WorldWideScience

Sample records for actinide metal cations

  1. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  2. PRODUCTION OF ACTINIDE METAL

    Science.gov (United States)

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  3. Actinide metal processing

    International Nuclear Information System (INIS)

    Sauer, N.N.; Watkin, J.G.

    1992-01-01

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage

  4. Actinide metals

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Paul L. [Geochem Australia, Kiama, NSW (Australia); Ekberg, Christian [Chalmers Univ. of Technology, Goeteborg (Sweden). Nuclear Chemistry/Industrial Materials Recycling

    2016-07-01

    All isotopes of actinium are radioactive and exist in aqueous solution only in the trivalent state. There have been very few studies on the hydrolytic reactions of actinium(III). The hydrolysis reactions for uranium would only be important in alkaline pH conditions. Thermodynamic parameters for the hydrolysis species of uranium(VI) and its oxide and hydroxide phases can be determined from the stability and solubility constants. The hydrolytic behaviour of neptunium(VI) is quite similar to that of uranium(VI). The solubility constant of NpO{sub 2}OH(am) has been reported a number of times for both zero ionic strength and in fixed ionic strength media. Americium can form four oxidation states in aqueous solution, namely trivalent, tetravalent, pentavalent and hexavalent. Desire, Hussonnois and Guillaumont determined stability constants for the species AmOH{sup 2+} for the actinides, plutonium(III), americium(III), curium(III), berkelium(III) and californium(III) using a solvent extraction technique.

  5. Actinide metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    All isotopes of actinium are radioactive and exist in aqueous solution only in the trivalent state. There have been very few studies on the hydrolytic reactions of actinium(III). The hydrolysis reactions for uranium would only be important in alkaline pH conditions. Thermodynamic parameters for the hydrolysis species of uranium(VI) and its oxide and hydroxide phases can be determined from the stability and solubility constants. The hydrolytic behaviour of neptunium(VI) is quite similar to that of uranium(VI). The solubility constant of NpO 2 OH(am) has been reported a number of times for both zero ionic strength and in fixed ionic strength media. Americium can form four oxidation states in aqueous solution, namely trivalent, tetravalent, pentavalent and hexavalent. Desire, Hussonnois and Guillaumont determined stability constants for the species AmOH 2+ for the actinides, plutonium(III), americium(III), curium(III), berkelium(III) and californium(III) using a solvent extraction technique.

  6. Spin–orbit coupling in actinide cations

    DEFF Research Database (Denmark)

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.

    2012-01-01

    The limiting case of Russell–Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin–orbit splitting is large enough to cause a significantly reduced...... spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell....

  7. Extraction chemistry of actinide cations by N,N-dialkylamides

    International Nuclear Information System (INIS)

    Condamines, N.; Musikas, C.

    1990-01-01

    N,N-dialkylamides are alternate extractants to tributylphosphate, TBP, for the actinides separation in nuclear fuel reprocessing. Extraction mechanisms of UO 2 2+ and Pu 4+ from nitric acid media are investigated for the amides DOBA and DOiBA. For low acidities, amides are neutral extractants. The stoechiometries of UO 2 (NO 3 ) 2 (Amide) 2 (Amide = DOBA or DOiBA), Pu(NO 3 ) 4 (DOBA) 2 are established. A bond between the oxygen of the carbonyl group and the metallic cation is the driving force of the transfer

  8. Calculated Atomic Volumes of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  9. Calix[6]arenes functionalized with malondiamides at the upper rim as possible extractants for lanthanide and actinide cations

    International Nuclear Information System (INIS)

    Almaraz, M.; Esperanza, S.; Magrans, O.; Mendoza, J. de; Pradus, P.

    2001-01-01

    Lipophilic malondiamides have been recently employed successfully as extractants for lanthanide and actinide cations from strongly acidic media. Many complexes between malondiamides and lanthanide-actinides cations have been studied by different techniques. For many of these complexes it has been observed that more than one malondiamide ligand participates in the complexation of each metallic cation. Incorporation of two or three malondiamide moieties into a calixarene platform would probably improve both extraction and selectivity with respect to the already tested malondiamides. According to CPK examination, a calix[6]arene substituted at the upper rim with two or three malondiamide moieties should constitute a promising ligand for lanthanide and actinide cations due to co-operative complexation with the malondiamides. Based on these considerations, we synthesised calix[6]arenes functionalized with malonic acid derivatives. (author)

  10. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    Mueller, Wolfram; Sievers, Torsten K.; Zemb, Thomas; Diat, Olivier; Sievers, Torsten K.; Dejugnat, Christophe

    2012-01-01

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  11. The removal of actinide metals from solution

    International Nuclear Information System (INIS)

    Hancock, R.D.; Howell, I.V.

    1980-01-01

    A process is specified for removing actinide metals (e.g. uranium) from solutions. The solution is contacted with a substrate comprising the product obtained by reacting an inorganic solid containing surface hydroxyl groups (e.g. silica gel) with a compound containing a silane grouping, a nitrogen-containing group (e.g. an amine) and other specified radicals. After treatment, the actinide metal is recovered from the substrate. (U.K.)

  12. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    Muller, W.

    2010-01-01

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl - , NO 3 - , C 2 O 4 2- ) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu 2+ , Zn 2+ , UO 2 2+ , Fe 3+ , Nd 3+ , Eu 3+ , Th 4+ ) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author) [fr

  13. Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium

    Science.gov (United States)

    Marçalo, Joaquim; Gibson, John K.

    2009-09-01

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  14. Site preferences of actinide cations in [NZP] compounds

    Science.gov (United States)

    Hawkins, H. T.; Spearing, D. R.; Smith, D. M.; Hampel, F. G.; Veirs, D. K.; Scheetz, B. E.

    2000-07-01

    Compounds adopting the sodium dizirconium tris(phosphate) (NaZr2(PO4)3) structure type belong to the [NZP] structural family of compounds. [NZP] compounds possess desirable properties that would permit their application as hosts for the actinides. These properties include compositional flexibility (i.e., three structural sites that can accommodate a variety of different cations), high thermal stability, negligible thermal expansion, and resistance to radiation damage. Experimental data indicate that [NZP] compounds resist dissolution and release of constituents over a wide range of experimental conditions. Moreover, [NZP] compounds may be synthesized by both conventional and novel methods and may be heat treated or sintered at modest temperatures (800 °C-1350 °C) in open or restricted systems.

  15. Nonaqueous method for dissolving lanthanide and actinide metals

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1975-01-01

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol

  16. Static and dynamic modelling of lanthanide and actinide cations in solution

    International Nuclear Information System (INIS)

    Marjolin, A.

    2012-01-01

    We propose a theoretical approach, based on both quantum analyses (energy decomposition analysis and topological analysis of the chemical bond) and classical molecular dynamics, for the study of f-element complexes. First, we introduce the different QM methods adapted to the study of f-elements and use them for geometry optimization and interaction energy calculations of the model system [M-(OH 2 )] m+ where M is a lanthanide or actinide cation. We then perform energy decomposition analysis to quantify the physical nature of the metal-ligand interaction in terms of the different contributions. Furthermore, the different energy contributions will be used as reference curves for the parameterization of the polarizable force fields AMOEBA and SIBFA. Next, starting from the optimized geometries, we establish the reference diabatic dissociation curves at high level of theory so as to take into account the multi-reference nature of the systems. These dissociation curves will also be used for parameterization of the AMOEBA potential. We then propose a three step validation protocol as well as a first application, it being the computation of Gibbs hydration free energies for the f-element cations. We also propose an extension of the SIBFA force field to trivalent lanthanide ions and tetravalent actinide ions. Last, we use the topological analysis approaches of ELF and NCI to investigate the nature of the different interactions in Gadolinium(III) model and real systems. The aim of the whole study was to develop and apply different theoretical approaches so as to be able to discriminate between lanthanide and actinide cations. Indeed, despite their similar chemical behavior, they still feature a selective character that we wish to be able to both explain and predict. (author) [fr

  17. Preparation, properties, and some recent studies of the actinide metals

    International Nuclear Information System (INIS)

    Haire, R.G.

    1985-01-01

    The actinide elements form a unique series of metals. The variation in their physial properties combined with the varying availability of the different elements offers a challenge to the preparative scientist. This article provides a brief review of selected methods used for preparing μg to kg amounts of the actinide metals and the properties of these metals. In addition, some recent studies on selected actinide metals are discussed. 62 refs

  18. Development of Metallic Fuels for Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Steven Lowe [Idaho National Laboratory; Fielding, Randall Sidney [Idaho National Laboratory; Benson, Michael Timothy [Idaho National Laboratory; Chichester, Heather Jean MacLean [Idaho National Laboratory; Carmack, William Jonathan [Idaho National Laboratory

    2015-09-01

    Research and development activities on metallic fuels are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is also a need for a near zero-loss fabrication process and a desire to demonstrate a multifold increase in burnup potential. The incorporation of Am and Np into the traditional U-20Pu-10Zr metallic fuel alloy was demonstrated in the US during the Integral Fast Reactor Program of the 1980’s and early 1990’s. However, the conventional counter gravity injection casting method performed under vacuum, previously used to fabricate these metallic fuel alloys, was not optimized for mitigating loss of the volatile Am constituent in the casting charge; as a result, approximately 40% of the Am casting charge failed to be incorporated into the as-cast fuel alloys. Fabrication development efforts of the past few years have pursued an optimized bottom-pour casting method to increase utilization of the melted charge to near 100%, and a differential pressure casting approach, performed under an argon overpressure, has been demonstrated to result in essentially no loss of Am due to volatilization during fabrication. In short, a path toward zero-loss fabrication of metallic fuels including minor actinides has been shown to be feasible. Irradiation testing of advanced metallic fuel alloys in the Advanced Test Reactor (ATR) has been underway since 2003. Testing in the ATR is performed inside of cadmium-shrouded positions to remove >99% of the thermal flux incident on the test fuels, resulting in an epi-thermal driven fuel test that is free from gross flux depression and producing an essentially prototypic radial temperature profile inside the fuel rodlets. To date, three irradiation test series (AFC-1,2,3) have been completed. Over 20 different metallic fuel alloys have been tested to burnups as high as 30% with constituent compositions of Pu up to 30%, Am up to 12%, Np up to 10%, and Zr between 10

  19. Basic research on solvent extraction of actinide cations with diamide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Newly synthesized 4 diamide compounds were tested for solvent extraction of actinide cations. It is obvious that N,N`-dimethyl-N,N`-dihexyl-3-oxapentanediamide (DMDHOPDA) can extract Eu(III), Th(IV), U(VI), Np(V), and Am(III) into organic solvent. Other 3 diamides hardly extract actinide ions, which is supposed that the reasons come from the difference of their chemical structures. In the synergistic extraction with a diamide and thenoyltrifluoroacetone (TTA), all diamides work as a extractant. Furthermore, by examining extracted species, it was confirmed that there are 4 kinds of chemical species of actinides with diamide and TTA. Finally, the mutual separation method of actinide (III), (IV), (V) and (VI) ions by solvent extraction using DMDHOPDA and TTA were developed. (author). 147 refs.

  20. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  1. Casting of metallic fuel containing minor actinide additions

    International Nuclear Information System (INIS)

    Trybus, C.L.; Henslee, S.P.; Sanecki, J.E.

    1992-01-01

    A significant attribute of the Integral Fast Reactor (IFR) concept is the transmutation of long-lived minor actinide fission products. These isotopes require isolation for thousands of years, and if they could be removed from the waste, disposal problems would be reduced. The IFR utilizes pyroprocessing of metallic fuel to separate auranium, plutonium, and the minor actinides from nonfissionable constituents. These materials are reintroduced into the fuel and reirradiated. Spent IFR fuel is expected to contain low levels of americium, neptunium, and curium because the hard neutron spectrum should transmute these isotopes as they are produced. This opens the possibility of using an IFR to trnasmute minor actinide waste from conventional light water reactors (LWRs). A standard IFR fuel is based on the alloy U-20% Pu-10% Zr (in weight percent). A metallic fuel system eases the requirements for reprocessing methods and enables the minor actinide metals to be incorporated into the fuel with simple modifications to the basic fuel casting process. In this paper, the authors report the initial casting experience with minor actinide element addition to an IFR U-Pu-Zr metallic fuel

  2. Protactinium and the intersection of actinide and transition metal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Richard E.; De Sio, Stephanie; Vallet, Valérie

    2018-02-12

    The role of the 5f and 6d orbitals in the chemistry of the actinide elements has been of considerable interest since their discovery and synthesis. Relativistic effects cause the energetics of the 5f and 6d orbitals to change as the actinide series is traversed left to right imparting a rich and complex chemistry. The 5f and 6d atomic states cross in energy at protactinium (Pa), making it a potential intersection between transition metal and actinide chemistries. Herein, we report the synthesis of a Pa-peroxo cluster, A(6)(Pa4O(O-2)(6)F-12) [A = Rb, Cs, (CH3)(4)N], formed in pursuit of an actinide polyoxometalate. Quantum chemical calculations at the density functional theory level demonstrate equal 5f and 6d orbital participation in the chemistry of Pa and increasing 5f orbital participation for the heavier actinides. Periodic changes in orbital character to the bonding in the early actinides highlights the influence of the 5f orbitals in their reactivity and chemical structure.

  3. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    Science.gov (United States)

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  4. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    Science.gov (United States)

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  5. Co-deposition of metallic actinides on a solid cathode

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, S. J.; Williamson, M. A.; Willit, J. L. [Argonne National Laboratory, Argonne (United States)

    2008-08-15

    The amount of rare earth contamination that will be found in a co-deposit of actinides is a function of the type of cathode used. A non-alloying solid cathode will result in a significantly lower rare earth contamination in the actinide co-deposit than a liquid cadmium cathode. With proper control of the cathode potential vs. a stable reference electrode, co-deposition of uranium with other more electroactive metals has been demonstrated using a non-alloying solid cathode.

  6. Co-deposition of metallic actinides on a solid cathode

    International Nuclear Information System (INIS)

    Limmer, S. J.; Williamson, M. A.; Willit, J. L.

    2008-01-01

    The amount of rare earth contamination that will be found in a co-deposit of actinides is a function of the type of cathode used. A non-alloying solid cathode will result in a significantly lower rare earth contamination in the actinide co-deposit than a liquid cadmium cathode. With proper control of the cathode potential vs. a stable reference electrode, co-deposition of uranium with other more electroactive metals has been demonstrated using a non-alloying solid cathode

  7. Advances in Metallic Fuels for High Burnup and Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.; Fielding, R. S.; Mariani, R. D.; Carmack, W. J.

    2016-10-01

    Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing an annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.

  8. The effect of high pressures on actinide metals

    International Nuclear Information System (INIS)

    Benedict, U.

    1987-01-01

    The solid state properties of the actinides are controlled by the dualism of the localized and itinerant (delocalized) configuration of the 5f electrons. This dualism allows to define two main subgroups. At ambient pressures the first subgroup, of elements with atomic number 91 to 94, is characterized by 5f electrons in an itinerant state and the second subgroup, atomic number 95 to 98, by 5f electrons in a localized state. The latter means that these electrons have well defined energy levels and do not contribute to the metallic bond. The other two subgroups consist of thorium, as a subgroup of its own because its 5f levels are practically unoccupied in the ground state configuration, and of the five heaviest elements with atomic number 99 to 103. The most remarkable effect of pressure on the actinide metals is that due to closer contact between the lattice atoms, localized 5f electrons can become itinerant, hybridise with the conduction electrons and participate in the metallic bond. In this chapter the high-pressure structural behaviour of actinide metals is reviewed. Section 3 gives an introduction into the techniques of generating and measuring pressure and of determining various physical properties of the actinides under pressure and describes a few high-pressure devices and methods. Sections 4 to 7 treat the high-pressure results for each subgroup separately. In section 8 the results of the preceding sections are brought together in a graphical representation which consists of interconnecting binary phase diagrams of neighbouring actinide metals. 155 refs.; 14 figs.; 7 tabs. (H.W.)

  9. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  10. Organometallic compounds of the lanthanides, actinides and early transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Cardin, D J [Trinity Coll., Dublin (Ireland); Cotton, S A [Stanground School, Peterborough (UK); Green, M [Bristol Univ. (UK); Labinger, J A [Atlantic Richfield Co., Los Angeles, CA (USA); eds.

    1985-01-01

    This book provides a reference compilation of physical and biographical data on over 1500 of the most important and useful organometallic compounds of the lanthanides, actinides and early transition metals representing 38 different elements. The compounds are listed in molecular formula order in a series of entries in dictionary format. Details of structure, physical and chemical properties, reactions and key references are clearly set out. All the data is fully indexed and a structural index is provided.

  11. Actinides

    International Nuclear Information System (INIS)

    Martinot, L.; Fuger, J.

    1985-01-01

    The oxidation behavior of the actinides is explained on the basis of their electronic structure. The actinide elements, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and laurencium are included. For all except the last three elements, the points of discussion are oxidation states, Gibbs energies and potentials, and potential diagram for the element in acid solution; and thermodynamic properties of these same elements are tabulated. References are cited following discussion of each element with a total of 97 references being cited. 13 tables

  12. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Inherent safe fast breeder reactors and actinide burners, metallic fuel

    International Nuclear Information System (INIS)

    Dorner, S.; Schumacher, G.

    1991-04-01

    Nuclear power without breeder strategy uses the possibilities for the energy supply only to a small extend compared to the possibilities of fast breeder reactors, which offer an energy supply for thousands of years. Moreover, a fast neutron device offers the opportunity to run an actinide-burner that could improve the situation of waste management. Within this concept metallic fuel could play a key role. The present report shows some important aspects of the concept like the pyrometallic reprocessing, the behaviour of metallic fuel during a core meltdown accident and others. The report should contribute to the discussion of these problems and initialize further work

  14. Complexes of natural carbohydrates with metal cations

    International Nuclear Information System (INIS)

    Alekseev, Yurii E; Garnovskii, Alexander D; Zhdanov, Yu A

    1998-01-01

    Data on the interaction of natural carbohydrates (mono-, oligo-, and poly-saccharides, amino sugars, and natural organic acids of carbohydrate origin) with metal cations are surveyed and described systematically. The structural diversity of carbohydrate metal complexes, caused by some specific features of carbohydrates as ligands, is demonstrated. The influence of complex formation on the chemical properties of carbohydrates is discussed. It is shown that the formation of metal complexes plays an important role in the configurational and conformational analysis of carbohydrates. The practical significance of the coordination interaction in the series of carbohydrate ligands is demonstrated. The bibliography includes 571 references.

