2007-10-15

    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of {sup 241}Am and {sup 237}Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the {sup 241}Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  6. Transmutation of radioactive nuclear waste – present status and requirement for the problem-oriented nuclear data base

    Indian Academy of Sciences (India)

    Yu A Korovin; V V Artisyuk; A V Ignatyuk; G B Pilnov; A Yu Stankovsky; Yu E Titarenko; S G Yavshits

    2007-02-01

    Transmutation of long-lived actinides and fission products becomes an important issue of the overall nuclear fuel cycle assessment, both for existing and future reactor systems. Reliable nuclear data are required for analysis of associated neutronics. The present paper gives a review of the status of nuclear data analysis focusing on the waste transmutation problem.

  7. Transmutation of radioactive nuclear waste- present status and requirement for the problem-oriented nuclear data base

    International Nuclear Information System (INIS)

    Transmutation of long-lived actinides and fission products becomes an important issue of the overall nuclear fuel cycle assessment, both for existing and future reactor systems. Reliable nuclear data are required for analysis of associated neutronics. The present paper gives a review of the status of nuclear data analysis focusing on the waste transmutation problem. (author)

  8. Actinide management with commercial fast reactors

    International Nuclear Information System (INIS)

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel

  9. Actinide management with commercial fast reactors

    Science.gov (United States)

    Ohki, Shigeo

    2015-12-01

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  10. Actinide management with commercial fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ohki, Shigeo [Japan Atomic Energy Agency, 4002, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  11. Maximization of burning and/or transmutation (B/T) capacity in coupled spectrum reactor (CSR) by fuel and core adjustment

    International Nuclear Information System (INIS)

    A conceptual design of burning and/or transmutation (B/T) reactor, based on a modified conventional 1150 MWe-PWR system, consisted of two core regions for thermal and fast neutrons, respectively, was proposed herein for the treatments of minor actinides (MA). In the outer region 237Np, 241Am, and 243Am burned by thermal neutrons, while in the inner region 244Cm was burned mainly by fast neutrons. The geometry of B/T fuel in the outer region was left the same with that of PWR, while in the inner region the B/T fuel was arranged in a tight-lattice geometry that allowed a higher fuel to coolant volume ratio. The maximization of B/T capacity in CSR were done by, first, increasing the radius of the inner region. Second, reducing the coolant to fuel volume ratio, and third, choosing a suitable B/T fuel type. The result of the calculations showed that the equilibrium of main isotopes in CSR can be achieved after about 5 recycle stages. This study also showed that the CSR can burn and transmute up to 808 kg of MA in a single reactor core effectively and safely. (author)

  12. Impact of actinide recycle on nuclear fuel cycle health risks

    International Nuclear Information System (INIS)

    The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR)1 and Integral Fast Reactor (IF)2 technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle

  13. Partitioning and Transmutation. Annual Report 2005

    International Nuclear Information System (INIS)

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94N To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the EUROPART project within the European Union sixth framework program. This is a continuation of the projects we participated in within the fourth and fifth framework programmes, NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since the basic understanding is still needed we have our main focus on the chemical processes and understanding of how they work

  14. Partitioning and Transmutation. Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sofie; Drouet, Francois; Ekberg, Christian; Liljenzin, Jan-Olov; Magnusson, Daniel; Nilsson, Mikael; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Materials and Surface Chemistry

    2005-01-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 129}I, {sup 99}Tc, {sup 135}Cs, {sup 93}Zr and {sup 126}Sn and activation products ({sup 14}C and {sup 36}Cl). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. This separation is necessary to obtain the desired efficiency in the transmutation process in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the European Union sixth framework program project EUROPART. This is a continuation of the projects we participated in within the fourth and fifth framework programmes NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development.

  15. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  16. Future nuclear fuel cycles: Prospect and challenges for actinide recycling

    Science.gov (United States)

    Warin, Dominique

    2010-03-01

    The global energy context pleads in favour of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel. In this context, nuclear power has the worldwide potential to curtail the dependence on fossil fuels and thereby to reduce the amount of greenhouse gas emissions while promoting energy independence. How we deal with nuclear radioactive waste is crucial in this context. In France, the public's concern regarding the long-term waste management made the French Governments to prepare and pass the 1991 and 2006 Acts, requesting in particular the study of applicable solutions for still minimizing the quantity and the hazardousness of final waste. This necessitates High Active Long Life element (such as the Minor Actinides MA) recycling, since the results of fuel cycle R&D could significantly change the challenges for the storage of nuclear waste. HALL recycling can reduce the heat load and the half-life of most of the waste to be buried to a couple of hundred years, overcoming the concerns of the public related to the long-life of the waste and thus aiding the "burying approach" in securing a "broadly agreed political consensus" of waste disposal in a geological repository. This paper presents an overview of the recent R and D results obtained at the CEA Atalante facility on innovative actinide partitioning hydrometallurgical processes. For americium and curium partitioning, these results concern improvements and possible simplifications of the Diamex-Sanex process, whose technical feasibility was already demonstrated in 2005. Results on the first tests of the Ganex process (grouped actinide separation for homogeneous recycling) are also discussed. In the coming years, next steps will involve both better in-depth understanding of the basis of these actinide partitioning processes and, for the new promising

  17. Options for treatment of legacy and advanced nuclear fuels

    OpenAIRE

    Maher, Christopher John

    2014-01-01

    The treatment of advanced nuclear fuels is relevant to the stabilisation of legacy spent fuels or nuclear materials and fuels from future nuclear reactors. Historically, spent fuel reprocessing has been driven to recover uranium and plutonium for reuse. Future fuel cycles may also recover the minor actinides neptunium, americium and perhaps curium. These actinides would be fabricated into new reactor fuel to produce energy and for transmutation of the minor actinides. This has the potential t...

  18. Transmutation of actinides from light water reactors in modular high-temperature reactors for the reduction of long-lived nuclides; Verbrennung von Aktiniden aus Leichtwasserreaktoren in modularen Hochtemperaturreaktoren zur Reduzierung langlebiger Nuklide

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Astrid

    2012-05-15

    Only one of many different ways to produce electric power is the Light Water Reactor (LWR).This reactor produces high level long-lived and radiotoxic nuclides like Plutonium and Minore Actinides (Neptunium, Americium, Curium,..), which have to be safely isolated and controlled in a final storage over a long time. Thus, many projects worldwide concentrate on the transformation of these long-lived nuclides into short-lived nuclides by transmutation and fission processes. Here, mainly accelerator driven systems and Generation-IV-reactors, like the graphite moderated, Helium cooled High Temperature Reactor (HTR), are in focus of research. The main advantages of the HTR are the fuel structure, which allows high burnups and the inherent safety. In case of a Loss Of Cooling Accident (LOCA), the decay heat will be dissipated without any active cooling system. This passive heat transfer is high enough to stay below the upper temperature limit in the fuel. Therefore, the fuel structure stays intact and the fission products retain inside the fuel. In this thesis, the long-lived nuclides like Plutonium, Neptunium and Americium, extracted from the spent LWR fuel, will be reused in a fresh fuel element for the HTR. To achieve the aim of reducing these nuclides and their radiotoxicity, the HTR has to operate at the highest possible burnup. Therefore parameters, like e.g. the fuel temperature or the power density distribution and also the behaviour in case of an accident have to be comparable to the HTR loaded with uranium fuel. The European Union project ''Plutonium and Minore Actinide Waste Management'' (PuMA) is the origin for the used reference reactor geometry, the fuel structure as well as the nuclide densities in the Plutonium and Minor Actinides fuel. The reactor design of this project is almost identical to the South African reactor concept with 400 MW{sub th} thermal power and an inner graphite column (Pebble Bed Modular Reactor PBMR-400).For

  19. Modelling the inventory and impact assessment of partitioning and transmutation approaches to spent nuclear fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Hoggett-Jones, C. E-mail: craig@stams.strath.ac.uk; Robbins, C.; Gettinby, G.; Blythe, S

    2002-03-01

    An inventory modelling and impact assessment system to investigate the potential effects of partitioning and transmutation is proposed. It is founded on a mass based inventory analysis using the principles of basic nuclear physics and the international standards for assessing radiological health effects. It is specific to the back-end of the nuclear fuel cycle and is applied to four alternative spent fuel management strategies. The system accounts for the dynamic nature of post-irradiation scenarios and is being used to develop software for use within the nuclear power industry. Four example waste-disposal options are considered using the method. Impact assessments and parameter sensitivity analyses are presented.

  20. Modelling the inventory and impact assessment of partitioning and transmutation approaches to spent nuclear fuel management

    International Nuclear Information System (INIS)

    An inventory modelling and impact assessment system to investigate the potential effects of partitioning and transmutation is proposed. It is founded on a mass based inventory analysis using the principles of basic nuclear physics and the international standards for assessing radiological health effects. It is specific to the back-end of the nuclear fuel cycle and is applied to four alternative spent fuel management strategies. The system accounts for the dynamic nature of post-irradiation scenarios and is being used to develop software for use within the nuclear power industry. Four example waste-disposal options are considered using the method. Impact assessments and parameter sensitivity analyses are presented

  1. Disposal of nuclear wastes by transmutation

    International Nuclear Information System (INIS)

    A study was made of the feasibility of partition and transmutation (P-T) of actinides, 99Tc, and 129I in radioactive wastes. An incremental analysis was performed on a reference fuel cycle and a P-T fuel cycle. Short-term risks from fuel cycle operations and long-term risks from a repository were estimated for cases with and without P-T. Results show that P-T cannot be justified because of the small radiological benefits and substantially increased costs. 1 table

  2. Numerical analysis on reduction of radioactive actinides by recycling of nuclear fuel; Analisis numerico sobre reduccion de actinidos radiactivos por reciclado de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Balboa L, H. E.

    2014-07-01

    Worldwide, human growth has reached unparalleled levels historically, this implies a need for more energy, and just in 2007 was consumed in the USA 4157 x 10{sup 9} kWh of electricity and there were 6 x 10{sup 9} metric tons of carbon dioxide, which causes a devastating effect on our environment. To this problem, a solution to the demand for non-fossil energy is nuclear energy, which is one of the least polluting and the cheapest among non-fossil energy; however, a problem remains unresolved the waste generation of nuclear fuels. In this work the option of a possible transmutation of actinides in a nuclear reactor of BWR was analyzed, an example of this are the nuclear reactors at the Laguna Verde nuclear power plant, which have generated spent fuel stored in pools awaiting a decision for final disposal or any other existing alternative. Assuming that the spent fuel was reprocessed to separate useful materials and actinides such as plutonium and uranium remaining, could take these actinides and to recycle them inside the same reactor that produced them, so il will be reduced the radiotoxicity of spent fuel. The main idea of this paper is to evaluate by means of numeric simulation (using the Core Management System (CMS)) the reduction of minor actinides in the case of being recycled in fresh fuel of the type BWR. The actinides were introduced hypothetically in the fuel pellets to 6% by weight, and then use a burned in the range of 0-65 G Wd/Tm, in order to have a better panorama of their behavior and thus know which it is the best choice for maximum reduction of actinides. Several cases were studied, that is to say were used as fuels; the UO{sub 2} and MOX. Six different cases were also studied to see the behavior of actinides in different situations. The CMS platform calculation was used for the analysis of the cases presented. Favorable results were obtained, having decreased from a range of 35% to 65% of minor actinides initially introduced in the fuel rods

  3. Factors affecting actinide solubility in a repository for spent fuel, 1

    International Nuclear Information System (INIS)

    The main tasks in the study were to get information on the chemical conditions in a repository for spent fuel and information on factors affecting releases of actinides from spent fuel and solubility of actinides in a repository for spent fuel. The work in this field started at the Reactor Laboratory of the Technical Research Centre of Finland (VTT) in 1982. This is a report on the effects on the main parameters, Eh, pH, carbonate, organic compounds, colloids, microbes and radiation on the actinide solubility in the nearfield of the repository. Another task has been to identify available models and reported experience from actinide solubility calculations with different codes. 167 refs

  4. Build-up and decay of fuel actinides in the fuel cycle of nuclear reactors

    International Nuclear Information System (INIS)

    For boiling water reactors, pressurized light-water reactors, pressure-tube-type heavy water reactors, high-temperature gas-cooled reactors, and sodium-cooled fast breeder reactors, uranium fueled and mixed-oxide fueled, each of 1000 MWe, the following have been studied: (1) quantities of plutonium and other fuel actinides built up in the reactor, (2) cooling behaviors of activities of plutonium and other fuel actinides in the spent fuels, and (3) activities of plutonium and other fuel actinides in the high-level reprocessing wastes as a function of storage time. The neutron cross section and decay data of respective actinide nuclides are presented, with their evaluations. For effective utilization of the uranium resources and easy reprocessing and high-level waste management, a thermal reactor must be fueled with uranium; the plutonium produced in a thermal reactor should be used in a fast reactor; and the plutonium produced in the blanket of a fast reactor is more appropriate for a fast reactor than that from a thermal reactor. (auth.)

  5. Technical feasibility of long lived wastes transmutation

    International Nuclear Information System (INIS)

    The aim of this report is to evaluate the technical feasibility of long-lived wastes transmutation in different type of reactors and their associated cycles. This feasibility depends both on the type of waste and on the type of reactor. It is performed through scenario studies which allow to evaluate the overall steps of the fuel cycle (reactor, fabrication, storage, reprocessing) and which include the detailed studies of changes in cores design and management induced by transmutation, the impacts on fuel cycle facilities, and on reprocessing and fabrication processes. Previous scenario studies have permitted to underline the advantages and drawbacks of the different strategies. The scenarios considered in this document cover the overall options foreseeable today: a PWR-based scenario for the recycling of plutonium and americium in homogeneous mode based on the MOX UE Am assembly concept from 2020 onward; a 4. generation reactor-based scenario with fast spectrum and self recycling of actinides from 2035 onward; and a scenario where minor actinides are recycled in a specific cycle in association with subcritical systems. The document comprises also a specific chapter about the technical feasibility of the transmutation fuel which covers the overall aspects of the fuel cycle to be considered. (J.S.)

  6. Transmutation Scenarios Impacts on Advanced Nuclear Cycles (fabrication/reprocessing/transportation)

    International Nuclear Information System (INIS)

    In the frame of the French Law for waste management, minor actinides transmutation scenarios have been studied for a sodium-cooled fast reactors fleet using homogeneous or heterogeneous recycling modes. Americium, neptunium and curium can be transmuted once included together in the standard MOX fuel, or the sole Americium can be incorporated in Am-bearing radial blanket. MAs transmutation in Accelerator Driven System has also been studied while Plutonium is recycling in SFR. Assessments and comparisons of these advanced cycles have been performed in light of technical and economic aspects criteria. The purpose of this study is to present the results in terms of impacts of the transmutation scenarios on fuel cycle plants (fabrication, reprocessing) and transportations taking into account thermal, radiation and criticality parameters. Comparison with no transmutation option is also presented. (author)

  7. Outcomes on Oxide Fuel Development for Minor Actinides Recycling

    International Nuclear Information System (INIS)

    A state of the art review is given of minor actinide (MA)-bearing oxide fuel development for sodium fast reactors (SFRs) and accelerator driven systems (ADS). The homogeneous recycle option in SFRs, where small amounts of MAs are diluted in (U,Pu)O2-x driver fuels, emerges as a technically sound approach, reinforced by national and international programmes. Its technology readiness level is appropriate to implement irradiation tests from pin to bundle scale. Regarding the heterogeneous recycle option in SFRs, a comprehensive database regarding inert matrix fuels is available as the result of ~35 irradiation tests. The promising results gained with MgO, Mo and ZrO2 matrices have to be completed by post-irradiation examinations on optimized fuel microstructures. On the other hand, a first step in the long term (MA,U)O2-x fuel development process is under investigation with MARIOS and DIAMINO tests in the HFR and OSIRIS, before the implementation of prototypical irradiation tests. For ADS, very informative feedback from inert matrix fuel developments has been completed by dedicated collaborative programmes, including major irradiations for the fuel performance assessment from HELIOS and FUTURIX-FTA experiments, whose post-irradiation examinations are under way. (author)

  8. Accelerator-driven sub-critical target concept for transmutation of nuclear wastes

    International Nuclear Information System (INIS)

    A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning the components of the light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, some of the most significant challenges in building a waste repository can be substantially reduced. The proposed machine, based on the described PHOENIX Concept, would transmute the minor actinides and the iodine produced by 75 LWRs, and would generate usable electricity (beyond that required to run the large accelerator) of 850 MWe. 19 refs., 20 figs

  9. The Czech national R and D program of nuclear incineration of PWR spent fuel in a transmuter with liquid fuel

    International Nuclear Information System (INIS)

    The principle drawbacks of any kind of solid nuclear fuel are listed and briefly analysed in the first part of the paper. On the basis of this analysis, the liquid fuel concept and its benefits are introduced and briefly described in the following parts of the paper allowing to developed new reactor systems for nuclear incineration of spent fuel from conventional reactors and a new clean source of energy. As one of the first realistic attempts to utilize the advantages of liquid fuel, the reactor/blanket system with molten fluoride salts in the role of fuel and coolant simultaneously, as incorporated in the accelerator-driven transmutation technology (ADTT) being proposed in [1], has been proposed for a deeper, both theoretical and experimental studies in [2]. There will be a preliminary design concept of an experimental assembly LA-0 briefly introduced in the paper which is under preparation in the Czech Republic for such a project [3]. (author)

  10. Analysis of the minority actinides transmutation in a sodium fast reactor with uniform load pattern by the MCNPX-CINDER code; Analisis de la transmutacion de actinidos en un reactor rapido de sodio con modelo de carga homogeneo mediante el codigo MCNPX-CINDER

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa Valero, R.; Garcia-Herranz, N.; Aragones, J. M.

    2010-07-01

    The aim of this study is to evaluate the minority actinides transmutation in sodium fast reactors (SFR) assuming a uniform load pattern. It is determined the isotopic evolution of the actinides along burn, and the evolution of the reactivity and the reactivity coefficients. For that, it is used the MCNPX neutron transport code coupled with the inventory code CINDER90.

  11. Actinides reduction by recycling in a thermal reactor; Reduccion de actinidos por reciclado en un reactor termico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Martinez C, E.; Balboa L, H., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  12. Partitioning and transmutation (P and D) 1995. A review of the current state of the art

    International Nuclear Information System (INIS)

    The recent development in the field of partitioning and transmutation (P/T) is reviewed and evaluated. Current national and international R and D efforts are summarized. Nuclear transmutation with energy production is feasible in nuclear reactors where fast and thermal breeders are the most efficient for transmutation purposes. The operation of subcritical nuclear reactors by high current proton accelerators that generate neutrons in a spallation target is also an interesting option for transmutation and energy production, that has to be more carefully evaluated. These accelerator-driven systems are probably the only solution for the transmutation of long-lived fission products with small neutron capture cross sections and actinide isotopes with small fission cross sections. The requirements on the separation chemistry in the partitioning process depends on the transmutation strategy chosen. Recent developments in aqueous based separation chemistry opens some interesting possibilities to meet some of the requirements, such as separation of different actinides and some fission products and reduction of secondary waste streams. In the advanced accelerator-driven transmutation systems proposed, liquid fuels such as molten salts are considered. The partitioning processes that can be used for these types of fuel will, however, require a long term research program. The possibility to use centrifuge separation is an interesting partitioning option that recently has been proposed. 51 refs, 7 figs, 3 tabs

  13. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  14. Actinide co-conversion by internal gelation

    International Nuclear Information System (INIS)

    Suitable microstructures and homogenous microspheres of actinide compounds are of interest for future nuclear fuel or transmutation target concepts to prevent the generation and dispersal of actinide powder. Sol-gel routes are being investigated as one of the possible solutions for producing these compounds. Preliminary work is described involving internal gelation to synthesize mixed compounds including minor actinides, particularly mixed actinide or mixed actinide-inert element compounds. A parameter study is discussed to highlight the importance of the initial broth composition for obtaining gel microspheres without major defects (cracks, craters, etc.). In particular, conditions are defined to produce gel beads from Zr(IV)/Y(III)/Ce(III) or Zr(IV)/An(III) systems. After gelation, the heat treatment of these microspheres is described for the purpose of better understanding the formation of cracks after calcination and verifying the effective synthesis of an oxide solid-solution. (authors)

  15. Heavy ion induced damage in MgAl sub 2 O sub 4 , an inert matrix candidate for the transmutation of minor actinides

    CERN Document Server

    Wiss, T

    1999-01-01

    Magnesium aluminum spinel (MgAl sub 2 O sub 4) is a material selected as a possible matrix for transmutation of minor actinides by neutron capture or fission in nuclear reactors. To study the radiation stability of this inert matrix, especially against fission product impact, irradiations with heavy energetic ions or clusters have been performed. The high electronic energy losses of the heavy ions in this material led to the formation of visible tracks as evidenced by transmission electron microscopy for 30 MeV C sub 6 sub 0 -Buckminster fullerenes and for ions of energy close to or higher than fission energy ( sup 2 sup 0 sup 9 Bi with 120 MeV and 2.38 GeV energy). The irradiations at high energies showed a pronounced degradation of the spinel. Additionally, MgAl sub 2 O sub 4 exhibited a large swelling for irradiation at high fluences with fission products of fission energy (here I-ions of 72 MeV) and at temperatures <= 500 deg. C. These observations are discussed from the technological point of view in ...

  16. Actinide-only burnup credit for spent fuel transport

    International Nuclear Information System (INIS)

    A conservative methodology is described that would allow taking credit for burn up in the criticality safety analysis of spent nuclear fuel packages. Requirements for its implementation include isotopic and criticality validation, generation of package loading criteria using limiting parameters, and assembly burn up verification by measurement. The method allows credit for the changes in the 234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, and 241Am concentrations with burnup. No credit for fission product neutron absorbers is taken. Analyses are included regarding the methodology's financial benefits and conservative margin. It is estimated that the proposed actinide-only burnup credit methodology would save 20% of the transport costs. Nevertheless, the methodology includes a substantial margin. Conservatism due to the isotopic correction factors, limiting modelling parameters, limiting axial profiles and exclusion of the fission products ranges from 10 to 25% k. (author)

  17. Transuranics Transmutation Using Neutrons Spectrum from Spallation Reactions

    Directory of Open Access Journals (Sweden)

    Maurício Gilberti

    2015-01-01

    Full Text Available The aim is to analyse the neutron spectrum influence in a hybrid system ADS-fission inducing transuranics (TRUs transmutation. A simple model consisting of an Accelerator-Driven Subcritical (ADS system containing spallation target, moderator or coolant, and spheres of actinides, “fuel,” at different locations in the system was modelled. The simulation was performed using the MCNPX 2.6.0 particles transport code evaluating capture (n,γ and fission (n,f reactions, as well as the burnup of actinides. The goal is to examine the behaviour and influences of the hard neutron spectrum from spallation reactions in the transmutation, without the contribution or interference of multiplier subcritical medium, and compare the results with those obtained from the neutron fission spectrum. The results show that the transmutation efficiency is independent of the spallation target material used, and the neutrons spectrum from spallation does not contribute to increased rates of actinides transmutation even in the vicinity of the target.

  18. HELIOS: the new design of the irradiation of U-free fuels for americium transmutation

    Energy Technology Data Exchange (ETDEWEB)

    D' Agata, E. [European Commission, Joint Research Centre, Institute for Energy, P.O. Box 2, 1755 ZG Petten (Netherlands); Klaassen, F.; Sciolla, C. [Nuclear Research and Consultancy Group, Dept. Life Cycle and Innovations, P.O. Box 25 1755 ZG Petten (Netherlands); Fernandez-Carretero, A. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Bonnerot, J.M. [Commissariat a l' Energie Atomique, DEC/SESC/LC2I CEA-Cadarache, 13108 St. Paul lez Durance Cedex (France)

    2009-06-15

    Americium is one of the radioactive elements that mostly contribute to the radiotoxicity of the nuclear spent fuel. Transmutation of long-lived nuclides like Americium is an option for the reduction of the mass, the radiotoxicity and the decay heat of nuclear waste. The HELIOS irradiation experiment is the last evolution in a series of experiments on americium transmutation. The previous experiments, EFTTRA-T4 and T4bis, have shown that the release or trapping of helium is the key issue for the design of such kind of target. In fact, the production of helium, which is characteristic of {sup 241}Am transmutation, is quite significant. The experiment is carried out in the framework of the 4-year project EUROTRANS of the EURATOM 6. Framework Programme (FP6). Therefore, the main objective of the HELIOS experiment is to study the in-pile behaviour of U-free fuels such as CerCer (Pu, Am, Zr)O{sub 2} and Am{sub 2}Zr{sub 2}O{sub 7}+MgO or CerMet (Pu, Am)O{sub 2}+Mo in order to gain knowledge on the role of the fuel microstructure and of the temperature on the gas release and on the fuel swelling. The experiment was planned to be conducted in the HFR (High Flux Reactor) in Petten (The Netherlands) starting the first quarter of 2007. Because of the innovative aspects of the fuel, the fabrication has had some delays as well as the final safety analyses of the original design showed some unexpected deviation. Besides, the HFR reactor has been unavailable since August 2008. Due to the reasons described above, the experiment has been postponed. HELIOS should start in the first quarter of 2009 and will last 300 full power days. The paper will cover the description of the new design of the irradiation experiment HELIOS. The experiment has been split in two parts (HELIOS1 and HELIOS2) which will be irradiated together. Moreover, due to the high temperature achieved in cladding and to the high amount of helium produced during transmutation the experiment previously designed for a

  19. Fusion-Fission Burner for Transuranic Actinides

    Science.gov (United States)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  20. Partitioning and transmutation of nuclear wastes. Chances and risk in research and application

    International Nuclear Information System (INIS)

    Partitioning and transmutation is focused on the transformation of long-lived radioisotopes in short-lived isotopes. The methodology could be a possibility to reduce the long.-term risk of heat developing nuclear waste in final repositories. During partitioning of spent fuel elements the uranium, plutonium and the minor actinides (neptunium, americium and curium) are separated. The remaining fission and activation products are vitrified and disposed in the final repository. During the partition process radioactive water from decontamination and washing is generated as secondary waste. The transmutation process includes the irradiation of plutonium and the minor actinides with fast neutrons resulting in stable or short-lived isotopes. The separated uranium can be used for fuel element production. The facility for transmutation is being developed and is supposed to be safer than the actual nuclear power plants. The potential risks of the technology are discussed.

  1. Transmutation Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Song, T. Y.; Park, W. S.; Kim, Y. H. (and others)

    2007-06-15

    The spent fuel coming from the PWR is one of the most difficult problems to be solved for the continuous use of nuclear power. It takes a few million years to be safe under the ground. Therefore, it is not easy to take care of the spent fuel for such a long time. Transmutation technology is the key technology which can solve the spent fuel problem basically. Transmutation is to transmute long-lived radioactive nuclides in the spent fuel into short-lived or stable nuclide through nuclear reactions. The long-lived radioactive nuclides can be TRU and fission products such as Tc-99 and I-129. Although the transmutation technology does not make the underground disposal totally unnecessary, the period to take care of the spent fuel can be reduced to the order of a few hundred years. In addition to the environmental benefit, transmutation can be considered to recycle the energy in the spent fuel since the transmutation is performed through nuclear fission reaction of the TRU in the spent fuel. Therefore, transmutation technology is worth being developed in economical aspect. The results of this work can be a basis for the next stage research. The objective of the third stage research was to complete the core conceptual design and verification of the key technologies. The final results will contribute to the establishment of Korean back end fuel cycle policy by providing technical guidelines.

  2. Partitioning and Transmutation. Annual Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Materials and Surface Chemistry

    2004-02-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products and activation products. To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to obtain are the one between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and the one between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to obtain separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the European Union project PARTNEW. This project was a part of the fifth framework programme and was concluded in September 2003, but the work is continued in the sixth framework programme under the acronym EUROPART (start January 2004). We mainly cooperate with the Univ. of Reading, which send us new nitrogen containing ligands for evaluation of their extraction properties. The main focus is to understand the basic chemistry of these systems but also to study some process behaviour for future full-scale plants.

  3. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, F.; Lahoda, E.; Wenner, M. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Lindley, B. [University of Cambridge (United Kingdom); Fiorina, C. [Polytechnic of Milan (Italy); Phillips, C. [Energy Solutions, Richland, WA (United States)

    2013-07-01

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

  4. Power reactors and sub-critical blanket systems with lead and lead-bismuth as coolant and/or target material. Utilization and transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    High level radioactive waste disposal is an issue of great importance in the discussion of the sustainability of nuclear power generation. The main contributors to the high radioactivity are the fission products and the minor actinides. The long lived fission products and minor actinides set severe demands on the arrangements for safe waste disposal. Fast reactors and accelerator driven systems (ADS) are under development in Member States to reduce the long term hazard of spent fuel and radioactive waste, taking advantage of their incineration and transmutation capability. Important R and D programmes are being undertaken in many Member States to substantiate this option and advance the basic knowledge in this innovative area of nuclear energy development. The conceptual design of the lead cooled fast reactor concept BREST-OD-300, as well as various other conceptual designs of lead/lead-bismuth cooled fast reactors have been developed to meet enhanced safety and non-proliferation requirements, aiming at both energy production and transmutation of nuclear waste. Some R and D studies indicate that the use of lead and lead-bismuth coolant has some advantages in comparison with existing sodium cooled fast reactor systems, e.g.: simplified design of fast reactor core and BOP, enhanced inherent safety, and easier radwaste management in related fuel cycles. Moreover, various ADS conceptual designs with lead and lead-bismuth as target material and coolant also have been pursued. The results to date are encouraging, indicating that the ADS has the potential to offer an option for meeting the challenges of the back end fuel cycle. During the last decade, there have been substantial advances in several countries with their own R and D programme in the fields of lead/lead-bismuth cooled critical and sub-critical concepts. coolant technology, and experimental validation. In this context, international exchange of information and experience, as well as international

  5. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, Benjamin A.; Parks, Geoffrey T. [University of Cambridge, Cambridge (United Kingdom); Franceschini, Fausto [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  6. Partitioning and Transmutation. Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sofie; Ekberg, Christian; Fermvik, Anna; Hervieux, Nadege; Liljenzin, Jan-Olov; Magnusson, Daniel; Nilsson, Mikael; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2006-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 79}Se, {sup 87}Rb, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, {sup 135}Cs) and activation products ({sup 14}C, {sup 36}Cl, {sup 59}Ni, {sup 93}Zr, {sup 94}N To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the EUROPART project within the European Union sixth framework program. This is a continuation of the projects we participated in within the fourth and fifth framework programmes, NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since the basic understanding is still needed we have our main focus on the chemical processes and understanding of how they work.

  7. Partitioning and transmutation. Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Englund, Sofie; Fermvik, Anna; Foreman, Mark St. J.; Liljenzin, Jan-Olov; Retegan, Teodora; Skarnemark, Gunnar; Wald, Karin (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (SE))

    2007-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT now in the 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since a further investigation on basic understanding of the chemical behaviour is required, we have our main focus on the chemical processes and understanding of how they work. Due to new recruitments we will now also work on ligand design and development. This will decrease the response time between new ligands and their evaluation.

  8. Production of actinide isotopes in simulated PWR fuel and their influence on inherent neutron emission

    International Nuclear Information System (INIS)

    This report describes calculations that examine the sensitivity of actinide isotopes to various reactor parameters. The impact of actinide isotope build-up, depletion, and decay on the neutron source rate in a spent-fuel assembly is determined, and correlations between neutron source rates and spent-fuel characteristics such as exposure, fissile content, and plutonium content are established. The application of calculations for evaluating experimental results is discussed

  9. MA transmutation performance in the optimized MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Malambu, E.; Van den Eynde, G.; Fernandez, R.; Baeten, P.; Ait Abderrahim, H. [SCK-CEN, Boeretang 200, BE-2400 Mol (Belgium)

    2013-07-01

    MYRRHA (multi-purpose hybrid research reactor for high-tech applications) is a multipurpose research facility currently being developed at SCK-CEN. It will be able to work in both critical and subcritical modes and, cooled by lead-bismuth eutectic. In this paper the minor actinides (MA) transmutation capabilities of MYRRHA are investigated. (Pu + Am, U) MOX fuel and (Np + Am + Cm, Pu) Inert Matrix Fuel test samples have been loaded in the central channel of the MYRRHA critical core and have been irradiated during five cycles, each one consisting of 90 days of operation at 100 MWth and 30 days of shutdown. The reactivity worth of the test fuel assembly was about 1.1 dollar. A wide range of burn-up level has been achieved, extending from 42 to 110 MWd/kg HM, the samples with lower MA-to-Pu ratios reaching the highest burn-up. This study has highlighted the importance of the initial MA content, expressed in terms of MA/Pu ratio, on the transmutation rate of MA elements. For (Pu + Am, U) MOX fuel samples, a net build-up of MA is observed when the initial content of MA is very low (here, 1.77 wt% MA/Pu) while a net decrease in MA is observed in the sample with an initial content of 5 wt%. This suggests the existence of some 'equilibrium' initial MA content value beyond which a net transmutation is achievable.

  10. Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P E; Kaufman, L; Fluss, M J

    2008-11-10

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermochemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenge are not insurmountable and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  11. Transmutation of high-level radioactive waste - Perspectives

    CERN Document Server

    Junghans, Arnd; Grosse, Eckart; Hannaske, Roland; Kögler, Toni; Massarczyk, Ralf; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    In a fast neutron spectrum essentially all long-lived actinides (e.g. Plutonium) undergo fission and thus can be transmuted into generally short lived fission products. Innovative nuclear reactor concepts e.g. accelerator driven systems (ADS) are currently in development that foresee a closed fuel cycle. The majority of the fissile nuclides (uranium, plutonium) shall be used for power generation and only fission products will be put into final disposal that needs to last for a historical time scale of only 1000 years. For the transmutation of high-level radioactive waste a lot of research and development is still required. One aspect is the precise knowledge of nuclear data for reactions with fast neutrons. Nuclear reactions relevant for transmutation are being investigated in the framework of the european project ERINDA. First results from the new neutron time-of-flight facility nELBE at Helmholtz-Zentrum Dresden-Rossendorf will be presented.

  12. Irradiation effects on SiAlO(N) rare earth aluminosilicate glasses in the framework of actinides transmutation; Effets de l'irradiation sur les verres d'aluminosilicates de terres rares de type SiAlO(N) dans le contexte de la transmutation des actinides

    Energy Technology Data Exchange (ETDEWEB)

    Dauce, R

    2003-11-15

    Actinides transmutation would permit to decrease the amount of waste to be dispose in deep geological site. However, a surrounding matrix is generally necessary after the separation of the radionuclides. Reference ceramics irradiations in the context of transmutation have been widely investigated, but no study have been performed on amorphous materials in the same conditions. The extensive study of glass evolution under heavy-ions bombardment can however permit to get insight damaging mechanisms during irradiation. The glassy compositions, which are SiAlO(N) type, were chosen for their refractoriness, their high chemical durability and excellent mechanical properties. Five compositions, in the Y-Mg-Si-Al-O(-N), Nd-Mg-Si-Al-O(-N) and La-Y-Al-O-N systems, were synthesized and characterized. A link is find between the structure of glasses and their deformation mechanism. The glasses were irradiated at GANIL (Caen), with several MeV energy heavy-ions. Their hardness decrease after bombardment, in close link with the electronic stopping power, but seems to be independent of the amount and nature of the network modifiers. This hardness decrease is more pronounced in the case of nitrogen containing glasses, and is due to a change in the glass deformation mechanism under indentation. The pristine glasses exhibit a 'normal' behavior, but the irradiated glasses are strained mainly by a densification mechanism. This change in the indentation behavior is probably due to several structural modifications. Indeed, UV-visible absorption spectroscopy shows the presence of a large amount of point defects after bombardment. Furthermore, particularly in the case of nitrogen containing glasses, the local environment of aluminum and silicon are largely disturbed, as shown by NMR and Raman spectroscopies. (author)

  13. System and safety studies of accelerator driven systems and generation IV reactors for transmutation of minor actinides. Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bergloef, Calle; Fokau, Andrei; Jolkkonen, Mikael; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang (Div. of Reactor Physics, Royal Institute of Technology, Stockholm (Sweden))

    2010-03-15

    During 2009, the reactor physics division has made a design study of a source efficient ADS with nitride fuel and 15/15Ti cladding, based on the EFIT design made within the EUROTRANS project. It was shown that the source efficiency may be doubled as compared to the reference design with oxide fuel and T91 cladding. Transient analysis of a medium sized sodium cooled reactor with MOX fuel allowed to define criteria in terms of power penalty for americium introduction. It was shown that for each percent of americium added to the fuel, the linear rating must be reduced by 6% in order for the fuel to survive postulated unprotected transients. The Sjoestrand area ratio method for reactivity determination has been evaluated experimentally in the strongly heterogeneous subcritical facility YALINA-Booster. Surprisingly, it has been found that the area ratio reactivity estimates may differ by a factor of two depending on detector position. It is shown that this strong spatial dependence can be explained based on a two-region point kinetics model and rectified by means of correction factors obtained through Monte Carlo simulations. For the purpose of measuring high energy neutron cross sections at the SCANDAL facility in Uppsala, Monte Carlo simulations of neutron to proton conversion efficiencies in CsI detectors have been performed. A uranium fuel fabrication laboratory has been taken into operation at KTH in 2009. Uranium and zirconium nitride powders have been fabricated by hydridation/nitridation of metallic source materials. Sample pellets have been pressed and ZrN discs have been sintered to 93% density by means of spark plasma sintering methods

  14. Utilization of Minor Actinides (Np, Am, Cm) in Nuclear Power Reactor

    Science.gov (United States)

    Gerasimov, A.; Bergelson, B.; Tikhomirov, G.

    2014-06-01

    Calculation research of the utilization process of minor actinides (transmutation with use of power released) is performed for specialized power reactor of the VVER type operating on the level of electric power of 1000 MW. Five subsequent cycles are considered for the reactor with fuel elements containing minor actinides along with enriched uranium. It was shown that one specialized reactor for the one cycle (900 days) can utilize minor actinides from several VVER-1000 reactors without any technological and structural modifications. Power released because of minor actinide fission is about 4% with respect to the total power

  15. Actinide Partitioning-Transmutation Program Final Report. V. Preconceptual designs and costs of partitioning facilities and shipping casks (appendix 3)

    International Nuclear Information System (INIS)

    This Appendix contains cost estimate documents for the Fuels Reprocessing Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contribution to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed

  16. Actinide partitioning-transmutation program. V. Preconceptual designs and costs of partitioning facilities and shipping casks, Appendix 4. Final report

    International Nuclear Information System (INIS)

    This Appendix contains cost estimate documents for the Fuels Fabrication Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contributing to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed. Shipping cask costs are provided

  17. Actinide partitioning-transmutation program. V. Preconceptual designs and costs of partitioning facilities and shipping casks, Appendix 4. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This Appendix contains cost estimate documents for the Fuels Fabrication Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contributing to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed. Shipping cask costs are provided.

