WorldWideScience

Sample records for actinide nitrides phosphides

  1. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    Science.gov (United States)

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  2. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  3. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  4. Structural stability and mutual transformations of molybdenum carbide, nitride and phosphide

    International Nuclear Information System (INIS)

    Graphical abstract: Both Mo2C and Mo2N can be transformed to MoP, whereas the reverse changes are inviable, which is used to develop a promising and practical pathway for preparing MoP nanoparticles. Highlights: → Mo carbide, nitride and phosphide are prepared. → The structural stability increases in the order of Mo2N 2C 2C and Mo2N can be transformed to MoP, whereas the reverse changes are inviable. → This study develops a promising and practical pathway for preparing MoP nanoparticles. -- Abstract: The structural stability and transformations of Mo carbide, nitride and phosphide were investigated under various atmosphere conditions by X-ray diffraction (XRD). The results indicated that the order of structural stability of these Mo-based compounds was as follows: Mo2N 2C 2C and Mo2N can be transformed to MoP, whereas the reverse transformations did not occur. Noticeably, compared with those Mo sources containing oxygen, the use of Mo2C/Mo2N as Mo-source can produce finely dispersed MoP nanoparticles by the temperature-programmed reaction (TPR) method. The result was probably due to the fact that lower-levels H2O generated during synthesis process can avoid strong hydrothermal sintering. The influence of formation energy had been considered and was found to relate to the structural stability and transformations of these Mo-based compounds.

  5. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Drryl P. Butt; Brian Jaques

    2009-03-31

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  6. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    International Nuclear Information System (INIS)

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 (le) X (le) 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  7. Electrochemical behavior of actinides and actinide nitrides in LiCl-KCl eutectic melts

    International Nuclear Information System (INIS)

    The redox potentials of the U3+/U, Np3+/Np and Pu3+/Pu couples at Mo, Cd and Bi electrodes in LiCl-KCl eutectic melt containing UCl3, NpCl3 and PuCl3, respectively, were evaluated by electrochemical measurements at the temperature range between 723 and 823K. The standard potentials of the U3+/U, Np3+/Np and Pu3+/Pu couples versus the Ag+/Ag (1wt.% AgCl) reference electrode were given by the following equations: EU3+/U0=-1.8647+0.000798xT, ENp3+/Np0=-2.0298+0.000706xT and EPu3+/Pu0=-2.232+0.00094xT, where E values are in volts, T in kelvin. The differences between the redox potentials at Mo electrode and those at liquid metal electrodes were attributable to the lowering in the activities of U, Pu and Np in liquid metal phases according to the alloy formation. Similarly, the anodic dissolutions of UN, NpN and PuN were observed at about 0.7V more positive potential than those of U, Np and Pu, respectively, since the stabilization of U, Np and Pu by nitriding lowered the activities of U, Np and Pu, respectively, in the solid phase

  8. First principles study of structural, electronic, mechanical and magnetic properties of actinide nitrides AnN (An = U, Np and Pu)

    Science.gov (United States)

    Murugan, A.; Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.

    2016-09-01

    The electronic, structural, mechanical and magnetic properties of Actinide nitrides AnN (An = U, Np and Pu) are investigated in three cubic phases, namely, NaCl (B1), CsCl (B2) and zinc blende (B3). At normal pressure, UN is stable in antiferromagnetic state while the other two nitrides are stable in the ferromagnetic state with NaCl (B1) structure. A pressure induced structural phase transition from B1 to B3 phase is predicted in these nitrides. The electronic structure reveals that these nitrides are metallic in nature. The magnetic phase transition from antiferromagnetic to non-magnetic state is observed in UN at a pressure of 127 GPa while ferromagnetic to non-magnetic state is observed in NpN and PuN at the pressures of 67 GPa and 102.3 GPa respectively. The computed structural parameters, bulk modulus density of states and charge density distributions are compared with experimental and other theoretical calculations.

  9. Fatal aluminium phosphide poisoning

    Directory of Open Access Journals (Sweden)

    Meena Mahesh Chand

    2015-06-01

    Full Text Available Aluminium phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. AlP has currently aroused interest with a rising number of cases in the past four decades due to increased use for agricultural and non-agricultural purposes. Its easy availability in the markets has increased also its misuse for committing suicide. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. Poisoning with AlP has often occurred in attempts to commit suicide, and that more often in adults than in teenagers. This is a case of suicidal consumption of aluminium phosphide by a 32-year-old young medical anesthetist. Toxicological analyses detected aluminium phosphide. We believe that free access of celphos tablets in grain markets should be prohibited by law.

  10. Zinc Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Erdal Doğan

    2014-01-01

    Full Text Available Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes.

  11. Gold phosphide complexes

    OpenAIRE

    2007-01-01

    The vast majority of gold complexes with five group-element donor ligands contain tertiary phosphines, although compounds with amine, arsine or stibine ligands are also known. Although phosphide ligands, which are formed by deprotonation of non-tertiary phosphines, are closely related to the former, they have been employed to a lesser extent, mainly due to their lower stability. Thus, the chemistry of phosphido-bridged derivatives of the main group elements1-3 or transition metals4-6 has been...

  12. Fabrication of actinide mononitride fuel

    International Nuclear Information System (INIS)

    Fabrication of actinide mononitride fuel in JAERI is summarized. Actinide mononitride and their solid solutions were fabricated by carbothermic reduction of the oxides in N2 or N2-H2 mixed gas stream. Sintering study was also performed for the preparation of pellets for the property measurements and irradiation tests. The products were characterized to be high-purity mononitride with a single phase of NaCl-type structure. Moreover, fuel pins containing uranium-plutonium mixed nitride pellets were fabricated for the irradiation tests in JMTR and JOYO. (author)

  13. Actinides-1981

    International Nuclear Information System (INIS)

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  14. Actinides-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  15. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  16. Phosphide poisoning: a review of literature.

    Science.gov (United States)

    Bumbrah, Gurvinder Singh; Krishan, Kewal; Kanchan, Tanuj; Sharma, Madhulika; Sodhi, Gurvinder Singh

    2012-01-10

    Metal phosphides in general and aluminium phosphide in particular are potent insecticides and rodenticides. These are commercially used for protection of crops during storage, as well as during transportation. However, these are highly toxic substances. Their detrimental effects may range from nausea and headache to renal failure and death. It is, therefore, pertinent to ensure their circumspect handling to avoid poisoning episodes. Its poisoning has a high mortality and recent years have seen an increase in the number of poisoning cases and deaths caused by suicidal ingestion. Yet due to their broad spectrum applications, these chemicals cannot be written off. The present communication reviews the various aspects of toxicity associated with metal phosphides.

  17. Can Ni phosphides become viable hydroprocessing catalysts?

    Energy Technology Data Exchange (ETDEWEB)

    Soled, S.; Miseo, S.; Baumgartner, J.; Guzman, J.; Bolin, T.; Meyer, R.

    2015-05-15

    We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventional supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).

  18. Property database of TRU nitride fuel

    OpenAIRE

    西 剛史; 荒井 康夫; 高野 公秀; 倉田 正輝

    2014-01-01

    The purpose of this study is to prepare a property database of nitride fuel needed for the fuel design of accelerator-driven system (ADS) for transmutation of minor actinide (MA). Nitride fuel of ADS is characterized by high content of Pu and MA as principal components, and addition of a diluent material such as ZrN. Experimental data or evaluated values from the raw data on properties Pu and MA nitrides, and nitride solid solutions containing ZrN are collected and summarized, which cover the...

  19. Progress in molecular uranium-nitride chemistry

    OpenAIRE

    King, David M.; Liddle, Stephen T

    2014-01-01

    The coordination, organometallic, and materials chemistry of uranium nitride has long been an important facet of actinide chemistry. Following matrix isolation experiments and computational characterisation, molecular, solution-based uranium chemistry has developed significantly in the last decade or so culminating most recently in the isolation of the first examples of long-sought terminal uranium nitride linkages. Herein, the field is reviewed with an emphasis on well-defined molecular spec...

  20. A successful management of aluminum phosphide intoxication

    OpenAIRE

    Moazezi, Zoleika; Abedi, Seyed Hassan

    2011-01-01

    Background: Aluminum Phosphide or rice tablet is one of the most common pesticides which leads to accidental or intentional acute intoxication and finally death. In this paper, we describe a successful management of intoxication with rice tablet in a young girl.

  1. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    NARCIS (Netherlands)

    Assali, S.; Zardo, I.; Plissard, S.; Kriegner, D.; Verheijen, M.A.; Bauer, G.; Meijerink, A.; Belabbes, A.; Bechstedt, F.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a di

  2. The lanthanides and actinides

    International Nuclear Information System (INIS)

    This paper relates the chemical properties of the actinides to their position in the Mendeleev periodic system. The changes in the oxidation states of the actinides with increasing atomic number are similar to those of the 3d elements. Monovalent and divalent actinides are very similar to alkaline and alkaline earth elements; in the 3+ and 4+ oxidation states they resemble d elements in the respective oxidation states. However, in their highest oxidation states the actinides display their individual properties with only a slight resemblance to d elements. Finally, there is a profound similarity between the second half of the actinides and the first half of the lanthanides

  3. Comment on " An update on toxicology of aluminum phosphide "

    Directory of Open Access Journals (Sweden)

    Omid Mehrpour

    2012-10-01

    Full Text Available I read with interest the recent published article by Dr Moghadamnia titled "An update on toxicology of aluminum phosphide". Since aluminum phosphide (AlP poisoning is an important medical concern in Iran, I have had the opportunities to work and publish many papers in this regard. I would like to comment on that paper.

  4. Microwave-assisted synthesis of transition metal phosphide

    Science.gov (United States)

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  5. Synthesis, characterization and properties of hollow nickel phosphide nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ni Yonghong; Tao Ali; Hu Guangzhi; Cao Xiaofeng; Wei Xianwen; Yang Zhousheng [College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000 (China)

    2006-10-14

    Nickel phosphide (Ni{sub 12}P{sub 5}) hollow nanospheres with a mean diameter of 100 nm and a shell thickness of 15-20 nm have been successfully prepared by a hydrothermal-microemulsion route, using NaH{sub 2}PO{sub 2} as a phosphorus source. XRD, EDS (HR)TEM, SEM and the SAED pattern were used to characterize the final product. Experiments showed that the as-prepared nickel phosphide hollow nanospheres could selectively catalytically degrade some organic dyes such as methyl red and Safranine T under 254 nm UV light irradiation. At the same time, the nickel phosphide hollow nanospheres showed a stronger ability to promote electron transfer between the glass-carbon electrode and adrenalin than nickel phosphide honeycomb-like particles prepared by a simple hydrothermal route. A possible formation process for nickel phosphide hollow nanospheres was suggested based on the experimental results.

  6. PREFACE: Actinides 2009

    Science.gov (United States)

    Rao, Linfeng; Tobin, James G.; Shuh, David K.

    2010-07-01

    This volume of IOP Conference Series: Materials Science and Engineering consists of 98 papers that were presented at Actinides 2009, the 8th International Conference on Actinide Science held on 12-17 July 2009 in San Francisco, California, USA. This conference was jointly organized by Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory. The Actinides conference series started in Baden-Baden, Germany (1975) and this first conference was followed by meetings at Asilomar, CA, USA (1981), Aix-en-Provence, France (1985), Tashkent, USSR (1989), Santa Fe, NM, USA (1993), Baden-Baden, Germany (1997), Hayama, Japan (2001), and Manchester, UK (2005). The Actinides conference series provides a regular venue for the most recent research results on the chemistry, physics, and technology of the actinides and heaviest elements. Actinides 2009 provided a forum spanning a diverse range of scientific topics, including fundamental materials science, chemistry, physics, environmental science, and nuclear fuels. Of particular importance was a focus on the key roles that basic actinide chemistry and physics research play in advancing the worldwide renaissance of nuclear energy. Editors Linfeng Rao Lawrence Berkeley National Laboratory (lrao@lbl.gov) James G Tobin Lawrence Livermore National Laboratory (tobin1@llnl.gov) David K Shuh Lawrence Berkeley National Laboratory (dkshuh@lbl.gov)

  7. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  8. Chemical vapour deposition of metal oxides and phosphides.

    OpenAIRE

    Binions, R.

    2006-01-01

    This thesis investigates the deposition of thin films of main group metal phosphide and main group metal oxide compounds on glass substrates by the use of dual source atmospheric pressure chemical vapour deposition. Binary phosphide systems with tin, germanium, silicon, antimony, copper or boron have been examined. Binary oxide systems of gallium, antimony, tin or niobium have also been investigated. Additionally these systems were deposited on gas sensor substrates and evaluated as metal oxi...

  9. Modeling of Etching Nano-surfaces of Indium Phosphide

    Directory of Open Access Journals (Sweden)

    S.L. Khrypko

    2015-03-01

    Full Text Available This paper describes a mechanism for obtaining a regular porous structure InP, which is to use the method of photoelectrochemical etching. Through the use of simulation etching at the nanoscale, it is possible to get a regular uniform grid of nanopores on the surface of indium phosphide, which allows us to understand the mechanisms and the establishment of technological regimes anodic structures indium phosphide to produce a variety of devices.

  10. A Clinical Study of aluminium Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    S.K. Gupta,Annil Mahajan,Ajay Gupta

    2002-04-01

    Full Text Available Thc present prospectiYe study 01'56 cases ofAlwniniwn Phosphide (ALP poisoning in Gov!. MedicalCollcge Hospital Jammu. found out the prevalence of Deliberate self-poisoning self (DSP andaccidental ingestion in young population in age group of 16-30 years. Male-female ratio ",as 1.03: 1.00;ha' ing marital discord and family quarrels as prominent predisposing factors. The majority of patientshad gastrointestinal (GIT symptoms (73.2%, cardiac arrthymias (62.5% and shock (53.3%. Thccommoncst clectrocardiographic (ECG abnormalities were tachycardia (96%, atrial fibrillation(58% and venticular-ectopic (VE beats (59%. The management was supportive in the fonn ofstomach wash, intra"enous (IN fluids. dopamine, hydrocortisone, sodabicarbonate and assisted"entilation in intensiYe care unit (lCU setting

  11. Successful management of zinc phosphide poisoning.

    Science.gov (United States)

    Shakoori, Vahid; Agahi, Mahsa; Vasheghani-Farahani, Maryam; Marashi, Sayed Mahdi

    2016-06-01

    Zinc phosphide (Zn2P3) rodenticide, is generally misused intentionally for suicidal purpose in Iran. For many years, scientists believe that liberation of phosphine (PH3) on contact with acidic content of the stomach is responsible for clinical presentations. However, relatively long time interval between ingestion of Zn2P3 and presentation of its systemic toxicity, and progression of acute liver failure could not be explained by the current opinion. Hence, an innovative theory intended that phosphonium, as an intermediate product will create and pass through the stomach, which then will reduce to produce PH3in the luminal tract. Here, we present a case of massive Zn2P3 poisoning. In our case, we used repeated doses of castor oil to induce bowel movement with an aim of removing unabsorbed toxin, which was proved by radiography. Interestingly, the patient presents only mild symptoms of toxicity such as transient metabolic acidosis and hepatic dysfunction. PMID:27390464

  12. Cavity optomechanics in gallium phosphide microdisks

    CERN Document Server

    Mitchell, Matthew; Barclay, Paul E

    2013-01-01

    Gallium phosphide microdisk optical microcavities with intrinsic quality factors > 280,000 and mode volumes < (10 lambda/n)^3 are demonstrated, and their nonlinear and optomechanical properties are studied. For optical intensities up to 350,000 intracavity photons, optical loss within the microcavity is observed to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two photon absorption is not significant. Optomechanical coupling between several mechanical resonances and the optical modes of the microdisk is observed, and an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g_0~80 kHz is measured for the 488 MHz mechanical fundamental radial breathing mode.

  13. An Update on Toxicology of Aluminum Phosphide

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moghhadamnia

    2012-09-01

    Full Text Available Aluminum phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the "rice tablet". AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposes and also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC, glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning.

  14. An update on toxicology of aluminum phosphide

    Directory of Open Access Journals (Sweden)

    Moghadamnia Ali

    2012-09-01

    Full Text Available Abstract Aluminum phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the “rice tablet”. AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposesand also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC, glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning.

  15. Fabrication challenges for indium phosphide microsystems

    International Nuclear Information System (INIS)

    From the inception of III–V microsystems, monolithically integrated device designs have been the motivating drive for this field, bringing together the utility of single-chip microsystems and conventional fabrication techniques. Indium phosphide (InP) has a particular advantage of having a direct bandgap within the low loss telecommunication wavelength (1550 nm) range, able to support passive waveguiding and optical amplification, detection, and generation depending on the exact alloy of In, P, As, Ga, or Al materials. Utilizing epitaxy, one can envision the growth of a substrate that contains all of the components needed to establish a single-chip optical microsystem, containing detectors, sources, waveguides, and mechanical structures. A monolithic InP MEMS system has, to our knowledge, yet to be realized due to the significant difficulties encountered when fabricating the integrated devices. In this paper we present our own research and consolidate findings from other research groups across the world to give deeper insight into the practical aspects of InP monolithic microsystem development: epitaxial growth of InP-based alloys, etching techniques, common MEMS structures realized in InP, and future applications. We pay special attention to shedding light on considerations that must be taken when designing and fabricating a monolithic InP MEMS device. (topical review)

  16. Fabrication challenges for indium phosphide microsystems

    Science.gov (United States)

    Siwak, N. P.; Fan, X. Z.; Ghodssi, R.

    2015-04-01

    From the inception of III-V microsystems, monolithically integrated device designs have been the motivating drive for this field, bringing together the utility of single-chip microsystems and conventional fabrication techniques. Indium phosphide (InP) has a particular advantage of having a direct bandgap within the low loss telecommunication wavelength (1550 nm) range, able to support passive waveguiding and optical amplification, detection, and generation depending on the exact alloy of In, P, As, Ga, or Al materials. Utilizing epitaxy, one can envision the growth of a substrate that contains all of the components needed to establish a single-chip optical microsystem, containing detectors, sources, waveguides, and mechanical structures. A monolithic InP MEMS system has, to our knowledge, yet to be realized due to the significant difficulties encountered when fabricating the integrated devices. In this paper we present our own research and consolidate findings from other research groups across the world to give deeper insight into the practical aspects of InP monolithic microsystem development: epitaxial growth of InP-based alloys, etching techniques, common MEMS structures realized in InP, and future applications. We pay special attention to shedding light on considerations that must be taken when designing and fabricating a monolithic InP MEMS device.

  17. Acute aluminium phosphide poisoning, what is new?

    Directory of Open Access Journals (Sweden)

    Yatendra Singh

    2014-01-01

    Full Text Available Aluminium phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide that is commonly used for grain preservation. AlP has currently generated interest with increasing number of cases in the past four decades because of its increased use for agricultural and nonagricultural purposes, and also its easy availability in the markets has led to its increased misuse to commit suicide. Ingestion is usually suicidal in intent, uncommonly accidental and rarely homicidal. The poison affects all systems, shock, cardiac arrhythmias with varied ECG changes and gastrointestinal features being the most prominent. Diagnosis is made on the basis of clinical suspicion, a positive silver nitrate paper test to phosphine, and gastric aspirate and viscera biochemistry. Treatment includes early gastric lavage with potassium permanganate or a combination of coconut oil and sodium bicarbonate, administration of charcoal and palliative care. Specific therapy includes intravenous magnesium sulphate and oral coconut oil. Unfortunately, the lack of a specific antidote Results in very high mortality and the key to treatment lies in rapid decontamination and institution of resuscitative measures. This article aims to identify the salient features and mechanism of AlP poisoning along with its management strategies and prognostic variables.

  18. A Suicide Attempt Using Zinc Phosphide (A Case Study

    Directory of Open Access Journals (Sweden)

    Aysenur Sumer Coskun

    2013-10-01

    Full Text Available Zinc phosphide is a toxin that is added to wheat for use in rodent control and is the active ingredient of rodenticide. A 17 year-old male attempted suicide by drinking pesticide [Zinc PHOSPHIDE (Zn3P2] and was subsequently admitted to the emergency department: the patient’s general condition was poor, he was unconscious and vomiting, the skin had a garlic odor and advanced acidosis was present. The patient was treated symptomatically, followed by mechanical ventilation, and was transferred to a psychiatric clinic on the fifth day.

  19. Device for Detecting Actinides, Method for Detecting Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Fred J.; Wilkins-Stevens, Priscilla

    1998-10-29

    A heavy metal detector is provided comprising a first molecule and a second molecule, whereby the first and second molecules interact in a predetermined manner; a first region on the first molecule adapted to interact with an actinide; and a second region on the second molecule adapted to interact with the actinide, whereby the interactions of the actinide with the regions effect the predetermined manner of interaction between the molecules.

  20. Fabrication of inert-matrix nitride fuel pins for the irradiation test at JMTR

    International Nuclear Information System (INIS)

    Nitride fuel pins containing inert matrix such as ZrN and TiN were fabricated for the irradiation test at JMTR, aiming at understanding irradiation behavior of nitride fuel for transmutation of minor actinides. Minor actinides are surrogated by plutonium in the present fuel pin. This report describes the preparation and characterization of fuel pellets, and fabrication of fuel pins. The irradiation for 11 cycles from May 2002 to November 2004 at JMTR was completed without any failure of fuel pins. (author)

  1. Carbon phosphide monolayers with superior carrier mobility

    Science.gov (United States)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great

  2. Recovering actinide values

    International Nuclear Information System (INIS)

    Actinide values are recovered from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorus extractants such as tri-n butyl phosphate (TBP) and dihexyl-N, N-diethyl carbamylmethylene phosphonate (DHDECMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant can be recycled after stripping the degradation products with a neutral sodium carbonate solution. (author)

  3. Actinides: why are they important biologically

    International Nuclear Information System (INIS)

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  4. Manganese phosphide thin films and nanorods grown on gallium phosphide and on glass substrates

    Science.gov (United States)

    Nateghi, N.; Lambert-Milot, S.; Ménard, D.; Masut, R. A.

    2016-05-01

    We report a simple and fast route to grow ferromagnetic manganese phosphide polycrystalline films and nanorods on GaP and on glass substrates using metalorganic vapor phase deposition. Increasing the growth temperature (≥600 °C) and growth time (≥30 min) results in nucleation of secondary MnP crystals on the primary grains. The secondary crystals grow faster along a specific direction of orthorhombic MnP (c-axis) and form long rods (up to ~10 μm) whose diameters are in the nanoscale (20-100 nm). The nanorods can be easily detached from the glass substrate. The films exhibit ferromagnetic behavior with a range of transition temperatures, depending on the growth conditions.

  5. Successful outcome in managing of aluminum phosphide poisoning

    Directory of Open Access Journals (Sweden)

    Samad Shams Vahdati

    2015-06-01

    Full Text Available Aluminum phosphide (ALP is a potent lethal substance, that use for agriculture purpose, as a pesticide. this substance may use for suicide, and it will kill the patient rapidly. we want to report a patient who use ALP for suicide purpose and was managed quickly in the emergency department and he became alive.

  6. Optical properties of strained wurtzite gallium phosphide nanowires

    NARCIS (Netherlands)

    Greil, J.; Assali, S.; Isono, Y.; Belabbes, A.; Bechstedt, F.; Valega MacKenzie, F.O.; Silov, A.Yu.; Bakkers, E.P.A.M.; Haverkort, J.E.M.

    2016-01-01

    Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet cle

  7. Responses of Siberian ferrets to secondary zinc phosphide poisoning

    Science.gov (United States)

    Hill, E.F.; Carpenter, J.W.

    1982-01-01

    The hazard of operational-type applications of zinc phosphide (Zn3P2) on a species closely related to the black-footed ferret (Mustela nigripes), was evaluated by feeding 16 Siberian ferrets (M. eversmanni) rats that had been killed by consumption of 2% zinc phosphide treated bait or by an oral dose of 40, 80, or 160 mg of Zn3P2. All ferrets accepted rats and a single emesis by each of 3 ferrets was the only evidence of acute intoxication. All ferrets learned to avoid eating gastrointestinal tracts of the rats. Subacute zinc phosphide toxicity in the ferrets was indicated by significant decreases (18-48%) in hemoglobin, increases of 35-91 % in serum iron, and elevated levels of serum globulin, cholesterol, and triglycerides. Hemoglobin/iron, urea nitrogen/creatinine, and albumin/globulin ratios also were altered by the treatments. This study demonstrated that Siberian ferrets, or other species with a sensitive emetic reflex, are afforded a degree of protection from acute zinc phosphide poisoning due to its emetic action. The importance of toxicity associated with possible respiratory, liver, and kidney damage indicated by altered blood chemistries is not known.

  8. Photoelectron spectra of actinide compounds

    International Nuclear Information System (INIS)

    A brief overview of the application of photoelectron spectroscopy is presented for the study of actinide materials. Phenomenology as well as specific materials are discussed with illustrative examples

  9. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarifah, Ratna Dewi, E-mail: syarifah.physics@gmail.com; Suud, Zaki, E-mail: szaki@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Physics Department, Faculty of Mathematics and Natural Science, Bandung Institute of Technology Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  10. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    Science.gov (United States)

    Bosco, Jeffrey Paul

    The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an ``earth-abundant'' solar absorber, we find zinc phosphide (α-Zn 3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>10. 4cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P 2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn 3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P 2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found. The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P 2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are

  11. Optical techniques for actinide research

    International Nuclear Information System (INIS)

    In recent years, substantial gains have been made in the development of spectroscopic techniques for electronic properties studies. These techniques have seen relatively small, but growing, application in the field of actinide research. Photoemission spectroscopies, reflectivity and absorption studies, and x-ray techniques will be discussed and illustrative examples of studies on actinide materials will be presented

  12. Acute Anterolateral Myocardial Infarction Due to Aluminum Phosphide Poisoning

    OpenAIRE

    Bita Dadpour; Zohre Oghabian

    2013-01-01

    Aluminum phosphide (AlP) is a highly effective rodenticide which is used as a suicide poison. Herein, a 24 year-old man who’d intentionally ingested about 1liter of alcohol and one tablet of AlP is reported. Acute myocardial infarction due to AlP poisoning has been occurred secondary to AIP poisoning. Cardiovascular complications are poor prognostic factors in AlP poisoning

  13. Acute Anterolateral Myocardial Infarction Due to Aluminum Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Bita Dadpour

    2013-08-01

    Full Text Available Aluminum phosphide (AlP is a highly effective rodenticide which is used as a suicide poison. Herein, a 24 year-old man who’d intentionally ingested about 1liter of alcohol and one tablet of AlP is reported. Acute myocardial infarction due to AlP poisoning has been occurred secondary to AIP poisoning. Cardiovascular complications are poor prognostic factors in AlP poisoning

  14. Concentration of actinides in the food chain

    International Nuclear Information System (INIS)

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  15. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.;

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually...... of competing localized and delocalized f-electron configurations underlies the ground states of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f7), CmN (f7), and AmN (f6). The observed sudden increase in lattice parameter from PuN to AmN is found to be related...... increasing degree of f electron localization from U to Cm, with the tendency toward localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band picture is found to be adequate for UC and acceptable for UN, while a more complex manifold...

  16. Calorimetric assay of minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, C.; Bracken, D.; Cremers, T.; Foster, L.A.; Ensslin, N.

    1996-12-31

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques.

  17. Calorimetric assay of minor actinides

    International Nuclear Information System (INIS)

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques

  18. Study on Nitride Fuel Fabrication Process and Irradiation Test Results in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Song, Kee Chan; Lee, Jung Won; Kang, Kweon Ho; Jung, In Ha; Park, Chang Je; Lee, Jae Won; Lee, Young Woo

    2004-12-15

    Research on nitride fuels such as fabrication process and irradiation test proceeds actively in Japan by JAERI and JNC recently. To develop 'double strata' fuel cycle suggested by JAERI, fabrication of minor actinide containing nitride fuels and irradiation test in JOYO experimental fast reactor have been carried out for the development of future ADS target. Fabrication process and irradiation test on the nitride fuels in Japan is considered as the most advanced experimental achievement in the world. This state-of-the-art report summarizes research results of nitride fuels in Japan in order to obtain in-depth knowledge about fabrication process and in-pile behavior of nitride fuels.

  19. Reprocessing of spent nitride fuel by chemical dissolution in molten salt: Results on plutonium nitride containing inert matrix materials

    International Nuclear Information System (INIS)

    Solid solutions of actinide mono-nitrides have been proposed as a candidate fuel of the accelerator-driven system (ADS) for transmutation of minor actinides (MA). The pyrochemical process has several advantages over the wet process such as PUREX in the case of treating spent nitride fuel with large decay heat and fast neutron emission, and recovering highly enriched 15N. In the present study, the chemical dissolution of PuN, (PuxZr1-x)N and PuN+TiN, with CdCl2 in LiCl-KCl eutectic melt were investigated to confirm the possibility of the chemical dissolution process of spent nitride fuel. The plutonium nitrides, PuN, (PuxZr1-x)N and PuN+TiN, were dissolved by the reaction with CdCl2 in LiCl- KCl eutectic melt at 823 K and most of Pu was recovered into the molten salt. On the other hand, most of ZrN and TiN were not dissolved and remained as undissolved residues. (authors)

  20. Environmental research on actinide elements

    International Nuclear Information System (INIS)

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers

  1. Surface reactions of molecular and atomic oxygen with carbon phosphide films.

    Science.gov (United States)

    Gorham, Justin; Torres, Jessica; Wolfe, Glenn; d'Agostino, Alfred; Fairbrother, D Howard

    2005-11-01

    The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers.

  2. Synthesis of Indium Nitride Epitaxial Layers on a Substrate of Porous Indium Phosphide

    Directory of Open Access Journals (Sweden)

    J.A. Suchikova

    2015-10-01

    Full Text Available The paper presents a technique to obtain InN films on porous InP substrates by radical-beam gettering epitaxy. According to the results of the Auger spectroscopy, InN film thickness ranged from 100 nm to 0.5 microns depending on the etching conditions.

  3. THERMODYNAMICS OF THE ACTINIDES

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Burris B.

    1962-04-01

    Recent work on the thermodynamic properties of the transplutonium elements is presented and discussed in relation to trends in thermodynamic properties of the actinide series. Accurate values are given for room temperature lattice parameters of two crystallographic forms, (facecentred cubic) fcc and dhcp (double-hexagonal closepacked), of americium metal and for the coefficients of thermal expansion between 157 and 878 deg K (dhcp) and 295 to 633 deg K (fcc). The meiting point of the metal, and its magnetic susceptibility between 77 and 823 deg K are reported and the latter compared with theoretical values for the tripositive ion calculated from spectroscopic data. Similar data (crystallography, meiting point and magnetic susceptibility) are given for metallic curium. A value for the heat of formation of americium monoxide is reported in conjunction with crystallographic data on the monoxide and mononitride. A revision is made in the current value for the heat of formation of Am/O/sub 2/ and for the potential of the Am(III)-Am(IV) couple. The crystal structures and lattice parameters are reported for the trichloride, oxychloride and oxides of californium. (auth)

  4. Synthesis, characterization and hydrotreating performance of supported tungsten phosphide catalysts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors (supported phospho-tungstate catalysts) in H2 and characterized by X-ray diffraction (XRD),BET,temperature-programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS).The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis (TG-DTA) and the suitable phosphiding temperatures were defined.The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of the catalysts were tested by using thiophene,pyridine,dibenzothiophene,carbazole and diesel oil as the feed-stock.The TiO2,γ-Al2O3 supports and the Ni,Co promoters could remarkably increase and stabilize active W species on the catalyst surface.A suitable amount of Ni (3%-5%),Co (5%-7%) and V (1%-3%) could increase dispersivity of the W species and the BET surface area of the WP/γ-Al2O3 catalyst.The WP/γ-Al2O3 catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene (DBT) HDS and pyridine HDN activities.The Ni,Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/γ-Al2O3 catalyst.The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/γ-Al2O3 catalyst.In general,a support or promoter in the WP/γ-Al2O3 catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.

  5. 33rd Actinide Separations Conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  6. Gallium Phosphide as a material for visible and infrared optics

    Directory of Open Access Journals (Sweden)

    Václavík J.

    2013-05-01

    Full Text Available Gallium phosphide is interesting material for optical system working in both visible and MWIR or LWIR spectral ranges. Number of a material available for these applications is limited. They are typically salts, fluorides or sulphides and usually exhibit unfavorable properties like brittleness; softness; solubility in water and small chemical resistance. Although GaP has do not offer best optical parameters excels over most other material in mechanical and chemical resistance. The article describes its most important characteristics and outlines some applications where GaP should prove useful.

  7. Novel, High Activity Hydroprocessing Catalysts: Iron Group Phosphides

    OpenAIRE

    Wang, Xianqin

    2002-01-01

    A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe2P, CoP and Ni2P, were also prepared on a silica (SiO2) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N2 BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts...

  8. Actinides and Life's Origins.

    Science.gov (United States)

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  9. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  10. Environmental research on actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  11. Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars

    OpenAIRE

    Tu, Bor-An Clayton

    2013-01-01

    This thesis presents a new strategy to fabricate nanostructured indium phosphide and cadmium sulfide photovoltaics. The cells are formed by chemical bath deposition (electroless deposition) of cadmium sulfide onto indium phosphide nanopillar arrays grown by selective-area metalorganic chemical vapor deposition. Characterizations through electrical and optical measurements show that the devices consisting of p-InP core and CdS shell have a conversion efficiency, open circuit voltage, short cir...

  12. Aluminum Phosphide; the Most Fatal Rodenticide and Fungicide

    International Nuclear Information System (INIS)

    Introduction: Aluminum phosphide (AP) is a fumigate agent, which is also used to control rodents and pests in grain storage facilities. This agent is commonly used in low income and agricultural communities. AP is easily available, cheap and highly toxic. Ingestion of even half a fresh tablet invariably results in death. Its suicidal or accidental poisoning is a medical emergency, while in some low income countries it reaches to more than two third of poisoning deaths. Methods: PubMed was systematically searched (December 2006) for articles related to aluminium phosphide poisoning. 24 articles were finally included. Mechanism of action; AP on exposure to moisture, liberates highly toxic gas, phosphine. In animal and human models AP rapidly inhibits cytochrome-c oxidase leading to inhibition of mitochondrial oxidative phosphorylation and inhibits mitochondrial respiration and has cytotoxic action. Clinical Findings: Initial findings of intoxication may be nonspecific and transient. The symptoms may resolve within several hours after removal from exposure. It, however, produces phosphine gas, which is a mitochondrial poison. Its manufacturing and application pose risks of inhalation of phosphine. CNS; GCS is fine at the beginning. Biochemistry; Metabolic acidosis and liver dysfunction are reported. Shock is frequent. Respiratory Tract; Acute dyspnoea, hypotension, bradycardia and other signs of intoxication were also stated. Gastrointestinal; Reported short-segment esophageal strictures in the upper and mid esophagus, successfully managed by endoscopic dilatation. In sub-chronic use, degenerative changes in liver, heart and kidney of rabbits are reported. Cardiovascular; The ECG abnormalities are common and include hypotension, bradycardia, ST-T changes, Supraventricular tachycardia, ventricular ectopics, life threatening ventricular tachycardia, ventricular fibrillation, atrial flutter/fibrillation, variable degrees of heart block and toxic myocarditis. Haematologic

  13. Detection of Aluminium Phosphide and Zinc Phosphide by X-Ray Diffraction%X射线衍射法检测磷化铝磷化锌

    Institute of Scientific and Technical Information of China (English)

    马健; 王力春; 郭东东; 罗敬锋; 张忠

    2011-01-01

    Aluminium phosphide and zinc phosphide are detected by X-ray diffractometer and the powder of aluminium phoshphide and zinc phosphide is analyzed.Compared with traditional methods,the x-ray diffraction method has many advantages such as simplicity,high precision and reliability and is one of several nondestructive analysis techniques.%用X射线衍射仪检测磷化铝和磷化锌,并对磷化铝和磷化锌粉末进行分析,发现较之传统检测方法,其结果更可靠,操作更简便,且能得到样品的某些晶体参数,是仅有的几个无损分析技术之一。

  14. Actinides recycling assessment in a thermal reactor

    International Nuclear Information System (INIS)

    Highlights: • Actinides recycling is assessed using BWR fuel assemblies. • Four fuel rods are substituted by minor actinides rods in a UO2 and in a MOX fuel assembly. • Performance of standard fuel assemblies and the ones with the substitution is compared. • Reduction of actinides is measured for the fuel assemblies containing minor actinides rods. • Thermal reactors can be used for actinides recycling. - Abstract: Actinides recycling have the potential to reduce the geological repository burden of the high-level radioactive waste that is produced in a nuclear power reactor. The core of a standard light water reactor is composed only by fuel assemblies and there are no specific positions to allocate any actinides blanket, in this assessment it is proposed to replace several fuel rods by actinides blankets inside some of the reactor core fuel assemblies. In the first part of this study, a single uranium standard fuel assembly is modeled and the amount of actinides generated during irradiation is quantified for use it as reference. Later, in the same fuel assembly four rods containing 6 w/o of minor actinides and using depleted uranium as matrix were replaced and depletion was simulated to obtain the net reduction of minor actinides. Other calculations were performed using MOX fuel lattices instead of uranium standard fuel to find out how much reduction is possible to obtain. Results show that a reduction of minor actinides is possible using thermal reactors and a higher reduction is obtained when the minor actinides are embedded in uranium fuel assemblies instead of MOX fuel assemblies

  15. Possibility of fusion power reactor to transmute minor actinides of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Serikov, A. E-mail: serikov@nfi.kiae.ru; Shatalov, G.; Sheludjakov, S.; Shpansky, Yu.; Vasiliev, N

    2002-12-01

    A possibility to use fusion power reactor (FPR) is considered for burning long-life elements of spent nuclear fuel in parallel with energy production. In this study a principal design of FPR blanket was examined for transmutation of long-life minor actinides (Np, Am, Cm). A production of minor actinide isotopes is equal to 20-30 kg/1 GW{sub (e)} year for now operating fission reactors, and their amounts will rise with the expected growth of fission reactor power. These isotopes have long-life time and can be dangerous in big amounts in future. Plutonium isotopes are not included in an assumption that they will be used in fission reactors. The major goals of the study were to determine FPR blanket composition corresponding to fast transmutation rate of actinides and tritium self-supply simultaneously. Tritium breeding ratio (TBR) was obtained at level 1.11 for water cooling and reached up 1.56 in variant with helium-cooled assemblies with Np nitride. It was concluded that rows with actinides from processed waste fuel should be arranged near the plasma first wall. Advantages of helium above water cooling are observed in the twice-increased loading of waste fissionable materials and essential increase of achievable TBR. Burnout of Np, Am, Cm would remain at a level {approx}40-50% after 4 full power years.