  15. Remarkably High Stability of Late Actinide Dioxide Cations: Extending Chemistry to Pentavalent Berkelium and Californium.

    Science.gov (United States)

    Dau, Phuong D; Vasiliu, Monica; Peterson, Kirk A; Dixon, David A; Gibson, John K

    2017-12-06

    Actinyl chemistry is extended beyond Cm to BkO 2 + and CfO 2 + through transfer of an O atom from NO 2 to BkO + or CfO + , establishing a surprisingly high lower limit of 73 kcal mol -1 for the dissociation energies, D[O-(BkO + )] and D[O-(CfO + )]. CCSD(T) computations are in accord with the observed reactions, and characterize the newly observed dioxide ions as linear pentavalent actinyls; these being the first Bk and Cf species with oxidation states above IV. Computations of actinide dioxide cations AnO 2 + for An=Pa to Lr reveal an unexpected minimum for D[O-(CmO + )]. For CmO 2 + , and AnO 2 + beyond EsO 2 + , the most stable structure has side-on bonded η 2 -(O 2 ), as An III peroxides for An=Cm and Lr, and as An II superoxides for An=Fm, Md, and No. It is predicted that the most stable structure of EsO 2 + is linear [O=Es V =O] + , einsteinyl, and that FmO 2 + and MdO 2 + , like CmO 2 + , also have actinyl(V) structures as local energy minima. The results expand actinide oxidation state chemistry, the realm of the distinctive actinyl moiety, and the non-periodic character towards the end of the periodic table. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Study of the chemical interactions of actinide cations in solution at macroscopic concentrations

    International Nuclear Information System (INIS)

    Maurice, C.

    1983-01-01

    The aim of this work was to study the interactions of pentavalent neptunium in dodecane-diluted tributyl phosphate with other metallic cations, especially uranium VI and ruthenium present in reprocessing solutions. Pentavalent neptunium on its own was shown to exist in several forms complexed by water and TBP and also to dimerise. In the complex it forms with uranium VI the interaction via the neptunyl oxygen is considerably enhanced in organic solution. Dibutyl phosphoric acid strengthens the interaction between neptunium and uranium. The Np V-ruthenium interaction reveals the existence of a new cation-cation complex; the process takes place in two successive stage and leads to the formation, reinforced and accelerated by HDBP, of a highly to the formation, reinforced and accelerated by HDBP, of a highly stable complex. These results contribute towards a better knowledge of the behaviour of neptunium in the reprocessing operation [fr

  17. Rapid Separation Methods to Characterize Actinides and Metallic Impurities in Plutonium Scrap Materials at SRS

    International Nuclear Information System (INIS)

    Maxwell, S.L. III; Jones, V.D.

    1998-07-01

    The Nuclear Materials Stabilization and Storage Division at SRS plans to stabilize selected plutonium scrap residue materials for long term storage by dissolution processing and plans to stabilize other plutonium vault materials via high-temperature furnace processing. To support these nuclear material stabilization activities, the SRS Analytical Laboratories Department (ALD) will provide characterization of materials required prior to the dissolution or the high-firing of these materials. Lab renovations to install new analytical instrumentation are underway to support these activities that include glove boxes with simulated-process dissolution and high- pressure microwave dissolution capability. Inductively-coupled plasma atomic emission spectrometry (ICP-AES), inductively- coupled mass spectrometry (ICP-MS) and thermal-ionization mass spectrometry (TIMS) will be used to measure actinide isotopics and metallic impurities. New high-speed actinide separation methods have been developed that will be applied to isotopic characterization of nuclear materials by TIMS and ICP-MS to eliminate isobaric interferences between Pu-238 /U- 238 and Pu-241/Am-241. TEVA Resin, UTEVA Resin, and TRU Resin columns will be used with vacuum-assisted flow rates to minimize TIMS and ICP-MS sample turnaround times. For metallic impurity analysis, rapid column removal methods using UTEVA Resin, AGMP-1 anion resin and AG MP-50 cation resin have also been developed to remove plutonium and uranium matrix interferences prior to ICP-AES and ICP- MS measurements

  18. Separation of macro-quantities of actinide elements at Savannah River by high-pressure cation exchange

    International Nuclear Information System (INIS)

    Burney, G.A.

    1980-01-01

    Large-scale separation of actinides from fission products and from each other by pressurized cation exchange chromatography at Savannah River is reviewed. Several kilograms of 244 Cm have been separated, with each run containing as much as 150 g of 244 Cm. Dowex 50W-X8 (Dow Chemical Co.) cation resin, graded to 30-70 micron size range, is used, and separation is made by eluting with 0.05M diethylenetriamine pentaacetic acid (DTPA) at a pH of 3. The effluent from the column is continuously monitored by a BF 3 detector, a NaI detector, and a lithium-drifted germanium detector and gamma spectrometer to guide collection of product fractions. Operating the columns at 300 to 1000 psi pressure eliminates resin bed disruption caused by radiolytically produced gases, and operating at increased flow rates decreases the radiolytic degradation of the resin per unit of product processed. A portion of the hot canyon of a production radiochemical separation plant was converted from a remote crane-operated facility to a master-slave manipulator-operated facility for separation and purification of actinide elements by pressurized cation exchange. It also contains an evaporator, furnaces, a calorimeter, and several precipitators and associated tanks. Actinide processing from target dissolution to packaging of purified product is planned in this facility

  19. Debye-Waller factors of the light actinide metals

    International Nuclear Information System (INIS)

    Lawson, A.C.; Goldstone, J.A.; Cort, B.; Sheldon, R.I.; Foltyn, E.M.

    1994-01-01

    The authors have been using time-of-flight neutron powder diffraction to determine the Debye-Waller factors of the light actinide metals. The Debye-Waller factor is a measure of the mean-square atomic displacement that arises from the thermal motion of the atoms in any solid. Its temperature dependence determines a Debye-Waller temperature, Θ DW , that is characteristic of the elastic properties of the solid. The data are obtained by Rietveld analysis of neutron diffraction powder patterns obtained at several temperatures. The authors will present results for α-U, α-Np, α-Pu and σ-Pu 0.95 Al 0.05 . The Θ DW 's are temperature dependent, and anharmonic interatomic forces seem to be required to explain the results

  20. Development of fast reactor metal fuels containing minor actinides

    International Nuclear Information System (INIS)

    Ohta, Hirokazu; Ogata, Takanari; Kurata, Masaki; Koyama, Tadafumi; Papaioannou, Dimitrios; Glatz, Jean-Paul; Rondinella, Vincenzo V.

    2011-01-01

    Fast reactor metal fuels containing minor actinides (MAs) Np, Am, and Cm and rare earths (REs) Y, Nd, Ce, and Gd are being developed by the Central Research Institute of Electric Power Industry (CRIEPI) in collaboration with the Institute for Transuranium Elements (ITU) in the METAPHIX project. The basic properties of U-Pu-Zr alloys containing MA (and RE) were characterized by performing ex-reactor experiments. On the basis of the results, test fuel pins including U-Pu-Zr-MA(-RE) alloy ingots in parts of the fuel stack were fabricated and irradiated up to a maximum burnup of ∼10 at% in the Phenix fast reactor (France). Nondestructive postirradiation tests confirmed that no significant damage to the fuel pins occurred. At present, detailed destructive postirradiation examinations are being carried out at ITU. (author)

  1. Effects of metallic cations in the beryl flotation

    International Nuclear Information System (INIS)

    Lima Leonel, C.M. de; Peres, A.E.C.

    1984-01-01

    The beryl zeta potential in microelectrophoretic cell is studied in the presence of neutral electrolyte, cations of calcium, magnesium and iron. The petroleum sulfonate is used how collector in Hallimond tube. Hydroxy complex of metallic cations seems activate the ore and precipitates of colloidal metallic hidroxies seems lower him when added to the mixture. (M.A.C.) [pt

  2. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both

  3. Progress on the Application of Metallic Fuels for Actinide Transmutation

    International Nuclear Information System (INIS)

    Kennedy, J. Rory; Fielding, Randall; Janney, Dawn; Mariani, Robert; Teague, Melissa; Egeland, Gerald

    2015-01-01

    Full text of publication follows: Idaho National Laboratory (INL) is developing actinide bearing alloy metallic fuels intended for effecting the transmutation of long-lived isotopes in fast reactor application as part of a partitioning and transmutation strategy. This presentation will report on progress in three areas of this effort: demonstration of the fabrication of fuels under remote (hot cell) conditions directly coupled to the product from the Pyro-processing of spent fuel as part of the Joint Fuel Cycle Studies (JFCS) collaboration with the Korean Atomic Energy Research Institute (KAERI); the chemical sequestration of lanthanide fission products to mitigate fuel-cladding-chemical-interaction (FCCI); and transmission electron microscopy (TEM) and atom probe tomography (APT) studies on the as-cast microstructure of the metallic fuel alloy. For the JFCS efforts, we report on the implementation of the Glove-box Advanced Casting System (GACS) as a prototype casting furnace for eventual installation into the INL Hot Fuel Examination Facility (HFEF) where the recycled fuel will be cast. Results from optimising process parameters with respect to fuel characteristics, americium volatility, materials interaction, and lanthanide fission product carry over distribution will be discussed. With respect to the lanthanide carry over from the Pyro-processing product, encouraging studies on concepts to chemically sequester the FCCI promoting lanthanides within the fuel matrix thus inhibiting migration and interaction with the cladding will be presented. Finally, in relation to advanced modelling and simulation efforts, detailed investigations and interpretation on the nano-scale as cast microstructure of possible recycle fuel composition containing U, Pu, Am, Np as well as carry-over lanthanide species will be discussed. These studies are important for establishing the initial conditions from which advanced physics based fuel performance codes will run. (authors)

  4. Computer simulation of displacement cation exchange chromatography: separation of trivalent actinides and lanthanides

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1980-05-01

    A first-generation mathematical model of displacement cation exchange chromatography (CES) was constructed. The model incorporated the following phenomena: diffusion of cations up and down the column, diffusion of cations from the bulk liquid to the resin surface, and equilibrium of cations between liquid and solid resin beads. A limited number of experiments with rare earths using DTPA as the separation agent were undertaken to increase the current understanding of the processes involved in cation exchange chromatography. The numerical computer program based on the mathematical model was written in FORTRAN IV for use on the IBM 360 series of computers

  5. Numerical simulation of minor actinide recovery behaviour in batch processing of spent metallic fuel by electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Nawada, H P; Bhat, N P [Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Balasubramanian, G R [Atomic Energy Commission, Mumbai (India)

    1994-06-01

    Numerical simulation of electro-transport of fuel actinides (FAs), minor actinides (MAs) and rare earths (REs) in the electro-refiner (ER) for pyrochemical reprocessing of a typical spent IFR metallic fuel has been attempted based on improved thermo-chemical model developed for application to multi-component system in the ER. Optimization of MA recovery and decontamination factors (DFs) for MAs and REs in batch processing is presented. (author). 7 refs., 4 figs., 1 tab.

  6. Hybrid conducting polymer materials incorporating poly-oxo-metalates for extraction of actinides; Materiaux polymeres conducteurs hybrides incorporant des polyoxometallates pour l'extraction d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Racimor, D

    2003-09-15

    The preparation and characterization of hybrid conducting polymers incorporating poly-oxo-metalates for extracting actinides is discussed. A study of the coordination of various lanthanide cations (Ce(III), Ce(IV), Nd(III)) by the mono-vacant poly-oxo-metalate {alpha}{sub 2}-[P{sub 2}W{sub 17}O{sub 61}]{sup 10-} showed significant differences according to the cation.. Various {alpha}-A-[PW{sub 9}O{sub 34}(RPO){sub 2}]{sup 5-} hybrids were synthesized and their affinity for actinides or lanthanides was demonstrated through complexation. The first hybrid poly-oxo-metallic lanthanide complexes were then synthesized, as was the first hybrid functionalized with a pyrrole group. The electro-polymerization conditions of this pyrrole remain still to be optimized. Poly-pyrrole materials incorporating {alpha}{sub 2}-[P{sub 2}W{sub 17}O{sub 61}]{sup 10-} or its neodymium or cerium complexes as doping agents proved to be the first conducting polymer incorporating poly-oxo-metalates capable of extracting plutonium from nitric acid. (author)

  7. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    International Nuclear Information System (INIS)

    Selle, J.E.

    1992-01-01

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented

  8. Standard entropy for borides of non-transition metals, rare-earth metals and actinides

    International Nuclear Information System (INIS)

    Borovikova, M.S.

    1986-01-01

    Using as initial data the most reliable values of standard entropy for 10 compounds, the entropies for 40 compounds of non-transition metals, rare-earth metals and actinides have been evaluated by the method of comparative calculation. Taking into account the features of boride structures, two methods, i.e. additive and proportional, have been selected for the entropy calculations. For the range of borides the entropies were calculated from the linear relation of the latter to the number of boron atoms in the boride. For borides of rare-earth metals allowance has been made for magnetic contributions in conformity with the multiplicity of the corresponding ions. Insignificant differences in the electronic contributions to the entropy for borides and metals have been neglected. For dodecaborides only the additive method has been used. This is specified by the most rigid network that provides the same contribution to compound entropy. (orig.)

  9. The neutronics design and analysis of a liquid metal reactor for burning minor actinides

    International Nuclear Information System (INIS)

    Choi, H.B.; Downar, T.J.

    1992-01-01

    A liquid metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors (LWR). The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the Doppler coefficient, and the sodium void worth. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200 MWth core is able to transmute the annual minor actinide inventory of about 26 LWRs and still exhibit reasonable safety characteristics. Sensitivity analysis of the final core design indicates deficiencies in the minor actinide nuclear data can introduce large uncertainties in the prediction of the core safety performance parameters

  10. Fermi surface measurements in actinide metals and compounds

    International Nuclear Information System (INIS)

    Arko, A.J.; Schirber, J.E.

    1978-01-01

    The various techniques of measuring Fermi Surface parameters are briefly discussed in terms f application to actinide systems. Particular emphasis is given the dHvA effect. Some general results found in the dHvA studies of actinide compounds are given. The dHvA effect has been measured in α-U and is presented in detail. None of the observed frequencies corresponds to closed surfaces. Results are compared to the calculations of Freeman, Koelling and Watson-Yang where qualitative agreement is observed

  11. The uncertainty analysis of a liquid metal reactor for burning minor actinides from light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)

  12. The uncertainty analysis of a liquid metal reactor for burning minor actinides from light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)

  13. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  14. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    Science.gov (United States)

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  15. Elastic-constant systematics in f.c.c. metals, including lanthanides-actinides

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, Hassel [Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309 (United States); Migliori, Albert [Los Alamos National Laboratory (E536), Los Alamos, New Mexico 87545 (United States)

    2008-01-15

    For f.c.c. metals, using Blackman's diagram of dimensionless elastic-constant ratios, we consider the systematics of physical properties and interatomic bonding. We focus especially on the lanthanides-actinides La, Ce, Yb, Th, U, Pu, those for which we know some monocrystal elastic constants. Their behavior differs from the other f.c.c. metals, and all except La show a negative Cauchy pressure, contrary to most f.c.c. metals, which show a positive Cauchy pressure. Among the lanthanides-actinides, {delta}-Pu stands apart, consistent with its many odd physical properties. Based on elastic-constant correlations, we suggest that {delta}-Pu possesses a strong s-electron interatomic-bonding component together with a covalent component. Elastically, {delta}-Pu shows properties similar to Yb. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. A review of modelling the interaction between natural organic matter and metal cations

    International Nuclear Information System (INIS)

    Falck, W.E.

    1989-01-01

    This report reviews techniques available to model the interaction between natural organic matter (mainly fulvic and humic acids) and protons and metal cations. A concise definition of natural organic matter is given and their properties are outlined. These materials are macromolecules which exhibit a polyelectrolyte character owing to numerous dissociable functional groups which are attached to their carbon backbone or from integral parts of the structure. The polyelectrolyte character is thought to be responsible for their conformation, hydrogen bonding or bridging by metal cations between subunits being important mechanisms. Environmental parameters like pH and ionic strength thus will have profound effects on the conformation of natural organic matter, the properties of which can change from being a flexible polymer to being a rigid gel. Binding mechanisms and binding strengh are discussed and an overview of relevant techniques of investigation is given. This work is part of the Commission's Mirage project - Phase 2, research area Geochemistry of actinides and fission products in natural aquifer systems

  17. Development of the Method for Preparation of Actinide Metals

    OpenAIRE

    Shiokawa, Y.; Hasegawa, K.; Takahashi, M.; Suzuki, K.

    1997-01-01

    The uranium amalgam was quantitatively prepared by electrolysis from the aqueous solution containing acetic acid and sodium acetate using mercury cathode. A bright button or brown porous one of uranium metal was obtained by thermal decomposition of the amalgam. The purity was found to be much higher than commercial grade metal of ca.99.95%. As a result of this work, the simple and easy procedure for preparation of uranium metal with high purity level on the laboratory scale has been developed.

  18. Conductometric determination of solvation numbers of alkali metal cations

    International Nuclear Information System (INIS)

    Fialkov, Yu.Ya.; Gorbachev, V.Yu.; Chumak, V.L.

    1997-01-01

    Theories describing the interrelation of ion mobility with their effective radii in solutions are considered. Possibility of using these theories for determination the solvation numbers n s of some ions is estimated. According to conductometric data values of n s are calculated for alkali metal ions in propylene carbonate. The data obtained are compared with solvation numbers determined with the use of entropies of ions solvation. Change of n s values within temperature range 273.15-323.15 K is considered. Using literature data the effect of crystallographic radii of cations and medium permittivity on the the values of solvation numbers of cations are analyzed. (author)

  19. A liquid-metal reactor for burning minor actinides of spent light water reactor fuel. 1: Neutronics design study

    International Nuclear Information System (INIS)

    Choi, H.; Downar, T.J.