  18. Nuclear Methods for Transmutation of Nuclear Waste: Problems, Perspextives, Cooperative Research - Proceedings of the International Workshop

    Science.gov (United States)

    Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.

    1996-12-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and

  19. Impact of partitioning and transmutation on repository design

    International Nuclear Information System (INIS)

    The U.S. Department of Energy's Advanced Fuel Cycle Initiative (AFCI) program is investigating spent nuclear fuel treatment technologies that have the potential to improve the performance of the proposed geologic repository at Yucca Mountain. Separating actinides and selected fission products from spent fuel, storing some of them as low level waste and transmuting them in thermal and/or fast reactors has the potential to reduce the volume, short and long-term heat load and radiotoxicity of the high level waste destined for the repository, effectively increasing its capacity by a factor of 50 or more above the current legislative limit. (author)

  20. Radiation aspects of fuel handling at various variants of fuel cycle organization

    International Nuclear Information System (INIS)

    A series of radiation characteristics of fresh and spent fuel assemblies with mixed uranium-plutonium oxide (MO) fuel of high-power BN-type reactor with limited content of minor actinides in origin fuel is obtained. The assessment is given for possible radiation characteristics of experimental MO fuel assemblies simulating transmutation of minor actinides (Np, Am, Cm). The obtained results can be used for solving practical problems related with minor actinides transmutation in high-power reactor. In particular, the conclusion is made that curium transmutation is impossible (especially 224Cm) in fuel assemblies of reactor under consideration due to high level of power distribution and neutron radiation of fresh MO fuel assemblies with curium

  1. Feasibility studies of actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    A strategy of actinide burnup in LMFBRs is being investigated as a waste management alternative to long term storage of high level nuclear waste. This strategy is being evaluated because many of the actinides in the waste from spent-fuel reprocessing have half-lives of thousands of years and an alternative to geological storage may be desired. From a radiological viewpoint, the actinides and their daughters dominate the waste hazard for decay times beyond about 400 years. Actinide burnup in LMFBRs may be an attractive alternative to geological storage because the actinides can be effectively transmuted to fission products which have significantly shorter half-lives. Actinide burnup in LMFBRs rather than LWRs is preferred because the ratio of fission reaction rate to capture reaction rate for the actinides is higher in an LMFBR, and an LMFBR is not so sensitive to the addition of the actinide isotopes. An actinide target assembly recycle scheme is evaluated to determine the effects of the actinides on the LMFBR performance, including local power peaking, breeding ratio, and fissile material requirements. Several schemes are evaluated to identify any major problems associated with reprocessing and fabrication of recycle actinide-containing assemblies. The overall efficiency of actinide burnout in LMFBRs is evaluated, and equilibrium cycle conditions are determined. It is concluded that actinide recycle in LMFBRs offers an attractive alternative to long term storage of the actinides, and does not significantly affect the performance of the host LMFBR. Assuming a 0.1 percent or less actinide loss during reprocessing, a 0.1 percent loss of less during fabrication, and proper recycle schemes, virtually all of the actinides produced by a fission reactor economy could be transmuted in fast reactors

  2. Neutronic and burnup studies of accelerator-driven systems dedicated to nuclear waste transmutation

    OpenAIRE

    Tucek, Kamil

    2004-01-01

    Partitioning and transmutation of plutonium, americium, and curium is inevitable if the radiotoxic inventory of spent nuclear fuel is to be reduced by more than a factor of 100. But, admixing minor actinides into the fuel severely degrades system safety parameters, particularly coolant void reactivity, Doppler effect, and (effective) delayed neutron fractions. The incineration process is therefore envisioned to be carried out in dedicated, accelerator-driven sub-critical reactors (ADS). Howev...

  3. Research on the actinide chemistry in Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Fundamental technique to measure chemical behaviors and properties of lanthanide and actinide in radioactive waste is necessary for the development of pryochemical process. First stage, the electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipments, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media. In the second stage, measurement system for physical properties at pyrochemical process such as viscosity, melting point and conductivity is established, and property database at different compositions of lanthanide and actinide is collected. And, both interactions between elements and properties with different potential are measured at binary composition of actinide-lanthanide in molten salt using electrochemical/spectroscopic integrated measurement system.

  4. Transmutation Dynamics: Impacts of Multi-Recycling on Fuel Cycle Performances

    Energy Technology Data Exchange (ETDEWEB)

    S. Bays; S. Piet; M. Pope; G. Youinou; A. Dumontier; D. Hawn

    2009-09-01

    From a physics standpoint, it is feasible to sustain continuous multi-recycle in either thermal or fast reactors. In Fiscal Year 2009, transmutaton work at INL provided important new insight, caveats, and tools on multi-recycle. Multi-recycle of MOX, even with all the transuranics, is possible provided continuous enrichment of the uranium phase to ~6.5% and also limitting the transuranic enrichment to slightly less than 8%. Multi-recycle of heterogeneous-IMF assemblies is possible with continuous enrichment of the UOX pins to ~4.95% and having =60 of the 264 fuel pins being inter-matrix. A new tool enables quick assessment of the impact of different cooling times on isotopic evolution. The effect of cooling time was found to be almost as controlling on higher mass actinide concentrations in fuel as the selection of thermal versus fast neutron spectra. A new dataset was built which provides on-the-fly estimates of gamma and neutron dose in MOX fuels as a function of the isotopic evolution. All studies this year focused on the impact of dynamic feedback due to choices made in option space. Both the equilibrium fuel cycle concentrations and the transient time to reach equilibrium for each isotope were evaluated over a range of reactor, reprocessing and cooling time combinations. New bounding cases and analysis methods for evaluating both reactor safety and radiation worker safety were established. This holistic collection of physics analyses and methods gives improved resolution of fuel cycle options, and impacts thereof, over that of previous ad-hoc and single-point analyses.

  5. Modelling the behaviour of oxide fuels containing minor actinides with urania, thoria and zirconia matrices in an accelerator-driven system

    Science.gov (United States)

    Sobolev, V.; Lemehov, S.; Messaoudi, N.; Van Uffelen, P.; Aı̈t Abderrahim, H.

    2003-06-01

    The Belgian Nuclear Research Centre, SCK • CEN, is currently working on the pre-design of the multipurpose accelerator-driven system (ADS) MYRRHA. A demonstration of the possibility of transmutation of minor actinides and long-lived fission products with a realistic design of experimental fuel targets and prognosis of their behaviour under typical ADS conditions is an important task in the MYRRHA project. In the present article, the irradiation behaviour of three different oxide fuel mixtures, containing americium and plutonium - (Am,Pu,U)O 2- x with urania matrix, (Am,Pu,Th)O 2- x with thoria matrix and (Am,Y,Pu,Zr)O 2- x with inert zirconia matrix stabilised by yttria - were simulated with the new fuel performance code MACROS, which is under development and testing at the SCK • CEN. All the fuel rods were considered to be of the same design and sizes: annular fuel pellets, helium bounded with the stainless steel cladding, and a large gas plenum. The liquid lead-bismuth eutectic was used as coolant. Typical irradiation conditions of the hottest fuel assembly of the MYRRHA subcritical core were pre-calculated with the MCNPX code and used in the following calculations as the input data. The results of prediction of the thermo-mechanical behaviour of the designed rods with the considered fuels during three irradiation cycles of 90 EFPD are presented and discussed.

  6. Radiolytic degradation of a new diglycol-diamide ligand for actinide and lanthanide co-extraction from spent nuclear fuel

    Science.gov (United States)

    Ossola, Annalisa; Macerata, Elena; Tinonin, Dario A.; Faroldi, Federica; Giola, Marco; Mariani, Mario; Casnati, Alessandro

    2016-07-01

    Within the Partitioning and Transmutation strategies, great efforts have been devoted in the last decades to the development of lipophilic ligands able to co-extract trivalent Lanthanides (Ln) and Actinides (An) from spent nuclear fuel. Because of the harsh working conditions these ligands undergo, it is important to prove their chemical and radiolytic stability during the counter-current multi-stage extraction process. In the present work the hydrolytic and radiolytic resistance of the freshly prepared and aged organic solutions containing the new ligand (2,6-bis[(N-methyl-N-dodecyl)carboxamide]-4-methoxy-tetrahydro-pyran) were investigated in order to evaluate the impact on the safety and efficiency of the process. Liquid-liquid extraction tests with spiked solutions showed that the ligand extracting performances are strongly impaired by storing the samples at room temperature and in the light. Moreover, the extracting efficiency of the irradiated samples resulted to be influenced by gamma irradiation, while selectivity remains unchanged. Preliminary mass spectrometric data showed that degradation is mainly due to the acid-catalysed reaction of the ligand carboxamide and ether groups with the 1-octanol present in the diluent.

  7. Minior Actinide Doppler Coefficient Measurement Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  8. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    International Nuclear Information System (INIS)

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  9. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, B. Y.; Kuijper, J. C.; Oppe, J.; De Haas, J. B. M. [Nuclear Research and Consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2012-07-01

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  10. Review of Integral Experiments for Minor Actinide Management

    International Nuclear Information System (INIS)

    Spent nuclear fuel contains minor actinides (MAs) such as neptunium, americium and curium, which require careful management. This becomes even more important when mixed oxide (MOX) fuel is being used on a large scale since more MAs will accumulate in the spent fuel. One way to manage these MAs is to transmute them in nuclear reactors, including in light water reactors, fast reactors or accelerator-driven subcritical systems. The transmutation of MAs, however, is not straightforward, as the loading of MAs generally affects physics parameters, such as coolant void, Doppler and burn-up reactivity. This report focuses on nuclear data requirements for minor actinide management, the review of existing integral data and the determination of required experimental work, the identification of bottlenecks and possible solutions, and the recommendation of an action programme for international co-operation. (authors)

  11. Research and development activities for transmutation physics experimental facility in J-PARC

    International Nuclear Information System (INIS)

    The Japan Atomic Energy Agency (JAEA) has the plan to construct Transmutation Physics Experimental Facility (TEF-P) under a framework of J-PARC (Japan Proton Accelerator Research Complex) project. TEF-P is a critical assembly which can load Minor Actinide (MA) fuels to perform reactor physics experiments for transmutation systems such as Accelerator-Driven System (ADS) or Fast Reactor (FR). The facility can also use proton beam from the J-PARC accelerator to investigate the controllability of ADS. Current status and activities for TEF-P are described. (author)

  12. Reduction of minor actinides for recycling in a light water reactor

    International Nuclear Information System (INIS)

    The aim of actinide transmutation from spent nuclear fuel is the reduction in mass of high-level waste which must be stored in geological repositories and the lifetime of high-level waste; these two achievements will reduce the number of repositories needed, as well as the duration of storage. The present work is directed towards the evaluation of an advanced nuclear fuel cycle in which the minor actinides (Np, Am and Cm) could be recycled to remove most of the radioactive material; a reference of actinides production in standard nuclear fuel of uranium at the end of its burning in a BWR is first established, after a design of fuel rod containing 6% of minor actinides in a matrix of uranium from the enrichment lines is proposed, then 4 fuel rods of standard uranium are replaced by 4 actinides bars to evaluate the production and transmutation of them and finally the minor actinides reduction in the fuel is evaluated. In the development of this work the calculation tool are the codes: Intrepin-3, Casmo-4 and Simulate-3. (Author)

  13. Development of fuels for the transmutation in the frame of the EFTTRA European collaboration

    International Nuclear Information System (INIS)

    The EFTTRA collaboration (Experimental Feasibility of Targets for Transmutation) between CEA (France), ECN (The Netherlands), EDF (France), FZK (Germany), IAM and ITU (European Commission), launched in 1992, has now reached its cruising speed: joint experiments for the study of materials for the transmutation have started in parallel in the Phenix fast reactor in France, and in the high flux thermal reactor HFR in the Netherlands. One of these experiments, concerning technetium and iodine, has been completed and the results published. The EFTTRA activities are described, in particular one experiment concerning the irradiation of a spinel matrix with 10% americium content. (author)

  14. Partitioning and transmutation. Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Naestren, Catharina; Retegan, Teodora; Skarnemark, Gunnar (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high cross sections for neutron capture of some elements, like the lanthanides. Other reasons may be the unintentional making of other long lived isotopes. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. Due to new recruitments we will now also work

  15. Partitioning and transmutation. Annual report 2008

    International Nuclear Information System (INIS)

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94N To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high cross sections for neutron capture of some elements, like the lanthanides. Other reasons may be the unintentional making of other long lived isotopes. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. Due to new recruitments we will now also work on

  16. Partitioning and transmutation. Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Loefstroem-Engdahl, Elin; Retegan, Teodora; Skarnemark, Gunnar; Spendlikova, Irena (Nuclear Chemistry, Department of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2010-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I and 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high neutron capture cross sections for some elements, like the lanthanides. Other reasons may be the unintentional production of other long lived isotopes. The most difficult separations to make are those between different actinides but also between trivalent actinides and lanthanides, due to their relatively similar chemical properties. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes. These projects range from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. We have proposed a novel process

  17. Coordination chemistry for new actinide separation processes

    International Nuclear Information System (INIS)

    The amount of wastes and the number of chemical steps can be decreased by replacing the PUREX process extractant (TBP) by, N.N- dialkylamides (RCONR'2). Large amounts of deep underground storable wastes can be stored into sub-surface disposals if the long lived actinide isotopes are removed. Spent nuclear fuels reprocessing including the partitioning of the minor actinides Np, Am, Cm and their transmutation into short half lives fission products is appealing to the public who is not favorable to the deep underground storage of large amounts of long half lived actinide isotopes. In this paper coordination chemistry problems related to improved chemical separations by solvent extraction are presented. 2 tabs.; 4 refs

  18. Application of variance reduction technique to nuclear transmutation system driven by accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In Japan, it is the basic policy to dispose the high level radioactive waste arising from spent nuclear fuel in stable deep strata after glass solidification. If the useful elements in the waste can be separated and utilized, resources are effectively used, and it can be expected to guarantee high economical efficiency and safety in the disposal in strata. Japan Atomic Energy Research Institute proposed the hybrid type transmutation system, in which high intensity proton accelerator and subcritical fast core are combined, or the nuclear reactor which is optimized for the exclusive use for transmutation. The tungsten target, minor actinide nitride fuel transmutation system and the melted minor actinide chloride salt target fuel transmutation system are outlined. The conceptual figures of both systems are shown. As the method of analysis, Version 2.70 of Lahet Code System which was developed by Los Alamos National Laboratory in USA was adopted. In case of carrying out the analysis of accelerator-driven subcritical core in the energy range below 20 MeV, variance reduction technique must be applied. (K.I.)

  19. Minimization of actinide waste by multirecycling of thoriated fuels in an EPR

    OpenAIRE

    2009-01-01

    This master’s thesis explores how to minimize the long-lived actinide waste that is produced in nuclear power plants by performing simulations of thoriated nuclear fuels in existing reactor designs. An European pressurized water reactor (EPR) assembly fueled with a mixture of thorium and highly enriched uranium (20% and 90% 235U) was simulated. The spent thoriated fuel is less active, and for a much shorter period of time, than uranium or uranium/plutonium fuels and less decay heat is gene...

  20. Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong Austin [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-28

    The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.

  1. Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, Pavel N.; Balanin, Andrey L.; Dudnikov, Anatoly A.; Fomichenko, Petr A.; Nevinitsa, Vladimir A.; Frolov, Aleksey A.; Lubina, Anna S.; Sedov, Aleksey A.; Subbotin, Aleksey S.; Blandinsky, Viktor Yu. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    A subcritical molten salt reactor is proposed for minor actinides (separated from spent fuel VVER-1000 light water reactor) incineration and for {sup 233}U conversion from {sup 232}Th. Here the subcritical molten salt reactor with fuel composition of heavy nuclide fluorides in molten LiF - NaF - KF salt and with external neutron source, based on 1 GeV proton accelerator and molten salt cooled tungsten target is considered. The paper presents the results of parametrical analysis of equilibrium nuclide composition of molten salt reactor with minor actinides feed in dependence of core dimensions, average neutron flux and external neutron source intensity. Reactor design is defined; requirements to external neutron source are posed; heavy nuclides equilibrium and fuel cycle main parameters are calculated.

  2. Set up of an innovative methodology to measure on-line the incineration potential of minor actinides under very high neutron sources in the frame of the future prospects of the nuclear waste transmutation; Mise au point d'une methodologie innovante pour la mesure du potentiel d'incineration d'actinides mineurs sous des sources tres intenses de neutrons, dans la perspective de transmutation des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Fadil, M

    2003-03-01

    This work deals generally with the problem of nuclear waste management and especially with the transmutation of it to reduce considerably its radiotoxicity potential. The principal objective of this thesis is to show the feasibility to measure on-line the incineration potential of minor actinides irradiated under very high neutron flux. To realize this goal, we have developed fission micro-chambers able to operate, for the first time in the world, in saturation regime under a severe neutron flux. These new chambers use {sup 235}U as an active deposit. They were irradiated in the high flux reactor at Laue-Langevin Institute in Grenoble. The measurement of the saturation current delivered by these chambers during their irradiation for 26 days allowed to evaluate the burn-up of {sup 235}U. We have determined the neutron flux intensity of 1,6 10{sup 15} n.cm{sup -2}.s{sup -1} in the bottom of the irradiation tube called 'V4'. The relative uncertainty of this value is less than 4 %. This is for the first time that such high neutron flux is measured with a fission chamber. To confirm this result, we have also performed independent measurements using gamma spectroscopy of irradiated Nb and Co samples. Both results are in agreement within error bars. Simple Deposit Fission Chambers (SDFC) as above were the reference of the new generation of fission chambers that we have developed in the framework of this thesis: Double Deposit Fission Chambers (DDFC). The reference active deposit was {sup 235}U. The other deposit was the actinide that we wanted to study (e.g. {sup 237}Np and {sup 241}Am). At the end of the thesis, we present some suggestions to ameliorate the operation of the DDFC to be exploited in other transmutation applications in the future. (author)

  3. Minor Actinide Burning in Thermal Reactors. A Report by the Working Party on Scientific Issues of Reactor Systems

    International Nuclear Information System (INIS)

    The actinides (or actinoids) are those elements in the periodic table from actinium upwards. Uranium (U) and plutonium (Pu) are two of the principal elements in nuclear fuel that could be classed as major actinides. The minor actinides are normally taken to be the triad of neptunium (Np), americium (Am) and curium (Cm). The combined masses of the remaining actinides (i.e. actinium, thorium, protactinium, berkelium, californium, einsteinium and fermium) are small enough to be regarded as very minor trace contaminants in nuclear fuel. Those elements above uranium in the periodic table are known collectively as the transuranics (TRUs). The operation of a nuclear reactor produces large quantities of irradiated fuel (sometimes referred to as spent fuel), which is either stored prior to eventual deep geological disposal or reprocessed to enable actinide recycling. A modern light water reactor (LWR) of 1 GWe capacity will typically discharge about 20-25 tonnes of irradiated fuel per year of operation. About 93-94% of the mass of uranium oxide irradiated fuel is comprised of uranium (mostly 238U), with about 4-5% fission products and ∼1% plutonium. About 0.1-0.2% of the mass is comprised of neptunium, americium and curium. These latter elements accumulate in nuclear fuel because of neutron captures, and they contribute significantly to decay heat loading and neutron output, as well as to the overall radio-toxic hazard of spent fuel. Although the total minor actinide mass is relatively small - approximately 20-25 kg per year from a 1 GWe LWR - it has a disproportionate impact on spent fuel disposal, and thus the longstanding interest in transmuting these actinides either by fission (to fission products) or neutron capture in order to reduce their impact on the back end of the fuel cycle. The combined masses of the trace actinides actinium, thorium, protactinium, berkelium and californium in irradiated LWR fuel are only about 2 parts per billion, which is far too low for

  4. National R and D program of nuclear incineration of PWR spent fuel in a transmuter with liquid fuel as being developed in the Czech Republic

    International Nuclear Information System (INIS)

    The principal drawbacks of any kind of solid nuclear fuel are listed and briefly analysed in the first part of the paper. On the basis of this analysis, the liquid fuel concept and its benefits are introduced and briefly described in the following parts of the paper allowing to develop new reactor systems for nuclear incineration of spent fuel from conventional reactors and a new clean source of energy. As one of the first realistic attempts to utilise the advantages of liquid fuel, the reactor/blanket system with molten fluoride salts in the role of fuel and coolant simultaneously, as incorporated in the accelerator-driven transmutation technology (ADTT), has been proposed for a deeper, both theoretical and experimental studies. There will be a preliminary design concept of an experimental assembly LA-0 briefly introduced in the paper which is under preparation in the Czech Republic for such a project

  5. Efttra irradiation experiments for the development of fuels and targets for transmutation

    International Nuclear Information System (INIS)

    The EFTTRA collaboration (Experimental Feasibility of Targets for Transmutation) between CEA (France), ECN (The Netherlands), EDF (France), FZK (Germany), IAM and ITU (European Commission) was launched in 1992, with the aim of performing joint experiments for the study of materials for the transmutation. Irradiations have started in parallel in the Phenix fast reactor in France, and in the high flux thermal reactor HFR the Netherlands. One of these experiments, concerning technetium and iodine, has been completed; post-irradiation examinations of the Tc metallic samples are performed by ECN, CEA and ITU, and a summary of the last results is presented. The other on-going EFTTRA experiments are described, with a report on the application of fabrication methods for matrices with up to 10% americium content. Finally, some considerations on the strategies for americium are given. (authors)

  6. Accelerator-driven Transmutation of Waste

    Science.gov (United States)

    Venneri, Francesco

    1998-04-01

    Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the

  7. Application of partitioning/transmutation of radioactive materials in radioactive waste management

    International Nuclear Information System (INIS)

    The present waste management for already vitrified HLW has to be considered as an irreversible process for which disposal in geologic strata is the most advisable and unavoidable solution. Spent fuel discharged from nuclear power plants should be stored in engineered facilities as long as there is no definite choice of long term management of long-lived actinides. Retrievable storage in underground facilities is an alternative which could have its merits as a medium term policy. Conventional reprocessing of spent fuel is a necessary step in the reduction of the actinide content of HLW. The recycling of Pu and U into the MOX-fuel cycle is a transient solution to reduce the volume of actinide loaded waste. Spent LWR-MOX fuel with its high actinide content should be stored in engineered facilities till a safe fast reactor technology becomes available. Advanced reprocessing of (high-burn up) spent fuel with removal of U, and TRUs and production of actinide-free-vitrified-HLW is in the medium term the most defendable waste management option. Final disposal of actinide-free HLW in geologic strata is fully acceptable if the actinide content has been reduced with two (or more) orders of magnitude. Transformation of separated minor actinide concentrates into a ceramic type of waste form is beneficial from radiological point of view even if the deep disposal is the last resort. The sharply reduced solubility (compared to glass) reduces the long term environmental risk. Transformation into a matrix which could also be used as a future nuclear fuel- or target form is the most versatile option. Transmutation in a fast neutron reactor facility is the only possibility to incinerate the overall actinide (Pu+MA) inventory and to make use of the large amounts of plutonium present in spent LWR-MOX fuel. However the current FR technology with sodium cooling can, for safety reasons, not be considered for that purpose. The use of less dangerous metallic coolants is to be investigated

  8. Human factors and safety issues associated with actinide retrieval from spent light water reactor fuel assemblies

    International Nuclear Information System (INIS)

    A major problem in environmental restoration and waste management is the disposition of used fuel assemblies from the many light water reactors in the United States, which present a radiation hazard to those whose job is to dispose of them, with a similar threat to the general environment associated with long-term storage in fuel repositories around the country. Actinides resident in the fuel pins as a result of their use in reactor cores constitute a significant component of this hazard. Recently, the Department of Energy has initiated an Actinide Recycle Program to study the feasibility of using pyrochemical (molten salt) processes to recover actinides from the spent fuel assemblies of commercial reactors. This project concerns the application of robotics technology to the operation and maintenance functions of a plant whose objective is to recover actinides from spent fuel assemblies, and to dispose of the resulting hardware and chemical components from this process. Such a procedure involves a number of safety and human factors issues. The purpose of the project is to explore the use of robotics and artificial intelligence to facilitate accomplishment of the program goals while maintaining the safety of the humans doing the work and the integrity of the environment. This project will result in a graphic simulation on a Silicon Graphics workstation as a proof of principle demonstration of the feasibility of using robotics along with an intelligent operator interface. A major component of the operator-system interface is a hybrid artificial intelligence system developed at Oak Ridge National Laboratory, which combines artificial neural networks and an expert system into a hybrid, self-improving computer-based system interface. 10 refs

  9. Time Evolution of Selected Actinides in TRIGA MARK-II Fuel

    International Nuclear Information System (INIS)

    Study is made on the evolution of several actinides capable of undergoing fission or breeding available on the Malaysian Nuclear Agency (MNA) TRIGA MARK-II fuel. Population distribution of burned fuel in the MNA reactor is determined with a model developed using WIMS. This model simulates fuel conditions in the hottest position in the reactor, thus the location where most of the burn up occurs. Theoretical basis of these nuclide time evolution are explored and compared with the population obtained from our models. Good agreements are found for the theoretical time evolution and the population of Uranium-235, Uranium-236, Uranium-238 and Plutonium-239. (author)

  10. Modeling minor actinide multiple recycling in a lead-cooled fast reactor to demonstrate a fuel cycle without long-lived nuclear waste

    Directory of Open Access Journals (Sweden)

    Stanisz Przemysław

    2015-09-01

    Full Text Available The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System and LEADER (Lead-cooled European Advanced Demonstration Reactor projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs, and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.

  11. Actinide recycle utilizing oxide and metallic fuel in prism

    International Nuclear Information System (INIS)

    PRISM is a modular, pool-type sodium-cooled fast reactor employing innovative, passive features to provide an extremely high level of public safety. The PRISM reactor design can accommodate both oxide and metallic fuel forms. A comparison of core design and performance of these forms is made for various options. These options include low fuel cycle cost options, maximum transuranic burning options, and the addition of rare earth elements to the fuel mix. (authors)

  12. Fast Reactor Fuel Development in Europe

    International Nuclear Information System (INIS)

    Research and development of minor-actinide-bearing fuels in Europe has made significant progress, with a number of scoping irradiation tests made on a number of candidate fuels foreseen for fast reactors and dedicated minor actinide transmutation systems, e.g. the accelerator driven system. Currently, efforts concentrate on uranium based fuels, as the deployment of fast reactor fleets requires Pu generation in order to achieve sustainability. Both homogeneous and heterogeneous concepts for minor actinide reactor recycling are considered. In the former, the minor actinides are added in small quantities to the mixed oxide fuel, while in the latter, the minor actinides are loaded in significant quantities in UO2. Irradiation programmes to test these concepts for pellet and SPHEREPAC fuel configurations are under way. (author)

  13. Response of actinides to flux changes in high-flux systems

    International Nuclear Information System (INIS)

    When discussing the transmutation of actinides in accelerator-based transmutation of waste (ATW) systems, there has been some concern about the dynamics of the actinides under high transient fluxes. For a pure neptunium feed, it has been estimated that the 238Np/237Np ratio increase due to an increasing flux may lead to an unstable, positive reactivity growth. In this analysis, a perturbation method is used to calculate the response of the entire set of actinides in a general way that allows for more species than just neptunium. The time response of the system can be calculated; i.e., a plot of fuel composition and reactivity versus time after a change in flux can be made. The effects of fission products can also be included. The procedure is extremely accurate on short time scales (∼ 1000 s) for the flux levels we contemplate. Calculational results indicate that the reactivity insertions are always smaller than previously estimated

  14. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life VHTR Configurations: Designs, Advantages and Limitations

    International Nuclear Information System (INIS)

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

  15. LIFE Materials: Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P A; Kaufman, L; Fluss, M

    2008-12-19

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical, and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report (Volume 8 - Molten-salt Fuels) is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermo-chemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenges are not insurmountable, and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  16. Effects of actinide burning on waste disposal at Yucca Mountain

    International Nuclear Information System (INIS)

    Release rates of 15 radionuclides from waste packages expected to result from partitioning and transmutation of Light-Water Reactor (LWR) and Actinide-Burning Liquid-Metal Reactor (ALMR) spent fuel are calculated and compared to release rates from standard LWR spent fuel packages. The release rates are input to a model for radionuclide transport from the proposed geologic repository at Yucca Mountain to the water table. Discharge rates at the water table are calculated and used in a model for transport to the accessible environment, defined to be five kilometers from the repository edge. Concentrations and dose rates at the accessible environment from spent fuel and wastes from reprocessing, with partitioning and transmutation, are calculated. Partitioning and transmutation of LWR and ALMR spent fuel reduces the inventories of uranium, neptunium, plutonium, americium and curium in the high-level waste by factors of 40 to 500. However, because release rates of all of the actinides except curium are limited by solubility and are independent of package inventory, they are not reduced correspondingly. Only for curium is the repository release rate much lower for reprocessing wastes

  17. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    Science.gov (United States)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  18. Alloy waste forms for metal fission products and actinides isolated by spent nuclear fuel treatment

    International Nuclear Information System (INIS)

    Waste form alloys are being developed at Argonne National Laboratory for the disposal of remnant metallic wastes from an electrometallurgical process developed to treat spent nuclear fuel. This metal waste form consists of the fuel cladding (stainless steel or Zircaloy), noble metal fission products (e.g., Ru, Pd, Mo and Tc), and other metallic wastes. The main constituents of the metal waste stream are the cladding hulls (85 to 90 wt%); using the hulls as the dominant alloying component minimizes the overall waste volume as compared to vitrification or metal encapsulation. Two nominal compositions for the waste form are being developed: (1) stainless steel-15 wt% zirconium for stainless steel-clad fuels and (2) zirconium-8 wt% stainless steel for Zircaloy-clad fuels. The noble metal fission products are the primary source of radiation in the metal waste form. However, inclusion of actinides in the metal waste form is being investigated as an option for interim or ultimate storage. Simulated waste form alloys were prepared and analyzed to determine the baseline alloy microstructures and the microstructural distribution of noble metals and actinides. Corrosion tests of the metal waste form alloys indicate that they are highly resistant to corrosion

  19. Assessment of sensitivity of neutron-physical parameters of fast neutron reactor to purification of reprocessed fuel from minor actinides

    Science.gov (United States)

    Cherny, V. A.; Kochetkov, L. A.; Nevinitsa, A. I.

    2013-12-01

    The work is devoted to computational investigation of the dependence of basic physical parameters of fast neutron reactors on the degree of purification of plutonium from minor actinides obtained as a result of pyroelectrochemical reprocessing of spent nuclear fuel and used for manufacturing MOX fuel to be reloaded into the reactors mentioned. The investigations have shown that, in order to preserve such important parameters of a BN-800 type reactor as the criticality, the sodium void reactivity effect, the Doppler effect, and the efficiency of safety rods, it is possible to use the reprocessed fuel without separation of minor actinides for refueling (recharging) the core.

  20. Reduction of minor actinides for recycling in a light water reactor; Reduccion de actinidos menores por reciclado en un reactor de agua ligera

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The aim of actinide transmutation from spent nuclear fuel is the reduction in mass of high-level waste which must be stored in geological repositories and the lifetime of high-level waste; these two achievements will reduce the number of repositories needed, as well as the duration of storage. The present work is directed towards the evaluation of an advanced nuclear fuel cycle in which the minor actinides (Np, Am and Cm) could be recycled to remove most of the radioactive material; a reference of actinides production in standard nuclear fuel of uranium at the end of its burning in a BWR is first established, after a design of fuel rod containing 6% of minor actinides in a matrix of uranium from the enrichment lines is proposed, then 4 fuel rods of standard uranium are replaced by 4 actinides bars to evaluate the production and transmutation of them and finally the minor actinides reduction in the fuel is evaluated. In the development of this work the calculation tool are the codes: Intrepin-3, Casmo-4 and Simulate-3. (Author)

  1. Design of Neptunium-bearing Fuel Assembly for Transmutation Research in CEFR

    International Nuclear Information System (INIS)

    In order to have a better understanding of irradiation performance of the fuel containing neptunium, an experimental assembly is designed for future irradiation in CEFR. There is only one fuel pin in the assembly with neptunium content of 5%. Temperature monitors and neutron fluence detectors are attached. The report presents the basic structure of the fuel pin and the assembly. (author)

  2. Actinides in metallic waste from electrometallurgical treatment of spent nuclear fuel

    Science.gov (United States)

    Janney, D. E.; Keiser, D. D.

    2003-09-01

    Argonne National Laboratory has developed a pyroprocessing-based technique for conditioning spent sodium-bonded nuclear-reactor fuel in preparation for long-term disposal. The technique produces a metallic waste form whose nominal composition is stainless steel with 15 wt.% Zr (SS-15Zr), up to ˜ 11 wt.% actinide elements (primarily uranium), and a few percent metallic fission products. Actual and simulated waste forms show similar eutectic microstructures with approximately equal proportions of iron solid solution phases and Fe-Zr intermetallics. This article reports on an analysis of simulated waste forms containing uranium, neptunium, and plutonium.

  3. The impact of the core configuration on safety and transmutation behavior in an accelerator driven system; Auswirkung der Brennstoffwahl auf das Transmutationsverhalten in einem beschleunigergetriebenen System

    Energy Technology Data Exchange (ETDEWEB)

    Biss, K.; Nabbi, R.; Thomauske, B. [RWTH Aachen Univ. (Germany). Inst. fuer Nuklearen Brennstoffkreislauf (INBK)

    2012-11-01

    For the reduction of the long-term hazards of high-level wastes transmutation is one of the candidate techniques. For an effective conversion of transuranic elements, esp. minor actinides, the use of accelerator driven systems (ADS) is the favored concept. The subcritical system AGATE (advanced gas-cooled accelerator driven transmutation experiment)is a 100 MW(th) facility using a proton beam to produce the required spallation neutrons. The fuel zone includes 120 uniform fuel elements with hexagonal structure (each one with 91 fuel rods) in an annular configuration around the spallation target. Neutron flux and energy spectra are determined and averaged for each zone allowing a fast calculation of fuel element variants and geometry variations. For modeling the Monte Carlo code MCNPX 2.7 is used. The transmutation rate for pure PuMA fuel show high values for americium, but the isotope analysis shows that the largest fraction is transmuted to plutonium. The use of thorium as matrix material reduces the transmutation rate of transuranic elements but allows a long-term burnup cycle without required fuel element replacement.

  4. Preliminary assessment of partitioning and transmutation as a radioactive waste management concept

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A. G.; Tedder, D. W.; Drago, J. P.; Blomeke, J. O.; Perona, J. J.

    1977-09-01

    Partitioning (separating) the actinide elements from nuclear fuel cycle wastes and transmuting (burning) them to fission products in power reactors represents a potentially advanced concept of radioactive waste management which could reduce the long-term (greater than 1000 years) risk associated with geologic isolation of wastes. The greatest uncertainties lie in the chemical separations technology needed to recover greater than 99 percent of the actinides during the reprocessing of spent fuels and their refabrication as fresh fuels or target elements. Preliminary integrated flowsheets based on modifications of the Purex process and supplementary treatment by oxalate precipitation and ion exchange indicate that losses of plutonium in reprocessing wastes might be reduced from about 2.0 percent to 0.1 percent, uranium losses from about 1.7 percent to 0.1 percent, neptunium losses from 100 percent to about 1.2 percent, and americium and curium from 100 percent to about 0.5 percent. Mixed oxide fuel fabrication losses may be reduced from about 0.5 percent to 0.06 percent for plutonium and from 0.5 percent to 0.04 percent for uranium. Americium losses would be about 5.5 percent for the reference system. Transmutation of the partitioned actinides at a rate of 5 to 7 percent per year is feasible in both fast and thermal reactors, but additional studies are needed to determine the most suitable strategy for recycling them to reactors and to assess the major impacts of implementing the concept on fuel cycle operations and costs. It is recommended that the ongoing program to evaluate the feasibility, impacts, costs, and incentives of implementing partitioning-transmutation be continued until a firm assessment of its potentialities can be made. At the present level of effort, achievement of this objective should be possible by 1980. 27 tables, 50 figures.

  5. Transmutation of Nuclear Waste and the future MYRRHA Demonstrator

    Science.gov (United States)

    Mueller, Alex C.

    2013-03-01

    While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, there are also, in particular in the "old world" major objections. These are both concerns about safety, in particular in the wake of the Fukushima nuclear accident and concerns about the long-term burden that is constituted by the radiotoxic waste from the spent fuel. With regard to the second topic, the present contribution will outline the concept of Partitioning & Transmutation (P&T), as scientific and technological answer. Deployment of P&T may use dedicated "Transmuter" or "Burner" reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a most attractive solution. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven system. The present paper aims at a short introduction into the field that has been characterized by a high collaborative activity during the last decade in Europe, in order to focus, in its later part, on the MYRRHA project as the European ADS technology demonstrator.

  6. Transmutation of Nuclear Waste and the future MYRRHA Demonstrator

    CERN Document Server

    Mueller, Alex C

    2012-01-01

    While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, there are also, in particular in the "old world" major objections. These are both concerns about safety, in particular in the wake of the Fukushima nuclear accident and concerns about the long-term burden that is constituted by the radiotoxic waste from the spent fuel. With regard to the second topic, the present contribution will outline the concept of Partitioning & Transmutation (P&T), as scientific and technological answer. Deployment of P&T may use dedicated "Transmuter" or "Burner" reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a most attractive solution. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven syste...

  7. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Science.gov (United States)

    Rose, S. J.; Wilson, J. N.; Capellan, N.; David, S.; Guillemin, P.; Ivanov, E.; Méplan, O.; Nuttin, A.; Siem, S.

    2012-02-01

    The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR) has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U) is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX) and uranium/plutonium mixed oxide (MOX) fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  8. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Directory of Open Access Journals (Sweden)

    Nuttin A.