  16. Zinc phosphide intoxication of wild turkeys (Meleagris gallopavo).

    Science.gov (United States)

    Poppenga, Robert H; Ziegler, Andre F; Habecker, Perry L; Singletary, Don L; Walter, Mark K; Miller, Paul G

    2005-01-01

    Zinc phosphide (Zn3P2) is a rodenticide used to control a variety of small mammal species. It is available over-the-counter or as a restricted-use pesticide depending on how it is to be applied. The toxicity of Zn3P2 is dependent on the species exposed, whether the animal is able to vomit or not, and whether it is ingested on a full or empty stomach. Nontarget species can be exposed through inadvertent or intentional product misapplication. In this article we describe four mortality events in which wild turkeys (Meleagris gallopavo) were believed to have been intoxicated following the ingestion of baits containing Zn3P2.

  17. Band structures in silicene on monolayer gallium phosphide substrate

    Science.gov (United States)

    Ren, Miaojuan; Li, Mingming; Zhang, Changwen; Yuan, Min; Li, Ping; Li, Feng; Ji, Weixiao; Chen, Xinlian

    2016-07-01

    Opening a sizable band gap in the zero-gap silicene is a key issue for its application in nanoelectronics. We design new 2D silicene and GaP heterobilayer (Si/GaP HBL) composed of silicene and monolayer (ML) GaP. Based on first-principles calculations, we find that the interaction energies are in the range of -295.5 to -297.5 meV per unit cell, indicating a weak interaction between silicene and gallium phosphide (GaP) monolayer. The band gap changes ranging from 0.06 to 0.44 eV in hybrid HBLs. An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern. These provide a possible way to design effective FETs out of silicene on GaP monolayer.

  18. Nanoimprinted DWDM laser arrays on indium phosphide substrates

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Nørregaard, Jesper; Mironov, Andrej;

    2014-01-01

    Dense wavelength division multiplexing lasers play a major role in today's long-haul broadband communication. Typical distributed feedback laser cavities consist of long half-pitch gratings in InGaAsP on InP substrates with grating periods of around 240 nm. The lasers include a quarter wavelength...... shift in the grating, and are single mode with high side-mode suppression. Typically, such lasers are patterned using e-beam lithography (EBL). We present a fabrication method based on patterning by thermal nanoimprint lithography, which is potentially less costly and faster than EBL. Thermal...... nanoimprint lithography of laser gratings raises two types of challenges: (1) The imprint process itself is delicate due to the mechanical fragility of indium phosphide substrates and the thermal mismatch between the substrate and the silicon stamp. (2) The subsequent processing puts requirements on the...

  19. Indium Phosphide-Based Semiconductor Nanocrystals and Their Applications

    Directory of Open Access Journals (Sweden)

    Paul Mushonga

    2012-01-01

    Full Text Available Semiconductor nanocrystals or quantum dots (QDs are nanometer-sized fluorescent materials with optical properties that can be fine-tuned by varying the core size or growing a shell around the core. They have recently found wide use in the biological field which has further enhanced their importance. This review focuses on the synthesis of indium phosphide (InP colloidal semiconductor nanocrystals. The two synthetic techniques, namely, the hot-injection and heating-up methods are discussed. Different types of the InP-based QDs involving their use as core, core/shell, alloyed, and doped systems are reviewed. The use of inorganic shells for surface passivation is also highlighted. The paper is concluded by some highlights of the applications of these systems in biological studies.

  20. AC surface photovoltage of indium phosphide nanowire networks

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J.; Kobayashi, Nobuhiko P. [California Univ., Santa Cruz, CA (United States). Baskin School of Engineering; California Univ., Santa Cruz, CA (US). Nanostructured Energy Conversion Technology and Research (NECTAR); NASA Ames Research Center, Moffett Field, CA (United States). Advanced Studies Laboratories

    2012-06-15

    Surface photovoltage is used to study the dynamics of photogenerated carriers which are transported through a highly interconnected three-dimensional network of indium phosphide nanowires. Through the nanowire network charge transport is possible over distances far in excess of the nanowire lengths. Surface photovoltage was measured within a region 10.5-14.5 mm from the focus of the illumination, which was chopped at a range of frequencies from 15 Hz to 30 kHz. Carrier dynamics were modeled by approximating the nanowire network as a thin film, then fitted to experiment suggesting diffusion of electrons and holes at approximately 75% of the bulk value in InP but with significantly reduced built-in fields, presumably due to screening by nanowire surfaces. (orig.)

  1. Optical properties of indium phosphide nanowire ensembles at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J; Onishi, Takehiro; Kobayashi, Nobuhiko P [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz-NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2010-09-03

    Ensembles that contain two types (zincblende and wurtzite) of indium phosphide nanowires grown on non-single crystalline surfaces were studied by micro-photoluminescence and micro-Raman spectroscopy at various low temperatures. The obtained spectra are discussed with the emphasis on the effects of differing lattice types, geometries, and crystallographic orientations present within an ensemble of nanowires grown on non-single crystalline surfaces. In the photoluminescence spectra, a typical Varshni dependence of band gap energy on temperature was observed for emissions from zincblende nanowires and in the high temperature regime energy transfer from excitonic transitions and band-edge transitions was identified. In contrast, the photoluminescence emissions associated with wurtzite nanowires were rather insensitive to temperature. Raman spectra were collected simultaneously from zincblende and wurtzite nanowires coexisting in an ensemble. Raman peaks of the wurtzite nanowires are interpreted as those related to the zincblende nanowires by a folding of the phonon dispersion.

  2. Actinide chemistry in ionic liquids.

    Science.gov (United States)

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

  3. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  4. Actinide Waste Forms and Radiation Effects

    Science.gov (United States)

    Ewing, R. C.; Weber, W. J.

    Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and

  5. Long-term plant availability of actinides

    International Nuclear Information System (INIS)

    Environmental releases of actinide elements raise issues about which data are very limited. Quantitative information is required to assess the long-term behavior of actinides and their potential hazards resulting from the transport through food chains leading to man. Of special interest is the effect of time on the changes in the availability of actinide elements for uptake by plants from soil. This study provides valuable information on the effects of weathering and aging on the uptake of actinides from soil by range and crop plants grown under realistic field conditions

  6. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  7. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  8. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  9. Novel, high-activity hydroprocessing catalysts: Iron group phosphides

    Science.gov (United States)

    Wang, Xianqin

    A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe2P, CoP and NO, were also prepared on a silica (SiO2) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N2 BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts were tested in a three-phase trickle bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene using a model liquid feed at realistic conditions (30 atm, 370°C). The reactivity studies showed that the nickel phosphide (Ni2P/SiO2) was the most active of the catalysts. Compared with a commercial Ni-Mo-S/gamma-Al 2O3 catalyst at the same conditions, Ni2P/silica had a substantially higher HDS activity (100% vs. 76%) and HDN activity (82% vs. 38%). Because of their good hydrotreating activity, an extensive study of the preparation of silica supported nickel phosphides, Ni2P/SiO 2, was carried out. The parameters investigated were the phosphorus content and the weight loading of the active phase. The most active composition was found to have a starting synthesis Ni/P ratio close to 1/2, and the best loading of this sample on silica was observed to be 18 wt.%. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES) measurements were employed to determine the structures of the supported samples. The main phase before and after reaction was found to be Ni2P, but some sulfur was found to be retained after reaction. A comprehensive scrutiny of the HDN reaction mechanism was also made over the Ni2P/SiO2 sample (Ni/P = 1/2) by comparing the HDN activity of a series of piperidine derivatives of different structure. It was found that piperidine adsorption involved an alpha-H activation

  10. Synthesis and catalytic activity of the metastable phase of gold phosphide

    Science.gov (United States)

    Fernando, Deshani; Nigro, Toni A. E.; Dyer, I. D.; Alia, Shaun M.; Pivovar, Bryan S.; Vasquez, Yolanda

    2016-10-01

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au2P3 was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au2P3 nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction.

  11. Synthesis and Catalytic Activity of the Metastable Phase of Gold Phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Deshani; Nigro, Toni A. E.; Dyer, I. D.; Alia, Shaun M.; Pivovar, Bryan S.; Vasquez, Yolanda

    2016-10-01

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au2P3 was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au2P3 nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction.

  12. Nitrogen Availability Of Nitriding Atmosphere In Controlled Gas Nitriding Processes

    Directory of Open Access Journals (Sweden)

    Michalski J.

    2015-06-01

    Full Text Available Parameters which characterize the nitriding atmosphere in the gas nitriding process of steel are: the nitriding potential KN, ammonia dissociation rate α and nitrogen availabilitymN2. The article discusses the possibilities of utilization of the nitriding atmosphere’s nitrogen availability in the design of gas nitriding processes of alloyed steels in atmospheres derived from raw ammonia, raw ammonia diluted with pre-dissociated ammonia, with nitrogen, as well as with both nitrogen and pre-dissociated ammonia. The nitriding processes were accomplished in four series. The parameters selected in the particular processes were: process temperature (T, time (t, value of nitriding potential (KN, corresponding to known dissociation rate of the ammonia which dissociates during the nitriding process (α. Variable parameters were: nitrogen availability (mN2, composition of the ingoing atmosphere and flow rate of the ingoing atmosphere (FIn.

  13. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced...

  14. Prompt fission neutron spectrum of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  15. Calculated Atomic Volumes of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  16. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  17. Actinide co-conversion by internal gelation

    International Nuclear Information System (INIS)

    Suitable microstructures and homogenous microspheres of actinide compounds are of interest for future nuclear fuel or transmutation target concepts to prevent the generation and dispersal of actinide powder. Sol-gel routes are being investigated as one of the possible solutions for producing these compounds. Preliminary work is described involving internal gelation to synthesize mixed compounds including minor actinides, particularly mixed actinide or mixed actinide-inert element compounds. A parameter study is discussed to highlight the importance of the initial broth composition for obtaining gel microspheres without major defects (cracks, craters, etc.). In particular, conditions are defined to produce gel beads from Zr(IV)/Y(III)/Ce(III) or Zr(IV)/An(III) systems. After gelation, the heat treatment of these microspheres is described for the purpose of better understanding the formation of cracks after calcination and verifying the effective synthesis of an oxide solid-solution. (authors)

  18. Actinide ion sensor for pyroprocess monitoring

    Science.gov (United States)

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  19. THE STUDY OF MOLYBDENUM PHOSPHIDE AS CATALYST FOR SIMULTANEOUS HDN,HDS AND HDY

    Institute of Scientific and Technical Information of China (English)

    ZHAOTian-bo; LIFeng-yan; SUNGui-da; LICui-qing

    2003-01-01

    Transition-metal molybdenum phosphides were prepared by direct reduction of an amorphous phosphate precursor in hydrogen at relatively low temperature(650℃).XRD(X-ray diffraction analysis)measurements showed that pure molybdenum phosphide formed after the reduction with H2.The reactivity was determined in a continuous-flow microreactor at a H2 pressure of 3.0 MPa.A sample of prepared molybdenum phosphide catalyst diluted with γ-Al2O3(20% phosphate precursor)was used for simultaneuous HDN(Hydrodenitrogenation),HDS (Hydrodesulfurization and HDY)Hydrogenation of aromatics).The influences of space velocity,flow rate of hydrogen,reaction time and temperature on hydrotreating performance were studied.Pyridine,thiophene and cyclohexene were used as model compunds,their contents were respectively 5%,5% and 20%,Cyclohexane was used as the solvent.

  20. Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires

    KAUST Repository

    Greil, J.

    2016-06-08

    Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material.

  1. V18P9C2. A complex phosphide carbide

    International Nuclear Information System (INIS)

    V18P9C2 crystallizes in the orthorhombic space group Pmma with the lattice parameters a = 17.044(3), b = 3.2219(7), and c = 13.030(2) Aa, Z = 2. The crystal structure is composed of 19 symmetry-independent atoms. The crystal structure is considered as a network formed by the transition metal atoms exhibiting cubic, trigonal prismatic, and octahedral voids centered by V, P, and C atoms, respectively. Vice versa, the V and P atoms form a three-dimensional network. The two CV6 octahedra are edge- and corner-connected to chains running parallel to [010]. The five unique P atoms are trigonal prismatically coordinated by V atoms with one to three faces capped again by a V atom. The V atoms have mainly cubic environments formed solely by V or by V and P atoms. V18P9C2 exhibits some structural relations to other compounds of the ternary system V-P-C as well as to other intermetallic phases. Despite the low carbon content, V18P9C2 is considered as a ternary compound rather than an interstitially stabilized (binary) phosphide in view of its special structural features.

  2. Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires.

    Science.gov (United States)

    Greil, J; Assali, S; Isono, Y; Belabbes, A; Bechstedt, F; Valega Mackenzie, F O; Silov, A Yu; Bakkers, E P A M; Haverkort, J E M

    2016-06-01

    Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material. PMID:27175743

  3. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan;

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  4. Ionic Interactions in Actinide Tetrahalides

    Science.gov (United States)

    Akdeniz, Z.; Karaman, A.; Tosi, M. P.

    2001-05-01

    We determine a model of the ionic interactions in AX 4 compounds (where A is an atom in the actinide series from Th to Am and X = F, Cl, Br or I) by an analysis of data on the static and dynamic structure of their molecular monomers. The potential energy function that we adopt is taken from earlier work on rare-earth trihalides [Z. Akdeniz, Z. Q q e k and M. P. Tosi, Z. Naturforsch. 55a, 861 (2000)] and in particular allows for the electronic polarizability of the actinide ion. This polarizability quantitatively determines the antisymmetric-bending vibrational mode, but its magnitude remains compatible with a symmetric tetrahedral shape of the molecule at equilibrium. The fluorides have an especially high degree of ionic character, and the interionic-force parameters for each halide of the U, Np, Pu and Am series show regular trends, suggesting that extrapolations to the other transuranic-element halides may usefully be made. The Th compounds show some deviations from these trends, and the interionic-force model that we determine for ThCl4 differs somewhat from that obtained in a previous study. We therefore return on the evaluation of the relative stability of charged oligomers of ThCl4 and ZrCl4 and find confirmation of our earlier results on this problem.

  5. The ALMR actinide burning system

    International Nuclear Information System (INIS)

    The advanced liquid-metal reactor (ALMR) actinide burning system is being developed under the sponsorship of the US Department of Energy to bring its unique capabilities to fruition for deployment in the early 21st century. The system consists of four major parts: the reactor plant, the metal fuel and its recycle, the processing of light water reactor (LWR) spent fuel to extract the actinides, and the development of a residual waste package. This paper addresses the status and outlook for each of these four major elements. The ALMR is being developed by an industrial group under the leadership of General Electric (GE) in a cost-sharing arrangement with the US Department of Energy. This effort is nearing completion of the advanced conceptual design phase and will enter the preliminary design phase in 1994. The innovative modular reactor design stresses simplicity, economics, reliability, and availability. The design has evolved from GE's PRISM design initiative and has progressed to the final stages of a prelicensing review by the US Nuclear Regulatory Commission (NRC); a safety evaluation report is expected by the end of 1993. All the major issues identified during this review process have been technically resolved. The next design phases will focus on implementation of the basic safety philosophy of passive shutdown to a safe, stable condition, even without scram, and passive decay heat removal. Economic projections to date show that it will be competitive with non- nuclear and advanced LWR nuclear alternatives

  6. Severe myocardial depression in a patient with aluminium phosphide poisoning: A clinical, electrocardiographical and histopathological correlation

    Directory of Open Access Journals (Sweden)

    Shah Viral

    2009-01-01

    Full Text Available Aluminium phosphide poisoning is very common in India. It is one of the most fatal poisons. The clinical spectrum of poisoning varies depending upon the dosage and duration of consumption. The main effect of the poison is due to the release of phosphine which inhibits cytochrome oxidase and thereby hampers cellular oxygen utilization. Almost any organ can be affected by aluminium phosphide poisoning. We report a case where the heart was the predominantly affected organ. We describe the clinical symptoms and signs and their correlation with electrocardiographic and histopathological examinations.

  7. A concept of self-completed fuel cycle based on lead-cooled nitride-fuel fast reactors

    International Nuclear Information System (INIS)

    A concept of nuclear energy total system was studied based on the nitride fuel cycle and inherent safety lead-cooled fast reactors. In the nitride fuel reprocessing, a new concept for pyrochemical method was proposed due to reducing fuel cycle cost. The present designed lead-cooled fast reactors have higher safety, economics and minor actinide transmutation efficiency than those of MOX-fuel fast reactors. The construction of 1500 MWt plant is feasible as a result for technology studies for aseismic, steam-generator and reactor configuration systems. (author)

  8. Experimental studies of actinides in molten salts

    International Nuclear Information System (INIS)

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  9. Electronic structure and magnetic properties of actinides

    International Nuclear Information System (INIS)

    The study of the actinide series shows the change between transition metal behavior and lanthanide behavior, between constant weak paramagnetism for thorium and strong Curie-Weiss paramagnetism for curium. Curium is shown to be the first metal of the actinide series to be magnetically ordered, its Neel temperature being 52K. The magnetic properties of the actinides depending on all the peripheral electrons, their electronic structure was studied and an attempt was made to determine it by means of a phenomenological model. Attempts were also made to interrelate the different physical properties which depend on the outer electronic structure

  10. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  11. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    OpenAIRE

    Soucek, Pavel; Cassayre, Laurent; Eloirdi, Rachel; Malmbeck, Rikard; Meier, Roland; Nourry, Christophe; Claux, Benoit; Glatz, Jean-Paul

    2014-01-01

    International audience; A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillatio...

  12. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    OpenAIRE

    Cassayre, Laurent; Soucek, Pavel; Mendes, Eric; Malmbeck, Rikard; Nourry, Christophe; Eloirdi, Rachel; Glatz, Jean-Paul

    2011-01-01

    Pyrochemical processes in molten LiCl–KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide–aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorina...

  13. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    Science.gov (United States)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  14. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  15. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs

  16. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    We demonstrated a new process for recovering plutonium and americium from pyrochemical waste. The method is based on chloride solution anion exchange at low acidity, or acidity that eliminates corrosive HCl fumes. Developmental experiments of the process flow chart concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 62- from high-chloride low-acid solution. Americium and other metals are washed from the ion exchange column with lN HNO3-4.8M NaCl. After elution, plutonium is recovered by hydroxide precipitation, and americium is recovered by NaHCO3 precipitation. All filtrates from the process can be discardable as low-level contaminated waste. Production-scale experiments are in progress for MSE residues. Flow charts for actinide recovery from electro-refining and direct oxide reduction residues are presented and discussed

  17. General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution.

    Science.gov (United States)

    Read, Carlos G; Callejas, Juan F; Holder, Cameron F; Schaak, Raymond E

    2016-05-25

    Transition metal phosphides recently have been identified as promising Earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Here, we present a general and scalable strategy for the synthesis of transition metal phosphide electrodes based on the reaction of commercially available metal foils (Fe, Co, Ni, Cu, and NiFe) with various organophosphine reagents. The resulting phosphide electrodes were found to exhibit excellent electrocatalytic HER and OER performance. The most active electrodes required overpotentials of only -128 mV for the HER in acid (Ni2P), -183 mV for the HER in base (Ni2P), and 277 mV for the OER in base (NiFeP) to produce operationally relevant current densities of 10 mA cm(-2). Such HER and OER performance compares favorably with samples prepared using significantly more elaborate and costly procedures. Furthermore, we demonstrate that the approach can also be utilized to obtain highly active and conformal metal phosphide coatings on photocathode materials, such as highly doped Si, that are relevant to solar fuels production. PMID:27156388

  18. Facile synthesis of iron phosphide nanorods for efficient and durable electrochemical oxygen evolution.

    Science.gov (United States)

    Xiong, Dehua; Wang, Xiaoguang; Li, Wei; Liu, Lifeng

    2016-07-01

    Iron phosphide (FeP) nanorods have been fabricated by a facile hydrothermal synthesis of iron oxyhydroxide precursors, followed by a convenient phosphorization process. The FeP nanorods dispersed on carbon fiber paper current collectors exhibit outstanding catalytic activity and excellent long-term stability toward the oxygen evolution reaction (OER). PMID:27333123

  19. Preparation of actinide targets by electrodeposition

    Science.gov (United States)

    Trautmann, N.; Folger, H.

    1989-10-01

    Actinide targets with varying thicknesses on different substrates have been prepared by electrodeposition either from aqueous solutions or from solutions of their nitrates in isopropyl alcohol. With these techniques the actinides can be deposited almost quantitatively on various backing materials within 15 to 30 min. Targets of thorium, uranium, neptunium, plutonium, americium, curium and californium with areal densities from almost carrier-free up to 1.4 mg/cm 2 on thin beryllium, carbon, titanium, tantalum and platinum foils have been prepared. In most cases, prior to the deposition, the actinides had to be purified chemically and for some of them, due to the limited amount of material available, recycling procedures were required. Applications of actinide targets in heavy-ion reactions are briefly discussed.

  20. Actinide research to solve some practical problems

    International Nuclear Information System (INIS)

    The following topics are discussed: generation of plutonium inventories by nuclear power plants; resettlement of the Marshallese Islanders into an actinide contaminated environment; high radiation background areas of the world; and radiation hazards to uranium miners

  1. Electronic structure and correlation effects in actinides

    Energy Technology Data Exchange (ETDEWEB)

    Albers, R.C.

    1998-12-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related.

  2. Overview of actinide chemistry in the WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Marian [Los Alamos National Laboratory; Lucchini, Jean - Francois [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Swanson, Juliet [Los Alamos National Laboratory

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important

  3. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  4. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  5. Lanthanides and actinides in ionic liquids

    OpenAIRE

    Binnemans, Koen

    2007-01-01

    This lecture gives an overview of the research possibilities offered by combining f-elements (lanthanides and actinides) with ionic liquids [1] Many ionic liquids are solvents with weakly coordinating anions. Solvation of lanthanide and actinide ions in these solvents is different from what is observed in conventional organic solvents and water. The poorly solvating behavior can also lead to the formation of coordination compounds with low coordination numbers. The solvation of f-elements can...

  6. Superconductivity in rare earth and actinide compounds

    International Nuclear Information System (INIS)

    Rare earth and actinide compounds and the extraordinary superconducting and magnetic phenomena they exhibit are surveyed. The rare earth and actinide compounds described belong to three classes of novel superconducting materials: high temperature, high field superconductors (intermetallics and layered cuprates); superconductors containing localized magnetic moments; heavy fermion superconductors. Recent experiments on the resistive upper critical field of high Tc cuprate superconductors and the peak effect in the critical current density of the f-electron superconductor CeRu2 are discussed. (orig.)

  7. The Actinide Transition Revisited by Gutzwiller Approximation

    Science.gov (United States)

    Xu, Wenhu; Lanata, Nicola; Yao, Yongxin; Kotliar, Gabriel

    2015-03-01

    We revisit the problem of the actinide transition using the Gutzwiller approximation (GA) in combination with the local density approximation (LDA). In particular, we compute the equilibrium volumes of the actinide series and reproduce the abrupt change of density found experimentally near plutonium as a function of the atomic number. We discuss how this behavior relates with the electron correlations in the 5 f states, the lattice structure, and the spin-orbit interaction. Our results are in good agreement with the experiments.

  8. Lattice effects in the light actinides

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, A.C.; Cort, B.; Roberts, J.A.; Bennett, B.I.; Brun, T.O.; Dreele, R.B. von [Los Alamos National Lab., NM (United States); Richardson, J.W. Jr. [Argonne National Lab., IL (United States)

    1998-12-31

    The light actinides show a variety of lattice effects that do not normally appear in other regions of the periodic table. The article will cover the crystal structures of the light actinides, their atomic volumes, their thermal expansion behavior, and their elastic behavior as reflected in recent thermal vibration measurements made by neutron diffraction. A discussion of the melting points will be given in terms of the thermal vibration measurements. Pressure effects will be only briefly indicated.

  9. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  10. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  11. Recent progress in actinide borate chemistry.

    Science.gov (United States)

    Wang, Shuao; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-10-21

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB(5)O(6)(OH)(6)][BO(OH)(2)]·2.5H(2)O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO(4)(-). Uranyl borates form noncentrosymmetric structures with extraordinarily rich topological relationships. Neptunium borates are often mixed-valent and yield rare examples of compounds with one metal in three different oxidation states. Plutonium borates display new coordination chemistry for trivalent actinides. Finally, americium borates show a dramatic departure from plutonium borates, and there are scant examples of families of actinides compounds that extend past plutonium to examine the bonding of later actinides. There are several grand challenges that this work addresses. The foremost of these challenges is the development of structure-property relationships in transuranium materials. A deep understanding of the materials chemistry of actinides will likely lead to the development of advanced waste forms for radionuclides present in nuclear waste that prevent their transport in the environment. This work may have also uncovered the solubility-limiting phases of actinides in some repositories, and allows for measurements on the stability of these materials. PMID:21915396

  12. Quantum dot infrared photodetectors based on indium phosphide

    International Nuclear Information System (INIS)

    The subject of this work is a systematic study of quantum dot infrared photodetectors based on indium-phosphide substrate by means of various spectroscopic and electronic measurement methods in order to understand the physical and technological processes. This enables a concise definition of strategies in order to realize next generation devices in this material system and to gain overall progress in the research field of quantum dot infrared photodetectors. The interpretation of the experimental results is supported by analytical and numerical simulations. The samples, grown by collaboration partners, were characterized using differential transmission and fast Fourier transform infrared spectroscopy, with a special emphasis on the latter one. Therefore, samples both in wedged waveguide geometry and samples with gold coated mesa structures have been processed. A large part of the discussion is dedicated to the current voltage characteristic of the devices, due to its large importance for device optimization, i.e. the reduction of the dark current plays a crucial role in the research field of high temperature infrared photon-detection. Further, results of photoluminescence measurements, performed by collaboration partners, have been used in order to attain a more complete picture of the samples' electronic band structure and in order to obtain complementary information with respect to other measurement methods applied within the experimental work and the simulation of the structures. In agreement to the simulations, a photocurrent response was observed at 6 and at 12 μm up to a temperature of 80 K, depending on the samples' design. The principle of parameter scaling was applied to the samples, in order to assign physical effects either to details in the samples' design or to technological quality aspects, i.e. the doping level and the thickness of the capping layer was varied. In addition to that a quantum well was introduced within a series of samples in order to

  13. Scaling Mesa Indium Phosphide DHBTs to Record Bandwidths

    Science.gov (United States)

    Lobisser, Evan

    Indium phosphide heterojunction bipolar transistors are able to achieve higher bandwidths at a given feature size than transistors in the Silicon material system for a given feature size. Indium phosphide bipolar transistors demonstrate higher breakdown voltages at a given bandwidth than both Si bipolars and field effect transistors in the InP material system. The high bandwidth of InP HBTs results from both intrinsic material parameters and bandgap engineering through epitaxial growth. The electron mobility in the InGaAs base and saturation velocity in the InP collector are both approximately three times higher than their counterparts in the SiGe material system. Resistance of the base can be made very low due to the large offset in the valence band between the InP emitter and the InGaAs base, which allows the base to be doped on the order of 1020 cm-3 with negligible reduction in emitter injection efficiency. This thesis deals with type-I, NPN dual-heterojunction bipolar transistors. The emitters are InP, and the base is InGaAs. There is a thin (˜ 10 nm) n-type InGaAs "setback" region, followed by a chirped superlattice InGaAs/InAlAs grade to the InP collector. The setback, grade, and collector are all lightly doped n-type. The emitter and collector are contacted through thin (˜ 5 nm) heavily doped n-type InGaAs layers to reduce contact resistivity. The primary focus of this work is increasing the bandwidth of InP HBTs through the proportional scaling of the device dimensions, both layer thicknesses and junction areas, as well as the reduction of the contact resistivities associated with the transistor. Essentially, all RC time constants and transit times must be reduced by a factor of two to double a transistor's bandwidth. Chapter 2 describes in detail the scaling laws and design principles for high frequency bipolar transistor design. A low-stress, blanket sputter deposited composite emitter metal process was developed. Refractory metal base contacts were

  14. Solubility of actinide surrogates in nuclear glasses

    International Nuclear Information System (INIS)

    This paper discusses the results of a study of actinide surrogates in a nuclear borosilicate glass to understand the effect of processing conditions (temperature and oxidizing versus reducing conditions) on the solubility limits of these elements. The incorporation of cerium oxide, hafnium oxide, and neodymium oxide in this borosilicate glass was investigated. Cerium is a possible surrogate for tetravalent and trivalent actinides, hafnium for tetravalent actinides, and neodymium for trivalent actinides. The material homogeneity was studied by optical, scanning electron microscopy. Cerium LIII XANES spectroscopy showed that the Ce3+/Cetotal ratio increased from about 0.5 to 0.9 as the processing temperature increased from 1100 to 1400 deg. C. Cerium LIII XANES spectroscopy also confirmed that the increased Ce solubility in glasses melted under reducing conditions was due to complete reduction of all the cerium in the glass. The most significant results pointed out in the current study are that the solubility limits of the actinide surrogates increases with the processing temperature and that Ce3+ is shown to be more soluble than Ce4+ in this borosilicate glass

  15. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  16. Waste disposal aspects of actinide separation

    International Nuclear Information System (INIS)

    Two recent NRPB reports are summarized (Camplin, W.C., Grimwood, P.D. and White, I.F., The effects of actinide separation on the radiological consequences of disposal of high-level radioactive waste on the ocean bed, Harwell, National Radiological Protection Board, NRPB-R94 (1980), London, HMSO; Hill, M.D., White, I.F. and Fleishman, A.B., The effects of actinide separation on the radiological consequences of geologic disposal of high-level waste. Harwell, National Radiological Protection Board, NRPB-R95 (1980), London, HMSO). They describe preliminary environmental assessments relevant to waste arising from the reprocessing of PWR fuel. Details are given of the modelling of transport of radionuclides to man, and of the methodology for calculating effective dose equivalents in man. Emphasis has been placed on the interaction between actinide separation and the disposal options rather than comparison of disposal options. The reports show that the effects of actinide separation do depend on the disposal method. Conditions are outlined where the required substantial further research and development work on actinide separation and recycle would be justified. Toxicity indices or 'toxic potentials' can be misleading and should not be used to guide research and development. (U.K.)

  17. Gallium nitride electronics

    Science.gov (United States)

    Rajan, Siddharth; Jena, Debdeep

    2013-07-01

    In the past two decades, there has been increasing research and industrial activity in the area of gallium nitride (GaN) electronics, stimulated first by the successful demonstration of GaN LEDs. While the promise of wide band gap semiconductors for power electronics was recognized many years before this by one of the contributors to this issue (J Baliga), the success in the area of LEDs acted as a catalyst. It set the field of GaN electronics in motion, and today the technology is improving the performance of several applications including RF cell phone base stations and military radar. GaN could also play a very important role in reducing worldwide energy consumption by enabling high efficiency compact power converters operating at high voltages and lower frequencies. While GaN electronics is a rapidly evolving area with active research worldwide, this special issue provides an opportunity to capture some of the great advances that have been made in the last 15 years. The issue begins with a section on epitaxy and processing, followed by an overview of high-frequency HEMTs, which have been the most commercially successful application of III-nitride electronics to date. This is followed by review and research articles on power-switching transistors, which are currently of great interest to the III-nitride community. A section of this issue is devoted to the reliability of III-nitride devices, an area that is of increasing significance as the research focus has moved from not just high performance but also production-worthiness and long-term usage of these devices. Finally, a group of papers on new and relatively less studied ideas for III-nitride electronics, such as interband tunneling, heterojunction bipolar transistors, and high-temperature electronics is included. These areas point to new areas of research and technological innovation going beyond the state of the art into the future. We hope that the breadth and quality of articles in this issue will make it

  18. Initial nitride formation during plasma-nitridation of cobalt surfaces

    Science.gov (United States)

    Mattson, E. C.; Michalak, D. J.; Cabrera, W.; Veyan, J. F.; Chabal, Y. J.

    2016-08-01

    Nitridation of metal surfaces is of central importance in microelectronics and spintronics due to the excellent mechanical, thermal, and electrical properties of refractory nitrides. Here, we examine the chemical and structural modification of cobalt surfaces upon nitrogen plasma treatment, using in situ spectroscopic methods, as a method for synthesis of cobalt nitride thin films. We find that nitrogen is incorporated below the surface and forms an ultrathin film of CoN at temperatures as low as 50 °C. In addition, we observe the incorporation of oxygen and NO+ within the surface region. The nitrided cobalt surfaces are fully passivated by N, O, and NO+. These results provide a route for incorporation of cobalt nitride into a wide range applications.

  19. Minior Actinide Doppler Coefficient Measurement Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  20. Research on Actinides in Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  1. Coordination chemistry for new actinide separation processes

    International Nuclear Information System (INIS)

    The amount of wastes and the number of chemical steps can be decreased by replacing the PUREX process extractant (TBP) by, N.N- dialkylamides (RCONR'2). Large amounts of deep underground storable wastes can be stored into sub-surface disposals if the long lived actinide isotopes are removed. Spent nuclear fuels reprocessing including the partitioning of the minor actinides Np, Am, Cm and their transmutation into short half lives fission products is appealing to the public who is not favorable to the deep underground storage of large amounts of long half lived actinide isotopes. In this paper coordination chemistry problems related to improved chemical separations by solvent extraction are presented. 2 tabs.; 4 refs

  2. Femtosecond laser irradiation of indium phosphide in air: Raman spectroscopic and atomic force microscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bonse, J.; Wrobel, J.M.; Brzezinka, K.-W.; Esser, N.; Kautek, W

    2002-12-30

    Surface modification and ablation of crystalline indium phosphide was performed with single and double 130 fs pulses from a Ti:sapphire laser. The morphological features resulting from laser processing, have been investigated by means of micro Raman spectroscopy as well as by optical, atomic force and scanning electron microscopy. The studies indicate amorphous, ablated and recrystallized zones on the processed surface. In the single-pulse irradiation experimentsveral different threshold fluences could be assigned to the processes of melting, ablation and polycrystalline resolidification. Residual stress has been detected within the irradiated areas. Double-pulse exposure experiments have been analyzed in order to clarify the effect of cumulative damage in the ablation process of indium phosphide.

  3. Optical characterization of gallium nitride

    NARCIS (Netherlands)

    Kirilyuk, Victoria

    2002-01-01

    Group III-nitrides have been considered a promising system for semiconductor devices since a few decades, first for blue- and UV-light emitting diodes, later also for high-frequency/high-power applications. Due to the lack of native substrates, heteroepitaxially grown III-nitride layers are usually

  4. Actinide phosphonate complexes in aqueous solutions

    International Nuclear Information System (INIS)

    Complexes formed by actinides with carboxylic acids, polycarboxylic acids, and aminopolycarboxylic acids play a central role in both the basic and process chemistry of the actinides. Recent studies of f-element complexes with phosphonic acid ligands indicate that new ligands incorporating doubly ionizable phosphonate groups (-PO3H2) have many properties which are unique chemically, and promise more efficient separation processes for waste cleanup and environmental restoration. Simple diphosphonate ligands form much stronger complexes than isostructural carboxylates, often exhibiting higher solubility as well. In this manuscript recent studies of the thermodynamics and kinetics of f-element complexation by 1,1 and 1,2 diphosphonic acid ligands are described

  5. Sequential analysis of selected actinides in urine

    International Nuclear Information System (INIS)

    The monitoring of personnel by urinalysis for suspected contamination by actinides necessitated the development and implementation of an analytical scheme that will separate and identify alpha emitting radionuclides of these elements. The present work deals with Pu, Am, and Th. These elements are separated from an ashed urine sample by means of coprecipitation and ion exchange techniques. The final analysis is carried out by electroplating the actinides and counting in a α-spectrometer. Mean recoveries of these elements from urine are: Pu 64%, Am 74% and Th 69%. (auth)

  6. Spin–orbit coupling in actinide cations

    DEFF Research Database (Denmark)

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.;

    2012-01-01

    The limiting case of Russell–Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin–orbit splitting is large enough to cause a significantly reduc...... spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell....

  7. Actinide elements in aquatic and terrestrial environments

    International Nuclear Information System (INIS)

    Progress is reported on the following research projects: water-sediment interactions of U, Pu, Am, and Cm; relative availability of actinide elements from abiotic to aquatic biota; comparative uptake of transuranic elements by biota bordering Pond 3513; metabolic reduction of 239Np from Np(V) to Np(IV) in cotton rats; evaluation of hazards associated with transuranium releases to the biosphere; predicting Pu in bone; adsorption--solubility--complexation phenomena in actinide partitioning between sorbents and solution; comparative soil extraction data; and comparative plant uptake data

  8. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  9. Actinide and fission product separation and transmutation

    International Nuclear Information System (INIS)

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  10. Hepatotoxicity due to zinc phosphide poisoning in two patients: role of N-acetylcysteine.