    1999-01-01

    A liquid-metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors (LWRs). The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the Doppler constant, and the sodium void worth. Sensitivity studies were performed for homogeneous and decoupled core designs, and a minor actinide burner design was determined to maximize actinide consumption and satisfy safety constraints. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200-MW(thermal) core is able to consume the annual minor actinide inventory of about 16 LWRs and still exhibit reasonable safety characteristics

  20. Development of the method for preparation of actinide metals

    International Nuclear Information System (INIS)

    Shiokawa, Y.; Hasegawa, K.; Takahashi, M.; Suzuki, K.

    1997-01-01

    The uranium amalgam was quantitatively prepared by electrolysis from the aqueous solution containing acetic acid and sodium acetate using mercury cathode. A bright button or brown porous one of uranium metal was obtained by thermal decomposition of the amalgam. The purity was found to be much higher than commercial grade metal of ca.99.95%. As a result of this work, the simple and easy procedure for preparation of uranium metal with high purity level on the laboratory scale has been developed. (author)

  1. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2016-06-01

    We have analyzed the structure and bonding of gas-phase Cl-X and [HCl-X](+) complexes for X(+)= H(+), CH3 (+), Li(+), and Na(+), using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl(-) and HCl for the various cations. The Cl-X bond becomes longer and weaker along X(+) = H(+), CH3 (+), Li(+), and Na(+). Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn-Sham molecular orbital (KS-MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities.

  2. Supercritical Carbon Dioxide-Soluble Ligands for Extracting Actinide Metal Ions from Porous Solids

    International Nuclear Information System (INIS)

    Dietz, Mark L.

    2001-01-01

    Numerous types of actinide-bearing waste materials are found throughout the DOE complex. Most of these wastes consist of large volumes of non-hazardous materials contaminated with relatively small quantities of actinide elements. Separation of these wastes into their inert and radioactive components would dramatically reduce the costs of stabilization and disposal. For example, the DOE is responsible for decontaminating concrete within 7000 surplus contaminated buildings. The best technology now available for removing surface contamination from concrete involves removing the surface layer by grit blasting, which produces a large volume of blasting residue containing a small amount of radioactive material. Disposal of this residue is expensive because of its large volume and fine particulate nature. Considerable cost savings would result from separation of the radioactive constituents and stabilization of the concrete dust. Similarly, gas diffusion plants for uranium enrichment contain valuable high-purity nickel in the form of diffusion barriers. Decontamination is complicated by the extremely fine pores in these barriers, which are not readily accessible by most cleaning techniques. A cost-effective method for the removal of radioactive contaminants would release this valuable material for salvage. The objective of this project is to develop novel, substituted diphosphonic acid ligands that can be used for supercritical carbon dioxide extraction of actinide ions from solid wastes. Specifically, selected diphosphonic acids, which are known to form extremely stable complexes with actinides in aqueous and organic solution, are to be rendered carbon dioxide-soluble by the introduction of appropriate alkyl- or silicon-containing substituents. The metal complexation chemistry of these new ligands in SC-CO2 will then be investigated and techniques for their use in actinide extraction from porous solids developed

  3. Cationic rare-earth metal SALEN complexes.

    Science.gov (United States)

    Liu, Qiancai; Meermann, Christian; Görlitzer, Hans W; Runte, Oliver; Herdtweck, Eberhardt; Sirsch, Peter; Törnroos, Karl W; Anwander, Reiner

    2008-11-28

    Complexes (Salpren(tBu,tBu))Y[N(SiHMe2)2](thf) and (SALEN(tBu,tBu))La[N(SiHMe2)2](thf) (SALEN(tBu,tBu) = Salcyc(tBu,tBu) and Salpren(tBu,tBu)) were prepared from Ln[N(SiHMe2)2]3(thf)2 and H2SALEN(tBu,tBu). The yttrium complex was characterized by X-ray crystallography revealing intrinsic solid-state structural features: the metal centre is displaced by 1.05 angstroms from the [N2O2] least squares plane of a highly bent Salpren(tBu,tBu) ligand (angle(Ph,Ph) dihedral angle of 80.4(1) degrees ) and is coordinated asymmetrically by the silylamide ligand exhibiting one significant Y---(HSi) beta-agostic interaction (Y-N1-Si1, 106.90(9) degrees; Y---Si1, 3.2317(6) angstroms). Complexes (SALEN(tBu,tBu))Ln[N(SiHMe2)2](thf)n (n = 1, Sc; n = 2, Y, La) react with ammonium tetraphenylborate to form the ion pairs [(SALEN(tBu,tBu))Ln(thf)n][BPh4]. The cationisation was proven by X-ray crystal structure analyses of [(Salpren(tBu,tBu))Sc(thf)2][B(C6H5)4].2(thf) and [(Salpren(tBu,tBu))Ln(thf)3][B(C6H5)4].4(thf) (Ln = Y, La), showing an octahedral and pentagonal-bipyramidal coordination geometry, respectively.

  4. Effect of alkali metal cations on anodic dissolution of gold in cyanide solutions. Potentiodynamic measurement

    International Nuclear Information System (INIS)

    Bek, R.Yu.; Rogozhnikov, N.A.; Kosolapov, G.V.

    1998-01-01

    It is shown that gold dissolution rate in cyanic solutions in Li + , Na + , K + , Cs + cation series increases basically and decreases under cation concentration increasing. Cation effect on current value is caused by cations drawing in dense layer. A model of dense part of double layer with two Helmholtz planes (anion and cation) is suggested. Effect of nature and concentration of alkali metal cations on gold dissolution rate is explained on the base of the model [ru

  5. Presence and Character of the 5f Electrons in the Actinide Metals

    DEFF Research Database (Denmark)

    Johansson, B.; Skriver, Hans Lomholt; Mårtensson, N.

    1980-01-01

    The sensitivity of the Image level binding energy to the occupation of the 5f orbital is pointed out and used to demonstrate the presence of 5f electrons in the uranium metal. It is suggested that the valence band spectrum of uranium might contain satellites originating from excitations...... to localized 5f-electron configurations. Different kinds of core-hole screenings are discussed for the actinide metals as well as the difference between inner and outer core electron ionizations. Finally, the question of itinerant versus localized 5f behaviour is treated by means of a total energy comparison...

  6. Cobalt bis(dicarbollide) ions with covalently bonded CMPO groups as selective extraction agents for lanthanide and actinide cations from highly acidic nuclear waste solutions

    International Nuclear Information System (INIS)

    Gruner, B.; Plesek, J.; Baca, J.; Cisarova, I.; Dozol, J.F.; Rouquette, H.; Vinas, C.; Selucky, P.; Rais, J.

    2002-01-01

    A new series of boron substituted cobalt bis(dicarbollide)(1-) ion (1) derivatives of the general formula [(8-CMPO-(CH 2 -CH 2 O) 2 -1,2-C 2 B 9 H 10 )(1',2'-C 2 B 9 H 11 )-3,3'-Co] - (CMPO = Ph 2 P(O)-CH 2 C(O)NR, R = C 4 H 9 (3b), -C 12 H 25 (4b), -CH 2 -C 6 H 5 (5b)) was prepared by ring cleavage of the 8-dioxane-cobalt bis(dicarbollide) (2) bi-polar compound by the respective primary amines and by subsequent reaction of the resulting amino derivatives (3a-5a) with the nitrophenyl ester of diphenyl-phosphoryl-acetic acid. The compounds were synthesized with the aim to develop a new class of more efficient extraction agents for liquid/liquid extraction of polyvalent cations, i.e. lanthanides and actinides, from high-level activity nuclear waste. All compounds were characterized by a combination of 11 B NMR, 1 H high field NMR, Mass Spectrometry with Electro-spray and MALDI TOF ionisation, HPLC and other techniques. The molecular structure of the supramolecular Ln 3+ complex of the anion 5b was determined by single crystal X-ray diffraction analysis. Crystallographic results proved that the Ln(m) atom is bonded to three functionalized cobalt bis(dicarbollide) anions in a charge compensated complex. The cation is tightly coordinated by six oxygen atoms of the CMPO terminal groups (two of each ligand) and by three water molecules completing the metal coordination number to 9. Atoms occupying the primary coordination sphere form a tri-capped trigonal prismatic arrangement. Very high liquid-liquid extraction efficiency of all anionic species was observed. Moreover, less polar toluene can be applied as an auxiliary solvent replacing the less environmentally friendly nitro- and chlorinated solvents used in the current dicarbollide liquid-liquid extraction process. The extraction coefficients are sufficiently high for possible technological applications. (authors)

  7. Thermodynamic study on the complexation of Trivalent actinide and lanthanide cation by N-donor ligands in homogeneous conditions; Etude thermodynamique de la complexation des ions actinide (III) et lanthanide (III) par des ligands polyazotes en milieu homogene

    Energy Technology Data Exchange (ETDEWEB)

    Miguirditchian, M

    2004-07-01

    Polydentate N-donor ligands, alone or combined with a synergic acid, may selectively extract minor actinides(III) from lanthanide(III) ions, allowing to develop separation processes of long-live radioelements. The aim of the researches carried out during this thesis was to better understand the chemical mechanisms of the complexation of f-elements by Adptz, a tridentate N-donor ligand, in homogeneous conditions. A thermodynamic approach was retained in order to estimate, from an energetic point of view, the influence of the different contributions to the reaction, and to acquire a complete set of thermodynamic data on this reaction. First, the influence of the nature of the cation on the thermodynamics was considered. The stability constants of the 1/1 complexes were systematically determined by UV-visible spectrophotometry for every lanthanide ion (except promethium) and for yttrium in a mixed solvent methanol/water in volume proportions 75/25%. The thermodynamic parameters ({delta}H{sup 0} {delta}{sup S}) of complexation were estimated by the van't Hoff method and by micro-calorimetry. The trends of the variations across the lanthanide series are compared with similar studies. The same methods were applied to the study of three actinide(III) cations: plutonium, americium and curium. The comparison of these values with those obtained for the lanthanides highlights the increase of stability of these complexes by a factor of 20 in favor of the actinide cations. This gap is explained by a more exothermic reaction and is associated, in the data interpretation, to a higher covalency of the actinide(III)-nitrogen bond. Then, the influence of the change of solvent composition on the thermodynamic of complexation was studied. The thermodynamic parameters of the complexation of europium(III) by Adptz were determined for several fractions of methanol. The stability of the complex formed increases with the percentage of methanol in the mixed solvent, owing to an

  8. Preparation of thin actinide metal disks using a multiple disk casting technique

    International Nuclear Information System (INIS)

    Conner, W.V.

    1975-01-01

    A casting technique has been developed for preparing multiple actinide metal disks which have a minimum thickness of 0.006 inch. This technique was based on an injection casting procedure which utilizes the weight of a tantalum metal rod to force the molten metal into the mold cavity. Using the proper mold design and casting parameters, it has been possible to prepare ten 1/2 inch diameter neptunium or plutonium metal disks in a single casting, This casting technique is capable of producing disks which are very uniform. The average thickness of the disks from a typical casting will vary no more than 0.001 inch and the variation in the thickness of the individual disks will range from 0.0001 to 0.0005 inch. (Auth.)

  9. Preparation of thin actinide metal disks using a multiple disk casting technique

    International Nuclear Information System (INIS)

    Conner, W.V.

    1976-01-01

    A casting technique has been developed for preparing multiple actinide metal disks which have a minimum thickness of 0.006 inch. This technique was based on an injection casting procedure which utilizes the weight of a tantalum metal rod to force the molten metal into the mold cavity. Using the proper mold design and casting parameters, it has been possible to prepare ten 1/2 inch diameter neptunium or plutonium metal disks in a single casting. This casting technique is capable of producing disks which are very uniform. The average thickness of the disks from a typical casting will vary no more than 0.001 inch and the variation in the thickness of the individual disks will range from 0.0001 to 0.0005 inch. (author)

  10. Development and testing of metallic fuels with high minor actinide content

    International Nuclear Information System (INIS)

    Meyer, M.K.; Hayes, S.L.; Kennedy, J.R.; Keiser, D.D.; Hilton, B.A.; Frank, S.M.; Kim, Y.-S.; Chang, G.; Ambrosek, R.G.

    2003-01-01

    Metallic alloys are promising candidates for use as fuels for transmutation and in advanced closed nuclear cycles. Metallic alloys have high heavy metal atom density, relatively high thermal conductivity, favorable gas release behavior, and lend themselves to remote recycle processes. Both non-fertile and uranium-bearing metal fuels containing minor actinide are under consideration for use as transmutation fuels by the U.S. Advanced Fuel Cycle (AFC) program, however, little irradiation performance data exists for fuel forms containing significant fractions of minor actinides. The first irradiation tests of non-fertile high-actinide-content fuels are scheduled to begin in early 2003 in the Advanced Test Reactor (ATR). The irradiation test matrix was designed to provide basic information on the irradiation behavior of binary Pu-Zr alloy fuel and the effect of the minor actinides americium and neptunium on alloy fuel behavior, together and separately. Five variants of transuranic containing zirconium-based alloy fuels are included in the AFC-1 irradiation test matrix. These are (in wt.%) Pu-40Zr, Pu-60Zr, Pu-12Am-40Zr, Pu-10Np-40Zr and Pu-10Np-10Am-40Zr. PuN-ZrN based fuels containing Am and Np are also included. All five of the fuel alloys have been fabricated in the form of cylindrical fuel slugs by arc-casting. Short melt times, on the order or 5-20 seconds, prevent the volatilization of significant quantities of americium metal, despite the high melt temperatures characteristic of the arc-melting process. Alloy microstructure have been characterized by x-ray diffraction and scanning electron microscopy. Thermal analysis has also been performed. The AFC-1 irradiation experiment configuration consists of twenty-four sodium bonded fuel specimens sealed in helium filled secondary capsules. The first capsule has a design burnup to 7 at.% 239 Pu; goal peak burnup of the second capsule is ∼18 at%. Capsule assemblies are placed within an aluminum flow-through basket

  11. Metal cation controls phosphate release in the myosin ATPase.

    Science.gov (United States)

    Ge, Jinghua; Huang, Furong; Nesmelov, Yuri E

    2017-11-01

    Myosin is an enzyme that utilizes ATP to produce a conformational change generating a force. The kinetics of the myosin reverse recovery stroke depends on the metal cation complexed with ATP. The reverse recovery stroke is slow for MgATP and fast for MnATP. The metal ion coordinates the γ phosphate of ATP in the myosin active site. It is accepted that the reverse recovery stroke is correlated with the phosphate release; therefore, magnesium "holds" phosphate tighter than manganese. Magnesium and manganese are similar ions in terms of their chemical properties and the shell complexation; hence, we propose to use these ions to study the mechanism of the phosphate release. Analysis of octahedral complexes of magnesium and manganese show that the partial charge of magnesium is higher than that of manganese and the slightly larger size of manganese ion makes its ionic potential smaller. We hypothesize that electrostatics play a role in keeping and releasing the abstracted γ phosphate in the active site, and the stronger electric charge of magnesium ion holds γ phosphate tighter. We used stable myosin-nucleotide analog complex and Raman spectroscopy to examine the effect of the metal cation on the relative position of γ phosphate analog in the active site. We found that in the manganese complex, the γ phosphate analog is 0.01 nm further away from ADP than in the magnesium complex. We conclude that the ionic potential of the metal cation plays a role in the retention of the abstracted phosphate. © 2017 The Protein Society.

  12. Uranyl oxo activation and functionalization by metal cation coordination

    International Nuclear Information System (INIS)

    Arnold Polly, L.; Pecharman, A. F.; Hollis, E.; Parsons, S.; Love, J. B.; Yahia, A.; Maron, L.; Yahia, A.; Maron, L.

    2010-01-01

    The oxo groups in the uranyl ion [UO 2 ] 2+ - one of many oxo cations formed by metals from across the periodic table - are particularly inert, which explains the dominance of this ion in the laboratory and its persistence as an environmental contaminant. In contrast, transition metal oxo (M=O) compounds can be highly reactive and carry out difficult reactions such as the oxygenation of hydrocarbons. Here we show how the sequential addition of a lithium metal base to the uranyl ion constrained in a 'Pacman' environment results in lithium coordination to the U=O bonds and single-electron reduction. This reaction depends on the nature and stoichiometry of the lithium reagent and suggests that competing reduction and C-H bond activation reactions are occurring. (authors)

  13. Uranyl oxo activation and functionalization by metal cation coordination

    Energy Technology Data Exchange (ETDEWEB)

    Arnold Polly, L; Pecharman, A F; Hollis, E; Parsons, S; Love, J B [Univ Edinburgh, EaStCHEM Sch Chem, Edinburgh EH9 3JJ, Midlothian (United Kingdom); Yahia, A; Maron, L [Univ Toulouse 3, LPCNO, UMR 5215, INSA, CNRS, F-31077 Toulouse 4 (France); Yahia, A; Maron, L [Univ Montpellier 2, ENSCM, CNRS, ICSM, UMR 5257, CEA, Ctr Marcoule, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    The oxo groups in the uranyl ion [UO{sub 2}]{sup 2+} - one of many oxo cations formed by metals from across the periodic table - are particularly inert, which explains the dominance of this ion in the laboratory and its persistence as an environmental contaminant. In contrast, transition metal oxo (M=O) compounds can be highly reactive and carry out difficult reactions such as the oxygenation of hydrocarbons. Here we show how the sequential addition of a lithium metal base to the uranyl ion constrained in a 'Pacman' environment results in lithium coordination to the U=O bonds and single-electron reduction. This reaction depends on the nature and stoichiometry of the lithium reagent and suggests that competing reduction and C-H bond activation reactions are occurring. (authors)

  14. The electrodeposition and rare earths reduction in the molten salt actinides recovery systems using liquid metal

    International Nuclear Information System (INIS)

    Shim, J-B.; Lee, J-H.; Kwon, S-W.; Ahn, B-G.; Woo, M-S.; Lee, B-J.; Kim, E-H.; Park, H-S.; Yoo, J-H.