    2012-02-01

    Full Text Available The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX and uranium/plutonium mixed oxide (MOX fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  9. The release of actinides, cesium, strontium, technetium, and iodine from spent fuel under unsaturated conditions

    International Nuclear Information System (INIS)

    Drip tests to measure radionuclide release from spent nuclear fuel are being performed at 90 degrees C at a drip rate of 0.75 mL/3.5 days; the test conditions are designed to simulate the behavior of spent fuel under the unsaturated and oxidizing conditions expected in the potential repository at Yucca Mountain. This paper presents measurements of the actinide, 137Cs, 90Sr, 99Tc, and 129I contents in the leachates after 581 days of testing at 90 degrees C. These values provide an estimate of the source term for the long-lived radionuclide release under these test conditions. Comparisons are made between our results and those of other researchers

  10. MA Transmutation Strategy%MA嬗变策略研究

    Institute of Scientific and Technical Information of China (English)

    左国平; 柯国土; 龚学余

    2011-01-01

    According to the development plan envisagement for nuclear power plant in China, the development of China's nuclear power in the next decades is predicted with the. nuclear fuel cycle software NFCSS provided by IAEA. The amounts of the spent fuel generated and accumulated by the year of 2050 are analyzed. According to the assumption model, the accumulated spent fuel by the year of 2050 will reach at 54791t including 57.89t Minor Actinides (MA) (237Np, 42.91t; Am, ll.17t; Cm, 3.81t) and 2778t FP. One group effective cross section of MA in the thermal, well thermalized, and fast neutron field is calculated based on ENDF/B-VII nuclear evaluation database. The transmutation way for three main MA, i.e. 237Np, 241Am, and 246Cm is also analyzed. It is more suitable for 237Np transmutation in well thermalized neutron field and for 241Am, the high flux thermalized neutron field is better. But it is difficult for 246Cm transmutation in thermal or fast neutron field due to its little fission cross section. Its transmutation ability can be improved if transmutation occurs in a high fluxes resonance energy area. The two-stage transmutation strategy is presented according to their characteristics in the thermal, well thermalized, and fast neutron field. Based on the two stage transmutation concept, the transmutation is performed in a well thermalized neutron field first. Small amount of residual of the first stage transmutation is transmuted in a thermal field with a spectrum. It is expected to achieve a good result.%根据中国核电发展战略,采用国际原子能机构(IAEA)的核燃料循环软件NFCSS,对未来中国核电发展情景进行了预测,分析了2050年以前中国乏燃料的产生和累积情况.采用NJOY和ENDF/B-VII数据库,计算分析了次锕系核素在热谱、超热谱和快谱中的一群等效截面,分析了研237Np、241Am、246Cm等主要次锕系核素的可能嬗变途径,提出了两阶段嬗变MA策略.即将从压水堆中分离出来

  11. Standardisation des outils de calcul pour les ADS et leur application à différents scénarios de transmutation des déchets

    OpenAIRE

    Cometto, Marco

    2003-01-01

    The management of radioactive wastes from the nuclear fuel cycle has become an important issue in the development of future, more sustainable nuclear energy systems. Partitioning and transmutation (P&T) of actinides and some long-lived fission products could reduce the mass and radiotoxicity of highlevel wastes and possibly ease repository licensing requirements. Influenced by political and technological developments, an increasing number of countries employing nuclear power have become inter...

  12. Partitioning and Transmutation - Annual Report 2010 and 2011

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Littley, Alexander; Loefstroem-Engdahl, Elin; Mabile, Nathalie; Skarnemark, Gunnar [Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden)

    2013-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 79}Se, {sup 87}Rb, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I and {sup 135}Cs) and activation products ({sup 14}C, {sup 36}Cl, {sup 59}Ni, {sup 93}Zr, {sup 94}Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high neutron capture cross-sections for some elements, like the lanthanides. Other reasons may be the unintentional production of other long lived isotopes. The most difficult separations to make are those between different actinides but also between trivalent actinides and lanthanides, due to their relatively similar chemical properties. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes. These projects have ranged from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One recycling route, called DIAMEX (DIAmide EXtracton) / SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and has been proven in hot tests and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behavior are required, we have our main focus on the chemical processes and

  13. LIBS Spectral Data for a Mixed Actinide Fuel Pellet Containing Uranium, Plutonium, Neptunium and Americium

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Elizabeth J. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Le, Loan A. [Los Alamos National Laboratory; Lopez, Leon N. [Los Alamos National Laboratory; Barefield, James E. [Los Alamos National Laboratory

    2012-06-18

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze a mixed actinide fuel pellet containing 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2}. The preliminary data shown here is the first report of LIBS analysis of a mixed actinide fuel pellet, to the authors knowledge. The LIBS spectral data was acquired in a plutonium facility at Los Alamos National Laboratory where the sample was contained within a glove box. The initial installation of the glove box was not intended for complete ultraviolet (UV), visible (VIS) and near infrared (NIR) transmission, therefore the LIBS spectrum is truncated in the UV and NIR regions due to the optical transmission of the window port and filters that were installed. The optical collection of the emission from the LIBS plasma will be optimized in the future. However, the preliminary LIBS data acquired is worth reporting due to the uniqueness of the sample and spectral data. The analysis of several actinides in the presence of each other is an important feature of this analysis since traditional methods must chemically separate uranium, plutonium, neptunium, and americium prior to analysis. Due to the historic nature of the sample fuel pellet analyzed, the provided sample composition of 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2} cannot be confirm without further analytical processing. Uranium, plutonium, and americium emission lines were abundant and easily assigned while neptunium was more difficult to identify. There may be several reasons for this observation, other than knowing the exact sample composition of the fuel pellet. First, the atomic emission wavelength resources for neptunium are limited and such techniques as hollow cathode discharge lamp have different dynamics than the plasma used in LIBS which results in different emission spectra. Secondly, due to the complex sample of four actinide elements, which all have very dense electronic energy levels, there may be reactions and

  14. Utilization of accelerators for transmutation and energy production

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, Richard L [Los Alamos National Laboratory

    2010-09-24

    Given the increased concern over reliable, emission-free power, nuclear power has experienced a resurgence of interest. A sub-critical accelerator driven system (ADS) can drive systems that have either safety constraints (waste transmutation) or reduced fissile content (thorium reactor). The goals of ADS are some or all of the following: (1) to significantly reduce the generation or impacts due to the minor actinides on the packing density and long-term radiotoxicity in the repository design, (2) preserve/use the energy-rich component of used nuclear fuel, and (3) reduce proliferation risk. ADS systems have been actively studied in Europe and Asia over the past two decades and renewed interest is occurring in the U.S. This talk will cover some of the history, possible applicable fuel cycle scenarios, and general issues to be considered in implementing ADS systems.

  15. Analysis of the transmutation of actinides minority in a sodium cooled fast reactor; Analisis de la transmutacion de actinidos minoritarios en un reactor rapido refrigerado por sodio

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa Valero, R.

    2011-07-01

    Fast reactors represent a highly sustainable source of energy due to the use of a closed fuel cycle, which makes better use of natural resource and reducing the volume and heat load of high level radioactive waste.

  16. System and safety studies of accelerator driven systems for transmutation. Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasily; Fokau, Andrei; Persson, Calle; Runevall, Odd; Sandberg, Nils; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang (Div. of Reactor Physics, Royal Institute of Technology, Stockholm (Sweden))

    2008-05-15

    Within the project 'System and safety studies of accelerator driven systems for transmutation', research on design and safety of sub-critical reactors for recycling of minor actinides is performed. During 2007, the reactor physics division at KTH has calculated safety parameters for EFIT-400 with cermet fuel, permitting to start the transient safety analysis. The accuracy of different reactivity meters applied to the YALINA facility was assessed and neutron detection studies were performed. A model to address deviations from point kinetic behaviour was developed. Studies of basic radiation damage physics included calculations of vacancy formation and activation enthalpies in bcc niobium. In order to predict the oxygen potential of inert matrix fuels, a thermo-chemical model for mixed actinide oxides was implemented in a phase equilibrium code

  17. Inert matrix fuel concept for the rapid incineration of minor actinides harmonious with a fast reactor cycle system

    International Nuclear Information System (INIS)

    We proposed a fast reactor cycle concept that incorporates inert matrix fuels as a high-performance device for rapid incineration of minor actinides and a harmonious system with the existing fast reactor cycle technologies. R and D of minor actinides containing advanced fuels for use in fast reactors is described in relation to inert matrix fuels with MgO, Mo and Si3N4. As related technologies, burn-up characteristics of a fast reactor core loaded with the inert matrix fuel with MgO and Mo were analyzed, mainly in terms of core criticality. Fabrication tests of inert matrix fuels with MgO, Mo and Si3N4 were done by a practical process that could be adapted to the presently-used commercial manufacturing technology. Preliminary investigations for the solubility of inert matrix fuels to the HNO3 were carried out for the evaluation of applicability to existing reprocessing technology. This paper describes a part of our efforts towards the establishment of a fast reactor cycle that incorporates the minor actinides containing inert matrix fuels. (author)

  18. The analysis and handling concept of minor actinides of NPP’s waste by using Ads technology

    International Nuclear Information System (INIS)

    The contents of minor actinide elements (americium, neptunium and curium) on the spent fuel inventory from PWR operation of NPP have been calculated using Vista program. The calculation used parameters: enrichment 3.968%, power 1000 M We and burn-up is 60 M Wd/kg. The result of calculation showed that the arising of minor actinide elements on the spent fuel is 16.205 kg/year and 43.471 kg/year for PWR-UOX and PWR-MOX respectively. It is also discussed a concept of the use of ADS technology for transmuting the minor actinide elements contained in spent fuels. The result of the discussion showed that an ADS of 400 M Wth will serve 7 PWRs-UOX, and on the PWR system using UOX and MOX fuels an ADS will serve 3 PWRs. (author)

  19. Application of a burnup verification meter to actinide-only burnup credit for spent PWR fuel

    International Nuclear Information System (INIS)

    A measurement system to verify reactor records for burnup of spent fuel at pressurized water reactors (PWR) has been developed by Sandia National Laboratories and tested at US nuclear utility sites. The system makes use of the Fork detector designed at Los Alamos National Laboratory for the safeguards program of the International Atomic Energy Agency. A single-point measurement of the neutrons and gamma- rays emitted from a PWR assembly is made at the center plane of the assembly while it is partially raised from its rack in the spent fuel pool. The objective of the measurements is to determine the variation in burnup assignments among a group of assemblies, and to identify anomalous assemblies that might adversely affect nuclear criticality safety. The measurements also provide an internal consistency check for reactor records of cooling time and initial enrichment. The burnup verification system has been proposed for qualifying spent fuel assemblies for loading into containers designed using burnup credit techniques. The system is incorporated in the US Department of Energy's.''Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages'' [DOE/RW 19951

  20. Production, disposal, and relative toxicity of long-lived fission products and actinides in the radioactive wastes from nuclear fuel cycles

    International Nuclear Information System (INIS)

    Chapters are devoted to the following topics: predicted future development of nuclear energy in the German Federal Republic and in Western Europe, fuel cycle variations and production of fission products and actinides in the radioactive waste from reprocessed nuclear fuels, long-lived fission products and actinides in the waste streams from the reprocessing of nuclear fuels, relative toxicity index, presently preferred waste management concepts, and alternative concepts for the elimination of high-level wastes

  1. The advanced liquid metal reactor actinide recycle system

    International Nuclear Information System (INIS)

    The current U.S. National Energy Strategy includes four key goals for nuclear policy: enhance safety and design standards, reduce economic risk, reduce regulatory risk, and establish an effective high-level nuclear waste program. The U.S. Department of Energy's Advanced Liquid Metal Reactor Actinide Recycle System is consistent with these objectives. The system has the ability to fulfill multiple missions with the same basic design concept. In addition to providing an option for long-term energy security, the system can be effectively utilized for recycling of actinides in light water reactor (LWR) spent fuel, provide waste management flexibility, including the reduction in the waste quantity and storage time and utilization of the available energy potential of LWR spent fuel. The actinide recycle system is comprised of (1) a compact liquid metal (sodium) cooled reactor system with optimized passive safety characteristics, and (2) pyrometallurgical metal fuel cycle presently under development of Argonne National Laboratory. The waste reduction of LWR spent fuel is accomplished by transmutation or fissioning of the longer-lived transuranic isotopes to shorter-lived fission products in the reactor. In this presentation the economical and environmental incentive of the actinide recycle system is addressed and the status of development including licensing aspects is described. 3 refs., 1 tab., 6 figs

  2. Fabrication of inert-matrix nitride fuel pins for the irradiation test at JMTR

    International Nuclear Information System (INIS)

    Nitride fuel pins containing inert matrix such as ZrN and TiN were fabricated for the irradiation test at JMTR, aiming at understanding irradiation behavior of nitride fuel for transmutation of minor actinides. Minor actinides are surrogated by plutonium in the present fuel pin. This report describes the preparation and characterization of fuel pellets, and fabrication of fuel pins. The irradiation for 11 cycles from May 2002 to November 2004 at JMTR was completed without any failure of fuel pins. (author)

  3. Fusion transmutation of waste: design and analysis of the in-zinerator concept.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Venneri, Francesco (General Atomics, San Diego, CA); Meier, Wayne (LLNL, Livermore, CA); Alajo, A.B. (Texas A& M University, College Station, TX); Johnson, T. R. (Argonne Mational Laboratory, Argonne, IL); El-Guebaly, L. A. (University of Wisconsin, Madison, WI); Youssef, M. E. (University of California, Los Angeles, CA); Young, Michael F.; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul (University of Wisconsin, Madison, WI); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N. (University of Wisconsin, Madison, WI); Willit, J. L. (Argonne Mational Laboratory, Argonne, IL); Cleary, Virginia D.; Kamery, William (Hobart & William Smith College, Geneva, NY); Mehlhorn, Thomas Alan; Rochau, Gary Eugene

    2006-11-01

    Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.

  4. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    International Nuclear Information System (INIS)

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  5. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    Energy Technology Data Exchange (ETDEWEB)

    Abonneau, E.; Baron, P.; Berthon, C.; Berthon, L.; Beziat, A.; Bisel, I.; Bonin, L.; Bosse, E.; Boullis, B.; Broudic, J.C.; Charbonnel, M.C.; Chauvin, N.; Den Auwer, C.; Dinh, B.; Duhamet, J.; Escleine, J.M.; Grandjean, S.; Guilbaud, P.; Guillaneux, D.; Guillaumont, D.; Hill, C.; Lacquement, J.; Masson, M.; Miguirditchian, M.; Moisy, P.; Pelletier, M.; Ravenet, A.; Rostaing, C.; Royet, V.; Ruas, A.; Simoni, E.; Sorel, C.; Vaudano, A.; Venault, L.; Warin, D.; Zaetta, A.; Pradel, P.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Forestier, A.; Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Sollogoob, P.; Vernaz, E.; Bazile, F.; Parisot, J.P.; Finot, P.; Roberts, J.F

    2008-07-01

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  6. Stainless steel-zirconium alloy waste forms for metallic fission products and actinides during treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Stainless steel-zirconium waste form alloys are being developed for the disposal of metallic wastes recovered from spent nuclear fuel using an electrometallurgical process developed by Argonne National Laboratory. The metal waste form comprises the fuel cladding, noble metal fission products and other metallic constituents. Two nominal waste form compositions are being developed: (1) stainless steel-15 wt% zirconium for stainless steel-clad fuels. The noble metal fission products are the primary source of radiation and their contribution to the waste form radioactivity has been calculated. The disposition of actinide metals in the waste alloys is also being explored. Simulated waste form alloys were prepared to study the baseline alloy microstructures and the microstructural distribution of noble metals and actinides, and to evaluate corrosion performance

  7. A fusion transmutation of waste reactor

    International Nuclear Information System (INIS)

    A design concept and the performance characteristics for a fusion transmutation of waste reactor (FTWR)--a sub-critical fast reactor driven by a tokamak fusion neutron source--are presented. The present design concept is based on nuclear, processing and fusion technologies that either exist or are at an advanced stage of development and on the existing tokamak plasma physics database. A FTWR, operating with keff≤0.95 at a thermal power output of about 3 GW and with a fusion neutron source operating at Qp=1.5-2, could fission the transuranic content of about a hundred metric tons of spent nuclear fuel per full-power-year and would be self-sufficient in both electricity and tritium production. In equilibrium, a nuclear fleet consisting of Light Water Reactors (LWRs) and FTWRs in the electrical power ratio of 3/1 would reduce the actinides discharged from the LWRs in a once-through fuel cycle by 99.4% in the waste stream that must be stored in high-level waste repositories

  8. Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages

    International Nuclear Information System (INIS)

    The objective of this topical report is to present to the NRC for review and acceptance a methodology for using burnup credit in the design of criticality control systems for PWR spent fuel transportation packages, while maintaining the criticality safety margins and related requirements of 10 CFR Part 71 and 72. The proposed methodology consists of five major steps as summarized below: (1) Validate a computer code system to calculate isotopic concentrations in SNF created during burnup in the reactor core and subsequent decay. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). and (5) Verify that SNF assemblies meet the package loading criteria and confirm proper fuel assembly selection prior to loading. (This step is required but the details are outside the scope of this topical report.) When reviewed and accepted by the NRC, this topical report will serve as a criterion document for criticality control analysts and will provide steps for the use of actinide-only burnup credit in the design of criticality control systems. The NRC-accepted burnup credit methodology will be used by commercial SNF storage and transportation package designers. Design-specific burnup credit criticality analyses will be defined, developed, and documented in the Safety Analysis Report (SAR) for each specific storage or transportation package that uses burnup credit. These SARs will then be submitted to the NRC for review and approval. This topical report is expected to be referenced in a number of storage and transportation cask applications to be submitted by commercial cask and canister designers to the NRC. Therefore, NRC acceptance of this topical report will result in increased efficiency of the

  9. Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-09-01

    The objective of this topical report is to present to the NRC for review and acceptance a methodology for using burnup credit in the design of criticality control systems for PWR spent fuel transportation packages, while maintaining the criticality safety margins and related requirements of 10 CFR Part 71 and 72. The proposed methodology consists of five major steps as summarized below: (1) Validate a computer code system to calculate isotopic concentrations in SNF created during burnup in the reactor core and subsequent decay. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). and (5) Verify that SNF assemblies meet the package loading criteria and confirm proper fuel assembly selection prior to loading. (This step is required but the details are outside the scope of this topical report.) When reviewed and accepted by the NRC, this topical report will serve as a criterion document for criticality control analysts and will provide steps for the use of actinide-only burnup credit in the design of criticality control systems. The NRC-accepted burnup credit methodology will be used by commercial SNF storage and transportation package designers. Design-specific burnup credit criticality analyses will be defined, developed, and documented in the Safety Analysis Report (SAR) for each specific storage or transportation package that uses burnup credit. These SARs will then be submitted to the NRC for review and approval. This topical report is expected to be referenced in a number of storage and transportation cask applications to be submitted by commercial cask and canister designers to the NRC. Therefore, NRC acceptance of this topical report will result in increased efficiency of the

  10. Detailed study of transmutation scenarios involving present day reactor technologies; Etude detaillee des scenarios de transmutation faisant appel aux technologies actuelles pour les reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document makes a detailed technical evaluation of three families of separation-transmutation scenarios for the management of radioactive wastes. These scenarios are based on 2 parks of reactors which recycle plutonium and minor actinides in an homogeneous way. A first scenario considers the multi-recycling of Pu and Np and the mono-recycling of Am and Cm using both PWRs and FBRs. A second scenario is based on PWRs only, while a third one considers FBRs only. The mixed PWR+FBR scenario requires innovative options and gathers more technical difficulties due to the americium and curium management in a minimum flux of materials. A particular attention has been given to the different steps of the fuel cycle (fuels and targets fabrication, burnup, spent fuel processing, targets management). The feasibility of scenarios of homogeneous actinides recycling in PWRs-only and in FBRs-only has been evaluated according to the results of the first scenario: fluxes of materials, spent fuel reprocessing by advanced separation, impact of the presence of actinides on PWRs and FBRs operation. The efficiency of the different scenarios on the abatement of wastes radio-toxicity is presented in conclusion. (J.S.)

  11. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  12. Synthesis and structural characterization of actinide oxalate compounds

    International Nuclear Information System (INIS)

    Oxalic acid is a well-known reagent to recover actinides thanks to the very low solubility of An(IV) and An(III) oxalate compounds in acidic solution. Therefore, considering mixed-oxide fuel or considering minor actinides incorporation in ceramic fuel materials for transmutation, oxalic co-conversion is convenient to synthesize mixed oxalate compounds, precursors of oxide solid solutions. As the existing oxalate single crystal syntheses are not adaptable to the actinide-oxalate chemistry or to their manipulation constrains in gloves box, several original crystal growth methods were developed. They were first validate and optimized on lanthanides and uranium before the application to transuranium elements. The advanced investigations allow to better understand the syntheses and to define optimized chemical conditions to promote crystal growth. These new crystal growth methods were then applied to a large number of mixed An1(IV)-An2(III) or An1(IV)-An2(IV) systems and lead to the formation of the first original mixed An1(IV)-An2(III) and An1(IV)-An2(IV) oxalate single crystals. Finally thanks to the first thorough structural characterizations of these compounds, single crystal X-ray diffraction, EXAFS or micro-RAMAN, the particularly weak oxalate-actinide compounds structural database is enriched, which is essential for future studied nuclear fuel cycles. (author)

  13. Reactor physics experiments related to transmutation in the KUCA

    Energy Technology Data Exchange (ETDEWEB)

    Shiroya, Seiji [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1997-11-01

    At the Kyoto University Critical Assembly (KUCA), {sup 237}Np/{sup 235}U fission rate ratios are being measured using the back-to-back type double fission chamber to examine the nuclear data and the computational method for the transmutation of minor actinides (MA) in light water reactors (LWRs). The neutron spectra of cores are systematically being varied by changing the moderator-to-fuel volume ratio (V{sub m}/V{sub f}). The measured data are being compared with the calculated results by SRAC with three different nuclear data files. It has been indicated that the calculated results with JENDL-3.2 agreed better with the measured ones than those with JENDL-3.1 and ENDF/B-VI, although the calculated results underestimated the measured ones by around 10%. (author)

  14. Wavelength Dispersive X-ray Fluorescence Analysis of Actinides in Dissolved Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, David [Parallax Research, Inc., Tallahassee, FL (United States)

    2015-10-15

    There is an urgent need for an instrument that can quickly measure the concentration of Plutonium and other Actinides mixed with Uranium in liquids containing dissolved spent fuel rods. Parallax Research, Inc. proposes to develop an x-ray spectrometer capable of measuring U, Np and Pu in dissolved nuclear fuel rod material to less than 10 ppm levels to aid in material process control for these nuclear materials. Due to system noise produced by high radioactivity, previous x-ray spectrometers were not capable of low level measurements but the system Parallax proposed has no direct path for undesired radiation to get to the detector and the detector in the proposed device is well shielded from scatter and has very low dark current. In addition, the proposed spectrometer could measure these three elements simultaneously, also measuring background positions with an energy resolution of roughly 100 eV making it possible to see a small amount of Pu that would be hidden under the tail of the U peak in energy dispersive spectrometers. Another nearly identical spectrometer could be used to target Am and Cm if necessary. The proposed spectrometer needs only a tiny sample of roughly 1 micro-liter (1 mm3) and the measurement can be done with the liquid flowing in a radiation and chemical immune quartz capillary protected by a stainless steel rod making it possible to continuously monitor the liquid or to use a capillary manifold to measure other liquid streams. Unlike other methods such as mass spectroscopy where the sample must be taken to a remote facility and might take days for turn-around, the proposed measurement should take less than an hour. This spectrometer could enable near real-time measurement of U, Pu and Np in dilute dissolved spent nuclear fuel rod streams.

  15. Wavelength Dispersive X-ray Fluorescence Analysis of Actinides in Dissolved Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    OHara, David

    2015-12-03

    There is an urgent need for an instrument that can quickly measure the concentration of Plutonium and other Actinides mixed with Uranium in liquids containing dissolved spent fuel rods. Parallax Research, Inc. proposes to develop an x-ray spectrometer capable of measuring U, Np and Pu in dissolved nuclear fuel rod material to less than 10 ppm levels to aid in material process control for these nuclear materials. Due to system noise produced by high radioactivity, previous x-ray spectrometers were not capable of low level measurements but the system Parallax proposed has no direct path for undesired radiation to get to the detector and the detector in the proposed device is well shielded from scatter and has very low dark current. In addition, the proposed spectrometer could measure these three elements simultaneously, also measuring background positions with an energy resolution of roughly 100 eV making it possible to see a small amount of Pu that would be hidden under the tail of the U peak in energy dispersive spectrometers. Another nearly identical spectrometer could be used to target Am and Cm if necessary. The proposed spectrometer needs only a tiny sample of roughly 1 micro-liter (1 mm3) and the measurement can be done with the liquid flowing in a radiation and chemical immune quartz capillary protected by a stainless steel rod making it possible to continuously monitor the liquid or to use a capillary manifold to measure other liquid streams. Unlike other methods such as mass spectroscopy where the sample must be taken to a remote facility and might take days for turn-around, the proposed measurement should take less than an hour. This spectrometer could enable near real-time measurement of U, Pu and Np in dilute dissolved spent nuclear fuel rod streams.

  16. State-of-the-art Report on Innovative Fuels for Advanced Nuclear Systems

    International Nuclear Information System (INIS)

    Development of innovative fuels such as homogeneous and heterogeneous fuels, ADS fuels, and oxide, metal, nitride and carbide fuels is an important stage in the implementation process of advanced nuclear systems. Several national and international R and D programmes are investigating minor actinide-bearing fuels due to their ability to help reduce the radiotoxicity of spent fuel and therefore decrease the burden on geological repositories. Minor actinides can be converted into a suitable fuel form for irradiation in reactor systems where they are transmuted into fission products with a significantly shorter half-life. This report compares recent studies of fuels containing minor actinides for use in advanced nuclear systems. The studies review different fuels for several types of advanced reactors by examining various technical issues associated with fabrication, characterisation, irradiation performance, design and safety criteria, as well as technical maturity. (authors)

  17. Preliminary neutronics design analysis on accelerator driven subcritical reactor for nuclear waste transmutation

    International Nuclear Information System (INIS)

    By taking minor actinides (MA) transmutation performance as evaluation index, preliminary neutronics design analyses were performed on ADS-NWT which is a lead-alloy cooled accelerator driven subcritical reactor for nuclear waste transmutation. In the specific design, liquid lead-bismuth eutectic (LBE) and transuranic metallic dispersion fuel were used as coolant and a fuel of ADS-NWT, respectively. The neutronics calculations and analyses were performed by using CAD-based multi-functional 4D neutronics and radiation simulation system named VisualBUS and the nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library). The preliminary results showed that based on specific deign of MA/Pu volume ratio of 7 : 3, the transmutation rate of MA was approximately 650 kg/a, the high thermal reactor power output was ∼1000 MW when energy self-sustaining was satisfied and relatively deep subcriticality and negative reactivity coefficients made sure of good inherent safety of ADS-NWT. (authors)

  18. Restructuring and redistribution of actinides in Am-MOX fuel during the first 24 h of irradiation

    International Nuclear Information System (INIS)

    In order to confirm the effect of minor actinide additions on the irradiation behavior of MOX fuel pellets, 3 wt.% and 5 wt.% americium-containing MOX (Am-MOX) fuels were irradiated for 10 min at 43 kW/m and for 24 h at 45 kW/m in the experimental fast reactor Joyo. Two nominal values of the fuel pellet oxygen-to-metal ratio (O/M), 1.95 and 1.98, were used as a test parameter. Emphasis was placed on the behavior of restructuring and redistribution of actinides which directly affect the fuel performance and the fuel design for fast reactors. Microstructural evolutions in the fuels were observed by optical microscopy and the redistribution of constituent elements was determined by EPMA using false color X-ray mapping and quantitative point analyses. The ceramography results showed that structural changes occurred quickly in the initial stage of irradiation. Restructuring of the fuel from middle to upper axial positions developed and was almost completed after the 24-h irradiation. No sign of fuel melting was found in any of the specimens. The EPMA results revealed that Am as well as Pu migrated radially up the temperature gradient to the center of the fuel pellet. The increase in Am concentration on approaching the edge of the central void and its maximum value were higher than those of Pu after the 10-min irradiation and the difference was more pronounced after the 24-h irradiation. The increment of the Am and Pu concentrations due to redistribution increased with increasing central void size. In all of the specimens examined, the extent of redistribution of Am and Pu was higher in the fuel of O/M ratio of 1.98 than in that of 1.95

  19. 次锕系元素在加速器驱动的次临界快堆中嬗变的研究%Study of Transmutation of Minor Actinides in Accelerator-Driven Sub-critical Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    杨永伟; 古玉祥

    2001-01-01

    选取加速器驱动次临界快堆(ADSFR),进行嬗变来自于PWR(U)乏燃料 中次锕系元素 的研究。在堆芯内,燃料为NpAmCm的氧化物,选取液态钠为冷却剂。利用下列程序对所选方 案进行物理计算和分析:LAHET -模拟质子与靶核的相互作用;MCNP4A-模拟次临界包层内 20MeV以下的中子与材料核的相互作用;ORIGEN2-利用MCNP4A的输出提供的一群等效截面对 堆芯进行燃耗计算。计算分析的结果表明:考虑临界安全、功率密度和燃耗等因素,利用所 选方案进行次锕系元素嬗变是可行的。%Accelerator-Driven Sub-critical Fast Reactor (ADSFR)is chosenfor transmu ta tion of minor actinides from the spent fuel of PWR(U). In the core, the fuel type is (PuNpAmCm)Ox. Liquid sodium is chosen as coolant The neutronics calcul ation and analysis of the selected scheme have been done by using the following codes: LAHET, for the simulation of the interaction between the protons and the nuclei of the target; MCNP4A, for the simulation of interaction between neutron s with energy below 20MeV and the nuclei of materials in the sub-critical blank e t; ORIGEN2, for the multi-region burnup calculation of the blanket by using the one-group effective cross-section provided in the output of MCNP4A. The neutro ni cs calculation and analysis show that the proposed scheme is feasible for trans mutation of minor actinides, considering the factors such as the criticality s afety, power density, burnup, etc.

  20. AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report

    Energy Technology Data Exchange (ETDEWEB)

    William Carmack; Randy D. Lee; Pavel Medvedev; Mitch Meyer; Michael Todosow; Holly B. Hamilton; Juan Nino; Simon Philpot; James Tulenko

    2005-06-01

    The U.S. Advanced Fuel Cycle Program and the Atomic Energy Canada Ltd (AECL) seek to develop and demonstrate the technologies needed to minimize the overall Pu and minor actinides present in the light water reactor (LWR) nuclear fuel cycles. It is proposed to reuse the Pu from LWR spent fuel both for the energy it contains and to decrease the hazard and proliferation impact resulting from storage of the Pu and minor actinides. The use of fuel compositions with a combination of U and Pu oxide (MOX) has been proposed as a way to recycle Pu and/or minor actinides in LWRs. It has also been proposed to replace the fertile U{sup 238} matrix of MOX with a fertile-free matrix (IMF) to reduce the production of Pu{sup 239} in the fuel system. It is important to demonstrate the performance of these fuels with the appropriate mixture of isotopes and determine what impact there might be from trace elements or contaminants. Previous work has already been done to look at weapons-grade (WG) Pu in the MOX configuration [1][2] and the reactor-grade (RG) Pu in a MOX configuration including small (4000 ppm additions of Neptunium). This program will add to the existing database by developing a wide variety of MOX fuel compositions along with new fuel compositions called inert-matrix fuel (IMF). The goal of this program is to determine the general fabrication and irradiation behavior of the proposed IMF fuel compositions. Successful performance of these compositions will lead to further selection and development of IMF for use in LWRs. This experiment will also test various inert matrix material compositions with and without quantities of the minor actinides Americium and Neptunium to determine feasibility of incorporation into the fuel matrices for destruction. There is interest in the U.S. and world-wide in the investigation of IMF (inert matrix fuels) for scenarios involving stabilization or burn down of plutonium in the fleet of existing commercial power reactors. IMF offer the

  1. Conjugates of Actinide Chelator-Magnetic Nanoparticles for Used Fuel Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, You; Paszczynski, Andrzej; Rao, Linfeng

    2011-10-30

    The actinide separation method using magnetic nanoparticles (MNPs) functionalized with actinide specific chelators utilizes the separation capability of ligand and the ease of magnetic separation. This separation method eliminated the need of large quantity organic solutions used in the liquid-liquid extraction process. The MNPs could also be recycled for repeated separation, thus this separation method greatly reduces the generation of secondary waste compared to traditional liquid extraction technology. The high diffusivity of MNPs and the large surface area also facilitate high efficiency of actinide sorption by the ligands. This method could help in solving the nuclear waste remediation problem.

  2. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    International Nuclear Information System (INIS)

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SFLn/Am obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as a Zr

  3. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Sypula, Michal

    2013-07-01

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SF{sub Ln/Am} obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as

  4. Partitioning and transmutation. Current developments - 2007. A report from the Swedish reference group on P-T-research

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstroem, Per-Eric (ed.) [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Blomgren, Jan [Uppsala Univ. (Sweden). Dept. of Neutron Research; Ekberg, Christian; Englund, Sofie; Fermvik, Anna; Liljenzin, Jan-Olov; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden); Eriksson, Marcus; Seltborg, Per; Wallenius, Jan; Westlen, Daniel [Royal Inst. of Technology, Stockholm (Sweden)

    2007-06-15

    This report is written on behalf of the Swedish reference group for research on partitioning and transmutation. The reference group has been assembled by SKB and its members represent the teams that are active in this field at Swedish universities. The present report summarises the progress in the field through the years 2004-2006. A prerequisite for transmutation by irradiation with neutrons is that the nuclides to be transmuted are separated (partitioned) from the other nuclides in the spent fuel. In particular the remaining uranium must be taken away unless you want to produce more plutonium and other transuranium elements. Separation of the various elements can at least in principle be achieved by mechanical and chemical processes. Currently there exist some large scale facilities for separation of uranium and plutonium from the spent fuel-reprocessing plants. These can, however, not separate the minor actinides - neptunium, americium and curium - from the high level waste that goes to a repository. Plutonium constitutes about 90% of the transuranium elements in fuel from light water reactors. The objective of current research on partitioning is to find and develop processes suitable for separation of the heavier actinides (and possibly some long-lived fission products) on an industrial scale. The objective of current research on transmutation is to define, investigate and develop facilities that may be suitable for transmutation of the aforementioned long-lived radionuclides. The research on partitioning has made important progress in recent years. In some cases one has succeeded to separate americium and curium. Many challenges remain however. Within hydrochemistry one has achieved sufficiently good distribution and separation factors. The focus turns now towards development of an operating process. The search for ligands that give sufficiently good extraction and separation will continue but with less intensity. The emphasis will rather be on improving

  5. Partitioning and transmutation. Current developments - 2007. A report from the Swedish reference group on P-T-research

    International Nuclear Information System (INIS)

    This report is written on behalf of the Swedish reference group for research on partitioning and transmutation. The reference group has been assembled by SKB and its members represent the teams that are active in this field at Swedish universities. The present report summarises the progress in the field through the years 2004-2006. A prerequisite for transmutation by irradiation with neutrons is that the nuclides to be transmuted are separated (partitioned) from the other nuclides in the spent fuel. In particular the remaining uranium must be taken away unless you want to produce more plutonium and other transuranium elements. Separation of the various elements can at least in principle be achieved by mechanical and chemical processes. Currently there exist some large scale facilities for separation of uranium and plutonium from the spent fuel-reprocessing plants. These can, however, not separate the minor actinides - neptunium, americium and curium - from the high level waste that goes to a repository. Plutonium constitutes about 90% of the transuranium elements in fuel from light water reactors. The objective of current research on partitioning is to find and develop processes suitable for separation of the heavier actinides (and possibly some long-lived fission products) on an industrial scale. The objective of current research on transmutation is to define, investigate and develop facilities that may be suitable for transmutation of the aforementioned long-lived radionuclides. The research on partitioning has made important progress in recent years. In some cases one has succeeded to separate americium and curium. Many challenges remain however. Within hydrochemistry one has achieved sufficiently good distribution and separation factors. The focus turns now towards development of an operating process. The search for ligands that give sufficiently good extraction and separation will continue but with less intensity. The emphasis will rather be on improving

  6. Advanced fuel developments for an industrial accelerator driven system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Delage, Fabienne; Ottaviani, Jean Pierre [Commissariat a l' Energie Atomique CEA (France); Fernandez-Carretero, Asuncion; Staicu, Dragos [JRC-ITU (Germany); Boccaccini, Claudia-Matzerath; Chen, Xue-Nong; Mascheck, Werner; Rineiski, Andrei [Forschungszentrum Karlsruhe - FZK (Germany); D' Agata, Elio [JRC-IE (Netherlands); Klaassen, Frodo [NRG, PO Box 25, NL-1755 ZG Petten (Netherlands); Sobolev, Vitaly [SCK-CEN (Belgium); Wallenius, Janne [KTH Royal Institute of Technology (Sweden); Abram, T. [National Nuclear Laboratory - NNL (United Kingdom)

    2009-06-15

    Fuel to be used in an Accelerator Driven System (ADS) for transmutation in a fast spectrum, can be described as a highly innovative concept in comparison with fuels used in critical cores. ADS fuel is not fertile, so as to improve the transmutation performance. It necessarily contains a high concentration ({approx}50%) of minor actinides and plutonium. This unusual fuel composition results in high gamma and neutron emissions during its fabrication, as well as degraded core performance. So, an optimal ADS fuel is based on finding the best compromise between thermal, mechanical, chemical, neutronic and technological constraints. CERCER and CERMET composite fuels consisting of particles of (Pu,MA)O{sub 2} phases dispersed in a magnesia or molybdenum matrix are under investigation within the frame of the ongoing European Integrated Project EUROTRANS (European Research programme for Transmutation) which aims at performing a conceptual design of a 400 MWth transmuter: the European Facility for Industrial Transmutation (EFIT). Performances and safety of EFIT cores loaded with CERCER and CERMET fuels have been evaluated. Out-of-pile and in-pile experiments are carried out to gain knowledge on the properties and the behaviour of these fuels. The current paper gives an overview of the work progress. (authors)

  7. Evaluation of conceptual flowsheets for incorporating Light Water Reactor (LWR) fuel materials in an advanced nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.T.; Burch, W.D.; Collins, E.D.; Forsberg, C.W.; Prince, B.E.; Bond, W.D.; Campbell, D.O.; Delene, J.G.; Mailen, J.C.

    1990-08-01

    A preliminary study by a group of experts at ORNL has generated and evaluated a number of aqueous and non-aqueous flowsheets for recovering transuranium actinides from LWR fuel for use as fuel in an LMR and, at the same time, for transmutation of the wastes to less hazardous materials. The need for proliferation resistance was a consideration in the flowsheets. The current state of development of the flowsheets was evaluated and recommendations for additional study were made. 3 refs., 6 figs.