    Science.gov (United States)

    Oghabian, Zohreh; Afshar, Arefeh; Rahimi, Hamid Reza

    2016-08-01

    Zinc phosphide (Zn3P2/ZnP) is used as a rodenticide. The most common signs of toxicity are nausea, vomiting, hypotension, and metabolic acidosis; patients presenting such signs are referred to the emergency department (ED) of the hospitals. Therefore, this study aimed to report two cases of hepatotoxicity following accidental and intentional ZnP poisoning and successful management with N-acetylcysteine (NAC). PMID:27525081

  11. Phosphide residue exposure as the cause of serum vitamin depletion in female Wistar rats

    Directory of Open Access Journals (Sweden)

    Ayobola Abolape Iyanda

    2013-04-01

    Full Text Available Background: Synthetic chemical preservatives have received much negative publicity in recent time, some of which include insect resistance and misapplication of fumigants as well as a myriad of clinical conditions that have been associated with grain consumption. Aluminum phosphide is widely employed for the fumigation of grains meant for both international and local markets. Although its manufacturers have discouraged contamination of grains with spent or unspent phosphide residue, contamination still does occur especially among many illiterate cowpea merchants. The objective of this study is to determine the impact of phosphide residue contaminated cowpea on serum vitamin levels. Methods: Female Wistar rats were divided into 3 experimental groups with each group consisting of 6 rats. They were fed unfumigated (control, fumigated-contaminated (group 1 and fumigated but uncontaminated (group 2 cowpea. Results: Vitamin analysis using high performance liquid chromatography technique showed significant differences in the levels of niacin, folic acid, thiamine, riboflavin, and vitamins A, C, D and E; but pantothenic acid and pyridoxine were not significantly different in group 1 rats compared with control. Moreover, compared with control none of the vitamins were significantly different in rats in group 2. Conclusion: Cowpea is a source of many vitamins among the teeming poor in many part of the developing world; therefore there is need to ensure its proper fumigation. The results of this study suggest that although proper phosphide fumigation of cowpea may not alter serum vitamin levels but improper handling of the fumigation process may result in vitamin depletion. [J Exp Integr Med 2013; 3(2.000: 159-163

  12. Plain abdominal radiography: A powerful tool to prognosticate outcome in patients with zinc phosphide poisoning

    International Nuclear Information System (INIS)

    Aim: To evaluate the clinical features of zinc phosphide poisoning and to investigate whether outcome could be prognosticated based on abdominal radiography on presentation. Materials and methods: All zinc phosphide-poisoned patients who were referred to Loghman-Hakim Hospital between March 2011 and September 2013 were retrospectively reviewed. Data regarding patients' demographic characteristics, characteristics of the poisoning, abdominal radiography results, and patients' outcome were recorded. Results: In 102 patients, the most common presenting signs/symptoms were nausea and vomiting (60%). Four patients died and another seven had developed complications during their hospitalization (metabolic acidosis, liver abnormalities, or acute renal failure). Nineteen patients had radio-opaque abdominal radiographs, nine of whom had died or developed complications (p = 0.001). Plain abdominal radiography had a sensitivity and specificity of 81% and 89% in predicting the patients' death or further development of complications. The positive and negative predictive values were 47% and 97%, respectively. Conclusion: Plain abdominal radiography is a very good tool for prognostication in patients with zinc phosphide poisoning. Immediate abdominal radiography can help stratify patients into high- or low-risk groups and determine treatment strategies. - Highlights: • ZP poisoning may cause severe symptoms or death although less frequent compared to ALP. • ZP-poisoned patients may deteriorate within the first 72 hours post-ingestion. • Abdominal radiography is a good tool to predict death/complications in these patients

  13. Acetaminophen and zinc phosphide for lethal management of invasive lizards Ctenosaura similis

    Institute of Scientific and Technical Information of China (English)

    Michael L. AVERY; John D. EISEMANN; Kandy L. KEACHER; Peter J. SAVARIE

    2011-01-01

    Reducing populations of invasive lizards through trapping and shooting is feasible in many cases but effective integrated management relies on a variety of tools,including toxicants.In Florida,using wild-caught non-native black spiny-tailed iguanas Ctenosaura similis,we screened acetaminophen and zinc phosphide to determine their suitability for effective population management of this prolific invasive species.Of the animals that received acetaminophen,none died except at the highest test dose,240 mg per lizard,which is not practical for field use.Zinc phosphide produced 100% mortality at dose levels as little as 25 mg per lizard,equivalent to about 0.5% in bait which is lower than currently used in commercial baits for eommensal rodent control.We conclude that zinc phosphide has potential as a useful tool for reducing populations of invasive lizards such as the black spiny-tailed iguana provided target-selective delivery methods are developed [Current Zoology 57 (5):625-629,2011].

  14. Chemical compatibility of HLW borosilicate glasses with actinides

    International Nuclear Information System (INIS)

    During liquid storage of HLLW the formation of actinide enriched sludges is being expected. Also during melting of HLW glasses an increase of top-to-bottom actinide concentrations can take place. Both effects have been studied. Besides, the vitrification of plutonium enriched wastes from Pu fuel element fabrication plants has been investigated with respect to an isolated vitrification process or a combined one with the HLLW. It is shown that the solidification of actinides from HLLW and actinide waste concentrates will set no principal problems. The leaching of actinides has been measured in salt brine at 230C and 1150C. (orig.)

  15. Actinide recycle in LMFBRs as a waste management alternative

    Energy Technology Data Exchange (ETDEWEB)

    Beaman, S.L.

    1979-08-21

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs.

  16. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  17. Effects of Aqueous Vapour Consistence in Nitriding Furnace on the Quality of the Sintered Nitride

    Institute of Scientific and Technical Information of China (English)

    WANGZijiang

    1998-01-01

    If the aqueous vapour consistence is too high(>0.7%),it is very disadvantageous to the sintered products in the nitriding furnace,when silcon nitride bonded silicon carbide products are synthesized by nitridation of silicon.

  18. 3 and 4 oxidation state element solubilities in borosilicate glasses. Implement to actinides in nuclear glasses; Solubilite des elements aux degres d'oxydation (3) et (4) dans les verres de borosilicate. Application aux actinides dans les verres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cachia, J.N

    2005-12-15

    In order to ensure optimal radionuclides containment, the knowledge of the actinide loading limits in nuclear waste glasses and also the comprehension of the solubilization mechanisms of these elements are essential. A first part of this manuscript deals with the study of the differences in solubility of the tri and tetravalent elements (actinides and surrogates) particularly in function of the melting temperature. The results obtained indicate that trivalent elements (La, Gd, Nd, Am, Cm) exhibit a higher solubility than tetravalent elements (Hf, Th, Pu). Consequently, it was planned to reduce plutonium at the oxidation state (III), the later being essentially tetravalent in borosilicate glasses. An innovating reduction process of multi-valent elements (cerium, plutonium) using silicon nitride has been developed in a second part of this work. Reduced plutonium-bearing glasses synthesized by Si{sub 3}N{sub 4} addition made it possible to double the plutonium solubility from 2 to 4 wt% at 1200 deg C. A structural approach to investigate the differences between tri and tetravalent elements was finally undertaken. These investigations were carried out by X-rays Absorption Spectroscopy (EXAFS) and NMR. Trivalent rare earth and actinide elements seem to behave as network modifiers while tetravalent elements rather present true intermediaries' behaviour. (author)

  19. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  20. Treatment of actinide-containing organic waste

    International Nuclear Information System (INIS)

    A method has been developed for reducing the volume of organic wastes and recovering the actinide elements. The waste, together with gaseous oxygen (air) is introduced into a molten salt, preferably an alkali metal carbonate such as sodium carbonate. The bath is kept at 7500 - 10000C and 0.5 - 10 atm to thermally decompose and partially oxidize the waste, while substantially reducing its volume. The gaseous effluent, mainly carbon dioxide and water vapour, is vented to the atmosphere through a series of filters to remove trace amounts of actinide elements or particulate alkali metal salts. The remaining combustion products are entrained in the molten salt. Part of the molten salt-combustion product mixture is withdrawn and mixed with an aqueous medium. Insoluble combustion products are then removed from the aqueous medium and are leached with a mixture of hydrofluoric and nitric acids to solubilize the actinide elements. The actinide elements are easily recovered from the acid solution using conventional techniques. (DN)

  1. Report of the panel on inhaled actinides

    International Nuclear Information System (INIS)

    Some topics discussed are as follows: assessment of risks to man of inhaling actinides; use of estimates for developing protection standards; epidemiology of lung cancer in exposed human populations; development of respiratory tract models; and effects in animals: dose- and effect-modifying factors

  2. Actinide measurements by AMS using fluoride matrices

    Science.gov (United States)

    Cornett, R. J.; Kazi, Z. H.; Zhao, X.-L.; Chartrand, M. G.; Charles, R. J.; Kieser, W. E.

    2015-10-01

    Actinides can be measured by alpha spectroscopy (AS), mass spectroscopy or accelerator mass spectrometry (AMS). We tested a simple method to separate Pu and Am isotopes from the sample matrix using a single extraction chromatography column. The actinides in the column eluent were then measured by AS or AMS using a fluoride target matrix. Pu and Am were coprecipitated with NdF3. The strongest AMS beams of Pu and Am were produced when there was a large excess of fluoride donor atoms in the target and the NdF3 precipitates were diluted about 6-8 fold with PbF2. The measured concentrations of 239,240Pu and 241Am agreed with the concentrations in standards of known activity and with two IAEA certified reference materials. Measurements of 239,240Pu and 241Am made at A.E. Lalonde AMS Laboratory agree, within their statistical uncertainty, with independent measurements made using the IsoTrace AMS system. This work demonstrated that fluoride targets can produce reliable beams of actinide anions and that the measurement of actinides using fluorides agree with published values in certified reference materials.

  3. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  4. Rapid determination of actinides in asphalt samples

    International Nuclear Information System (INIS)

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis. If a radiological dispersive device, improvised nuclear device or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean-up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well. (author)

  5. Electronic Structure of the Actinide Metals

    DEFF Research Database (Denmark)

    Johansson, B.; Skriver, Hans Lomholt

    1982-01-01

    itinerant to localized 5f electron behaviour calculated to take place between plutonium and americium. From experimental data it is shown that the screening of deep core-holes is due to 5f electrons for the lighter actinide elements and 6d electrons for the heavier elements. A simplified model for the full...

  6. Placental transfer of plutonium and other actinides

    International Nuclear Information System (INIS)

    The report is based on an extensive literature search. All data available from studies on placental transfer of plutonium and other actinides in man and animals have been collected and analysed, and the report presents the significant results as well as unresolved questions and knowledge gaps which may serve as a waypost to future research work. (orig./MG)

  7. Hard carbon nitride and method for preparing same

    Science.gov (United States)

    Haller, Eugene E.; Cohen, Marvin L.; Hansen, William L.

    1992-01-01

    Novel crystalline .alpha. (silicon nitride-like)-carbon nitride and .beta. (silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate.

  8. Study of the Active Screen Plasma Nitriding

    Institute of Scientific and Technical Information of China (English)

    Zhao Cheng; C. X. Li; H. Dong; T. Bell

    2004-01-01

    Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carder in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.

  9. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-08

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  10. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    International Nuclear Information System (INIS)

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  11. Field evaluation of phostoxin and zinc phosphide for the control of zoonotic cutaneous leishmaniasis in a hyperendemic area, central Iran

    Directory of Open Access Journals (Sweden)

    A.A. Akhavan

    2014-12-01

    Full Text Available Background & objectives: ZCL is a growing threat in many rural areas of Iran which involves 17 out of 31 provinces. This study was conducted from April to November 2011 for evaluation of the efficacy of phostoxin and zinc phosphide against rodents. Methods: Rodent control operations were carried out using phostoxin and zinc phosphide. To evaluate the effect of rodent control operation on the main vector density, an entomological survey was carried out. The effects of the operation on the disease incidence were also evaluated. Results: After intervention, the reduction rate of rodent burrows was 32.68% in the village treated with phostoxin and 58.14% in the village treated with zinc phosphide. The number of rodent holes in the control area showed 6.66-fold increase at the end of the study. The incidence of the disease decreased to 19.23 and 11.40 in areas treated with phostoxin and zinc phosphide, respectively. A total of 4243 adult sandflies were collected and identified. The most common and dominant species was Phlebotomus papatasi. In the village treated with phostoxin, the density of P. papatasi in outdoors was lower than indoors. Nevertheless, the density of P. papatasi in the village treated with zinc phosphide was higher in outdoors. Interpretation & conclusion: It is concluded that phostoxin is less effective and has low safety in comparison with zinc phosphide, so that this rodenticide can be used only in special situations such as lack or ineffective rodenticides and only in the colonies far from human and animal dwelling places in small scales.

  12. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  13. Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Streyer, W.; Law, S.; Rosenberg, A.; Wasserman, D. [Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801 (United States); Roberts, C.; Podolskiy, V. A. [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Hoffman, A. J. [Department of Electrical Engineering, University of Notre Dame, South Bend, Indiana 46556 (United States)

    2014-03-31

    We demonstrate excitation of surface phonon polaritons on patterned gallium phosphide surfaces. Control over the light-polariton coupling frequencies is demonstrated by changing the pattern periodicity and used to experimentally determine the gallium phosphide surface phonon polariton dispersion curve. Selective emission via out-coupling of thermally excited surface phonon polaritons is experimentally demonstrated. Samples are characterized experimentally by Fourier transform infrared reflection and emission spectroscopy, and modeled using finite element techniques and rigorous coupled wave analysis. The use of phonon resonances for control of emissivity and excitation of bound surface waves offers a potential tool for the exploration of long-wavelength Reststrahlen band frequencies.

  14. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing keff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR keff markedly. The PWR keff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  15. Microbial Transformations of Actinides and Other Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  16. Interaction of actinide cations with synthetic polyelectrolytes

    International Nuclear Information System (INIS)

    The binding of Am+3, Th+4 and UO2+2 to polymaleic acid, polyethylenemaleic acid and polymethylvinylethermaleic acid has been measured by a solvent extraction technique at 250C and either 0.02 or 0.10 M ionic strength. The solutions were buffered over a pH range such that the percent of carboxylate groups ionized ranged from 25 to 74%. The binding was described by two constants, β1 and β2, which were evaluated after correction for complexation of the actinide cations by acetate and hydrolysis. For comparable degrees of ionization, all three polyelectrolytes showed similar binding strengths. In general, these results indicated that the binding of actinides to these synthetic polyelectrolytes is basically similar to that of natural polyelectrolytes such as humic and fulvic acids. (orig.)

  17. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  18. Actinides: from heavy fermions to plutonium metallurgy

    International Nuclear Information System (INIS)

    The actinide elements mark the emergence of 5f electrons. The f electrons possess sufficiently unusual characteristics that their participation in atomic binding often result in dramatic changes in properties. This provides an excellent opportunity to study the question of localization of electrons; a question that is paramount in predicting the physical and chemical properties of d and f electron transition metals. The transition region between localized (magnetic) and itinerant (often superconducting) behavior provides for many interesting phenomena such as structural instabilities (polymorphism), spin fluctuations, mixed valences, charge density waves, exceptional catalytic activity and hydrogen storage. This region offers most interesting behavior such as that exhibited by the actinide compounds UBe13 and UPt3. Both compounds are heavy-fermion superconductors in which both magnetic and superconducting behavior exist in the same electrons. The consequences of f-electron bonding (which appears greatest at Plutonium) show dramatic effects on phase stability, alloying behavior, phase transformations and mechanical behavior

  19. The electrochemical properties of actinide amalgams

    International Nuclear Information System (INIS)

    Standard potentials are selected for actinides (An) and their amalgams. From the obtained results, energy characteristics are calculated and analyzed for alloy formation in An-Hg systems. It is found that solutions of the f-elements in mercury are very close in properties to amalgams of the alkali and alkaline-earth metals, except that, for the active Group III metals, the ion skeletons have a greater number of realizable charged states in the condensed phase

  20. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  1. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  2. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    Science.gov (United States)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm-2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm-2 at 1.64 V.

  3. Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide

    Science.gov (United States)

    Wei, Qun; Yan, Haiyan; Zhu, Xuanmin; Lin, Zhengzhe; Yao, Ronghui

    2016-01-01

    Structural, mechanical, and electronic properties of orthorhombic rhenium phosphide (Re2P) are systematically investigated by using first principles calculations. The elastic constants and anisotropy of elastic properties are obtained. The metallic character of Re2P is demonstrated by density of state calculations. The quasi-harmonic Debye model is applied to the study of the thermodynamic properties. The thermal expansion, heat capacities, and Grüneisen parameter on the temperature and pressure have been determined as a function of temperature and pressure in the pressure range from 0 to 100 GPa and the temperature range from 0 to 1600 K.

  4. A Flexible Electrode Based on Iron Phosphide Nanotubes for Overall Water Splitting.

    Science.gov (United States)

    Yan, Ya; Xia, Bao Yu; Ge, Xiaoming; Liu, Zhaolin; Fisher, Adrian; Wang, Xin

    2015-12-01

    The design of cheap and efficient water splitting systems for sustainable hydrogen production has attracted increasing attention. A flexible electrode, based on carbon cloth substrate and iron phosphide nanotubes coated with an iron oxide/phosphate layer, is shown to catalyze overall water splitting. The as-prepared flexible electrode demonstrates remarkable electrocatalytic activity for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) at modest overpotentials. The surface iron oxide/phosphate, which is formed in situ, is proposed to improve the HER activity by facilitating the water-dissociation step and serves directly as the catalytically-active component for the OER process. PMID:26493157

  5. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks

    Science.gov (United States)

    Lake, David P.; Mitchell, Matthew; Jayakumar, Harishankar; dos Santos, Laís Fujii; Curic, Davor; Barclay, Paul E.

    2016-01-01

    Resonant second harmonic generation between 1550 nm and 775 nm with normalized outside efficiency > 3.8 × 10 - 4 mW - 1 is demonstrated in a gallium phosphide microdisk supporting high-Q modes at visible ( Q ˜ 10 4 ) and infrared ( Q ˜ 10 5 ) wavelengths. The double resonance condition is satisfied for a specific pump power through intracavity photothermal temperature tuning using ˜ 360 μ W of 1550 nm light input to a fiber taper and coupled to a microdisk resonance. Power dependent efficiency consistent with a simple model for thermal tuning of the double resonance condition is observed.

  6. Theoretical investigations on the elastic and thermodynamic properties of rhenium phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qun; Zhu, Xuanmin; Lin, Zhengzhe; Yao, Ronghui [Xidian Univ., Xi' an (China). School of Physics and Optoelectronic Engineering; Yan, Haiyan [Baoji Univ. of Arts and Sciences (China). Dept. of Chemistry and Chemical Engineering

    2016-04-01

    Structural, mechanical, and electronic properties of orthorhombic rhenium phosphide (Re{sub 2}P) are systematically investigated by using first principles calculations. The elastic constants and anisotropy of elastic properties are obtained. The metallic character of Re{sub 2}P is demonstrated by density of state calculations. The quasi-harmonic Debye model is applied to the study of the thermodynamic properties. The thermal expansion, heat capacities, and Grueneisen parameter on the temperature and pressure have been determined as a function of temperature and pressure in the pressure range from 0 to 100 GPa and the temperature range from 0 to 1600 K.

  7. Successive change regularity of actinide properties with atomic number

    International Nuclear Information System (INIS)

    The development and achievements on chemistry of actinide elements are summarised. The relations of properties of actinides to their electronic configurations of valence electronic shells are discussed. Some anomalies of solid properties, the radius contraction, the stable state effect of f7n-orbits (n = 0, 1, 2) and the tetrad effect of oxidation states, etc., with atomic number (Z) are described. 31 figures appended show directly the successive change regularity of actinide properties with Z

  8. Preparation, properties, and some recent studies of the actinide metals

    Energy Technology Data Exchange (ETDEWEB)

    Haire, R.G.

    1985-01-01

    The actinide elements form a unique series of metals. The variation in their physial properties combined with the varying availability of the different elements offers a challenge to the preparative scientist. This article provides a brief review of selected methods used for preparing ..mu..g to kg amounts of the actinide metals and the properties of these metals. In addition, some recent studies on selected actinide metals are discussed. 62 refs.

  9. Nuclear data for plutonium and minor actinides

    International Nuclear Information System (INIS)

    Some experience in the usage of different evaluations of neutron constants for plutonium isotopes and minor actinides (MA) is described. That experience was obtained under designing the ABBN-93 group data set which nowadays is used widely for neutronics calculations of different cores with different spectrum and shielding. Under testing of the ABBN-93 data set through different integral and macroscopic experiments the main attention was paid to fuel nuclides and cross sections for MA practically did not verify. That gave an opportunity to change MA nuclear data for more modern without verification of the hole system. This desire appeared with new data libraries JENDL-3.2, JEF-2.2 and ENDF/B-6.2, which was not accessible under designing the ABBN-93. At the same time with the reevaluation of the basic MA nuclear data the ABBN-93 and the library FOND-2 of evaluated nuclear data files, which used as the basis for retrieving of the ABBN-93 data, were added with not very important MA data. So the FOND-2 library nowadays contents nuclear data files for all actinides with the half-life time more 1 day and also those MA which produce long-life actinides

  10. Microstructural investigation of iron nitride layers formed by low-temperature gaseous nitriding

    NARCIS (Netherlands)

    Inia, DK; Vredenberg, AM; Boerma, DO; Tichelaar, FD; Schut, H; van Veen, A

    1999-01-01

    Iron nitride layers were formed by a novel low-temperature gaseous nitriding process. Nitriding occurs at a temperature of 325 degrees C through NH3 decomposition at the surface of Ni (25 nm) coated Fe, followed by N transport through the Ni film into the underlying Fe, where nitride precipitation t

  11. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    Science.gov (United States)

    Souček, P.; Cassayre, L.; Eloirdi, R.; Malmbeck, R.; Meier, R.; Nourry, C.; Claux, B.; Glatz, J.-P.

    2014-04-01

    A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillation for removal of the salt adhered on the electrode, chlorination of the alloy by chlorine gas and sublimation of the AlCl3 formed. The processes parameters were set on the base of a previous thermochemical study and an experimental work using pure UAl3 alloy. The present experimental results indicated high efficiency of salt distillation and chlorination steps, while the sublimation step should be further optimised.

  12. Hydrothermal decomposition of actinide(IV oxalates: a new aqueous route towards reactive actinide oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Walter Olaf

    2016-09-01

    Full Text Available The hydrothermal decomposition of actinide(IV oxalates (An= Th, U, Pu at temperatures between 95 and 250 °C is shown to lead to the production of highly crystalline, reactive actinide oxide nanocrystals (NCs. This aqueous process proved to be quantitative, reproducible and fast (depending on temperature. The NCs obtained were characterised by X-ray diffraction and TEM showing their size to be smaller than 15 nm. Attempts to extend this general approach towards transition metal or lanthanide oxalates failed in the 95–250 °C temperature range. The hydrothermal decomposition of actinide oxalates is therefore a clean, flexible and powerful approach towards NCs of AnO2 with possible scale-up potential.

  13. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    Science.gov (United States)

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  14. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel;

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  15. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  16. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    International Nuclear Information System (INIS)

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38th JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment

  17. Ion nitridation - physical and technological aspects

    International Nuclear Information System (INIS)

    Ion nitridation, is a technique which allows the formation of a controlled thickness of nitrides in the surface of the material, using this material as the cathode in a low pressure glow discharge, which presents many advantages over the conventional method. A brief review of the ion nitriding technique, the physical fenomena involved, and we discuss technological aspects of this method, are presented. (Author)

  18. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution.

    Science.gov (United States)

    Bao, Xiao-Qing; Fatima Cerqueira, M; Alpuim, Pedro; Liu, Lifeng

    2015-07-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction.

  19. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution

    OpenAIRE

    Bao, Xiao-Qing; Cerqueira, M.F.; Alpuim, P.; Liu, Lifeng

    2015-01-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction. L. F. Liu acknowledges the financial support by the FCT Investigator grant (IF/01595/2014).

  20. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution.

    Science.gov (United States)

    Bao, Xiao-Qing; Fatima Cerqueira, M; Alpuim, Pedro; Liu, Lifeng

    2015-07-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction. PMID:26050844

  1. Solution-based synthesis and purification of zinc tin phosphide nanowires.

    Science.gov (United States)

    Sheets, Erik J; Balow, Robert B; Yang, Wei-Chang; Stach, Eric A; Agrawal, Rakesh

    2015-12-01

    The solution-based synthesis of nanoscale earth-abundant semiconductors has the potential to unlock simple, scalable, and tunable material processes which currently constrain development of novel compounds for alternative energy devices. One such promising semiconductor is zinc tin phosphide (ZnSnP2). We report the synthesis of ZnSnP2 nanowires via a solution-liquid-solid mechanism utilizing metallic zinc and tin in decomposing trioctylphosphine (TOP). Dried films of the reaction product are purified of binary phosphide phases by annealing at 345 °C. Tin is removed using a 0.1 M nitric acid treatment leaving pure ZnSnP2 nanowires. Diffuse reflectance spectroscopy indicates ZnSnP2 has a direct bandgap energy of 1.24 eV which is optimal for solar cell applications. Using a photoelectrochemical cell, we demonstrate cathodic photocurrent generation at open circuit conditions from the ZnSnP2 nanowires upon solar simulated illumination confirming p-type conductivity. PMID:26530669

  2. Structure characterization and strain relief analysis in CVD growth of boron phosphide on silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guoliang [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Abbott, Julia K.C.; Brasfield, John D. [Department of Chemistry, The University of Tennessee, Knoxville, TN 37996 (United States); Liu, Peizhi [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Dale, Alexis [Department of Chemistry, The University of Tennessee, Knoxville, TN 37996 (United States); Duscher, Gerd [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Rack, Philip D. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Feigerle, Charles S., E-mail: cfeigerl@tennessee.edu [Department of Chemistry, The University of Tennessee, Knoxville, TN 37996 (United States)

    2015-02-01

    Highlights: • Crystalline boron phosphide was grown on vicinal 4H (0 0 0 1)-SiC surfaces. • The microstructure evolution of defects generated at the interface was characterized by transmission electron microscopy. • The evolution of lattice distortion and strain are determined. - Abstract: Boron phosphide (BP) is a material of interest for development of a high-efficiency solid-state thermal neutron detector. For a thick film-based device, microstructure evolution is key to the engineering of material synthesis. Here, we report epitaxial BP films grown on silicon carbide with vicinal steps and provide a detailed analysis of the microstructure evolution and strain relief. The BP film is epitaxial in the near-interface region but deviates from epitaxial growth as the film develops. Defects such as coherent and incoherent twin boundaries, dislocation loops, stacking faults concentrate in the near-interface region and segment this region into small domains. The formation of defects in this region do not fully release the strain originated from the lattice mismatch. Large grains emerge above the near-interface region and grain boundaries become the main defects in the upper part of the BP film.

  3. Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

    Directory of Open Access Journals (Sweden)

    Triwiyanto A.

    2014-07-01

    Full Text Available This paper present mathematical model which developed to predict the nitrided layer thickness (case depth of gas nitrided and plasma nitrided austenitic stainless steel according to Fick’s first law for pure iron by adapting and manipulating the Hosseini’s model to fit the diffusion mechanism where nitrided structure formed by nitrided AISI 316L austenitic stainless steel. The mathematical model later tested against various actual gas nitriding and plasma nitriding experimental results with varying nitriding temperature and nitriding duration to see whether the model managed to successfully predict the nitrided layer thickness. This model predicted the coexistence of ε-Fe2-3N and γ΄-Fe4N under the present nitriding process parameters. After the validation process, it is proven that the mathematical model managed to predict the nitrided layer growth of the gas nitrided and plasma nitrided of AISI 316L SS up to high degree of accuracy.

  4. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6th of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  5. Research needs in metabolism and dosimetry of the actinides

    International Nuclear Information System (INIS)

    The following topics are discussed: uranium mine and mill tailings; environmental standards; recommendations of NCRP and ICRP; metabolic models and health effects; life-time exposures to actinides and other alpha emitters; high-specific-activity actinide isotopes versus naturally occurring isotopic mixtures of uranium isotopes; adequacy of the n factor; and metabolism and dosimetry;

  6. Chemistry of lower valent actinide halides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, K.H.; Hildenbrand, D.L.

    1992-01-01

    This research effort was concerned almost entirely with the first two members of the actinide series, thorium and uranium, although the work was later extended to some aspects of the neptunium-fluorine system in a collaborative program with Los Alamos National Laboratory. Detailed information about the lighter actinides will be helpful in modeling the properties of the heavier actinide compounds, which will be much more difficult to study experimentally. In this program, thermochemical information was obtained from high temperature equilibrium measurements made by effusion-beam mass spectrometry and by effusion-pressure techniques. Data were derived primarily from second-law analysis so as to avoid potential errors in third-law calculations resulting from uncertainties in spectroscopic and molecular constants. This approach has the additional advantage of yielding reaction entropies that can be checked for consistency with various molecular constant assignments for the species involved. In the U-F, U-Cl, and U-Br systems, all of the gaseous species UX, UX{sub 2}, UX{sub 3}, UX{sub 4}, and UX{sub 5}, where X represents the halogen, were identified and characterized; the corresponding species ThX, ThX{sub 2}, ThX{sub 3}, and ThX{sub 4} were studied in the Th-F, Th-Cl, and Th-Br systems. A number of oxyhalide species in the systems U-0-F, U-0-Cl, Th-0-F, and Th-O-Cl were studied thermochemically. Additionally, the sublimation thermodynamics of NpF{sub 4}(s) and NpO{sub 2}F{sub 2}(s) were studied by mass spectrometry.

  7. Low-temperature properties of rare-earth and actinide iron phosphide compounds MFe4P/sub 12/ (M = La, Pr, Nd, and Th)

    International Nuclear Information System (INIS)

    The low-temperature properties of MFe4P/sub 12/ (M = La, Pr, Nd, and Th) single crystals have been studied by means of electrical-resistivity, magnetization, specific-heat, and magnetoresistivity measurements. Superconductivity among these compounds is known to occur only in LaFe4P/sub 12/, which has a superconducting transition temperature T/sub c/ of ∼4 K. The compounds PrFe4P/sub 12/ and NdFe4P/sub 12/ display features that suggest the occurrence of antiferromagnetic ordering below ∼6.2 K and ferromagnetic ordering below ∼2 K, respectively. Isothermal magnetization curves for PrFe4P/sub 12/ below 6 K reveal a spin-flop or metamagnetic transition

  8. Actinide management with commercial fast reactors

    International Nuclear Information System (INIS)

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel

  9. Actinide management with commercial fast reactors

    Science.gov (United States)

    Ohki, Shigeo

    2015-12-01

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  10. The electrochemical properties of actinide amalgams

    International Nuclear Information System (INIS)

    Selection of the values of standard potentials of An actinides and their amalgams was made. On the basis of the data obtained energy characteristics of alloy formation processes in the systems An-Hg were calculated and analyzed. It is ascertained that the properties of f-element solutions in mercury are similar to those of alkali and alkaline-earth metal amalgams with the only difference, i.e. in case of active metals of group 3 the number of realized charge value of ionic frames in condensed phase increases

  11. Compilation of actinide neutron nuclear data

    International Nuclear Information System (INIS)

    The Swedish nuclear data committee has compiled a selected set of neutron cross section data for the 16 most important actinide isotopes. The aim of the report is to present available data in a comprehensible way to allow a comparison between different evaluated libraries and to judge about the reliability of these libraries from the experimental data. The data are given in graphical form below about 1 ev and above about 10 keV shile the 2200 m/s cross sections and resonance integrals are given in numerical form. (G.B.)

  12. Status of nuclear data for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  13. Supercritical fluid extraction studies on actinides

    International Nuclear Information System (INIS)

    Uranyl nitrate and plutonium in its Pu (III) as well Pu (IV) form loaded onto a tissue paper was extracted completed from paper, glass, stainless steel as well as teflon matrices using modified SC-CO2. A further investigation on recovery of actinides independent of their drying period is expected to culminate into developing an universal procedure to handle Pu bearing waste for its recovery irrespective of its drying history and oxidation states. Such endeavors ultimately lead to the potential utility of the SFE technology for efficient nuclear waste management

  14. Recent progress in actinide borate chemistry

    OpenAIRE

    Wang, S.; Alekseev, E .V.; Depmeier, W.; Albrecht-Schmitt, T.E.

    2011-01-01

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB(5)O(6)(OH)(6)][BO(OH)(2)]·2.5H(2)O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO(4)(-). Uranyl borates form noncentrosymmetric structures with extraordinarily rich topol...

  15. Actinide management with commercial fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ohki, Shigeo [Japan Atomic Energy Agency, 4002, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  16. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  17. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  18. The electronic structure of the lanthanides and actinides, a comparison

    International Nuclear Information System (INIS)

    Full text: Optical spectra of the two f-element series (the lanthanides and actinides) are comparable in many respects. For the trivalent ions isolated in single crystals, both series exhibit rich, narrow line spectra. These data can be analysed in terms of a parametric model based on a free-ion Hamiltonian plus the addition of a crystal field Hamiltonian. For most systems the agreement between the calculated and experimental energy levels is quite good. In the actinide series there appears to be a correlation between the magnitude of the crystal field and the inadequacy of the fits. The early actinides exhibit multiple oxidation states for which there is no precedent in the lanthanide series. The parametric model mentioned earlier has been utilized for some tetravalent actinide systems with reasonably good results. A selective survey of results describing the similarities and differences of various lanthanide and actinide systems will be given

  19. Hydrodenitrogenation of pyridine over transition metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Milad, I.K.; Smith, K.J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical Engineering

    1997-11-01

    The use of transition metal nitrides (TMN) as catalysts for hydrodenitrogenation (HDN) was discussed. A study was conducted in which a series of unsupported and supported Mo, Fe, W, Co, Nb, Cr, V and Ti nitrides were examined as catalysts for the HDN of pyridine at atmospheric pressure and 350 degrees C. The catalysts were prepared by temperature programmed nitridation of the metal oxide with NH{sub 3}. It was shown that a single nitride phase was present in each of the catalysts. The Mo nitride showed the greatest activity per gram of catalyst. Co and Fe nitrides showed the highest activities per surface area of the unsupported catalyst. Metal nitrides with lower heats of formation showed higher HDN activity. 1 tab.

  20. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.;

    2002-01-01

    Ternary metal nitrides ( of general formula MxM'N-y(z)) attract considerable interest because of their special mechanical, electrical, magnetic, and catalytic properties. Usually they are prepared by ammonolysis of ternary oxides (MxM'O-y(m)) at elevated temperatures. We show that ternary...... transition metal nitrides are also obtained by nitridation of the corresponding ternary carbide at 823 K. This transformation appears to occur by solid-state diffusion of carbide and nitride ions. To establish more general synthesis schemes for ternary nitrides, we have focused on the preparation of ternary...... nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...

  1. Actinide Solubility and Speciation in the WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald T. [Los Alamos National Laboratory

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  2. Fusion-Fission Burner for Transuranic Actinides

    Science.gov (United States)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  3. Electronic structure of the actinide dioxides

    International Nuclear Information System (INIS)

    The electronic properties of the fluorite structured actinide dioxides have been investigated using the linear muffin tin orbital method in the atomic sphere approximation. CaF2 with the same structure was also studied because of the relative simplicity of its electronic structure and the greater amount of experimental data available. Band structures were calculated both non self consistently and self consistently. In the non self consistent calculations the effect of changing the approximation to the exchange-correlation potential and the starting atomic configurations was examined. Using the concepts of canonical bands the effects of hybridization were investigated. In particular the 5f electrons included in the band picture were found to mix more strongly into the valence band than indicated by experiment. On this basis the 5f electrons were not included in self consistent calculations which in the density functional formalism are capable of yielding ground state properties. Because of the non participation of the f electrons in the bonding UO2 only was considered as representative of the actinide dioxides. For comparison CaF2 was also examined. Using Pettifor's pressure formula to determine the equilibrium condition the lattice constants were calculated to be 0.5% and 5% respectively below the experimental values. (author)

  4. Gas core reactors for actinide transmutation. [uranium hexafluoride

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  5. Separation of actinides from spent nuclear fuel: A review.

    Science.gov (United States)

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials.

  6. Separation of actinides from spent nuclear fuel: A review.

    Science.gov (United States)

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials. PMID:27427893

  7. Determination of indium in zinc phosphide samples by isotope dilution method

    International Nuclear Information System (INIS)

    A method of indium determination by isotope dilution method using substoichiometry principle has been developed. The addition of insufficient quantities of EDTA reagent for extraction of the determined element is the essence of the method. A column with AV-17 anionite was used for separation of indium complexonate, charged positively from the part of the determined indium, not bound with the complexonate. For analyses a radioactive sup(115m)In isotope was used, which is formed in the course of Cd irradiation by neutron flux of 1.2 1013 n/cm2 in the nuclear reactor. A means of obtaining sup(115m)In generator with high specific radioactivity (without carrier) was described. The developed method was applied for analysis of semiconducting material of zinc phosphide, alloyed by indium

  8. Treatment of Aluminium Phosphide Poisoning with a Combination of Intravenous Glucagon, Digoxin and Antioxidant Agents.

    Science.gov (United States)

    Oghabian, Zohreh; Mehrpour, Omid

    2016-08-01

    Aluminium phosphide (AlP) is used to protect stored grains from rodents. It produces phosphine gas (PH3), a mitochondrial poison thought to cause toxicity by blocking the cytochrome c oxidase enzyme and inhibiting oxidative phosphorylation, which results in cell death. AlP poisoning has a high mortality rate among humans due to the rapid onset of cardiogenic shock and metabolic acidosis, despite aggressive treatment. We report a 21-year-old male who was referred to the Afzalipour Hospital, Kerman, Iran, in 2015 after having intentionally ingested a 3 g AlP tablet. He was successfully treated with crystalloid fluids, vasopressors, sodium bicarbonate, digoxin, glucagon and antioxidant agents and was discharged from the hospital six days after admission in good clinical condition. For the treatment of AlP poisoning, the combination of glucagon and digoxin with antioxidant agents should be considered. However, evaluation of further cases is necessary to optimise treatment protocols. PMID:27606117

  9. Synthesis of the titanium phosphide telluride Ti 2PTe 2: A thermochemical approach

    Science.gov (United States)

    Philipp, Frauke; Schmidt, Peer; Milke, Edgar; Binnewies, Michael; Hoffmann, Stefan

    2008-04-01

    The phosphide telluride Ti 2PTe 2 can be synthesised from the elements or from oxides in a thermite type reaction. Both ways have been optimised by consideration of the thermodynamic behaviour of the compound. Hence, the investigation of phase equilibria in the ternary system Ti/P/Te and of the thermal decomposition of Ti 2PTe 2 was necessary. This investigation was performed by using different experimental approaches as total pressure measurements, thermal analysis and mass spectrometry. The results were supported and further analysed by thermodynamic modelling of the ternary system. It was shown that Ti 2PTe 2(s) decomposes to Ti 2P (s) and Te 2(g) in six consecutive steps. The growth of single crystals of Ti 2PTe 2 is thermodynamically described as a chemical vapour transport with TiCl 4(g) acting as the transport agent.

  10. Aluminum phosphide poisoning: Possible role of supportive measures in the absence of specific antidote

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Agrawal

    2015-01-01

    Full Text Available Aluminum phosphide (ALP poisoning is one of the major causes of suicidal deaths. Toxicity by ALP is caused by the liberation of phosphine gas, which rapidly causes cell hypoxia due to inhibition of oxidative phosphorylation, leading to circulatory failure. Treatment of ALP toxicity is mainly supportive as there is no specific antidote. We recently managed 7 cases of ALP poisoning with severe hemodynamic effects. Patients were treated with supportive measures including gastric lavage with diluted potassium permanganate, coconut oil and sodium-bicarbonate first person account should be avoided in a scientific paper. Intravenous magnesium sulfate, proper hemodynamic monitoring and vasopressors. Four out of 7 survived thus suggesting a role of such supportive measures in the absence of specific antidote for ALP poisoning.

  11. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Britto, Reuben J.; Benck, Jesse D.; Young, James L.; Hahn, Christopher; Deutsch, Todd G.; Jaramillo, Thomas F.