    2005-01-01

    A pyrochemical partitioning system uses liquid metals such as cadmium and bismuth in order to recover the actinide metals from a molten salt mixture containing rare earth fission product metals. The liquid metals play roles as a cathode in the electrowinning or an extracting phase in the reductive extraction operation. The product resulting from the above operations is metal-cadmium or-bismuth alloy, which should contain the rare earth element amounts as low as possible for a transmutation purpose. In this study, the electrodeposition behaviours of uranium and lanthanide elements such as La, Ce and Nd were investigated for solid molybdenum and liquid cadmium electrodes in a molten LiCl-KCl eutectic salt. Electrochemical methods used are a cyclic voltammetry (CV) and a chronopotentiometry for monitoring the salt phase and recovering the metals, respectively. The CV graphs for monitoring the oxidizing agent CdCl 2 in the salt phase were obtained. These show a time dependently disappearance of the oxidizing agent corresponding to the formation of UCl 3 by inserting the uranium metal into the salt. Also, a sequential oxidation technique which is added at a controlled amount of the oxidizing agents into the salt phase was applied. It was found that this method is feasible for the selective reduction of the rare earths content in liquid metal alloys. (author)

  15. Binding properties of oxacalix[4]arenes derivatives toward metal cations

    International Nuclear Information System (INIS)

    Mellah, B.

    2006-11-01

    The objective of this work was to establish the binding properties of oxacalix[4]arene derivatives with different numbers of the oxa bridges, functional groups (ketones, pyridine, ester, amide and methoxy) and conformations. Their interactions with alkali and alkaline-earth, heavy and transition metal cations have been evaluated according to different approaches: (i) extraction of corresponding picrates from an aqueous phase into dichloromethane; (ii) determination of the thermodynamic parameters of complexation in methanol and/or acetonitrile by UV-spectrophotometry and micro-calorimetry; (iii) determination of the stoichiometry of the complexes by ESI-MS; (iv) 1 H-NMR titrations allowing to localize the metal ions in the ligand cavity. In a first part dealing on homo-oxacalix[4]arenes, selectivities for Na + , K + , Ca 2+ , Pb 2+ and Mn 2+ of ketones derivatives was shown. The presence of oxa bridge in these derivatives increases their efficiency while decreasing their selectivity with respect to related calixarenes. The pyridine derivative prefers transition and heavy metal cations, in agreement with the presence of the soft nitrogen atoms. In the second part, di-oxacalix[4]arene ester and secondary amide derivatives were shown to be less effective than tertiary amide counterparts but to present high selectivities for Li + , Ba 2+ , Zn 2+ and Hg 2+ . A third part devoted to the octa-homo-tetra-oxacalix[4]arene tetra-methoxy shows that the 1:1 metal complexes formed are generally more stable than those of calixarenes, suggesting the participation of the oxygen atoms of the bridge in the complexation. Selectivity for Cs + , Ba 2+ , Cu 2+ and Hg 2+ were noted. (author)

  16. The effect of actinides on the microstructural development in a metallic high-level nuclear waste form

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D. D., Jr.; Sinkler, W.; Abraham, D. P.; Richardson, J. W., Jr.; McDeavitt, S. M.

    1999-10-25

    Waste forms to contain material residual from an electrometallurgical treatment of spent nuclear fuel have been developed by Argonne National Laboratory. One of these waste forms contains waste stainless steel (SS), fission products that are noble to the process (e.g., Tc, Ru, Pd, Rh), Zr, and actinides. The baseline composition of this metallic waste form is SS-15wt.% Zr. The metallurgy of this baseline alloy has been well characterized. On the other hand, the effects of actinides on the alloy microstructure are not well understood. As a result, SS-Zr alloys with added U, Pu, and/or Np have been cast and then characterized, using scanning electron microscopy, transmission electron microscopy, and neutron diffraction, to investigate the microstructural development in SS-Zr alloys that contain actinides. Actinides were found to congregate non-uniformally in a Zr(Fe,Cr,Ni){sub 2+x} phase. Apparently, the actinides were contained in varying amounts in the different polytypes (C14, C15, and C36) of the Zr(Fe,Cr,Ni){sub 2+x} phase. Heat treatment of an actinide-containing SS-15 wt.% Zr alloy showed the observed microstructure to be stable.

  17. An Overview on Metal Cations Extraction by Azocalixarenes

    Directory of Open Access Journals (Sweden)

    Hasalettin Deligöz

    2011-12-01

    Full Text Available In this overview, our main aim is to present the design, preparation, characterization, and extraction/sorption properties of chromogenic azocalix[4]arenes (substituted with different groups toward metal cations. Azocalixarenes, which contain a conjugated chromophore, i.e. azo (-N=N- group are synthesized in “one-pot” procedures in satisfactory yields. A wide variety of applications is expected by the functionalization of the side arms. Some of them are used to complex with metal ions. These macrocycles due to their bowl-shaped geometry are indeed used as hosts allowing ionic or organic guests to coordinate onto their cavity. The azocalixarene based ionophores are generally applied in various fields such as catalyst recovery, power plant, agriculture, metals finishing, microelectonics, biotechnology processes, rare earths speciation, and potable water purification. Besides these, they find applications in the area of selective ion extractions, receptors, optical devices, chemical sensor devices, the stationary phase for capillary chromatography, ion transport membranes, and luminescence probes etc. This survey is focused to provide overview an of the versatile nature of azocalix[n]arenes as highly efficient extractants for metal ions treated as pollutants.

  18. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    Science.gov (United States)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  19. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    International Nuclear Information System (INIS)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-01-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  20. Actinide uptake by transferrin and ferritin metalloproteins

    International Nuclear Information System (INIS)

    Den Auwer, C.; Llorens, I.; Moisy, Ph.; Vidaud, C.; Goudard, F.; Barbot, C.; Solari, P.L.; Funke, H.

    2005-01-01

    In order to better understand the mechanisms of actinide uptake by specific biomolecules, it is essential to explore the intramolecular interactions between the cation and the protein binding site. Although this has long been done for widely investigated transition metals, very few studies have been devoted to complexation mechanisms of actinides by active chelation sites of metalloproteins. In this field, X-ray absorption spectroscopy has been extensively used as a structural and electronic metal cation probe. The two examples that are presented here are related to two metalloproteins in charge of iron transport and storage in eukaryote cells: transferrin and ferritin. U(VI)O 2 2+ , Np(IV) and Pu(IV) have been selected because of their possible role as contaminant from the geosphere. (orig.)

  1. IR spectroscopy of cationized aliphatic amino acids: Stability of charge-solvated structure increases with metal cation size

    NARCIS (Netherlands)

    Drayss, M. K.; Armentrout, P. B.; Oomens, J.; Schaefer, M.

    2010-01-01

    Gas-phase structures of alkali metal cationized (Li+, Na+,K+, Rb+, and Cs+) proline (Pro) and N-methyl alanine have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser and computational modeling. Measured IRMPD spectra

  2. IR spectroscopy of cationized aliphatic amino acids: Stability of charge-solvated structure increases with metal cation size

    NARCIS (Netherlands)

    Drayß, M.K.; Armentrout, P.B.; Oomens, J.; Schäfer, M.

    2010-01-01

    Gas-phase structures of alkali metal cationized (Li+, Na+, K+, Rb+, and Cs+) proline (Pro) and N-methyl alanine have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser and computational modeling. Measured IRMPD

  3. The actinides

    International Nuclear Information System (INIS)

    Bagnall, K.W.

    1987-01-01

    This chapter of coordination compound chemistry is devoted to the actinides and starts with a general survey. Most of the chapter relates to thorium and uranium but protactinium, neptunium and plutonium are included. There are sections on nitrogen, phosphorus, sulfur, selenium, tellurium and halogen ligands of the metals in their +3, +4, +5 and +6 oxidation states and of the transplutonium elements in their +2, +3, +4, and +5 oxidation states. (UK)

  4. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan Balasubramanian

    2009-07-18

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP

  5. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    International Nuclear Information System (INIS)

    Balasubramanian, Krishnan

    2009-01-01

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP

  6. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  7. A contribution to the study of the extraction of mineral acids and of actinide (IV) and (VI) cations by N,N-dialkylamides

    International Nuclear Information System (INIS)

    Condamines, N.

    1990-03-01

    N,N-dialkylamides are alternate extractants to tributylphosphate, TBP, for the actinides separation in nuclear fuel reprocessing. N,N-di (2-ethyl hexyl) butyramide and N,N-di (2 ethyl hexyl) isobutyramide are selected for their sufficient extraction and partition ability towards actinides (IV) and (VI) without coextracting fission products. Mechanisms of HNO 3 , UO 2 2+ , Pu 4+ , Th 4+ are investigated. Nitric acid extraction is due to the competitive formation of the species (HNO 3 )L 2 , (HNO 3 )L, (HNO 3 ) 2 L (L: DOBA or DOiBA). An hydrogen bond is the driving force of the transfer. For low acidity media, amides are neutral extractants. Physical interactions, between free ligand and metallic complex, arise for high amide concentrations. Taking into account the non-ideality of the organic medium by a hard spheres mixture model, we estimate that such interactions are far from negligible and very specific to the amide group. Unlike TBP, when increasing acidity, amides behave as anionic extractants. DOBA and DOiBA appear to be satisfactory extractants for fuel reprocessing [fr

  8. Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at.% burnup

    International Nuclear Information System (INIS)

    Ohta, H.; Yokoo, T.; Ogata, T.; Inoue, T.; Ougier, M.; Glatz, J.P.; Fontaine, B.; Breton, L.

    2007-01-01

    Fast reactor metal fuels containing minor actinides (MAs: Np, Am, Cm) and rare earths (REs) have been irradiated in the fast reactor PHENIX. In this experiment, four types of fuel alloys, U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA-5RE and U-19Pu-10Zr-5MA (wt.%), are loaded into part of standard metal fuel stacks. The postirradiation examinations will be conducted at ∼2.4, ∼7 and ∼11 at.% burnup. As for the low-burnup fuel pins, nondestructive postirradiation tests have already been performed and the fuel integrity was confirmed. Furthermore, the irradiation experiment for the intermediate burnup goal of ∼7 at.% was completed in July 2006. For the irradiation period of 356.63 equivalent full-power days, the neutron flux level remained in the range of 3.5-3.6 x 10 15 n/cm 2 /s at the axial peak position. On the other hand, the maximum linear power of fuel alloys decreased gradually from 305-315 W/cm (beginning of irradiation) to 250-260 W/cm (end of irradiation). The discharged peak burnup was estimated to be 6.59-7.23 at.%. The irradiation behavior of MA-containing metal fuels up to 7 at.% burnup was predicted using the ALFUS code, which was developed for U-Pu-Zr ternary fuel performance analysis. As a result, it was evaluated that the fuel temperature is distributed between ∼410 deg. C and ∼645 deg. C at the end of the irradiation experiment. From the stress-strain analysis based on the preliminarily employed cladding irradiation properties and the FCMI stress distribution history, it was predicted that a cladding strain of not more than 0.9% would appear. (authors)

  9. Electrorecovery of actinides at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, Michael E [Los Alamos National Laboratory; Oldham, Warren J [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  10. Mechanism of selective ion flotation. 1. Selective flotation of transition metal cations

    International Nuclear Information System (INIS)

    Walkowiak, W.

    1991-01-01

    An experimental investigation is presented of the batch ion flotation of the transition metal cations Cr 3+ , Fe 3+ , Mn 2+ , Co 2+ , Zn 2+ , Ag + , Cd 2+ , and In 3+ from acidic aqueous solutions with sodium dodecylsulfonate and sodium dodecylbenzenesulfonate as anionic surfactants. The selectivity sequences Mn 2+ 2+ 2+ 3+ 3+ and Ag + 2+ 3+ are established, both from data for single and multi-ion metal cations solutions, where sublate was not formed in the bulk solution. Good agreement between the selectivity sequences and the values of ionic potential of metal cations was found. An experimental investigation was also performed on the solubility of sublates. The sublates solubility values are discussed in terms of ionic potentials of metal cations as well as of the surfactant size

  11. Disposal of heavy metal cations in aqueous media by adsorption on coal to Ghazni

    Directory of Open Access Journals (Sweden)

    О.М. Заславський

    2008-03-01

    Full Text Available  Adsorption of Pb and Cu cations and their mixture on the surface of modified and non-modified anti-gas coal trough different time intervals have been studied. The maximum adsorption capacity of coal relative to each cations have been determined. Absence  of concurrence between cations of Pb and Cu during adsorption from mixture is explained by difference of  types of their interaction with coal surface. The high effectiveness and perspectivities of application of anti-gas coal for neutralization of heavy metal cations in aqueous solution was shown.

  12. The Metal Cation Chelating Capacity of Astaxanthin. Does This Have Any Influence on Antiradical Activity?

    Directory of Open Access Journals (Sweden)

    Ana Martínez

    2012-01-01

    Full Text Available In this Density Functional Theory study, it became apparent that astaxanthin (ASTA may form metal ion complexes with metal cations such as Ca+2, Cu+2, Pb+2, Zn+2, Cd+2 and Hg+2. The presence of metal cations induces changes in the maximum absorption bands which are red shifted in all cases. Therefore, in the case of compounds where metal ions are interacting with ASTA, they are redder in color. Moreover, the antiradical capacity of some ASTA-metal cationic complexes was studied by assessing their vertical ionization energy and vertical electron affinity, reaching the conclusion that metal complexes are slightly better electron donors and better electron acceptors than ASTA.

  13. Fabrication of U-Pu-Zr metallic fuel containing minor actinides

    International Nuclear Information System (INIS)

    Kurata, Masaki; Sasahara, Akihiro; Inoue, Tadashi; Betti, M.; Babelot, J.F.; Spirlet, J.C.; Koch, L.

    1997-01-01

    Rods of UPuZr alloy containing 5% minor actinides, 2% minor actinides and 2% rare-earth elements, and 5% minor actinides and 5% rare-earth elements have been fabricated by casting in yttria molds. Parts of the ingots were cut off for quantitative analysis and the rods characterized to the required extent, which included measurement of length, weight, diameter, and bending. For selected samples, metallographic study was carried out to examine the dispersion of the various phases contained in the alloy. Finally, the rods were encapsulated in stainless steel pin with the UPuZr reference after sodium bonding for the irradiation study. (author)

  14. Analysis of evidence for an irreproducible martensite-like behavior in actinide metals and alloys below room temperature

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1976-05-01

    Evidence is presented which suggests that a low-temperature, martensite-like behavior may be quite general in actinide metals and their alloys and compounds. There may be no metastable martensitic embryos in an α-phase structure of high-purity U, Np, and Pu formed by a diffusion-controlled β → α transformation, and thus no evidence for low-temperature phases. The effect of impurity content on observed low-temperature physical properties of these actinides is noted. It is proposed that impurities may be playing several roles. They may permit an electron redistribution in dilute alloys dependent upon the length of holding time. Experimentally determined values for the electronic contribution to heat capacity and the density of states of U, Np, and Pu should thus vary over a considerable range, as has been observed. Variations in interstitial ordering of impurity atoms with processing may yield stacking variants of each basic close-packed actinide metal structure and thus determine the number and structure of low-temperature phase. 46 references

  15. Interactions of nucleobases with alkali earth metal cations--electrospray ionization mass spectrometric study.

    Science.gov (United States)

    Frańska, Magdalena

    2007-01-01

    Interactions of nucleobases with alkali earth metal cations have been studied by electrospray ionization mass spectrometry (ESI-MS). Nucleobases containing at least one oxygen atom form stable complexes with alkali earth metal cations. This phenomenon can be explained on the grounds of the well known theory of hard and soft acids and bases. Uracil and thymine make complexes only when in their deprotonoted forms. The cations of great radii (Sr(2+), Ba(2+)) are more prone to form complexes of stoichiometry 1:1 with uracil and thymine than the cations of small radii (Mg(2+), Ca(2+)). On the other hand, Mg(2+) forms complexes of stoichiometry 2:1 and 3:2 with uracil and thymine. Gas-phase stabilities of the 1:1 complexes are higher for the cations of small radii, in contrast to the solution stabilities. For cytosine and 9- methylhypoxantine the 1:1 complexes of their deprotonated forms are observed at higher cone voltage as a result of HCl molecule loss from the complexes containing the counter ion (Cl(-)). In solution, more stable complexes are formed with metal cations of low radii. Gas-phase stability of the complexes formed by deprotonated 9- methyl-hypoxantine increases with increasing metal cation radius.

  16. Infrared multiple photon dissociation action spectroscopy of alkali metal cation-cyclen complexes: Effects of alkali metal cation size on gas-phase conformation

    NARCIS (Netherlands)

    Austin, C.A.; Chen, Y.; Kaczan, C.M.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cationized complexes of cyclen (1,4,7,10-tetraazacyclododecane) are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy and electronic structure theory calculations. The measured IRMPD action spectra of four M+(cyclen) complexes are

  17. Immobilized poly-L-histidine for chelation of metal cations and metal oxyanions

    International Nuclear Information System (INIS)

    Malachowski, Lisa; Holcombe, James A.

    2003-01-01

    The biohomopolymer poly-L-histidine (PLHis) was immobilized onto controlled pore glass (CPG) and its metal binding capabilities evaluated through the use of a flow injection-flame atomic absorption system. The metal binding capability of PLHis-CPG was determined through the analysis of the generated breakthrough curves. The polymer likely coordinates cationic metals through the imidazole side chain (pK a ∼6) present on each histidine residue with both strong and weak binding sites for Cu 2+ , Cd 2+ , Co 2+ , and Ni 2+ . Weak to minimal binding was observed for Mn 2+ , Ca 2+ , Mg 2+ , Na + , and Cr 3+ . The bound metals are quantitatively released from the column with an acid strip. It has also been shown that the protonated imidazole side chain present in acidic solutions is capable of binding metal oxyanions such as chromates, arsenates, and selenites; although oxyanion binding currently exhibits interferences from competing anions in solution, such as sulfate and nitrate. The interference in oxyanion binding is less severe in the presence of chloride, phosphate, and acetate. PLHis-CPG exhibits a capacity of ∼30 μmol Cu 2+ /g CPG in neutral to basic conditions, and a capacity of ∼70 μmol Cr(VI)/g CPG, ∼4 μmol As(V)/g CPG, and ∼4 μmol Se(IV)/g CPG in acidic conditions

  18. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  19. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism

    OpenAIRE

    Boughlala, Z.; Guerra, C.F.; Bickelhaupt, F.M.