  8. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  9. Performance of a transmutation advanced device for sustainable energy application

    International Nuclear Information System (INIS)

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  10. Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package

  11. TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES

    International Nuclear Information System (INIS)

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. Fifty-seven UO2, UO2/Gd2O3, and UO2/PuO2 critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on keff (which can be a function of the trending parameters) such that the biased keff, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection prior to loading

  12. Subcritical set coupled to accelerator (ADS) for transmutation of radioactive wastes: an approach of computational modelling

    International Nuclear Information System (INIS)

    Nuclear fission devices coupled to particle accelerators ADS are being widely studied. These devices have several applications, including nuclear waste transmutation and producing hydrogen, both applications with strong social and environmental impact. The essence of this work was to model an ADS geometry composed of small TRISO fuel loaded with a mixture of MOX uranium and thorium target material spallation of uranium, using methods of computational modeling probabilistic, in particular the MCNPX 2.6e program to evaluate the physical characteristics of the device and their ability to transmutation. As a result of the characterization of the spallation target, it can be concluded that production of neutrons per incident proton increases with increasing dimensions of the spallation target (thickness and radius), until it reached the maximum production of neutrons per incident proton or call the region saturation. The results obtained in modeling the ADS device bed kind of balls with respect to isotopic variation in the isotopes of plutonium and minor actinides considered in the analysis revealed that accumulation of mass of the isotopes of plutonium and minor actinides increase for subcritical configuration considered. In the particular case of the isotope 239Pu, it is observed a reduction of the mass from the time of burning of 99 days. The increase of power in the core, whereas tungsten spallation targets and Lead is among the key future developments of this work

  13. System and safety studies of accelerator driven transmutation. Annual Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Tucek, Kamil [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics] [and others

    2004-12-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics reported here has been focused on different aspects of safety of the Accelerator-Driven Transmutation Systems and on Transmutation research in more general terms. An overview of the topics of our research is given in the Summary which is followed by detailed reports as separate chapters or subchapters. Some of the research topics reported in this report are referred to appendices, which have been published in the open literature. Topics, which are not yet published, are described with more details in the main part of this report. Main focus has been, as before, largely determined by the programme of the European projects of the 5th Framework Programme in which KTH is actively participating. In particular: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features. This activity includes even computer modeling of nuclear fuel production. Three different ADS-core concept are being investigated: Conceptual design of Pb-Bi cooled core with nitride fuel so called Sing-Sing Core developed at KTH; Pb-Bi cooled core with oxide fuel so called ANSALDO design for the European Project PDS-XADS; Gas cooled core with oxide fuel a design investigated for the European Project PDS-XADS. b) analysis of potential of advance fuels, in particular nitrides with high content of minor actinides; c) analysis of ADS-dynamics and assessment of major reactivity feedbacks; d) emergency heat removal from ADS; e) participation in ADS: MUSE (CEA-Cadarache), YALINA subcritical experiment in Minsk and designing of the subcritical experiment SAD in Dubna; f) theoretical and simulation studies of radiation damage in high neutron (and/or proton) fluxes; g) computer code and nuclear data development relevant for simulation and optimization of ADS, validation of the MCB code and sensitivity analysis; h) studies of

  14. System and safety studies of accelerator driven transmutation. Annual Report 2003

    International Nuclear Information System (INIS)

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics reported here has been focused on different aspects of safety of the Accelerator-Driven Transmutation Systems and on Transmutation research in more general terms. An overview of the topics of our research is given in the Summary which is followed by detailed reports as separate chapters or subchapters. Some of the research topics reported in this report are referred to appendices, which have been published in the open literature. Topics, which are not yet published, are described with more details in the main part of this report. Main focus has been, as before, largely determined by the programme of the European projects of the 5th Framework Programme in which KTH is actively participating. In particular: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features. This activity includes even computer modeling of nuclear fuel production. Three different ADS-core concept are being investigated: Conceptual design of Pb-Bi cooled core with nitride fuel so called Sing-Sing Core developed at KTH; Pb-Bi cooled core with oxide fuel so called ANSALDO design for the European Project PDS-XADS; Gas cooled core with oxide fuel a design investigated for the European Project PDS-XADS. b) analysis of potential of advance fuels, in particular nitrides with high content of minor actinides; c) analysis of ADS-dynamics and assessment of major reactivity feedbacks; d) emergency heat removal from ADS; e) participation in ADS: MUSE (CEA-Cadarache), YALINA subcritical experiment in Minsk and designing of the subcritical experiment SAD in Dubna; f) theoretical and simulation studies of radiation damage in high neutron (and/or proton) fluxes; g) computer code and nuclear data development relevant for simulation and optimization of ADS, validation of the MCB code and sensitivity analysis; h) studies of

  15. Advanced processes for minor actinides recycling: studies towards potential industrialization

    International Nuclear Information System (INIS)

    In June 2006, a new act on sustainable management of radioactive waste was voted by the French parliament with a national plan on radioactive materials and radioactive waste management (PNG-MDR). Concerning partitioning and transmutation, the program is connected to 4. generation reactors, in which transmutation of minor actinides could be operated. In this frame, the next important milestone is 2012, with the assessment of the possible transmutation roads, which are either homogeneous recycling of the minor actinides in the whole reactor fleet, with a low content of M.A (∼3%) in all fuel assemblies, or heterogeneous recycling of the minor actinides in about one third of the reactor park, with a higher content of M.A. (∼20%) in dedicated targets dispatched in the periphery of the reactor. Advanced processes for the recycling of minor actinides are being developed to address the challenges of these various management options. An important part of the program consists in getting closer to process implementation conditions. The processes based on liquid-liquid extraction benefit from the experience gained by operating the PUREX process at the La Hague plant. In the field of extracting apparatus, a large experience is available. In the field of extracting apparatus, a large experience is already available. Nevertheless, the processes present specificities which have to be considered more precisely. They have been classified in the following fields: - Evolution of the simulation codes, including phenomenological representations: with such a simulation tool, it will be possible to assess operating tolerances, lead sensitivity studies and calculate transient states; - Definition of the implementation conditions in continuous contactors (such as pulse columns), according to the extractant physico-chemical characteristics; - Scale-up of new extractants, such as malonamides used in the DIAMEX process, facing purity specifications and costs estimation; - Solvent clean

  16. Studies on separation, conversion and transmutation of long-living radionuclides. A contribution to advanced disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    The future role and acceptance of nuclear energy will be decisively determined by the safe operation of existing and future facilities and by convincing solutions for nuclear waste management. With respect to the long half-lives of some radionuclides (actinides and fission products) and the related question as to whether the release of radionuclides from a repository can be prevented over very long periods of time, alternatives to the direct disposal of spent nuclear fuels are discussed internationally. As a potential complementary solution, the technological option with partitioning and transmutation (P and T) is considered. This method separates and converts the long-lived radionuclides into stable, short-lived nuclides via neutron reactions in dedicated facilities. Against this background, the first main chapter of the present work looks at the chemical separation of actinides from high-level reprocessing wastes. In order to achieve a better understanding of the processes at the molecular level, basic investigations were also performed on separating actinides(III) via liquid-liquid or liquid-solid extraction. At the same time, reversible processes were developed and tested on the laboratory scale with the aid of mixer-settlers and centrifugal extractors. The subsequent chapter focuses on separating the long-lived fission product iodine-129 from radioactive wastes as well as from process effluents arising from reprocessing. As part of this work, different simple chemical and physical techniques were developed for complete recovery with respect to transmutation or conditioning in host matrices that are sufficiently stable for final storage. Its high mobility and radiological properties make iodine-129 relevant for the long-term safety assessment of final repositories. In addition, transmutation experiments on iodine-127/129 targets were performed using high-energy protons (145-2600 MeV). Due to the expected low cross sections (<100 mb), transmutation with protons

  17. Reduction of the Radiotoxicity of Spent Nuclear Fuel Using a Two-Tiered System Comprising Light Water Reactors and Accelerator-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    H.R. Trellue

    2003-06-01

    Two main issues regarding the disposal of spent nuclear fuel from nuclear reactors in the United States in the geological repository Yucca Mountain are: (1) Yucca Mountain is not designed to hold the amount of fuel that has been and is proposed to be generated in the next few decades, and (2) the radiotoxicity (i.e., biological hazard) of the waste (particularly the actinides) does not decrease below that of natural uranium ore for hundreds of thousands of years. One solution to these problems may be to use transmutation to convert the nuclides in spent nuclear fuel to ones with shorter half-lives. Both reactor and accelerator-based systems have been examined in the past for transmutation; there are advantages and disadvantages associated with each. By using existing Light Water Reactors (LWRs) to burn a majority of the plutonium in spent nuclear fuel and Accelerator-Driven Systems (ADSs) to transmute the remainder of the actinides, the benefits of each type of system can be realized. The transmutation process then becomes more efficient and less expensive. This research searched for the best combination of LWRs with multiple recycling of plutonium and ADSs to transmute spent nuclear fuel from past and projected nuclear activities (assuming little growth of nuclear energy). The neutronic design of each system is examined in detail although thermal hydraulic performance would have to be considered before a final system is designed. The results are obtained using the Monte Carlo burnup code Monteburns, which has been successfully benchmarked for MOX fuel irradiation and compared to other codes for ADS calculations. The best combination of systems found in this research includes 41 LWRs burning mixed oxide fuel with two recycles of plutonium ({approx}40 years operation each) and 53 ADSs to transmute the remainder of the actinides from spent nuclear fuel over the course of 60 years of operation.

  18. Reduction of the Radiotoxicity of Spent Nuclear Fuel Using a Two-Tiered System Comprising Light Water Reactors and Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Two main issues regarding the disposal of spent nuclear fuel from nuclear reactors in the United States in the geological repository Yucca Mountain are: (1) Yucca Mountain is not designed to hold the amount of fuel that has been and is proposed to be generated in the next few decades, and (2) the radiotoxicity (i.e., biological hazard) of the waste (particularly the actinides) does not decrease below that of natural uranium ore for hundreds of thousands of years. One solution to these problems may be to use transmutation to convert the nuclides in spent nuclear fuel to ones with shorter half-lives. Both reactor and accelerator-based systems have been examined in the past for transmutation; there are advantages and disadvantages associated with each. By using existing Light Water Reactors (LWRs) to burn a majority of the plutonium in spent nuclear fuel and Accelerator-Driven Systems (ADSs) to transmute the remainder of the actinides, the benefits of each type of system can be realized. The transmutation process then becomes more efficient and less expensive. This research searched for the best combination of LWRs with multiple recycling of plutonium and ADSs to transmute spent nuclear fuel from past and projected nuclear activities (assuming little growth of nuclear energy). The neutronic design of each system is examined in detail although thermal hydraulic performance would have to be considered before a final system is designed. The results are obtained using the Monte Carlo burnup code Monteburns, which has been successfully benchmarked for MOX fuel irradiation and compared to other codes for ADS calculations. The best combination of systems found in this research includes 41 LWRs burning mixed oxide fuel with two recycles of plutonium (∼40 years operation each) and 53 ADSs to transmute the remainder of the actinides from spent nuclear fuel over the course of 60 years of operation

  19. Criticality safety aspects of spent fuel arrays from emerging nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, G. [University of Thrace, Department of Electrical and Computer Engineering, Laboratory of Nuclear Technology, Kimmerria Campus, 67100 Xanthi (Greece)

    2010-07-01

    Emerging nuclear fuel cycles: fuels with Pu or minor actinides (MA) for their self-generated recycling or transmutation in PWR or FR {yields} reduction of radiotoxicity of HLW. The aim of work is to assess criticality (k{sub {infinity}}) of arrays of spent nuclear fuels from these emerging fuel cycles. Procedures: Calculations of - k{sub {infinity}}, using MCNP5 based on fresh and spent fuel compositions (infinite arrays), - spent fuel compositions using ORIGEN. Fuels considered: - commercial PWR-UO{sub 2} (R1) and -MOX (R2), [45 GWd/t] and fast reactor [100 GWd/t] (R3), - PWR self-generated Pu recycling (S1) and MA recycling (S2), FR self-generated MA recycling (S3), FR with 2% {sup 237}Np for transmutation purposes (T). Results: k{sub {infinity}} based on fresh and spent fuel compositions is shown. Fuels are clustered in two distinct families: - fast reactor fuels, - thermal reactor fuels; k{sub {infinity}} decreases when calculated on the basis of actinide and fission product inventory. In conclusions: - Emerging fuels considered resemble their corresponding commercial fuels; - k{sub {infinity}} decreases in all cases when calculated on the basis of spent fuel compositions (reactivity worth {approx}-20%{Delta}k/k), hence improving the effectiveness of packaging. (author)

  20. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  1. Industrial research for transmutation scenarios

    Science.gov (United States)

    Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel

    2011-04-01

    This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.

  2. Nuclear waste transmutation

    International Nuclear Information System (INIS)

    A deep repository for safe long-term storage of long-lived radioactive materials (waste) arising from nuclear fuel irradiation in reactors is a need generally accepted, whatever the strategy envisaged for further use of the irradiated fuel (e.g.: reprocessing and re-use of uranium and plutonium; no reprocessing and final disposal). To assess the impact on the environment of a waste repository, one is lead naturally to consider the impact of radiation on man and to define the radiotoxicity of the different isotopes. The toxicity of the materials stored in a repository is function of time and at a given time is the sum of the activities of each radionuclide multiplied by appropriate danger coefficients. This time dependent sum R, is a source of 'potential' radiotoxicity. It has been pointed out (in reference 1), that R does not measure 'risk', which has to take into account 'actual pathways and probability of radioactive release to the biosphere'. It is well understood that (e.g. in the case of spent PWR fuel) the main contributor to R are actinides, Pu being the main component (see table I). In the case of risk, the situation is by far more complex and dependent on the modeling of different geological environments. In the analysis made in reference 1 the predominant role of Tc-99, I-129 and Cs-135 has been pointed out. The same analysis also stresses that actinides will be by far less relevant with respect to the highly soluble and mobile fission products. (authors). 13 refs., 2 tabs., 2 figs

  3. Layer thickness evaluation for transuranic transmutation in a fusion–fission system

    International Nuclear Information System (INIS)

    Highlights: • Layer thickness for transmutation in a fusion–fission system was evaluated. • The calculations were performed using MONTEBURNS code. • The results indicate the best thickness and volume ratio to induce transmutation. - Abstract: Layer thickness for transuranic transmutation in a fusion–fission system was evaluated using two different ways. In the first one, transmutation layer thicknesses were designed maintaining the fuel rod radius constant; in the second part, while the transmutation layer thickness increases, the fuel rod radius decreases maintaining ks (source-multiplication factor) ≈0.95. Spent fuel reprocessed by UREX+ method and then spiked with thorium and uranium composes the transmutation layer. The calculations were performed using MONTEBURNS code (MCNP5 and ORIGEN 2.1). The results indicate the best thickness and the volume ratio between the coolant and the fuel composition to induce transmutation

  4. Advanced Fuel Cycle Initiative AFC-1D, AFC-1G, and AFC-1H End of FY-07 Irradiation Report

    Energy Technology Data Exchange (ETDEWEB)

    Debra J Utterbeck; Gray S Chang; Misit A Lillo

    2007-09-01

    The purpose of the U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), is to develop and demonstrate the technologies needed to transmute the long-lived transuranic isotopes contained in spent nuclear fuel into shorter-lived fission products. Success in this undertaking could potentially dramatically decrease the volume of material requiring disposal with attendant reductions in long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is investigation of irradiation/transmutation effects on actinide-bearing metallic fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. Goals of this initiative include addressing the limited irradiation performance data available on metallic fuels with high concentrations of Pu, Np and Am, as are envisioned for use as actinide transmutation fuels. The AFC-1 irradiation experiments of transmutation fuels are expected to provide irradiation performance data on non-fertile and low-fertile fuel forms specifically, irradiation growth and swelling, helium production, fission gas release, fission product and fuel constituent migration, fuel phase equilibria, and fuel-cladding chemical interaction. Contained in this report are the to-date physics evaluations performed on three of the AFC-1 experiments; AFC-1D, AFC-1G and AFC-1H. The AFC-1D irradiation experiment consists of metallic non-fertile fuel compositions with minor actinides for potential use in accelerator driven systems and AFC-1G and AFC-1H irradiation experiments are part of the fast neutron reactor fuel development effort. The metallic fuel experiments and nitride experiment are high burnup analogs to previously irradiated experiments and are to be irradiated to = 40 at.% burnup.

  5. Long-Lived Fission Product Transmutation Studies

    International Nuclear Information System (INIS)

    A systematic study on long-lived fission products (LLFPs) transmutation has been performed with the aim of devising an optimal strategy for their transmutation in critical or subcritical reactor systems and evaluating impacts on the geologic repository. First, 99Tc and 129I were confirmed to have highest transmutation priorities in terms of transmutability and long-term radiological risk reduction. Then, the transmutation potentials of thermal and fast systems for 99Tc and 129I were evaluated by considering a typical pressurized water reactor (PWR) core and a sodium-cooled accelerator transmutation of waste system. To determine the best transmutation capabilities, various target design and loading optimization studies were performed. It was found that both 99Tc and 129I can be stabilized (i.e., zero net production) in the same PWR core under current design constraints by mixing 99Tc with fuel and by loading CaI2 target pins mixed with ZrH2 in guide tubes, but the PWR option appears to have a limited applicability as a burner of legacy LLFP. In fast systems, loading of moderated LLFP target assemblies in the core periphery (reflector region) was found to be preferable from the viewpoint of neutron economy and safety. By a simultaneous loading of 99Tc and 129I target assemblies in the reflector region, the self-generated 99Tc and 129I as well as the amount produced by several PWR cores could be consumed at a cost of ∼10% increased fuel inventory. Discharge burnups of ∼29 and ∼37% are achieved for 99Tc and 129I target assemblies with an ∼5-yr irradiation period.Based on these results, the impacts of 99Tc and 129I transmutation on the Yucca mountain repository were assessed in terms of the dose rate. The current Yucca Mountain release evaluations do not indicate a compelling need to transmute 99Tc and 129I because the resulting dose rates fall well below current regulatory limits. However, elimination of the LLFP inventory could allow significant relaxation of

  6. Emerging nuclear energy and transmutation systems: Core physics and engineering aspects

    International Nuclear Information System (INIS)

    The Technical Committee Meeting (TCM) on Core Physics and Engineering Aspects of Emerging Nuclear Energy Systems for Energy Generation and Transmutation held in December 2000, was convened by the IAEA on the recommendation of its Technical Working Group on Fast Reactors (TWG-FR). The objectives of this TCM were threefold: to review the status of Research and Development activities in the area of hybrid systems for energy generation and transmutation, to discuss specific scientific and technical issues covering the different R and D topics of these systems; and to recommend to the IAEA activities that would be specifically targeted to the needs of the Member States performing R and D in this field. The TCM had not called for broad overview papers of the various R and D fields. Apart from a rather brief presentation by each delegation of the general issues and the status of the R and D in the respective country, the IAEA had called for in-depth technical papers addressing one or more of the following topics: accelerator driven systems (ADS) concepts, requirements and features of ADS accelerators, target development, experiments and validation, sub-critical core studies, technology of heavy liquid metals, fuel and fuel processes development, and fuel cycle studies. Forty-five participants from eleven countries and one international organization attended the TCM, and thirty papers were presented. The status information presented in the delegates' general statements and in some of the papers is as of the time of the TCM. Thus, other later material should also be referenced for more current information. One such source of information is the Web Site of IAEA's project on Technology Advances in Fast Reactors and Accelerator Driven Systems for Actinide and Long lived Fission Product Transmutation (http://www.iaea.org/inis/aws/fnss/). However, the technical information provided in the papers, representing the bulk of the information presented, remains valid

  7. Effects of actinide burning on waste disposal at Yucca Mountain

    International Nuclear Information System (INIS)

    Partitioning the actinides in spent fuel and transmuting them in actinide-burning liquid-metal reactors (ALMRs) is a potential method of reducing public risks from the geologic disposal of nuclear waste. In this paper, the authors present a comparison of radionuclide releases from burial at Yucca Mountain of spent fuel and of ALMR wastes. Two waste disposal schemes are considered. In each, the heat generation of the wastes at emplacement is 9.88 x 107 W, the maximum for the repository. In the first scheme, the repository contains 86,700 tonnes of initial heavy metal (IHM) of light water reactor (LWR) spent fuel. In the second scheme, all current LWRs operate for a 40-yr lifetime, producing a total of 84,000 tonnes IHM of spent fuel. This spent fuel is treated using a pyrochemical process in which 98.4% of the uranium and 99.8% of the neptunium, plutonium, americium, and curium are extracted and fabricated into ALMR fuel, with the reprocessing wastes destined for the repository. The ALMR requires this fuel for its startup and first two reloads; thereafter, it is self-sufficient. Spent ALMR fuel is also pyrochemically reprocessed: 99.9% of the transuranics is recovered and recycled into ALMR fuel, and the wastes are placed in the repository. Thus, in the second scheme, the repository contains the wastes from reprocessing all of the LWR spent fuel plus the maximum amount of ALMR reprocessing wastes allowed in the repository based on its heat generation limit

  8. Actinides recycling assessment in a thermal reactor

    International Nuclear Information System (INIS)

    Highlights: • Actinides recycling is assessed using BWR fuel assemblies. • Four fuel rods are substituted by minor actinides rods in a UO2 and in a MOX fuel assembly. • Performance of standard fuel assemblies and the ones with the substitution is compared. • Reduction of actinides is measured for the fuel assemblies containing minor actinides rods. • Thermal reactors can be used for actinides recycling. - Abstract: Actinides recycling have the potential to reduce the geological repository burden of the high-level radioactive waste that is produced in a nuclear power reactor. The core of a standard light water reactor is composed only by fuel assemblies and there are no specific positions to allocate any actinides blanket, in this assessment it is proposed to replace several fuel rods by actinides blankets inside some of the reactor core fuel assemblies. In the first part of this study, a single uranium standard fuel assembly is modeled and the amount of actinides generated during irradiation is quantified for use it as reference. Later, in the same fuel assembly four rods containing 6 w/o of minor actinides and using depleted uranium as matrix were replaced and depletion was simulated to obtain the net reduction of minor actinides. Other calculations were performed using MOX fuel lattices instead of uranium standard fuel to find out how much reduction is possible to obtain. Results show that a reduction of minor actinides is possible using thermal reactors and a higher reduction is obtained when the minor actinides are embedded in uranium fuel assemblies instead of MOX fuel assemblies

  9. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James

    2012-12-19

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmute minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.

  10. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    International Nuclear Information System (INIS)

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmute minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale

  11. Property database of TRU nitride fuel

    OpenAIRE

    西 剛史; 荒井 康夫; 高野 公秀; 倉田 正輝

    2014-01-01

    The purpose of this study is to prepare a property database of nitride fuel needed for the fuel design of accelerator-driven system (ADS) for transmutation of minor actinide (MA). Nitride fuel of ADS is characterized by high content of Pu and MA as principal components, and addition of a diluent material such as ZrN. Experimental data or evaluated values from the raw data on properties Pu and MA nitrides, and nitride solid solutions containing ZrN are collected and summarized, which cover the...

  12. Neutronics of LBE target-cooled ADS for MA transmutation: Japan

    International Nuclear Information System (INIS)

    Purpose and goal: JAEA's reference design of ADS is a tank type 800 MWth subcritical reactor to transmute about 250 kg of minor actinides annually. A lead-bismuth eutectic (LBE) is used as both the primary coolant and the spallation target. A superconducting linear accelerator (SC-LINAC), whose proton energy and maximum current are 1.5 GeV and 20 mA (30 MW), is connected to produce spallation neutrons. The (MA, Pu) N fuel diluted by ZrN is used in the subcritical core. Because the relatively high power peaking factor will be observed at the burnup stage of low HII value, where the influence of the spallation neutrons is strong, Pu is added at the beginning of the first burnup cycle to mitigate the rapid increase of the burnup reactivity

  13. PREFACE: Actinides 2009

    Science.gov (United States)

    Rao, Linfeng; Tobin, James G.; Shuh, David K.

    2010-07-01

    This volume of IOP Conference Series: Materials Science and Engineering consists of 98 papers that were presented at Actinides 2009, the 8th International Conference on Actinide Science held on 12-17 July 2009 in San Francisco, California, USA. This conference was jointly organized by Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory. The Actinides conference series started in Baden-Baden, Germany (1975) and this first conference was followed by meetings at Asilomar, CA, USA (1981), Aix-en-Provence, France (1985), Tashkent, USSR (1989), Santa Fe, NM, USA (1993), Baden-Baden, Germany (1997), Hayama, Japan (2001), and Manchester, UK (2005). The Actinides conference series provides a regular venue for the most recent research results on the chemistry, physics, and technology of the actinides and heaviest elements. Actinides 2009 provided a forum spanning a diverse range of scientific topics, including fundamental materials science, chemistry, physics, environmental science, and nuclear fuels. Of particular importance was a focus on the key roles that basic actinide chemistry and physics research play in advancing the worldwide renaissance of nuclear energy. Editors Linfeng Rao Lawrence Berkeley National Laboratory (lrao@lbl.gov) James G Tobin Lawrence Livermore National Laboratory (tobin1@llnl.gov) David K Shuh Lawrence Berkeley National Laboratory (dkshuh@lbl.gov)

  14. A concept of self-completed fuel cycle based on lead-cooled nitride-fuel fast reactors

    International Nuclear Information System (INIS)

    A concept of nuclear energy total system was studied based on the nitride fuel cycle and inherent safety lead-cooled fast reactors. In the nitride fuel reprocessing, a new concept for pyrochemical method was proposed due to reducing fuel cycle cost. The present designed lead-cooled fast reactors have higher safety, economics and minor actinide transmutation efficiency than those of MOX-fuel fast reactors. The construction of 1500 MWt plant is feasible as a result for technology studies for aseismic, steam-generator and reactor configuration systems. (author)

  15. Advanced fuels for fast reactors

    International Nuclear Information System (INIS)

    Full text: In addition to traditional fast reactor fuels that contain Uranium and Plutonium, the advanced fast reactor fuels are likely to include the minor actinides [Neptunium (Np), Americium (Am) and Curium (Cm)]. Such fuels are also referred to as transmutation fuels. The goal of transmutation fuel development programs is to develop and qualify a nuclear fuel system that performs all of the functions of a traditional fast spectrum nuclear fuel while destroying recycled actinides. Oxide, metal, nitride, and carbide fuels are candidates under consideration for this application, based on historical knowledge of fast reactor fuel development and specific fuel tests currently being conducted in international transmutation fuel development programs. Early fast reactor developers originally favored metal alloy fuel due to its high density and potential for breeder operation. The focus of pressurized water reactor development on oxide fuel and the subsequent adoption by the commercial nuclear power industry, however, along with early issues with low burnup potential of metal fuel (now resolved), led later fast reactor development programs to favor oxide fuels. Carbide and nitride fuels have also been investigated but are at a much lower state of development than metal and oxide fuels, with limited large scale reactor irradiation experience. Experience with both metal and oxide fuels has established that either fuel type will meet performance and reliability goals for a plutonium fueled fast spectrum test reactor, both demonstrating burnup capability of up to 20 at.% under normal operating conditions, when clad with modified austenitic or ferritic martensitic stainless steel alloys. Both metal and oxide fuels have been shown to exhibit sufficient margin to failure under transient conditions for successful reactor operation. Summary of selected fuel material properties taken are provided in the paper. The main challenge for the development of transmutation fast reactor

  16. Can transmutation replace deep radioactive repositories?; Ersetzt Transmutation die Tiefenlagerung radioaktiver Abfaelle?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This illustrated brief report issued by the Swiss Federal Nuclear Safety Inspectorate (ENSI) takes a look at transmutation - a method to reduce the time taken for the radioactivity of radioactive wastes to decay. The aim of such a reduction is to reduce the amount of space needed for special underground repositories for highly radioactive wastes. Transmutation is briefly described. Nuclear fuel cycles with spent fuel separation and reprocessing is examined. The large-scale feasibility of such methods is looked at and the advantages offered in connection with the design and implementation of deep nuclear waste repositories are discussed.

  17. ADS 嬗变堆冷却剂及燃料优化布置的蒙特卡罗模拟%Monte Carlo Simulation of ADS Transmutation Reactor Coolant and Fuel Optimal Arrangement

    Institute of Scientific and Technical Information of China (English)

    魏强林; 王爱星; 刘义保; 杨波; 钮云龙; 郭晗

    2013-01-01

    为探索我国核裂变能可持续发展的新技术途径,利用MCNP5程序,建立了加速器驱动次临界系统(ADS)嬗变堆堆芯结构数学模型,模拟计算嬗变堆中分别使用氦气、液态铅、液态钠3种不同冷却剂对反应堆内局部中子能谱的影响,得出用液态铅作为ADS反应堆的冷却剂效果最佳的结论,提出了可提高嬗变堆内嬗变率的非均匀燃料组件排布的优化方案。%For exploring new technical approach of sustainable development of nuclear fission energy , the sub-ject used the MCNP5 program to establish mathematical model of accelerator driven system (ADS) transmuta-tion reactor core, and calculate influence on reactor local neutron spectrum of transmutation reactor , in which used three different coolant such as helium , liquid lead and liquid sodium.The results show that cooling effect of liquid lead is the best for ADS reactor , and then, a non-uniform optimization plan of fuel assembly is pro-posed to improve the reactor transmutation rate .

  18. Separation of actinides from irradiated An–Zr based fuel by electrorefining on solid aluminium cathodes in molten LiCl–KCl

    International Nuclear Information System (INIS)

    Highlights: • Electrorefining process in molten LiCl-KCl using solid Al electrodes was demonstrated. • High separation factors of actinides over lanthanides were achieved. • Efficient recovery of actinides from irradiated nuclear fuel was achieved. • Uniform, dense and well adhered deposits were obtained and characterised. • Kinetic parameters of actinide–aluminium alloy formation were evaluated. - Abstract: An electrorefining process for metallic spent nuclear fuel treatment is being investigated in ITU. Solid aluminium cathodes are used for homogeneous recovery of all actinides within the process carried out in molten LiCl–KCl eutectic salt at a temperature of 500 °C. As the selectivity, efficiency and performance of solid Al has been already shown using un-irradiated An–Zr alloy based test fuels, the present work was focused on laboratory-scale demonstration of the process using irradiated METAPHIX-1 fuel composed of U67–Pu19–Zr10–MA2–RE2 (wt.%, MA = Np, Am, Cm, RE = Nd, Ce, Gd, Y). Different electrorefining techniques, conditions and cathode geometries were used during the experiment yielding evaluation of separation factors, kinetic parameters of actinide–aluminium alloy formation, process efficiency and macro-structure characterisation of the deposits. The results confirmed an excellent separation and very high efficiency of the electrorefining process using solid Al cathodes

  19. Separation of actinides from irradiated An–Zr based fuel by electrorefining on solid aluminium cathodes in molten LiCl–KCl

    Energy Technology Data Exchange (ETDEWEB)

    Souček, P., E-mail: Pavel.Soucek@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Murakami, T. [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Claux, B.; Meier, R.; Malmbeck, R. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Tsukada, T. [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Glatz, J.-P. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany)

    2015-04-15

    Highlights: • Electrorefining process in molten LiCl-KCl using solid Al electrodes was demonstrated. • High separation factors of actinides over lanthanides were achieved. • Efficient recovery of actinides from irradiated nuclear fuel was achieved. • Uniform, dense and well adhered deposits were obtained and characterised. • Kinetic parameters of actinide–aluminium alloy formation were evaluated. - Abstract: An electrorefining process for metallic spent nuclear fuel treatment is being investigated in ITU. Solid aluminium cathodes are used for homogeneous recovery of all actinides within the process carried out in molten LiCl–KCl eutectic salt at a temperature of 500 °C. As the selectivity, efficiency and performance of solid Al has been already shown using un-irradiated An–Zr alloy based test fuels, the present work was focused on laboratory-scale demonstration of the process using irradiated METAPHIX-1 fuel composed of U{sub 67}–Pu{sub 19}–Zr{sub 10}–MA{sub 2}–RE{sub 2} (wt.%, MA = Np, Am, Cm, RE = Nd, Ce, Gd, Y). Different electrorefining techniques, conditions and cathode geometries were used during the experiment yielding evaluation of separation factors, kinetic parameters of actinide–aluminium alloy formation, process efficiency and macro-structure characterisation of the deposits. The results confirmed an excellent separation and very high efficiency of the electrorefining process using solid Al cathodes.

  20. Radiation and transmutation effects relevant to solid nuclear waste forms

    International Nuclear Information System (INIS)

    Radiation effects in insulating solids are discussed in a general way as an introduction to the quite sparse published work on radiation effects in candidate nuclear waste forms other than glasses. Likely effects of transmutation in crystals and the chemical mitigation strategy are discussed. It seems probable that radiation effects in solidified HLW will not be serious if the actinides can be wholly incorporated in such radiation-resistant phases as monazite or uraninite

  1. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  2. Conceptual study on high performance blanket in a spherical tokamak fusion-driven transmuter

    International Nuclear Information System (INIS)

    A preliminary conceptual design on high performance dual-cooled blanket of fusion-driven transmuter is presented based on neutronic calculation. The dual-cooled system has some attractive advantages when utilized in transmutation of HLW (High Level Wastes). The calculation results show that this kind of blanket could safely transmute about 6 ton minor actinides (produced by 170 GW(e) Year PWRs approximately) and 0.4 ton fission products per year, and output 12 GW thermal power. In addition, the variation of power and critical factor of this blanket is relatively little during its 1-year operation period. This blanket is also tritium self-sustainable

  3. Product Conversion: The Link between Separations and Fuel Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Felker, L.K.; Vedder, R.J.; Walker, E.A.; Collins, E.D. [Oak Ridge National Laboratory: P.O. Box 2008, Oak Ridge, Tennessee 37831-6384 (United States)

    2008-07-01

    Several chemical processing flowsheets are under development for the separation and isolation of the actinide, lanthanide, and fission product streams in spent nuclear fuel. The conversion of these product streams to solid forms, typically oxides, is desired for waste disposition and recycle of product fractions back into transmutation fuels or targets. The modified direct denitration (MDD) process developed at Oak Ridge National Laboratory (ORNL) in the 1980's offers significant advantages for the conversion of the spent fuel products to powder form suitable for direct fabrication into recycle fuels. A glove-box-contained MDD system and a fume-hood-contained system have been assembled at ORNL for the purposes of testing the co-conversion of uranium and mixed-actinide products. The current activities are focused on the conversion of the first products from the processing of spent nuclear fuel in the Coupled End-to-End Demonstration currently being conducted at ORNL. (authors)

  4. Nuclear transmutation in steels

    Science.gov (United States)

    Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.

    2009-05-01

    The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.

  5. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  6. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    OpenAIRE

    Nuttin A.; Siem S.; Ivanov E.; Méplan O.; David S; Guillemin P.; Wilson J.N.; Capellan N.; Rose S.J.

    2012-01-01

    The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR) has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U) is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor ac...

  7. Validation of minor actinides fission neutron cross-sections

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2015-01-01

    Full Text Available Verification of neutron fission cross-sections of minor actinides from some recently available evaluated nuclear data libraries was carried out by comparison of the reaction rates calculated by the MCNP6.1 computer code to the experimental values. The experimental samples, containing thin layers of 235U, 237Np, 238,239,240,241Pu, 242mAm, 243Cm, 245Cm, and 247Cm, deposited on metal support and foils of 235U (pseudo-alloy 27Al + 235U, 238U, natIn, 64Zn, 27Al, and multi-component sample alloy 27Al + 55Mn + natCu + natLu + 197Au, were irradiated in the channels of the tank containing fluorine salts 0.52NaF + 0.48ZrF4, labelled as the Micromodel Salt Blanket, inserted in the lattice centre of the MAKET heavy water critical assembly at the Institute for Theoretical and Experimental Physics, Moscow. This paper is a continuation of earlier initiated scientific-research activities carried out for validation of the evaluated fission cross-sections of actinides that were supposed to be used for the quality examination of the fuel design of the accelerator driven systems or fast reactors, and consequently, determination of transmutation rates of actinides, and therefore, determination of operation parameters of these reactor facilities. These scientific-research activities were carried out within a frame of scientific projects supported by the International Science and Technology Center and the International Atomic Energy Agency co-ordinated research activities, from 1999 to 2010. Obtained results confirm that further research is needed in evaluations in order to establish better neutron cross-section data for the minor actinides and selected nuclides which could be used in the accelerator driven systems or fast reactors.

  8. Comparison of actinide production in traveling wave and pressurized water reactors

    International Nuclear Information System (INIS)

    The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactor cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of 239Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)

  9. Reduction of risks to the public from geologic waste repositories by partitioning and transmutation: Rock types

    International Nuclear Information System (INIS)

    Partitioning light-water-reactor spent fuel (LWR SF) and transmuting the actinides in fast-spectrum liquid-metal reactors (ALMR) has been proposed as a method of reducing the public risks from geologic disposal of nuclear waste. For repositories that contain waste from equal energy generation, maximum radiation dose rates to future individuals were compared with that will result from dissolution and hydrogeologic transport of critical radionuclides for hypothetical repositories in unsaturated, oxidizing rock and water-saturated, reducing rock. In each case the peak radiation dose rate to a maximally exposed individual from a repository containing LWR spent fuel is compared to that from high-level wastes from the reprocessing of LWR and ALMR fuel. It was found that while peak dose rates from a repository in unsaturated rock containing high -level waste is somewhat lower than that from LWR spent fuel, the peak dose rate from a repository in saturated-reducing rock containing high-level waste is actually higher than its counterpart containing spent fuel. 21 refs., 5 tabs., 2 figs

  10. Researches on the management of high activity and long-lived radioactive wastes. Axis 1 - separation-transmutation; Recherches sur la gestion des dechets radioactifs a haute activite et a vie longue. Axe 1 - separation-transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    This document gathers the transparencies of seven presentations given at a technical workshop of the French nuclear energy society (SFEN) about the researches on separation-transmutation of high activity and long-lived radioactive wastes. The presentations deal with: inventory and radiotoxicity of the rad-wastes in concern; industrial experience; experience on chemical separation: molecules and processes; reactors physics and transmutation - reactors for transmutation; fuels and targets; scenarios that include transmutation; environmental impacts of these different scenarios. (J.S.)

  11. Recycling of actinides produced in LWR and FBR fuel cycles by applying pyrometallurgical process

    International Nuclear Information System (INIS)

    Integrated pyrometallurgical technology will be applied on the fuel reprocessing of oxide and metal fuels and on the recovery of transuranium elements. The main processes consisted of electrorefining, reductive extraction and waste treatment. The oxides will be reduced to metals by using reductant agent prior to the application of electrorefining. The high level liquid waste coming from purex type of reprocessing of LWR fuels can be also treated in order to separate transuranium elements at the reduction extraction process. The salt waste treatment was evaluated on the methods of direct solidification by artificial rock and vitrification after electrolysis. The process flow was proposed based on the experimental results for the partitioning of transuranium elements from high level liquid waste. (author)

  12. Actinides-1981

    International Nuclear Information System (INIS)

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  13. Actinides-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  14. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all H

  15. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias (eds.) [Forschungszentrum Juelich GmbH (Germany)

    2008-07-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides.