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis since MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light limited current density) after 60 hours of operation. This represents a five-hundred fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  12. Treatment of Aluminium Phosphide Poisoning with a Combination of Intravenous Glucagon, Digoxin and Antioxidant Agents

    Directory of Open Access Journals (Sweden)

    Zohreh Oghabian

    2016-08-01

    Full Text Available Aluminium phosphide (AlP is used to protect stored grains from rodents. It produces phosphine gas (PH3, a mitochondrial poison thought to cause toxicity by blocking the cytochrome c oxidase enzyme and inhibiting oxidative phosphorylation, which results in cell death. AlP poisoning has a high mortality rate among humans due to the rapid onset of cardiogenic shock and metabolic acidosis, despite aggressive treatment. We report a 21-yearold male who was referred to the Afzalipour Hospital, Kerman, Iran, in 2015 after having intentionally ingested a 3 g AlP tablet. He was successfully treated with crystalloid fluids, vasopressors, sodium bicarbonate, digoxin, glucagon and antioxidant agents and was discharged from the hospital six days after admission in good clinical condition. For the treatment of AlP poisoning, the combination of glucagon and digoxin with antioxidant agents should be considered. However, evaluation of further cases is necessary to optimise treatment protocols.

  13. Effect of InAlAs window layer on efficiency of indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Indium phosphide (InP) solar cell efficiencies are limited by surface recombination. The effect of a wide bandgap, lattice-matched indium aluminum arsenide (In(0.52)Al(0.48)As) window layer on the performance of InP solar cells was investigated by using the numerical code PC-1D. The p(+)n InP solar cell performance improved significantly with the use of the window layer. No improvement was seen for the n(+)p InP cells. The cell results were explained by the band diagram of the heterostructure and the conduction band energy discontinuity. The calculated current voltage and internal quantum efficiency results clearly demonstrated that In(0.52)Al(0.48)As is a very promising candidate for a window layer material for p(+)n InP solar cells.

  14. Effect of InAlAs window layer on the efficiency of indium phosphide solar cells

    Science.gov (United States)

    Jain, R. K.; Landis, G. A.

    1991-01-01

    Indium phosphide (InP) solar cell efficiencies are limited by surface recombination. The effect of a wide-bandgap lattice-matched indium aluminum arsenide (In0.52Al0.48As) window layer on the performance of InP solar cells was investigated using a numerical code PC-1D. The p(+)n InP solar cell performance improves significantly with the use of a window layer. No improvement is seen for n(+)p InP cells. Cell results are explained by the band diagram of the heterostructure and the conduction-band energy discontinuity. The calculated I-V and internal quantum efficiency results clearly demonstrate that In0.52Al0.48As is a promising candidate as a window layer material for p(+)n InP solar cells.

  15. Effect of hydrostatic pressure on the structural, elastic and electronic properties of (B3) boron phosphide

    Indian Academy of Sciences (India)

    Salah Daoud; Kamel Loucif; Nadhira Bloud; Noudjoud Lebgaa; Laarbi Belagraa

    2012-07-01

    In this paper we present the results obtained from first-principles calculations of the effect of hydrostatic pressure on the strucural, elastic and electronic properties of (B3) boron phosphide, using the pseudopotential plane-wave method (PP-PW) based on density functional theory within the Teter and Pade exchange-correlation functional form of the local density approximation (LDA). The lattice parameter, molecular and crystal densities, near-neighbour distances, independent elastic constant, bulk modulus, shear modulus, anisotropy factor and energy bandgaps of (B3) BP under high pressure are presented. The results showed a phase transition pressure from the zinc blende to rock-salt phase at around 1.56 Mbar, which is in good agreement with the theoretical data reported in the literature.

  16. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  17. Scenarios for the transmutation of actinides in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, Bronwyn, E-mail: hylandb@aecl.ca [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada); Gihm, Brian, E-mail: gihmb@aecl.ca [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

    2011-12-15

    With world stockpiles of used nuclear fuel increasing, the need to address the long-term utilization of this resource is being studied. Many of the transuranic (TRU) actinides in nuclear spent fuel produce decay heat for long durations, resulting in significant nuclear waste management challenges. These actinides can be transmuted to shorter-lived isotopes to reduce the decay heat period or consumed as fuel in a CANDU(R) reactor. Many of the design features of the CANDU reactor make it uniquely adaptable to actinide transmutation. The small, simple fuel bundle simplifies the fabrication and handling of active fuels. Online refuelling allows precise management of core reactivity and separate insertion of the actinides and fuel bundles into the core. The high neutron economy of the CANDU reactor results in high TRU destruction to fissile-loading ratio. This paper provides a summary of actinide transmutation schemes that have been studied in CANDU reactors at AECL, including the works performed in the past. The schemes studied include homogeneous scenarios in which actinides are uniformly distributed in all fuel bundles in the reactor, as well as heterogeneous scenarios in which dedicated channels in the reactor are loaded with actinide targets and the rest of the reactor is loaded with fuel. The transmutation schemes that are presented reflect several different partitioning schemes. Separation of americium, often with curium, from the other actinides enables targeted destruction of americium, which is a main contributor to the decay heat 100-1000 years after discharge from the reactor. Another scheme is group-extracted transuranic elements, in which all of the transuranic elements, plutonium (Pu), neptunium (Np), americium (Am), and curium (Cm) are extracted together and then transmuted. This paper also addresses ways of utilizing the recycled uranium, another stream from the separation of spent nuclear fuel, in order to drive the transmutation of other actinides.

  18. Phosphorus-Rich Copper Phosphide Nanowires for Field-Effect Transistors and Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Guo-An; Wang, Chiu-Yen; Chang, Wei-Chung; Tuan, Hsing-Yu

    2016-09-27

    Phosphorus-rich transition metal phosphide CuP2 nanowires were synthesized with high quality and high yield (∼60%) via the supercritical fluid-liquid-solid (SFLS) growth at 410 °C and 10.2 MPa. The obtained CuP2 nanowires have a high aspect ratio and exhibit a single crystal structure of monoclinic CuP2 without any impurity phase. CuP2 nanowires have progressive improvement for semiconductors and energy storages compared with bulk CuP2. Being utilized for back-gate field effect transistor (FET) measurement, CuP2 nanowires possess a p-type behavior intrinsically with an on/off ratio larger than 10(4) and its single nanowire electrical transport property exhibits a hole mobility of 147 cm(2) V(-1) s(-1), representing the example of a CuP2 transistor. In addition, CuP2 nanowires can serve as an appealing anode material for a lithium-ion battery electrode. The discharge capacity remained at 945 mA h g(-1) after 100 cycles, showing a good capacity retention of 88% based on the first discharge capacity. Even at a high rate of 6 C, the electrode still exhibited an outstanding result with a capacity of ∼600 mA h g(-1). Ex-situ transmission electron microscopy and CV tests demonstrate that the stability of capacity retention and remarkable rate capability of the CuP2 nanowires electrode are attributed to the role of the metal phosphide conversion-type lithium storage mechanism. Finally, CuP2 nanowire anodes and LiFePO4 cathodes were assembled into pouch-type lithium batteries offering a capacity over 60 mA h. The full cell shows high capacity and stable capacity retention and can be used as an energy supply to operate electronic devices such as mobile phones and mini 4WD cars. PMID:27603024

  19. An emergency bioassay method for actinides in urine.

    Science.gov (United States)

    Dai, Xiongxin; Kramer-Tremblay, Sheila

    2011-08-01

    A rapid bioassay method has been developed for the sequential measurements of actinides in human urine samples. The method involves actinide separation from a urine matrix by co-precipitation with hydrous titanium oxide (HTiO), followed by anion exchange and extraction chromatography column purification, and final counting by alpha spectrometry after cerium fluoride micro-precipitation. The minimal detectable activities for the method were determined to be 20 mBq L(-1) or less for plutonium, uranium, americium and curium isotopes, with an 8-h sample turn-around time. Spike tests showed that this method would meet the requirements for actinide bioassay following a radiation emergency. PMID:21709501

  20. Distribution of actinides in SFR1; Aktinidfoerdelning i SFR1

    Energy Technology Data Exchange (ETDEWEB)

    Ingemansson, Tor [ALARA Engineering, Skultuna (Sweden)

    2000-02-01

    The amount of actinides in the Swedish repository for intermediate level radioactive wastes has been estimated. The sources for the actinides are mainly the purification filters of the reactors and the used fuel pools. Defect fuel elements are the originating source of the actinides. It is estimated that the 12 Swedish reactors, in total, have had 2.2 kg of fuel dissolved in their systems since start-up. About 880 g of this amount has been brought to the intermediate-level repository.

  1. Report of the panel on practical problems in actinide biology

    International Nuclear Information System (INIS)

    Practical problems are classified as the need to make operational decisions, the need for regulatory assessment either of individual facilities or of generic actions, and the overt appearance of radiobiological effects in man or radioactivity in man or the environment. Topics discussed are as follows: simulated reactor accident; long term effects of low doses; effects of repeated exposures to actinides; inhaled uranium mine air contaminants; metabolism and dosimetry; environmental equilibrium models; patterns of alpha dosimetry; internal dose calculations; interfaces between actinide biology and environmental studies; removal of actinides deposited in the body; and research needs related to uranium isotopes

  2. Status report on actinide and fission product transmutation studies

    International Nuclear Information System (INIS)

    The management of radioactive waste is one of the key issues in today's political and public discussions on nuclear energy. One of the fields that looks into the future possibilities of nuclear technology is the neutronic transmutation of actinides and of some most important fission products. Studies on transmutation of actinides are carried out in various countries and at an international level. This status report which gives an up-to-date general overview of current and planned research on transmutation of actinides and fission products in non-OECD countries, has been prepared by a Technical Committee meeting organized by the IAEA in September 1995. 168 refs, 16 figs, 34 tabs

  3. Actinide interactions at microbial interfaces: an interdisciplinary challenge

    International Nuclear Information System (INIS)

    An overview on the current state of knowledge of microbial actinide interaction processes is presented. Several detailed examples of the interaction of aerobic soil bacteria (Pseudomonas, Bacillus and Deinococcus strains) with uranium and plutonium are discussed. Details of the nature of the bacterial functional groups involved in the interfacial actinide interaction process are reported. Based on time-resolved laser-induced fluorescence spectroscopy (TRLFS) and synchrotron X-ray absorption spectroscopy (XANES and EXAFS) studies, molecular-level mechanistic details of the different interaction processes are discussed. Areas of this emerging field in actinide research are outlined where additional information and integrated interdisciplinary research is required

  4. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  5. Internal nitride formation during gas-phase thermal nitridation of titanium

    OpenAIRE

    Ajikumar, PK; M. Kamruddin; Shankar, P; Gouda, Ramakrishna; Balamurugan, AK; Nithya, R.; Tyagi, AK; Jayaram, V; Biswas, SK; Raj, Baldev

    2009-01-01

    Titanium nitride surface layers were prepared by gas-phase thermal nitridation of pure titanium in an ammonia atmosphere at 1373 K for different times. In addition to the surface nitride layer, nitride/hydride formation was observed in the bulk of the specimen. The cross-section of the specimen was characterized by various techniques such as optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, secondary ion mass spectrometry and nanomechanical testing, ...

  6. A Novel kind of Air Cooling Bainite Nitriding Steel and Plasma Nitriding Test

    Institute of Scientific and Technical Information of China (English)

    LI Xin-sheng; LIANG Shu-rong

    2004-01-01

    In order to avoid serious distortion and cracking that may occur with nitrided parts while quenching and tempering, a novel kind of air cooling bainite nitriding steel consisting of Ct, Mo, Mn and Si was developed. After normalized and high temperature tempered, the tested steel has satisfactory strength, toughness and microstructure as well as good nitriding properties.

  7. Solidification of simulated actinides by natural zircon

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-Wen; LUO Shang-Geng

    2004-01-01

    Natural zircon was used as precursor material to produce a zircon waste form bearing 20wt% simulated actinides (Nd2O3 and UO2) through a solid state reaction by a typical synroc fabrication process. The fabricated zircon waste form has relatively good physical properties (density 5.09g/cm3, open porosity 4.0%, Vickers hardness 715kg/mm2). The XRD, SEM/EDS and TEM/EDS analyses indicate that there are zircon phases containing waste elements formed through the reaction. The chemical durability and radiation stability are determined by the MCC-1method and heavy ion irradiation; the results show that the zircon waste form is highly leach resistance and relatively stable under irradiation (amorphous dose 0.7dpa). From this study, the method of using a natural mineral to solidify radioactive waste has proven to be feasible.

  8. Actinide elements in aquatic and terrestrial environments

    International Nuclear Information System (INIS)

    Progress is reported in terrestrial ecology studies with regard to plutonium in biota from the White Oak Creek forest; comparative distribution of plutonium in two forest ecosystems; an ecosystem model of plutonium dynamics; actinide element metabolism in cotton rats; and crayfish studies. Progress is reported in aquatic studies with regard to transuranics in surface waters, frogs, benthic algae, and invertebrates from pond 3513; and radioecology of transuranic elements in cotton rats bordering waste pond 3513. Progress is also reported in stability of trivalent plutonium in White Oak Lake water; chemistry of plutonium, americium, curium, and uranium in pond water; uranium, thorium, and plutonium in small mammals; and effect of soil pretreatment on the distribution of plutonium

  9. Gamma spectroscopy of neutron rich actinide nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Birkenbach, Benedikt; Geibel, Kerstin; Vogt, Andreas; Hess, Herbert; Reiter, Peter; Steinbach, Tim; Schneiders, David [Koeln Univ. (Germany). IKP; Collaboration: AGATA-Collaboration

    2013-07-01

    Excited states in neutron-rich actinide Th and U nuclei were investigated after multi nucleon transfer reactions employing the AGATA demonstrator and PRISMA setup at LNL (INFN, Italy). A primary {sup 136}Xe beam of 1 GeV hitting a {sup 238}U target was used to produce the nuclei of interest. Beam-like reaction products of Xe- and Ba isotopes after neutron transfer were selected by the PRISMA spectrometer. The recoil like particles were registered by a MCP detector inside the scattering chamber. Coincident γ-rays from excited states in beam and target like particles were measured with the position sensitive AGATA HPGe detectors. Improved Doppler correction and quality of the γ-spectra is based on the novel γ-ray tracking technique which was successfully exploited. First results on the collective properties of various Th and U isotopes are discussed.

  10. Silicon nitride-fabrication, forming and properties

    International Nuclear Information System (INIS)

    This article, which is a literature survey of the recent years, includes description of several methods for the formation of silicone nitride, and five methods of forming: Reaction-bonded silicon nitride, sintering, hot pressing, hot isostatic pressing and chemical vapour deposition. Herein are also included data about mechanical and physical properties of silicon nitride and the relationship between the forming method and the properties. (author)

  11. Studies of actinides in a superanoxic fjord

    Energy Technology Data Exchange (ETDEWEB)

    Roos, P.

    1997-04-01

    Water column and sediment profiles of Pu, Am, Th and U have been obtained in the superanoxic Framvaren fjord, southern Norway. The concentration of bomb test fallout Pu, Am as well as `dissolved` Th in the bottom water are the highest recorded in the marine environment. The behaviour of the actinides in the anoxic water mass is to a large extent governed by the behaviour of the colloidal material. Ultrafiltration reveals that 40-60% of the actinides are associated to the large colloids, surprisingly this is valid also for U. The sediment acts as a source for Pu, Am, and Th to the water column but primarily as a sink for U. The remobilization of Pu, Am and Th is evident from the water column profiles which have similar diffusion shape profiles as other constituents originating from the sediments. The vertical eddy diffusion coefficient calculated from the Pu profile is in the same order of magnitude as reported from the H{sub 2}S profile. Decreased bottom water concentrations (but a constant water column inventory) between 1989 and 1995 as well as pore water Pu concentrations nearly identical to the overlaying bottom water indicates that the present Pu flux from the sediments are low. Contrary to Pu and Am, the water column Th inventory ({sup 232}Th and {sup 230}Th) continues to increase. The flux of {sup 232}Th from the sediments was determined from changes in water column inventory between 1989 and 1995 and from a pore water profile to be in the order of 2-8 Bq/m{sup 2}/y. 208 refs.

  12. Pyrometallurgical processes for recovery of actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  13. Pyrometallurgical processes for recovery of actinide elements

    International Nuclear Information System (INIS)

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository

  14. Zinc phosphide toxicities among patients of the University of Benin Teaching Hospital, Benin city, Nigeria: A 10 year experience

    Directory of Open Access Journals (Sweden)

    S E Aghahowa

    2012-01-01

    Full Text Available Background: Due to the poor success rate associated with zinc phosphide ingestion, it became necessary to assess the incidence. Objective: To assess the incidence of zinc phosphide toxicities reported between June 2000 and June 2009 in the University of Benin Teaching Hospital, Benin City, Nigeria. Material and Method : Data were sourced from the archives of casualties of zinc phosphide poisoning. These were entered into a generated case data form after obtaining an ethical permission. Results: All the ages of the 23 casualties reported were within 37.74±13.20 years. The male-female ratio was 4.75:1. Nineteen [78.26%] died after reporting 13.52±11.34 hours following single ingestion. Twenty cases were due to suicidal tendencies; the most common reason given was because of frustration in life related to marital affairs. Among the three unintentional, two were accidental while the other was due to assassination. Postmortem was refused in all the patients that died. One attempted herbal medication. Oil and milk were the most frequent solvents used at home as first-aid care therapy. Three were unintentional. Nine came with empty sachets and containers brought by relatives. Sodium chloride intravenous infusion was the most frequently used. Duration of hospitalization was 13.38±15.60 hours. Intravenous ciprofloxacin and metronidazole were the most common antibiotics used. Oxygen was instituted in 78.26% of the victims during respiratory distress. One ate meal prepared from poisoned rodent and died after reporting. One had alcohol along with the Zinc Phosphide ingestion. Nine were reported at the drug and poison information centre. Conclusion: Attention is needed by all for proper regulation in the handling of poisons and related substances to reduce burden minimally.

  15. An atomic beam source for actinide elements: concept and realization

    International Nuclear Information System (INIS)

    For ultratrace analysis of actinide elements and studies of their atomic properties with resonance ionization mass spectroscopy (RIMS), efficient and stable sources of actinide atomic beams are required. The thermodynamics and kinetics of the evaporation of actinide elements and oxides from a variety of metals were considered, including diffusion, desorption, and associative desorption. On this basis various sandwich-type filaments were studied. The most promising system was found to consist of tantalum as the backing material, an electrolytically deposited actinide hydroxide as the source of the element, and a titanium covering layer for its reduction to the metal. Such sandwich sources were experimentally proven to be well suited for the production of atomic beams of plutonium, curium, berkelium and californium at relatively low operating temperatures and with high and reproducible yields. (orig.)

  16. Distribution of actinide elements in sediments: leaching studies

    International Nuclear Information System (INIS)

    Previous investigations have shown that Fe and Mn oxides and organic matter can significantly influence the behavior of Pu and other actinides in the environment. A sequential leaching procedure has been developed in order to investigate the solid phase distribution of the actinides in riverine and marine sediments. Seven different sedimentary fractions are defined by this leaching experiment: an exchangeable metals fraction, an organic fraction, a carbonate fraction, a Mn oxide fraction, an amorphous Fe fraction, a crystalline Fe oxide fraction and a lattice-held or residual fraction. There is also the option of including a metal sufide fraction. A preliminary experiment, analyzing only the metals and not the actinide elements, indicates that this leaching procedure (with some modifications) is a viable procedure. The subsequent data should result in information concerning the geochemical history and behavior of these actinide elements in the environment

  17. Element Partitioning in Glass-Ceramic Designed for Actinides Immobilization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Glass-ceramics were designed for immobilization of actinides. In order to immobilizing more wastes in the matrix and to develop the optimum formulation for the glass-ceramic, it is necessary to study the

  18. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    International Nuclear Information System (INIS)

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  19. In-situ mineralization of actinides with phytic acid

    International Nuclear Information System (INIS)

    A new approach to the remediation of actinide contamination is described. A hydrolytically unstable organophosphorus compound, phytic acid, is introduced into the contaminated environment. In the short term (up to several hundred years), phytate acts as a cation exchanger to absorb mobile actinide ions from ground waters. Ultimately, phytate decomposes to release phosphate and promote the formation of insoluble phosphate mineral phases, considered an ideal medium to immobilize actinides, as it forms compounds with the lowest solubility of any candidate mineral species. This overview will discuss the rate of hydrolysis of phytic acid, the formation of lanthanide/actinide phosphate mineral forms, the cation exchange behavior of insoluble phytate, and results from laboratory demonstration of the application to soils from the Fernald site

  20. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  1. Separation of Minor Actinides from Lanthanides by Dithiophosphinic Acid Extractants

    Energy Technology Data Exchange (ETDEWEB)

    D. R. Peterman; M. R. Greenhalgh; R. D. Tillotson; J. R. Klaehn; M. K. Harrup; T. A. Luther; J. D. Law; L. M. Daniels

    2008-09-01

    The selective extraction of the minor actinides (Am(III) and Cm(III)) from the lanthanides is an important part of advanced reprocessing of spent nuclear fuel. This separation would allow the Am/Cm to be fabricated into targets and recycled to a reactor and the lanthanides to be dispositioned. This separation is difficult to accomplish due to the similarities in the chemical properties of the trivalent actinides and lanthanides. Research efforts at the Idaho National Laboratory have identified an innovative synthetic pathway yielding new regiospecific dithiophosphinic acid (DPAH) extractants. The synthesis provides DPAH derivatives that can address the issues concerning minor actinide separation and extractant stability. For this work, two new symmetric DPAH extractants have been prepared. The use of these extractants for the separation of minor actinides from lanthanides will be discussed.

  2. Ensembles of indium phosphide nanowires: physical properties and functional devices integrated on non-single crystal platforms

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Nobuhiko P.; Lohn, Andrew; Onishi, Takehiro [University of California, Santa Cruz (United States). Baskin School of Engineering; NASA Ames Research Center, Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz, Moffett Field, CA (United States); Mathai, Sagi; Li, Xuema; Straznicky, Joseph; Wang, Shih-Yuan; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Logeeswaran, V.J.; Islam, M.S. [University of California Davis, Electrical and Computer Engineering, Davis, CA (United States)

    2009-06-15

    A new route to grow an ensemble of indium phosphide single-crystal semiconductor nanowires is described. Unlike conventional epitaxial growth of single-crystal semiconductor films, the proposed route for growing semiconductor nanowires does not require a single-crystal semiconductor substrate. In the proposed route, instead of using single-crystal semiconductor substrates that are characterized by their long-range atomic ordering, a template layer that possesses short-range atomic ordering prepared on a non-single-crystal substrate is employed. On the template layer, epitaxial information associated with its short-range atomic ordering is available within an area that is comparable to that of a nanowire root. Thus the template layer locally provides epitaxial information required for the growth of semiconductor nanowires. In the particular demonstration described in this paper, hydrogenated silicon was used as a template layer for epitaxial growth of indium phosphide nanowires. The indium phosphide nanowires grown on the hydrogenerated silicon template layer were found to be single crystal and optically active. Simple photoconductors and pin-diodes were fabricated and tested with the view towards various optoelectronic device applications where group III-V compound semiconductors are functionally integrated onto non-single-crystal platforms. (orig.)

  3. A preliminary identification of insect successive wave in Egypt on control and zinc phosphide-intoxicated animals in different seasons

    Directory of Open Access Journals (Sweden)

    Marah Mohammad Abd El-Bar

    2016-09-01

    Full Text Available The presented study aimed primarily to document a baseline data of the decay process of rabbits and guinea pigs and their associated arthropod fauna, which are placed in an urban city: El Abbassyia, Cairo Governorate, Egypt, during winter and summer seasons, and to compare these data with the corresponding figure for zinc phosphide-intoxicated carrions. Generally, control rabbits and control guinea pigs were faster in their decay comparing the corresponding figure of the zinc phosphide–intoxicated group. A delay in colonization of insects was noticed either in the winter season for both groups, or additionally for the zinc phosphide groups. The associated insect fauna was represented in 6 orders, 20 families, and 36 genera and species. Necrophagous arthropods that supported decomposition of carcasses were mainly of orders Diptera and Coleoptera. Calliphoridae was the first insect family that colonized the different carcasses. The mean numbers of control immature dipterous maggots and similarly, the control coleopteran larvae significantly exceeded the corresponding mean numbers for the zinc phosphide-intoxicated groups in both winter and summer seasons in either rabbits or guinea pig groups. Moreover, the mean numbers of dipterous maggots or coleopteran larvae of rabbits significantly surpassed the corresponding figures for guinea pigs in both seasons. This study may add as a reference for the succession wave arthropod fauna in Cairo Governorate in winter and summer seasons. Moreover, it is the first record of the arthropod successive wave on zinc phosphide–intoxicated remains.

  4. Experimental Study on Behavior of Americium in Pyrochemical Process of Nitride Fuel Cycle

    International Nuclear Information System (INIS)

    R and D on the transmutation of long-lived minor actinides (MA) by the accelerator-driven system (ADS) using nitride fuels is underway at JAEA. In regard to reprocessing technology, pyrochemical process has several advantages in case of treating spent fuel with large decay heat and fast neutron emission, and recovering highly enriched N-15. In the pyrochemical reprocessing, plutonium and MA are dissolved in LiCl-KCl eutectic melts and selectively recovered into liquid cadmium (Cd) cathode by molten salt electrorefining. The electrochemical behavior in LiCl-KCl eutectic melts and the subsequent nitride formation behavior of plutonium and MA recovered in liquid Cd cathode are investigated. In this paper, recent results on electrochemical study of americium (Am) on electrolyses of AmN in LiCl-KCl eutectic melts and nitride formation of Am recovered in the liquid Cd cathode are presented. Electrochemical behavior of Am on anodic dissolution of AmN and recovery of Am into a liquid Cd cathode by electrolyses in LiCl-KCl eutectic melts was investigated by transient electrochemical techniques. The formal standard potential of Am(III)/Am(0) obtained with the liquid Cd electrode is more positive than that calculated for the solid metal electrode. The potential shift is considered to be attributed to the lowering of the activity of Am by the formation of the intermetallic compound with Cd. Potentiostatic electrolyses of AmN in LiCl-KCl eutectic melts containing AmCl3 at 773 K were carried out. Nitrogen gas generated by the anodic dissolution of AmN was observed, and the current efficiency was obtained from the ratio of the amount of released nitrogen gas and the passed electric charge to be 20 - 28 %. Am was recovered as Am-Cd alloy in the liquid Cd cathode, in which AmCd6 type phase was identified besides Cd phase. The recovered Am was converted to AmN by the nitridation-distillation combined method, in which the Am-Cd alloy was heated in nitrogen gas stream at 973 K. These

  5. Electronic structure and properties of rare earth and actinide intermetallics

    International Nuclear Information System (INIS)

    There are 188 contributions, experimental and theoretical, a few on rare earth and actinide elements but mostly on rare earth and actinide intermetallic compounds and alloys. The properties dealt with include 1) crystal structure, 2) magnetic properties and magnetic structure, 3) magnetic phase transformations and valence fluctuations, 4) electrical properties and superconductivity and their temperature, pressure and magnetic field dependence. A few papers deal with crystal growth and novel measuring methods. (G.Q.)

  6. Nucleation of iron nitrides during gaseous nitriding of iron; the effect of a preoxidation treatment

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Poulsen, Finn Willy; Somers, Marcel A.J.

    2001-01-01

    grains. On prolonged nitriding, immediate nucleation at the surface of iron grains becomes possible. Calculated incubation times for the nucleation of gamma'-Fe4N1-x during nitriding are generally longer than those observed experimentally in the present work. The incubation time is reduced dramatically......The nucleation of iron nitrides during gaseous nitriding has been investigated using light microscopy and X-ray diffraction. Initially, the nucleation of gamma'-Fe4N1-x on a pure iron surface starts at grain boundaries meeting the surface, from where the nitride grains grow laterally into the iron...

  7. The effect of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    The near field of the proposed UK repository for ILW/LLW will contain containers of conditioned waste in contact with a cementious backfill. It will contain significant quantities of iron and steel, Magnox and Zircaloy. Colloids deriving from their corrosion products may possess significant sorption capacity for radioelements. If the colloids are mobile in the groundwater flow, they could act as a significant vector for activity transport into the far field. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium has been studied under chemical conditions representing the transition from the near field to the far field. Desorption Rd values of ≥ 5 x 106 ml g-1 were measured for both actinides on these oxides and hydroxides when actinide sorption took place under the near-field conditions and desorption took place under the far-field conditions. Desorption of the actinides occurred slowly from the colloids under far-field conditions when the colloids had low loadings of actinide and more quickly at high loadings of actinide. Desorbed actinide was lost to the walls of the experimental vessel. (author)

  8. Research on the actinide chemistry in Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Fundamental technique to measure chemical behaviors and properties of lanthanide and actinide in radioactive waste is necessary for the development of pryochemical process. First stage, the electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipments, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media. In the second stage, measurement system for physical properties at pyrochemical process such as viscosity, melting point and conductivity is established, and property database at different compositions of lanthanide and actinide is collected. And, both interactions between elements and properties with different potential are measured at binary composition of actinide-lanthanide in molten salt using electrochemical/spectroscopic integrated measurement system.

  9. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  10. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    Energy Technology Data Exchange (ETDEWEB)

    Perkasa, Y. S. [Department of Physics, Sunan Gunung Djati State Islamic University Bandung, Jl. A.H Nasution No. 105 Cibiru, Bandung (Indonesia); Waris, A., E-mail: awaris@fi.itb.ac.id; Kurniadi, R., E-mail: awaris@fi.itb.ac.id; Su' ud, Z., E-mail: awaris@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa No. 10 Bandung 40132 (Indonesia)

    2014-09-30

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator.

  11. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim;

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bulk...

  12. PECVD silicon nitride diaphragms for condenser microphones

    NARCIS (Netherlands)

    Scheeper, P.R.; Voorthuyzen, J.A.; Bergveld, P.

    1991-01-01

    The application of plasma-enhanced chemical vapour deposited (PECVD) silicon nitride as a diaphragm material for condenser microphones has been investigated. By means of adjusting the SiH4/NH3 gas-flow composition, silicon-rich silicon nitride films have been obtained with a relatively low tensile s

  13. Method of preparation of uranium nitride

    Science.gov (United States)

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  14. Atomic Resolution Microscopy of Nitrides in Steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2014-01-01

    MN and CrMN type nitride precipitates in 12%Cr steels have been investigated using atomic resolution microscopy. The MN type nitrides were observed to transform into CrMN both by composition and crystallography as Cr diffuses from the matrix into the MN precipitates. Thus a change from one...

  15. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1997-01-01

    , the nitriding result is determined largely by kinetics. Nitriding kinetics are shown to be characterised by local near equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data are presented. The necessary background...

  16. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    , the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  17. High hardness of alloyed ferrite after nitriding

    International Nuclear Information System (INIS)

    Detailed layer-by layer structure and phase analyses of the diffusion layer of nitrided binary alloys of iron with aluminium, chromium, vanadium and titanium have been carried out by means of a complex technique. Transition d-metals (chromium, vanadium and titanium) raise to a greater degree the solubility of nitrogen in the α solid solution, sharply increases the hardness of ferrite and decrease the depth of the layer. Nitrided binary alloys of iron with chromium, vanadium and titanium are strengthened through precipitation from the nitrogen-saturated α-solid solution of nitrides of alloying elements TiN, VN and CrN of a structure B1. A maximum hardness of ferrite alloyed by chromium, vanadium and titanium is observed after nitriding at 550 deg C when the precipitated special nitrides are fully coherent with the α matrix

  18. Cathodic Cage Plasma Nitriding: An Innovative Technique

    Directory of Open Access Journals (Sweden)

    R. R. M. de Sousa

    2012-01-01

    Full Text Available Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN, in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and consequently, a smaller variation of the thickness/height relation can be obtained. The compound layers were characterized by X-ray diffraction, optical microscopy, and microhardness test profile. The results were compared with the properties of samples obtained with the conventional nitriding, for the three steel types. It was verified that samples treated by CCPN process presented, at the same temperature, a better uniformity in the thickness and absence of the edge effect.

  19. Interaction of actinides with amino acids: from peptides to proteins

    International Nuclear Information System (INIS)

    Structural information on complexes of actinides with molecules of biological interest is required to better understand the mechanisms of actinides transport in living organisms, and can contribute to develop new decorporation treatments. Our study is about Th(IV), Np(IV), Pu(IV) and uranyl(VI) cations, which have a high affinity for some protein domains, and Fe(III), which is the natural cation of these biological systems. In this work, chelation of actinides has been brought to light with UV-visible-Near Infra Red spectroscopy, NMR, EPR, and ultrafiltration. Determination of the structure of the complexation site has been undertaken with Exafs measurements, and of the tertiary structure of the protein with SANS measurements. The first approach was to describe the interaction modes between actinides and essential chemical functions of proteins. Thus, the Ac-AspAspProAspAsp-NH2 peptide was studied as a possible chelate of actinides. Polynuclear species with μ-oxo or μ-hydroxo bridges were identified. The iron complex is binuclear, and the actinide ones have a higher nuclearity. The second approach was to study a real case of complexation of actinide with a protein: transferrin. Results show that around physiological ph a mononuclear complex is formed with Np(IV) and Pu(IV), while transferrin does not complex Th(IV) in the same conditions. Characteristic distances of M-transferrin complexes (M = Fe, Np, Pu) were determined. Moreover, the protein seems to be in its close conformation with Pu(IV), and in its open form with Np(IV) and UO22+. (author)

  20. Actinide production in 136Xe bombardments of 249Cf

    International Nuclear Information System (INIS)

    The production cross sections for the actinide products from 136Xe bombardments of 249Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these 136Xe + 249Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the 136Xe + 248Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs

  1. Actinides in irradiated graphite of RBMK-1500 reactor

    International Nuclear Information System (INIS)

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  2. Actinides in irradiated graphite of RBMK-1500 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Plukienė, R., E-mail: rita@ar.fi.lt; Plukis, A.; Barkauskas, V.; Gudelis, A.; Gvozdaitė, R.; Duškesas, G.; Remeikis, V.

    2014-10-01

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  3. Solvothermal synthesis: a new route for preparing nitrides

    CERN Document Server

    Demazeau, G; Denis, A; Largeteau, A

    2002-01-01

    Solvothermal synthesis appears to be an interesting route for preparing nitrides such as gallium nitride and aluminium nitride, using ammonia as solvent. A nitriding additive is used to perform the reaction and, in the case of gallium nitride, is encapsulated by melt gallium. The syntheses are performed in the temperature range 400-800 deg. C and in the pressure range 100-200 MPa. The synthesized powders are characterized by x-ray diffraction and scanning electron microscopy. Finely divided gallium nitride GaN and aluminium nitride AlN, both with wurtzite-type structure, can be obtained by this route.

  4. Electron spectroscopy of dilute nitrides

    International Nuclear Information System (INIS)

    The application of electron spectroscopies in dilute nitride semiconductor research for both chemical analysis and the determination of electronic and lattice vibrational properties is described. X-ray photoelectron spectroscopy of the nitrogen bonding configurations in dilute InNxSb1-x and InNxAs1-x alloys is presented. High resolution electron-energy-loss spectroscopy (HREELS) of the plasmon excitations in InNxSb1-x is shown to provide information on the electronic properties of the material, before and after annealing. HREELS is also used to investigate the GaN-like phonon modes in GaNxAs1-x alloys

  5. Studies on Neutron, Photon (Bremsstrahlung and Proton Induced Fission of Actinides and Pre-Actinides

    Directory of Open Access Journals (Sweden)

    H. Naik

    2015-08-01

    Full Text Available We present the yields of various fission products determined in the reactor neutron, 3.7-18.1 MeV quasi-mono energetic neutron, 8-80 MeV bremsstrahlung and 20-45 MeV proton induced fission of 232Th and 238U using radiochemical and off-line beta or gamma ray counting. The yields of the fission products in the bremsstrahlung induced fission natPb and 209Bi with 50- 70 MeV and 2.5 GeV based on off-line gamma ray spectrometric technique were also presented. From the yields of fission products, the mass chains yields were obtained using charge distribution correction. From the mass yield distribution, the peak-to-valley (P/V ratio was obtained. The role of excitation energy on the peak-to-valley ratio and fine structure such as effect of shell closure proximity and even-odd effect of mass yield distribution were examined. The higher yields of the fission products around A=133-134, 138-140 and 143-144 and their complementary products explained from the nuclear structure effect and role of standard I and II mode of asymmetric fission. In the neutron, photon (bremsstrahlung and proton induced fission, the asymmetric mass distribution for actinides (Th, U and symmetric distribution for pre-actinides (Pb, Bi were explained from different type of potential fission barrier

  6. Photofission of actinide and pre-actinide nuclei in the quasideuteron and delta energy regions

    CERN Document Server

    Berman, B L; Cole, P L; Dodge, W R; Feldman, G; Sanabria, J C; Kolb, N; Pywell, R E; Vogt, J; Nedorezov, V; Sudov, A; Kezerashvili, G Ya

    1999-01-01

    The photofission cross sections for the actinide nuclei sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 3 sup , sup 2 sup 3 sup 5 sup , sup 2 sup 3 sup 8 U, and sup 2 sup 3 sup 7 Np have been measured from 68 to 264 MeV and those for the pre-actinide nuclei sup 1 sup 9 sup 7 Au and sup N sup A sup T Pb from 122 to 222 MeV at the Saskatchewan Accelerator Laboratory, using monoenergetic tagged photons and novel parallel-plate avalanche detectors for the fission fragments. The aim of the experiment was to obtain a comprehensive and self-consistent data set and to investigate previous anomalous results in this energy region. The fission probability for transuranic nuclei is expected to be close to unity here. However, important discrepancies have been confirmed for sup 2 sup 3 sup 7 Np and sup 2 sup 3 sup 2 Th, compared with sup 2 sup 3 sup 8 U, which have serious implications for the inferred total photoabsorption strengths, and hence call into question the 'Universal Curve' for photon absorption at these energies. High-s...

  7. Effect of dislocations on the open-circuit voltage, short-circuit current and efficiency of heteroepitaxial indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Excellent radiation resistance of indium phosphide solar cells makes them a promising candidate for space power applications, but the present high cost of starting substrates may inhibit their large scale use. Thin film indium phosphide cells grown on Si or GaAs substrates have exhibited low efficiencies, because of the generation and propagation of large number of dislocations. Dislocation densities were calculated and its influence on the open circuit voltage, short circuit current, and efficiency of heteroepitaxial indium phosphide cells was studied using the PC-1D. Dislocations act as predominant recombination centers and are required to be controlled by proper transition layers and improved growth techniques. It is shown that heteroepitaxial grown cells could achieve efficiencies in excess of 18 percent AMO by controlling the number of dislocations. The effect of emitter thickness and surface recombination velocity on the cell performance parameters vs. dislocation density is also studied.