    2016-01-01

    Abstract We have analyzed the structure and bonding of gas?phase Cl?X and [HCl?X]+ complexes for X+=?H+, CH3 +, Li+, and Na+, using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl? and HCl for the various cations. The Cl?X bond becomes longer and weaker along X+?=?H+, CH3 +, Li+, and Na+. Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence ...

  20. Neutral glycoconjugated amide-based calix[4]arenes: complexation of alkali metal cations in water.

    Science.gov (United States)

    Cindro, Nikola; Požar, Josip; Barišić, Dajana; Bregović, Nikola; Pičuljan, Katarina; Tomaš, Renato; Frkanec, Leo; Tomišić, Vladislav

    2018-02-07

    Cation complexation in water presents a unique challenge in calixarene chemistry, mostly due to the fact that a vast majority of calixarene-based cation receptors is not soluble in water or their solubility has been achieved by introducing functionalities capable of (de)protonation. Such an approach inevitably involves the presence of counterions which compete with target cations for the calixarene binding site, and also rather often requires the use of ion-containing buffer solutions in order to control the pH. Herein we devised a new strategy towards the solution of this problem, based on introducing carbohydrate units at the lower or upper rim of calix[4]arenes which comprise efficient cation binding sites. In this context, we prepared neutral, water-soluble receptors with secondary or tertiary amide coordinating groups, and studied their complexation with alkali metal cations in aqueous and methanol (for the comparison purpose) solutions. Complexation thermodynamics was quantitatively characterized by UV spectrometry and isothermal titration calorimetry, revealing that one of the prepared tertiary amide derivatives is capable of remarkably efficient (log K ≈ 5) and selective binding of sodium cations among alkali metal cations in water. Given the ease of the synthetic procedure used, and thus the variety of accessible analogues, this study can serve as a platform for the development of reagents for diverse purposes in aqueous media.

  1. Esterification of phenyl acetic acid with p-cresol using metal cation exchanged montmorillonite nanoclay catalysts.

    Science.gov (United States)

    Bhaskar, M; Surekha, M; Suma, N

    2018-02-01

    The liquid phase esterification of phenyl acetic acid with p -cresol over different metal cation exchanged montmorillonite nanoclays yields p -cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (M n +  = Al 3+ , Zn 2+ , Mn 2+ , Fe 3+ , Cu 2+ ) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al 3+ -montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p -cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1 H NMR and 13 C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation.

  2. Binding properties of oxacalix[4]arenes derivatives toward metal cations; Interactions entre cations metalliques et derives des oxacalix[4]arenes

    Energy Technology Data Exchange (ETDEWEB)

    Mellah, B

    2006-11-15

    The objective of this work was to establish the binding properties of oxacalix[4]arene derivatives with different numbers of the oxa bridges, functional groups (ketones, pyridine, ester, amide and methoxy) and conformations. Their interactions with alkali and alkaline-earth, heavy and transition metal cations have been evaluated according to different approaches: (i) extraction of corresponding picrates from an aqueous phase into dichloromethane; (ii) determination of the thermodynamic parameters of complexation in methanol and/or acetonitrile by UV-spectrophotometry and micro-calorimetry; (iii) determination of the stoichiometry of the complexes by ESI-MS; (iv) {sup 1}H-NMR titrations allowing to localize the metal ions in the ligand cavity. In a first part dealing on homo-oxacalix[4]arenes, selectivities for Na{sup +}, K{sup +}, Ca{sup 2+}, Pb{sup 2+} and Mn{sup 2+} of ketones derivatives was shown. The presence of oxa bridge in these derivatives increases their efficiency while decreasing their selectivity with respect to related calixarenes. The pyridine derivative prefers transition and heavy metal cations, in agreement with the presence of the soft nitrogen atoms. In the second part, di-oxacalix[4]arene ester and secondary amide derivatives were shown to be less effective than tertiary amide counterparts but to present high selectivities for Li{sup +}, Ba{sup 2+}, Zn{sup 2+} and Hg{sup 2+}. A third part devoted to the octa-homo-tetra-oxacalix[4]arene tetra-methoxy shows that the 1:1 metal complexes formed are generally more stable than those of calixarenes, suggesting the participation of the oxygen atoms of the bridge in the complexation. Selectivity for Cs{sup +}, Ba{sup 2+}, Cu{sup 2+} and Hg{sup 2+} were noted. (author)

  3. Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations

    International Nuclear Information System (INIS)

    Wang Yu; Wang Lei; Fang Guodong; Herath, H.M.S.K.; Wang Yujun; Cang Long; Xie Zubin; Zhou Dongmei

    2013-01-01

    Biochar plays an important role in the behaviors of organic pollutants in the soil environment. The role of humic acid (HA) and metal cations on the adsorption affinity of polychlorinated biphenyls (PCBs) to the biochars in an aqueous medium and an extracted solution from a PCBs-contaminated soil was studied using batch experiments. Biochars were produced with pine needles and wheat straw at 350 °C and 550 °C under anaerobic condition. The results showed that the biochars had high adsorption affinity for PCBs. Pine needle chars adsorbed less nonplanar PCBs than planar ones due to dispersive interactions and separation. Coexistence of HA and metal cations increased PCBs sorption on the biochars accounted for HA adsorption and cation complexation. The results will aid in a better understanding of biochar sorption mechanism of contaminants in the environment. - Highlights: ► Application of the biochars for PCBs sorption was a new and effective way. ► The biochars had higher adsorption affinity for PCBs in the soil extracted solution. ► Pine needle chars adsorbed less nonplanar PCBs than planar ones. ► Coexisting humic acid or metal cations increased PCBs sorption on the biochars. - The biochars had higher adsorption affinity for PCBs in the extracted soil solution because coexisting humic acid and metal cations increased their sorption.

  4. A contribution to the study of the extraction of mineral acids and of actinide (IV) and (VI) cations by N,N-dialkylamides; Contribution a l'etude de l'extraction d'acides mineraux et de cations actinides aux degres d'oxydation (IV) et (VI) par des N,N-dialkylamides

    Energy Technology Data Exchange (ETDEWEB)

    Condamines, N

    1990-03-15

    N,N-dialkylamides are alternate extractants to tributylphosphate, TBP, for the actinides separation in nuclear fuel reprocessing. N,N-di (2-ethyl hexyl) butyramide and N,N-di (2 ethyl hexyl) isobutyramide are selected for their sufficient extraction and partition ability towards actinides (IV) and (VI) without coextracting fission products. Mechanisms of HNO{sub 3}, UO{sub 2}{sup 2+}, Pu{sup 4+}, Th{sup 4+} are investigated. Nitric acid extraction is due to the competitive formation of the species (HNO{sub 3})L{sub 2}, (HNO{sub 3})L, (HNO{sub 3}){sub 2}L (L: DOBA or DOiBA). An hydrogen bond is the driving force of the transfer. For low acidity media, amides are neutral extractants. Physical interactions, between free ligand and metallic complex, arise for high amide concentrations. Taking into account the non-ideality of the organic medium by a hard spheres mixture model, we estimate that such interactions are far from negligible and very specific to the amide group. Unlike TBP, when increasing acidity, amides behave as anionic extractants. DOBA and DOiBA appear to be satisfactory extractants for fuel reprocessing.

  5. Performance comparison of metallic, actinide burning fuel in lead-bismuth and sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Weaver, K.D.; Herring, J.S.; Macdonald, P.E.

    2001-01-01

    Various methods have been proposed to ''incinerate'' or ''transmute'' the current inventory of transuranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years. (author)

  6. Use of Electro-spray Ionization Mass Spectrometry (ESI-MS) for the characterization of complexes 'ligand - metallic cations' in solution

    Energy Technology Data Exchange (ETDEWEB)

    Berthon, Laurence; Zorz, Nicole; Lagrave, Stephanie; Gannaz, Benoit; Hill, Clement [CEA-Marcoule DEN-DRCP-SCPS-LCSE, BP 17171, 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    In the framework of nuclear waste reprocessing, separation processes of minor actinides from fission products are developed by Cea. In order to understand the mechanisms involved in the extraction processes, the 'ligand/metallic cation' complexes, formed in the organic phases are characterized by electro-spray-mass-spectrometry (ESI-MS). This paper deals with the extraction of lanthanides (III) and americium (III) cations by an organic phase composed of a malonamide or / and a dialkyl phosphoric acid, diluted in an aliphatic diluent. For the dialkyl phosphoric acid, Ln(DEHP){sub 3}(HDEHP){sub 3} complexes are observed and in the presence of a large excess of Ln(NO{sub 3}){sub 3}, dinuclear species are also observed. For the malonamide extractant, it appears that the complexes formed in the organic phase are of the Nd(NO{sub 3}){sub 3}D{sub x} type, with 2 {<=} x {<=} 4: their distributions depend on the ratio [Ln]/[DMDOHEMA]. When the two extractants are present in the organic phase, mixed 'Ln-malonamide-dialkyl phosphoric acid' species are observed. The influence of several parameters, such as extractant concentration, solute concentration, aqueous acidity and the nature of the cations (lanthanides or americium) are studied. (authors)

  7. Introducing zinc cations into zeolite Y via the reduction of HY with zinc metal vapour

    Science.gov (United States)

    Seidel, A.; Boddenberg, B.

    1996-01-01

    Zeolites HY and NaY which were contacted with zinc metal vapour at 420°C were investigated by carbon monoxide and xenon adsorption as well as 129Xe NMR spectroscopy. The reaction of zeolite HY results in the incorporation of Zn 2+ cations which are shown to populate the supercage positions S II and S III to an unusually high extent. The supercage zinc cation concentration strongly decreases when the material is saturated with water and subsequently dehydrated at 400°C. The zeolite NaY turns out to be inert towards the reaction with zinc metal vapour.

  8. Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative.

    Science.gov (United States)

    Požar, Josip; Nikšić-Franjić, Ivana; Cvetnić, Marija; Leko, Katarina; Cindro, Nikola; Pičuljan, Katarina; Borilović, Ivana; Frkanec, Leo; Tomišić, Vladislav

    2017-09-14

    The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na + cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL + complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL + stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1 H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.

  9. Systematic thermodynamic properties of actinide metal-oxygen systems at high temperatures: Emphasis on lower valence states

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Chandrasekharaiah, M.S.

    1975-01-01

    The thermodynamic data for the actinide metals and oxides (thorium to curium ) have been assessed, examined for consistency, and compared with the lanthanides. Correlations relating the enthalpies of formation of the solid oxides with the corresponding aquo ions make possible the estimation of the thermodynamic properties of AmO 2 (s) and Am 2 O 3 (s) which are in accordance with vaporization data. The known thermodynamic properties of the substoichiometric dioxides MOsub(2-x)(s) at high temperatures demonstrate the relative stabilities of valence states less than 4+ and lead to the examination of stability requirements for the sesquioxides M 2 O 3 (s) and the monoxides MO(s). Sequential trends in the gaseous metals, monoxides and dioxides are examined, compared, and contrasted with the lanthanides. (author)

  10. Partition of actinides and fission products between metal and molten salt phases: Theory, measurement, and application to IFR pyroprocess development

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Johnson, T.R.

    1993-10-01

    The chemical basis of Integral Fast Reactor fuel reprocessing (pyroprocessing) is partition of fuel, cladding, and fission product elements between molten LiCl-KCl and either a solid metal phase or a liquid cadmium phase. The partition reactions are described herein, and the thermodynamic basis for predicting distributions of actinides and fission products in the pyroprocess is discussed. The critical role of metal-phase activity coefficients, especially those of rare earth and the transuranic elements, is described. Measured separation factors, which are analogous to equilibrium constants but which involve concentrations rather than activities, are presented. The uses of thermodynamic calculations in process development are described, as are computer codes developed for calculating material flows and phase compositions in pyroprocessing.

  11. Partition of actinides and fission products between metal and molten salt phases: Theory, measurement, and application to IFR pyroprocess development

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.

    1993-01-01

    The chemical basis of Integral Fast Reactor fuel reprocessing (pyroprocessing) is partition of fuel, cladding, and fission product elements between molten LiCl-KCl and either a solid metal phase or a liquid cadmium phase. The partition reactions are described herein, and the thermodynamic basis for predicting distributions of actinides and fission products in the pyroprocess is discussed. The critical role of metal-phase activity coefficients, especially those of rare earth and the transuranic elements, is described. Measured separation factors, which are analogous to equilibrium constants but which involve concentrations rather than activities, are presented. The uses of thermodynamic calculations in process development are described, as are computer codes developed for calculating material flows and phase compositions in pyroprocessing

  12. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  13. Contribution to the study of diffusion in rare earth metals and actinides

    International Nuclear Information System (INIS)

    Marbach, Gabriel.

    1978-07-01

    This work describes several experiments carried out in order to understand the process of self diffusion in rare earth and actinides (self diffusion of body centered cubic γ neptunium, diffusion of gadolinium in body centered delta cerium, measurement of the activation volume of face centered cubic γ cerium). The unstable electronic structure of some elements cannot be correlate with anomalous diffusion properties. In fact the diffusion parameters of neptunium and plutonium are similar (high diffusivity and low activation energy) whereas the electronic structure of neptunium is stable and that of plutonium is temperature dependent. The negative activation volume of the body centered cubic phases of plutonium and cerium does not indicate a particular diffusion mechanism since self diffusion is faster under pressure in face centered cubic γ cerium where a vacancy mechanism is assumed according to earlier results. The vacancy mechanism is the most probable diffusion process in the body centered cubic and compact phases of rare earths and actinides [fr

  14. Bioaccessibility of metal cations in soil is linearly related to its water exchange rate constant.

    Science.gov (United States)

    Laird, Brian D; Peak, Derek; Siciliano, Steven D

    2011-05-01

    Site-specific risk assessments often incorporate the concepts of bioaccessibility (i.e., contaminant fraction released into gastrointestinal fluids) or bioavailability (i.e., contaminant fraction absorbed into systemic circulation) into the calculation of ingestion exposure. We evaluated total and bioaccessible metal concentrations for 19 soil samples under simulated stomach and duodenal conditions using an in vitro gastrointestinal model. We demonstrated that the median bioaccessibility of 23 metals ranged between exchange rates of metal cations (k(H₂O)) indicated that desorption kinetics may influence if not control metal bioaccessibility.

  15. DISSOLUTION OF METAL OXIDES AND SEPARATION OF URANIUM FROM LANTHANIDES AND ACTINIDES IN SUPERCRITICAL CARBON DIOXIDE

    Energy Technology Data Exchange (ETDEWEB)

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2013-10-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO2 modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO2 and counter current stripping columns is presented.

  16. A Study of Complexation-ability of Neutral Schiff Bases to Some Metal Cations

    OpenAIRE

    Topal, Giray; Tümerdem, Recep; Basaran, Ismet; Gümüş, Arzu; Cakir, Umit

    2007-01-01

    The constants of the extraction equilibrium and the distribution for dichloromethane as an organic solvent having low dielectric constant of metal cations with chiral Schiff bases, benzaldehydene-(S)-2-amino-3-phenylpropanol (I), ohydroxybenzaldehydene-( S)-2-amino-3-phenyl-propanol (II), benzaldehydene-(S)-2- amino-3-methylbutanol (III) with anionic dyes [4-(2-pyridylazo)-resorcinol mono sodium monohydrate (NaPar), sodium picrat (NaPic) and potassium picrat (KPic)] and some heavy metal chlor...

  17. Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table

    NARCIS (Netherlands)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F. Matthias

    2017-01-01

    We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium,

  18. Environmental Remediation and Sorption of Metal Cations Using Aluminum Pillared Nano-Bentonite

    Science.gov (United States)

    Rifai, Rifai; Abou El Safa, Magda

    2015-04-01

    The release of heavy metal cations into the environment is a potential threat to water and soil quality. Some clay minerals play an important role, as physical and chemical barriers, for the isolation of metal-rich wastes and to adsorb heavy metals as well as to avoid their environmental dispersion. In the present study, the bentonitic clay (southeast El-Hammam City, Egypt) was subjected to pillaring using hydroxyl-aluminum solution. The XRD patterns of the Aluminum Pillared Nano-Bentonite (APNB) showed severe alteration of the crystal structure after pillaring. Poly metal solutions with different metal concentrations of Cu, Co, Ni, Zn, Cd and Pb (0.001, 0.005 and 0.01 moles), and pH (1, 2.5, 5 and 6) were subjected to treatment by the APNB. The removal process is very rapid and spontaneous and the contact time may be short (several minutes) for most adsorption to occur. The criterion for environmental remediation of APNB is less stringent and a short contact time is sufficient. The rate of Cu2+, Zn2+, Co2+, Cd2+, Ni2+ and Pb2+sorption remained higher or equal to the CEC. The sorption of metal ions by APNB are complex and probably involve several mechanisms. In general, APNB can be used to immobilize Cu2+, Zn2+, Co2+, Cd2+, Ni2+ and Pb2+ to any extent. For each metal ion, the most effective immobilization occurs over a particular pH around 5. According to the experimental data obtained, the uptake amount of the studied cations by APNB increased with increasing solution pH, sorbent dose and contact time. The preference of the APNB adsorption for heavy metal ions that are through the cation exchange processes decreases in the order: Cu2+>Zn2+>Co2+>Cd2+ >Ni2+ >Pb2+. Keywords: Bentonitic clay, Egypt, Aluminum Pillared Nano-Bentonite, heavy metal, environmental remediation

  19. Melt cationic and anionic composition effect on titanium group metal corrosion in halogenides of alkali earths

    International Nuclear Information System (INIS)

    Tkhaj, V.; Kovalik, O.Yu.; Dikunov, Yu.G.; P'yankova, S.P.