  16. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    International Nuclear Information System (INIS)

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides

  17. Accelerator transmutation of 129I

    International Nuclear Information System (INIS)

    Iodine-129 is one of several long-lived reactor products that is being considered for transmutation by the Los Alamos Accelerator Transmutation of Waste (ATW) program. A reasonable rate of transmutation of 1291 is possible in this system because of the anticipated high neutron flux generated from the accelerator. This report summarizes previous papers dealing with the transmutation of 1291 where reactor technologies have been employed for neutron sources. The transmutation process is considered marginal under these conditions. Presented here are additional information concerning the final products that could be formed from the transmutation process in the ATW blanket. The transmutation scheme proposes the use of solid iodine as the target material and the escape of product xenon from the containers after van Dincklange (1981). Additional developmental plans are considered

  18. PUMA - plutonium and minor actinides management in thermal high-temperature reactors

    International Nuclear Information System (INIS)

    The PUMA project, a Specific Targeted Research Project (STREP) of the European Union EURATOM 6. Framework Program, is mainly aimed at providing additional key elements for the utilisation and transmutation of plutonium and minor actinides in contemporary and future (high temperature) gas-cooled (HTR) reactor designs. The project runs from September 1, 2006 until August 31, 2009. The investigation on core physics aims at optimising the coated particle (CP) fuel and reactor characteristics, and assuring nuclear stability and safety of a Pu/Ma (minor actinides) HTR core. New CP designs will be explored in order to withstand very high burn-ups and obtain optimal adaptation for disposal after irradiation. In particular, helium production in Pu and MA-based fuel will be assessed and supported by experiments. Fuel irradiation performance codes, developed and used by several organisations, will permit convergence on optimized design criteria. The impact of the introduction of Pu/MA fuel on the fuel cycle and future energy mix will be assessed

  19. Incentives for transmutation of americium in thermal reactors

    International Nuclear Information System (INIS)

    This report describes possible benefits when americium is irradiated in a thermal reactor. If all plutonium is partitioned from spent fuel, americium is the main contributor to the radiotoxicity of spent fuel upto several thousands of years of storage. It is shown that americium can be transmuted to other nuclides upon irradiation in a thermal reactor, leading to a 50% reduction of the radiotoxicity of neptunium, which can be an important contributor to the dose due to leakage of nuclides after one million years of storage. The radiotoxicity of americium can be reduced considerably after irradiation for 3 to 6 years in a thermal reactor with thermal neutron flux of 1014 cm-2s-1. The strongly α and neutron emitting transmutation products can most probably not be recycled again, so a transmutation process is suggested in which americium is irradiated for 3 to 6 years and then put to final storage. It is shown that the radiotoxicity of the transmuation products after a storage time of about one hundred years can be considerably reduced compared to the radiotoxicity of the initial americium. The same holds for the α activity and heat emission of the transmutation products. Because plutonium in spent fuel contributes for about 80% to the radiotoxicity upto 105 years of storage, recycling and transmutation of plutonium has first priority. Transmutation of americium is only meaningful when the radiotoxicity of plutonium is reduced far below the radiotoxicity of americium. (orig.)

  20. Designing a gas cooled ADS for enhanced waste transmutation. The PDS-XADS European Project contribution

    Energy Technology Data Exchange (ETDEWEB)

    Rimpault, G. [Commissariat a l' Energie Atomique, CEA, 31-33, rue de la Federation, 75752 Paris cedex (France); Sunderland, R. [AMEC NNC Limited, Booths Hall, Chelford Road, Knutsford, Cheshire, WA16 8QZ (United Kingdom); Mueller, A.C. [CNRS IN2P3 IPN, F-0 91906 Cedex Orsay (France)

    2006-07-01

    objective of accelerator driven systems (ADS) is for nuclear waste transmutation in order to reduce the radio-toxicity of the spent fuel in final storage disposal. Achieving this goal requires other technologies associated with an advanced fuel cycle with uranium-free fuel heavily loaded with minor actinides and associated fabrication and reprocessing capabilities. The primary or reference option for the advanced fuels for the ADS is based on the (Pu,MA)-O{sub 2} material: a composite with Mo92 (CERMET) or MgO (CERCER). The size of the plant for a given fuel technology is of significant importance to achieve net MA consumption. The larger the size, the smaller amount of Plutonium is needed to achieve the requested reactivity level, and the greater amount of Minor Actinide (MA) can be provided and will, in the end, be burnt. A good compromise for a Helium cooled ADT core with roughened steel pin cladding leads to a volume power of 44 W/cm{sup 3} and an installed power of 400 MWth. The design of this core takes advantage of previous studies by keeping the pressure drop over the core height below 0.5 bar hence preserving the decay removal capabilities and decreasing the pin diameter (7.71 mm) in order to keep the linear power below 152 W/cm. The 6. EUROTRANS Integrated Project will be targeting an European Transmutation Demonstrator (ETD) primarily with lead coolant but also with helium coolant (ETD/EFIT of several hundred MWth, EFIT for European Facility on Industrial scale Transmuter) able to transmute Nuclear Waste on a industrial scale with the full set of constraints taken into account. (authors)

  1. Fission Product Transmutation in Mixed Radiation Fields

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Frank [Idaho State Univ., Pocatello, ID (United States); Burgett, Erick [Idaho State Univ., Pocatello, ID (United States); Starovoitova, Valeriia [Idaho State Univ., Pocatello, ID (United States); Tsveretkov, Pavel [Idaho State Univ., Pocatello, ID (United States)

    2015-01-15

    Work under this grant addressed a part of the challenge facing the closure of the nuclear fuel cycle; reducing the radiotoxicity of lived fission products (LLFP). It was based on the possibility that partitioning of isotopes and accelerator-based transmutation on particular LLFP combined with geological disposal may lead to an acceptable societal solution to the problem of management. The feasibility of using photonuclear processes based on the excitation of the giant dipole resonance (GDR) by bremsstrahlung radiation as a cost effective transmutation method was accessed. The nuclear reactions of interest: (γ,xn), (n,γ), (γ,p) can be induced by bremsstrahlung radiation produced by high power electron accelerators. The driver of these processes would be an accelerator that produces a high energy and high power electron beam of ~ 100 MeV. The major advantages of such accelerators for this purpose are that they are essentially available “off the shelf” and potentially would be of reasonable cost for this application. Methods were examined that used photo produced neutrons or the bremsstrahlung photons only, or use both photons and neutrons in combination for irradiations of selected LLFP. Extrapolating the results to plausible engineering scale transmuters it was found that the energy cost for 129I and 99Tc transmutation by these methods are about 2 and 4%, respectively, of the energy produced from 1000MWe.

  2. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth L. Nash; Sue B. Clark; Gregg Lumetta

    2009-09-23

    With increased application of MOX fuels and longer burnup times for conventional fuels, higher concentrations of the transplutonium actinides Am and Cm (and even heavier species like Bk and Cf) will be produced. The half-lives of the Am isotopes are significantly longer than those of the most important long-lived, high specific activity lanthanides or the most common Cm, Bk and Cf isotopes, thus the greatest concern as regards long-term radiotoxicity. With the removal and transmutation of Am isotopes, radiation levels of high level wastes are reduced to near uranium mineral levels within less than 1000 years as opposed to the time-fram if they remain in the wastes.

  3. Fabrication of inert matrices for heterogeneous transmutation. EFTTRA-T2 (RAS 2) irradiation programme

    International Nuclear Information System (INIS)

    This report describes the fabrication of targets containing inert matrices for the heterogeneous transmutation of plutonium and minor actinides. These targets will be irradiated in the EFTTRA-T2 (RAS-2) irradiation programme. The selection, preparation and characterization of the inert matrices and fabrication and loading of the irradiation capsules are discussed. (orig.)

  4. Fluoride reactor for the destruction of actinides from spent nuclear fuel

    International Nuclear Information System (INIS)

    Reactor based on liquid salts (Molten Salt Reactor - MSR) is one of 6 prospective reactors, designed in the Generation IV initiative. Fluoride in the reactor fuel is dissolved in a mixture of fluoride salts. This technology was developed in the fifties and sixties of the twentieth century. New technologies associated with this research include the Brayton cycle, which eliminates several shortcomings related to the historical construction of fluoride reactor, mainly focusing on security. When compared with other reactors, the largest differences are in the MSR that uses less fissionable material and to maintain a controlled nuclear reaction in its radius has only a homogeneous liquid mixture of all the chemical components. (author)

  5. Separations technology development to support accelerator-driven transmutation concepts

    International Nuclear Information System (INIS)

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems

  6. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  7. GCFR Coupled Neutronic and Thermal-Fluid-Dynamics Analyses for a Core Containing Minor Actinides

    Directory of Open Access Journals (Sweden)

    Diego Castelliti

    2009-01-01

    Full Text Available Problems about future energy availability, climate changes, and air quality seem to play an important role in energy production. While current reactor generations provide a guaranteed and economical energy production, new nuclear power plant generation would increase the ways and purposes in which nuclear energy can be used. To explore these new technological applications, several governments, industries, and research communities decided to contribute to the next reactor generation, called “Generation IV.” Among the six Gen-IV reactor designs, the Gas Cooled Fast Reactor (GCFR uses a direct-cycle helium turbine for electricity generation and for a CO2-free thermochemical production of hydrogen. Additionally, the use of a fast spectrum allows actinides transmutation, minimizing the production of long-lived radioactive waste in an integrated fuel cycle. This paper presents an analysis of GCFR fuel cycle optimization and of a thermal-hydraulic of a GCFR-prototype under steady-state and transient conditions. The fuel cycle optimization was performed to assess the capability of the GCFR to transmute MAs, while the thermal-hydraulic analysis was performed to investigate the reactor and the safety systems behavior during a LOFA. Preliminary results show that limited quantities of MA are not affecting significantly the thermal-fluid-dynamics behavior of a GCFR core.

  8. Partitioning and transmutation. Current developments - 2010. A report from the Swedish reference group for PT-research

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, Jan (ed.) (Swedish Centre for Nuclear Technology, SKC, Stockholm (Sweden)); Karlsson, Fred (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Pomp, Stephan (Uppsala Univ., Uppsala, Dept. of Physics and Astronomy, Div. of Applied Nuclear Physics (Sweden)); Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Skarnemark, Gunnar (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden)); Wallenius, Janne; Zakova, Jitka (Reactor Physics Div., Physics Dept., Royal Inst. of Technology, Stockholm (Sweden)); Grenthe, Ingemar; Szabo, Zoltan (School of Chemical Science and Engineering, Royal Inst. of Technology, Stockholm (Sweden))

    2010-01-15

    The research and development on methods for partitioning and transmutation (P and T) of long-lived radionuclides in spent nuclear fuel has attracted considerable interest during the last decade. The main objective of P and T is to eliminate or at least substantially reduce the amount of such long-lived radionuclides that has to go to a deep geological repository for final disposal. The objective of current research on partitioning is to find and develop processes suitable for separation of the heavier actinides (and possibly some long-lived fission products) on an industrial scale. The objective of current research on transmutation is to define, investigate and develop facilities that may be suitable for transmutation of the long-lived radionuclides. The research on partitioning has made important progress in recent years. In some cases one has succeeded to separate americium and curium. Many challenges remain however. Within hydrochemistry one has achieved sufficiently good distribution and separation factors. The focus turns now towards development of an operating process. The search for ligands that give sufficiently good extraction and separation will continue but with less intensity. The emphasis will rather be on improving stability against hydrolysis and radiolysis. This may be achieved either by additives to the solvent or by selection of a proper solvent. The development of processes and equipment must be intensified. Pyrochemical research is looking into methods for recovery of uranium and for separating fission products with large neutron cross sections. The objective is to avoid separation of plutonium from other transuranium elements and thus simplify the proliferation issue. The future work is focused on improved selectivity and on technical development. Design of processes and equipment is difficult due to the aggressive properties of the melts and the relatively high temperatures required. The fabrication of fuel for transmutation and the

  9. Partitioning and transmutation. Current developments - 2010. A report from the Swedish reference group for PT-research

    International Nuclear Information System (INIS)

    The research and development on methods for partitioning and transmutation (P and T) of long-lived radionuclides in spent nuclear fuel has attracted considerable interest during the last decade. The main objective of P and T is to eliminate or at least substantially reduce the amount of such long-lived radionuclides that has to go to a deep geological repository for final disposal. The objective of current research on partitioning is to find and develop processes suitable for separation of the heavier actinides (and possibly some long-lived fission products) on an industrial scale. The objective of current research on transmutation is to define, investigate and develop facilities that may be suitable for transmutation of the long-lived radionuclides. The research on partitioning has made important progress in recent years. In some cases one has succeeded to separate americium and curium. Many challenges remain however. Within hydrochemistry one has achieved sufficiently good distribution and separation factors. The focus turns now towards development of an operating process. The search for ligands that give sufficiently good extraction and separation will continue but with less intensity. The emphasis will rather be on improving stability against hydrolysis and radiolysis. This may be achieved either by additives to the solvent or by selection of a proper solvent. The development of processes and equipment must be intensified. Pyrochemical research is looking into methods for recovery of uranium and for separating fission products with large neutron cross sections. The objective is to avoid separation of plutonium from other transuranium elements and thus simplify the proliferation issue. The future work is focused on improved selectivity and on technical development. Design of processes and equipment is difficult due to the aggressive properties of the melts and the relatively high temperatures required. The fabrication of fuel for transmutation and the

  10. Current Status of the Transmutation Reactor Technology and Preliminary Evaluation of Transmutation Performance of the KALIMER Core

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ser Gi; Sim, Yoon Sub; Kim, Yeong Il; Kim, Young Gyum; Lee, Byung Woon; Song, Hoon; Lee, Ki Bog; Jang, Jin Wook; Lee, Dong Uk

    2005-08-15

    Recently the most countries using the nuclear power plants for electricity generation have been faced with the problem of the preparation of the repository for the disposition of the nuclear waste generated from LWR. It was well-known that the issues related with long term risk of the radioactive wastes for the future generations are due only to 1% of the total waste. This small fraction of 1% consists of transuranic (TRU) nuclides such as Pu, Np, Am, Cm and the long lived fission products such as Tc and I. For the transuranic (TRU) nuclides, their half lives range from several years to several hundred thousands years and hence their radioactive toxicity can be lasted over very long time period. This has made the change of the rule of the fast spectrum reactor from the economical use of uranium resource through breeding to the reduction of the nuclear waste through the transmutation. The purpose of this study is to obtain the basic knowledge on the nuclear transmutation technology and to suggest the technical solution ways for the future technology development and enhancement through a survey of the state-of-art of the international research on the nuclear transmutation. The increase of the transmutation rate requires the reduction of the breeding ratio. In fact, the transmutation rate is determined by the breeding ratio. The reduction of the breeding ratio can be achieved by reducing the U-238 content in fuel or increasing the neutron leakage through core boundary or absorbing the neutrons by using some absorbers. However, the reduction of the U-238 content results in the degradation of the fuel Doppler coefficient that is one of the most important safety-related parameters and the reduction of the effective delayed neutron fraction that is related with the controllability of the reactor core. Also, the increase of the transmutation rate can lead to the increase of the coolant void reactivity worth unless some ways to reduce the coolant void reactivity are not

  11. Heterogeneous Transmutation Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Bays

    2007-09-01

    The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even neutron number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both non-flattened and flattened core geometries. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of comparable size. A mass balance analysis revealed that the heterogeneous design may reduce the number of fast reactors needed to close the current once-through light water reactor fuel cycle.

  12. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    OpenAIRE

    Cassayre, Laurent; Soucek, Pavel; Mendes, Eric; Malmbeck, Rikard; Nourry, Christophe; Eloirdi, Rachel; Glatz, Jean-Paul

    2011-01-01

    Pyrochemical processes in molten LiCl–KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide–aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorina...

  13. Proceedings of the specialists' meeting on accelerator-based transmutation

    International Nuclear Information System (INIS)

    The meeting was organised under the auspices of OECD Nuclear Agency's International Information Exchange Programme on Actinide and Fission Product Partitioning and Transmutation. In the original announcement for the meeting the following sessions were proposed: 1) Concepts of accelerator-based transmutation systems, 2) Nuclear design problems of accelerator-based transmutation systems with emphasis on target facilities and their interfaces with accelerators, 3) Data and methods for nuclear design of accelerator-based transmutation systems, 4) Related cross-section measurements and integral experiments, 5) Identification of discrepancies and gaps and discussion of desirable R+D and benchmark activities. Due to the large number of papers submitted it was necessary to split session 2 into two parts and to reassign some papers in order to balance the sessions more evenly. No papers were submitted for session 5 and this was replaced by a summary and general discussion session. These proceedings contain all 30 papers in the order they were presented at the meeting. They are copies of the duplication-ready versions given to us during or shortly after the meeting. In the Table of Contents, the papers are listed together with the name of the presenter. (author) figs., tabs., refs

  14. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group

    International Nuclear Information System (INIS)

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD and D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years

  15. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  16. Transmutation of nuclear waste with a low-aspect-ratio Tokamak neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; Moon, Se Youn [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-10-15

    The transmutation characteristics of transuranics (TRUs) in a transmutation reactor based on a LAR (Low-aspect-ratio) tokamak as a neutron source are investigated. The optimum radial build of a transmutation reactor is found by using a coupled analysis of the tokamak systems and the neutron transport. The dependences of the transmutation characteristics on the aspect ratio A in the range of 1.5 to 2.5 and on the fusion power in the range of 150 to 500 MW are investigated. An equilibrium fuel cycle is developed for effective transmutation, and show that with one unit of the transmutation reactor based on the LAR tokamak producing fusion power in the range of a few hundred MWs, up to 3 PWRs (1.0 GWe capacity) can be supported with a burn-up fraction larger than 50%.

  17. Transmutation of nuclear waste with a low-aspect-ratio tokamak neutron source

    Science.gov (United States)

    Hong, Bong Guen; Moon, Se Youn

    2014-10-01

    The transmutation characteristics of transuranics (TRUs) in a transmutation reactor based on a LAR (Low-aspect-ratio) tokamak as a neutron source are investigated. The optimum radial build of a transmutation reactor is found by using a coupled analysis of the tokamak systems and the neutron transport. The dependences of the transmutation characteristics on the aspect ratio A in the range of 1.5 to 2.5 and on the fusion power in the range of 150 to 500 MW are investigated. An equilibrium fuel cycle is developed for effective transmutation, and show that with one unit of the transmutation reactor based on the LAR tokamak producing fusion power in the range of a few hundred MWs, up to 3 PWRs (1.0 GWe capacity) can be supported with a burn-up fraction larger than 50%.

  18. Neutron dynamics of fast-spectrum dedicated cores for waste transmutation; Etude et amelioration du comportement cinetique de coeurs rapides a la transmutation de dechets a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    Massara, S

    2002-04-01

    Among different scenarios achieving minor actinide transmutation, the possibility of double strata scenarios with critical, fast spectrum, dedicated cores must be checked and quantified. In these cores, the waste fraction has to be at the highest level compatible with safety requirements during normal operation and transient conditions. As reactivity coefficients are poor in such critical cores (low delayed neutron fraction and Doppler feed-back, high coolant void coefficient), their dynamic behaviour during transient conditions must be carefully analysed. Three nitride-fuel configurations have been analysed: two liquid metal-cooled (sodium and lead) and a particle-fuel helium-cooled one. A dynamic code, MAT4 DYN, has been developed during the PhD thesis, allowing the study of loss of flow, reactivity insertion and loss of coolant accidents, and taking into account two fuel geometries (cylindrical and spherical) and two thermal-hydraulics models for the coolant (incompressible for liquid metals and compressible for helium). Dynamics calculations have shown that if the fuel nature is appropriately chosen (letting a sufficient margin during transients), this can counterbalance the bad state of reactivity coefficients for liquid metal-cooled cores, thus proving the interest of this kind of concept. On the other side, the gas-cooled core dynamics is very badly affected by the high value of the helium void coefficient (which is a consequence of the choice of a hard spectrum), this effect being amplified by the very low thermal inertia of particle-fuel design. So, a new kind of concept should be considered for a helium-cooled fast-spectrum dedicated core. (authors)

  19. U.S. Study on Impacts of Heterogeneous Recycle in Fast Reactors on Overall Fuel Cycle

    International Nuclear Information System (INIS)

    A study in the United States has evaluated attributes of the heterogeneous recycle approach for plutonium and minor actinides transmutation in fast reactor fuel cycles, with comparison to the homogeneous recycle approach where pertinent. The work investigated the characteristics, advantages and disadvantages of the approach in the overall fuel cycle, including reactor transmutation, systems and safety impacts, fuel separations and fabrication issues, and proliferation risk and transportation impacts. For this evaluation, data from previous and ongoing national studies on heterogeneous recycle were reviewed and synthesized. Where useful, information from international sources were included in the findings. The intent of the work was to provide a comprehensive assessment of the heterogeneous recycle approach at the current time. (author)

  20. Proposed Fuel Pin Irradiation Facilities for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    The Global Nuclear Energy Partnership (GNEP) is proposing to develop a sodium-cooled fast-spectrum reactor (SFR) to transmute and consume actinides from spent nuclear fuel. The proposed fuels include metal and oxide mixed actinides (U-Np-Pu-Am-Cm) as well as target concepts with perhaps only Am-Cm. The High Flux Isotope Reactor was built for the purpose of transmuting plutonium to various higher actinides including Am, Cm, and Cf. Since a fast-spectrum irradiation facility does not exist in the United States, HFIR can fulfill a first step in the GNEP mission; that being to establish a near-term capability to irradiate materials in a fast neutron spectrum in addition to efforts to gain access to international facilities through partnering arrangements. Modifications to the HFIR central target region to accomplish this goal are described. A second on-going project for HFIR is to design capsules and installation tools and procedures to irradiate short rods of innovative nuclear fuel types and cladding materials under prototypic LWR operating conditions at an accelerated rate relative to expected reactor performance. This second proposal would be for a facility representative of thermal reactor conditions rather than the GNEP concept. In order to maintain power densities within the fuel at levels normally seen by LWR reactors, an entirely new experiment and test capsule design will be needed than has been available in the past

  1. Proposed fuel pin irradiation facilities for the high flux isotope reactor

    International Nuclear Information System (INIS)

    The Global Nuclear Energy Partnership (GNEP) is proposing to develop a sodium-cooled fast-spectrum reactor (SFR) to transmute and consume actinides from spent nuclear fuel. The proposed fuels include metal and oxide forms mixed actinides (U-Np-Pu-Am-Cm) as well as target concepts with perhaps both Am-Cm. The High Flux Isotope Reactor (HFIR) was built for the purpose of transmuting plutonium to various higher actinides including Am, Cm, and Cf Since a fast-spectrum irradiation facility does not exist in the United States, HFIR can fulfill a first step in the GNEP- mission that being to establish a near-term domestic capability to irradiate materials in a fast neutron spectrum. Modifications to the HFIR central target region to accomplish this goal are described. A second ongoing project for HFIR is to design capsules and installation tools and procedures to irradiate short rods of innovative nuclear fuel types and cladding materials under prototypic light water reactor (LWR) operating conditions at an accelerated rate relative to expected reactor performance. This second proposal would be for a facility representative of thermal reactor conditions rather than the GNEP concept. In order to maintain power densities within the fuel at levels normally seen by LWR reactors, an entirely new experiment and test capsule design will be needed. (authors)

  2. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    International Nuclear Information System (INIS)

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  3. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  4. Recovering actinide values

    International Nuclear Information System (INIS)

    Actinide values are recovered from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorus extractants such as tri-n butyl phosphate (TBP) and dihexyl-N, N-diethyl carbamylmethylene phosphonate (DHDECMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant can be recycled after stripping the degradation products with a neutral sodium carbonate solution. (author)

  5. Actinides record, power calculations and activity for present isotopes in the spent fuel of a BWR; Historial de actinidos y calculos de potencia y actividad para isotopos presentes en el combustible gastado de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez C, P.; Ramirez S, J. R.; Lucatero, M. A., E-mail: pastor.enriquez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    The administration of spent fuel is one of the more important stages of the nuclear fuel cycle, and this has become a problem of supreme importance in countries that possess nuclear reactors. Due to this in this work, the study on the actinides record and present fission products to the discharge of the irradiated fuel in a light water reactor type BWR is shown, to quantify the power and activity that emit to the discharge and during the cooling time. The analysis was realized on a fuel assembly type 10 x 10 with an enrichment average of 3.69 wt % in U-235 and the assembly simulation assumes four cycles of operation of 18 months each one and presents an exposition of 47 G Wd/Tm to the discharge. The module OrigenArp of the Scale 6 code is the computation tool used for the assembly simulation and to obtain the results on the actinides record presents to the fuel discharge. The study covers the following points: a) Obtaining of the plutonium vector used in the fuel production of mixed oxides, and b) Power calculation and activity for present actinides to the discharge. The results presented in this work, correspond at the same time immediate of discharge (0 years) and to a cooling stage in the irradiated fuel pool (5 years). (Author)

  6. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  7. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  8. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    OpenAIRE

    Soucek, Pavel; Cassayre, Laurent; Eloirdi, Rachel; Malmbeck, Rikard; Meier, Roland; Nourry, Christophe; Claux, Benoit; Glatz, Jean-Paul

    2014-01-01

    International audience; A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillatio...

  9. Alpha particle spectroscopy — A useful tool for the investigation of spent nuclear fuel from high temperature gas-cooled reactors

    Science.gov (United States)

    Helmbold, M.

    1984-06-01

    For more than a decade, alpha particle spectrometry of spent nuclear fuel has been used at the Kernforschungsanlage Jülich (KFA) in the field of research for the German high temperature reactor (HTR). Techniques used for the preparation of samples for alpha spectrometry have included deposition from aqueous solutions of spent fuel, annealing of fuel particles in an oven and the evaporation of fuel material by a laser beam. The resulting sources are very thin but of low activity and the alpha spectrometry data obtained from them must be evaluated with sophisticated computer codes to achieve the required accuracy. Measurements have been made on high and low enriched uranium fuel and on a variety of parameters relevant to the fuel cycle. In this paper the source preparation and data evaluation techniques will be discussed together with the results obtained to data, i.e. production of alpha active actinide isotopes, correlations between actinide isotopes and fission products, build up and transmutation of actinides during burn-up of HTR fuel, diffusion coefficients of actinides for fuel particle kernels and coating materials. All these KFA results have helped to establish the basis for the design, licensing and operation of HTR power plants, including reprocessing and waste management.

  10. Actinides(3)/lanthanides(3) separation by nano-filtration assisted by complexation; Separation actinides(3)lanthanides(3) par nanofiltration assistee par complexation

    Energy Technology Data Exchange (ETDEWEB)

    Sorin, A

    2006-07-01

    In France, one of the research trend concerning the reprocessing of spent nuclear fuel consists to separate selectively the very radio-toxic elements with a long life to be recycled (Pu) or transmuted (Am, Cm, Np). The aim of this thesis concerns the last theme about actinides(III)/lanthanides(III) separation by a process of nano-filtration assisted by complexation. Thus, a pilot of tangential membrane filtration was designed and established in a glove box at the ATALANTE place of CEA-Marcoule. Physico-chemical characterisation of the Desal GH membrane (OSMONICS), selected to carry out actinides(III)/lanthanides(III) separation, was realized to determine the zeta potential of the active layer and its resistance to ionizing radiations. Moreover, a parametric study was also carried out to optimize the selectivity of complexation, and the operating conditions of complex retention (influences of the transmembrane pressure, solute concentration, tangential velocity and temperature). Finally, the separation of traces of Am(III) contained in a mixture of lanthanides(III), simulating the real load coming from a reprocessing cycle, was evaluated with several chelating agents such as poly-amino-carboxylic acids according to the solution acidity and the [Ligand]/[Cation(III)] ratio. (author)

  11. Overview of the French R&D program for the development of minor actinides separation processes

    International Nuclear Information System (INIS)

    After the scientific and technical feasibility demonstration on 15kg of spent fuel of the Am+Cm separation by DIAMEX-SANEX process, CEA has launched in the framework of the law 2006 R&D program aimed to improve and optimize the minor actinides separation processes for the different recycling modes: • GANEX process for recycling the MA (Np, Am et Cm) with plutonium in the fast reactor core in an homogeneous recycling route; • SANEX-TODGA process for the separation of americium and curium for the heterogeneous transmutation route in the fast reactor blankets; • EXAm process for the separation of the sole americium for the transmutation in heterogeneous concept in dilution on uranium support (UAmO2). Furthermore, additional studies were performed to enlarge the results towards the by-process for the management of the effluents and the development of piloting tool. The demonstration on the genuine solutions of the feasibility of these various separation processes were carried out in the Atalante CBP hot cell between 2008 and 2010 and the main results will be presented. (author)

  12. SABR fusion-fission hybrid transmutation reactor design concept

    Science.gov (United States)

    Stacey, Weston

    2009-11-01

    A conceptual design has been developed for a sub-critical advanced burner reactor (SABR) consisting of i) a sodium cooled fast reactor fueled with the transuranics (TRU) from spent nuclear fuel, and ii) a D-T tokamak fusion neutron source based on ITER physics and technology. Subcritical operation enables more efficient transmutation fuel cycles in TRU fueled reactors (without compromising safety), which may be essential for significant reduction in high-level waste repository requirements. ITER will serve as the prototype for the fusion neutron source, which means SABRs could be implemented to help close the nuclear fuel cycle during the 2^nd quarter of the century.

  13. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  14. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  15. Status of nuclear data for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  16. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    International Nuclear Information System (INIS)

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  17. 1. round table - Spent fuels composition. Back-end of the fuel cycle and reprocessing, plutonium and other nuclear materials management. 2. round table - Separation-transmutation. 3. round table - Scenarios for a long term inventory of nuclear materials and wastes; 1. table ronde - La composition des combustibles uses. L'aval du combustible et le retraitement, la gestion du plutonium et des autres matieres nucleaires. 2. table ronde - Separation-transmutation. 3. table ronde - Scenarii pour un inventaire des matieres et des dechets nucleaires a LT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Paris on the reprocessing of spent fuels. Three aspects are discussed: the risks linked with the recovery of valorizable materials, the economical viability of the separation/transmutation option, and the future of the nuclear option in the French energy policy. Six presentations (transparencies) are attached with these proceedings which treat of: the reprocessing/recycling to the test, perspectives of future wastes, present day wastes/valorizable materials and future scenarios, critical analysis scenarios, why reprocessing spent fuels?, processing of spent fuels and recycling, separation and transmutation of long-lived radioactive wastes, thorium-uranium cycle. (J.S.)

  18. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  19. Chemical compatibility of HLW borosilicate glasses with actinides

    International Nuclear Information System (INIS)

    During liquid storage of HLLW the formation of actinide enriched sludges is being expected. Also during melting of HLW glasses an increase of top-to-bottom actinide concentrations can take place. Both effects have been studied. Besides, the vitrification of plutonium enriched wastes from Pu fuel element fabrication plants has been investigated with respect to an isolated vitrification process or a combined one with the HLLW. It is shown that the solidification of actinides from HLLW and actinide waste concentrates will set no principal problems. The leaching of actinides has been measured in salt brine at 230C and 1150C. (orig.)

  20. Actinide recycle in LMFBRs as a waste management alternative

    Energy Technology Data Exchange (ETDEWEB)

    Beaman, S.L.

    1979-08-21

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs.

  1. A compact Tokamak transmutation reactor

    Institute of Scientific and Technical Information of China (English)

    QiuLi-Jian; XiaoBing-Jia

    1997-01-01

    The low aspect ration tokamak is proposed for the driver of a transmutation reactor.The main parameters of the reactor core,neutronic analysis of the blanket are given>the neutron wall loading can be lowered from the magnitude order of 1 MW/m2 to 0.5MW/m2 which is much easier to reach in the near future,and the transmutation efficiency (fission/absorption ratio)is raised further.The blanket power density is about 200MW/m3 which is not difficult to deal with.The key components such as diverter and center conductor post are also designed and compared with conventional TOkamak,Finally,by comparison with the other drivers such as FBR,PWR and accelerator,it can be anticipated that the low aspect ratio transmutation reactor would be one way of fusion energy applications in the near future.

  2. Actinides(3)/lanthanides(3) separation by nano-filtration assisted by complexation

    International Nuclear Information System (INIS)

    In France, one of the research trend concerning the reprocessing of spent nuclear fuel consists to separate selectively the very radio-toxic elements with a long life to be recycled (Pu) or transmuted (Am, Cm, Np). The aim of this thesis concerns the last theme about actinides(III)/lanthanides(III) separation by a process of nano-filtration assisted by complexation. Thus, a pilot of tangential membrane filtration was designed and established in a glove box at the ATALANTE place of CEA-Marcoule. Physico-chemical characterisation of the Desal GH membrane (OSMONICS), selected to carry out actinides(III)/lanthanides(III) separation, was realized to determine the zeta potential of the active layer and its resistance to ionizing radiations. Moreover, a parametric study was also carried out to optimize the selectivity of complexation, and the operating conditions of complex retention (influences of the transmembrane pressure, solute concentration, tangential velocity and temperature). Finally, the separation of traces of Am(III) contained in a mixture of lanthanides(III), simulating the real load coming from a reprocessing cycle, was evaluated with several chelating agents such as poly-amino-carboxylic acids according to the solution acidity and the [Ligand]/[Cation(III)] ratio. (author)

  3. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137Cs, 90Sr, 129I, 99Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm3 are required for a practical fusion-based fission product transmutation system

  4. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth L. Nash

    2009-09-22

    Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am and Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their

  5. The Transmuted Inverse Exponential Distribution

    Directory of Open Access Journals (Sweden)

    Pelumi Oguntunde

    2014-12-01

    Full Text Available This article introduces a two-parameter probability model which represents another generalization of the Inverse Exponential distribution by using the quadratic rank transmuted map. The proposed model is named Transmuted Inverse Exponential (TIE distribution and its statistical properties are systematically studied. We provide explicit expressions for its moments, moment generating function, quantile function, reliability function and hazard function. We estimate the parameters of the TIE distribution using the method of maximum likelihood estimation (MLE. The hazard function of the model has an inverted bathtub shape and we propose the usefulness of the TIE distribution in modeling breast cancer and bladder cancer data sets.

  6. Accelerator transmutation studies at Los Alamos with LAHET, MCNP, and CINDER`90

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, W.B.; England, T.R.; Arthur, E.D. [and others

    1993-09-01

    Versions of the CINDER code have been used over three decades for determination of reactor fuel inventories and aggregate neutron absorption and radioactive decay properties. The CINDER`90 code, an evolving version which requires no predetermined nuclide chain structure, is suitable for a wider range of transmutation problems including those treated with older versions. In recent accelerator transmutation studies, the CINDER`90 code has been linked with the LAHET Code System (LCS) and, for high-energy calculations, with SUPERHET. A description of the nature of these linked calculational tools is given; data requirements for the transmutation studies are described; and, examples of linked calculations are described for some interesting accelerator applications.

  7. Plutonium and minor actinides management in thermal high - temperature reactors - the EU FP6 project puma

    International Nuclear Information System (INIS)

    The High Temperature gas-cooled Reactor (HTR) can fulfil a very useful niche for the purposes of Pu and Minor Actinide (MA) incineration due to its unique and unsurpassed safety features, as well as to the attractive incentives offered by the nature of the coated particle (CP) fuel. No European reactor of this type is currently available, but there has been, and still is, considerable interest internationally. Decisions to construct such a reactor in China and in South Africa have already been made or are about to be made. Apart from the unique and unsurpassed safety features offered by this reactor type, the nature of the CP fuel offers a number of attractive characteristics. In particular, it can withstand burn-ups far beyond that in either LWR or FR systems. Demonstrations as high as 75% FIMA have been achieved. The coated particle itself offers significantly improved proliferation resistance, and finally with a correct choice of the kernel composition, it can be a very effective support for direct geological disposal of the fuel. The overall objective of the PUMA project, a Specific Targeted Research Project (STREP) within the European Union 6th Framework (EU FP6), is to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO2-free energy generation. A number of important issues concerning the use of Pu and MA in gas-cooled reactors have already been dealt with in other projects, or are being treated in ongoing projects, e.g. as part of EU FP6. However, further steps are required to demonstrate the potential of HTRs as Pu/MA transmuters based on realistic/feasible designs of CP Pu/MA fuel and the PUMA focuses on necessary

  8. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Gohar, Y. (Nuclear Engineering Division)

    2011-11-04

    systems consume about 1.2 tons of actinides per year and produce 3 GW thermal power, with a proton beam power of 25 MW. Total MA fuel that would be consumed in the first 10 years of operation is 9.85, 11.80, or 12.68 tons, respectively, for the systems with 5, 7, or 10% actinide fuel particles loaded in the LBE. The corresponding annual MA fuel transmutation rate after reaching equilibrium at 10 years of operation is 0.83, 0.94, or 1.02 tons/year, respectively. Assuming that the ADS systems can be operated for 35 full-power years, the total MAs consumed in the three ADS systems are 30.6, 35.3, and 37.2 tons, respectively. For the three configurations, it is estimated that 3.8, 3.3, or 3.1 ADS system units are required to utilize the entire 115 tons of MA fuel in the SNF inventory, respectively.

  9. ACSEPT, a European project for a new step in the future demonstration of advanced fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, S. [CEA Marcoule 30 (France); Hill, C. [CEA Saclay, 91 - Gif sur Yvette (France); Caravaca, C.; Espartero, A. [Ciemat, Madrid (Spain); Rhodes, C.; Taylor, R.; Harrison, M. [National Nuclear Laboratory (United Kingdom); Geist, A. [Fachinformationszentrum Karlsruhe - INE (Germany); Modolo, G. [Forschungszentrum Juelich - FZJ (Germany); Cassayre, L. [Centre National de la Recherche Scientifique (CNRS), 91 - Orsay (France); Malmbeck, R. [Joint Research Centre (JRC) - Institute for Transuranium Elements (ITU) (Germany); De Angelis, G. [ENEA, Bologna (Italy); Bouvet, S. [Alcan, 92 - Courbevoie (France); Klaassen, F. [Nuclear Research and consultancy Group (NRG) (Netherlands); Ekber, C.

    2010-11-15

    Partitioning and transmutation, associated to a multi-recycling of all transuranics should play a key role in the development of sustainable nuclear energy. By joining together 34 partners coming from European universities, nuclear research laboratories and major industrial players, in a multi-disciplinary consortium, the FP7-Euratom-Fission collaborative project ACSEPT (Actinide recycling by separation and transmutation), provides the sound basis and future improvements for future demonstrations of fuel treatment in strong connection with fuel fabrication techniques. ACSEPT is organized into 3 technical domains: 1) selecting and optimizing mature aqueous separation processes (Diamex-Sanex, Ganex); 2) high temperature pyrochemical separation processes, and 3) carrying out engineering and systems studies on hydro- and pyro-chemical processes to prepare for future demonstration at a pilot level. After 2 years of work, 2 successful hot-tests were performed in hydrometallurgy, validating the Sanex and i-Sanex routes. Efforts are now devoted to the Ganex concept. Progress was also made in fuel dissolution and fuel re-fabrication. In pyrometallurgy, promising routes are almost demonstrated for the actinide recovery from aluminium. (A.C.)