  8. Boron phosphide under pressure: In situ study by Raman scattering and X-ray diffraction

    Science.gov (United States)

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Kurnosov, Aleksandr V.; Oganov, Artem R.

    2014-07-01

    Cubic boron phosphide, BP, has been studied in situ by X-ray diffraction and Raman scattering up to 55 GPa at 300 K in a diamond anvil cell. The bulk modulus of B0 = 174(2) GPa has been established, which is in excellent agreement with our ab initio calculations. The data on Raman shift as a function of pressure, combined with equation-of-state (EOS) data, allowed us to estimate the Grüneisen parameters of the TO and LO modes of zinc-blende structure, γGTO= 1.26 and γGLO= 1.13, just like in the case of other AIIIBV diamond-like phases, for which γGTO> γGLO≅ 1. We also established that the pressure dependence of the effective electro-optical constant α is responsible for a strong change in relative intensities of the TO and LO modes from ITO/ILO ˜ 0.25 at 0.1 MPa to ITO/ILO ˜ 2.5 at 45 GPa, for which we also find excellent agreement between experiment and theory.

  9. Planar array antenna with director on indium phosphide substrate for 300GHz wireless link

    Science.gov (United States)

    Kanaya, Haruichi; Oda, Tomoki; Iizasa, Naoto; Kato, Kazutoshi

    2016-02-01

    This paper presents a design and fabrication of 1 x 4 one-sided directional slot array antenna with director metal layer on indium phosphide (InP) substrate for 300 GHz wireless link. The floating metal and polyimide dielectric layer are stacked on InP. Antenna is designed on the top metal layer. By optimizing the length of the bottom floating metal layer, one-sided directional radiation can be realized. The branched coplanar wave guide (CPW) transmission line is connected to each antenna element with the same electrical length. The size of the 1 x 4 array antenna is 2,550 µm x 1,217 µm x 18 µm. In order to enhance the gain of forward direction, director metal layer is placed over 83 µm from top metal layer. Simulated realized gain in peak direction of our antenna is 9.23 dBi. The measured center frequency is almost the same as that of the simulation results.

  10. Direct Band Gap Gallium Antimony Phosphide (GaSbxP(1-x)) Alloys.

    Science.gov (United States)

    Russell, H B; Andriotis, A N; Menon, M; Jasinski, J B; Martinez-Garcia, A; Sunkara, M K

    2016-01-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1-2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP(1-x) alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP(1-x). Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP(1-x) nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470

  11. Direct Band Gap Gallium Antimony Phosphide (GaSbxP1-x) Alloys

    Science.gov (United States)

    Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.

    2016-02-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1-2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1-x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1-x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1-x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields.

  12. CVD growth and properties of boron phosphide on 3C-SiC

    Science.gov (United States)

    Padavala, Balabalaji; Frye, C. D.; Wang, Xuejing; Raghothamachar, Balaji; Edgar, J. H.

    2016-09-01

    Improving the crystalline quality of boron phosphide (BP) is essential for realizing its full potential in semiconductor device applications. In this study, 3C-SiC was tested as a substrate for BP epitaxy. BP films were grown on 3C-SiC(100)/Si, 3C-SiC(111)/Si, and 3C-SiC(111)/4H-SiC(0001) substrates in a horizontal chemical vapor deposition (CVD) system. Films were produced with good crystalline orientation and morphological features in the temperature range of 1000-1200 °C using a PH3+B2H6+H2 mixture. Rotational twinning was absent in the BP due to the crystal symmetry-matching with 3C-SiC. Confocal 3D Raman imaging of BP films revealed primarily uniform peak shift and peak widths across the scanned area, except at defects on the surface. Synchrotron white beam X-ray topography showed the epitaxial relationship between BP and 3C-SiC was (100) BP||(100) 3C-SiC and (111) BP||(111) 3C-SiC. Scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis indicated residual tensile strain in the films and improved crystalline quality at temperatures below 1200 °C. These results indicated that BP properties could be further enhanced by employing high quality bulk 3C-SiC or 3C-SiC epilayers on 4H-SiC substrates.

  13. Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays.

    Science.gov (United States)

    Kornienko, Nikolay; Gibson, Natalie A; Zhang, Hao; Eaton, Samuel W; Yu, Yi; Aloni, Shaul; Leone, Stephen R; Yang, Peidong

    2016-05-24

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising strategy to absorb solar energy and directly convert it into a dense storage medium in the form of chemical bonds. The continual development and improvement of individual components of PEC systems is critical toward increasing the solar to fuel efficiency of prototype devices. Within this context, we describe a study on the growth of wurtzite indium phosphide (InP) nanowire (NW) arrays on silicon substrates and their subsequent implementation as light-absorbing photocathodes in PEC cells. The high onset potential (0.6 V vs the reversible hydrogen electrode) and photocurrent (18 mA/cm(2)) of the InP photocathodes render them as promising building blocks for high performance PEC cells. As a proof of concept for overall system integration, InP photocathodes were combined with a nanoporous bismuth vanadate (BiVO4) photoanode to generate an unassisted solar water splitting efficiency of 0.5%. PMID:27124203

  14. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    Science.gov (United States)

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  15. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.

    Science.gov (United States)

    Liu, Mengjia; Li, Jinghong

    2016-01-27

    The development of efficient and low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts for renewable-energy conversion techniques is highly desired. A kind of hollow polyhedral cobalt phosphide (CoP hollow polyhedron) is developed as efficient bifunctional electrocatalysts for HER and OER templated by Co-centered metal-organic frameworks. The as-prepared CoP hollow polyhedron, which have large specific surface area and high porosity providing rich catalytic active sites, show excellent electrocatalytic performances for both HER and OER in acidic and alkaline media, respectively, with onset overpotentials of 35 and 300 mV, Tafel slopes of 59 and 57 mV dec(-1), and a current density of 10 mA cm(-2) at overpotentials of 159 and 400 mV for HER and OER, respectively, which are remarkably superior to those of particulate CoP (CoP particles) and comparable to those of commercial noble-metal catalysts. In addition, the CoP hollow polyhedron also show good durability after long-term operations. PMID:26711014

  16. Effect of heat-treatment on the surface properties of gallium phosphide nanosolids by Raman spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaochun; YUE Longyi; GUO Jingkang

    2006-01-01

    Raman spectra of gallium phosphide (GaP) nanosolids (unheated and heat-treated at 598 and 723 K, respectively)were investigated. It was observed that both the longitudinal optical mode (LO) and the transverse optical mode (TO) displayed an asymmetry on the low-wavenumber side. The scattering bands were fitted to a sum of four Lorentzians which were assigned to the LO mode, surface phonon mode, TO mode, and a combination of Ga-O-P symmetric bending and sum band formed from the X-point TA + LA phonons, respectively. Analysis of the characteristic of surface phonon mode revealed that the surface phonon peak of the GaP nanosolids could be confirmed. In the infrared spectrum of the GaP nanoparticles, we observed the bands on account of symmetric stretching and bending of PO2, as well as stretching of Ga-O.The Raman scattering intensity arising from the Ga-O-P linkages increased as increasing the heat-treatment temperature.

  17. Physical properties of new cerium palladium phosphide with C6Cr23-type structure

    Directory of Open Access Journals (Sweden)

    T. Abe

    2014-01-01

    Full Text Available We have found that a cerium palladium phosphide crystallizes into a C6Cr23-type structure with atomic disorder. Prepared polycrystalline samples show a homogeneity range in the ternary Ce–Pd–P phase diagram. The physical properties of the highest-quality sample of Ce2.4Pd20.7P5.9 were investigated by measuring the magnetization, electrical resistivity and specific heat. No pronounced phase transition was observed down to 0.5 K. The Kondo screening of localized 4f electrons in metallic Ce2.4Pd20.7P5.9 appears to be weaker than that in the isostructural compounds of Ce3Pd20Si6 and Ce3Pd20Ge6. By a comparative study of Ce2.4Pd20.7P5.9 and Ce3Pd20X6 (X = Si, Ge, the competition between the Kondo temperature and ordering temperatures including the quadrupolar ordering temperature is briefly discussed.

  18. Size-dependent magnetic and electrocatalytic properties of nickel phosphide nanoparticles

    Science.gov (United States)

    Pan, Yuan; Lin, Yan; Liu, Yunqi; Liu, Chenguang

    2016-03-01

    Nickel phosphide (Ni2P) nanoparticles (NPs) with different sizes were synthesized via thermal decomposition of bis(triphenylphosphine)nickel dichloride precursor in the presence of oleylamine. The size of the as-synthesized Ni2P NPs could easily be controlled by increasing the reaction temperature from 300 to 340 °C. The structure and morphology were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS). Then the influences of the size of the Ni2P NPs on the magnetic and electrocatalytic properties were investigated systematically. The results indicate that the as-synthesized Ni2P NPs exhibit ferromagnetic characteristic at 5 K. The Ni2P NPs with small size exhibit superparamagnetism and the larger size exhibit ferromagnetic characteristic at 300 K. The blocking temperature, saturation magnetization, remanent magnetization and coercivity increased significantly with the increase of size of Ni2P NPs, indicating the strong size effect of Ni2P NPs for magnetic properties. Electrochemical tests indicate that the catalytic activity can be enhanced by decreasing the size of Ni2P NPs. Due to the larger electrochemical active surface area and higher electrical conductivity, the Ni2P NPs with small size exhibit higher electrocatalytic activity. This work suggests that the size of Ni2P NPs is an important factor to affect the magnetic and electrocatalytic properties.

  19. V{sub 18}P{sub 9}C{sub 2}. A complex phosphide carbide

    Energy Technology Data Exchange (ETDEWEB)

    Boller, Herbert [Linz Univ. (Austria). Inst. fuer Anorganische Chemie; Effenberger, Herta [Wien Univ. (Austria). Inst. fuer Mineralogie und Kristallographie

    2016-08-01

    V{sub 18}P{sub 9}C{sub 2} crystallizes in the orthorhombic space group Pmma with the lattice parameters a = 17.044(3), b = 3.2219(7), and c = 13.030(2) Aa, Z = 2. The crystal structure is composed of 19 symmetry-independent atoms. The crystal structure is considered as a network formed by the transition metal atoms exhibiting cubic, trigonal prismatic, and octahedral voids centered by V, P, and C atoms, respectively. Vice versa, the V and P atoms form a three-dimensional network. The two CV{sub 6} octahedra are edge- and corner-connected to chains running parallel to [010]. The five unique P atoms are trigonal prismatically coordinated by V atoms with one to three faces capped again by a V atom. The V atoms have mainly cubic environments formed solely by V or by V and P atoms. V{sub 18}P{sub 9}C{sub 2} exhibits some structural relations to other compounds of the ternary system V-P-C as well as to other intermetallic phases. Despite the low carbon content, V{sub 18}P{sub 9}C{sub 2} is considered as a ternary compound rather than an interstitially stabilized (binary) phosphide in view of its special structural features.

  20. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    Science.gov (United States)

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-01

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h. PMID:27064172

  1. Theoretical investigation of indium phosphide buried ring resonators for new angular velocity sensors

    Science.gov (United States)

    Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario Nicola

    2013-02-01

    Here, we report the guidelines to be followed to optimize the design of a new angular velocity sensor based on an indium phosphide (InP) ring resonator. Optical properties of InP ring resonators have been investigated together with some significant physical effects for improving the sensor sensitivity. Three-dimensional algorithms have been utilized for the theoretical estimation of the waveguide loss. An optimized waveguide with propagation loss <0.3 dB/cm and a ring resonator with a quality factor of 1.5×106 have been designed. Performance of angular velocity sensors based on InP low-loss ring resonators has been estimated and discussed. Resolution of 10 deg/h and bias drift in the range of 0.1 to 0.3 deg/h have been evaluated for a fully integrated optical gyro including an InGaAsP/InP optical cavity having a footprint less than 24 cm2.

  2. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Density functional study of the group II phosphide semiconductor compounds under hydrostatic pressure

    International Nuclear Information System (INIS)

    The full-potential all-electron linearized augmented plane wave plus local orbital (FP-LAPW+lo) method, as implemented in the suite of software WIEN2k, has been used to systematically investigate the structural and electronic properties of the group II phosphide semiconductor compounds M3P2 (M = Be, Mg and Ca). The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). Internal parameters were optimized by relaxing the atomic positions in the force directions using the Hellman-Feynman approach. The structural parameters, bulk modules, cohesive energy, band structures and density of states have been calculated and compared to the available experimental and theoretical results. These compounds are predicted to be semiconductors with the direct band gap of about 1.60, 2.55 and 2.62 eV for Be3P2, Mg3P2 and Ca3P2, respectively. The effects of hydrostatic pressure on the behavior of band parameters such as band gap, valence bandwidths and anti-symmetric gap (the energy gap between two parts of the valence bands) are investigated using both GGA96 and EV-GGA. The contribution of s, p and d orbitals of different atoms to the density of states is discussed in detail

  4. Synthesis of the titanium phosphide telluride Ti2PTe2: A thermochemical approach

    International Nuclear Information System (INIS)

    The phosphide telluride Ti2PTe2 can be synthesised from the elements or from oxides in a thermite type reaction. Both ways have been optimised by consideration of the thermodynamic behaviour of the compound. Hence, the investigation of phase equilibria in the ternary system Ti/P/Te and of the thermal decomposition of Ti2PTe2 was necessary. This investigation was performed by using different experimental approaches as total pressure measurements, thermal analysis and mass spectrometry. The results were supported and further analysed by thermodynamic modelling of the ternary system. It was shown that Ti2PTe2(s) decomposes to Ti2P(s) and Te2(g) in six consecutive steps. The growth of single crystals of Ti2PTe2 is thermodynamically described as a chemical vapour transport with TiCl4(g) acting as the transport agent. - Graphical abstract: Oxygen partial pressure and electrochemical potential above the oxides of titanium, tellurium and phosphorus calculated at 1000 K, marked: level of equalisation of oxygen partial pressure

  5. Controlled synthesis and magnetic properties of iron-cobalt-phosphide nanorods.

    Science.gov (United States)

    Yang, Weiwei; Wu, Xiaoming; Yu, Yongsheng; Yang, Chunhui; Xu, Shichong; Li, Haibo

    2016-09-28

    A simple one-step solution-phase synthesis of iron-cobalt-phosphide ((Fe1-xCox)2P) nanorods (NRs) is reported in this paper. Through the control of the amount of Co in the samples, the crystal structure of (Fe1-xCox)2P NRs changes from a pure Fe-rich hexagonal Fe2P type structure to a mixture of Fe-rich hexagonal Fe2P and Co-rich orthorhombic Co2P type structures. These samples show superparamagnetic behavior at room temperature and ferromagnetic properties at 10 K. When the Co composition is 0.09, the (Fe0.91Co0.09)2P sample has the highest coercivity around 5.74 kOe at 10 K. The current route provides a new and general chemical method for tunable preparation of (Fe1-xCox)2P (x materials without rare-earth or noble metals. PMID:27602987

  6. Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays.

    Science.gov (United States)

    Kornienko, Nikolay; Gibson, Natalie A; Zhang, Hao; Eaton, Samuel W; Yu, Yi; Aloni, Shaul; Leone, Stephen R; Yang, Peidong

    2016-05-24

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising strategy to absorb solar energy and directly convert it into a dense storage medium in the form of chemical bonds. The continual development and improvement of individual components of PEC systems is critical toward increasing the solar to fuel efficiency of prototype devices. Within this context, we describe a study on the growth of wurtzite indium phosphide (InP) nanowire (NW) arrays on silicon substrates and their subsequent implementation as light-absorbing photocathodes in PEC cells. The high onset potential (0.6 V vs the reversible hydrogen electrode) and photocurrent (18 mA/cm(2)) of the InP photocathodes render them as promising building blocks for high performance PEC cells. As a proof of concept for overall system integration, InP photocathodes were combined with a nanoporous bismuth vanadate (BiVO4) photoanode to generate an unassisted solar water splitting efficiency of 0.5%.

  7. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    Science.gov (United States)

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-06-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula.

  8. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    OpenAIRE

    Mansor, N.; Jorge, A. B.; Corà, F.; Gibbs, C.; Jervis, R.; Mcmillan, P. F.; X. Wang; Brett, D. J.

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion...

  9. Kinetic process of nitridation on the α-sapphire surface

    Institute of Scientific and Technical Information of China (English)

    Tang Xingzhou; Li Shuping; Kang Junyong; Chen Jiaqi

    2014-01-01

    We established a model to simulate the growth process of nitridation and clarified the inner mechanisms of nitridation and over-nitridation by combining the kinetic Monte Carlo and molecular dynamics methods.Supported by reflection high-energy electron diffraction results with growth in an MBE system,the tendency of nitridation on α-sapphire in different conditions was observed and analyzed.The best conditions for nitridation on the α-sapphire surface are found by our simulation.

  10. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  11. The actinides-a beautiful ending of the Periodic Table

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Boerje [Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvaegen 23, SE-100 44 Stockholm (Sweden)], E-mail: borje.johansson@fysik.uu.se; Li, Sa [Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvaegen 23, SE-100 44 Stockholm (Sweden); Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2007-10-11

    The 5f elements, actinides, show many properties which have direct correspondence to the 4f transition metals, the lanthanides. The remarkable similarity between the solid state properties of compressed Ce and the actinide metals is pointed out in the present paper. The {alpha}-{gamma} transition in Ce is considered as a Mott transition, namely, from delocalized to localized 4f states. An analogous behavior is also found for the actinide series, where the sudden volume increase from Pu to Am can be viewed upon as a Mott transition within the 5f shell as a function of the atomic number Z. On the itinerant side of the Mott transition, the earlier actinides (Pa-Pu) show low symmetry structures at ambient conditions; while across the border, the heavier elements (Am-Cf) present the dhcp structure, an atomic arrangement typical for the trivalent lanthanide elements with localized 4f magnetic moments. The reason for an isostructural Mott transition of the f electron in Ce, as opposed to the much more complicated cases in the actinides, is identified. The strange appearance of the {delta}-phase (fcc) in the phase diagram of Pu is another consequence of the border line behavior of the 5f electrons. The path leading from {delta}-Pu to {alpha}-Pu is identified.

  12. Rapid determination of alpha emitters using Actinide resin.

    Science.gov (United States)

    Navarro, N; Rodriguez, L; Alvarez, A; Sancho, C

    2004-01-01

    The European Commission has recently published the recommended radiological protection criteria for the clearance of building and building rubble from the dismantling of nuclear installations. Radionuclide specific clearance levels for actinides are very low (between 0.1 and 1 Bq g(-1)). The prevalence of natural radionuclides in rubble materials makes the verification of these levels by direct alpha counting impossible. The capability of Actinide resin (Eichrom Industries, Inc.) for extracting plutonium and americium from rubble samples has been tested in this work. Besides a strong affinity for actinides in the tri, tetra and hexavalent oxidation states, this extraction chromatographic resin presents an easy recovery of absorbed radionuclides. The retention capability was evaluated on rubble samples spiked with certified radionuclide standards (239Pu and 241Am). Samples were leached with nitric acid, passed through a chromatographic column containing the resin and the elution fraction was measured by LSC. Actinide retention varies from 60% to 80%. Based on these results, a rapid method for the verification of clearance levels for actinides in rubble samples is proposed. PMID:15177360

  13. Development of the Chalmers Grouped Actinide Extraction Process

    Directory of Open Access Journals (Sweden)

    Halleröd Jenny

    2015-12-01

    Full Text Available Several solvents for Grouped ActiNide EXtraction (GANEX processes have been investigated at Chalmers University of Technology in recent years. Four different GANEX solvents; cyclo-GANEX (CyMe4- -BTBP, 30 vol.% tri-butyl phosphate (TBP and cyclohexanone, DEHBA-GANEX (CyMe4-BTBP, 20 vol.% N,N-di-2(ethylhexyl butyramide (DEHBA and cyclohexanone, hexanol-GANEX (CyMe4-BTBP, 30 vol.% TBP and hexanol and FS-13-GANEX (CyMe4-BTBP, 30 vol.% TBP and phenyl trifluoromethyl sulfone (FS-13 have been studied and the results are discussed and compared in this work. The cyclohexanone based solvents show fast and high extraction of the actinides but a somewhat poor diluent stability in contact with the acidic aqueous phase. FS-13-GANEX display high separation factors between the actinides and lanthanides and a good radiolytic and hydrolytic stability. However, the distribution ratios of the actinides are lower, compared to the cyclohexanone based solvents. The hexanol-GANEX is a cheap solvent system using a rather stable diluent but the actinide extraction is, however, comparatively low.

  14. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Science.gov (United States)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  15. Feasibility studies of actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    A strategy of actinide burnup in LMFBRs is being investigated as a waste management alternative to long term storage of high level nuclear waste. This strategy is being evaluated because many of the actinides in the waste from spent-fuel reprocessing have half-lives of thousands of years and an alternative to geological storage may be desired. From a radiological viewpoint, the actinides and their daughters dominate the waste hazard for decay times beyond about 400 years. Actinide burnup in LMFBRs may be an attractive alternative to geological storage because the actinides can be effectively transmuted to fission products which have significantly shorter half-lives. Actinide burnup in LMFBRs rather than LWRs is preferred because the ratio of fission reaction rate to capture reaction rate for the actinides is higher in an LMFBR, and an LMFBR is not so sensitive to the addition of the actinide isotopes. An actinide target assembly recycle scheme is evaluated to determine the effects of the actinides on the LMFBR performance, including local power peaking, breeding ratio, and fissile material requirements. Several schemes are evaluated to identify any major problems associated with reprocessing and fabrication of recycle actinide-containing assemblies. The overall efficiency of actinide burnout in LMFBRs is evaluated, and equilibrium cycle conditions are determined. It is concluded that actinide recycle in LMFBRs offers an attractive alternative to long term storage of the actinides, and does not significantly affect the performance of the host LMFBR. Assuming a 0.1 percent or less actinide loss during reprocessing, a 0.1 percent loss of less during fabrication, and proper recycle schemes, virtually all of the actinides produced by a fission reactor economy could be transmuted in fast reactors

  16. ROLE OF C AND P SITES ON THE CHEMICAL ACTIVITY OF METAL CARBIDE AND PHOSPHIDES: FROM CLUSTERS TO SINGLE-CRYSTAL SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ,J.A.; VINES, F.; LIU, P.; ILLAS, F.

    2007-07-01

    Transition metal carbides and phosphides have shown tremendous potential as highly active catalysts. At a microscopic level, it is not well understood how these new catalysts work. Their high activity is usually attributed to ligand or/and ensemble effects. Here, we review recent studies that examine the chemical activity of metal carbide and phosphides as a function of size, from clusters to extended surfaces, and metal/carbon or metal/phosphorous ratio. These studies reveal that the C and P sites in these compounds cannot be considered as simple spectators. They moderate the reactivity of the metal centers and provide bonding sites for adsorbates.

  17. Prompt Fission Neutron Spectra of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data

  18. Friction Characteristics of Nitrided Layers on AISI 430 Ferritic Stainless Steel Obtained by Various Nitriding Processes

    Directory of Open Access Journals (Sweden)

    Hakan AYDIN

    2013-03-01

    Full Text Available The influence of plasma, gas and salt-bath nitriding techniques on the friction coefficient of AISI 430 ferritic stainless steel was studied in this paper. Samples were plasma nitrided in 80 % N2 + 20 % H2 atmosphere at 450 °C and 520 °C for 8 h at a pressure of 2 mbar, gas nitrided in NH3 and CO2 atmosphere at 570 °C for 13 h and salt-bath nitrided in a cyanide-cyanate salt-bath at 570 °C for 1.5 h. Characterisation of nitrided layers on the ferritic stainless steel was carried out by means of microstructure, microhardness, surface roughness and friction coefficient measurements. Friction characteristics of the nitrided layers on the 430 steel were investigated using a ball-on-disc friction-wear tester with a WC-Co ball as the counter-body under dry sliding conditions. Analysis of wear tracks was carried out by scanning electron microscopy. Maximum hardness and maximum case depth were achieved on the plasma nitrided sample at 520 ºC for 8 h. The plasma and salt-bath nitriding techniques significantly decreased the average surface roughness of the 430 ferritic stainless steel. The friction test results showed that the salt-bath nitrided layer had better friction-reducing ability than the other nitrided layers under dry sliding conditions. Furthermore, the friction characteristic of the plasma nitrided layer at 520 ºC was better than that of the plasma nitrided layer at 450 °C.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3819

  19. Actinide consumption: Nuclear resource conservation without breeding

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.; Battles, J.E.; Johnson, T.R.; McPheeters, C.C.

    1991-01-01

    A new approach to the nuclear power issue based on a metallic fast reactor fuel and pyrometallurgical processing of spent fuel is showing great potential and is approaching a critical demonstration phase. If successful, this approach will complement and validate the LWR reactor systems and the attendant infrastructure (including repository development) and will alleviate the dominant concerns over the acceptability of nuclear power. The Integral Fast Reactor (IFR) concept is a metal-fueled, sodium-cooled pool-type fast reactor supported by a pyrometallurgical reprocessing system. The concept of a sodium cooled fast reactor is broadly demonstrated by the EBR-II and FFTF in the US; DFR and PFR in the UK; Phenix and SuperPhenix in France; BOR-60, BN-350, BN-600 in the USSR; and JOYO in Japan. The metallic fuel is an evolution from early EBR-II fuels. This fuel, a ternary U-Pu-Zr alloy, has been demonstrated to be highly reliable and fault tolerant even at very high burnup (160-180,000 MWd/MT). The fuel, coupled with the pool type reactor configuration, has been shown to have outstanding safety characteristics: even with all active safety systems disabled, such a reactor can survive a loss of coolant flow, a loss of heat sink, or other major accidents. Design studies based on a small modular approach show not only its impressive safety characteristics, but are projected to be economically competitive. The program to explore the feasibility of actinide recovery from spent LWR fuel is in its initial phase, but it is expected that technical feasibility could be demonstrated by about 1995; DOE has not yet committed funds to achieve this objective. 27 refs.

  20. Actinide consumption: Nuclear resource conservation without breeding

    International Nuclear Information System (INIS)

    A new approach to the nuclear power issue based on a metallic fast reactor fuel and pyrometallurgical processing of spent fuel is showing great potential and is approaching a critical demonstration phase. If successful, this approach will complement and validate the LWR reactor systems and the attendant infrastructure (including repository development) and will alleviate the dominant concerns over the acceptability of nuclear power. The Integral Fast Reactor (IFR) concept is a metal-fueled, sodium-cooled pool-type fast reactor supported by a pyrometallurgical reprocessing system. The concept of a sodium cooled fast reactor is broadly demonstrated by the EBR-II and FFTF in the US; DFR and PFR in the UK; Phenix and SuperPhenix in France; BOR-60, BN-350, BN-600 in the USSR; and JOYO in Japan. The metallic fuel is an evolution from early EBR-II fuels. This fuel, a ternary U-Pu-Zr alloy, has been demonstrated to be highly reliable and fault tolerant even at very high burnup (160-180,000 MWd/MT). The fuel, coupled with the pool type reactor configuration, has been shown to have outstanding safety characteristics: even with all active safety systems disabled, such a reactor can survive a loss of coolant flow, a loss of heat sink, or other major accidents. Design studies based on a small modular approach show not only its impressive safety characteristics, but are projected to be economically competitive. The program to explore the feasibility of actinide recovery from spent LWR fuel is in its initial phase, but it is expected that technical feasibility could be demonstrated by about 1995; DOE has not yet committed funds to achieve this objective. 27 refs

  1. Selective extraction of actinides from high level liquid wastes. Study of the possibilities offered by the Redox properties of actinides

    International Nuclear Information System (INIS)

    Partitioning of high level liquid wastes coming from nuclear fuel reprocessing by the PUREX process, consists in the elimination of minor actinides (Np, Am, and traces of Pu and U). Among the possible processes, the selective extraction of actinides with oxidation states higher than three is studied. First part of this work deals with a preliminary step; the elimination of the ruthenium from fission products solutions using the electrovolatilization of the RuO4 compound. The second part of this work concerns the complexation and oxidation reactions of the elements U, Np, Pu and Am in presence of a compound belonging to the insaturated polyanions family: the potassium phosphotungstate. For actinide ions with oxidation state (IV) complexed with phosphotungstate anion the extraction mechanism by dioctylamine was studied and the use of a chromatographic extraction technic permitted successful separations between tetravalents actinides and trivalents actinides. Finally, in accordance with the obtained results, the basis of a separation scheme for the management of fission products solutions is proposed

  2. Plasma Nitriding of Low Alloy Sintered Steels

    Institute of Scientific and Technical Information of China (English)

    Shiva Mansoorzadeh; Fakhreddin Ashrafizadeh; Xiao-Ying Li; Tom Bell

    2004-01-01

    Fe-3Cr-0.5Mo-0.3C and Fe-3Cr-1.4Mn-0.5Mo-0.367C sintered alloys were plasma nitrided at different temperatures. Characterization was performed by microhardness measurement, optical microscopy, SEM and XRD. Both materials had similar nitriding case properties. 1.4% manganese did not change the as-sintered microstructure considerably.It was observed that monophase compound layer, γ, formed with increasing temperature. Compound layer thickness increased with increasing temperature while nitriding depth increased up to a level and then decreased. Core softening was more pronounced at higher temperature owing to cementite coarsening.

  3. Actinide-handling experience for training and education of future expert under J-ACTINET

    International Nuclear Information System (INIS)

    Summer schools for future experts have successfully been completed under Japan Actinide Network (J-ACTINET) for the purpose of development of human resources who are expected to be engaged in every areas of actinide-research/engineering. The first summer school was held in Ibaraki-area in August 2009, followed by the second one in Kansai-area in August 2010. Two summer schools have focused on actual experiences of actinides in actinide-research fields for university students and young researchers/engineers as an introductory course of actinide-researches. Many efforts were made to awaken interests into actinide-researches inside the participants during short periods of schools, 3 to 4 days. As actinides must be handled inside special apparatuses such as an air-tight globe-box with well-trained and qualified technicians, programs were optimized for effective experiences of actinides-handling. Several quasi actinide-handling experiences at the actinide-research fields have attracted attentions of participants at the first school in Ibaraki-area. The actual experiments using actinides-containing solutions have been carried out at the second school in Kansai-area. Future summer schools will be held every year for the sustainable human resource development in various actinide-research fields, together with other training and education programs conducted by the J-ACTINET. (author)

  4. Fluoride-conversion synthesis of homogeneous actinide oxide solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, G W Chinthaka M [ORNL; Hunn, John D [ORNL; Yeamans, Charles B. [University of California, Berkeley; Cerefice, Gary S. [University of Nevada, Las Vegas; Czerwinski, Ken R. [University of Nevada, Las Vegas

    2011-01-01

    Here, a novel route to synthesize (U, Th)O2 solid solutions at a relatively low temperature of 1100 C is demonstrated. First, the separate actinide oxides reacted with ammonium bifluoride to form ammonium actinide fluorides at room temperature. Subsequently, this mixture was converted to the actinide oxide solid solution using a two-phased heat treatment, first at 610 C in static air, then at 1100 C in flowing argon. Solid solutions obeying Vegard s Law were synthesized for ThO2 content from 10 to 90 wt%. Microscopy showed that the (U, Th)O2 solid solutions synthesized with this method to have considerably high crystallinity and homogeneity, suggesting the suitability of material thus synthesized for sintering into nuclear fuel pellets at low temperatures.

  5. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  6. Laser resonant-ionization mass spectrometry of actinides

    International Nuclear Information System (INIS)

    Laser resonant-ionization mass spectrometry has been used to determine small amounts of actinides. The high sensitivity and selectivity of this method has been achieved by three-step photoionization of actinide atoms followed by time-of-flight measurement. The laser system for photoionization consists of a pulsed copper vapour laser of 30 W average power at a pulse repetition rate of 6.5 kHz which is coupled to three dye lasers. The time-of-flight spectrometer has a mass resolution of about 2500. Resonance signals with count rates of several kilohertz were obtained with actinide samples of 1010-1012 atoms yielding a detection limit of 108 atoms in the sample. With some improvements a detection sensitivity of about 106 atoms of plutonium, americium and curium should be reached. (orig.)

  7. Synthesis of selective extractor for minor actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seung [Konyang University, Nonsan (Korea); Cho, Moon Hwan [Kangwon National University, Chunchon (Korea)

    1998-04-01

    To selectively co-separate the lanthanide and actinide elements (MA) such as Am or Cm ion from radioactive waste, synthesis of diamide derivatives has been accomplished. In addition, picoline amide derivatives were also synthesized for selectively separate the minor actinide elements from lanthanide elements. The content of research has don are as follows: (1) synthesis of diamide as co-extractant (2) introduction of n-tetradecyl to increase the lipophilicity (3) Picolyl chloride, intermediate of the final product, was synthesized by improved method rather than reported method. (4) The length of alkyl side chain was adjusted to increase the lipophilicity of free ligand and its derivatives able to selectively separate the actinide metal from lanthanide metal ions was successfully synthesized and determined their purity by analytical instruments. (author). 12 refs., 28 figs.

  8. Internal nitride formation during gas-phase thermal nitridation of titanium

    International Nuclear Information System (INIS)

    Titanium nitride surface layers were prepared by gas-phase thermal nitridation of pure titanium in an ammonia atmosphere at 1373 K for different times. In addition to the surface nitride layer, nitride/hydride formation was observed in the bulk of the specimen. The cross-section of the specimen was characterized by various techniques such as optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, secondary ion mass spectrometry and nanomechanical testing, and the mechanism of formation of these phases is discussed.

  9. Plasma nitriding of AISI 52100 ball bearing steel and effect of heat treatment on nitrided layer

    Indian Academy of Sciences (India)

    Ravindra Kumar; J Alphonsa; Ram Prakash; K S Boob; J Ghanshyam; P A Rayjada; P M Raole; S Mukherjee

    2011-02-01

    In this paper an effort has been made to plasma nitride the ball bearing steel AISI 52100. The difficulty with this specific steel is that its tempering temperature (∼170–200°C) is much lower than the standard processing temperature (∼460–580°C) needed for the plasma nitriding treatment. To understand the mechanism, effect of heat treatment on the nitrided layer steel is investigated. Experiments are performed on three different types of ball bearing races i.e. annealed, quenched and quench-tempered samples. Different gas compositions and process temperatures are maintained while nitriding these samples. In the quenched and quench-tempered samples, the surface hardness has decreased after plasma nitriding process. Plasma nitriding of annealed sample with argon and nitrogen gas mixture gives higher hardness in comparison to the hydrogen–nitrogen gas mixture. It is reported that the later heat treatment of the plasma nitrided annealed sample has shown improvement in the hardness of this steel. X-ray diffraction analysis shows that the dominant phases in the plasma nitrided annealed sample are (Fe2−3N) and (Fe4N), whereas in the plasma nitrided annealed sample with later heat treatment only -Fe peak occurs.

  10. Sequential determination of actinides in a variety of matrices

    International Nuclear Information System (INIS)

    A large number of analytical procedures for the actinides have been published, each catering for a specific need. Due to the bioassay programme in our laboratory, a need arose for a method to determine natural (Th and U) and anthropogenic actinides (Np, Pu and Am/Cm) together in a variety of samples. The method would have to be suitable for routine application: simple, inexpensive, rapid and robust. In some cases, the amount of material available is not sufficient for the determination of separate groups of actinides, and a sequential separation and measurement of the analytes would therefore be required. The types of matrices vary from aqueous samples to radiological surveillance (urine and faeces) to environmental studies (soil, sediment and fish), but the separation procedure should be able to service all of these. The working range of the method would have to cater for lower levels of the transuranium actinides in particular sample types containing higher levels of the natural actinides (U and Th). The first analytical problem to be discussed, is how to get the different sample types into the same loading solution required by a single separation approach. This entails sample dissolution or decomposition in some cases, and pre-concentration or pre-separation in others. A separation scheme is presented for the clean separation of all the actinides in a form suitable for alpha spectrometry. The development of a single column separation of the analytes of interest are looked at, as well as observations made during the development of the separation scheme, such as concentration effects. Results for test samples and certified reference materials are be presented. (author)

  11. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  12. Analogue Study of Actinide Transport at Sites in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, A P; Simmons, A M; Halsey, W G

    2003-02-12

    The U. S. Department of Energy (DOE) and the Russian Academy of Sciences (RAS) are engaged in a three-year cooperative study to observe the behavior of actinides in the natural environment at selected disposal sites and/or contamination sites in Russia. The purpose is to develop experimental data and models for actinide speciation, mobilization and transport processes in support of geologic repository design, safety and performance analyses. Currently at the mid-point of the study, the accomplishments to date include: evaluation of existing data and data needs, site screening and selection, initial data acquisition, and development of preliminary conceptual models.

  13. Thermally unstable complexants/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K. [Argonne National Lab., IL (United States)

    1996-10-01

    In situ immobilization is an approach to isolation of radionuclides from the hydrosphere that is receiving increasing attention. Rather than removing the actinides from contaminated soils, this approach transforms the actinides into intrinsically insoluble mineral phases resistant to leaching by groundwater. The principal advangates of this concept are the low cost and low risk of operator exposure and/or dispersion of the radionuclides to the wider environment. The challenge of this approach is toe accomplish the immobilization without causing collateral damage to the environment (the cure shouldn`t be worse than the disease) and verification of system performance.

  14. INERT-MATRIX FUEL: ACTINIDE ''BURNING'' AND DIRECT DISPOSAL

    International Nuclear Information System (INIS)

    Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am, 244 Cm and 237 Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burnup of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-cycle of burn-up. Direct disposal can considerably reduce cost, processing requirements, and radiation exposure to workers

  15. Production of heavy actinides in incomplete fusion reactions

    Science.gov (United States)

    Antonenko, N. V.; Cherepanov, E. A.; Iljinov, A. S.; Mebel, M. V.

    1994-10-01

    We present preliminary results of calculations by the phenomenological model of the estimated yield of some heavy actinide isotopes. It is assumed that these isotopes are produced as a result of multinucleon transfers followed by neutrons and charged particle emission A.S. Iljinov and E.A. Cherepanov (1980). The yield P(sub Z, N)(E*) of primary excited actinides is found using the model of N.V. Antonenko and R.V. Jolos (1991). Absolute cross-sections for different binary reaction channels are obtained by summing the cross-sections for all subchannels with an appreciable yield according to J. Wilczynski et al. (1980).