    1997-01-01

    A study was made on interaction of titanium group metals with melts of chlorides and chloride-fluorides of alkaline earth metals and magnesium. It was revealed that the rate of metal corrosion increased from BaCl 2 2 2 2 in chloride series. It is explained by amplification of oxidation activity of salt cation in the series: Ba 2+ 2+ 2+ 2+ . It was also determined that corrosion rate of titanium exceeded the one of zirconium and hafnium, became reducing power of titanium was the highest in the given group

  20. Mixed Metal Phosphonate- Phosphate Resins for Separation of Lanthanides from Actinides

    International Nuclear Information System (INIS)

    Clearfield, Abraham

    2017-01-01

    As indicated in the previous annual report the goals of this project are to develop procedures for efficient separation of lanthanides from actinides and curium from americium. These processes are required for the nuclear fuel cycle to minimize the waste and recover the valuable actinides. The basis for our study is that we have prepared a group of compounds that are porous and favor the uptake of ions with charges 3+ and 4+ over ions of lesser charge. The general formula for these materials is M(O 3 PC 6 H 4 PO 3 ) 1-x/2 (APO 4 )x·nH 2 O: where M=Zr 4+ , Sn 4+ , A=H, Na, or K and X=O, 0.5, 0.8, 1.0, 1.33 and 1.61-3. One of our tasks is to determine which members of this group of compounds are effective in carrying out the required separations. A difficulty in obtaining this required information is that the compounds are amorphous. That is they are not crystalline, therefore we need to resort to synchrotron data to obtain structural data which will be presented in detail. This information will be provided as a separate section.

  1. Mixed Metal Phosphonate- Phosphate Resins for Separation of Lanthanides from Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, Abraham [Texas A & M Univ., College Station, TX (United States)

    2017-10-24

    As indicated in the previous annual report the goals of this project are to develop procedures for efficient separation of lanthanides from actinides and curium from americium. These processes are required for the nuclear fuel cycle to minimize the waste and recover the valuable actinides. The basis for our study is that we have prepared a group of compounds that are porous and favor the uptake of ions with charges 3+ and 4+ over ions of lesser charge. The general formula for these materials is M(O3PC6H4PO3)1-x/2(APO4)x·nH2O: where M=Zr4+, Sn4+, A=H, Na, or K and X=O, 0.5, 0.8, 1.0, 1.33 and 1.61-3. One of our tasks is to determine which members of this group of compounds are effective in carrying out the required separations. A difficulty in obtaining this required information is that the compounds are amorphous. That is they are not crystalline, therefore we need to resort to synchrotron data to obtain structural data which will be presented in detail. This information will be provided as a separate section.

  2. Supercritical Carbon Dioxide-Soluble Ligands for Extracting Actinide Metal Ions from Porous Solids

    International Nuclear Information System (INIS)

    Joan Brennecke; Mark Dietz; Richard Barrans; Alabert Herlinger

    2003-01-01

    Numerous types of actinide-bearing waste materials are found throughout the DOE complex. Most of these wastes consist of large volumes of non-hazardous materials contaminated with relatively small quantities of actinide elements. Separation of these wastes into their inert and radioactive components would dramatically reduce the costs of stabilization and disposal. For example, the DOE is responsible for decontaminating concrete within 7000 surplus contaminated buildings. The best technology now available for removing surface contamination from concrete involves removing the surface layer by grit blasting, which produces a large volume of blasting residue containing a small amount of radioactive material. Disposal of this residue is expensive because of its large volume and fine particulate nature. Considerable cost savings would result from separation of the radioactive constituents and stabilization of the concrete dust. Similarly, gas diffusion plants for uranium enrichment contain valuable high-purity nickel in the form of diffusion barriers. Decontamination is complicated by the extremely fine pores in these barriers, which are not readily accessible by most cleaning techniques. A cost-effect method for the removal of radioactive contaminants would release this valuable material for salvage

  3. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hackbarth, Liisa

    2015-11-24

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H{sub 2}O){sub 5}][B(CN){sub 4}]{sub 3}.0.5 H{sub 2}O, where LRE{sup 3+} is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H{sub 2}O){sub 7}][B(CN){sub 4}]{sub 3} and the [HRE(H{sub 2}O){sub 8}][B(CN){sub 4}]{sub 3}.3 H{sub 2}O, where HRE{sup 3+} is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical

  4. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    International Nuclear Information System (INIS)

    Hackbarth, Liisa

    2015-01-01

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H_2O)_5][B(CN)_4]_3.0.5 H_2O, where LRE"3"+ is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H_2O)_7][B(CN)_4]_3 and the [HRE(H_2O)_8][B(CN)_4]_3.3 H_2O, where HRE"3"+ is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical measurements indicate that the tetracyanidoborates with rare earth metal cations

  5. Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Mendes, Luiz Fernando; Stevani, Cassius Vinicius; Zambotti-Villela, Leonardo; Yokoya, Nair Sumie; Colepicolo, Pio

    2014-01-01

    The macroalga Gracilaria domingensis is an important resource for the food, pharmaceutical, cosmetic, and biotechnology industries. G. domingensis is at a part of the food web foundation, providing nutrients and microelements to upper levels. As seaweed storage metals in the vacuoles, they are considered the main vectors to magnify these toxic elements. This work describes the evaluation of the toxicity of binary mixtures of available metal cations based on the growth rates of G. domingensis over a 48-h exposure. The interactive effects of each binary mixture were determined using a toxic unit (TU) concept that was the sum of the relative contribution of each toxicant and calculated using the ratio between the toxicant concentration and its endpoint. Mixtures of Cd(II)/Cu(II) and Zn(II)/Ca(II) demonstrated to be additive; Cu(II)/Zn(II), Cu(II)/Mg(II), Cu(II)/Ca(II), Zn(II)/Mg(II), and Ca(II)/Mg(II) mixtures were synergistic, and all interactions studied with Cd(II) were antagonistic. Hypotheses that explain the toxicity of binary mixtures at the molecular level are also suggested. These results represent the first effort to characterize the combined effect of available metal cations, based on the TU concept on seaweed in a total controlled medium. The results presented here are invaluable to the understanding of seaweed metal cation toxicity in the marine environment, the mechanism of toxicity action and how the tolerance of the organism.

  6. Reversible optical sensor for the analysis of actinides in solution

    International Nuclear Information System (INIS)

    Lesage, B.; Picard, S.; Serein-Spirau, F.; Lereporte, J.P.

    2007-01-01

    In this work is presented a concept of reversible optical sensor for actinides. It is composed of a p doped conducing polymer support and of an anion complexing the actinides. The chosen conducing polymer is the thiophene-2,5-di-alkoxy-benzene whose solubility and conductivity are perfectly known. The actinides selective ligand is a lacunar poly-oxo-metallate such as P 2 W 17 O 61 10- or SiW 11 O 39 8- which are strong anionic complexing agents of actinides at the oxidation state (IV) even in a very acid medium. The sensor is prepared by spin coating of the composite mixture 'polymer + ligand' on a conducing glass electrode and then tested towards its optical and electrochemical answer in presence of uranium (IV). The absorption change due to the formation of cations complexes by poly-oxo-metallate reveals the presence of uranium (IV). After the measurement, the sensor is regenerated by anodic polarization of the support and oxidation of the uranium (IV) into uranium (VI) which weakly interacts with the poly-oxo-metallate and is then released in solution. (O.M.)

  7. Hydrocolloid liquid-core capsules for the removal of heavy-metal cations from water

    Energy Technology Data Exchange (ETDEWEB)

    Nussinovitch, A., E-mail: amos.nussi@mail.huji.ac.il; Dagan, O.

    2015-12-15

    Highlights: • Novel liquid-core capsules with a non-crosslinked alginate core were produced. • Capsules demonstrated highest efficiency adsorption of ∼300 mg Pb{sup 2+}/g alginate. • Regeneration was carried out by suspending capsules in 1 M HNO{sub 3} for 24 h. • Adsorption capacities of the capsules followed the order: Pb{sup 2+} > Cu{sup 2+} > Cd{sup 2+} > Ni{sup 2+}. - Abstract: Liquid-core capsules with a non-crosslinked alginate fluidic core surrounded by a gellan membrane were produced in a single step to investigate their ability to adsorb heavy metal cations. The liquid-core gellan–alginate capsules, produced by dropping alginate solution with magnesium cations into gellan solution, were extremely efficient at adsorbing lead cations (267 mg Pb{sup 2+}/g dry alginate) at 25 °C and pH 5.5. However, these capsules were very weak and brittle, and an external strengthening capsule was added by using magnesium cations. The membrane was then thinned with the surfactant lecithin, producing capsules with better adsorption attributes (316 mg Pb{sup +2}/g dry alginate vs. 267 mg Pb{sup +2}/g dry alginate without lecithin), most likely due to the thinner membrane and enhanced mass transfer. The capsules’ ability to adsorb other heavy-metal cations – copper (Cu{sup 2+}), cadmium (Cd{sup 2+}) and nickel (Ni{sup 2+}) – was tested. Adsorption efficiencies were 219, 197 and 65 mg/g, respectively, and were correlated with the cation’s affinity to alginate. Capsules with the sorbed heavy metals were regenerated by placing in a 1 M nitric acid suspension for 24 h. Capsules could undergo three regeneration cycles before becoming damaged.

  8. Selective transport of metal ions through cation exchange membrane in the presence of a complexing agent

    Energy Technology Data Exchange (ETDEWEB)

    Tingchia Huang; Jaukai Wang (National Cheng Kung Univ., Tainan (Taiwan, Province of China))

    1993-01-01

    Selective transport of metal ions through a cation exchange membrane was studied in stirred batch dialyzer for the systems Ni[sup 2+]-Cu[sup 2+] and Cu[sup 2+]-Fe[sup 3+]. Oxalic acid, malonic acid, citric acid, glycine, and ethylenediaminetetraacetic acid were employed as the complexing agents added in the feed solution in order to increase the permselectivity of metal ions. The experimental results show that the selective transport behavior of metal ions depends on the valence and the concentration of metal ions, the stoichiometric ratio of complexing agent to metal ions, and the pH value of the feed solution, but is independent of the concentration of counterion in the stripping phase. A theoretical approach was formulated on the basis of the Nernst-Planck equation and interface quasi-equilibrium. Theoretical solutions obtained from numerical calculation were in agreement with the experimental data.

  9. Influence of reason citric acid/ metal cations in the synthesis of mullite by Pechini Method

    International Nuclear Information System (INIS)

    Braga, A.N.S.; Costa, D.L.; Farias, R.M.C.; Neves, G.A.; Lira, H.L.; Menezes, R.R.

    2014-01-01

    Mullite is a ceramic material with high technological applications. Its synthesis has been extensively studied due to their excellent properties. Thus, this paper proposes to obtain mullite by Pechini method. The amount of acid citric/metal cations in proportions of 3:1 and 1:1 were investigated in order to understand their influence in obtaining the mullite phase. The synthesized samples were characterized by X-ray diffraction (XRD) and thermal analysis (TG/DTG and DTA). The results showed that the ratio citric acid/metal cations influence on the formed phase with the mullite obtained only in proportion 1:1. With the increase of the ratio to 3:1 was observed the formation of the alumina layer. (author)

  10. Structural studies of Langmuir-Blodgett films containing rare-earth metal cations

    DEFF Research Database (Denmark)

    Khomutov, G.B.; Antipina, M.N.; Bykov, I.V.

    2002-01-01

    Comparative structural study of gadolinium stearate Langmuir-Blodgett (LB) films formed by monolayer deposition from either aqueous gadolinium acetate or gadolinium chloride solutions have been carried out. Structure of the films was characterized by X-ray diffraction, Fourier transform infrared...... spectroscopy, high-energy electron diffraction, atomic force microscopy and scanning electron microscopy. It was found that when subphase pH had a value at which all monolayer stearic acid molecules were ionized and bound with Gd3+ cations (pH > 5), the LB films deposited from gadolinium acetate and gadolinium....... The data obtained indicate that the control of multivalent metal cations complexes formation in the subphase and at the monolayer surface can be an instrument for optimization, the conditions to form metal-containing LB film with regulated structure and properties....

  11. Synthesis of phthalide-fused indoline by microwave irradiation and preliminary binding study with metal cations

    Science.gov (United States)

    Ling, Sheryn Wong Shue; Latip, Jalifah; Hassan, Nurul Izzaty; Hasbullah, Siti Aishah

    2018-04-01

    An efficient and green method of synthesizing phthalide-fused indoline, 3-[(1,3,3-trimethylindolin-2-ylidene)methyl]isobenzofuran-1(3H)-one (3) has been developed by the coupling reaction of 1,3,3-trimethyl-2-methyleneindoline, 1 and phthalaldehydic acid, 2 under solvent-free domestic microwave irradiation. The compound was produced with an excellent yield (98 %) and at a shorter reaction time (5 min) as compared to the conventional method. Compound 3 was fully characterized by analytical and spectral methods. Preliminary binding study of 3 towards different types of metal cations was done by "naked eye" colorimetric detection and UV-vis spectrophotometer. Compound 3 exhibits good selectivity and sensitivity for Sn2+ compared to other metal cations.

  12. Electromembrane extraction of heavy metal cations followed by capillary electrophoresis with capacitively coupled contactless conductivity detection

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Strieglerová, Lenka; Gebauer, Petr; Boček, Petr

    2011-01-01

    Roč. 32, č. 9 (2011), s. 1025-1032 ISSN 0173-0835 R&D Projects: GA ČR GA203/08/1536; GA ČR GAP206/10/1219; GA AV ČR IAA400310703 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary electrophoresis * electromembrane extraction * heavy metal cations Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  13. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K(+) is the best.

    Science.gov (United States)

    Zaccaria, F; Paragi, G; Fonseca Guerra, C

    2016-08-21

    The alkali metal ion affinity of guanine quadruplexes has been studied using dispersion-corrected density functional theory (DFT-D). We have done computational investigations in aqueous solution that mimics artificial supramolecular conditions where guanine bases assemble into stacked quartets as well as biological environments in which telomeric quadruplexes are formed. In both cases, an alkali metal cation is needed to assist self-assembly. Our quantum chemical computations on these supramolecular systems are able to reproduce the experimental order of affinity of the guanine quadruplexes for the cations Li(+), Na(+), K(+), Rb(+), and Cs(+). The strongest binding is computed between the potassium cation and the quadruplex as it occurs in nature. The desolvation and the size of alkali metal cations are thought to be responsible for the order of affinity. Until now, the relative importance of these two factors has remained unclear and debated. By assessing the quantum chemical 'size' of the cation, determining the amount of deformation of the quadruplex needed to accommodate the cation and through the energy decomposition analysis (EDA) of the interaction energy between the cation and the guanines, we reveal that the desolvation and size of the alkali metal cation are both almost equally responsible for the order of affinity.

  14. 13C NMR investigation of the structure of cationic carbonyls in transition metal zeolites

    International Nuclear Information System (INIS)

    Ben Taarit, Y.

    1979-01-01

    13 C NMR spectroscopy was used to investigate the nature of carbon monoxide adsorbed on transition metal ions hosted in a synthetic faujastite type zeolite. The adsorbed CO species was characterised by a highly shielded carbon nucleus. Using the Pople approximation for the paramagnetic shielding term, the observed chemical shift was rationalised assuming the formation of a cationic carbonyl species with an appreciable electronic transfer from the carbon lone pair to the transition metal ion and negligible π back-bonding if at all. (Auth.)

  15. Actinides-1981

    International Nuclear Information System (INIS)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  16. Actinides-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  17. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    Science.gov (United States)

    Moore, Robert C; Holt-Larese, Kathleen C; Bontchev, Ranko

    2013-08-13

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  18. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert C.; Larese, Kathleen Caroline; Bontchev, Ranko Panayotov

    2017-05-30

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  19. Synergistic extraction of some divalent metal cations into nitrobenzene by using strontium dicarbollylcobaltate and electroneutral macrocyclic lactam receptor

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Sedláková, Zdeňka; Vaňura, P.; Selucký, P.

    2013-01-01

    Roč. 295, č. 3 (2013), s. 2263-2266 ISSN 0236-5731 Institutional support: RVO:61389013 Keywords : divalent metal cations * macrocyclic lactam receptor * complexation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.415, year: 2013

  20. Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2017-10-05

    We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium, potassium, rubidium and cesium cations and compared with the corresponding proton affinities (PA). One purpose of this work is to provide an intrinsically consistent set of values of the 298 K AMCAs of all anionic (XH n-1 - ) constituted by main group-element hydrides of groups 14-17 along the periods 2-6. In particular, we wish to establish the trend in affinity for a cation as the latter varies from proton to, and along, the alkali cations. Our main purpose is to understand these trends in terms of the underlying bonding mechanism using Kohn-Sham molecular orbital theory together with a quantitative bond energy decomposition analyses (EDA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Potential-modulated intercalation of alkali cations into metal hexacyanoferrate coated electrodes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Schwartz, D.T.

    1998-01-01

    'This program is studying potential-driven cation intercalation and deintercalation in metal hexacyanoferrate compounds, with the eventual goal of creating materials with high selectivity for cesium separations and long cycle lifetimes. The separation of radiocesium from other benign cations has important implications for the cost of processing a variety of cesium contaminated DOE wasteforms. This report summarizes results after nine months of work. Much of the initial efforts have been directed towards quantitatively characterizing the selectivity of nickel hexacyanoferrate derivatized electrodes for intercalating cesium preferentially over other alkali metal cations. Using energy dispersive xray spectroscopy (ex-situ, but non-destructive) and ICP analysis (ex-situ and destructive), the authors have demonstrated that the nickel hexacyanoferrate lattice has a strong preference for intercalated cesium over sodium. For example, when ions are reversibly loaded into a nickel hexacyanoferrate thin film from a solution containing 0.9999 M Na + and 0.0001 M Cs + , the film intercalates 40% as much Cs + as when loaded from pure 1 M Cs + containing electrolyte (all electrolytes use nitrates as the common anion). The authors have also shown that, contrary to the common assumptions found in the literature, a significant fraction of the thin film is not active initially. A new near infrared laser has been purchased and is being added to the Raman spectroscopy facilities to allow in-situ studies of the intercalation processes.'

  2. Ion exchange of some transition metal cations on hydrated titanium dioxide in aqueous ammonia solutions

    International Nuclear Information System (INIS)

    Bilewicz, A.; Narbutt, J.; Dybczynski, R.