  10. Advanced aqueous reprocessing in P and T strategies: process demonstrations on genuine fuels and targets

    Energy Technology Data Exchange (ETDEWEB)

    Satmark, B.; Apostolidis, C.; Courson, O.; Malmbeck, R.; Carlos, R.; Pagliosa, G.; Romer, K.; Glatz, J.P. [European Commission, DG-JRC, Institute for Transuranium Elements, Hot Cell Technology, Karlsruhe (Germany)

    2000-07-01

    In the present work the performance of several processes used for advanced reprocessing of commercial LWR fuels as well as transmutation targets is compared. As a first step uranium and plutonium were recovered by PUREX type reprocessing. The raffinate, containing fission products, lanthanides and the minor actinides (MA) were used as feed for the second step in which minor actinides and lanthanides were separated from the bulk of the fission products. The five different processes tested use CMPO, DIDPA, TRPO, Diamide and CYANEX 923 as extractant. In the third step MA are separated from lanthanides. Here three processes were tested, i.e. using CYANEX 301, the synergistic mixture of di-chloro substituted CYANEX 301 and TOPO, and BTP solvents. Column-, batch- and continuous counter-current extraction techniques were used for the tests. The different processes will be described and discussed in terms of performances and efficiencies for Am and Cm. Efficient separation of MA from different genuine fuel solutions could be demonstrated and thereby also the possibility of closing a future transmutation fuel cycle. The combination, Diamide and BTP was found to be the best among extractants tested to achieve an efficient MA recovery from spent fuel. (authors)

  11. Advanced aqueous reprocessing in P and T strategies: process demonstrations on genuine fuels and targets

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, B.; Apostolidis, C.; Carlos, R.; Courson, O.; Glatz, J.P.; Malmbeck, R.; Pagliosa, G.; Roemer, K.; Serrano-Purroy, D. [European Commission, JRC, Inst. for Transuranium Elements, Karlsruhe (Germany)

    2004-07-01

    In the present work the performance of several processes used for advanced reprocessing of commercial LWR fuels as well as transmutation targets is compared. As a first step uranium and plutonium were recovered by PUREX type reprocessing. The raffinate, containing fission products including lanthanides and the minor actinides (MA) was used as feed for the second step in which minor actinides and lanthanides were separated from the bulk of the fission products. The five different processes tested use CMPO, DIDPA, TRPO, diamide and CYANEX 923 as extractants. In the third step MA are separated from lanthanides. Here three processes were tested, i.e. using CYANEX 301, the synergistic mixture of di-chloro substituted CYANEX 301 and TOPO, and BTP solvents. Column-, batch- and continuous counter-current extraction techniques were used for the tests. The different processes will be described and discussed in terms of performances and efficiencies for Am and Cm separation. Efficient separation of MA from different genuine fuel solutions could be demonstrated and thereby also the possibility of closing a future transmutation fuel cycle. The combination of diamide and BTP seems to be the best, among extractants tested, to achieve an efficient MA recovery from spent fuel. (orig.)

  12. Neutron transmutation doped Ge bolometers

    Science.gov (United States)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  13. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  14. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs

  15. Conceptual study on high performance dual-cooled blanket in a spherical tokamak fusion-driven transmuter

    International Nuclear Information System (INIS)

    A preliminary conceptual design of high performance dual-cooled blanket in a spherical tokamak fusion-driven transmuter has been proposed based on the core D-T plasma parameter level achieved or to be achieved in the near future. The calculation shows that this kind of blanket is tritium self-sustainable and could safely transmute the long-lived actinides produced by 102 GWe·year PWRs, with several tons of fission products per year and 11600 MW thermal power output

  16. Physical and chemical feasibility of fueling molten salt reactors with TRU's trifluorides

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V.; Feinberg, O.; Konakov, S.; Subbotine, S.; Surenkov, A.; Zakirov, R. [Kurchatov Institute, RRC, Moscow (Russian Federation)

    2001-07-01

    The molten salt reactor (MSR) concept is very important for consideration as an element of future nuclear energy systems. These reactor systems are unique in many ways. Particularly, the MSRs appear to have substantial promise not only as advanced TRU free system operating in U-Th cycle, but also as transmuter of TRU. Physical and chemical feasibility of fueling MSR with TRU trifluorides is examined. Solvent compositions with and without U-Th as fissile / fertile addition are considered. The principle reactor and fuel cycle variables available for optimizing the performance of MSR as TRU transmuting system are discussed. These efforts led to the definition in minimal TRU mass flow rate, reduced total losses to waste and maximum possible burn up rate for the molten salt transmuter. The current status of technology and prospects for revisited interest are summarized. Significant chemical problems are remain to be resolved at the end of prior MSRs programs, notably, graphite life durability, tritium control, fate of noble metal fission products. Questions arising from plutonium and minor actinide fueling include: corrosion and container chemistry, new redox buffer for systems without uranium, analytical chemistry instrumentation, adequate constituent solubilities, suitable fuel processing and waste form development. However these problems appear to be soluble. (author)

  17. Analytical approach to the evaluation of nuclide transmutations

    International Nuclear Information System (INIS)

    Analytical approach to the evaluation of nuclide concentrations in a transmutation chain is presented. Non singular Bateman coefficients and depletion functions are used to overcome numerical difficulties when applying well-known Bateman solution of a simple radioactive decay. Method enables evaluation of complete decay chains without elimination of short lived radionuclides. It is efficient and accurate. Practical application of the method is demonstrated by computing the neptunium series inventory in used Candu TM fuel. (author)

  18. Actinide chemistry in ionic liquids.

    Science.gov (United States)

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

  19. Fabrication of rare-earth bearing fuel slug by injection casting method

    International Nuclear Information System (INIS)

    Herein, U.10wt%Zr fuel slugs containing 0, 3, and 7 wt%RE were prepared by an injection casting method and their characteristics were evaluated. The as-cast fuel slugs were generally sound and fabricated to the full length of the mold. However, the increased amount of the charged RE noticeably deteriorated the quality of the casting components such as melting crucible. Chemical analysis of the U.10Zr and U.10Zr.3RE slugs showed that the target composition was matched to within 1.0 wt%. In contrast, the composition of the U.10Zr.7RE fuel slug differed by as much as 4.6 wt% from the target. Therefore, more protective casting variables should be considered, when casting high RE-bearing fuel slugs. KAERI seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes in spent nuclear fuel into shorter-lived fission products

  20. Sustainability of the Chinese nuclear expansion: Natural uranium resources availability, Pu cycle, fuel utilization efficiency and spent fuel management

    International Nuclear Information System (INIS)

    Highlights: • We simulated 4 different future nuclear fuel cycle scenarios. • The ADS and FRs impact on the future Chinese nuclear fuel cycle is studied. • The partition and transmutation option is compared against the simple reprocessing. • The U requirement, Pu flow and MA cycle are key aspects for decision makers. - Abstract: The civil nuclear energy deployment in China is important for future “Nuclear Renaissance” of China and worldwide. Compared to the other nations that developed their nuclear power energy system in last century, China can take advantage of the research and mistakes made by those states in relation to the back-end of the nuclear fuel cycle (NFC). The spent fuel accumulated by decades of operations of civil nuclear power is today a big burden for the industry. China must carefully plan the NFC for a sustainable development of the nuclear energy with special consideration to close the fuel cycle. The present paper addresses the NFC options and implications of a LWR scenario development and of a fast reactor park developed after 2035 and 2050, and covers the historical development of nuclear energy in China (i.e. from the first criticality of the first reactor) to the year 2100. The paper studies the partition and transmutation strategy with the use of accelerator driven system (ADS) to burn the minor actinides (MA) to understand the ADS impact on the NFC and to estimate the number and the necessary deploying schedule of the ADS reactors to limit the minor actinides stock build up. The other aspects taken into consideration for the comparison of the different scenarios are the natural uranium resourced used, the efficiency of fuel utilization, the proliferation and diversion risks associated to each scenario and the overall spent fuel production and flow. The code INFCIS developed by the International Atomic Energy Agency (IAEA) is used in the present study

  1. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137Cs, 90Sr, 129I, 99Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  2. Analysis of Spent Fuel Characteristics in Different Scenarios of Closing the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Calculation analysis of the isotope and radiation-migration characteristics of spent nuclear fuel (SNF) in the open fuel cycle of thermal reactor VVER-1000 and in closed cycle of fast reactor with lead-bismuth coolant has been fulfilled. Effects of including an accelerator-driven system (ADS) into the system for transmutation of minor actinides (MA) into the cycles studied on the SNF characteristics has been reviewed. The application of ADS-burner of MA symbiotically with operating VVER-1000 reactors has been shown to decrease the high-level wastes’ activity approximately 20 times within the interval from the end of cooling in reactor to 105 years; in this case the principle of radiation-migration balance of activity in the underground burial for ~500 years is met as well. The calculation analysis gives grounds to conclude that the use of ADS for burning minor actinides in closed fuel cycle of fast reactors with lead-bismuth coolant, where U, Pu, and MA are recycled, with natural uranium as a makeup fuel, does not provide any special advantages in terms of radiation and migration characteristics of spent fuel and its wastes. (author)

  3. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  4. The lanthanides and actinides

    International Nuclear Information System (INIS)

    This paper relates the chemical properties of the actinides to their position in the Mendeleev periodic system. The changes in the oxidation states of the actinides with increasing atomic number are similar to those of the 3d elements. Monovalent and divalent actinides are very similar to alkaline and alkaline earth elements; in the 3+ and 4+ oxidation states they resemble d elements in the respective oxidation states. However, in their highest oxidation states the actinides display their individual properties with only a slight resemblance to d elements. Finally, there is a profound similarity between the second half of the actinides and the first half of the lanthanides

  5. Fabrication of targets for transmutation of americium : synthesis of inertial matrix by sol-gel method. Procedure study on the infiltration of a radioactive solutions

    International Nuclear Information System (INIS)

    Transmutation and incineration are innovative options in the management and disposal of fission products and actinides. nevertheless, the fabrication of targets for transmutation and incineration of actinides and fission products require a reconsideration of conventional processes (mechanical blending) and the development of new procedures compatible with the high activity of these materials. This work presents th R and D of a new fabrication method called INRAM (Infiltration of Radioactive Materials) based on the infiltration of an actinide solution in a porous non radiotoxic material in the form of a pellet (up to 12% An), or beads (up to 40% An) produced by sol-gel. The first method have been used for the fabrication of spinel (MgAl2O4) targets containing 11% Am, which have been irradiated in HFR-Petten (358.4 full power days). Post-test burn-up calculations showed that at the end of the irradiation the initial Am-241 concentration was reduced to 4%. The fraction of the initial americum atoms that have been fissioned is 28%. The main advantage of the INRAM method is that matrices with low or zero activity can be fabricated and formed into the required shape in an unshielded facility. This method offers other advantages over conventional ones, such as the active wastes are reduced, is easy to automate, adoptable to telemanipulation and dust free, which facilitate operator intervention and minimise radiation exposure to the personal. In addition, the infiltrant needs only be present in liquid form, i. e. it could be transferred directly from the reprocessing plant for fabrication into targets without conversion into-solid form. In order to optimise the infiltration process in depth investigations of all important process parameters, e. g. infiltration kinetics and metal (pu, Am) concentration in the feed solution, and also on extensive study or powder metallurgy parameters for the preparation of high quality fuel pellets with a high density, have been made. In

  6. Distribution of actinides in SFR1; Aktinidfoerdelning i SFR1

    Energy Technology Data Exchange (ETDEWEB)

    Ingemansson, Tor [ALARA Engineering, Skultuna (Sweden)

    2000-02-01

    The amount of actinides in the Swedish repository for intermediate level radioactive wastes has been estimated. The sources for the actinides are mainly the purification filters of the reactors and the used fuel pools. Defect fuel elements are the originating source of the actinides. It is estimated that the 12 Swedish reactors, in total, have had 2.2 kg of fuel dissolved in their systems since start-up. About 880 g of this amount has been brought to the intermediate-level repository.

  7. System and safety studies of accelerator driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details.

  8. The effect to the nuclear reactor after the actinide nuclides added to the nuclear fuel%核燃料中添加锕系元素对反应堆的影响

    Institute of Scientific and Technical Information of China (English)

    王凯; 刘滨; 胡文超; 黄礼明; 赵伟; 屠荆; 朱养妮

    2012-01-01

    In this article,we study the effects of different reactors after the MA added to the nuclear fuel, and we also study the feasibility of MA transmutation in different types of nuclear reactor. We simulate the reactor cores by MCNP4C code, our simulations showed that after adding the MA to the nuclear fuel, neutron flux and neutron spectra have different effects in the different reactor cores. In contrast to the fast reactor, the reactivity, the neutron flux and the neutron energy spectrum of the thermal reactor are severely impacted after the MA added to the nuclear fuel. Our results showed that fast reactor and the high flux thermal reactor are promising in transmutation of MA nuclides.%文章的主要目的是研究核燃料中添加MA后对不同堆型的影响以及各种堆型嬗变MA的可行性.本文采用MCNP4C程序进行模拟,结果显示核燃料中添加MA后对不同的堆型产生不同程度的影响,相对于快堆而言,热堆的反应性、中子通量以及中子能谱受MA的影响很大.研究表明快堆和高通量热中子堆在嬗变MA核素方面具有很高的研究价值.

  9. Electrochemical separation of actinides and fission products in molten salt electrolyte

    Science.gov (United States)

    Gay, R. L.; Grantham, L. F.; Fusselman, S. P.; Grimmett, D. L.; Roy, J. J.

    1995-09-01

    Molten salt electrochemical separation may be applied to accelerator-based conversion (ABC) and transmutation systems by dissolving the fluoride transport salt in LiCl-KCl eutectic solvent. The resulting fluoride-chloride mixture will contain small concentrations of fission product rare earths (La, Nd, Gd, Pr, Ce, Eu, Sm, and Y) and actinides (U, Np, Pu, Am, and Cm). The Gibbs free energies of formation of the metal chlorides are grouped advantageously such that the actinides can be deposited on a solid cathode with the majority of the rare earths remaining in the electrolyte. Thus, the actinides are recycled for further transmutation. Rockwell and its partners have measured the thermodynamic properties of the metal chlorides of interest (rare earths and actinides) and demonstrated separation of actinides from rare earths in laboratory studies. A model is being developed to predict the performance of a commercial electrochemical cell for separations starting with PUREX compositions. This model predicts excellent separation of plutonium and other actinides from the rare earths in metal-salt systems.

  10. SOLVENT EXTRACTION RESEARCH AND DEVELOPMENT IN THE U.S. FUEL CYCLE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Terry A. Todd

    2011-10-01

    Treatment or processing of used nuclear fuel to recycle uranium and plutonium has historically been accomplished using the well known PUREX process. The PUREX process has been used on an industrial scale for over 60 years in the nuclear industry. Research is underway to develop advanced separation methods for the recovery of other used fuel components, such as the minor actinides (Np, Am, Cm) for possible transmutation in fast spectrum reactors, or other constituents (e.g. Cs, Sr, transition metals, lanthanides) to help facilitate effective waste management options. This paper will provide an overview of new solvent extraction processes developed for advanced nuclear fuel cycles, and summarize recent experimental results. This will include the utilization of new extractants for selective separation of target metals and new processes developed to selectively recover one or more elements from used fuel.

  11. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    International Nuclear Information System (INIS)

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38th JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment

  12. Accelerator driven systems for transmutation and energy production: challenges and dangers

    International Nuclear Information System (INIS)

    Accelerator driven systems (ADS) are an old technological idea: relativistic proton accelerators deliver their beams onto massive heavy element targets, thus producing abundant neutron fluences. Placing this target into sub-critical nuclear fission assemblies is yielding substantial fission reactions, thus additional fission energy (Rubbia called such a system ''energy amplifier''). This technology has recently attracted considerable attention due to advances in the construction of powerful accelerators. It allows the safe and cheap production of nuclear energy simultaneously with the destruction (transmutation) of long lived radioactive waste, in particular plutonium and other minor actinides (neptunium and americium). The principles and the present-state-of-the-art are described, including first experiments to transmute plutonium this way. This technology needs, however, many more years of further ''research and development'' before large scale ADS's can be constructed. It may be even necessary to investigate the question, if all basic physics phenomena of this technology are already sufficiently well understood. (orig.)

  13. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation Technology Project

    International Nuclear Information System (INIS)

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the US and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives

  14. Damages in ceramics for nuclear waste transmutation by irradiation with swift heavy ions

    Science.gov (United States)

    Beauvy, Michel; Dalmasso, Chrystelle; Thiriet-Dodane, Catherine; Simeone, David; Gosset, Dominique

    2006-01-01

    Inert matrices are proposed for advanced nuclear fuels or for the transmutation of the actinides that is an effective solution for the nuclear waste management. The behaviour of inert matrix ceramics like MgO, MgAl2O4 and cubic ZrO2 oxides under irradiation is presented in this study. The alumina Al2O3 has been also studied as a reference for the ceramic materials. These oxides have been irradiated with swift heavy ions at CIRIL/GANIL to simulate the fragment fission effects. The irradiations with the different heavy ions (from S to Pb) with energy between 91 and 820 MeV, have been realised at room temperature or 500 °C. The fluencies were between 5 × 1010 and 5 × 1015 ions/cm2. The polished faces of sintered polycrystalline disks or single crystal slices have been characterized before and after irradiation by X-ray diffraction and optical spectroscopy. The apparent swelling evaluated from surface profile measurements after irradiation is very important for spinel and zirconia, comparatively with those of magnesia or alumina. The amorphisation seems to be at the origin of this swelling, and the electronic stopping power of the ions is the most influent parameter for the irradiation damages. The point defects characterized by optical spectroscopy show a significant amount of damage on the oxygen sub-lattice in the irradiated oxides. F+ centres are present in all irradiated oxides. However, new absorption bands are observed and cation clusters cannot be excluded in magnesia and spinel after irradiation.

  15. Advanced Fuel Cycle Initiative AFC-1D, AFC-1G and AFC-1H End of FY-06 Irradiation Report

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Fuel Cycle Initiative AFC-1D, AFC-1G and

    2006-09-01

    The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxity and heat load of high-level waste sent to a geologic repository. The AFC-1 irradiation experiments on transmutation fuels are expected to provide irradiation performance data on non-fertile and low-fertile fuel forms specifically, irradiation growth and swelling, helium production, fission gas release, fission product and fuel constituent migration, fuel phase equilibria, and fuel-cladding chemical interaction. Contained in this report are the to-date physics evaluations performed on three of the AFC-1 experiments; AFC-1D, AFC-1G and AFC-1H. The AFC-1D irradiation experiment consists of metallic non-fertile fuel compositions with minor actinides for potential use in accelerator driven systems and AFC-1G and AFC-1H irradiation experiments are part of the fast neutron reactor fuel development effort. The metallic fuel experiments and nitride experiment are high burnup analogs to previously irradiated experiments and are to be irradiated to = 40 at.% burnup and = 25 at.% burnup, respectively. Based on the results of the physics evaluations it has been determined that the AFC-1D experiment will remain in the ATR for approximately 4 additional cycles, the AFC-1G experiment for an additional 4-5 cycles, and the AFC-1H experiment for approximately 8 additional cycles, in order to reach the desired programmatic burnup. The specific irradiation schedule for these tests will be determined based on future physics evaluations and all results will be documented in subsequent reports.

  16. ACSEPT a European project for a new step in the future demonstration of advanced fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, S.; Hill, C. [CEA, DRCP - Bat 181, CEA Marcoule, BP17171, 30207 Bagnols/Ceze (France); Caravaca, C.; Espartero, A. [CIEMAT, Avda. Complutense, 22 - 28040 Madrid (Spain); Rhodes, C.; Taylor, R.; Harrison, M. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom); EKBERG, C. [Chalmers tekniska hoegskola, Institutionen foer kemi- och bioteknik, Aemnesomraadets namn, 412 96 Goeteborg (Sweden); GEIST, A. [Forschungszentrum Karlsruhe, Institut fuer Nukleare Entsorgungstechnik, P.O.B. 3640, D-76021 Karlsruhe (Germany); Modolo, G. [Forschungszentrum Juelich - FZJ, D-52425 Juelich (Germany); Cassayre, L. [CNRS, Laboratoire de Genie Chimique, Toulouse (France); Malmbeck, R. [JRC-ITU, Karlsruhe (Germany); De Angelis, G. [ENEA, Casaccia, Rome (Italy); Bouvet, S. [Rio Tinto Alcan, Centre de Recherche de Voreppe, Voreppe (France); Klaassen, F. [NRG, PO Box 25, NL-1755 ZG Petten (Netherlands)

    2010-07-01

    For more than fifteen years, a European scientific community has joined its effort to develop and optimise processes for the partitioning of actinides from fission products. In an international context of 'nuclear renaissance', the upcoming of a new generation of nuclear reactor (Gen IV) will require the development of associated advanced closed fuel cycles which answer the needs of a sustainable nuclear energy: the minimization of the production of long lived radioactive waste but also the optimization of the use of natural resources with an increased resistance to proliferation. Actually, Partitioning and Transmutation (P and T), associated to a multi-recycling of all transuranics (TRUs), should play a key role in the development of this sustainable nuclear energy. By joining together 34 Partners coming from European universities, nuclear research bodies and major industrial players in a multidisciplinary consortium, the FP7 EURATOM-Fission Collaborative Project ACSEPT (Actinide recycling by Separation and Transmutation), started in 2008 for four year duration, provides the sound basis and fundamental improvements for future demonstrations of fuel treatment in strong connection with fuel fabrication techniques. Consistently with potentially viable recycling strategies, ACSEPT therefore provides a structured R and D framework to develop chemical separation processes compatible with fuel fabrication techniques, with a view to their future demonstration at the pilot level. ACSEPT is organized into three technical domains: (i) Considering technically mature aqueous separation processes, ACSEPT works to optimize and select the most promising ones dedicated either to actinide partitioning or to group actinide separation. (ii) Concerning high temperature pyrochemical separation processes, ACSEPT focuses on the enhancement of the two reference cores of process selected within previous projects. R and D efforts are now devoted to key scientific and technical

  17. Fuel performance evaluation for ADS MYRRHA

    International Nuclear Information System (INIS)

    MYRRHA is an Accelerator Driven System (ADS) under development at Mol in Belgium and aiming to serve as a basis for the European experimental ADS to provide protons and neutrons for various applications. It consists of a proton accelerator delivering a 350 MeV*5 mA proton beam to a liquid Pb-Bi spallation target that in turn couples to a Pb-Bi cooled, subcritical fast core. A preliminary design of the experimental fuel rods and analysis of their performance under typical ADS conditions is a first step of the fuel development program. Different designs are to be studied and different kinds of fuels are expected to be tested. In the current design, (U,Pu)O2 MOX fuel with the enrichment of 20-30 wt.% of Pu is considered to be a basis of the subcritical core, whereas different sorts of experimental fuel rods should be tested in the experimental channels to study minor actinides and low-lived fission products transmutation. In a later phase, a part of the MOX fuel in the subcritical core will be replaced with non-uranium fuels with transuranium elements. In the present report some result of modelling of the behaviour of two experimental rods (one with MOX and another with IMF) in the hottest fuel assembly of the ADS MYRRHA - are presented. (author)

  18. Facilities for preparing actinide or fission product-based targets

    CERN Document Server

    Sors, M

    1999-01-01

    Research and development work is currently in progress in France on the feasibility of transmutation of very long-lived radionuclides such as americium, blended with an inert medium such as magnesium oxide and pelletized for irradiation in a fast neutron reactor. The process is primarily designed to produce ceramics for nuclear reactors, but could also be used to produce targets for accelerators. The Actinide Development Laboratory is part of the ATALANTE complex at Marcoule, where the CEA investigates reprocessing, liquid and solid waste treatment and vitrification processes. The laboratory produces radioactive sources; after use, their constituents are recycled, notably through R and D programs requiring such materials. Recovered americium is purified, characterized and transformed for an experiment known as ECRIX, designed to demonstrate the feasibility of fabricating americium-based ceramics and to determine the reactor transmutation coefficients.

  19. System and safety studies of accelerator driven transmutation. Annual Report 2002

    International Nuclear Information System (INIS)

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics has been largely determined by the program of the European projects of the the 5th Framework Programme. In particular: a) ADS core design and development of advanced nuclear fuel optimized for high transmutation rates and good safety features. This activity includes computer modeling of nuclear fuel production. Three different ADS-core concept are being investigated: Conceptual design of Pb-Bi cooled core with nitride fuel - so called Sing-Sing Core; Pb-Bi cooled core with oxide fuel; Gas cooled core with oxide fuel - both designs investigated for the European Project PDS-XADS; b) analysis of ADS-dynamics and assessment of major reactivity feedbacks; c) emergency heat removal from ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE, YALINA subcritical experiment in Minsk and designing of the subcritical experiment SAD in Dubna; e) material studies for ADS, in particular theoretical and simulation studies of radiation damage in high neutron (or proton) fluxes; f) computer code and nuclear data development relevant for simulation and optimization of ADS, special efforts were put in the frame of the European Project PDS-XADS to perform sensitivity studies of the different nuclear data libraries; g) studies of transmutation potential of critical reactors in particular High Temp Gas Cooled Reactor. Most important finding and conclusions from our studies: A strong positive void coefficient was found for lead/bismuth cooled cores. This considerable void effect is attributed to a high fraction of americium (60%) in the fuel. It was found that void reactivity insertion rates increases with P/D; in response to the beam overpower accident the Pb/Bi-cooled core featured the twice longer grace time compared to the sodium-cooled core; an important safety issue is the high void worth that could

  20. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR

  1. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    International Nuclear Information System (INIS)

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO2-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR designs and their ability to accept a variety

  2. System and safety studies of accelerator driven transmutation. Annual Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J.; Chakarova, R.; Jollkonen, Mikael; Westlen, D. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2003-06-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics has been largely determined by the program of the European projects of the the 5th Framework Programme. In particular: a) ADS core design and development of advanced nuclear fuel optimized for high transmutation rates and good safety features. This activity includes computer modeling of nuclear fuel production. Three different ADS-core concept are being investigated: Conceptual design of Pb-Bi cooled core with nitride fuel - so called Sing-Sing Core; Pb-Bi cooled core with oxide fuel; Gas cooled core with oxide fuel - both designs investigated for the European Project PDS-XADS; b) analysis of ADS-dynamics and assessment of major reactivity feedbacks; c) emergency heat removal from ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE, YALINA subcritical experiment in Minsk and designing of the subcritical experiment SAD in Dubna; e) material studies for ADS, in particular theoretical and simulation studies of radiation damage in high neutron (or proton) fluxes; f) computer code and nuclear data development relevant for simulation and optimization of ADS, special efforts were put in the frame of the European Project PDS-XADS to perform sensitivity studies of the different nuclear data libraries; g) studies of transmutation potential of critical reactors in particular High Temp Gas Cooled Reactor. Most important finding and conclusions from our studies: A strong positive void coefficient was found for lead/bismuth cooled cores. This considerable void effect is attributed to a high fraction of americium (60%) in the fuel. It was found that void reactivity insertion rates increases with P/D; in response to the beam overpower accident the Pb/Bi-cooled core featured the twice longer grace time compared to the sodium-cooled core; an important safety issue is the high void worth that could

  3. Comparative analysis of thorium and uranium fuel for transuranic recycle in a sodium cooled Fast Reactor

    International Nuclear Information System (INIS)

    Highlights: • Thorium as support fertile material for TRU transmutation in Fast Reactors. • Comparative analysis of Th and U based breakeven and burner Fast Reactors. • Thorium fosters significant advantages in terms of safety parameters. • Inherent safety is investigated through quasi-static reactivity and energy balances. • Th use in low-CR Fast Reactors does not reduce fuel decay heat and neutron sources. - Abstract: The present paper compares the reactor physics and transmutation performance of sodium-cooled Fast Reactors (FRs) for TRansUranic (TRU) burning with thorium (Th) or uranium (U) as fertile materials. The 1000 MWt Toshiba-Westinghouse Advanced Recycling Reactor (ARR) conceptual core has been used as benchmark for the comparison. Both burner and breakeven configurations sustained or started with a TRU supply, and assuming full actinide homogeneous recycle strategy, have been developed. State-of-the-art core physics tools have been employed to establish fuel inventory and reactor physics performances for equilibrium and transition cycles. Results show that Th fosters large improvements in the reactivity coefficients associated with coolant expansion and voiding, which enhances safety margins and, for a burner design, can be traded for maximizing the TRU burning rate. A trade-off of Th compared to U is the significantly larger fuel inventory required to achieve a breakeven design, which entails additional blankets at the detriment of core compactness as well as fuel manufacturing and separation requirements. The gamma field generated by the progeny of U-232 in the U bred from Th challenges fuel handling and manufacturing, but in case of full recycle, the high contents of Am and Cm in the transmutation fuel impose remote fuel operations regardless of the presence of U-232

  4. Hydrometallurgical minor actinide separation in hollow fiber modules

    International Nuclear Information System (INIS)

    Hollow fiber modules (HFM) were used as phase contacting devices for hydrometallurgical minor actinide separation in the Partitioning and Transmutation context. Two single-HFM setups, one using commercially available HFM, the other one using miniature HFM, have been developed and manufactured. Several very successful DIAMEX and SANEX once-through tests were performed. The major advantage of the new miniature HFM is their size drastically reducing chemicals consumption: only several 10 mL of feed phases are required for a test. (authors)

  5. Partitioning and transmutation. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aa.; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1997-12-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. Refs, figs, tabs.

  6. Transmutation doping of silicon solar cells

    Science.gov (United States)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  7. Neutron-induced capture cross sections of short-lived actinides with the surrogate reaction method

    Directory of Open Access Journals (Sweden)

    Gunsing F.

    2010-03-01

    Full Text Available Determination of neutron-capture cross sections of short-lived nuclei is opening the way to understand and clarify the properties of many nuclei of interest for nuclear structure physics, nuclear astrophysics and particularly for transmutation of nuclear wastes. The surrogate approach is well-recognized as a potentially very useful method to extract neutron cross sections for low-energy compound-nuclear reactions and to overcome the difficulties related to the target radioactivity. In this work we will assess where we stand on these neutron-capture cross section measurements and how we can achieve the short-lived Minor Actinides nuclei involved in the nuclear fuel cycle. The CENBG collaboration applied the surrogate method to determine the neutron-capture cross section of 233Pa (T1/2 = 27 d. The 233Pa (n,γ cross section is then deduced from the measured gamma decay probability of 234Pa compound nucleus formed via the surrogate 232Th(3He,p reaction channel. The obtained cross section data, covering the neutron energy range 0.1 to 1 MeV, have been compared with the predictions of the Hauser-Feshbach statistical model. The importance of establishing benchmarks is stressed for the minor actinides region. However, the lack of desired targets led us to propose recently the 174Yb (3He,pγ reaction as a surrogate reaction for the (n,γ predetermined benchmark cross section of 175Lu. An overview of the experimental setup combining gamma ray detectors such as Ge and C6D6 in coincidence with light charged particles ΔE-E Telescopes will be presented and preliminary results will be discussed.

  8. Uranium in the Nuclear Fuel Cycle: Creation of Plutonium (Invited)

    Science.gov (United States)

    Ewing, R. C.

    2009-12-01

    One of the important properties of uranium is that it can be used to “breed” higher actinides, particularly plutonium. During the past sixty years, more than 1,800 metric tonnes of Pu, and substantial quantities of the “minor” actinides, such as Np, Am and Cm, have been generated in nuclear reactors - a permanent record of nuclear power. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239Pu and 237Np). In fact, the new strategies of the Advance Fuel Cycle Initiative (AFCI) are, in part, motivated by an effort to mitigate some of the challenges of the disposal of these long-lived actinides. There are two basic strategies for the disposition of these heavy elements: 1.) to “burn” or transmute the actinides using nuclear reactors or accelerators; 2.) to “sequester” the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A= rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage1. The radiation stability of these compositions is closely related to the structural distortions that can be accommodated for specific pyrochlore compositions and the electronic structure of the B-site cation. Recent developments in the understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms.

  9. Accuracy Improvement of Neutron Nuclear Data on Minor Actinides

    Directory of Open Access Journals (Sweden)

    Harada Hideo

    2015-01-01

    Full Text Available Improvement of accuracy of neutron nuclear data for minor actinides (MAs and long-lived fission products (LLFPs is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as “Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC” has been started as one of the “Innovative Nuclear Research and Development Program” in Japan at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background and research plan of the AIMAC project are presented.

  10. Status of measurements of fission neutron spectra of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Drapchinsky, L.; Shiryaev, B. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    The report considers experimental and theoretical works on studying the energy spectra of prompt neutrons emitted in spontaneous fission and neutron induced fission of Minor Actinides. It is noted that neutron spectra investigations were done for only a small number of such nuclei, most measurements, except those of Cf-252, having been carried out long ago by obsolete methods and imperfectapparatus. The works have no detailed description of experiments, analysis of errors, detailed numerical information about results of experiments. A conclusion is made that the available data do not come up to modern requirements. It is necessary to make new measurements of fission prompt neutron spectra of transuranium nuclides important for the objectives of working out a conception of minor actinides transmutation by means of special reactors. (author)

  11. Assessment of americium and curium transmutation in magnesia based targets in different spectral zones of an experimental accelerator driven system

    Science.gov (United States)

    Haeck, W.; Malambu, E.; Sobolev, V. P.; Aït Abderrahim, H.

    2006-06-01

    The potential to incinerate minor actinides (MA) in a sub-critical accelerator-driven system (ADS) is a subject of study in several countries where nuclear power plants are present. The performance of the MYRRHA experimental ADS, as to the transmutation of Am and Cm in the inert matrix fuel (IMF) samples consisting of 40 vol.% (Cm0.1Am0.5Pu0.4)O1.88 fuel and 60 vol.% MgO matrix with a density of 6.077 g cm-3 in three various spectrum regions, were analysed at the belgian nuclear research centre SCK · CEN. The irradiation period of 810 effective full power days (EFPD) followed by a storage period of 2 years was considered. The ALEPH code system currently under development at SCK · CEN was used to carry out this study. The total amount of MA is shown to decrease in all three considered cases. For Am, the decrease is the largest in the reflector (89% decrease) but at the cost of a net Cm production (92% increase). In the two other positions (inside the core region), 20-30% of Am has disappeared but with a lower production of Cm (between 7% and 11%). In the reflector, a significant build-up of long-lived 245Cm, 246Cm, 247Cm and 248Cm was also observed while the production of these isotopes is 10-1000 times smaller in the core. The reduction of the Pu content is also the highest in the reflector position (41%). In the other positions the incinerated amount of Pu is much smaller: 1-5%.

  12. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    Energy Technology Data Exchange (ETDEWEB)

    G. Youinou; G. Palmiotti; M. Salvatorre; G. Imel; R. Pardo; F. Kondev; M. Paul

    2010-01-01

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL’s Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A < 100, there has been recent progress in extending AMS to heavier isotopes – even to A > 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  13. Fabrication and characterization of MOX fuels with high plutonium content using alternative processes

    International Nuclear Information System (INIS)

    The Institute for Transuranium Elements (ITU) in Karlsruhe is part of the Joint Research Centre of the European Commission. Its particular aims are (i) to perform nuclear R and D in support of EU policies, (ii) to further enhance the Institute's role as a recognized centre of European basic actinide research, (iii) to contribute to an effective nuclear safeguards system in Europe and elsewhere, and (iv) to strengthen the position of the European industry by evaluating and testing the potential for technological and medical applications of transuranium elements. In particular, ITU is actively engaged in the performance of the R and D programmes ''Safety of Nuclear Fuels'' (development of advanced fuels able to sustain safely high burnup operation) and ''Mitigation of Long Lived Actinides and Fission Products''. Within the framework of these projects, ITU is participating in several international research groups on plutonium incineration (CAPRA) or Partitioning and Transmutation (EFTTRA). Development of advanced LWR MOX fuels is also being pursued in close collaboration with the nuclear fuel cycle industry. This paper describes the fabrication methods developed for MOX (and other Pu-bearing compounds) at the Nuclear Technology Department of ITU. Results obtained from fabrication of MOX fuel at very high Pu content are presented and discussed. Finally, examples of MOX fuel fabrication (LWR representative, with high Pu content) leading to large grain formation are presented. (author)

  14. Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors

    CERN Document Server

    Calviani, Marco; Montagnoli, G; Mastinu, P

    2009-01-01

    The subject of this thesis is the determination of high accuracy neutron-induced fission cross-sections of various isotopes - all of which radioactive - of interest for emerging nuclear technologies. The measurements had been performed at the CERN neutron time-of-flight facility n TOF. In particular, in this work, fission cross-sections on 233U, the main fissile isotope of the Th/U fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on these isotopes are requested for the feasibility study of innovative nuclear systems (ADS and Generation IV reactors) currently being considered for energy production and radioactive waste transmutation. The measurements have been performed with a high performance Fast Ionization Chamber (FIC), in conjunction with an innovative data acquisition system based on Flash-ADCs. The first step in the analysis has been the reconstruction of the digitized signals, in order to extract the information required for the discrimination between fission fragm...

  15. Optimization of moderated targets loading in LMFBR for minor actinides incineration

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hongchun; Takeda, Toshikazu [Osaka Univ., Suita (Japan). Dept. of Nuclear Engineering

    1999-04-01

    Optimization of moderated targets loading in LMFBR for minor actinides (MAs) incineration has been performed in this paper. Results of many different composition ratios of moderated target mixture were compared. An optimum case was proposed which can offer good core performance and transmute MAs by about 73 percent (386 kg) and incinerate MAs by about 34 percent (181 kg) through 3 years of reactor operation. (author)

  16. Waste disposal aspects of actinide separation

    International Nuclear Information System (INIS)

    Two recent NRPB reports are summarized (Camplin, W.C., Grimwood, P.D. and White, I.F., The effects of actinide separation on the radiological consequences of disposal of high-level radioactive waste on the ocean bed, Harwell, National Radiological Protection Board, NRPB-R94 (1980), London, HMSO; Hill, M.D., White, I.F. and Fleishman, A.B., The effects of actinide separation on the radiological consequences of geologic disposal of high-level waste. Harwell, National Radiological Protection Board, NRPB-R95 (1980), London, HMSO). They describe preliminary environmental assessments relevant to waste arising from the reprocessing of PWR fuel. Details are given of the modelling of transport of radionuclides to man, and of the methodology for calculating effective dose equivalents in man. Emphasis has been placed on the interaction between actinide separation and the disposal options rather than comparison of disposal options. The reports show that the effects of actinide separation do depend on the disposal method. Conditions are outlined where the required substantial further research and development work on actinide separation and recycle would be justified. Toxicity indices or 'toxic potentials' can be misleading and should not be used to guide research and development. (U.K.)