  16. In vivo measurement of actinides in the human lung

    International Nuclear Information System (INIS)

    The problems associated with the in vivo detection and measurement of actinides in the human lung are discussed together with various measurement systems currently in use. In particular, the methods and calibration procedures employed at the Lawrence Livermore Laboratory, namely, the use of twin Phoswich detectors and a new, more realistic, tissue-equivalent phantom, are described. Methods for the measurement of chest-wall thickness, fat content, and normal human background counts are also discussed. Detection-efficiency values and minimum detectable activity estimates are given for three common actinides, 238Pu, 239Pu, and 241Am

  17. Physics studies of higher actinide consumption in an LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.S.

    1990-01-01

    The core physics aspects of the transuranic burning potential of the Integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described. 4 refs., 4 figs., 3 tabs.

  18. Actinide geochemistry: from the molecular level to the real system.

    Science.gov (United States)

    Geckeis, Horst; Rabung, Thomas

    2008-12-12

    Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid-liquid interface reactions to obtain molecular level speciation insight. We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto gamma-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S-O-An(III)(OH)x(2-x)(H2O)5-x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions. The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide-colloid interaction. Kinetic stabilization of colloid bound actinides can be due

  19. Chemistry of tetravalent actinides phosphates. The thorium phosphate-diphosphate as immobilisation matrix of actinides

    International Nuclear Information System (INIS)

    The author presents in this document its scientific works from 1992 to 2001, in order to obtain the enabling to manage scientific and chemical researches at the university Paris Sud Orsay. The first part gives an abstract of the thesis on the characterizations, lixiviation and synthesis of uranium and thorium based phosphate matrix in the framework of the search for a ceramic material usable in the radioactive waste storage. The second part presents briefly the researches realized at the CEA, devoted to a reliable, independent and accurate measure of some isotopes activity. The last part presents the abstracts of researches activities from 1996 to 2001 on the tetravalent actinides phosphates chemistry, the sintering of PDT and solid solutions of PDTU and the kinetic and thermodynamical studies of the PDT dissolution. Many references and some publication in full text are provided. (A.L.B.)

  20. Non-compound nucleus fission in actinide and pre-actinide regions

    Indian Academy of Sciences (India)

    R Tripathi; S Sodaye; K Sudarshan

    2015-08-01

    In this article, some of our recent results on fission fragment/product angular distributions are discussed in the context of non-compound nucleus fission. Measurement of fission fragment angular distribution in 28Si+176Yb reaction did not show a large contribution from the non-compound nucleus fission. Data on the evaporation residue cross-sections, in addition to those on mass and angular distributions, are necessary for better understanding of the contribution from non-compound nucleus fission in the pre-actinide region. Measurement of mass-resolved angular distribution of fission products in 20Ne+232Th reaction showed an increase in angular anisotropy with decreasing asymmetry of mass division. This observation can be explained based on the contribution from pre-equilibrium fission. Results of these studies showed that the mass dependence of anisotropy may possibly be used to distinguish pre-equilibrium fission and quasifission.

  1. Titanium nitride nanoparticles for therapeutic applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Kildishev, Alexander V.; Boltasseva, Alexandra;

    2014-01-01

    Titanium nitride nanoparticles exhibit plasmonic resonances in the biological transparency window where high absorption efficiencies can be obtained with small dimensions. Both lithographic and colloidal samples are examined from the perspective of nanoparticle thermal therapy. © 2014 OSA....

  2. Mechanical strength and tribological behavior of ion-beam deposited boron nitride films on non-metallic substrates

    International Nuclear Information System (INIS)

    An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2

  3. A numerical simulation study of gallium-phosphide/silicon heterojunction passivated emitter and rear solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Hannes [Department of Solar Energy, Institute Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 Hannover (Germany); ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Ohrdes, Tobias [Institute for Solar Energy Research Hamelin (ISFH), 31860 Emmerthal (Germany); Dastgheib-Shirazi, Amir [Div. Photovoltaics, Department of Physics, University of Konstanz, 78457 Konstanz (Germany); Puthen-Veettil, Binesh; König, Dirk [ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Altermatt, Pietro P. [Department of Solar Energy, Institute Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2014-01-28

    The performance of passivated emitter and rear (PERC) solar cells made of p-type Si wafers is often limited by recombination in the phosphorus-doped emitter. To overcome this limitation, a realistic PERC solar cell is simulated, whereby the conventional phosphorus-doped emitter is replaced by a thin, crystalline gallium phosphide (GaP) layer. The resulting GaP/Si PERC cell is compared to Si PERC cells, which have (i) a standard POCl{sub 3} diffused emitter, (ii) a solid-state diffused emitter, or (iii) a high efficiency ion-implanted emitter. The maximum efficiencies for these realistic PERC cells are between 20.5% and 21.2% for the phosphorus-doped emitters (i)–(iii), and up to 21.6% for the GaP emitter. The major advantage of this GaP hetero-emitter is a significantly reduced recombination loss, resulting in a higher V{sub oc}. This is so because the high valence band offset between GaP and Si acts as a nearly ideal minority carrier blocker. This effect is comparable to amorphous Si. However, the GaP layer can be contacted with metal fingers like crystalline Si, so no conductive oxide is necessary. Compared to the conventional PERC structure, the GaP/Si PERC cell requires a lower Si base doping density, which reduces the impact of the boron-oxygen complexes. Despite the lower base doping, fewer rear local contacts are necessary. This is so because the GaP emitter shows reduced recombination, leading to a higher minority electron density in the base and, in turn, to a higher base conductivity.

  4. A numerical simulation study of gallium-phosphide/silicon heterojunction passivated emitter and rear solar cells

    Science.gov (United States)

    Wagner, Hannes; Ohrdes, Tobias; Dastgheib-Shirazi, Amir; Puthen-Veettil, Binesh; König, Dirk; Altermatt, Pietro P.

    2014-01-01

    The performance of passivated emitter and rear (PERC) solar cells made of p-type Si wafers is often limited by recombination in the phosphorus-doped emitter. To overcome this limitation, a realistic PERC solar cell is simulated, whereby the conventional phosphorus-doped emitter is replaced by a thin, crystalline gallium phosphide (GaP) layer. The resulting GaP/Si PERC cell is compared to Si PERC cells, which have (i) a standard POCl3 diffused emitter, (ii) a solid-state diffused emitter, or (iii) a high efficiency ion-implanted emitter. The maximum efficiencies for these realistic PERC cells are between 20.5% and 21.2% for the phosphorus-doped emitters (i)-(iii), and up to 21.6% for the GaP emitter. The major advantage of this GaP hetero-emitter is a significantly reduced recombination loss, resulting in a higher Voc. This is so because the high valence band offset between GaP and Si acts as a nearly ideal minority carrier blocker. This effect is comparable to amorphous Si. However, the GaP layer can be contacted with metal fingers like crystalline Si, so no conductive oxide is necessary. Compared to the conventional PERC structure, the GaP/Si PERC cell requires a lower Si base doping density, which reduces the impact of the boron-oxygen complexes. Despite the lower base doping, fewer rear local contacts are necessary. This is so because the GaP emitter shows reduced recombination, leading to a higher minority electron density in the base and, in turn, to a higher base conductivity.

  5. Elevated Carboxyhaemoglobin Concentrations by Pulse CO-Oximetry is Associated with Severe Aluminium Phosphide Poisoning.

    Science.gov (United States)

    Mashayekhian, Mohammad; Hassanian-Moghaddam, Hossein; Rahimi, Mitra; Zamani, Nasim; Aghabiklooei, Abbas; Shadnia, Shahin

    2016-09-01

    In pulse CO-oximetry of aluminium phosphide (ALP)-poisoned patients, we discovered that carboxyhaemoglobin (CO-Hb) level was elevated. We aimed to determine whether a higher CO level was detected in patients with severe ALP poisoning and if this could be used as a prognostic factor in these patients. In a prospective case-control study, 96 suspected cases of ALP poisoning were evaluated. In the ALP-poisoned group, demographic characteristics, gastric and exhalation silver nitrate test results, average CO-Hb saturation, methaemoglobin saturation, and blood pressure and blood gas analysis until death/discharge were recorded. Severely poisoned patients were defined as those with systolic blood pressure ≤80 mmHg, pH ≤7.2, or HCO3 ≤15 meq/L or those who died, while patients with minor poisoning were those without any of these signs/symptoms. A control group (37 patients) was taken from other medically ill patients to detect probable effects of hypotension and metabolic acidosis on CO-Hb and methaemoglobin saturations. Of 96 patients, 27 died and 37 fulfilled the criteria for severe poisoning. All patients with carbon monoxide saturation >18% met the criteria to be included in the severe poisoning group and all with a SpCO >25% died. Concerning all significant variables in univariate analysis of severe ALP toxicity, the only significant variable which could independently predict death was carbon monoxide saturation. Due to high mortality rate and need for intensive care support, early prediction of outcome is vital for choosing an appropriate setting (ICU or ordinary ward). CO-oximetry is a good diagnostic and prognostic factor in patients with ALP poisoning even before any clinical evidence of toxicity will develop. PMID:26899262

  6. Hydroxyethyl Starch Could Save a Patient With Acute Aluminum Phosphide Poisoning.

    Science.gov (United States)

    Marashi, Sayed Mahdi; Nasri Nasrabadi, Zeynab; Jafarzadeh, Mostafa; Mohammadi, Sogand

    2016-07-01

    A 40-year-old male patient with suicidal ingestion of one tablet of aluminium phosphide was referred to the department of toxicology emergency of Baharloo Hospital, Tehran, Iran. The garlic odor was smelled from the patient and abdominal pain and continuous vomiting as well as agitation and heartburn were the first signs and symptoms. Systolic and diastolic blood pressures at the arrival time were 95 and 67 mmHg, respectively. Gastric lavage with potassium permanganate (1:10,000), and 2 vials of sodium bicarbonate through a nasogastric tube was started for the patient and the management was continued with free intravenous infusion of 1 liter of NaCl 0.9% serum plus NaHCO3, hydrocortisone acetate (200 mg), calcium gluconate (1 g) and magnesium sulfate (1 g). Regarding the large intravenous fluid therapy and vasoconstrictor administering (norepinephrine started by 5 µg/min and continued till 15 µg/min), there were no signs of response and the systolic blood pressure was 49 mmHg. At this time, hydroxyethyl starch (HES) (6% hetastarch 600/0.75 in 0.9% sodium chloride) with a dose of 600 cc in 6 hours was started for the patient. At the end of therapy with HES, the patient was stable with systolic and diastolic blood pressure of 110 and 77 mmHg, respectively. He was discharged on the 6th day after the psychological consultation, with normal clinical and paraclinical examinations. This is the first report of using HES in the management of AlP poisoning and its benefit to survive the patient. PMID:27424021

  7. A simplified acute physiology score in the prediction of acute aluminum phosphide poisoning outcome

    Directory of Open Access Journals (Sweden)

    Shahin Shadnia

    2010-01-01

    Full Text Available Background : Aluminum phosphide (AlP is used as a fumigant. It produces phosphine gas, which is a mitochondrial poison. Unfortunately, there is no known antidote for AlP intoxication, and also, there are few data about its prognostic factors. AIMS: The aim of this study was to determine the impact of the Simplified Acute Physiology Score II (SAPS II in the prediction of outcome in patients with acute AlP poisoning requiring admission to the Intensive Care Unit (ICU. Materials and Methods : This was a prospective study in patients with acute AlP poisoning, admitted to the ICU over a period of 12 months. The demographic data were collected and SAPSII was recorded. The patients were divided into survival and non-survival groups due to outcome. Statistical Analysis : The data were expressed as mean ± SD for continuous or discrete variables and as frequency and percentage for categorical variables. The results were compared between the two groups using SPSS software. Results : During the study period, 39 subjects were admitted to the ICU with acute AlP poisoning. All 39 patients required endotracheal intubation and mechanical ventilation in addition to gastric decontamination with sodium bicarbonate, permanganate potassium, and activated charcoal, therapy with MgSO 4 and calcium gluconate and adequate hydration. Among these patients, 26 (66.7% died. SAPSII was significantly higher in the non-survival group than in the survival group (11.88 ± 4.22 vs. 4.31 ± 2.06, respectively (P < 0.001. Conclusion : SAPSII calculated within the first 24 hours was recognized as a good prognostic indicator among patients with acute AlP poisoning requiring ICU admission.

  8. Innovative boron nitride-doped propellants

    OpenAIRE

    Thelma Manning; Richard Field; Kenneth Klingaman; Michael Fair; John Bolognini; Robin Crownover; Carlton P. Adam; Viral Panchal; Eugene Rozumov; Henry Grau; Paul Matter; Michael Beachy; Christopher Holt; Samuel Sopok

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower ...

  9. The Nitrogen-Nitride Anode.

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  10. Molecular and electronic structure of actinide hexa-cyanoferrates; Structure moleculaire et electronique des hexacyanoferrates d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Bonhoure, I

    2001-07-01

    The goal of this work is to improve our knowledge on the actinide-ligand bond properties. To this end, the hexacyanoferrate entities have been used as pre-organized ligand. We have synthesized, using mild chemistry, the following series of complexes: An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Th, U, Np, Pu); Am{sup III}[Fe{sup III}(CN){sub 6}].xH{sub 2}O; Pu {sup III}[Co{sup III}(CN){sub 6}].xH{sub 2}O and K(H?)An{sup III}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Pu, Am). The metal oxidation states have been obtained thanks to the {nu}{sub CN}, stretching vibration and to the actinide L{sub III} absorption edge studies. As Prussian Blue, the An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Np, Pu) are class II of Robin and Day compounds. X-ray Diffraction has shown besides that these complexes crystallize in the P6{sub 3}/m space group, as the isomorphic LaKFe(CN){sub 6}.4H{sub 2}O complex used as structural model. The EXAFS oscillations at the iron K edge and at the An L{sub III} edge allowed to determine the An-N, An-O, Fe-C and Fe-N distances. The display of the multiple scattering paths for both edges explains the actinide contribution absence at the iron edge, whereas the iron signature is present at the actinide edge. We have shown that the actinide coordination sphere in actinides hexa-cyanoferrates is comparable to the one of lanthanides. However, the actinides typical behavior towards the lanthanides is brought to the fore by the An{sup IV} versus Ln{sup III} ions presence in this family of complexes. Contrarily to the 4f electrons, the 5f electrons influence the electronic properties of the compounds of this family. However, the gap between the An-N and Ln-N distances towards the corresponding metals ionic radii do not show any covalence bond evolution between the actinide and lanthanide series. (author)

  11. Advanced Recycling Reactor with Minor Actinide Fuel

    International Nuclear Information System (INIS)

    The Advanced Recycling Reactor (ARR) with minor actinide fuel has been studied. This paper presents the pre-conceptual design of the ARR proposed by the International Nuclear Recycling Alliance (INRA) for FOA study sponsored by DOE of the United States of America (U.S.). Although the basic reactor concept is technically mature, it is not suitable for commercial use due to the need to reduce capital costs. As a result of INRA's extensive experience, it is anticipated that a non-commercial ARR1 will be viable and meet U.S. requirements by 2025. Commercial Advanced Recycling Reactor (ARR) operations are expected to be feasible in competition with LWRs by 2050, based on construction of ARR2 in 2035. The ARR based on the Japan Sodium-cooled Fast Reactor (JSFR) is a loop-typed sodium cooled reactor with MOX fuel that is selected because of much experience of SFRs in the world. Major features of key technology enhancements incorporated into the ARR are the following: Decay heat can be removed by natural circulation to improve safety. The primary cooling system consists of two-loop system and the integrated IHX/Pump to improve economics. The steam generator with the straight double-walled tube is used to improve reliability. The reactor core of the ARR1 is 70 cm high and the volume fraction of fuel is 31.6%. The conversion ratio of fissile is set up less than 0.65 and the amount of burned TRU is 45-51 kg/TWeh. According to survey of more effective TRU burning core, the oxide fuel core containing high TRU (MA 15%, Pu 35% average) with moderate pins of 12% arranged driver fuel assemblies can decrease TRU conversion ratio to 0.33 and improve TRU burning capability to 67 kg/TWeh. The moderator can enhance TRU burning, while increasing the Doppler effect and reducing the positive sodium void effect. High TRU fraction promotes TRU burning by curbing plutonium production. High Am fraction and Am blanket promote Am transmutation. The ARR1 consists of a reactor building (including

  12. Oxidation does not (always) kill reactivity of transition metals: solution-phase conversion of nanoscale transition metal oxides to phosphides and sulfides.

    Science.gov (United States)

    Muthuswamy, Elayaraja; Brock, Stephanie L

    2010-11-17

    Unexpected reactivity on the part of oxide nanoparticles that enables their transformation into phosphides or sulfides by solution-phase reaction with trioctylphosphine (TOP) or sulfur, respectively, at temperatures of ≤370 °C is reported. Impressively, single-phase phosphide products are produced, in some cases with controlled anisotropy and narrow polydispersity. The generality of the approach is demonstrated for Ni, Fe, and Co, and while manganese oxides are not sufficiently reactive toward TOP to form phosphides, they do yield MnS upon reaction with sulfur. The reactivity can be attributed to the small size of the precursor particles, since attempts to convert bulk oxides or even particles with sizes approaching 50 nm were unsuccessful. Overall, the use of oxide nanoparticles, which are easily accessed via reaction of inexpensive salts with air, in lieu of organometallic reagents (e.g., metal carbonyls), which may or may not be transformed into metal nanoparticles, greatly simplifies the production of nanoscale phosphides and sulfides. The precursor nanoparticles can easily be produced in large quantities and stored in the solid state without concern that "oxidation" will limit their reactivity.

  13. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    Science.gov (United States)

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated.

  14. The advanced liquid metal reactor actinide recycle system

    International Nuclear Information System (INIS)

    The current U.S. National Energy Strategy includes four key goals for nuclear policy: enhance safety and design standards, reduce economic risk, reduce regulatory risk, and establish an effective high-level nuclear waste program. The U.S. Department of Energy's Advanced Liquid Metal Reactor Actinide Recycle System is consistent with these objectives. The system has the ability to fulfill multiple missions with the same basic design concept. In addition to providing an option for long-term energy security, the system can be effectively utilized for recycling of actinides in light water reactor (LWR) spent fuel, provide waste management flexibility, including the reduction in the waste quantity and storage time and utilization of the available energy potential of LWR spent fuel. The actinide recycle system is comprised of (1) a compact liquid metal (sodium) cooled reactor system with optimized passive safety characteristics, and (2) pyrometallurgical metal fuel cycle presently under development of Argonne National Laboratory. The waste reduction of LWR spent fuel is accomplished by transmutation or fissioning of the longer-lived transuranic isotopes to shorter-lived fission products in the reactor. In this presentation the economical and environmental incentive of the actinide recycle system is addressed and the status of development including licensing aspects is described. 3 refs., 1 tab., 6 figs

  15. Reversible optical sensor for the analysis of actinides in solution

    International Nuclear Information System (INIS)

    In this work is presented a concept of reversible optical sensor for actinides. It is composed of a p doped conducing polymer support and of an anion complexing the actinides. The chosen conducing polymer is the thiophene-2,5-di-alkoxy-benzene whose solubility and conductivity are perfectly known. The actinides selective ligand is a lacunar poly-oxo-metallate such as P2W17O6110- or SiW11O398- which are strong anionic complexing agents of actinides at the oxidation state (IV) even in a very acid medium. The sensor is prepared by spin coating of the composite mixture 'polymer + ligand' on a conducing glass electrode and then tested towards its optical and electrochemical answer in presence of uranium (IV). The absorption change due to the formation of cations complexes by poly-oxo-metallate reveals the presence of uranium (IV). After the measurement, the sensor is regenerated by anodic polarization of the support and oxidation of the uranium (IV) into uranium (VI) which weakly interacts with the poly-oxo-metallate and is then released in solution. (O.M.)

  16. Program and presentations of the 33th Actinide Days

    International Nuclear Information System (INIS)

    The 'Journees des Actinides' (JDA) is an annual conference which provides a forum for discussions on all aspects related to the chemical and physical properties of the actinides. At the 2003 meeting, mainly the following properties were discussed of actinides and a number of actinide compounds and complexes: crystal structure, crystal-phase transformations and transformation temperatures; electrical properties including superconductivity and superconducting transition temperatures; magnetic properties; specific heat and other thermodynamic properties; electronic structure, especially in condensed matter; chemical and physico-chemical properties. The relevant experimental techniques were also dealt with, such as neutron diffraction; X-ray diffraction, in particular using synchrotron radiation; photoemission techniques, electron microscopy and spectroscopy, etc. Altogether 96 contributions were presented, of which 42 were oral presentations and 54 poster presentations. A program of the meeting and texts of both type of presentations were published in electronic form in the PDF format. All contributions were inputted to INIS; the full text of the program and the presentations has been incorporated into the INIS collection of non-conventional literature on CD-ROM. (A.K.)

  17. Preparation of actinide targets and sources using nonaqueous electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.M.; Gursky, J.C.; Wilhelmy, J.B. (Los Alamos National Lab., NM (USA))

    1991-05-15

    Application of the method of 'molecular plating' to prepare actinide targets suitable for accelerator bombardment is presented. Two example applications involving {sup 229}Th and {sup 254}Es are discussed along with the merits and liabilities of the method. (orig.).

  18. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    International Nuclear Information System (INIS)

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide

  19. Surface energy and work function of the light actinides

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and work function of the light actinides Fr, Ra, Ac, Th, Pa, U, Np, and Pu by means of a Green's-function technique based on the linear-muffin-tin-orbitals method within the tight-binding representation. In these calculations we apply an energy functional whi...

  20. Self-interaction corrected local spin density calculations of actinides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z;

    2010-01-01

    We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration of the...

  1. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-07-28

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  2. RAPID SEPARATION OF ACTINIDES AND RADIOSTRONTIUM IN VEGETATION SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.

    2010-06-01

    A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and {sup 90}Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.

  3. Synthesis and structural characterization of actinide oxalate compounds

    International Nuclear Information System (INIS)

    Oxalic acid is a well-known reagent to recover actinides thanks to the very low solubility of An(IV) and An(III) oxalate compounds in acidic solution. Therefore, considering mixed-oxide fuel or considering minor actinides incorporation in ceramic fuel materials for transmutation, oxalic co-conversion is convenient to synthesize mixed oxalate compounds, precursors of oxide solid solutions. As the existing oxalate single crystal syntheses are not adaptable to the actinide-oxalate chemistry or to their manipulation constrains in gloves box, several original crystal growth methods were developed. They were first validate and optimized on lanthanides and uranium before the application to transuranium elements. The advanced investigations allow to better understand the syntheses and to define optimized chemical conditions to promote crystal growth. These new crystal growth methods were then applied to a large number of mixed An1(IV)-An2(III) or An1(IV)-An2(IV) systems and lead to the formation of the first original mixed An1(IV)-An2(III) and An1(IV)-An2(IV) oxalate single crystals. Finally thanks to the first thorough structural characterizations of these compounds, single crystal X-ray diffraction, EXAFS or micro-RAMAN, the particularly weak oxalate-actinide compounds structural database is enriched, which is essential for future studied nuclear fuel cycles. (author)

  4. Functionalized pyrazines as ligands for minor actinide extraction and catalysis

    NARCIS (Netherlands)

    Nikishkin, N.

    2013-01-01

    The research presented in this thesis concerns the design of ligands for a wide range of applications, from nuclear waste treatment to catalysis. The strategies employed to design actinide-selective extractants, for instance, comprise the fine tuning of the ligand electronic properties as well as us

  5. Actinides How well do we know their stellar production?

    CERN Document Server

    Goriely, S

    2001-01-01

    The reliable evaluation of the r-process production of the actinides and careful estimates of the uncertainties affecting these predictions are key ingredients especially in nucleo-cosmochronology studies based on the analysis of very metal-poor stars or on the composition of meteorites. This type of information is also required in order to make the best possible use of future high precision data on the actinide composition of galactic cosmic rays, of the local interstellar medium, or of meteoritic grains of presumed circumstellar origin. This paper provides the practitioners in these various fields with the most detailed and careful analysis of the r-process actinide production available to-date. In total, thirty-two different multi-event canonical calculations using different nuclear ingredients or astrophysics conditions are presented, and are considered to give a fair picture of the level of reliability of the predictions of the actinide production, at least in the framework of a simple r-process model. T...

  6. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Timothy M. [Los Alamos National Laboratory; Reimus, Paul W. [Los Alamos National Laboratory

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  7. Inhaled actinides: some safety issues and some research problems

    International Nuclear Information System (INIS)

    The following topics are discussed: limited research funds; risk coefficients for inhaled particles; the hot particle hypothesis; the Gofman-Martell contention; critical tissues for inhaled actinides inhalation hazards associated with future nuclear fuel cycles; and approach to be used by the inhalation panel

  8. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

    Science.gov (United States)

    Callejas, Juan F; McEnaney, Joshua M; Read, Carlos G; Crompton, J Chance; Biacchi, Adam J; Popczun, Eric J; Gordon, Thomas R; Lewis, Nathan S; Schaak, Raymond E

    2014-11-25

    Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically.

  9. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

    Science.gov (United States)

    Callejas, Juan F; McEnaney, Joshua M; Read, Carlos G; Crompton, J Chance; Biacchi, Adam J; Popczun, Eric J; Gordon, Thomas R; Lewis, Nathan S; Schaak, Raymond E

    2014-11-25

    Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically. PMID:25250976

  10. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    International Nuclear Information System (INIS)

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SFLn/Am obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as a Zr

  11. Assessment of Partitioning Processes for Transmutation of Actinides

    International Nuclear Information System (INIS)

    To obtain public acceptance of future nuclear fuel cycle technology, new and innovative concepts must overcome the present concerns with respect to both environmental compliance and proliferation of fissile materials. Both these concerns can be addressed through the multiple recycling of all transuranic elements (TRUs) in fast neutron reactor. This is only possible through a process known as partitioning and transmutation scheme (P and T) as this scheme is expected to reduce the long term radio-toxicity as well as the radiogenic heat production of the nuclear waste. Proliferation resistance of separated plutonium could further be enhanced by mixing with self-generated minor actinides. In addition, P and T scheme is expected to extend the nuclear fuel resources on earth about 100 times because of the recycle and reuse of fissile actinides. Several Member States are actively pursuing the research in the field of P and T and consequently several IAEA publications have addressed this topic. The present coordinated research project (CRP) focuses on the potentials in minimizing the residual TRU inventories of the discharged nuclear waste and in enhancing the proliferation resistance of the future civil nuclear fuel cycle. Partitioning approaches can be grouped into aqueous- (hydrometallurgical) and pyroprocesses. Several aqueous processes based on sequential separation of actinides from spent nuclear fuel have been developed and tested at pilot plant scale. In view of the proliferation resistance of the intermediate and final products of a P and T scheme, a group separation of all actinides together is preferable. The present CRP has gathered experts from different organisations and institutes actively involved in developing P and T scheme as mentioned in the list of contributors and also taken into consideration the studies underway in France and the UK. The scientific objectives of the CRP are: To minimize the environmental impact of actinides in the waste stream; To

  12. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Sypula, Michal

    2013-07-01

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SF{sub Ln/Am} obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as

  13. Synthesis of Vanadium Nitride by a One Step Method

    Institute of Scientific and Technical Information of China (English)

    Sansan YU; Nianxin FU; Feng GAO; Zhitong SUI

    2007-01-01

    Vanadium nitrides were prepared via one step method of carbothermal reduction and nitridation of vanadium trioxide. Thermalgravimetric analysis (TGA) and X-ray diffraction were used to determine the reaction paths of vanadium carbide, namely the following sequential reaction: V2O3→V8C7 in higher temperature stage, the rule of vanadium nitride synthesized was established, and defined conditions of temperature for the production of the carbides and nitrides were determined. Vanadium oxycarbide may consist in the front process of carbothermal reduction of vanadium trioxide. In one step method for vanadium nitride by carbothermal reduction and nitridation of vanadium trioxide, the nitridation process is simultaneous with the carbothermal reduction. A one-step mechanism of the carbothermal reduction with simultaneous nitridation leaded to a lower terminal temperature in nitridation process for vanadium nitride produced, compared with that of carbothermal reduction process without nitridation. The grain size and shape of vanadium nitride were uniform, and had the shape of a cube. The one step method combined vacuum carborization and nitridation (namely two step method) into one process. It simplified the technological process and decreased the costs.

  14. Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride

    International Nuclear Information System (INIS)

    The authors report the growth of iron nitride on zinc-blende gallium nitride using molecular beam epitaxy. First, zinc-blende GaN is grown on a magnesium oxide substrate having (001) orientation; second, an ultrathin layer of FeN is grown on top of the GaN layer. In situ reflection high-energy electron diffraction is used to monitor the surface during growth, and a well-defined epitaxial relationship is observed. Cross-sectional transmission electron microscopy is used to reveal the epitaxial continuity at the gallium nitride-iron nitride interface. Surface morphology of the iron nitride, similar to yet different from that of the GaN substrate, can be described as plateau valley. The FeN chemical stoichiometry is probed using both bulk and surface sensitive methods, and the magnetic properties of the sample are revealed.

  15. Actinide Speciation and Solubility in a Salt Repository (Invited)

    Science.gov (United States)

    Reed, D.; Borkowski, M.; Richmann, M.; Lucchini, J.; Khaing, H.; Swanson, J.

    2009-12-01

    The use of bedded salt deposits for the permanent disposal of nuclear waste continues to receive much attention in the United States and internationally. This is largely based on the highly successful Waste Isolation Pilot Plant (WIPP) transuranic waste repository that was opened in 1999 in Southeastern New Mexico. A bedded salt formation, such as the one in which the WIPP is located, has many advantages that make it an ideal geology for permanent disposal of nuclear waste. This includes well established mining techniques, self-sealing that lead to a naturally-induced geologic isolation, a relatively dry environment, and a favorable chemistry. Herein we report on recent progress in our investigations, as part of ongoing recertification effort for the operating WIPP repository, to establish the redox distribution and overall solubility of actinides in brine. The overall ranking of actinides, from the perspective of potential contribution to release from the WIPP, is: Pu ~ Am >>U > Th >> Np, Cm. Our recent research emphasis has centered on the redox chemistry of multivalent actinides (e.g., U, Pu and Np) with the use of oxidation-state-invariant analogs (Th and Nd) to establish the solubilities. Under a wide range of conditions investigated, the predominant oxidation states established are Pu(III) and Pu(IV) for plutonium, U(IV) and U(VI) for uranium, and Am (III) for americium. Reduction pathways for plutonium include reaction with organics, reaction with reduced iron, and bioreduction by halophiles under anaerobic conditions. Uranium(VI) can also be reduced to U(IV) by reduced iron and microbial processes. Solubility data for neodymium (+3 analog), Uranium (+6 analog) and thorium (+4 analog) in brine are also reported. These data extend our past understanding of WIPP-specific actinide chemistry and show the WIPP, and salt-based repositories in general, to be a robust repository design from the perspective of actinide containment and immobilization.

  16. Sequestering agents for the removal of actinides from waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R. [Univ. of California, Berkeley, CA (United States)

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  17. Actinide partitioning-transmutation program final report. I. Overall assessment

    International Nuclear Information System (INIS)

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of 99Tc and 129I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted

  18. Speciation of actinides by the mean of synchrotron radiation; Speciation des actinides au moyen du rayonnement synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Simoni, E. [Institut de Physique Nucleaire, (IN2P3/CNRS) 91 - Orsay (France); Den Auwer, Ch. [CEA Marcoule, Dept. Radiochimie et Procedes (DRCP/SCPS), 30 (France)

    2005-09-01

    After having recalled the principle of the X absorption spectroscopy, the authors give examples illustrating the analytical possibilities of this technique and the different application fields concerning the actinides physico-chemistry (coordination chemistry, interface, solid state, solution). (O.M.)

  19. Nitriding and Nitrocarburizing; Current Status and Future Challenges

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.

    This contribution addresses the current understanding of gaseous nitriding and nitrocarburizing. Aspects of thermodynamics, kinetics and microstructure development in iron and heat treatable steel will be explained. In these materials the nitrided/ nitrocarburized case can be subdivided...

  20. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  1. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.;

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  2. Internal contamination by actinides after wounding: a robust rodent model for assessment of local and distant actinide retention.

    Science.gov (United States)

    Griffiths, N M; Wilk, J C; Abram, M C; Renault, D; Chau, Q; Helfer, N; Guichet, C; Van der Meeren, A

    2012-08-01

    Internal contamination by actinides following wounding may occur in nuclear fuel industry workers or subsequent to terrorist activities, causing dissemination of radioactive elements. Contamination by alpha particle emitting actinides can result in pathological effects, either local or distant from the site of entry. The objective of the present study was to develop a robust experimental approach in the rat for short- and long- term actinide contamination following wounding by incision of the skin and muscles of the hind limb. Anesthetized rats were contaminated with Mixed OXide (MOX, uranium, plutonium oxides containing 7.1% plutonium) or plutonium nitrate (Pu nitrate) following wounding by deep incision of the hind leg. Actinide excretion and tissue levels were measured as well as histological changes from 2 h to 3 mo. Humid swabs were used for rapid evaluation of contamination levels and proved to be an initial guide for contamination levels. Although the activity transferred from wound to blood is higher after contamination with a moderately soluble form of plutonium (nitrate), at 7 d most of the MOX (98%) or Pu nitrate (87%) was retained at the wound site. Rapid actinide retention in liver and bone was observed within 24 h, which increased up to 3 mo. After MOX contamination, a more rapid initial urinary excretion of americium was observed compared with plutonium. At 3 mo, around 95% of activity remained at the wound site, and excretion of Pu and Am was extremely low. This experimental approach could be applied to other situations involving contamination following wounding including rupture of the dermal, vascular, and muscle barriers.

  3. Advancing liquid metal reactor technology with nitride fuels

    International Nuclear Information System (INIS)

    A review of the use of nitride fuels in liquid metal fast reactors is presented. Past studies indicate that both uranium nitride and uranium/plutonium nitride possess characteristics that may offer enhanced performance, particularly in the area of passive safety. To further quantify these effects, the analysis of a mixed-nitride fuel system utilizing the geometry and power level of the US Advanced Liquid Metal Reactor as a reference is described. 18 refs., 2 figs., 2 tabs

  4. Diffusion kinetics of nitrogen in tantalum during plasma-nitriding

    Institute of Scientific and Technical Information of China (English)

    张德元; 林勤; 曾卫军; 李放; 许兰萍; 付青峰

    2001-01-01

    The activation energies of nitrogen in tantalum on plasma nitriding conditions were calculated according to the experimental data of hardness of plasma-nitriding of tantalum vs time and temperature. The activation energy calculated is 148.873±0.390  kJ/mol. The depth increasing of nitriding layer with time follows square root relation. The nitriding process of tantalum is controlled by diffusion of nitrogen atoms in tantalum solid solution.

  5. Actinides: How well do we know their stellar production?

    Science.gov (United States)

    Goriely, S.; Arnould, M.

    2001-12-01

    The reliable evaluation of the r-process production of the actinides and careful estimates of the uncertainties affecting these predictions are key ingredients especially in nucleo-cosmochronology studies based on the analysis of very metal-poor stars or on the composition of meteorites. This type of information is also required in order to make the best possible use of future high precision data on the actinide composition of galactic cosmic rays, of the local interstellar medium, or of meteoritic grains of presumed circumstellar origin. This paper provides the practitioners in these various fields with the most detailed and careful analysis of the r-process actinide production available to-date. This study is based on a version of the multi-event canonical model of the r-process which discards the largely used waiting point approximation. It considers also different combinations of models for the calculation of nuclear masses, beta -decay and fission rates. Two variants of the model used to predict nuclear reaction rates are adopted. In addition, the influence of the level of Pb and Bi production by the r-process on the estimated actinide production is evaluated by relying on the solar abundances of these two elements. In total, thirty-two different cases are presented, and are considered to give a fair picture of the level of reliability of the predictions of the actinide production, at least in the framework of a simple r-process model. This simplicity is imposed by our inability to identify the proper astrophysical sites for the r-process. As a guide to the practitioners, constraints on the actinide yield predictions and associated uncertainties are suggested on grounds of the measured abundances of r-nuclides, including Th and U, in the star CS 31082-001, and under the critical and questionable assumption of the ``universality'' of the r-process. We also define alternative constraints based on the nucleo-cosmochronological results derived from the present

  6. Mössbauer Spectroscopy Investigation and Hydrodesulfurization Properties of Iron–nickel Phosphide Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaudette, Amy F.; Burns, Autumn W.; Hayes, John R.; Smith, Mica C.; Bowker, Richard H.; Seda, Takele; Bussell, Mark E.

    2010-05-25

    Unsupported and silica-supported FexNi2-xPy catalysts having a range of metal compositions (0 < x 6 2.0) were investigated using Mössbauer spectroscopy, and the results correlated with the surface and hydrodesulfurization (HDS) properties of the supported catalysts. Mössbauer spectroscopy permits determination of the relative site occupancy of Fe atoms in tetrahedral (M(1)) and pyramidal (M(2)) sites in the FexNi2-xPy materials. Fe atoms preferentially occupy M(2) sites for materials with significant Fe contents (x > ~0.60), but the Fe site preference reverses as the Fe content decreases (x < ~0.60). Similar occupation trends are observed for the unsupported and silica-supported FexNi2-xPy materials. Thiophene HDS measurements of the FexNi2-xPy/SiO2 catalysts revealed catalysts with high Fe contents (0.80 6 x 6 2.00) to have low activities, while the activities of Ni-rich catalysts increased dramatically with increased Ni content (0.03 6 x 6 0.60). The highest HDS activity was measured for a catalyst having a nominal precursor composition of Fe0.03Ni1.97P2.00/SiO2; this catalyst was 40% more active than a optimized nickel phosphide catalyst prepared from a precursor having a nominal composition of Ni2.00P1.60/SiO2. The 25 wt.% Fe0.03Ni1.97P2.00/SiO2 catalyst also had a dibenzothiophene HDS activity just over 10% higher than that of the 25 wt.% Ni2.00P1.60/SiO2 catalyst at 548 K. The trend of increasing HDS activity for the FexNi2-xPy/ SiO2 catalysts correlates with preferential Fe occupation of M(1) sites (and, therefore, Ni occupation of M(2) sites). Supported by X-ray photoelectron spectroscopy and oxygen chemisorption measurements, we conclude that the high activity of Ni-rich FexNi2-xPy/SiO2 catalysts can be traced to a high surface density of Ni in M(2) sites that are resistant to site blockage due to S incorporation.