    1992-01-01

    The adsorption of transition metal cations on hydrated titanium dioxide in complexing ammonia and amine solutions has been studied as a function of ammonia (amine) concentration. The relationships between the distribution coefficients and ammonia concentration as well as the effects of various amines on sorption of transition metals indicate that a coordinate bond is formed between the metal ions and the hydroxy groups of the sorbent. The distribution coefficients of silver(I) and cobalt(II), which form strong ammonia complexes in aqueous solutions, decrease with increasing concentration of ammonia already at concentrations exceeding 10 -3 *mol*dm -3 . Cations of zinc, manganese and mercury which form much weaker ammonia complexes do not exhibit any effect of ammonia concentration in the whole range investigated. In the case of sorption of macroamounts of ammonia or amine complexes of silver, the molecular sieve effect plays an important role. The differences in the affinity of hydrated titanium dioxide for ammonia solvates of various transition metal ions can serve as a tool for effective separation of these ions in ammonia solutions. (author) 10 refs.; 4 figs.; 1 tab

  3. A sigmoidal model for biosorption of heavy metal cations from aqueous media.

    Science.gov (United States)

    Özen, Rümeysa; Sayar, Nihat Alpagu; Durmaz-Sam, Selcen; Sayar, Ahmet Alp

    2015-07-01

    A novel multi-input single output (MISO) black-box sigmoid model is developed to simulate the biosorption of heavy metal cations by the fission yeast from aqueous medium. Validation and verification of the model is done through statistical chi-squared hypothesis tests and the model is evaluated by uncertainty and sensitivity analyses. The simulated results are in agreement with the data of the studied system in which Schizosaccharomyces pombe biosorbs Ni(II) cations at various process conditions. Experimental data is obtained originally for this work using dead cells of an adapted variant of S. Pombe and represented by Freundlich isotherms. A process optimization scheme is proposed using the present model to build a novel application of a cost-merit objective function which would be useful to predict optimal operation conditions. Copyright © 2015. Published by Elsevier Inc.

  4. Crystallographic phase transitions in actinide metals as a function of pressure

    International Nuclear Information System (INIS)

    Eriksson, O.; Soederlind, P.; Melsen, J.; Ahuja, R.; Johansson, B.

    1993-01-01

    We present first-principles calculations of the equilibrium volumes and crystal structures of the light actinides (Th--Pu). The calculated equilibrium volumes for fcc Th, bct Pu, α-U, and β-Np are found to agree reasonably well with the experimental data, and when comparing the total energies of the bcc, fcc, bct, α-U, and β-Np structures we obtain the correct crystal structures for all studied systems. Equilibrium volumes for Th--Pu, using a hypothetical fcc structure, have been calculated; although spin-orbit coupling is included in these calculations, the calculated equilibrium volume of Pu is smaller than for Np, in disagreement with experiment. Moreover, the calculated tetragonal elastic constant, C', is shown to be negative for bcc U, bcc Np, bcc Pu, and fcc Pu. Thus, our zero temperature calculations suggest that the bcc structure is unstable for these elements and that fcc Pu is also unstable. This is in conflict with experiment and we are led to the conclusion that temperature effects must be of crucial importance for stabilizing cubic structures in U, Np, and Pu. Further, as a function of decreasing volume we predict a crystal structure sequence fcc → bct → fcc in Th, a sequence α-U → bct → bcc in U, and a sequence β-Np → bct → bcc in Np. Also, a sequence of transitions in Sc as a function of decreasing volume have been calculated, namely hcp → fcc → ω → β-Np → bcc

  5. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    Science.gov (United States)

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

  6. A review of modelling the interaction between natural organic matter and metal cations

    International Nuclear Information System (INIS)

    Falck, W.E.

    1989-01-01

    This report reviews techniques available to model the interaction between natural organic matter (mainly fulvic and humic acids) and metal cations and protons. A comprehensive overview over the properties of natural organic matter is given and experimental techniques are presented briefly. Two major concepts of modelling have been identified: discrete ligand models and continuous distribution model. Different modelling approaches like Discrete Ligand Models (s.s.), Random-Structure Model, Affinity Spectra, Statistical Distribution Models, Continuous Stability Function Models and surface sorption models and their advantages/disadvantages are discussed. (author)

  7. Synthesis and adsorption investigations of zeolites MCM-22 and MCM-49 modified by alkali metal cations

    Czech Academy of Sciences Publication Activity Database

    Pawlesa, Justyna; Zukal, Arnošt; Čejka, Jiří

    2007-01-01

    Roč. 13, 3-4 (2007), s. 257-265 ISSN 0929-5607 Grant - others:DeSSANS(XE) SES6-CT-2005-020133; INDENS(XE) MRTN-CT-2004-005503 Institutional research plan: CEZ:AV0Z40400503 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : MCM-22 zeolite * MCM-49 zeolite * alkali metal cation exchange * N2 and CO2 adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.880, year: 2007

  8. Study of the interaction metallic cation - ligand in concentrated phosphorus acid media

    International Nuclear Information System (INIS)

    Sefiani, N.; Azzi, M.; Hlaibi, M.; Kossair, A.

    2005-01-01

    The phosphoric acid is more and more used with a high purity. The recovery of recycling element (uranium, vanadium, rare earth...) and the elimination of toxic element (cadmium, molybdenum, lead...) contained in the phosphoric acid are generally realized by extraction or precipitation. It is then very important to understand these impurities behavior in the phosphoric media in order to control their elimination. In this work, the authors considered the presence of some metallic cations (V, Al, fe, U) and fluorides ions as impurity in concentrated phosphoric acid media. (A.L.B.)

  9. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-08

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  10. Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations.

    Science.gov (United States)

    Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R

    2017-07-01

    Olive mill waste water (OMWW) is an acidic (pH 4-5), saline (EC ∼ 5-10 mS cm -1 ), blackish-red aqueous byproduct of the three phase olive oil production process, with a high chemical oxygen demand (COD) of up to 220,000 mg L -1 . OMWW is conventionally disposed of by uncontrolled dumping into the environment or by semi-controlled spreading on agricultural soils. It was hypothesized that spreading such liquids on agricultural soils could result in the release and mobilization of indigenous soil metals. The effect of OMWW spreading on leaching of metal cations (Na, K, Mg, Mn, Fe, Cu, Zn) was tested in four non-contaminated agricultural soils having different textures (sand, clay loam, clay, and loam) and chemical properties. While the OMWW contributed metals to the soil solution, it also mobilized indigenous soil metals as a function of soil clay content, cation exchange capacity (CEC), and soil pH-buffer capacity. Leaching of soil-originated metals from the sandy soil was substantially greater than from the loam and clay soils, while the clay loam was enriched with metals derived from the OMWW. These trends were attributed to cation exchange and organic-metal complex formation. The organic matter fraction of OMWW forms complexes with metal cations; these complexes may be mobile or precipitate, depending on the soil chemical and physical environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synergistic extraction of transition metal cations from aqueous media by two separated organic phases

    International Nuclear Information System (INIS)

    Goldberg, I.

    1991-12-01

    We have therefore initiated novel approaches to the study of the mechanism of the synergistic extraction of metal ions by means of two separated organic phases, which are brought in contact with the same aqueous phase. The present work is concerned with the extraction of transition metals and actinides ions from nitric acid by chelating agents e.g., HTTA thenoyltrifluoroacetone in a diluent - the first organic phase, and by natural donor, e.g., TBP, tri-butyl phosphate in a diluent the second organic phase. The adduct formation was studied by means of spectrochemical and radiochemical methods. In the first approach the aqueous phase was attacked with both organic phases simultanously (the static or parallel extraction). In this method organic phase are separated one from the other. It was shown that even in the absence of mixing, synergism is observed under this experimental conditions. The results indicate, that adduct formation occurs in both organic phases. Nevertheless the enhanchment of extraction in the TBP phase is by far greater than that in the HTTA containing phase. This approach has one disadvatage, viz., the experiments are very time consuming, a typical experiment requiring over 10 days. In order to overcome this difficulty, the following experiments were carried out: the aqueous phase were first shaken with diluent containing an anionic ligand and the phases were allowed to separate. Then the aqueous solution were shaken with diluent containing a netural donor and the phase again were allowed to separate. The concentration of the metal ions in all the phases were determined. The experiments were repeated with an other diluent replacing the first diluent in one or both organic phases. In this way eight sequences of experiments were carried out for each concentration set chosen. The results thus point out that this experimental approach open new possibilities to investigate the mechanism and the kinetics of synergistic extraction processes. (author) the

  12. Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces.

    Science.gov (United States)

    Durst, Julien; Chatenet, Marian; Maillard, Frédéric

    2012-10-05

    Proton-exchange membrane fuel cells (PEMFCs) use carbon-supported nanoparticles based on platinum and its alloys to accelerate the rate of the sluggish oxygen-reduction reaction (ORR). The most common metals alloyed to Pt include Co, Ni and Cu, and are thermodynamically unstable in the PEMFC environment. Their dissolution yields the formation and redistribution of metal cations (M(y+)) within the membrane electrode assembly (MEA). Metal cations can also contaminate the MEA when metallic bipolar plates are used as current collectors. In each case, the electrical performance of the PEMFC severely decreases, an effect that is commonly attributed to the poisoning of the sulfonic acid groups of the perfluorosulfonated membrane (PEM) and the resulting decrease of the proton transport properties. However, the impact of metal cations on the kinetics of electrochemical reactions involving adsorption/desorption and bond-breaking processes remains poorly understood. In this paper, we use model electrodes to highlight the effect of metal cations on Pt/C nanoparticles coated or not with a perfluorosulfonated ionomer for the CO electrooxidation reaction and the oxygen reduction reaction. We show that metal cations negatively impact the ORR kinetics and the mass-transport resistance of molecular oxygen. However, the specific adsorption of sulfonate groups of the Nafion® ionomer locally modifies the double layer structure and increases the tolerance to metal cations, even in the presence of sulphate ions in the electrolyte. The survey is extended by using an ultramicroelectrode with cavity and a solid state cell (SSC) specifically developed for this study.

  13. Resorcarene-based receptor: versatile behavior in its interaction with heavy and soft metal cations.

    Science.gov (United States)

    Danil de Namor, Angela F; Chaaban, Jinane K; Piro, Oscar E; Castellano, Eduardo E

    2006-02-09

    Standard solution Gibbs energies, DeltasG degrees, of the resorcarene-based receptor 5,11,17,23-ethylthiomethylated calix[4]resorcarene, (characterized by 1H NMR and X-ray diffraction studies) in its monomeric state (established through partition experiments) in various solvents are for the first time reported in the area of resorcarene chemistry. Transfer Gibbs energies of from hexane (reference solvent) to other medium are calculated. Agreement between DeltatG degrees (referred to the pure solvents) and standard partition Gibbs energies, DeltapG degrees (solvent mutually saturated) is found. Cation-ligand interactions were investigated through 1H NMR (CD3CN and CD3OD) and conductometric titrations in acetonitrile and methanol. 1H NMR data revealed the sites of interaction of with the metal cation. The composition of the metal-ion complexes (Ag+ and Pb2+ in acetonitrile and Ag+ and Cu2+ in methanol) was established through conductometric titrations. Thus, complexes of 1:1 stoichiometry were formed between and Ag+ and Pb2+ in acetonitrile and Cu2+ in methanol. However, in moving from acetonitrile to methanol, the composition of the silver complex was altered. Thus, two metal cations are hosted by a unit of the ligand. As far as Cu2+ and in acetonitrile is concerned, conductance data suggest that metalates are formed in which up to four units of Cu2+ are taken up per unit of resorcarene. The contrasting behavior of with Cu2+ in acetonitrile relative to methanol is discussed. As far as mercury (II) is concerned, the unusual jump in conductance observed in the titration of Hg2+ with in acetonitrile and methanol after the formation of a multicharged complex (undefined composition) is attributed to the presence of highly charged smaller units (higher mobility) resulting from the departure of pendant arms from the resorcarene backbone. Isolation of these species followed by X-ray diffraction studies corroborated this statement. The thermodynamic characterization of metal

  14. Cation exchange separation of 16 rare earth metals by microscale high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Ishii, D.; Hirose, A.; Iwasaki, Y.

    1978-01-01

    The separation of rare earth metals has been studied with a microcolumn of 0.5 mm i.d. and 75 mm length, packed with TSK LS-212 high-performance cation exchange resin. A micro-feeder (Model MF-2, from Azumadenki Kogyo) was used to drive carrier and sample solutions through the ion exchange column and detection cell. By combining a 250 μl syringe and a 0.5 mm i.d. sampling tube the micro-feeder, 0.1-1.0 μl rare earth metals were separated within 38 min, using only 304 μl of 0.4M α-hydroxy-isobutyric acid solution adjusted to pH 3.1-6.0 with ammonia solution as gradient carrier solution. The gradient elution was successfully performed by applying a new technique developed for microscale liquid chromatography. (author)

  15. A Study of Complexation-ability of Neutral Schiff Bases to Some Metal Cations

    Directory of Open Access Journals (Sweden)

    Umit Cakir

    2007-09-01

    Full Text Available The constants of the extraction equilibrium and the distribution fordichloromethane as an organic solvent having low dielectric constant of metal cations withchiral Schiff bases, benzaldehydene-(S-2-amino-3-phenylpropanol (I, o- benzaldehydene-(S-2-hydroxybenzaldehydene-(S-2-amino-3-phenyl-propanol (II,amino-3-methylbutanol (III with anionic dyes [4-(2-pyridylazo-resorcinol mono sodiummonohydrate (NaPar, sodium picrat (NaPic and potassium picrat (KPic] and some heavymetal chlorides were determined at 25 oC. All the ligands have given strongestcomplexation for NaPar. In contrast, similar behaviour for both alkali metal picrates is notapparent in the complexation of corresponding ligands.

  16. Double C-H activation of ethane by metal-free SO2*+ radical cations.

    Science.gov (United States)

    de Petris, Giulia; Cartoni, Antonella; Troiani, Anna; Barone, Vincenzo; Cimino, Paola; Angelini, Giancarlo; Ursini, Ornella

    2010-06-01

    The room-temperature C-H activation of ethane by metal-free SO(2)(*+) radical cations has been investigated under different pressure regimes by mass spectrometric techniques. The major reaction channel is the conversion of ethane to ethylene accompanied by the formation of H(2)SO(2)(*+), the radical cation of sulfoxylic acid. The mechanism of the double C-H activation, in the absence of the single activation product HSO(2)(+), is elucidated by kinetic studies and quantum chemical calculations. Under near single-collision conditions the reaction occurs with rate constant k=1.0 x 10(-9) (+/-30%) cm(3) s(-1) molecule(-1), efficiency=90%, kinetic isotope effect k(H)/k(D)=1.1, and partial H/D scrambling. The theoretical analysis shows that the interaction of SO(2)(*+) with ethane through an oxygen atom directly leads to the C-H activation intermediate. The interaction through sulfur leads to an encounter complex that rapidly converts to the same intermediate. The double C-H activation occurs by a reaction path that lies below the reactants and involves intermediates separated by very low energy barriers, which include a complex of the ethyl cation suitable to undergo H/D scrambling. Key issues in the observed reactivity are electron-transfer processes, in which a crucial role is played by geometrical constraints. The work shows how mechanistic details disclosed by the reactions of metal-free electrophiles may contribute to the current understanding of the C-H activation of ethane.

  17. Flocculation of Chlamydomonas reinhardtii with Different Phenotypic Traits by Metal Cations and High pH

    Directory of Open Access Journals (Sweden)

    Jianhua Fan

    2017-11-01

    Full Text Available Concentrating algal cells by flocculation as a prelude to centrifugation could significantly reduce the energy and cost of harvesting the algae. However, how variation in phenotypic traits such as cell surface features, cell size and motility alter the efficiency of metal cation and pH-induced flocculation is not well understood. Our results demonstrate that both wild-type and cell wall-deficient strains of the green unicellular alga Chlamydomonas reinhardtii efficiently flocculate (>90% at an elevated pH of the medium (pH 11 upon the addition of divalent cations such as calcium and magnesium (>5 mM. The trivalent ferric cation (at 10 mM proved to be essential for promoting flocculation under weak alkaline conditions (pH ∼8.5, with a maximum efficiency that exceeded 95 and 85% for wild-type CC1690 and the cell wall-deficient sta6 mutant, respectively. Near complete flocculation could be achieved using a combination of 5 mM calcium and a pH >11, while the medium recovered following cell removal could be re-cycled without affecting algal growth rates. Moreover, the absence of starch in the cell had little overall impact on flocculation efficiency. These findings contribute to our understanding of flocculation in different Chlamydomonas strains and have implications with respect to inexpensive methods for harvesting algae with different phenotypic traits. Additional research on the conditions (e.g., pH and metal ions used for efficient flocculation of diverse algal groups with diverse characteristics, at both small and large scale, will help establish inexpensive procedures for harvesting cell biomass.

  18. How Native and Alien Metal Cations Bind ATP: Implications for Lithium as a Therapeutic Agent

    Science.gov (United States)

    Dudev, Todor; Grauffel, Cédric; Lim, Carmay

    2017-02-01

    Adenosine triphosphate (ATP), the major energy currency of the cell, exists in solution mostly as ATP-Mg. Recent experiments suggest that Mg2+ interacts with the highly charged ATP triphosphate group and Li+ can co-bind with the native Mg2+ to form ATP-Mg-Li and modulate the neuronal purine receptor response. However, it is unclear how the negatively charged ATP triphosphate group binds Mg2+ and Li+ (i.e. which phosphate group(s) bind Mg2+/Li+) and how the ATP solution conformation depends on the type of metal cation and the metal-binding mode. Here, we reveal the preferred ATP-binding mode of Mg2+/Li+ alone and combined: Mg2+ prefers to bind ATP tridentately to each of the three phosphate groups, but Li+ prefers to bind bidentately to the terminal two phosphates. We show that the solution ATP conformation depends on the cation and its binding site/mode, but it does not change significantly when Li+ binds to Mg2+-loaded ATP. Hence, ATP-Mg-Li, like Mg2+-ATP, can fit in the ATP-binding site of the host enzyme/receptor, activating specific signaling pathways.

  19. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids.