  17. HYPERFUSE: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137Cs or 90Sr. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n, 2n), (n, α), etc.) that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  18. The ALMR actinide burning system

    International Nuclear Information System (INIS)

    The advanced liquid-metal reactor (ALMR) actinide burning system is being developed under the sponsorship of the US Department of Energy to bring its unique capabilities to fruition for deployment in the early 21st century. The system consists of four major parts: the reactor plant, the metal fuel and its recycle, the processing of light water reactor (LWR) spent fuel to extract the actinides, and the development of a residual waste package. This paper addresses the status and outlook for each of these four major elements. The ALMR is being developed by an industrial group under the leadership of General Electric (GE) in a cost-sharing arrangement with the US Department of Energy. This effort is nearing completion of the advanced conceptual design phase and will enter the preliminary design phase in 1994. The innovative modular reactor design stresses simplicity, economics, reliability, and availability. The design has evolved from GE's PRISM design initiative and has progressed to the final stages of a prelicensing review by the US Nuclear Regulatory Commission (NRC); a safety evaluation report is expected by the end of 1993. All the major issues identified during this review process have been technically resolved. The next design phases will focus on implementation of the basic safety philosophy of passive shutdown to a safe, stable condition, even without scram, and passive decay heat removal. Economic projections to date show that it will be competitive with non- nuclear and advanced LWR nuclear alternatives

  19. Transmutation of nuclear wastes with gas-cooled pebble-bed ads

    International Nuclear Information System (INIS)

    Transmutation of nuclear wastes is being explored for its application to waste management, a fundamental issue for nuclear industry. Several concepts are under consideration, mainly fast breeder reactors and accelerator driven systems (ADS). Inside this second category, we are analysing a helium-cooled graphite moderated sub-critical assembly, which uses as fuel units a small amount of transuranics diluted, in the form of TRISO coated particles, in graphite pebbles. This configuration (PBT) allows for neutron spectra that, taking advantage of the existence of huge capture resonances in the epithermal region, increase in a substantial factor the system transmutation efficiency. Neutronic studies to determine transmutation performance and thermal behaviour are presented and discussed together with an analysis of the additional studies to address before going into detailed design activities. (author)

  20. Conceptual design study of Hyb-WT as fusion–fission hybrid reactor for waste transmutation

    International Nuclear Information System (INIS)

    Highlights: • Conceptual design study of fusion-fission hybrid reactor for waste transmutation. • MCNPX and MONTEBURNS are compared for transmutation performance of WT-Hyb. • Detailed neutronic performance of final optimized Hyb-WT design is analyzed. • A new tube-in-duct core design is implemented and compared with pin type design. • Study shows many aspects of hybrid reactor even though scope was limited to neutronic analysis. - Abstract: This study proposes a conceptual design of a hybrid reactor for waste transmutation (Hyb-WT). The design of Hyb-WT is based on a low-power tokamak (less than 150 MWt) and an annular ring-shaped reactor core with metal fuel (TRU 60 w/o, Zr 40 w/o) and a fission product (FP) zone. The computational code systems MONTEBURNS and MCNPX2.6 are investigated for their suitability in evaluating the performance of Hyb-WT. The overall design performance of the proposed reactor is determined by considering pin-type and tube-in-duct core designs. The objective of such consideration is to explore the possibilities for enhanced transmutation with reduced wall loading from fusion neutrons and reduced transuranic (TRU) inventory. TRU and FP depletion is analyzed by calculating waste transmutation ratio, mass burned per full power year (in units of kg/fpy), and support ratio. The radio toxicity analysis of TRUs and FPs is performed by calculating the percentage of toxicity reduction in TRU and FP over a burn cycle

  1. Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source

    International Nuclear Information System (INIS)

    We describe a new approach for commercial nuclear energy production without a long-term high-level waste stream and for transmutation of both fission product and higher actinide commercial nuclear waste using a thermal flux of accelerator-produced neutrons in the 1016 n/cm2-s range. Continuous neutron fluxes at this intensity, which is approximately 100 times larger than is typically available in a large scale thermal reactor, appear practical owing to recent advances in proton linear accelerator technology and to the spallation target-moderator design presented here. This large flux of thermal neutrons makes possible a waste inventory in the transmutation system which is smaller by about a factor of 100 than competing concepts. The accelerator allows the system to operate well below criticality so that the possibility for a criticality accident is estimated. No control rods are required. The successful implementation of this new method for energy generation and waste transmutation would eliminate the need for nuclear waste storage on a geologic time scale. The production of nuclear energy from 232Th or 238U is used to illustrate the general principles of commercial nuclear energy production without long-term high-level waste. There is sufficient thorium to meet the world's energy needs for many millenia. 27 refs., 13 figs., 12 tabs

  2. ACSEPT: a new FP7-Euratom Collaborative Project in the field of partitioning processes for advanced fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, Stephane; Touron, Emmanuel; Caravaca, Concha; Ekberg, Christian; Gaubert, Emmanuel; Hill, Clement [CEA/DEN/MAR/DRCP, Bat 181, CEA Marcoule, BP 17171, 30207 Bagnols/Ceze Cedex (France)

    2008-07-01

    Actinide recycling by separation and transmutation is considered worldwide and particularly in several European countries as one of the most promising strategies to reduce the inventory of radioactive waste, thus contributing to the sustainability of nuclear energy. Consistently with potentially viable recycling strategies, the Collaborative Project ACSEPT will provide a structured research and development framework to develop chemical separation processes compatible with fuel fabrication techniques, with a view to their future demonstration at the pilot level. Two strategies are proposed for the recycling of the actinides issuing from various forms of future nuclear fuels: -) their homogeneous recycling in mixed fuels via a prior group separation of the actinides and -) their heterogeneous recycling in targets or core blankets via their selective separation from fission products. Two major technologies are considered to meet these challenges: hydrometallurgical processes and pyrochemical processes. A training and education programme will also be implemented to share the knowledge among communities and generations so as to maintain the nuclear expertise at the fore-front of Europe. The challenging objectives of ACSEPT will be addressed by a multi-disciplinary consortium composed of European universities, nuclear research bodies and major industrial players. This consortium will generate fundamental improvements for the future design of a potential Advanced Processing Pilot Unit.

  3. ACSEPT: a new FP7-Euratom Collaborative Project in the field of partitioning processes for advanced fuel cycles

    International Nuclear Information System (INIS)

    Actinide recycling by separation and transmutation is considered worldwide and particularly in several European countries as one of the most promising strategies to reduce the inventory of radioactive waste, thus contributing to the sustainability of nuclear energy. Consistently with potentially viable recycling strategies, the Collaborative Project ACSEPT will provide a structured research and development framework to develop chemical separation processes compatible with fuel fabrication techniques, with a view to their future demonstration at the pilot level. Two strategies are proposed for the recycling of the actinides issuing from various forms of future nuclear fuels: -) their homogeneous recycling in mixed fuels via a prior group separation of the actinides and -) their heterogeneous recycling in targets or core blankets via their selective separation from fission products. Two major technologies are considered to meet these challenges: hydrometallurgical processes and pyrochemical processes. A training and education programme will also be implemented to share the knowledge among communities and generations so as to maintain the nuclear expertise at the fore-front of Europe. The challenging objectives of ACSEPT will be addressed by a multi-disciplinary consortium composed of European universities, nuclear research bodies and major industrial players. This consortium will generate fundamental improvements for the future design of a potential Advanced Processing Pilot Unit

  4. Transmutation of Radioactive Nuclear Waste — Present Status and Requirement for the Problem-Oriented Nuclear Database: Approach to Scheduling the Experiments (Reactor, Target, Blanket)

    Science.gov (United States)

    Artisyuk, V.; Ignatyuk, A.; Korovin, Yu.; Lopatkin, A.; Matveenko, I.; Stankovskiy, A.; Titarenko, Yu.

    2005-05-01

    Transmutation of nuclear wastes (Minor Actinides and Long-Lived Fission Products) remains an important option to reduce the burden of high-level waste on final waste disposal in deep geological structures. Accelerator-Driven Systems (ADS) are considered as possible candidates to perform transmutation due to their subcritical operation mode that eliminates some of the serious safety penalties unavoidable in critical reactors. Specific requirements to nuclear data necessary for ADS transmutation analysis is the main subject of the ISTC Project ♯2578 which started in 2004 to identify the areas of research priorities in the future. The present paper gives a summary of ongoing project stressing the importance of nuclear data for blanket performance (reactivity behavior with associated safety characteristics) and uncertainties that affect characteristics of neutron producing target.

  5. Proceedings of the specialists' meeting on the chemistry and technology of actinide elements 2011

    International Nuclear Information System (INIS)

    This report contains the Proceedings of the 17th Specialists' Meeting on the Chemistry and Technology of Actinide Elements, which was held at Research Reactor Institute, Kyoto University, on February 15, 2012. This specialists' meeting has been held annually since 1994, and this is the 17th meeting for the fiscal year 2011. The accident of Fukushima Daiich Nuclear Power Plant, which occurred on March 11, 2011, showed the presence of defect in Japanese past approach to keep nuclear system safe. There is the need to improve existing technological and operational problems, as well as regulatory problems, but we should be aware of the significance of recovering social trust and peoples' peace of mind with the nuclear power. It should be noted that public's anxiety on the backend issue of nuclear system is remarkably big, and thus we must try to provide an understandable solution to them. In this meeting, we dealt with actinide chemistry and technology, which are related to the advanced nuclear fuel cycle development and the disposal of the HLW or TRU wastes. This is because, in the backend of the nuclear system, Actinide and TRU elements have substantial importance, because all of reprocessing, geologic disposal, and partitioning and transmutation depend significantly on the chemistry and technology of Actinides. Therefore, we have continued discussion and information exchange on the Actinide issues over 16 years, and this year's 17th meeting had a special meaning as the first one after the accident. In this context in this 17th meeting, we tried to return to the fundamentals of molten salt chemistry, which is the base of the dry reprocessing development. In addition, in order to expand our attitude by crossing over the fence of nuclear society, we tried to explore the potential of the adoption of molten salt chemistry to the general industry. This was a small new attempt in compliance with the recent tendency to nuclear power reduction in

  6. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    Science.gov (United States)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  7. Actinides and Life's Origins.

    Science.gov (United States)

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  8. Structural design of neptunium-bearing assembly for transmutation research

    International Nuclear Information System (INIS)

    To study the irradiation performance of the long-life nuclide and to lay a foundation for the 'separation-transmutation' advanced fuel cycle technology, an experimental neptunium-bearing assembly is designed on the basis of the standard fuel assembly of CEFR. In this paper, design principles and structure of the experimental neptunium-bearing assembly are explained in detail. The design analysis and validation are briefly introduced. The design of the experimental assembly can meet the demand of irradiation test. Up to now, the out-of-pile hydraulic test is under way and the manufacture of the assembly is nearly completed. It is to be irradiated in the first row of stainless steel reflector assemblies for about 240 effective full power days. (authors)

  9. IAEA activities in the area of partitioning and transmutation

    International Nuclear Information System (INIS)

    Four major challenges are facing the long-term development of nuclear energy: improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptance. Meeting the sustainability criteria is the driving force behind the topic of this paper. In this context, sustainability has two aspects: natural resources and waste management. IAEA's activities in the area of Partitioning and Transmutation (P and T) are mostly in response to the latter. While not involving the large quantities of gaseous products and toxic solid wastes associated with fossil fuels, radioactive waste disposal is today's dominant public acceptance issue. In fact, small waste quantities permit a rigorous confinement strategy, and mined geological disposal is the strategy followed by some countries. Nevertheless, political opposition arguing that this does not yet constitute a safe disposal technology has largely stalled these efforts. One of the primary reasons cited is the long life of many of the radioisotopes generated from fission. This concern has led to increased R and D efforts to develop a technology aimed at reducing the amount and radio-toxicity of long-lived radioactive waste through transmutation in fission reactors or sub-critical systems. In the frame of the Project on Technology Advances in Fast Reactors and Accelerator-Driven Systems (ADS), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long-lived radioactive waste, ADS, and deuterium-tritium plasma-driven sub-critical systems. The paper presents past accomplishments, current status and planned activities of this IAEA project

  10. Integrated experiments to demonstrate innovative reprocessing of metal and oxide fuel by means of electrometallurgical technology

    International Nuclear Information System (INIS)

    Dry (i.e., non-aqueous) processing technologies are currently being focused in many countries for closing actinide fuel cycle because of their favorable economic potential and an intrinsic proliferation-resistant features due to inherent difficulty of extracting weapons-usable plutonium. Electrometallurgical technology (pyro-process) is one of the most attractive dry processing technologies, since it has an inseparability properties of Pu from other actinides in any step of the process. This property enables us to enhance intrinsic proliferation resistance in addition to recovery of long-lived transuranium elements for transmutation without addition of further treatment. Since the recovery of transuranics has been examined only for each step or U based fuel, it is necessary to test whole process in one continuous operation with using Pu-containing fuel. Hence, CRIEPI and JNC have started joint study to implement integrated experiments of electrometallurgical reprocessing of metal and oxide Pu-containing fuel at chemical processing facility (CPF) of JNC-Tokai. The electrometallurgical process selected for the integrated experiments consist of (1) reduction of oxide fuel into metal form by means of Li reductant, (2) molten salt electrorefining to recover U and U-Pu, (3) cathode process to remove salt and Cd from actinides, (4) injection casting of actinide to form metal fuel, and (5) oxidation of actinide to form oxide fuel. The experiments proceeds in the order of (2),(3),(4) for metal fuel and (1),(2),(3),(5) for oxide fuel, respectively. In the experiments, unirradiated U and Pu will be used with F.P. simulants. The experimental apparatus has been developed in the joint study based on the process studies of CRIEPI, and installed at CPF. It consists of one process glove box with an Ar purification unit and two air glove boxes. The radiation-shielded heating wells are placed on the bottom of the process box to install process equipment such as electrorefiner. Up to

  11. Pu and MA management in thermal HTGRs - impact at fuel, reactor and fuel cycle levels - HTR2008-58176

    International Nuclear Information System (INIS)

    The PUMA project, a Specific Targeted Research Project (STREP) of the European Union EURATOM 6. Framework Program, is mainly aimed at providing additional key elements for the utilisation and transmutation of plutonium and minor actinides (neptunium and americium) in contemporary and future (high temperature) gas-cooled reactor design, which are promising tools for improving the sustainability of the nuclear fuel cycle. PUMA would also contribute to the reduction of Pu and MA stockpiles and to the development of safe and sustainable reactors for CO2-free energy generation. The project runs from September 1, 2006 until August 31, 2009. PUMA also contributes to technological goals of the Generation IV International Forum. It contributes to developing and maintaining the competence in reactor technology in the EU and addresses European stakeholders on key issues for the future of nuclear energy in the EU. An overview is presented of the status of the project at mid-term. (authors)

  12. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project `Impact of the accelerator based technologies on nuclear fission safety` - IABAT and in bilateral cooperation with different foreign research groups 31 refs, 23 figs

  13. Microbial Transformations of Actinides and Other Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  14. Neutronics design for a spheric tokamak fusion-transmutation reactor

    International Nuclear Information System (INIS)

    Based on studies of spherical tokamak fusion reactors, a concept of fusion-transmutation reactor is put forward. A set of plasma parameters suitable for the transmutation blanket is selected. Using the transport and burn-up calculation code BISON3.0 and its associated database, transmutation rate of MA nuclear waste, energy multiplication, and tritium breeder rate in the transmutation blanket are calculated

  15. Fluoride partitioning R and D programme for molten salt transmutation reactor systems in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Uhlir, J. [Nuclear Research Institute Rez plc, CZ (Czech Republic); Priman, V.; Vanicek, J. [Czech Power Company, Praha (Czech Republic)

    2001-07-01

    The transmutation of spent nuclear fuel is considered a prospective alternative conception to the current conception based on the non-reprocessed spent fuel disposal into underground repository. The Czech research and development programme in the field of partitioning and transmutation is founded on the Molten Salt Transmutation Reactor system concept with fluoride salts based liquid fuel, the fuel cycle of which is grounded on pyrochemical / pyrometallurgical fluoride partitioning of spent fuel. The main research activities in the field of fluoride partitioning are oriented mainly towards technological research of Fluoride Volatility Method and laboratory research on electro-separation methods from fluoride melts media. The Czech national conception in the area of P and T research issues from the national power industry programme and from the Czech Power Company intentions of the extensive utilization of nuclear power in our country. The experimental R and D work is concentrated mainly in the Nuclear Research Institute Rez plc that plays a role of main nuclear research workplace for the Czech Power Company. (author)

  16. The Transmuted Generalized Inverse Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Faton Merovci

    2014-05-01

    Full Text Available A generalization of the generalized inverse Weibull distribution the so-called transmuted generalized inverse Weibull distribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM in order to generate a flexible family of probability distributions taking the generalized inverseWeibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expressions for the moments, quantiles, and moment generating function of the new distribution are derived. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the flexibility of the transmuted version versus the generalized inverse Weibull distribution.

  17. Updated multi-group cross sections of minor actinides with improved resonance treatment

    International Nuclear Information System (INIS)

    The study of minor actinide in transmutation reactors and other future applications makes resonance self-shielding treatment a significant issue for criticality and isotope depletion. Resonance treatment for minor actinides has been carried out by subgroup method with improved interference effect through interference correction. Subgroup data was generated using RMET21 and GENP codes along with multi-group cross section data by NJOY nuclear data processing system. Updated multi-group cross section data library for a neutron transport code nTRACER was compared with solutions from MCNPX. The resonance interaction of uranium with minor actinides has been included by modified interference treatment of interference correction in subgroup methodology. The comparison of cross sections and multiplication factor in pin and assembly problems showed significant improvement from systematic resonance treatment especially for 237Np and 243Am. (author)

  18. Partitioning and transmutation. Current developments - 2004. A report from the Swedish reference group on P and T-research

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstroem, Per-Eric (ed.) [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Andersson, Sofie; Ekberg, Christian; Liljenzin, Jan-Olov; Nilsson, Mikael; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden); Blomgren, Jan [Uppsala Univ. (Sweden). Dept. of Neutron Research; Eriksson, Marcus; Gudowski, Waclaw; Seltborg, Per; Wallenius, Jan; Sehgal, Bal Raj [Royal Inst. of Technology, Stockholm (Sweden)

    2004-05-01

    This report summarises the work reported in the years 1998-2003 and tries to assess the prospects for future development of partitioning and transmutation (P-T) as seen from a Swedish perspective. The R and D efforts on P-T have increased somewhat during the period 1998-2003. Research on P-T has taken a prominent role internationally in the R and D on future nuclear power and nuclear fuel cycle systems. Despite the fact that partitioning and transmutation have been on the agenda for quite a few years there are still a number of issues that must be settled before the research and development can be given a clearly focused direction. Studies propose research programmes for about six years at the cost of a couple of hundred million Euros. The construction of a small ADS experimental plant is a necessary step to develop and demonstrate the concept. This experimental plant should then be followed by a demonstration plant in almost full scale. Such a plant can at the earliest be ready in the mid-2030s. A number of circumstances have, however, contributed to slower speed, less intensity and lower funding than proposed in the studies. There is no unanimous view on the objectives for partitioning and transmutation. Many see it as a way to achieve broad acceptance for nuclear power at large. Others promote it as a way to get out of the impasse for a deep repository in several countries. Others again put a strong emphasise on the proliferation aspects. There is no unanimous view on the need to develop ADS or for the role of ADS in a P-T-system. Some advocate that ADS should be used for burning of all transuranium nuclides from the present enriched uranium fuelled light water reactors. Others see the ADS as a supplement particularly suitable for burning minor actinides (americium, curium and neptunium), whereas the major part of the plutonium should be burned in light water reactors (or in fast reactors) There is no consensus among experts on which technical route to follow

  19. Partitioning and transmutation. Current developments - 2004. A report from the Swedish reference group on P and T-research

    International Nuclear Information System (INIS)

    This report summarises the work reported in the years 1998-2003 and tries to assess the prospects for future development of partitioning and transmutation (P-T) as seen from a Swedish perspective. The R and D efforts on P-T have increased somewhat during the period 1998-2003. Research on P-T has taken a prominent role internationally in the R and D on future nuclear power and nuclear fuel cycle systems. Despite the fact that partitioning and transmutation have been on the agenda for quite a few years there are still a number of issues that must be settled before the research and development can be given a clearly focused direction. Studies propose research programmes for about six years at the cost of a couple of hundred million Euros. The construction of a small ADS experimental plant is a necessary step to develop and demonstrate the concept. This experimental plant should then be followed by a demonstration plant in almost full scale. Such a plant can at the earliest be ready in the mid-2030s. A number of circumstances have, however, contributed to slower speed, less intensity and lower funding than proposed in the studies. There is no unanimous view on the objectives for partitioning and transmutation. Many see it as a way to achieve broad acceptance for nuclear power at large. Others promote it as a way to get out of the impasse for a deep repository in several countries. Others again put a strong emphasise on the proliferation aspects. There is no unanimous view on the need to develop ADS or for the role of ADS in a P-T-system. Some advocate that ADS should be used for burning of all transuranium nuclides from the present enriched uranium fuelled light water reactors. Others see the ADS as a supplement particularly suitable for burning minor actinides (americium, curium and neptunium), whereas the major part of the plutonium should be burned in light water reactors (or in fast reactors) There is no consensus among experts on which technical route to follow

  20. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    Science.gov (United States)

    Souček, P.; Cassayre, L.; Eloirdi, R.; Malmbeck, R.; Meier, R.; Nourry, C.; Claux, B.; Glatz, J.-P.

    2014-04-01

    A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillation for removal of the salt adhered on the electrode, chlorination of the alloy by chlorine gas and sublimation of the AlCl3 formed. The processes parameters were set on the base of a previous thermochemical study and an experimental work using pure UAl3 alloy. The present experimental results indicated high efficiency of salt distillation and chlorination steps, while the sublimation step should be further optimised.

  1. Fuel cycle and waste newsletter, Vol. 4, No. 2, September 2008

    International Nuclear Information System (INIS)

    The lead article in this issue of the Fuel Cycle and Waste Newsletter deals with the future of uranium resources. Furthermore this issue presents information about the IAEA's new publications series called the Nuclear Energy Series (NES) and discusses coordinated research projects of the Nuclear Fuel Cycle and Materials Section including 'Fuel Performance Modelling under Extended Burn-up (FUMEX)', 'Fuel Structural Materials and Water Chemistry Management in Nuclear Power Plants (FUWACC)', 'Hydrogen and Hydride Degeneration of Mechanical and Physical Properties of Zr-Alloys - Delayed Hydride Cracking (DHC) of Zirconium Alloy Fuel Cladding', 'Accelerator Simulation and Theoretical Modelling of Radiation Effects (SMoRE)', 'Spent Fuel Performance and Research (SPAR)' and 'Process-losses in Separation Processes in Partitioning and Transmutation (P and T) Systems in View of Minimizing Long-term Environmental Impacts'. This issue also covers information about the estimation of plutonium and minor actinides using NFCSS (Nuclear Fuel Cycle Simulation System), fabrication, properties and irradiation behaviour of stainless steel cladding and fuel assembly materials for liquid metal-cooled fast reactors, fabrication, processing, properties and the creation of a bibliographic database related to minor actinide fuel target, status and development of the IAEA PIE database, the international low level waste disposal network (DISPONET), retrievability in geological disposal and the review of Slovenian national repository for low- and intermediate level radioactive waste programme. A new tool for the reporting of national radioactive waste and spent fuel inventories is presented as well as the Eurobarometer survey on radioactive waste 2008, the radioactive waste assesment methodology and economics of radioactive waste management, recent activities of the International Decommissioning Network (IDN), and D and D Fuel Pools: a huge legacy worldwide. The issue closes with a list of

  2. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR

  3. Pyrometallurgical separation processes of radionuclides contained in the irradiated nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    De Cordoba, Guadalupe; Caravaca, Concha; Quinones, Javier; Gonzalez de la Huebra, Angel

    2005-01-01

    Faced with the new options for the high level waste management, the ''Partitioning and Transmutation (P and T)'' of the radio nuclides contained in the irradiated nuclear fuel appear as a promising option from different points of view, such as environmental risk, radiotoxic inventory reduction, economic, etc.. The present work is part of a research project called ''PYROREP'' of the 5th FWP of the EU that studied the feasibility of the actinide separation from the rest of fission products contained in the irradiated nuclear fuel by pyrometallurgical processes with the aim of their transmutation. In order to design these processes it is necessary to determine basic thermodynamic and kinetic data of the radionuclides contained in the nuclear fuel in molten salt media. The electrochemical study of uranium, samarium and molybdenum in the eutectic melt LiCl - KCl has been performed at a tungsten electrode in the temperature range of 450 - 600 deg C in order to obtain these basic properties. (Author)

  4. ACSEPT, Toward the Future Demonstration of Advanced Fuel Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, Stephane; Hill, Clement [CEA/DEN/MAR/DRCP, Marcoule, BP17171, 30207 Bagnols/ceze (France); Caravaca, Concha [CIEMAT (Spain); Ekberg, Christian [CHALMERS University (Sweden); Rhodes, Chris [Nuclear National Laboratory (United Kingdom)

    2009-06-15

    Actinide recycling by separation and transmutation is considered worldwide and particularly in several European countries as one of the most promising strategies to reduce the inventory of radioactive waste and to optimize the use of natural resources, thus contributing to making nuclear energy sustainable. In accordance with the Strategic Research Agenda (SRA) of the Sustainable Nuclear Energy Technology Platform (SNE-TP), the timelines of the FP7-EURATOM project ACSEPT (2008-2012) should allow the offering of technical solutions in terms of advanced closed fuel cycle technologies including the recycling of actinides and that may be reviewed by Governments, European utilities as well as Technology Providers at the time horizon 2012. By joining in its consortium 34 partners from 12 European countries plus Australia and Japan, ACSEPT is thus an essential contribution to the demonstration, in the long term, of the potential benefits of actinide recycling. To succeed, ACSEPT is organized into three technical domains: (i) Considering technically mature aqueous separation processes, ACSEPT works to optimize and select the most promising ones dedicated either to actinide partitioning or to grouped actinide separation. A substantial review was undertaken either to be sure that the right molecule families are being studied, or, on the contrary, to identify new candidates. After 18 months, results of the first hot tests should allow the validation of some process options. In addition, the first results on dissolution studies will be available as well as the progress in conversion techniques. (ii) Concerning pyrochemical separation processes, ACSEPT is focused on the enhancement of the two reference cores of process selected within EUROPART with specific attention to the exhaustive electrolysis in molten chloride (quantitative recovery of the actinides with the lowest amount of fission products) and to actinide back-extraction from an An-Al alloy. R and D efforts are also

  5. AN EVALUATION OF POTENTIAL LINER MATERIALS FOR ELIMINATING FCCI IN IRRADIATED METALLIC NUCLEAR FUEL ELEMENTS

    International Nuclear Information System (INIS)

    Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700 C. This temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelength dispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700 C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction

  6. An Evaluation of Potential Liner Materials for Eliminating FCCI in Irradiated Metallic Nuclear Fuel Elements

    International Nuclear Information System (INIS)

    Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting long live transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700 deg. C. This temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelength dispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700 deg. C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction. (authors)

  7. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    International Nuclear Information System (INIS)

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In

  8. Silicon transmutation doping techniques and practices

    International Nuclear Information System (INIS)

    This report is the result of an IAEA Consultants' meeting on Silicon Transmutation Doping Techniques and Practices, held at the Institute of Atomic Energy, Otwock-Swierk, Poland, during 20-22 November 1985. A separate abstract was prepared for each of the 10 papers presented at the meeting and included in this report. Refs, figs and tabs

  9. Transmutation of Long-Lived Nuclear Wastes

    Science.gov (United States)

    Oigawa, Hiroyuki

    JAEA is conducting research and development on an Accelerator Driven System (ADS), aiming at reduction of burden for high-level radioactive wastes. To tackle technical challenges on ADS, JAEA is planning to build the Transmutation Experimental Facility as the Phase-2 program of J-PARC. Moreover, JAEA is considering the collaboration with the MYRRHA project proposed by Belgian Nuclear Research Center.

  10. Separation of Minor Actinides from Lanthanides by Dithiophosphinic Acid Extractants

    Energy Technology Data Exchange (ETDEWEB)

    D. R. Peterman; M. R. Greenhalgh; R. D. Tillotson; J. R. Klaehn; M. K. Harrup; T. A. Luther; J. D. Law; L. M. Daniels

    2008-09-01

    The selective extraction of the minor actinides (Am(III) and Cm(III)) from the lanthanides is an important part of advanced reprocessing of spent nuclear fuel. This separation would allow the Am/Cm to be fabricated into targets and recycled to a reactor and the lanthanides to be dispositioned. This separation is difficult to accomplish due to the similarities in the chemical properties of the trivalent actinides and lanthanides. Research efforts at the Idaho National Laboratory have identified an innovative synthetic pathway yielding new regiospecific dithiophosphinic acid (DPAH) extractants. The synthesis provides DPAH derivatives that can address the issues concerning minor actinide separation and extractant stability. For this work, two new symmetric DPAH extractants have been prepared. The use of these extractants for the separation of minor actinides from lanthanides will be discussed.

  11. Scientific research on the back-end of the fuel cycle for the 21. century

    International Nuclear Information System (INIS)

    The aim of the Atalante-2000 conference is to present the major research axis concerning the nuclear fuel cycle back-end. The different topics are: - Present options concerning fuel cycle back-end; - Reprocessing of spent fuel; - Advanced separation for transmutation; - Processing and packaging of radioactive wastes; - Design and fabrication of targets for transmutation; and - Conversion of military plutonium into MOX fuels

  12. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  13. The physics design of accelerator-driven transmutation systems

    International Nuclear Information System (INIS)

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safer, less expensive and more environmentally sound approach to nuclear power

  14. Physics studies of higher actinide consumption in an LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.S.

    1990-01-01

    The core physics aspects of the transuranic burning potential of the Integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described. 4 refs., 4 figs., 3 tabs.

  15. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    OpenAIRE

    Abánades Velasco, Alberto; García, C.; García, L; Escrivá, A.; Pérez-Navarro, A.; Rosales, J.

    2011-01-01

    The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel f...

  16. Fuel cycle of BREST reactors. Solution of the radwaste and nonproliferation problems

    International Nuclear Information System (INIS)

    Fast reactors with a nitride fuel and a lead coolant (BREST) have low excessive in-core plutonium breeding (CBR ∼1.05) and do not have breeding blankets. The fuel cycle of BREST reactors includes stages that are traditionally considered in a closed fuel cycle of fast reactors excluding the breeding blanket cycle, namely in-pile fuel irradiation, post-irradiation cooling of spent FAs (SFAs); SFA transportation to the recovery shop, SFA dismantling, fuel extraction and separation of the SFA steel components, radiochemical treatment, adjustment of the fuel mixture composition, manufacturing of nitride pellets, manufacturing of fuel elements and fuel assemblies, interim storage and transportation to the reactor. There is a radioactive waste storage facility at the NPP site. The fuel cycle of fast reactors with CBR of ∼1 does not requires plutonium separation to produce 'fresh' fuel, so it should use a radiochemical technology that would not separate plutonium from the fuel in the recovery process. Besides, rough recovered fuel cleaning of fission products is permitted (the FP residue in the 'fresh' fuel is 10-2-10-3 of their content in the irradiated fuel) and the presence of minor actinides therein causes high activity of the fuel (radiation barrier for fuel thefts). The fuel cycle under consideration 'burns' uranium- 238 added to the fuel during reprocessing. And plutonium is a fuel component and circulates in a closed cycle as part of the high-level material. The radiation balance between natural uranium consumed by the nuclear power closed system and long-lived high-level radioactive waste generated in the BREST-type nuclear reactor system is provided by actinides transmutation in the fuel (U, Pu, Am, Np) and long-lived products (Tc, I) in the BREST reactor blanket and by monitored pre-disposal cooling of high-level waste for approximately 200 years. The design of the building and the entire set of the fuel cycle equipment has been completed for a BREST-OD-300

  17. Perspectives on the closed fuel cycle Implications for high-level waste matrices

    Science.gov (United States)

    Gras, Jean-Marie; Quang, Richard Do; Masson, Hervé; Lieven, Thierry; Ferry, Cécile; Poinssot, Christophe; Debes, Michel; Delbecq, Jean-Michel

    2007-05-01

    Nuclear energy accounts for 80% of electricity production in France, generating approximately 1150 t of spent fuel for an electrical output of 420 TWh. Based on a reprocessing-conditioning-recycling strategy, the orientations taken by Électricité de France (EDF) for the mid-term and the far-future are to keep the fleet performances at the highest level, and to maintain the nuclear option fully open by the replacement of present pressurized water reactor (PWR) by new light water reactor (LWR), such as the evolutionary pressurized reactor (EPR) and future Generation IV designs. Adaptations of waste materials to new requirements will come with these orientations in order to meet long-term energy sustainability. In particular, waste materials and spent fuels are expected to meet increased requirements in comparison with the present situation. So the treatment of higher burn-up UO2 spent fuel and MOX fuel requires determining the performances of glass and other matrices according to several criteria: chemical 'digestibility' (i.e. capacity of glass to incorporate fission products and minor actinides without loss of quality), resistance to alpha self-irradiation, residual power in view of disposal. Considering the long-term evolution of spent MOX fuel in storage, the helium production, the influence of irradiation damages accumulation and the evolution of the microstructure of the fuel pellet need to be known, as well as for the future fuels. Further, the eventual transmutation of minor actinides in fast neutron reactors (FR) of Generation IV, if its interest in optimising high-level waste management is proven, may also raise new challenges about the materials and fuel design. Some major questions in terms of waste materials and spent fuel are discussed in this paper.

  18. The use of micro-organisms for the remediation of solutions contaminated with actinide elements, other radionuclides, and organic contaminants generated by nuclear fuel cycle activities

    International Nuclear Information System (INIS)

    Many heavy elements, including actinides, form insoluble precipitates with ligands such as inorganic phosphate (abbreviated Pi). This can be generated biochemically, e.g. using the activity of a phosphatase enzyme of a Citrobacter sp., which forms HPO42- in juxtaposition to nucleation sites on the cell surface; insoluble metal phosphate promotes the formation of large crystals of, for example, HUO2PO4 4H20, to loads of several times the weight of the biomass. For use the biomass is immobilized within a flow-through column. The metals can be removed efficiently from dilute solution since the continuous production of a high localized concentration of Pi allows the solubility product of the metal phosphate to be exceeded, even in the presence of competing chelating ligands (e.g. citrate). Application of this approach to the removal of uranium, americium, plutonium and neptunium from acid mine drainage waters (U) and laboratory test solutions (Am, Pu, Np) is described. The phosphate ''donor'' molecule (phosphatase substrate) is an organophosphate, usually glycerol 2-phosphate. Tributyl phosphate has also been cleaved enzymatically to support the removal of uranium from solution by a new mixed culture. Some metal species such as technetium (VII), TcO4-, do not form insoluble phosphates. Here, the reductase activity of other microorganisms can be harnessed to the bioreduction of Tc(VII) to insoluble species which are precipitated onto the biomass. Special problems can occur in plant decontamination, where soluble metal-ligand complexes may be generated. (Author)

  19. Radioactive waste transmutation in a fission-fusion hybrid system; Transmutacao de rejeitos radioativos em sistemas hibridos de fusao-fissao

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Carlos Eduardo Velasquez

    2015-07-01

    A fission-fusion hybrid reactor is proposed for recycling and transmutation of highly radioactive waste. Two fusion systems were evaluated. A Tokamak, based on magnetic confinement, and another based on inertial confinement. These systems have been modified and designed to place a transmutation layer loaded with transuranic elements from spent fuel of nuclear power plants. The transmutation layer is the first presented in specific literature to be used with fuel reprocessed by the method UREX + and further spiked with depleted uranium or thorium to reduce the amount of fissile material in order to keep a subcritical system. The evaluations were carried out by varying geometric parameters such as the thickness of transmutation layer and the radius of the fuel rod. Depending on the case this variations increase the efficiency to reduce the transuranic contained in the fuel. The results show the possibility of reducing the transuranic for each model and transmutation efficiency compared to the initial amount of recycled fuel for each fusion reactor. Furthermore, a comparison of both hybrid fusion-fission systems is performed in order to find the best system to reduce transuranics efficiently. (author)

  20. Characterization of lead-bismuth eutectic target material for accelerator driven transmuters

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry E-mail: gohar@anl.gov

    2003-05-15

    Lead-bismuth eutectic (LBE) is under consideration as a target material with high-energy protons for generating neutrons to drive actinide and fission product transmuters. A characterization has been performed to study the performance of this target material as a function of the main variables and the design selections. The characterization includes the neutron yield, the spatial energy deposition, the neutron spectrum, the beam window performance, and the target buffer requirements. The characterization has also considered high-energy deuteron particles to study the impact on the target neutronic performance. The obtained results quantify the LBE target material performance with proton or deuteron particles as a function of the target variables and selections.

  1. Lanthanides and actinides extraction by calixarenes containing CMPO groups; Extraction des lanthanides et des actinides au moyen de calixarenes portant des groupements CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Carrera, A

    2001-07-01

    In the framework of the French program SPIN concerning the radioactive waste management, researches are performed to develop processes allowing the separation of long-lived radioisotopes in order to their transmutation or their specific conditioning. These studies deal with the extraction and the separation of trivalent lanthanides and actinides in acid solution. Many systems ''calixarene-diluent-aqueous phase'' are examined by extraction liquid-liquid and membrane transport. The extraction efficiency and the selectivity of the synthesized calixarene-CMPO and of the CMPO are compared with these cations, as the nitric acid extraction by these molecules. (A.L.B.)