  7. Aluminum phosphide poisoning known as rice tablet: A common toxicity in North Iran

    Directory of Open Access Journals (Sweden)

    A Hosseinian

    2011-01-01

    Full Text Available Background: Aluminum phosphide (ALP is a highly effective insecticide and rodenticide used frequently to protect stored grain. Acute poisoning with this compound is common in some countries including India and Iran, and is a serious health problem. Aim: The objective of this study was to survey ALP poisoning locally known as "Rice Tablet" and the outcome in a referral poisoning hospital in Mazandaran province, northern part of Iran. Materials and Methods: The study was a cross-sectional study from March 2007 to February 2008. Records of all patients admitted and hospitalized to a referral teaching hospital during the 2 year period were collected. Information including gender, age, cause of toxicity, amount of AIP consumed, route of exposure, time between exposure and hospital admission, signs and symptoms of toxicity at admission, therapeutic intervention, laboratory tests, and outcome were extracted from the patients′ notes. Patients who died and survived were compared using appropriate statistical tests. Results: During the two-year period, 102 patients, 46 men and 56 women with mean (±SD age 28.5 ± 12.4 year were admitted with ALP poisoning. The most common signs and symptoms at admission were nausea (79.4%, vomiting (76.5%, and abdominal pain (31.4%. 41.1% of the patients showed metabolic acidosis. Suicidal intention was the most common cause of poisoning (97% leading to 19 (18.6% deaths. Compared with the patients who survived, those who died had taken higher amount of ALP tablet (2.2 ± 2.4 vs. 1.4 ± 1.0, P < 0.05, had poor liver function test (P < 0.0001 and severe metabolic acidosis (pH: 7.17 ± 0.19 vs. 7.33 ± 0.08, P < 0.0001. Conclusion: ALP poisoning is a common toxicity in Iran causing high morality. This is a serious health problem in agricultural region where ALP is readily available. Withdrawal of ALP tablet from the market and introduction of safer products as rodenticides and insecticides is recommended.

  8. Studies on Dielectric Properties of Silicon Nitride at High Temperature

    Institute of Scientific and Technical Information of China (English)

    Ting Zhang; Shu-Ren Zhang; Meng-Qiang Wu; Wei-Jun Sang; Zheng-Ping Gao; Zhong-Ping Li

    2007-01-01

    In this paper, the dielectric properties of silicon nitride are studied using the dielectric polarization theories. According to the developed dielectric models, the temperature dependence of dielectric constant and loss of silicon nitride is mainly analyzed. In addition, the impact of Li+, K+, Ca2+, Al3+ and Mg2+ doping on the dielectric properties of silicon nitride are also estimated.

  9. Ion nitriding in 316=L stainless steel

    International Nuclear Information System (INIS)

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate CN/CFe near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  10. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  11. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  12. Solubility of actinides and surrogates in nuclear glasses; Solubilite des actinides et de leurs simulants dans les verres nucleaires. Limites d'incorporation et comprehension des mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Ch

    2003-07-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO{sub 2} at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  13. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    Science.gov (United States)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  14. Actinides and fission products partitioning from high level liquid waste

    International Nuclear Information System (INIS)

    The presence of small amount of mixed actinides and long-lived heat generators fission products as 137Cs and 90Sr are the major problems for safety handling and disposal of high level nuclear wastes. In this work, actinides and fission products partitioning process, as an alternative process for waste treatment is proposed. First of all, ammonium phosphotungstate (PWA), a selective inorganic exchanger for cesium separation was chosen and a new procedure for synthesizing PWA into the organic resin was developed. An strong anionic resin loaded with tungstate or phosphotungstate anion enables the precipitation of PWA directly in the resinous structure by adding the ammonium nitrate in acid medium (R-PWA). Parameters as W/P ratio, pH, reactants, temperature and aging were studied. The R-PWA obtained by using phosphotungstate solution prepared with W/P=9.6, 9 hours digestion time at 94-106 deg C and 4 to 5 months aging time showed the best capacity for cesium retention. On the other hand, Sr separation was performed by technique of extraction chromatography, using DH18C6 impregnated on XAD7 resin as stationary phase. Sr is selectively extracted from acid solution and >99% was recovered from loaded column using distilled water as eluent. Concerning to actinides separations, two extraction chromatographic columns were used. In the first one, TBP(XAD7) column, U and Pu were extracted and its separations were carried-out using HNO3 and hydroxylamine nitrate + HNO3 as eluent. In the second one, CMP0-TBP(XAD7) column, the actinides were retained on the column and the separations were done by using (NH4)2C2O4 , DTPA, HNO3 and HCl as eluent. The behavior of some fission products were also verified in both columns. Based on the obtained data, actinides and fission products Cs and Sr partitioning process, using TBP(XAD7) and CMP0-TBP(XAD7) columns for actinides separation, R-PWA column for cesium retention and DH18C6(XAD7) column for Sr isolation was performed. (author)

  15. Actinide coordination chemistry: towards the limits of the periodic table; Chimie de coordination des actinides: vers les frontieres du tableau periodique

    Energy Technology Data Exchange (ETDEWEB)

    Den Auwer, C.; Moisy, P. [CEA Marcoule (DEN/DRCP/SCPS), 30 (France); Simoni, E. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    2009-05-15

    Actinide elements represent a distinct chemical family at the bottom of the periodic table. Among the major characteristics of this 14 element family is their high atomic numbers and their radioactivity. Actinide chemistry finds its roots in the history of the 20. century and plays a very important role in our contemporary world. Energetic as well as technical challenges are facing the development of nuclear energy. In this pedagogical introduction to actinide chemistry, the authors draw a comparison between the actinides family and the chemistry of two other families, lanthanides and transition metals. This article focuses on molecular and aqueous chemistry. It has been based on class notes aiming to present an overview of the chemical diversity of actinides, and its future challenges for modern science. (authors)

  16. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain;

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...... results on bonding of thin and thick Si3N4 layers. The new results include high temperature bonding without any pretreatment, along with improved bonding ability achieved by thermal oxidation and chemical pretreatment. The bonded wafers include both unprocessed and processed wafers with a total silicon...... nitride thickness of up to 440 nm. Measurements of bonding strength, void characterization, oxidation rate and surface roughness are also presented. Bonding strengths for stoichiometric low pressure chemical vapor deposition Si3N4–Si3N4 direct fusion bonding in excess of 2 J cm−2 are found...

  17. Nitride Fuel Development at the INL

    Energy Technology Data Exchange (ETDEWEB)

    W.E. Windes

    2007-06-01

    A new method for fabricating nitride-based fuels for nuclear applications is under development at the Idaho National Laboratory (INL). A primary objective of this research is the development of a process that could be operated as an automated or semi-automated technique reducing costs, worker doses, and eventually improving the final product form. To achieve these goals the fabrication process utilizes a new cryo-forming technique to produce microspheres formed from sub-micron oxide powder to improve material handling issues, yield rapid kinetics for conversion to nitrides, and reduced material impurity levels within the nitride compounds. The microspheres are converted to a nitride form within a high temperature particle fluidizing bed using a carbothermic process that utilizes a hydrocarbon – hydrogen - nitrogen gas mixture. A new monitor and control system using differential pressure changes in the fluidizing gas allows for real-time monitoring and control of the spouted bed reactor during conversion. This monitor and control system can provide real-time data that is used to control the gas flow rates, temperatures, and gas composition to optimize the fluidization of the particle bed. The small size (0.5 µm) of the oxide powders in the microspheres dramatically increases the kinetics of the conversion process yielding reduced process times and temperatures. Initial studies using surrogate ZrO2 powder have yielded conversion efficiencies of 90 -95 % nitride formation with only small levels of oxide and carbide contaminants present. Further studies are being conducted to determine optimal gas mixture ratios, process time, and temperature range for providing complete conversion to a nitride form.

  18. Nitride Fuel Development at the INL

    International Nuclear Information System (INIS)

    A new method for fabricating nitride-based fuels for nuclear applications is under development at the Idaho National Laboratory (INL). A primary objective of this research is the development of a process that could be operated as an automated or semi-automated technique reducing costs, worker doses, and eventually improving the final product form. To achieve these goals the fabrication process utilizes a new cryo-forming technique to produce microspheres formed from sub-micron oxide powder to improve material handling issues, yield rapid kinetics for conversion to nitrides, and reduced material impurity levels within the nitride compounds. The microspheres are converted to a nitride form within a high temperature particle fluidizing bed using a carbothermic process that utilizes a hydrocarbon-hydrogen-nitrogen gas mixture. A new monitor and control system using differential pressure changes in the fluidizing gas allows for real-time monitoring and control of the spouted bed reactor during conversion. This monitor and control system can provide real-time data that is used to control the gas flow rates, temperatures, and gas composition to optimize the fluidization of the particle bed. The small size (0.5 (micro)m) of the oxide powders in the microspheres dramatically increases the kinetics of the conversion process yielding reduced process times and temperatures. Initial studies using surrogate ZrO2 powder have yielded conversion efficiencies of 90-95% nitride formation with only small levels of oxide and carbide contaminants present. Further studies are being conducted to determine optimal gas mixture ratios, process time, and temperature range for providing complete conversion to a nitride form

  19. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  20. Review of Integral Experiments for Minor Actinide Management

    International Nuclear Information System (INIS)

    Spent nuclear fuel contains minor actinides (MAs) such as neptunium, americium and curium, which require careful management. This becomes even more important when mixed oxide (MOX) fuel is being used on a large scale since more MAs will accumulate in the spent fuel. One way to manage these MAs is to transmute them in nuclear reactors, including in light water reactors, fast reactors or accelerator-driven subcritical systems. The transmutation of MAs, however, is not straightforward, as the loading of MAs generally affects physics parameters, such as coolant void, Doppler and burn-up reactivity. This report focuses on nuclear data requirements for minor actinide management, the review of existing integral data and the determination of required experimental work, the identification of bottlenecks and possible solutions, and the recommendation of an action programme for international co-operation. (authors)

  1. Accuracy Improvement of Neutron Nuclear Data on Minor Actinides

    Directory of Open Access Journals (Sweden)

    Harada Hideo

    2015-01-01

    Full Text Available Improvement of accuracy of neutron nuclear data for minor actinides (MAs and long-lived fission products (LLFPs is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as “Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC” has been started as one of the “Innovative Nuclear Research and Development Program” in Japan at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background and research plan of the AIMAC project are presented.

  2. Preparation of isotopes and sources of actinide elements

    International Nuclear Information System (INIS)

    As the C.E.A. possesses no isotopic separation facility, the productions of isotopes of actinide elements are performed: a) by neutron irradiation and chemical treatment of special targets, b) by milking decay products from stocks of aged actinide elements, c) by chemical treatment of alpha active wastes. These productions concern the following isotopes: 233U, 238Pu, 242Pu, 243Cm, 242Cm, 244Cm (a); 228Th, 229Th, 234U, 237U, 239Np, 240Pu, 241Am, 248Cm (b); 237Np, 241Am (c). These isotopes are produced to satisfy French and international needs and are sent to users in various forms: solutions, metals, oxides, fluorides, or in different sources forms. The preparation of the sources represents an important field of activities divided into two parts: 1/Industrial sources: production of large series of different sources, 2/ Scientific sources: production of sources suitable for a specific scientific problem. A large overview of these activities is given

  3. Superabsorbing gel for actinide, lanthanide, and fission product decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael D.; Mertz, Carol J.

    2016-06-07

    The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M) carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.

  4. Lanthanide and actinide complexation studies with tetradentate 'N' donor ligands

    International Nuclear Information System (INIS)

    Because of their similar charge and chemical behaviour separation of trivalent actinides and lanthanides is an important and challenging task in nuclear fuel cycle. Soft (S,N) donor ligands show selectivity towards the trivalent actinides over the lanthanides. Out of various 'N' donor ligands studied, bis(1,2,4)triazinyl bipyridine (BTBP) and bis(1,2,4)triazinyl phenanthroline (BTPhen) were found to be most promising. In order to understand the separation behaviour of these ligands, their complexation studies with these 'f' block elements are essential. In the present work, complexation studies of various lanthanide ions (La3+, Eu3+ and Er3+) was studied with ethyl derivatives of BTBP (C2BTBP) and BTBPhen (C2BTPhen) and pentyl derivative of BTBP (C5BTBP) in acetonitrile medium using UV-Vis spectrophotometry, fluorescence spectroscopy and solution calorimetry. Computational studies were also carried out to understand the experimental results

  5. The effects of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    This report assesses the possible effects of colloidal corrosion products on the transport of actinides from the near field of radioactive waste repositories. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium was studied under conditions simulating a transition from near-field to far-field environmental conditions. Desorption of actinides occurred slowly from the colloids under far-field conditions. Measurements of particle stability showed all the colloids to be unstable in the near field. Stability increased under far-field conditions or as a result of the evolution of the near field. Migration of colloids from the near field is unlikely except in the presence of organic materials. (Author)

  6. Evaluation of prompt neutron spectra for minor actinide nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1997-03-01

    Measurement data on fission prompt neutron spectra of minor actinide (MA) is much little, and its accuracy is also unsufficient. Therefore, conventional evaluation value of fission spectra of MA was assumed for its nuclear temperature by using a method of determining from its systemicity owing to assumption of the Maxwell type distribution, but it can be said that this method consider fully to features of MA isotopes. In this paper, some evaluation calculation results are shown by adopting an evaluation method developed by authors and based on modified Madland Nix model and are conducted by concept of physical properties on target nuclei. As a result, by adopting the level density parameter of fission fragments, the inverse process cross section, the fission product yield distribution and the total release energy, effect of inverse process cross section, mass distribution of fission product, calculation results of Cm isotope and systemicity of fission spectra of actinide isotope were investigated. (G.K.)

  7. X-Ray Absorption Spectroscopy of the Actinides

    Science.gov (United States)

    Antonio, Mark R.; Soderholm, Lynda

    The recent availability of synchrotron radiation has revolutionized actinide chemistry. This is particularly true in environmental studies, where heterogeneous samples add to the already multifaceted chemistry exhibited by these ions. Environmental samples are often inhomogeneous, chemically diverse, and amorphous or poorly crystalline. Even surrogates prepared in the laboratory to simplify the natural complexity are plagued by multiple oxidation state and varied coordination polyhedra that are a reflection of inherent 5f chemistry. For example, plutonium can be found as Pu3+ Pu4+ Pu(V)O2 +, and Pu(VI)O2 2 + within naturally occurring pH-Eh conditions, consequently complex equilibria are found between these oxidation states in one solution. In addition, dissolved actinides have significant affinities for various mineral surfaces, to which they can adsorb with or without concomitant reduction-oxidation (redox) activity, depending on details of the solution and surface conditions.

  8. Status of measurements of fission neutron spectra of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Drapchinsky, L.; Shiryaev, B. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    The report considers experimental and theoretical works on studying the energy spectra of prompt neutrons emitted in spontaneous fission and neutron induced fission of Minor Actinides. It is noted that neutron spectra investigations were done for only a small number of such nuclei, most measurements, except those of Cf-252, having been carried out long ago by obsolete methods and imperfectapparatus. The works have no detailed description of experiments, analysis of errors, detailed numerical information about results of experiments. A conclusion is made that the available data do not come up to modern requirements. It is necessary to make new measurements of fission prompt neutron spectra of transuranium nuclides important for the objectives of working out a conception of minor actinides transmutation by means of special reactors. (author)

  9. Actinide-specific sequestering agents and decontamination applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, William L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Raymond, Kenneth N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1981-04-07

    With the commercial development of nuclear reactors, the actinides have become very important industrial elements. A major concern of the nuclear industry is the biological hazard associated with nuclear fuels and their wastes. The acute chemical toxicity of tetravalent actinides, as exemplified by Th(IV), is similar to Cr(III) or Al(III). However, the acute toxicity of 239Pu(IV) is similar to strychnine, which is much more toxic than any of the non-radioactive metals such as mercury. Although the more radioactive isotopes of the transuranium elements are more acutely toxic by weight than plutonium, the acute toxicities of 239Pu, 241Am, and 244Cm are nearly identical in radiation dose, ~100 μCi/kg in rodents. Finally and thus, the extreme acute toxicity of 239Pu is attributed to its high specific activity of alpha emission.

  10. Precipitate-Accommodated Plasma Nitriding for Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Patama Visittipitukul; Tatsuhiko Aizawa; Hideyuki Kuwahara

    2004-01-01

    Reliable surface treatment has been explored to improve the strength and wear resistance of aluminum alloy parts in automotives. Long duration time as well as long pre-sputtering time are required for plasma nitriding of aluminum or its alloys only with the thickness of a few micrometers. New plasma inner nitriding is proposed to realize the fast-rate nitriding of aluminum alloys. Al-6Cu alloy is employed as a targeting material in order to demonstrate the effectiveness of this plasma nitriding. Mechanism of fast-rate nitriding process is discussed with consideration of the role of Al2Cu precipitates.

  11. Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

    2010-02-24

    A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

  12. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.;

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  13. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  14. Molecular Characterization of Actinide Oxocations from Protactinium to Plutonium

    International Nuclear Information System (INIS)

    This presentation addresses the structural characterization by EXAFS of actinide cations at oxidation states (V) and (VI) as one walks across the periodic table from Z = 91 (protactinium) to Z = 94 (plutonium). A structural comparison between Pa, U, Np and Pu oxocations in aqueous solution at formal oxidation states (V) and (VI) is carried out. These results are corroborated by quantum chemical and molecular dynamics calculations

  15. Validation of minor actinides fission neutron cross-sections

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2015-01-01

    Full Text Available Verification of neutron fission cross-sections of minor actinides from some recently available evaluated nuclear data libraries was carried out by comparison of the reaction rates calculated by the MCNP6.1 computer code to the experimental values. The experimental samples, containing thin layers of 235U, 237Np, 238,239,240,241Pu, 242mAm, 243Cm, 245Cm, and 247Cm, deposited on metal support and foils of 235U (pseudo-alloy 27Al + 235U, 238U, natIn, 64Zn, 27Al, and multi-component sample alloy 27Al + 55Mn + natCu + natLu + 197Au, were irradiated in the channels of the tank containing fluorine salts 0.52NaF + 0.48ZrF4, labelled as the Micromodel Salt Blanket, inserted in the lattice centre of the MAKET heavy water critical assembly at the Institute for Theoretical and Experimental Physics, Moscow. This paper is a continuation of earlier initiated scientific-research activities carried out for validation of the evaluated fission cross-sections of actinides that were supposed to be used for the quality examination of the fuel design of the accelerator driven systems or fast reactors, and consequently, determination of transmutation rates of actinides, and therefore, determination of operation parameters of these reactor facilities. These scientific-research activities were carried out within a frame of scientific projects supported by the International Science and Technology Center and the International Atomic Energy Agency co-ordinated research activities, from 1999 to 2010. Obtained results confirm that further research is needed in evaluations in order to establish better neutron cross-section data for the minor actinides and selected nuclides which could be used in the accelerator driven systems or fast reactors.

  16. EXAFS studies of actinide ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Karim, D P; Georgopoulos, P; Knapp, G S

    1979-01-01

    The applicability of the EXAFS technique in the study of actinide systems is discussed. Uranium L/sub III/-edge spectra obtained on an in-lab rotating anode EXAFS facility are presented and analyzed for crystalline UO/sub 2/F/sub 2/ and aqueous solutions containing hexavalent uranium ions. Methods for the extension of the technique to more dilute systems are discussed.

  17. Chemical and Ceramic Methods Toward Safe Storage of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    P.E.D. Morgan; R.M. Housley; J.B. Davis; M.L. DeHaan

    2005-08-19

    A very import, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. THe use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements )e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations.

  18. Chemical properties of the heavier actinides and transactinides

    International Nuclear Information System (INIS)

    The chemical properties of each of the elements 99 (Es) through 105 are reviewed and their properties correlated with the electronic structure expected for 5f and 6d elements. A major feature of the heavier actinides, which differentiates them from the comparable lanthanides, is the increasing stability of the divalent oxidation state with increasing atomic number. The divalent oxidation state first becomes observable in the anhydrous halides of californium and increases in stability through the series to nobelium, where this valency becomes predominant in aqueous solution. In comparison with the analogous 4f electrons, the 5f electrons in the latter part of the series are more tightly bound. Thus, there is a lowering of the 5f energy levels with respect to the Fermi level as the atomic number increases. The metallic state of the heavier actinides has not been investigated except from the viewpoint of the relative volatility among members of the series. In aqueous solutions, ions of these elements behave as a normal trivalent actinides and lanthanides (except for nobelium). Their ionic radii decrease with increasing nuclear charge which is moderated because of increased screening of the outer 6p electrons by the 5f electrons. The actinide series of elements is completed with the element lawrencium (Lr) in which the electronic configuration is 5f147s27p. From Mendeleev's periodicity and Dirac-Fock calculations, the next group of elements is expected to be a d-transition series corresponding to the elements Hf through Hg. The chemical properties of elements 104 and 105 only have been studied and they indeed appear to show the properties expected of eka-Hf and eka-Ta. However, their nuclear lifetimes are so short and so few atoms can be produced that a rich variety of chemical information is probably unobtainable

  19. Prediction of thermodynamic properties of actinide and lanthanide compounds

    Institute of Scientific and Technical Information of China (English)

    LU Chunhai; NI Shijun; SUN Ying; CHEN Wenkai; ZHANG Chengjiang

    2008-01-01

    Several relationship models for thermodynamic functions of actinide and lanthanide compounds are built. The descriptors such as the difference of atomic radii between metal atoms and nonmetal atoms and the molecular mass are used in quantitative structure-activity/property relationships. The relative errors for entropy and heat capacity are less than 20% in the majority of gaseous compounds. Similar results are obtained from solid compounds.

  20. Covariance evaluation for actinide nuclear data in JENDL-4

    International Nuclear Information System (INIS)

    Full text: The JENDL-4.0 was released in March 2010. It provides neutron nuclear data for 79 actinides from Ac to Fm. All of the actinides include covariance data. The covariance data were evaluated for reaction cross sections, resonance parameters, angular distributions of elastic scattering, average number of neutrons per fission, and prompt fission neutron spectra. They were deduced basically based on the consistent methodologies with the nuclear data evaluations. Statistical processing of experimental data sometimes gives unacceptably small uncertainty compared with experimental data. They may arise from ignoring unknown errors and correlation of experimental data and also from the modeling errors. The covariance data obtained from statistical estimation using the least-squares method were sometimes modified to be reasonable taking account of consistency with dispersion of experimental data, which may reflect the uncertainties of the data. For the fast neutron fission cross sections of 6 major actinides of 233,235,238U and 239,240,241Pu were evaluated simultaneously using both cross section and their ratio data with the least- squares fitting code SOK. It gave the covariance matrices that have cross correlations between different nuclei included in the analyses. For the minor actinide, the least-squares fitting code GMA was used for fission cross section evaluation for fast neutrons. The covariance data were obtained from the calculations at the same time. For other reaction cross sections, covariance matrices were evaluated using CCONE-KALMAN code system. Sensitivities to model parameters were calculated by CCONE code and used to estimate covariance matrices of the parameters with KALMAN code. Covariance matrices for other data such as resonance parameters and average numbers of fission neutrons were also evaluated based on experimental data. The evaluated covariance data were compiled to the ENDF-6 format files and included in JENDL-4.

  1. Analytical applications of superacid dissolution of actinide and lanthanide substrates

    International Nuclear Information System (INIS)

    The superacid system HF/SbF5 is extraordinarily effective for total dissolution of actinide and lanthanide ceramic oxides, fluorides, and metals. Optical or gamma spectroscopy can be used directly on the solutions. Evaporation of the HF/SbF5 solvent under vacuum leaves a residue which is easily dissolved by ordinary mineral acids. The resulting aqueous solutions are readily amenable to conventional analytical methods. (author) 14 refs.; 1 tab

  2. Chemical and Ceramic Methods Toward Safe Storage of Actinides

    International Nuclear Information System (INIS)

    A very important, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. The use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements (e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations

  3. Chemical properties of the heavier actinides and transactinides

    Energy Technology Data Exchange (ETDEWEB)

    Hulet, E.K.

    1981-01-01

    The chemical properties of each of the elements 99 (Es) through 105 are reviewed and their properties correlated with the electronic structure expected for 5f and 6d elements. A major feature of the heavier actinides, which differentiates them from the comparable lanthanides, is the increasing stability of the divalent oxidation state with increasing atomic number. The divalent oxidation state first becomes observable in the anhydrous halides of californium and increases in stability through the series to nobelium, where this valency becomes predominant in aqueous solution. In comparison with the analogous 4f electrons, the 5f electrons in the latter part of the series are more tightly bound. Thus, there is a lowering of the 5f energy levels with respect to the Fermi level as the atomic number increases. The metallic state of the heavier actinides has not been investigated except from the viewpoint of the relative volatility among members of the series. In aqueous solutions, ions of these elements behave as a normal trivalent actinides and lanthanides (except for nobelium). Their ionic radii decrease with increasing nuclear charge which is moderated because of increased screening of the outer 6p electrons by the 5f electrons. The actinide series of elements is completed with the element lawrencium (Lr) in which the electronic configuration is 5f/sup 14/7s/sup 2/7p. From Mendeleev's periodicity and Dirac-Fock calculations, the next group of elements is expected to be a d-transition series corresponding to the elements Hf through Hg. The chemical properties of elements 104 and 105 only have been studied and they indeed appear to show the properties expected of eka-Hf and eka-Ta. However, their nuclear lifetimes are so short and so few atoms can be produced that a rich variety of chemical information is probably unobtainable.

  4. Impact of actinide recycle on nuclear fuel cycle health risks

    International Nuclear Information System (INIS)

    The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR)1 and Integral Fast Reactor (IF)2 technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle

  5. Molecular Characterization of Actinide Oxocations from Protactinium to Plutonium

    Science.gov (United States)

    Den Auwer, C.; Guilbaud, P.; Guillaumont, D.; Moisy, P.; Digandomenico, V.; Le Naour, C.; Trubert, D.; Simoni, E.; Hennig, C.; Scheinost, A.; Conradson, S. D.

    2007-02-01

    This presentation addresses the structural characterization by EXAFS of actinide cations at oxidation states (V) and (VI) as one walks across the periodic table from Z = 91 (protactinium) to Z = 94 (plutonium). A structural comparison between Pa, U, Np and Pu oxocations in aqueous solution at formal oxidation states (V) and (VI) is carried out. These results are corroborated by quantum chemical and molecular dynamics calculations.

  6. ACTINIDE-SPECIFIC SEQUESTERING AGENTS AND DECONTAMINATION APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, William L.; Raymond, Kenneth N.

    1980-07-01

    We have briefly reviewed the biological hazards associated with the actinide elements. The most abundant transuranium element produced by both industrial nuclear power plants and nuclear weapons programs is plutonium. It is also potentially the most toxic - particularly due to its long-term hazard as a carcinogen if it is introduced into the body. This toxicity is due in large part to the chemical and biochemical similarities of Pu(IV) and Fe(III). Thus in mammals plutonium is transported and stored by the transport and storage systems for iron. This results in the concentration and long-term retention of an alpha-emitting radionuclide ({sup 239}Pu) at sites such as the bone marrow where cell division occurs at a high rate. The earliest attempts at removal of actinide contamination by chelation therapy were essentially heuristic in that sequestering agents known to be effective at binding other elements were tried with plutonium. The research described here is intended to be a rational approach that begins with the observation that since Fe(III) and Pu(IV) are so similar, and since microbes produce agents called siderophores that are extremely effective and selective sequestering agents for Fe(III), the construction of similar chelating agents for the actinides should be possible using the same chelating groups found in the siderophores. The incorporation of four such groups (primarily catechol and hydroxamic acid) results in multidentate chelating agents that can completely encapsulate the central actinide(IV) ion and achieve the eight-coordinate environment most favored by such ions. The continuing development and improvement of such sequestering agents has produced compounds which remove significant amounts of plutonium deposited in bone and which remove a greater fraction of the total body burden than any other chelation therapy developed to date.

  7. Future nuclear fuel cycles: Prospect and challenges for actinide recycling

    Science.gov (United States)

    Warin, Dominique

    2010-03-01

    The global energy context pleads in favour of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel. In this context, nuclear power has the worldwide potential to curtail the dependence on fossil fuels and thereby to reduce the amount of greenhouse gas emissions while promoting energy independence. How we deal with nuclear radioactive waste is crucial in this context. In France, the public's concern regarding the long-term waste management made the French Governments to prepare and pass the 1991 and 2006 Acts, requesting in particular the study of applicable solutions for still minimizing the quantity and the hazardousness of final waste. This necessitates High Active Long Life element (such as the Minor Actinides MA) recycling, since the results of fuel cycle R&D could significantly change the challenges for the storage of nuclear waste. HALL recycling can reduce the heat load and the half-life of most of the waste to be buried to a couple of hundred years, overcoming the concerns of the public related to the long-life of the waste and thus aiding the "burying approach" in securing a "broadly agreed political consensus" of waste disposal in a geological repository. This paper presents an overview of the recent R and D results obtained at the CEA Atalante facility on innovative actinide partitioning hydrometallurgical processes. For americium and curium partitioning, these results concern improvements and possible simplifications of the Diamex-Sanex process, whose technical feasibility was already demonstrated in 2005. Results on the first tests of the Ganex process (grouped actinide separation for homogeneous recycling) are also discussed. In the coming years, next steps will involve both better in-depth understanding of the basis of these actinide partitioning processes and, for the new promising

  8. Molecular cluster theory of chemical bonding in actinide oxide

    International Nuclear Information System (INIS)

    The electronic structure of actinide monoxides AcO and dioxides AcO2, where Ac = Th, U, Np, Pu, Am, Cm and Bk has been studied by molecular cluster methods based on the first-principles one-electron local density theory. Molecular orbitals for nearest neighbor clusters AcO10-6 and AcO12-8 representative of monoxide and dioxide lattices were obtained using non-relativistic spin-restricted and spin-polarized Hartree-Fock-Slater models for the entire series. Fully relativistic Dirac-Slater calculations were performed for ThO, UO and NpO in order to explore magnitude of spin-orbit splittings and level shifts in valence structure. Self-consistent iterations were carried out for NpO, in which the NpO6 cluster was embedded in the molecular field of the solid. Finally, a ''moment polarized'' model which combines both spin-polarization and relativistic effects in a consistent fashion was applied to the NpO system. Covalent mixing of oxygen 2p and Ac 5f orbitals was found to increase rapidly across the actinide series; metal s,p,d covalency was found to be nearly constant. Mulliken atomic population analysis of cluster eigenvectors shows that free-ion crystal field models are unreliable, except for the light actinides. X-ray photoelectron line shapes have been calculated and are found to compare rather well with experimental data on the dioxides

  9. Crystalline matrices for the immobilization of plutonium and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.; Starchenko, V.A.; Vasiliev, V.G. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    1996-05-01

    The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressing method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.

  10. The chemical thermodynamics of actinide elements and compounds

    International Nuclear Information System (INIS)

    This compilation forms the twelfth part of a comprehensive assessment and selection of actinide thermodynamic data. The other parts of the compilation deal mostly with actinide elements and compounds. This part, which is the last one to be published in this Series, concerns inorganic actinide complexes in aqueous solution. The properties considered include the stability constant as a function of ionic strength and temperature and, whenever possible, enthalpy and entropy values. The present assessment is based on a literature survey that was terminated in early 1989. In tabulating literature data, only experimental results were used; estimates as well as recalculated data were ignored. Unlike in previous assessments of this kind in this assessment the selection of a best value is discussed and justified, and reasons are given for the rejection of data. In addition, our estimates of the thermodynamic properties, based on interrelationships between analogous systems, are given when this can be done reliably. Another essential aim of this assessment is to indicate those areas in which additional research is required. Refs

  11. Toward laser ablation Accelerator Mass Spectrometry of actinides

    Science.gov (United States)

    Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Paul, M.; Collon, P.; Deibel, C.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Fonnesbeck, J.; Imel, G.

    2013-01-01

    A project to measure neutron capture cross sections of a number of actinides in a reactor environment by Accelerator Mass Spectrometry (AMS) at the ATLAS facility of Argonne National Laboratory is underway. This project will require the precise and accurate measurement of produced actinide isotopes in many (>30) samples irradiated in the Advanced Test Reactor at Idaho National Laboratory with neutron fluxes having different energy distributions. The AMS technique at ATLAS is based on production of highly-charged positive ions in an electron cyclotron resonance (ECR) ion source followed by acceleration in the ATLAS linac and mass-to-charge (m/q) measurement at the focus of the Fragment Mass Analyzer. Laser ablation was selected as the method of feeding the actinide material into the ion source because we expect it will have higher efficiency and lower chamber contamination than either the oven or sputtering techniques, because of a much narrower angular distribution of emitted material. In addition, a new multi-sample holder/changer to allow quick change between samples and a computer-controlled routine allowing fast tuning of the accelerator for different beams, are being developed. An initial test run studying backgrounds, detector response, and accelerator scaling repeatability was conducted in December 2010. The project design, schedule, and results of the initial test run to study backgrounds are discussed.

  12. Value of 236U to actinide-only burnup credit

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) submitted a topical report to the US Nuclear Regulatory Commission (NRC) in May 1995 in order to gain approval of a method for criticality analysis of transport packages that takes account for the change in actinide isotopes with burnup [pressurized water reactors (PWRs) only]. Historically, the NRC has conservatively assumed that the fuel was in its initial conditions (without any burnable absorbers). In order to permit credit for the changes in actinide content, the NRC has required validation of the depletion and criticality codes for spent nuclear fuel, justification of conservative depletion modeling, and finally confirmation measurements before loading. The NRC requested additional information on March 22, 1996. The DOE responded by a revision of the topical report in May 1997. The NRC again responded with another set of requests of additional information in April 1998. In that set of questions, the NRC challenged the use of 236U in burnup credit. Uranium-236 is not found in any significant amount in any available critical experiments. The authors explore the value of 236U to actinide-only burnup credit

  13. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.; Noyes, G.; Culligan, B.

    2010-02-03

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

  14. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  15. Electronic structure and ionicity of actinide oxides from first principles

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.;

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, which...... for AO2 and A2O3 is found to follow the stoichiometry, namely, corresponding to A4+ ions in the dioxide and A3+ ions in the sesquioxides. In contrast, the A2+ ionic configuration is not favorable in the monoxides, which therefore become metallic. The energetics of the oxidation and reduction...... in the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onward. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground-state configurations of the corresponding...

  16. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  17. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-01-01

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070

  18. Actinides and lanthanides under pressure: the pseudopotential approach; Actinides et terres rares sous pression: approche pseudopotentiel

    Energy Technology Data Exchange (ETDEWEB)

    Richard, N

    2002-07-01

    In the Density Functional Theory Framework, the pseudopotential formalism offers a broader scope of study than other theoretical methods such as global relaxation of the parameters of the cell or ab initio molecular dynamics simulations. This method has been widely used to study light elements or transition metals but never to study f elements. We have generated two non local norm conserving Trouillier-Martins pseudopotentials (one in LDA and one in GGA) for the cerium. To check the validity of the pseudopotentials, we have calculated the equilibrium volume and the incompressibility modulus and compared our results to previous all-electron calculations. If the GGA and non linear core corrections are used, the equation of state is in a good agreement with the experimental equation of state. A static study of the previously proposed high pressure phases give a transitions fcc-a''(I)-bct. Using the pseudopotentials we have generated, an ab initio molecular dynamics simulation at constant pressure, in the region between 5 and 12 GPa where the stable phase of cerium is not well defined, lead us to predict that a centred monoclinic structure, as the a''(I) phase previously observed in some experiments, is the most stable phase. We have also generated pseudopotentials for the light actinides (Th, Pa, U and Np). We have study their phase transitions under pressure at zero temperature. We compared our results with all electron results. The structure parameters have always been relaxed in this study. And for the first time in pseudopotential calculation, the spin-orbit coupling has been taken into account. The curves describing the variation of the volume or the incompressibility modulus depending on the elements and the phase transitions are always in agreement with the one found in the all electron calculations. (author)

  19. Structure and magnetic properties of ternary phosphides and carbides of the rare-earth and transition metals

    International Nuclear Information System (INIS)

    The focal point of this study was the analysis of the magnetic properties of the ternary phosphides. To obtain a comprehensive idea, as many phosphides as possible as well as a few ternary carbides have been synthesized and structurally or magnetically characterized. The susceptibility measurements with the Faraday scale have been completed when required by spectroscopic analyses according to MOESSBAUER, by the determination of the electrical conductivity, by the examination as to the superconductivity and the determination of the magnetic order by neutron diffraction. Compounds of type: AFe2P2 (A=Ca, Pr, Eu); ACo2P2 (A=Ca, Sr, La-Nd, Sm, Eu, Th, U); ANi2P2 (A=Ca, La-Nd, Sm-Yb); A2Fe12P7 (A=Y, Ce, Pr, Nd, Sm-Lu, Th); A2Co12P7 (A=Ca, Sc, Ti, Y, Zr, Ce, Pr, Nd, Sm-Lu, Hf, Th, U); AFe5P3 (A=Er, Tm); ACo5P3 (A=Y, Nd, Sm, Tb, Dy, Tm, Yb); AFe4P12 (A=Pr, Nd, Sm, Eu); ACo8P5 (A=La, Pr, Eu); SmFeP, LnCoP, Eu0,19Co4P12, HoCo3P2; A8Rh5C12 (A=Gd, Tb, Dy, Ho, Er, Tm, Y); A2Cr2C3 (A=Y, Tb-Tm), NdNi2C2, ErMoC2, UCr4C4, UW4C4. (orig./MM)

  20. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  1. Study of the nitrides formation in the ionic nitriding process of zircaloy-2 zirconium alloy

    International Nuclear Information System (INIS)

    Zircaloy and Zr-Sn alloys are used in nuclear techniques because they show a very low effective absorption section for neutrons and a high corrosion resistance. This paper shows that by ionic nitriding of Zircaloy type alloys, a structure is obtained that enhances the wear resistance. From the study of the N2/H2 ratio on the nitride quantity formed by ion nitriding of Zircaloy-2 alloy, it can be concluded that the gaseous mixtures with high nitrogen and hydrogen content used in discharge are not favourable in the nitride forming process. The optimum ratio is 1/1. The ZrN superficial layer hardness was checked according to the exposure time and to the layer thickness. (J.S.). 6 refs., 4 figs., 2 tabs

  2. Optimization of processing temperature in the nitridation process for the synthesis of iron nitride nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rohith Vinod, K.; Sakar, M.; Balakumar, S., E-mail: balasuga@yahoo.com [National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai-600025 (India); Saravanan, P. [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2015-06-24

    We have demonstrated an effective strategy on the nitridation process to synthesize ε-Fe{sub 3}N nanoparticles (NPs) from the zero valent iron NPs as a starting material. The transformation of iron into iron nitride phase was systematically studied by performing the nitridation process at different processing temperatures. The phase, crystal structure was analyzed by XRD. Morphology and size of the ZVINPs and ε-Fe{sub 3}N NPs were analyzed by field emission scanning electron microscope. Further, their room temperature magnetic properties were studied by using vibrating sample magnetometer and it revealed that the magnetic property of ε-Fe{sub 3}N is associated with ratio of Fe-N in the iron nitride system.

  3. Investigations of actinides in the context of final disposal of high-level radioactive waste - trivalent actinides in aqueous solution

    International Nuclear Information System (INIS)

    This contribution presents a small piece of research work at KIT-INE dealing with the speciation of redox sensitive trivalent actinides like Pu(III), Np(III), and U(III) in aqueous solution. The redox preparation, stabilization, and speciation of trivalent actinide in aqueous systems are discussed here. The reductants investigated were rongalite, HYA (hydroxylamine hydrochloride), and AHA (acetohydroxamic acid). The time dependence of An(III) stability at different pH values was investigated. The An(III) species in aqueous solution have been characterized by UV-Vis and XANES spectroscopy. A broader overview of the work at KIT-INE is given in the oral presentation at the NUCAR2013 conference. (author)

  4. Factors affecting actinide solubility in a repository for spent fuel, 1

    International Nuclear Information System (INIS)

    The main tasks in the study were to get information on the chemical conditions in a repository for spent fuel and information on factors affecting releases of actinides from spent fuel and solubility of actinides in a repository for spent fuel. The work in this field started at the Reactor Laboratory of the Technical Research Centre of Finland (VTT) in 1982. This is a report on the effects on the main parameters, Eh, pH, carbonate, organic compounds, colloids, microbes and radiation on the actinide solubility in the nearfield of the repository. Another task has been to identify available models and reported experience from actinide solubility calculations with different codes. 167 refs

  5. Utilization of Minor Actinides (Np, Am, Cm) in Nuclear Power Reactor

    Science.gov (United States)

    Gerasimov, A.; Bergelson, B.; Tikhomirov, G.

    2014-06-01

    Calculation research of the utilization process of minor actinides (transmutation with use of power released) is performed for specialized power reactor of the VVER type operating on the level of electric power of 1000 MW. Five subsequent cycles are considered for the reactor with fuel elements containing minor actinides along with enriched uranium. It was shown that one specialized reactor for the one cycle (900 days) can utilize minor actinides from several VVER-1000 reactors without any technological and structural modifications. Power released because of minor actinide fission is about 4% with respect to the total power

  6. Advanced processes for minor actinides recycling: studies towards potential industrialization

    International Nuclear Information System (INIS)

    In June 2006, a new act on sustainable management of radioactive waste was voted by the French parliament with a national plan on radioactive materials and radioactive waste management (PNG-MDR). Concerning partitioning and transmutation, the program is connected to 4. generation reactors, in which transmutation of minor actinides could be operated. In this frame, the next important milestone is 2012, with the assessment of the possible transmutation roads, which are either homogeneous recycling of the minor actinides in the whole reactor fleet, with a low content of M.A (∼3%) in all fuel assemblies, or heterogeneous recycling of the minor actinides in about one third of the reactor park, with a higher content of M.A. (∼20%) in dedicated targets dispatched in the periphery of the reactor. Advanced processes for the recycling of minor actinides are being developed to address the challenges of these various management options. An important part of the program consists in getting closer to process implementation conditions. The processes based on liquid-liquid extraction benefit from the experience gained by operating the PUREX process at the La Hague plant. In the field of extracting apparatus, a large experience is available. In the field of extracting apparatus, a large experience is already available. Nevertheless, the processes present specificities which have to be considered more precisely. They have been classified in the following fields: - Evolution of the simulation codes, including phenomenological representations: with such a simulation tool, it will be possible to assess operating tolerances, lead sensitivity studies and calculate transient states; - Definition of the implementation conditions in continuous contactors (such as pulse columns), according to the extractant physico-chemical characteristics; - Scale-up of new extractants, such as malonamides used in the DIAMEX process, facing purity specifications and costs estimation; - Solvent clean

  7. Investigations of actinides in the context of final disposal of high-level radioactive waste. Trivalent actinides in aqueous solution

    International Nuclear Information System (INIS)

    The speciation of redox sensitive trivalent actinides Pu(III), Np(III), and U(III) has been studied in aqueous solution. The redox preparation, stabilization, and speciation of these trivalent actinides in aqueous systems are discussed here. The reductants investigated were rongalite, hydroxylamine hydrochloride, and acetohydroxamic acid and the An(III) species have been characterized by UV-Vis and XANES spectroscopy. The results show that the effectiveness of stabilization decreases generally in the order Pu(III) > Np(III) > U(III) and that the effectiveness of each reducing agent depends on the experimental conditions. More than 80 % of Pu(III) aquo species have been stabilized up to pH 5.5, whereas the Np(III) aquo ion could be stabilized in a pH range 0-2.5, and U(III) aquo ion is sufficiently stable at pH 1.0 and below over time periods suitable for experiments. However, this study gives a basis for the characterisation of the trivalent lighter actinides involved in complexation, sorption, and solid formation reactions in the future. (author)

  8. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer...

  9. Styrene Aziridination by Iron(IV) Nitrides.

    Science.gov (United States)

    Muñoz, Salvador B; Lee, Wei-Tsung; Dickie, Diane A; Scepaniak, Jeremiah J; Subedi, Deepak; Pink, Maren; Johnson, Michael D; Smith, Jeremy M

    2015-09-01

    Thermolysis of the iron(IV) nitride complex [PhB(tBuIm)3Fe≡N] with styrene leads to formation of the high-spin iron(II) aziridino complex [PhB(tBuIm)3Fe-N(CH2CHPh)]. Similar aziridination occurs with both electron-rich and electron-poor styrenes, while bulky styrenes hinder the reaction. The aziridino complex [PhB(tBuIm)3Fe-N(CH2CHPh)] acts as a nitride synthon, reacting with electron-poor styrenes to generate their corresponding aziridino complexes, that is, aziridine cross-metathesis. Reaction of [PhB(tBuIm)3Fe-N(CH2CHPh)] with Me3SiCl releases the N-functionalized aziridine Me3SiN(CH2CHPh) while simultaneously generating [PhB(tBuIm)3FeCl]. This closes a synthetic cycle for styrene azirdination by a nitride complex. While the less hindered iron(IV) nitride complex [PhB(MesIm)3Fe≡N] reacts with styrenes below room temperature, only bulky styrenes lead to tractable aziridino products. PMID:26179563

  10. Local residual stress measurements on nitride layers

    NARCIS (Netherlands)

    Mansilla, C.; Ocelik, V.; De Hosson, J. Th. M.

    2015-01-01

    In this work, local stresses in different nitrided maraging steel samples of high practical interest for industrial applications were studied through the so-called micro-slit milling method using a focused ion beam. The nitrogen concentration profiles were acquired by glow discharge optical emission

  11. Ammonothermal Growth of Gallium Nitride

    Science.gov (United States)

    Pimputkar, Siddha

    Bulk, single crystal Gallium Nitride (GaN) crystals are essential for enabling high performance electronic and optoelectronic devices by providing arbitrarily oriented, high quality, large, single crystal GaN substrates. Methods of producing single crystals of sufficient size and quality at a rate that would enable successful commercialization has been a major focus for research groups and companies worldwide. Recent advances have demonstrated remarkable improvements, though high cost and lack of high volume production remain key challenges. Major investments in bulk GaN growth were made at UCSB with particular focus on the ammonothermal method. The existing lab was upgraded and a new facility was designed and built with improved experimental setups for ammonothermal growth of GaN. The facilities can simultaneously operate up to 15 reactors of differing designs and capabilities with the ability to grow crystals up to 2 inches in diameter. A novel in-situ technique was devised to investigate the growth chemistry which occurs at typical operating conditions of 3,000 atm and 600 °C. Improvements in ammonothermal GaN include improved growth rates for c-plane by a factor of four to 344 μm/day with an overall record growth rate of 544 μm/day achieved for the (112¯2) plane. Crystal qualities comparable to that of the seed crystal were achieved. Impurity concentrations for transition metals were consistently reduced by a factor of 100 to concentrations below 1017 atoms/cm3. Optical transparency was improved by significantly reducing the yellow coloration typically seen for ammonothermal GaN. Single crystal GaN was successfully grown on large seeds and a 1 inch x ½ inch x ½ inch GaN crystal was demonstrated. To better understand the growth chemistry, models were created for the decomposition of ammonia under growth conditions, with initial experiments performed using the designed in-situ setup to verify the model's accuracy. To investigate the surface morphology and

  12. Comparative Study on the Effectiveness of Coumavec® and Zinc Phosphide in Controlling Zoonotic Cutaneous Leishmaniasis in a Hyperendemic Focus in Central Iran

    Directory of Open Access Journals (Sweden)

    A Veysi

    2012-06-01

    Full Text Available Background: Zoonotic cutaneous leishmaniasis (ZCL is an increasing health problems in many rural areas of Iran. The aim of this study was to introduce a new alternative rodenticide to control the reservoirs of ZCL, its effect on the vector density and the incidence of the disease in hyperendemic focus of Esfa­han County, central Iran.Methods: The study was carried out from January 2011 to Janu­ary 2012. In intervention areas, rodent control operation was conducted using zinc phosphide or Coumavec®. Active case findings were done by house-to-house visits once every season during 2011–2012. To evaluate the effect of rodent control operation on the vector density, sand flies were collected twice a month using sticky traps.Results: The reduction rate of rodent holes in intervention areas with Coumavec® and zinc phosphide were 48.46% and 58.15% respectively, whereas in control area results showed 6.66 folds intensification. The Incidence of ZCL significantly reduced in the treated areas. Totally, 3200 adult sand flies were collected and identified in the inter­vention and control areas. In the treated area with zinc phosphide, the density of Phlebotomus papatasi was higher in outdoors in contrast with the treated area by Coumavec® which the density of the sand fly was higher in indoors. Conclusion: Both rodenticides were effective on the incidence of ZCL and the population of the reservoirs as well. Coumavec® seems to be effective on the outdoor density of the vector. This combination of rodenticide-insecticide could be a suitable alternative for zinc phosphide while bait shyness or behavioral resistance is occurred.

  13. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...... by replacement of the nitride ions with oxide ions in the molten carbonate electrolyte....

  14. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  15. Nitriding of Co–Cr–Mo alloy in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ning, E-mail: ningtang@imr.tohoku.ac.jp; Li, Yunping, E-mail: lyping@imr.tohoku.ac.jp; Koizumi, Yuichiro; Chiba, Akihiko, E-mail: a.chiba@imr.tohoku.ac.jp

    2014-06-01

    Using the results of a thermodynamic analysis, a Co–Cr–Mo alloy was successfully nitrided in nitrogen at temperatures of 1073–1473 K. The near-surface microstructure of the treated Co–Cr–Mo alloy was characterized using X-ray diffraction, field-emission scanning electron microscopy, electron probe micro-analyzer, and transmission electron microscopy equipped with energy-dispersive X-ray spectroscopy. The results indicated that the highest nitriding efficiency was achieved at the treatment temperature of 1273 K, with the size and coverage of the nitride particles on sample's surface increasing with an increase in the treatment duration. After nitriding at 1273 K for 2 h, numerous nitride particles, consisting of an outer Cr{sub 2}N layer and an inner π phase layer, were formed on top of the nitrogen-containing γ phase, and some π phase also precipitated in the alloy matrix at the sub-surface level. - Highlights: • A Co–Cr–Mo alloy was successfully nitrided in nitrogen at 1073–1473 K. • The highest nitriding efficiency of the Co–Cr–Mo alloy was achieved at 1273 K. • Numerous nitride particles formed on sample's surface during nitriding at 1273 K. • The nitride particles consist of an outer Cr{sub 2}N layer and an inner π phase layer.

  16. ACTINET-I3 Summer School on Analytical Innovation in the field of actinide recycling - Slides of the presentations

    International Nuclear Information System (INIS)

    This conference dealt with 3 main topics: analytical innovation in separation processes (hyphenated techniques, analytical chips,...), actinide recycling (extraction, interfaces, processes,...) and chemistry and thermodynamics of actinides. This document is composed of the slides of the presentations

  17. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan Balasubramanian

    2009-07-18

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP

  18. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    International Nuclear Information System (INIS)

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP

  19. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  20. Chemical and ceramic methods toward safe storage of actinides using monazite. 1998 annual progress report

    International Nuclear Information System (INIS)

    'The use of ceramic monazite, (La,Ce)PO4, for sequestering actinides, especially plutonium, and some other radioactive waste elements (rare earths e.g.) and thus isolating them from the environment has been championed by Lynn Boatner of ORNL. It may be used alone or, as it is compatible with many other minerals in nature, can be used in composite combinations. Natural monazite, which almost invariably contains Th and U, is often formed in hydrothermal pegmatites and is extremely water resistant--examples are known where the mineral has been washed out of rocks (becoming a placer mineral as on the beach sands of India, Australia, Brazil etc.) then reincorporated into new rocks with new crystal overgrowths and then washed out again--being 2.5--3 billion years old. During this demanding water treatment it has retained Th and U. Where very low levels of water attack have been seen (in more siliceous waters), the Th is tied up as new ThSiO4 and remains immobile. Lest it be thought that rare-earths are rare or expensive, this is not so. In fact, the less common lanthanides such as gadolinium, samarium, europium, and terbium, are necessarily extracted and much used by, e.g., the electronics industry, leaving La and Ce as not-sufficiently-used by-products. The recent development of large scale use of Nd in Nd-B-Fe magnets has further exaggerated this. Large deposits of the parent mineral bastnaesite are present in the USA and in China. (Mineral monazite itself is not preferred due to its thorium content.) In the last 5 years it has become apparent show that monazite (more specifically La-monazite) is an unrecognized/becoming-interesting ceramic material. PuPO4 itself has the monazite structure; the PO4 3-unit strongly stabilizes actinides and rare earths in their trivalent state. Monazite melts without decomposition (in a closed system) at 2,074 C and, being compatible with common ceramic oxides such as alumina, mullite, zirconia and YAG, is useful in oxidatively stable

  1. Systematic Characteristics of Fast Neutron Fission Cross Sections for Actinide Nuclei

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The neutron fission cross sections of actinide nuclei are important data for the design of nuclear reactor and nuclear engineering, and so on. So far, there has been a certain amount of experimental data for the fission cross sections of actinide nuclei. However,

  2. Actinide Partitioning and Transmutation Program. Progress report, April 1--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Tedder, D. W.; Blomeke, J. O. [comps.

    1977-10-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was continued. Summaries of work are given on Purex Process modifications, actinide recovery, Am-Cm recovery, radiation effects on ion exchangers, LMFBR transmutation studies, thermal reactor transmutation studies, fuel cycle studies, and partitioning-transmutation evaluation. (JRD)

  3. Mathematical modelling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and hence, the mobility of actinides in subsurface environments. We combined mathematical modelling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bioutilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modelling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems. (orig.)

  4. Separation of actinides from lanthanides using acidic organophosphorus compounds: extraction chromatographic studies

    International Nuclear Information System (INIS)

    The partitioning of actinides from HLW using TBP and CMPO generates a mixture of actinides and lanthanides as one of the secondary streams. The paper discusses the results of the extraction chromatographic separation using KSM-17 and HDEHP supported on Chromosorb-102. (author)

  5. J-ACTINET activities of training and education for actinide science research

    International Nuclear Information System (INIS)

    Actinide science research is indispensable to maintain sustainable development of innovative nuclear technology, especially advanced fuels, partitioning/reprocessing, and waste management. For actinide science research, special facilities with containment and radiation shields are needed to handle actinide materials since actinide elements are γ-, α- and neutron-emitters. The number of facilities for actinide science research has been decreased, especially in universities, due to the high maintenance cost. J-ACTINET was established in 2008 to promote and facilitate actinide science research in close cooperation with the facilities and to foster many of young scientists and engineers to be actively engaged in the fields of actinide science. The research program was carried out, through which young researchers were expected to learn how to make experiments with advanced experimental tools and to broaden their horizons. The summer schools and computational science school were held to provide students, graduate students, and young researchers with the opportunities to come into contact with actinide science research. In these schools, not only the lectures, but also the practical exercises were made as essential part. The overseas dispatch program was also carried out, where graduate students and young researchers were sent to the international summer schools and conferences. (author)

  6. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F

    2014-01-01

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  7. Uranium nitride as LWR TRISO fuel: Thermodynamic modeling of U-C-N

    Science.gov (United States)

    Besmann, Theodore M.; Shin, Dongwon; Lindemer, Terrence B.

    2012-08-01

    TRISO coated particle fuel is envisioned as a next generation replacement for current urania pellet fuel in LWR applications. To obtain adequate fissile loading the kernel of the TRISO particle will likely need to be UN instead of UO2. In support of the necessary development effort for this new fuel system, an assessment of phase regions of interest in the U-C-N system was undertaken as the fuel will be prepared by the carbothermic reduction of the oxide followed by nitriding, will be in equilibrium with carbon within the TRISO particle, and will react with minor actinides and fission products. The phase equilibria and thermochemistry of the U-C-N system is reviewed, including nitrogen pressure measurements above various phase fields. Measurements were used to confirm an ideal solution model of UN and UC adequately represents the UC1-xNx phase. Agreement with the data was significantly improved by effectively adjusting the Gibbs free energy of UN by +12 kJ/mol. This also required adjustment of the value for the sesquinitride by +17 kJ/mol to obtain agreement with phase equilibria. The resultant model together with reported values for other phases in the system was used to generate isothermal sections of the U-C-N phase diagram. Nitrogen partial pressures were also computed for regions of interest.

  8. Use of high gradient magnetic separation for actinide application

    International Nuclear Information System (INIS)

    Decontamination of materials such as soils or waste water that contain radioactive isotopes, heavy metals, or hazardous components is a subject of great interest. Magnetic separation is a physical separation process that segregates materials on the basis of magnetic susceptibility. Because the process relies on physical properties, separations can be achieved while producing a minimum of secondary waste. Most traditional physical separation processes effectively treat particles larger than 70 microns. In many situations, the radioactive contaminants are found concentrated in the fine particle size fraction of less than 20 microns. For effective decontamination of the fine particle size fraction most current operations resort to chemical dissolution methods for treatment. High gradient magnetic separation (HGMS) is able to effectively treat particles from 90 to ∼0.1 micron in diameter. The technology is currently used on the 60 ton per hour scale in the kaolin clay industry. When the field gradient is of sufficiently high intensity, paramagnetic particles can be physically captured and separated from extraneous nonmagnetic material. Because all actinide compounds are paramagnetic, magnetic separation of actinide containing mixtures is feasible. The advent of reliable superconducting magnets also makes magnetic separation of weakly paramagnetic species attractive. HGMS work at Los Alamos National Laboratory (LANL) is being developed for soil remediation, waste water treatment and treatment of actinide chemical processing residues. LANL and Lockheed Environmental Systems and Technologies Company (LESAT) have worked on a co-operative research and development agreement (CRADA) to develop HGMS for radioactive soil decontamination. The program is designed to transfer HGMS from the laboratory and other industries for the commercial treatment of radioactive contaminated materials. 9 refs., 2 figs., 2 tabs

  9. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a

  10. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  11. Hybridization effects in selected actinides and their compounds

    Science.gov (United States)

    El-Khatib, Sami T.

    Many actinide systems exhibit 'unusual' phenomena that differ from the normal text-book behavior. This occurs because the 5f electrons of the actinides and their compounds experience a delicate balance between local-moment and itinerant magnetism. It is well established that strong-electron correlations affect the different properties in such systems. Even though the actinides and their compounds have been extensively studied in recent decades, both experimentally and theoretically, to date, no complete understanding of the full range of their properties has been achieved. My thesis focuses mainly on understanding the role of 5f electrons and their interactions with the electron states of the surrounding ligands. Particularly, the effect of the 5f-ligand hybridization in the development of bulk properties is investigated. The experimental studies utilized macroscopic techniques, such as magnetization, electrical-resistivity, specific-heat and resonant-ultrasound-spectroscopy measurements, as well as microscopic techniques, such as neutron-diffraction and muon-spin-resonance studies. The results are used to disentangle the importance of direct 5f--5f overlap and 5 f-ligand hybridization. The following features have been investigated in this thesis: (a) the dual nature of hybridization effects (magnetic moment reduction vs. exchange mediation) was studied for two isostructural uranium compounds U2Pd2Sn and U2Ni2 In; (b) the formation of complex magnetic structures and its connection to the hybridization effects was studied for UCuSn, UPdSn and UPdGe; (c) the tuning of the hybridization to critical values through substitutions was attempted for two single crystals of UCoAl1-xSn x and UNi1-xRh xAl alloys; (d) the effects of compositional deficiencies was studied for the copper-deficient compound in UCu1.5Sn 2; and finally, (e) the influence of strong electron correlations on the elastic properties was studied in the case of alpha-Pu.

  12. Examination of Plasma Nitriding Microstructure with Addition of Rare Earths

    Institute of Scientific and Technical Information of China (English)

    张津

    2004-01-01

    Medium-carbon alloy steel was plasma nitrided with rare earths La,Ce and Nd into the nitriding chamber respectively.The nitriding layer microstructures with and without rare earths were compared using optical microscope,normal SEM and high resolution SEM,as well as TEM.It was found that the extent of the influence on plasma nitriding varies with different contents of rare earth.The effect of plasma nitriding is benefit from adding of Ce or Nd.The formation of hard and brittle phase Fe2-3N can be prevented and the butterfly-like structure can be improved by adding Ce or Nd.However,pure La may prevent the diffusion of nitrogen and the formation of iron nitride,and reduce the depth of diffusion layer.

  13. Liquid flow cells having graphene on nitride for microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adiga, Vivekananda P.; Dunn, Gabriel; Zettl, Alexander K.; Alivisatos, A. Paul

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to liquid flow cells for microscopy. In one aspect, a device includes a substrate having a first and a second oxide layer disposed on surfaces of the substrate. A first and a second nitride layer are disposed on the first and second oxide layers, respectively. A cavity is defined in the first oxide layer, the first nitride layer, and the substrate, with the cavity including a third nitride layer disposed on walls of the substrate and the second oxide layer that define the cavity. A channel is defined in the second oxide layer. An inlet port and an outlet port are defined in the second nitride layer and in fluid communication with the channel. A plurality of viewports is defined in the second nitride layer. A first graphene sheet is disposed on the second nitride layer covering the plurality of viewports.

  14. The Study of Plasma Nitriding of AISI304 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; JI Shi-jun; GAO Yu-zhou; SUN Jun-cai

    2004-01-01

    This paper presents results on the plasma nitriding of AISI 304 stainless steel at different temperatures in NH 3 gas. The working pressure was 100~200 Pa and the discharge voltage was 700~800V. The phase of nitrided layer formed on the surface was confirmed by X-ray diffraction. The hardness of the samples was measured by using a Vickers microhardness tester with the load of 50g. After nitriding at about 400 ℃ for two hours a nitrided layer consisting of single γN phase with thickness of 5μm was obtained. Microhardness measurements showed significant increase in the hardness from 240 HV (for untreated samples) up to 950 HV (for nitrided samples at temperature of 420℃). The phase composition, the thickness, the microstructure and the surface topography of the nitrided layer as well as its properties depend essentially on the process parameters.

  15. Review of alpha-particle spectrometric measurements of actinides

    International Nuclear Information System (INIS)

    At present the silicon surface-barrier detector is the most used α-particle detector mainly due to its high energy resolution, excellent stability, low background and low cost. In this presentation various parameters of importance for α-particle spectrometry are discussed, i.e. energy resolution and interval selection, energy calibration, background and peak tailing. Examples of α-particle spectra recorded from various actinides (Th, U, Np, Pu, Am, and Cm) separated from environmental samples are shown, and the choice of yield determinants is discussed for each case. (author)

  16. Hydrometallurgical minor actinide separation in hollow fiber modules

    International Nuclear Information System (INIS)

    Hollow fiber modules (HFM) were used as phase contacting devices for hydrometallurgical minor actinide separation in the Partitioning and Transmutation context. Two single-HFM setups, one using commercially available HFM, the other one using miniature HFM, have been developed and manufactured. Several very successful DIAMEX and SANEX once-through tests were performed. The major advantage of the new miniature HFM is their size drastically reducing chemicals consumption: only several 10 mL of feed phases are required for a test. (authors)

  17. Neutron absorption spectroscopy for identification of light elements in actinides

    International Nuclear Information System (INIS)

    We are developing cryogenic high-energy resolution fast-neutron spectrometers using superconducting transition-edge sensors (TES) for nuclear science and non-proliferation applications. Fast neutrons are absorbed in 94% enriched 6LiF single crystals with volumes of ∼1 cm3 in an exothermic 6Li(n,α)3H capture reaction. The neutron energy is measured from the subsequent temperature rise with a Mo/Cu multilayer TES. Fast-neutron spectra from a 252Cf source show an energy resolution of 55 kev. Here, we discuss the instrument performance, with emphasis on the identification of light elements in actinide matrices

  18. Voluntary activities on actinides by the public in Peninsula Shimokita

    International Nuclear Information System (INIS)

    Peninsula Shimokita is known as a Nuclear Peninsula. A technical term actinides', however, is not used among the public here. It is not only used, but also is not probably known among them, although an investigation for the terminology and vocabulary on the nuclear science and technology among the public in this district has not ever performed. The terms in use here widely are uranium (-235, -238), plutonium (-239), and trans-uranium elements for what are heavier than the uranium. The present paper will report on voluntary activities by the public in the Penin. Shimokita performed after the neutron criticality accident at JCO Tokai of a company for nuclear fuel conversion. (author)

  19. Fission of actinides using a table-top laser

    CERN Document Server

    Schwoerer, H; Sauerbrey, R; Galy, J; Magill, J; Rondinella, V; Schenkel, R; Butz, T

    2003-01-01

    Powerful table-top lasers are now available in the laboratory and can be used to induce nuclear reactions. We report the first demonstration of nuclear fission using a high repetition rate table-top laser with intensities of 10 sup 2 sup 0 W/cm sup 2. Actinide photo-fission has been achieved in both sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th from the high-energy Bremsstrahlung radiation produced by laser acceleration of electrons. The fission products were identified by time-resolved gamma-spectroscopy. (authors)

  20. Detection of Actinides via Nuclear Isomer De-Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Francy, Christopher J. [Oregon State Univ., Corvallis, OR (United States)

    2009-07-01

    This dissertation discusses a data collection experiment within the Actinide Isomer Identification project (AID). The AID project is the investigation of an active interrogation technique that utilizes nuclear isomer production, with the goal of assisting in the interdiction of illicit nuclear materials. In an attempt to find and characterize isomers belonging to 235U and its fission fragments, a 232Th target was bombarded with a monoenergetic 6Li ion beam, operating at 45 MeV.

  1. Electron-phonon coupling of the actinide metals

    DEFF Research Database (Denmark)

    Skriver, H. L.; Mertig, I.

    1985-01-01

    -phonon parameter λ is found to attain its maximum value in Ac, and they predict a transition temperature of 9K for this metal. In the light actinides Th through Pu, λ is found to be of order 0.4 and within a factor of 2 of experiments which is also the accuracy found in studies of the transition metals...... be related to the changeover from an s-to- d to an s-to-f electronic transition and a related change in the topology of the Fermi surface...

  2. Heavy element and actinide decay data: UKHEDD-2 data files

    International Nuclear Information System (INIS)

    A re-evaluation has been made of the decay data for 126 heavy elements and actinides of direct application in nuclear fuel cycle calculations. Computer-based data files have been produced in ENDF/B-VI format, including lists of the references used to produce the proposed decay schemes and comments that identify their inadequacies. These evaluated data include half-lives, average decay energies, branching ratios, alpha, beta and gamma-ray energies and emission probabilities, internal conversion coefficients, spontaneous fission decay data and all associated uncertainties. (author)

  3. Formation of new actinide nuclides and their reaction cross section

    International Nuclear Information System (INIS)

    Helium jet transfer system, which had been designed and constructed for the study of actinide nuclides, was examined for the transfer efficiency of recoils and fission products formed in the nuclear reaction induced by α particles. The efficiency was found to be close to unity for products coming out of a 232Th target bombarded with 110 MeV α particles of intensity less than 40 nA. Residual radio-activities of a target chamber and a collection chamber were also measured. (author)

  4. Geochemistry of actinides and fission products in natural aquifer systems

    International Nuclear Information System (INIS)

    The progress in the research area of the community project MIRAGE: 'Geochemistry of actinides and fission products in natural aquatic systems' has been reviewed. This programme belongs to a specific research and technical development programme for the European Atomic Energy Community in the field of management and storage of radioactive waste. The review summarizes research progresses in subject areas: complexation with organics, colloid generation in groundwater and basic retention mechanisms in the framework of the migration of radionuclides in the geosphere. The subject areas are being investigated by 23 laboratories under interlaboratory collaborations or independent studies. (orig.)

  5. Neutronics design study on a minor actinide burner for transmuting spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    1998-08-01

    A liquid metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors. The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the doppler coefficient, and the sodium void worth. Sensitivity studies were performed for homogeneous and decoupled core designs, and a minor actinide burner design was determined to maximize actinide consumption and satisfy safety constraints. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200 MWth core is able to transmute the annual minor actinide inventory of about 16 LWRs and still exhibit reasonable safety characteristics. (author). 34 refs., 22 tabs., 14 figs.

  6. Selective extraction of trivalent actinides from lanthanides with dithiophosphinic acids and tributylphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.; Barrans, R.; Schroeder, N.; Wade, K.; Jones, M.; Smith, B.F. [Los Alamos National Lab., NM (United States); Mills, J.; Howard, G. [Texas Tech Univ., Lubbock, TX (United States); Freiser, H.; Muralidharan, S. [Arizona Univ., Tucson, AZ (United States)

    1995-01-01

    A variety of chemical systems have been developed to separate trivalent actinides from lanthanides based on the slightly stronger complexation of the trivalent actinides with ligands that contain soft donor atoms. The greater stability of the actinide complexes in these systems has often been attributed to a slightly greater covalent bonding component for the actinide ions relative to the lanthanide ions. The authors have investigated several synergistic extraction systems that use ligands with a combination of oxygen and sulfur donor atoms that achieve a good group separation of the trivalent actinides and lanthanides. For example, the combination of dicyclohexyldithiophosphinic acid and tributylphosphate has shown separation factors of up to 800 for americium over europium in a single extraction stage. Such systems could find application in advanced partitioning schemes for nuclear waste.

  7. An assessment of the thermodynamic properties of uranium nitride, plutonium nitride and uranium-plutonium mixed nitride

    International Nuclear Information System (INIS)

    Thermodynamic properties such as vapour pressures, heat capacities and enthalpies of formation for UN(s), PuN(s) and (U, Pu)N(s) are critically evaluated. The equations of the vapour pressures and the heat capacities for the three nitrides are assessed. Thermal functions, and thermodynamic functions for the formation of UN(s), PuN(s) and (U, Pu)N(s), are calculated

  8. Intragranular Chromium Nitride Precipitates in Duplex and Superduplex Stainless Steel

    OpenAIRE

    Iversen, Torunn Hjulstad

    2012-01-01

    Intragranular chromium nitrides is a phenomenon with detrimental effects on material properties in superduplex stainless steels which have not received much attention. Precipitation of nitrides occurs when the ferritic phase becomes supersaturated with nitrogen and there is insufficient time during cooling for diffusion of nitrogen into austenite. Heat treatment was carried out at between 1060◦C and 1160◦C to study the materials susceptibility to nitride precipitation with...

  9. Measurement of standard potentials of actinides (U,Np,Pu,Am) in LiCl-KCl eutectic salt and separation of actinides from rare earths by electrorefining

    International Nuclear Information System (INIS)

    Pyrochemical separation of actinides from rare earths in LiCl-KCl eutectic-liquid metal systems has been studied. The electromotive forces of galvanic cells of the form, Ag vertical stroke Ag(I), LiCl-KCl parallel actinide(III), LiCl-KCl vertical stroke actinide, were measured and standard potentials were determined for uranium, neptunium and plutonium to be -1.283 V, -1.484 V and -1.593 V (at 450 C vs. Ag/AgCl (1wt%-AgCl)), respectively. A typical cyclic voltammogram of americium chloride has two cathodic peaks, which suggests reduction Am(III)→Am(II) occurs followed by reduction of Am(II) to americium metal. Standard potential of Am(II)/Am(0) was estimated to be -1.642 V. Electrorefining experiments to separate actinides (U, Np, Pu and Am) from rare earths (Y, La, Ce, Nd and Gd) in LiCl-KCl eutectic salt were carried out. It was shown that the actinide metals were recovered on the cathodes and that americium was the most difficult to separate from rare earths. The actinide separation will be achieved by means of the combination of electrorefining with multistage extraction. (orig.)

  10. Synthesis of Uranium nitride powders using metal uranium powders

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N{sup 15} gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work.

  11. Low temperature gaseous nitriding and carburising of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A.J.

    2005-01-01

    The response of various austenitic and duplex stainless steel grades to low temperature gaseous nitriding and carburising was investigated. Gaseous nitriding was performed in ammonia/hydrogen mixtures at temperatures ,723 K; gaseous carburising was carried out in carbon monoxide/hydrogen mixtures...... for temperatures (783 K. The case developed by thermochemical treatment was examined using reflected light microscopy, X-ray diffraction analysis and microhardness testing. Both nitriding and carburising led to the development of expanded austenite in the surface adjacent zone, irrespective of the phase...... constitution of the substrate. A two step process, consisting of carburising followed by nitriding, provides great flexibility with regard to adjusting the hardness–depth profile....

  12. Quantum chemistry and atomistic simulations of solid nitrides

    OpenAIRE

    Eck, Bernhard

    2000-01-01

    The present thesis covers, at first, the binary nitrides of the the 3d transition metals. Based on their electronic band structures and bonding analyses for the sodium chloride as well as the zinc blend structure type it is then determined why the early nitrides crystallize in the NaCl structure while Fe- and Co-nitride adopt the ZnS structure. Thereafter all stoichiometrically well-defined iron nitrides are theoretically investigated, in particular with respect to the influence of the nitrog...

  13. Investigation of surface properties of high temperature nitrided titanium alloys

    OpenAIRE

    Koyuncu, E.; F. Kahraman; Ö. Karadeniz

    2009-01-01

    Purpose: The purpose of paper is to investigate surface properties of high temperature nitrided titanium alloys.Design/methodology/approach: In this study, surface modification of Ti6Al4V titanium alloy was made at various temperatures by plasma nitriding process. Plasma nitriding treatment was performed in 80% N2-20% H2 gas mixture, for treatment times of 2-15 h at the temperatures of 700-1000°C. Surface properties of plasma nitrided Ti6Al4V alloy were examined by metallographic inspection, ...

  14. Low Temperature Gaseous Nitriding of Ni-based Superalloys

    DEFF Research Database (Denmark)

    Eliasen, K.M.; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2009-01-01

    In the present work the nitriding response of selected Ni-based superalloys at low temperatures is addressed. The alloys investigated are Nimonic series no. 80, 90, 95 and 100 and Nichrome (Ni:Cr » 80:20). Systematic nitriding experiments at different temperatures were carried out in a thermo...... balance. The morphology of the “case” developed upon low temperature nitriding of Ni-based superalloys was characterised with reflected light microscopy, scanning electron microscopy and X-ray diffraction analysis. The alloy composition proved to have a major influence on the nitriding response...

  15. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    Energy Technology Data Exchange (ETDEWEB)

    Marking, G.A.

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf{sub 10}Ta{sub 3}S{sub 3} was found to crystallize in a new-structure type similar to the known gamma brasses. This structure is unique in that it is the only reported {open_quotes}stuffed{close_quotes} gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo K{alpha} X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co{sub 2}Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.

  16. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  17. Aluminum Reduction and Nitridation of Bauxite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhikuan; ZHANG Dianwei; XU Enxia; HOU Xinmei; DONG Yanling

    2007-01-01

    The application of bauxite with low Al2O3 content has been studied in this paper and β-SiAlON has been obtained from two kinds of bauxites (Al203 content 68.08 mass% and 46.30 mass% respectively) by aluminum reduction and nitridation method.The sequence of reactions has been studied using thermal analysis (TG-DTA),X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) with EDS.Compared with carbon thermal reduction and nitridation of aluminosilicates employed presently,the reaction in the system of bauxite-Al-N2 occurs at lower temperature.β-SiAlON appears as one of the main products from 1573K and exists' stably in the range of the present experimental temperature.The microstructure of β-SiAlON obtained at 1773 K is short column with 5-10μm observed by SEM.

  18. Local residual stress measurements on nitride layers

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla, C.; Ocelík, V.; De Hosson, J.Th.M., E-mail: j.t.m.de.hosson@rug.nl

    2015-06-11

    In this work, local stresses in different nitrided maraging steel samples of high practical interest for industrial applications were studied through the so-called micro-slit milling method using a focused ion beam. The nitrogen concentration profiles were acquired by glow discharge optical emission spectroscopy. The residual stress state was measured on the surface and also in cross-section, i.e. examining effects of the nitrogen concentration gradient. It is shown that an enhanced lateral resolution can be achieved when a novel multiple fitting approach is employed. The results presented show an overall agreement with stress profiles obtained by X-ray diffraction. Finite Element Modeling is used to explain the apparent discrepancies. A clear correlation between the residual stress and nitriding profiles has been found and the applicability of this method is shown in particular when stress gradients are present.

  19. Sheath Characteristic in ECR Plasma Nitriding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sheath plasma characteristics changing with the negative bias applied to the substrate during electron cyclotron resonance plasma nitriding are studied. The sheath characteristics obtained by a Langmuir single probe and an ion energy analyzer show that when the negative bias applied to the substrate is increasing, the most probable energy of ions in the sheath and the full width of half maximum of ions energy distribution increase, the thickness of the sheath also increases, whereas the saturation current of ion decreases. It has been found from the optical emission spectrum that there are strong lines of N2 and N2+. Based on our experiment results the mechanism of plasma nitriding is discussed.

  20. Silicon Nitride Balls For Cryogenic Bearings

    Science.gov (United States)

    Butner, Myles F.; Ng, Lillian W.

    1990-01-01

    Resistance to wear greater than that of 440C steel. Experiments show lives of ball bearings immersed in liquid nitrogen or liquid oxygen increased significantly when 440C steel balls (running on 440C steel races) replaced by balls of silicon nitride. Developed for use at high temperatures, where lubrication poor or nonexistent. Best wear life of any bearing tested to date and ball material spalls without fracturing. Plans for future tests call for use of liquid oxygen as working fluid.