  2. Reactor-based management of used nuclear fuel: assessment of major options.

    Science.gov (United States)

    Finck, Phillip J; Wigeland, Roald A; Hill, Robert N

    2011-01-01

    This paper discusses the current status of the ongoing Advanced Fuel Cycle Initiative (AFCI) program in the U.S. Department of Energy that is investigating the potential for using the processing and recycling of used nuclear fuel to improve radioactive waste management, including used fuel. A key element of the strategies is to use nuclear reactors for further irradiation of recovered chemical elements to transmute certain long-lived highly-radioactive isotopes into less hazardous isotopes. Both thermal and fast neutron spectrum reactors are being studied as part of integrated nuclear energy systems where separations, transmutation, and disposal are considered. Radiotoxicity is being used as one of the metrics for estimating the hazard of used fuel and the processing of wastes resulting from separations and recycle-fuel fabrication. Decay heat from the used fuel and/or wastes destined for disposal is used as a metric for use of a geologic repository. Results to date indicate that the most promising options appear to be those using fast reactors in a repeated recycle mode to limit buildup of higher actinides, since the transuranic elements are a key contributor to the radiotoxicity and decay heat. Using such an approach, there could be much lower environmental impact from the high-level waste as compared to direct disposal of the used fuel, but there would likely be greater generation of low-level wastes that will also require disposal. An additional potential waste management benefit is having the ability to tailor waste forms and contents to one or more targeted disposal environments (i.e., to be able to put waste in environments best-suited for the waste contents and forms). PMID:21399411

  3. Accelerator-driven system design concept for disposing of spent nuclear fuels

    International Nuclear Information System (INIS)

    At present, the US SNF (Spent Nuclear Fuel) inventory is growing by about 2,000 metric tonnes (MT) per year from the current operating nuclear power plants to reach about 70,000 MT by 2015. This SNF inventory contains about 1% transuranics (700 MT), which has about 115 MT of minor actinides. Accelerator-driven systems utilising proton accelerators with neutron spallation targets and subcritical blankets can be utilised for transmuting these transuranics, simultaneously generating carbon free energy, and significantly reducing the capacity of the required geological repository storage facility for the spent nuclear fuels. A fraction of the SNF plutonium can be used as a MOX fuel in the current/future thermal power reactors and as a starting fuel for future fast power reactors. The uranium of the spent nuclear fuel can be recycled for use in future nuclear power plants. This paper shows that only four to five accelerator-driven systems operating for less than 33 full power years can dispose of the US SNF inventory expected by 2015. In addition, a significant fraction of the long-lived fission products will be transmuted at the same time. Each system consists of a proton accelerator with a neutron spallation target and a subcritical assembly. The accelerator beam parameters are 1 GeV protons and 25 MW beam power, which produce 3 GWt in the subcritical assembly. A liquid metal (lead or lead-bismuth eutectic) spallation target is selected because of design advantages. This target is located at the centre of the subcritical assembly to maximise the utilisation of spallation neutrons. Because of the high power density in the target material, the target has its own coolant loop, which is independent of the subcritical assembly coolant loop. Mobile fuel forms with transuranic materials without uranium are considered in this work with liquid lead or lead-bismuth eutectic as fuel carrier

  4. Device for Detecting Actinides, Method for Detecting Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Fred J.; Wilkins-Stevens, Priscilla

    1998-10-29

    A heavy metal detector is provided comprising a first molecule and a second molecule, whereby the first and second molecules interact in a predetermined manner; a first region on the first molecule adapted to interact with an actinide; and a second region on the second molecule adapted to interact with the actinide, whereby the interactions of the actinide with the regions effect the predetermined manner of interaction between the molecules.

  5. Design and optimization of a fuel reload of BWR with plutonium and minor actinides; Diseno y optimizacion de una recarga de combustible de BWR con plutonio y actinidos menores

    Energy Technology Data Exchange (ETDEWEB)

    Guzman A, J. R.; Francois L, J. L.; Martin del Campo M, C.; Palomera P, M. A. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: maestro_juan_rafael@hotmail.com

    2008-07-01

    In this work is designed and optimized a pattern of fuel reload of a boiling water reactor (BWR), whose fuel is compound of uranium coming from the enrichment lines, plutonium and minor actinides (neptunium, americium, curium); obtained of the spent fuel recycling of reactors type BWR. This work is divided in two stages: in the first stage a reload pattern designs with and equilibrium cycle is reached, where the reload lot is invariant cycle to cycle. This reload pattern is gotten adjusting the plutonium content of the assembly for to reach the length of the wished cycle. Furthermore, it is necessary to increase the concentration of boron-10 in the control rods and to introduce gadolinium in some fuel rods of the assembly, in order to satisfy the margin approach of out. Some reactor parameters are presented: the axial profile of power average of the reactor core, and the axial and radial distribution of the fraction of holes, for the one reload pattern in balance. For the design of reload pattern codes HELIOS and CM-PRESTO are used. In the second stage an optimization technique based on genetic algorithms is used, along with certain obtained heuristic rules of the engineer experience, with the intention of optimizing the reload pattern obtained in the first stage. The objective function looks for to maximize the length of the reactor cycle, at the same time as that they are satisfied their limits related to the power and the reactor reactivity. Certain heuristic rules are applied in order to satisfy the recommendations of the fuel management: the strategy of the control cells core, the strategy of reload pattern of low leakage, and the symmetry of a quarter of nucleus. For the evaluation of the parameters that take part in the objective function it simulates the reactor using code CM-PRESTO. Using the technique of optimization of the genetic algorithms an energy of the cycle of 10834.5 MW d/tHM is obtained, which represents 5.5% of extra energy with respect to the

  6. Pyrometallurgical processes for recovery of actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  7. Pyrometallurgical processes for recovery of actinide elements

    International Nuclear Information System (INIS)

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository

  8. Neutron-induced transmutation reactions in 237Np, 238Pu, and 239Pu at the massive natural uranium spallation target

    International Nuclear Information System (INIS)

    Transmutation reactions in the 237Np, 238Pu, and 239Pu samples were investigated in the neutron field generated inside a massive (m = 512 kg) natural uranium spallation target. The uranium target assembly QUINTA was irradiated with the deuteron beams of kinetic energy 2, 4, and 8 GeV provided by the Nuclotron accelerator at the Joint Institute for Nuclear Research (JINR) in Dubna. The neutron-induced transmutation of the actinide samples was measured off-line by implementing methods of gamma-ray spectrometry with HPGe detectors. Results of measurement are expressed in the form of both the individual reaction rates and average fission transmutation rates. For the purpose of validation of radiation transport programs, the experimental results were compared with simulations of neutron production and distribution performed by the MCNPX 2.7 and MARS15 codes employing the INCL4-ABLA physics models and LAQGSM event generator, respectively. In general, a good agreement between the experimental and calculated reaction rates was found in the whole interval of provided beam energies

  9. Separation of Plutonium from Irradiated Fuels and Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Leonard W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holliday, Kiel S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murray, Alice [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Thompson, Major [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Thorp, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yarbro, Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venetz, Theodore J. [Hanford Site, Benton County, WA (United States)

    2015-09-30

    Spent nuclear fuel from power production reactors contains moderate amounts of transuranium (TRU) actinides and fission products in addition to the still slightly enriched uranium. Originally, nuclear technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel for military purposes. Military plutonium separations had essentially ceased by the mid-1990s. Reprocessing, however, can serve multiple purposes, and the relative importance has changed over time. In the 1960’s the vision of the introduction of plutonium-fueled fast-neutron breeder reactors drove the civilian separation of plutonium. More recently, reprocessing has been regarded as a means to facilitate the disposal of high-level nuclear waste, and thus requires development of radically different technical approaches. In the last decade or so, the principal reason for reprocessing has shifted to spent power reactor fuel being reprocessed (1) so that unused uranium and plutonium being recycled reduce the volume, gaining some 25% to 30% more energy from the original uranium in the process and thus contributing to energy security and (2) to reduce the volume and radioactivity of the waste by recovering all long-lived actinides and fission products followed by recycling them in fast reactors where they are transmuted to short-lived fission products; this reduces the volume to about 20%, reduces the long-term radioactivity level in the high-level waste, and complicates the possibility of the plutonium being diverted from civil use – thereby increasing the proliferation resistance of the fuel cycle. In general, reprocessing schemes can be divided into two large categories: aqueous/hydrometallurgical systems, and pyrochemical/pyrometallurgical systems. Worldwide processing schemes are dominated by the aqueous (hydrometallurgical) systems. This document provides a historical review of both categories of reprocessing.

  10. Actinides: why are they important biologically

    International Nuclear Information System (INIS)

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  11. A process of spent nuclear fuel treatment with the interim storage of TRU by use amidic extractants

    Energy Technology Data Exchange (ETDEWEB)

    Tachimori, Shoichi; Suzuki, Shinichi; Sasaki, Yuji [Japan Atomic Energy Research Inst., Tokyo (Japan)

    2001-12-01

    A new chemical process, ARTIST process, is proposed for the treatment of spent nuclear fuel. The main concept of the ARTIST process is to recover and stock separately all actinides, uranium and a mixture of transuranics, and to dispose fission products. The process composed of two main steps, a uranium exclusive isolation and a total recovery of transuranium elements (TRU); which copes with the nuclear non-proliferation measures, and additional processes. Both actinide products are solidified by calcination and allowed to the interim storage for future utilization. These separations are achieved by use of amidic extractants in accord with the CHON principle. The technical feasibility of the ARTIST process was explained by the experimental results of both the branched-alkyl monoamides in extracting uranium and suppressing the extraction of tetravalent actinides due to the steric effect and the diglycolic amide in thorough extraction of all TRU by tridentate coordination. When these TRU are requested to put into reactors, LWR or FBR, for power generation or the Accelerator-Driven System (ADS) for transmutation, lanthanides are to be removed from TRU by utilizing a soft nitrogen donor ligand. (author)

  12. Electron probe microanalysis of a METAPHIX UPuZr metallic alloy fuel irradiated to 7.0 at.% burn-up

    Science.gov (United States)

    Brémier, S.; Inagaki, K.; Capriotti, L.; Poeml, P.; Ogata, T.; Ohta, H.; Rondinella, V. V.

    2016-11-01

    The METAPHIX project is a collaboration between CRIEPI and JRC-ITU investigating safety and performance of a closed fuel cycle option based on fast reactor metal alloy fuels containing Minor Actinides (MA). The aim of the project is to investigate the behaviour of this type of fuel and demonstrate the transmutation of MA under irradiation. A UPuZr metallic fuel sample irradiated to a burn-up of 7 at.% was examined by electron probe microanalysis. The fuel sample was extensively characterised qualitatively and quantitatively using elemental X-ray imaging and point analysis techniques. The analyses reveal a significant redistribution of the fuel components along the fuel radius highlighting a nearly complete depletion of Zr in the central part of the fuel. Numerous rare earth and fission products secondary phases are present in various compositions. Fuel cladding chemical interaction was observed with creation of a number of intermediary layers affecting a cladding depth of 15-20 μm and migration of cladding elements to the fuel.

  13. Photoelectron spectra of actinide compounds

    International Nuclear Information System (INIS)

    A brief overview of the application of photoelectron spectroscopy is presented for the study of actinide materials. Phenomenology as well as specific materials are discussed with illustrative examples

  14. Transmutation Analysis of Enriched Uranium and Deep Burn High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Pope

    2012-07-01

    High temperature reactors (HTRs) have been under consideration for production of electricity, process heat, and for destruction of transuranics for decades. As part of the transmutation analysis efforts within the Fuel Cycle Research and Development (FCR&D) campaign, a need was identified for detailed discharge isotopics from HTRs for use in the VISION code. A conventional HTR using enriched uranium in UCO fuel was modeled having discharge burnup of 120 GWd/MTiHM. Also, a deep burn HTR (DB-HTR) was modeled burning transuranic (TRU)-only TRU-O2 fuel to a discharge burnup of 648 GWd/MTiHM. For each of these cases, unit cell depletion calculations were performed with SCALE/TRITON. Unit cells were used to perform this analysis using SCALE 6.1. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were first set by using Serpent calculations to match a spectral index between unit cell and whole core domains. In the case of the DB-HTR, the unit cell which was arrived at in this way conserved the ratio of fuel to moderator found in a single block of fuel. In the conventional HTR case, a larger moderator-to-fuel ratio than that of a single block was needed to simulate the whole core spectrum. Discharge isotopics (for 500 nuclides) and one-group cross-sections (for 1022 nuclides) were delivered to the transmutation analysis team. This report provides documentation for these calculations. In addition to the discharge isotopics, one-group cross-sections were provided for the full list of 1022 nuclides tracked in the transmutation library.

  15. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    Energy Technology Data Exchange (ETDEWEB)

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount

  16. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    International Nuclear Information System (INIS)

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the 'UREX+3c fuel cycle' and the 'Alternative Fuel Cycle' (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the

  17. Fabrication of targets for transmutation of americium : synthesis of inertial matrix by sol-gel method. Procedure study on the infiltration of a radioactive solutions; Fabricacion de blancos para la transmutacion de americio: sintesis de matrices inertes por el metodo sol-gel. Estudio del procedimiento de infiltracion de disoluciones radiactivas

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Carretero, A. [Universidad Complutense de Madrid (Spain)

    2002-07-01

    Transmutation and incineration are innovative options in the management and disposal of fission products and actinides. nevertheless, the fabrication of targets for transmutation and incineration of actinides and fission products require a reconsideration of conventional processes (mechanical blending) and the development of new procedures compatible with the high activity of these materials. This work presents th R and D of a new fabrication method called INRAM (Infiltration of Radioactive Materials) based on the infiltration of an actinide solution in a porous non radiotoxic material in the form of a pellet (up to 12% An), or beads (up to 40% An) produced by sol-gel. The first method have been used for the fabrication of spinel (MgAl{sub 2}O{sub 4}) targets containing 11% Am, which have been irradiated in HFR-Petten (358.4 full power days). Post-test burn-up calculations showed that at the end of the irradiation the initial Am-241 concentration was reduced to 4%. The fraction of the initial americum atoms that have been fissioned is 28%. The main advantage of the INRAM method is that matrices with low or zero activity can be fabricated and formed into the required shape in an unshielded facility. This method offers other advantages over conventional ones, such as the active wastes are reduced, is easy to automate, adoptable to telemanipulation and dust free, which facilitate operator intervention and minimise radiation exposure to the personal. In addition, the infiltrant needs only be present in liquid form, i. e. it could be transferred directly from the reprocessing plant for fabrication into targets without conversion into-solid form. In order to optimise the infiltration process in depth investigations of all important process parameters, e. g. infiltration kinetics and metal (pu, Am) concentration in the feed solution, and also on extensive study or powder metallurgy parameters for the preparation of high quality fuel pellets with a high density, have been

  18. Impact of a single generation of uranium- and thorium-fueled recycling reactors on repository loading

    International Nuclear Information System (INIS)

    Full recycling of transuranic isotopes can in theory lead to a reduction in repository radiotoxicity to reference levels in as little as ∼500 years provided reprocessing and fuel fabrication losses are limited. However, over a limited time-frame, the radiotoxicity of the 'final' core can dominate over reprocessing losses, leading to a much lower reduction in radiotoxicity compared to that achievable at equilibrium. In this paper, the change in repository radio-toxicity for a single generation of U- or Th-fuelled 'recycling' reactors is evaluated using the UK fuel cycle scenario code ORION. Use of a single pass of U-Pu or Th-Pu mixed-oxide (MOX) fuel in a conventional PWR is also considered in isolation, and in combination with a subsequent multi-recycle reactor. Sodium-cooled fast reactor (SFR) scenarios are compared to Th-based transmutation in reduced-moderation BWRs (RBWRs). For a single generation of SFRs, use of Th fuel results in generally lower radiotoxicity than U fuel until ∼45,000 years. However, the radiotoxicity at discharge is very similar, and for limited recycling the increase in radiotoxicity beyond 45,000 years results in a slower decay to the reference level. The relatively low power density and incineration rate of the RBWR significantly limits its effectiveness for actinide transmutation for a single generation of RBWRs, and hence a long-term political commitment to a closed fuel cycle would be necessary to make them worthwhile. The advantage of recycling MAs is relatively limited in the short term. In particular, recycling Pa does not significantly affect the radiotoxicity, which weakens the argument for recycling it given the technical difficulties involved. (authors)

  19. Nuclear data for plutonium and minor actinides

    International Nuclear Information System (INIS)

    Some experience in the usage of different evaluations of neutron constants for plutonium isotopes and minor actinides (MA) is described. That experience was obtained under designing the ABBN-93 group data set which nowadays is used widely for neutronics calculations of different cores with different spectrum and shielding. Under testing of the ABBN-93 data set through different integral and macroscopic experiments the main attention was paid to fuel nuclides and cross sections for MA practically did not verify. That gave an opportunity to change MA nuclear data for more modern without verification of the hole system. This desire appeared with new data libraries JENDL-3.2, JEF-2.2 and ENDF/B-6.2, which was not accessible under designing the ABBN-93. At the same time with the reevaluation of the basic MA nuclear data the ABBN-93 and the library FOND-2 of evaluated nuclear data files, which used as the basis for retrieving of the ABBN-93 data, were added with not very important MA data. So the FOND-2 library nowadays contents nuclear data files for all actinides with the half-life time more 1 day and also those MA which produce long-life actinides

  20. Inhaled actinides: some safety issues and some research problems

    International Nuclear Information System (INIS)

    The following topics are discussed: limited research funds; risk coefficients for inhaled particles; the hot particle hypothesis; the Gofman-Martell contention; critical tissues for inhaled actinides inhalation hazards associated with future nuclear fuel cycles; and approach to be used by the inhalation panel

  1. System and safety studies of accelerator driven transmutation. Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J.; Chakarova, R.; Westlen, D. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2002-03-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics has been focused in year 2001 on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics; c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache) and YALINA experiment in Minsk. The Dept. is very actively participating in many European projects in the 5th Framework Programme of the European Community. Most of the research topics reported in this paper are referred to by appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details.

  2. The use of thermocouples which transmute during service in nuclear reactors

    International Nuclear Information System (INIS)

    Some current nuclear fuel experiments at CRNL require the use of thermocouples to measure temperatures of up to 22000C under reactor operating conditions. A literature search has shown that transient electrical effects and transmutation of the thermocouple alloys can cause temperature measurement errors of up to +-1% and +-30%, respectively. However, the error due to transient electrical effects can be corrected by making temperature measurements immediately following reactor shutdown. Furthermore it has been shown that transmutation effects can be corrected for by calibrating the high temperature tungsten-rhenium thermocouples against a chromel-alumel thermocouple in a cooler part of the experiment. The use of these techniques is expected to reduce temperature measurement errors to +-2% in the best case. (auth)

  3. System and safety studies of accelerator driven transmutation. Annual Report 2001

    International Nuclear Information System (INIS)

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics has been focused in year 2001 on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics; c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache) and YALINA experiment in Minsk. The Dept. is very actively participating in many European projects in the 5th Framework Programme of the European Community. Most of the research topics reported in this paper are referred to by appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details

  4. Accelerator-driven transmutation projects in Sweden in a European perspective

    International Nuclear Information System (INIS)

    Accelerator driven transmutation projects in Sweden are dealt with within the country's energy policy and energy plans as well as in relation to European perspectives. ADS activities at Royal Institute of Technology (RIT) and Sweden are concerned with: Conceptual design nitride fueled ADS) of Sing-Sing core (heavily 'poisoned'; Development of nitride fuel (in a EU-frame); transients of ADS; Managing nuclear data and stimulating development dedicated data libraries; Development of Monte-Carlo burnup; Design of RVACS for ADS. Besides the mentioned, this paper describes projects in fourth Framework Programme of European Union, fifth Framework Programme of EU and Experiments related to ADS

  5. Reprocessing of spent nitride fuel by chemical dissolution in molten salt: Results on plutonium nitride containing inert matrix materials

    International Nuclear Information System (INIS)

    Solid solutions of actinide mono-nitrides have been proposed as a candidate fuel of the accelerator-driven system (ADS) for transmutation of minor actinides (MA). The pyrochemical process has several advantages over the wet process such as PUREX in the case of treating spent nitride fuel with large decay heat and fast neutron emission, and recovering highly enriched 15N. In the present study, the chemical dissolution of PuN, (PuxZr1-x)N and PuN+TiN, with CdCl2 in LiCl-KCl eutectic melt were investigated to confirm the possibility of the chemical dissolution process of spent nitride fuel. The plutonium nitrides, PuN, (PuxZr1-x)N and PuN+TiN, were dissolved by the reaction with CdCl2 in LiCl- KCl eutectic melt at 823 K and most of Pu was recovered into the molten salt. On the other hand, most of ZrN and TiN were not dissolved and remained as undissolved residues. (authors)

  6. Nuclear spent fuel management scenarios. Status and assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Dufek, J.; Arzhanov, V.; Gudowski, W. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2006-06-15

    The strategy for management of spent nuclear fuel from the Swedish nuclear power programme is interim storage for cooling and decay for about 30 years followed by direct disposal of the fuel in a geologic repository. In various contexts it is of interest to compare this strategy with other strategies that might be available in the future as a result of ongoing research and development. In particular partitioning and transmutation is one such strategy that is subject to considerable R and D-efforts within the European Union and in other countries with large nuclear programmes. To facilitate such comparisons for the Swedish situation, with a planned phase out of the nuclear power programme, SKB has asked the team at Royal Inst. of Technology to describe and explore some scenarios that might be applied to the Swedish programme. The results of this study are presented in this report. The following scenarios were studied by the help of a specially developed computer programme: Phase out by 2025 with direct disposal. Burning plutonium and minor actinides as MOX in BWR. Burning plutonium and minor actinides as MOX in PWR. Burning plutonium and minor actinides in ADS. Combined LWR-MOX plus ADS. For the different scenarios nuclide inventories, waste amounts, costs, additional electricity production etc have been assessed. As a general conclusion it was found that BWR is more efficient for burning plutonium in MOX fuel than PWR. The difference is approximately 10%. Furthermore the BWR produces about 10% less americium inventory. An ADS reactor park can theoretically in an ideal case burn (transmute) 99% of the transuranium isotopes. The duration of such a scenario heavily depends on the interim time needed for cooling the spent fuel before reprocessing. Assuming 10 years for cooling of nuclear fuel from ADS, the duration will be at least 200 years under optimistic technical assumptions. The development and use of advanced pyro-processing with an interim cooling time of only

  7. Neutronic characterization and decay heat calculations in the in-vessel fuel storage facilities for MYRRHA/FASTEF

    International Nuclear Information System (INIS)

    Highlights: ► Monte Carlo design of reactor facilities. ► Neutron coupling assessment between critical core and fresh fuel in the storage vessels. ► Power contribution by induced fission from neutrons leaving the core, spontaneous fission and (α, n) sources. ► Power decay heat estimation for different reactor fuel cycles scenarios. ► Material damage assessment in the storage vessels. - Abstract: The main objective of the Central Design Team (CDT) project is to establish an engineering design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) that is the pilot plant of an experimental-scale of both an Accelerator Driven System (ADS) and a Lead Fast Reactor (LFR), based on the MYRRHA reactor concept, planned to be built during the next decade. The MYRRHA reactor concept is devoted to be a multi-purpose irradiation facility aimed at demonstrating the efficient transmutation of long-lived and high radiotoxicity minor actinides, fission products and the associated technology. An important issue regarding the reactor design of the MYRRHA/FASTEF experiment is the In-Vessel Fuel Storage Facilities (IVFSFs), both for fresh and spent fuel, as it might have an impact on the criticality of the overall system that must be quantified. In this work, the neutronic analysis of the in-vessel fuel storage facility and its coupling with the critical core was performed, using the state of the art Monte Carlo program MCNPX 2.6.0 and ORIGEN 2.2 computer code system for calculating the buildup and decay heat of spent fuel. Several parameters were analyzed, like the criticality behavior (namely the Keff), the neutron fluxes and their variations, the fission power production and the radiation damage (the displacements per atom). Finally, also the heat power generated by the fission products decay in the spent fuel was assessed.

  8. Optical techniques for actinide research

    International Nuclear Information System (INIS)

    In recent years, substantial gains have been made in the development of spectroscopic techniques for electronic properties studies. These techniques have seen relatively small, but growing, application in the field of actinide research. Photoemission spectroscopies, reflectivity and absorption studies, and x-ray techniques will be discussed and illustrative examples of studies on actinide materials will be presented

  9. Challenges and directions in fuel cycle research and development

    International Nuclear Information System (INIS)

    Fuel cycle forms an integral component of nuclear energy technologies. It is intimately linked to the choice of reactor systems and national policies on nuclear energy. Choice of closed or open fuel cycle, while it is governed by the national policy; has a strong bearing on sustainability, waste management and associated long-term environmental issues. It is increasingly becoming clear that sustainability and issues concerning environmental impact favour a closed fuel cycle which permits recycle to the maximum possible extent. The key issues identified by INPRO methodology regarding nuclear reactor systems (including fuel cycle) are economy, safety, waste management, sustainability and proliferation resistance. High burn up, coprocessing of fissile and fertile material, remote refabrication and recycle of fuel including minor actinides, recovery of fission products of commercial value particularly high heat generating Cs-137, Sr-90 and noble metals, partitioning and transmutation of actinides and long lived fission products and matrix for immobilization of waste are the key targets for R and D to achieve technical solutions to these challenges. There is considerable experience in large-scale deployment of Uranium-Plutonium fuel in water reactors and in fast reactors. One could build on this experience for efficient and secure utilization of Pu stockpile in water reactors. This demands R and D for critical evaluation of novel fabrication routes, more amenable to remote fabrication and reduction of waste generation. Despite the large experience available in aqueous reprocessing, there is considerable scope for R and D to enhance plant life, minimise actinides and long-lived fission products in waste streams. R and D areas encompass development of simplified flow sheets with less number of cycles, schemes for minor actinide partitioning, corrosion resistant materials, salt free electrochemical and photochemical steps, on-line monitoring of process streams and in

  10. Challenges and directions of research and development in fuel cycle

    International Nuclear Information System (INIS)

    Full text: Fuel cycle forms an integral component of nuclear energy technologies. It is intimately linked to the choice of reactor systems and national policies on nuclear energy. Choice of closed or open fuel cycle, while it is governed by the national policy; has a strong bearing on sustainability, waste management and associated long-term environmental issues. It is increasingly becoming clear that sustainability and issues concerning environmental impact favour a closed fuel cycle which permits recycle to the maximum possible extent. The key issues identified by INPRO methodology regarding nuclear reactor systems (including fuel cycle) are economy, safety, waste management, sustainability and proliferation resistance. High burn up, coprocessing of fissile and fertile material, remote refabrication and recycle of fuel including minor actinides, recovery of fission products of commercial value particularly high heat generating Cs-137, Sr-90 and noble metals, partitioning and transmutation of actinides and long lived fission products and matrix for immobilization of waste are the key targets for R and D to achieve technical solutions to these challenges. There is considerable experience in large-scale deployment of Uranium-Plutonium fuel in water reactors and in fast reactors. One could build on this experience for efficient and secure utilization of Pu stockpile in water reactors. This demands R and D for critical evaluation of novel fabrication routes, more amenable to remote fabrication and reduction of waste generation. Despite the large experience available in aqueous reprocessing, there is considerable scope for R and D to enhance plant life, minimise actinides and long-lived fission products in waste streams. R and D areas encompass development of simplified flow sheets with less number of cycles, schemes for minor actinide partitioning, corrosion resistant materials, salt free electrochemical and photochemical steps, on-line monitoring of process streams

  11. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  12. Helium in inert matrix dispersion fuels

    International Nuclear Information System (INIS)

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO2, MgAl2O4, MgO and Al2O3) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 deg. C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur

  13. Fabrication of Dispersed CERamic-CERamic and Ceramic-METallic pellets for the Transmutation of Actinides

    Science.gov (United States)

    Fernández, A.; Haas, D.; Konings, R. J. M.; Somers, J.

    2003-07-01

    This paper describes the development of fabrication technology for target materials to be used in irradiation experiments, in the PHENIX and HFR reactors. Several target concepts will be tested: micro- as well as macrodispersed composites of (Am,Y,Zr)O2 in MgO (cercer) and macrodispersed composites of (Pu,Y,Zr)O2 in Stainless Steel (cermet) material. Results of the completed fabrication campaigns for cermet and cercer will be presented.

  14. Transmutable nanoparticles with reconfigurable surface ligands

    Science.gov (United States)

    Kim, Youngeun; Macfarlane, Robert J.; Jones, Matthew R.; Mirkin, Chad A.

    2016-02-01

    Unlike conventional inorganic materials, biological systems are exquisitely adapted to respond to their surroundings. Proteins and other biological molecules can process a complex set of chemical binding events as informational inputs and respond accordingly via a change in structure and function. We applied this principle to the design and synthesis of inorganic materials by preparing nanoparticles with reconfigurable surface ligands, where interparticle bonding can be programmed in response to specific chemical cues in a dynamic manner. As a result, a nascent set of “transmutable nanoparticles” can be driven to crystallize along multiple thermodynamic trajectories, resulting in rational control over the phase and time evolution of nanoparticle-based matter.

  15. Neutron-transmutation-doped germanium bolometers

    Science.gov (United States)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  16. Computational Study of Covalency and Complexation in Actinides using Static and Dynamic Simulation and Topological Density Analysis

    OpenAIRE

    Kirker, I. D. J.

    2013-01-01

    The separation of minor actinides such as americium and curium from other actinide and lanthanide-bearing components of used nuclear fuel is a necessary part of post-processing and recycling this fuel into storable components and new fuel material. Separation ratios can be optimised using a comprehensive understanding of the differences between these elements and their aqueous chemistry. This work uses computational simulation to investigate bonding behaviour and covalency differences between...

  17. Fluoride-conversion synthesis of homogeneous actinide oxide solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, G W Chinthaka M [ORNL; Hunn, John D [ORNL; Yeamans, Charles B. [University of California, Berkeley; Cerefice, Gary S. [University of Nevada, Las Vegas; Czerwinski, Ken R. [University of Nevada, Las Vegas

    2011-01-01

    Here, a novel route to synthesize (U, Th)O2 solid solutions at a relatively low temperature of 1100 C is demonstrated. First, the separate actinide oxides reacted with ammonium bifluoride to form ammonium actinide fluorides at room temperature. Subsequently, this mixture was converted to the actinide oxide solid solution using a two-phased heat treatment, first at 610 C in static air, then at 1100 C in flowing argon. Solid solutions obeying Vegard s Law were synthesized for ThO2 content from 10 to 90 wt%. Microscopy showed that the (U, Th)O2 solid solutions synthesized with this method to have considerably high crystallinity and homogeneity, suggesting the suitability of material thus synthesized for sintering into nuclear fuel pellets at low temperatures.

  18. 4th Neutron Transmutation Doping Conference

    CERN Document Server

    1984-01-01

    viii The growing use of NTD silicon outside the U. S. A. motivated an interest in having the next NTD conference in Europe. Therefore, the Third International Conference on Neutron Transmutation-Doped Silicon was organized by Jens Guldberg and held in Copenhagen, Denmark on August 27-29, 1980. The papers presented at this conference reviewed the developments which occurred during the t'A'O years since the previous conference and included papers on irradiation technology, radiation-induced defects, characteriza­ tion of NTD silicon, and the use of NTD silicon for device appli­ cations. The proceedings of this conference were edited by Jens Guldberg and published by Plenum Press in 1981. Interest in, and commercial use of, NTD silicon continued to grow after the Third NTD Conference, and research into neutron trans­ mutation doping of nonsilicon semiconductors had begun to accel­ erate. The Fourth International Transmutation Doping Conference reported in this volume includes invited papers summarizing the p...

  19. The status of the initiative for Inert Matrix Fuel

    International Nuclear Information System (INIS)

    Full text: The 'raison d'etre' of the initiative for IMF is to contribute to Research and Development studies on inert matrix fuels that could be used to utilise, reduce and dispose both weapon- and light water reactor- grade plutonium excesses. In addition to plutonium, the amounts of minor actinides are also increasing. Surpluses of these actinides have to be consequently handled in a safe, ecological and economical way. The promising strategy that consists of utilising plutonium and minor actinides using a once-through fuel approach within today existing commercial nuclear power reactors e.g. US, European, Russian or Japanese Light Water Reactors, Canadian Pressurized Heavy Water Reactors, or may be tomorrow in adequate transmutation units, has been emphasised since the beginning of the initiative. The approach that makes use of inert matrix material is now studied by several groups in the world. This option has the advantage of reducing the plutonium amounts and potentially minor actinide contents prior to geological disposal. The second option is that offered by using a U-free fuel leachable for reprocessing and by following a multi-recycling strategy. In both cases, the advanced fuel material produces energy while consuming plutonium or the minor actinides. This material must, however, be robust and the selected material must be the result of a careful system study including inert matrix - burnable absorbent - fissile material as minimum components and with the addition of stabiliser to yield a one phase solid solution or more simply if this option is not selected a composite inert matrix - fissile component. Since 1995, when the first IMF workshop was organized at PSI, the IMF workshops have been held each year. They involved discussions on the specific topic of inert matrix fuel for the incineration of actinides, focusing on homogeneous or heterogeneous strategies. Long-term irradiations of pellets consisting of inert matrices for burning fissile material

  20. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  1. Concentration of actinides in the food chain

    International Nuclear Information System (INIS)

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  2. New stage in the design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA))

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Leorlen Y.; Rosales, Jesus; Castro, Landy Y.; Gamez, Abel; Gonzalez, Daniel; Garcia, Carlos, E-mail: leored1984@gmail.com, E-mail: jrosales@instec.cu, E-mail: lcastro@instec.cu, E-mail: agamezgmf@gmail.com, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: abol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Dominguez, Dany S.; Silva, Alexandro S., E-mail: dsdominguez@gmail.com, E-mail: alexandrossilva@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste transmutation and obtaining heat at very high temperatures to produce hydrogen. In this new stage in the design of TADSEA, it was proposed and modelled a new burn-up strategy, simulating a multi-pass scheme of the pebbles through the core. In order to obtain the axial density power distribution more uniform, for more realistic thermal-hydraulic calculations. In the neutronic calculations it was considered the double heterogeneity of the fuel, by means of a detailed geometry modelling. In previous thermal-hydraulic studies of the TADSEA using CFD code, the pebble-bed nuclear core was considered as a porous medium. In this paper, the heat transfer from the fuel elements to the coolant was analysed using a realistic approach in ANSYS CFX 14. The maximum heat transfer inside the spherical fuel elements with a body centered cubic (BCC) cell and the entire height of core was studied. During the steady state, critical elements don't reached the limit temperature value for this type of fuel. (author)

  3. Calorimetric assay of minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, C.; Bracken, D.; Cremers, T.; Foster, L.A.; Ensslin, N.

    1996-12-31

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques.

  4. Calorimetric assay of minor actinides

    International Nuclear Information System (INIS)

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques

  5. Selective extraction of actinides from high level liquid wastes. Study of the possibilities offered by the Redox properties of actinides

    International Nuclear Information System (INIS)

    Partitioning of high level liquid wastes coming from nuclear fuel reprocessing by the PUREX process, consists in the elimination of minor actinides (Np, Am, and traces of Pu and U). Among the possible processes, the selective extraction of actinides with oxidation states higher than three is studied. First part of this work deals with a preliminary step; the elimination of the ruthenium from fission products solutions using the electrovolatilization of the RuO4 compound. The second part of this work concerns the complexation and oxidation reactions of the elements U, Np, Pu and Am in presence of a compound belonging to the insaturated polyanions family: the potassium phosphotungstate. For actinide ions with oxidation state (IV) complexed with phosphotungstate anion the extraction mechanism by dioctylamine was studied and the use of a chromatographic extraction technic permitted successful separations between tetravalents actinides and trivalents actinides. Finally, in accordance with the obtained results, the basis of a separation scheme for the management of fission products solutions is proposed

  6. Accelerator-driven transmutation of plutonium and nuclear waste

    International Nuclear Information System (INIS)

    The ultimate disposition of spent reactor fuel and processed high-level nuclear waste (HLW) has been a subject of much concern and little progress since the dawn of the nuclear era. In the United States today, the spent fuel from more than 110 commercial light water reactors continues to be stored onsite while highly toxic liquid HLW continues to be stored in tanks at several U.S. Department of Energy sites. The management policy that has been followed in the United States for the past 12 yr is defined by the Nuclear Waste Policy Act (NWPA) of 1982 and its subsequent amendment of 1987. The NWPA requires the disposal of spent fuel assemblies in geologic waste repositories, the first of which will presumably be located at Yucca Mountain, Nevada. The pace of the process for implementing the Yucca Mountain repository discussed in a recent General Accounting Office (GAO) assessment, remains frustratingly slow. By GAO estimation, an operational permanent waste repository at Yucca Mountain could be delayed beyond the 2020 time frame. The approach to formulating an acceptable HLW disposal strategy has always involved serious consideration of nonproliferation issues. Most recently, the nuclear weapon build-down following the Cold War has stimulated the need for the United States and Russia to dispose of surplus plutonium. Consideration of this has motivated (a) a recognition that all plutonium is a proliferation hazard and (b) a renewed debate on the best approach to dispose of plutonium in general. From an international perspective, there is little agreement on the best strategy for the ultimate disposition of HLW and plutonium. This paper discusses the concept of transmutation of plutonium

  7. J-ACTINET activities of training and education for actinide science research

    International Nuclear Information System (INIS)

    Actinide science research is indispensable to maintain sustainable development of innovative nuclear technology, especially advanced fuels, partitioning/reprocessing, and waste management. For actinide science research, special facilities with containment and radiation shields are needed to handle actinide materials since actinide elements are γ-, α- and neutron-emitters. The number of facilities for actinide science research has been decreased, especially in universities, due to the high maintenance cost. J-ACTINET was established in 2008 to promote and facilitate actinide science research in close cooperation with the facilities and to foster many of young scientists and engineers to be actively engaged in the fields of actinide science. The research program was carried out, through which young researchers were expected to learn how to make experiments with advanced experimental tools and to broaden their horizons. The summer schools and computational science school were held to provide students, graduate students, and young researchers with the opportunities to come into contact with actinide science research. In these schools, not only the lectures, but also the practical exercises were made as essential part. The overseas dispatch program was also carried out, where graduate students and young researchers were sent to the international summer schools and conferences. (author)

  8. Environmental research on actinide elements

    International Nuclear Information System (INIS)

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers

  9. Scientific research on the back-end of the fuel cycle for the 21. century; Les recherches scientifiques sur l'aval du cycle pour le 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The aim of the Atalante-2000 conference is to present the major research axis concerning the nuclear fuel cycle back-end. The different topics are: - Present options concerning fuel cycle back-end; - Reprocessing of spent fuel; - Advanced separation for transmutation; - Processing and packaging of radioactive wastes; - Design and fabrication of targets for transmutation; and - Conversion of military plutonium into MOX fuels.

  10. Fast reactor core concepts to improve transmutation efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Koji; Kawashima, Katsuyuki [Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1, Omika-cho, Hitachi-shi, Ibaraki, 319-1221 Japan (Japan); Itooka, Satoshi [Hitachi-GE Nuclear Energy, Ltd., 3-1-1, Saiwai-cho, Hitachi-shi, Ibaraki, 317-0073 Japan (Japan)

    2015-12-31

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.

  11. Critique of rationale for transmutation of nuclear waste