    Science.gov (United States)

    Alozie, Nneka; Heaney, Natalie; Lin, Chuxia

    2018-07-15

    A batch experiment was conducted to examine the effects of biochar on the behaviour of soil-borne arsenic and metals that were mobilized by three low-molecular-weight organic acids. In the presence of citric acid, oxalic acid and malic acid at a molar concentration of 0.01M, the surface of biochar was protonated, which disfavours adsorption of the cationic metals released from the soil by organic acid-driven mobilization. In contrast, the oxyanionic As species were re-immobilized by the protonated biochar effectively. Biochar could also immobilize oxyanionic Cr species but not cationic Cr species. The addition of biochar increased the level of metals in the solution due to the release of the biochar-borne metals under attack by LMWOAs via cation exchange. Biochar could also have the potential to enhance reductive dissolution of iron and manganese oxides in the soil, leading to enhanced release of trace elements bound to these oxides. The findings obtained from this study have implications for evaluating the role of biochar in immobilizing trace elements in rhizosphere. Adsorption of cationic heavy metals on biochar in the presence of LMWOAs is unlikely to be a mechanism responsible for the impeded uptake of heavy metals by plants growing in heavy metal-contaminated soils. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Chromatographic separation of metal cations on silica gel chemically modified with a polymeric derivative of diaza-18-crown-6

    International Nuclear Information System (INIS)

    Basyuk, V.A.

    1991-01-01

    Sorbent on the basis of γ-aminopropyl silica gel, containing chemically grafted polymer derivatives of diaza-18-crown-6, has been synthesized. Retaining of certain metal cations when acid mobile phases are used is studied. Acetate buffer solution, 0.005% aqueous solution of acetic acid and 10 mM aqueous solution of oxalic acid were used as mobile phases. Rare earth cations (including Sr 2+ ones) are weakly retained when any mobile phase is used. Retention of VO 2+ cations is the strongest one

  1. Cation and anion dependence of stable geometries and stabilization energies of alkali metal cation complexes with FSA(-), FTA(-), and TFSA(-) anions: relationship with physicochemical properties of molten salts.

    Science.gov (United States)

    Tsuzuki, Seiji; Kubota, Keigo; Matsumoto, Hajime

    2013-12-19

    Stable geometries and stabilization energies (Eform) of the alkali metal complexes with bis(fluorosulfonyl)amide, (fluorosulfonyl)(trifluoromethylslufonyl)amide and bis(trifluoromethylsulfonyl)amide (FSA(-), FTA(-) and TFSA(-)) were studied by ab initio molecular orbital calculations. The FSA(-) complexes prefer the bidentate structures in which two oxygen atoms of two SO2 groups have contact with the metal cation. The FTA(-) and TFSA(-) complexes with Li(+) and Na(+) prefer the bidentate structures, while the FTA(-) and TFSA(-) complexes with Cs(+) prefer tridentate structures in which the metal cation has contact with two oxygen atoms of an SO2 group and one oxygen atom of another SO2 group. The two structures are nearly isoenergetic in the FTA(-) and TFSA(-) complexes with K(+) and Rb(+). The magnitude of Eform depends on the alkali metal cation significantly. The Eform calculated for the most stable TFSA(-) complexes with Li(+), Na(+), K(+), Rb(+) and Cs(+) cations at the MP2/6-311G** level are -137.2, -110.5, -101.1, -89.6, and -84.1 kcal/mol, respectively. The viscosity and ionic conductivity of the alkali TFSA molten salts have strong correlation with the magnitude of the attraction. The viscosity increases and the ionic conductivity decreases with the increase of the attraction. The melting points of the alkali TFSA and alkali BETA molten salts also have correlation with the magnitude of the Eform, which strongly suggests that the magnitude of the attraction play important roles in determining the melting points of these molten salts. The anion dependence of the Eform calculated for the complexes is small (less than 2.9 kcal/mol). This shows that the magnitude of the attraction is not the cause of the low melting points of alkali FTA molten salts compared with those of corresponding alkali TFSA molten salts. The electrostatic interactions are the major source of the attraction in the complexes. The electrostatic energies for the most stable TFSA

  2. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.edu [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 24-204 (United States)

    2011-07-15

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  3. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    Science.gov (United States)

    Karahan, Aydın

    2011-07-01

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  4. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin

    2011-01-01

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  5. Combustion and smoke formation following exposure of actinide metals to explosions

    International Nuclear Information System (INIS)

    Luna, R.E.; Church, H.W.; Elrick, R.M.; Parker, D.R.; Nelson, L.S.

    1976-01-01

    Results from the plutonium aerosol generation experiment (PAGE) program studies indicate that: (1) Significant quantities of metal-bearing aerosols are likely to be formed in an accidental high explosive detonation of a nuclear weapon. Although the explosive charge-to-metal ratio has been reduced in modern weapons, considerable inhalation hazard is still expected due to increased shrapnel formation and streamer combustion. (2) Close-in shrapnel particle sizes and velocities can be estimated by impact sampling techniques. (3) Uranium droplets are a very accurate simulant of plutonium droplets from the standpoint of combustion-related phenomena but do not seem to simulate either the total quantity of aerosol formed from plutonium droplets or its time-dependent generation pattern very well. This is due primarily to the large effect of the explosion of the burning uranium droplets on total aerosol formation which is not observed in the case of plutonium, even though more aerosol is produced per unit time during the actual combustion itself. (4) The formation of chain-like plutonium aerosols from the droplets produced during streamer combustion is expected to produce an unusually active material from the standpoint of inhalation into the lung and ultimate translocation in the body. 16 figures

  6. The data-base of properties of actinides for metal fuels

    International Nuclear Information System (INIS)

    Inoue, Tadashi; Kurata, Masateru

    1989-01-01

    It is developed the technology that transuranium elements (TRUs) to be recovered from high active wastes transmute into relatively short lived nuclides by burning them within metallic fuel alloys. In this paper, we collect published data of properties of TRUs and U-Pu(-Zr) alloys and make up the data base for the design study of alloys with TRUs. In addition, the data base possesses a function of statistic analysis in order to facilitate the comparison of data and can afford to estimate properties. This data base collects (1) properties affecting fuel temperature and microstructure, (2) mechanical properties and (3) fundamental properties such as hardness and density, and furthermore, (1) fission gas release, (2) swelling and (3) fuel-cladding interaction and eutectic property as irradiation behavior. (author)

  7. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar.

    Science.gov (United States)

    Fang, Shen'en; Tsang, Daniel C W; Zhou, Fengsha; Zhang, Weihua; Qiu, Rongliang

    2016-04-01

    Currently, sludge pyrolysis has been considered as a promising technology to solve disposal problem of municipal sewage sludge, recover sludge heating value, sequester carbon and replenish nutrients in farmland soils. The resultant sludge-derived biochar (SDBC) is potentially an excellent stabilizing agent for metal species. This study applied the SDBC into four soils that had been contaminated in field with cationic Pb(II) and Cd(II)/Ni(II), and anionic Cr(VI) and As(III), respectively. The performance of metal stabilization under various operational and environmental conditions was evaluated with acid batch extraction and column leaching tests. Results indicated the SDBC could effectively stabilize these metals, which was favored by elevated temperature and longer aging. Periodic temperature decrease from 45 to 4 °C resulted in the release of immobilized Cr(VI) and As(III) but not Pb(II). However, a longer aging time offset such metal remobilization. This was possibly because more Pb was strongly bound and even formed stable precipitates, as shown by XRD and sequential extraction results. With increasing time, Cr(VI) was sorbed and partly reduced to Cr(III), while immobilized As(III) was co-oxidized to As(V) as indicated by XPS spectra. Column tests revealed that adding SDBC as a separate layer was unfavorable because the concentrated Cd(II) and Ni(II) in localized positions increased the peak levels of metal release under continuous acid leaching. In contrast, uniformly mixed SDBC could effectively delay the metal breakthrough and reduce their released amounts. Yet, a long-term monitoring may be required for evaluating the potential leaching risks and bioavailability/toxicity of these immobilized and transformed species in the SDBC-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development of a novel device to trap heavy metal cations: application of the specific interaction between heavy metal cation and mismatch DNA base pair.

    Science.gov (United States)

    Torigoe, Hidetaka; Miyakawa, Yukako; Fukushi, Miyako; Ono, Akira; Kozasa, Tetsuo

    2009-01-01

    We have already found that Hg(II) cation specifically binds to T:T mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving T:T mismatch base pair by about 4 degrees C. We have also found that Ag(I) cation specifically binds to C:C mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving C:C mismatch base pair by about 4 degrees C. Using the specific interaction, we developed a novel device to trap each of Hg(II) and Ag(I) cation. The device is composed of 5'-biotinylated T-rich or C-rich DNA oligonucleotides, BIO-T20: 5'-Bio-T(20)-3' or BIO-C20: 5'-Bio-C(20)-3' (Bio is a biotin), immobilized on streptavidin-coated polystylene beads. When the BIO-T20-immobilized beads were added to a solution containing Hg(II) cation, and the beads trapping Hg(II) cation were collected by centrifugation, almost all of Hg(II) cation were removed from the solution. Also, when the BIO-C20-immobilized beads were added to a solution containing Ag(I) cation, and the beads trapping Ag(I) cation were collected by centrifugation, almost all of Ag(I) cation were removed from the solution. We conclude that, using the novel device developed in this study, Hg(II) and Ag(I) cation can be effectively removed from the solution.

  9. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2010-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  10. Decontamination of aqueous effluents containing metallic cations or anions by iron oxides under the action of a magnetic field

    International Nuclear Information System (INIS)

    Goncalves, M. A.; Camilo, R. L.; Cohen, V. H.; Yamaura, M.

    1999-01-01

    This work deals with a review of decontamination processes of aqueous effluents containing metallic cations and anions by using iron oxides as adsorber. Conditions to obtain the different iron oxides and adsorption capacities for cations and anions are presented and precipitation and/or adsorption mechanisms studies under the point of view of oxide-interface phenomena are described. Emphasis will be applied to the magnetite combined with inorganic exchanger or liquid extractants which magnetic properties has been used to enhance metals removal. Experimental results of a synthetic magnetite production and its adsorption capacity as a function of a magnetic field intensity are also showed. (authors)

  11. Cobalt(2) and nickel(2) tris-acetylacetonates with alkali metal cations in outer sphere

    International Nuclear Information System (INIS)

    Steblyanko, A.Yu.; Grigor'ev, A.N.; Martynenko, L.I.

    1996-01-01

    Anhydrous tris-acetylacetonates of Co(2) and Ni(2) with alkali metal cations in outer sphere were synthesized and investigated by different physicochemical methods. Chemical analysis and IR-spectroscopy show, that complex composition corresponds to the formula Eh[MA 3 ] (where Eh + - Li + , Na + , K + , Rb + , Cs + ; M - Co(2), Ni(2); A - - acetyacetonate-ion). Eh[MA 3 ] heating in vacuum leads to transition of volatile Co(2) and Ni(2) acetylacetonates to gaseous phase. The data of photoelectron spectroscopy and vacuum sublimation show, that Li[MA 3 ] is transformed to gaseous phase congruently and only partially dissociates to EhA and MA 2 . Li[MA 3 ] and Cs[MA 3 ] are characterized by the lowest thermal stability at atmospheric pressure. Low stability of Li[MA 3 ] is related with detachment of one of A - radical from [MA 3 ] complex anion by Li + cation under conditions, when LiA and Li[MA 3 ] are volatile. 11 refs.; 2 figs.; 3 tabs

  12. Actinide recycle

    Energy Technology Data Exchange (ETDEWEB)

    Till, C; Chang, Y [Argonne National Laboratory, Argonne, IL (United States)

    1990-07-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository.

  13. Actinide recycle

    International Nuclear Information System (INIS)

    Till, C.; Chang, Y.

    1990-01-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  14. Room temperature Zinc-metallation of cationic porphyrin at graphene surface and enhanced photoelectrocatalytic activity

    Science.gov (United States)

    Zeng, Rongjin; Chen, Guoliang; Xiong, Chungang; Li, Gengxian; Zheng, Yinzhi; Chen, Jian; Long, Yunfei; Chen, Shu

    2018-03-01

    A stable zincporphyrin functionalized graphene nanocomposite was prepared by using positively charged cationic porphyrin (5,10,15,20-tetra(4-propyl pyridinio) porphyrin, TPPyP) and successive reduced graphene oxide (rGO) with tuned negative charge. The nanocomposite preparation was accompanied first by distinct electrostatic interactions and π-π stacking between TPPyP and rGO, and followed by fast Zinc-metallation at room temperature. In contrast to free TPPyP with Zn2+, the incorporation reaction is very slow at room temperature and heating or reflux conditions are required to increase the metallation rate. While at the surface of rGO nanosheet, the Zinc-metallation of TPPyP was greatly accelerated to 30 min at 25 °C in aqueous solution. The interaction process and composites formation were fully revealed by significant variations in UV-vis absorption spectra, X-ray photoelectron spectra (XPS) measurements, atomic force microscope (AFM) images, and fluorescence spectra. Furthermore, photoelectrochemical activity of resultant rGO/TPPyP-Zn nanocomposites was evaluated under visible-light irradiation, and enhancement of the photoelectrocatalytic reduction of CO2 was achieved.

  15. “High-Throughput” Evaluation of Polymer-Supported Triazolic Appendages for Metallic Cations Extraction

    Directory of Open Access Journals (Sweden)

    Riadh Slimi

    2015-03-01

    Full Text Available The aim of this work was to find and use a low-cost high-throughput method for a quick primary evaluation of several metal extraction by substituted piperazines appendages as chelatants grafted onto Merrifield polymer using click-chemistry by the copper (I-catalyzed Huisgen’s reaction (CuAAC The polymers were tested for their efficiency to remove various metal ions from neutral aqueous solutions (13 cations studied: Li+, Na+, K+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Cd2+, Ba2+, Ce3+, Hg+ and Pb2+ using the simple conductimetric measurement method. The polymers were found to extract all metals with low efficiencies ≤40%, except for Fe3+ and Hg+, and sometimes Pb2+. Some polymers exhibited a selectively for K+, Cd2+ and Ba2+, with good efficiencies. The values obtained here using less polymer, and a faster method, are in fair correspondence (average difference ±16% with another published evaluation by atomic absorption spectroscopy (AAS.

  16. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei

    2012-02-28

    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry\\'s constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ < Al 3+). At low pressures, cations act as preferential adsorption sites for CO 2 and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO 2 adsorption. Furthermore, the adsorption selectivity of CO 2/H 2 mixture increases as Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ ≈ Al 3+. At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H 2O, the selectivity decreases drastically because of the competitive adsorption between H 2O and CO 2, and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations. © 2012 American Chemical Society.

  17. Positron annihilation studies of zirconia doped with metal cations of different valence

    Science.gov (United States)

    Prochazka, I.; Cizek, J.; Melikhova, O.; Konstantinova, T. E.; Danilenko, I. A.; Yashchishyn, I. A.; Anwand, W.; Brauer, G.

    2013-06-01

    New results obtained by applying positron annihilation spectroscopy to the investigation of zirconia-based nanomaterials doped with metal cations of different valence are reported. The slow-positron implantation spectroscopy combined with Doppler broadening measurements was employed to study the sintering of pressure-compacted nanopowders of tetragonal yttria-stabilised zirconia (t-YSZ) and t-YSZ with chromia additive. Positronium (Ps) formation in t-YSZ was proven by detecting 3γ-annihilations of ortho-Ps and was found to gradually decrease with increasing sintering temperature. A subsurface layer with enhanced 3γ-annihilations, compared to the deeper regions, could be identified. Addition of chromia was found to inhibit Ps formation. In addition, first results of positron lifetime measurements on nanopowders of zirconia phase-stabilised with MgO and CeO2 are presented.

  18. X-ray study of chemical bonding in actinides(IV) and lanthanides(III) hexa-cyanoferrates

    International Nuclear Information System (INIS)

    Dumas, T.

    2011-01-01

    Bimetallic cyanide molecular solids derived from Prussian blue are well known to foster long-range magnetic ordering and show an intense inter-valence charge transfer band resulting from an exchange interaction through the cyanide-bridge. For those reasons the ferrocyanide and ferricyanide building blocks have been chosen to study electronic delocalization and covalent character in actinide bonding using an experimental and theoretical approach based on X-ray absorption spectroscopy. In 2001, the actinide (IV) and early lanthanides (III) hexacyanoferrate have been found by powder X-ray diffraction to be isostructural (hexagonal, P6 3 /m group). Here, extended X-ray Absorption Fine Structure (EXAFS) at the iron K-edge and actinide L 3 -edge have been undertaken to probe the local environment of both actinides and iron cations. In an effort to describe the cyano bridge, a double edge fitting procedure including both iron and actinide edges and based on multiple scattering approach has been developed. We have also investigated the electronic properties of these molecular solids. Low energy electronic transitions have been used iron L 2,3 edge, nitrogen and carbon K-edge and also actinides N 4,5 edge to directly probe the valence molecular orbitals of the complex. Using a phenomenological approach, a clear distinctive behaviour between actinides and lanthanides has been shown. Then a theoretical approach using quantum chemistry calculation has shown more specifically the effect of covalency in the actinide-ferrocyanide bond. More specifically, π interactions were underlined by both theoretical and experimental methods. Finally, in agreement with the ionic character of the lanthanide bonding no inter-valence charge transfer has been observed in the corresponding optical spectra of these compounds. On the contrary, optical spectra for actinides adducts (except for thorium) show an intense inter-valence charge transfer band like in the transition metal cases which is

  19. Study of the interaction metallic cation - ligand in concentrated phosphorus acid media; Etude de l'interaction cation metallique - ligand en milieu acide phosphorique concentre

    Energy Technology Data Exchange (ETDEWEB)

    Sefiani, N.; Azzi, M.; Hlaibi, M. [Faculte des Sciences Ain Chock, Laboratoire d' Electrochimie et Chimie de l' Environnement (LECE), Casablanca (Morocco); Kossair, A. [Centre de Recherche des Phosphates Mineraux (CERPHOS), Casablanca (Morocco)

    2005-07-01

    The phosphoric acid is more and more used with a high purity. The recovery of recycling element (uranium, vanadium, rare earth...) and the elimination of toxic element (cadmium, molybdenum, lead...) contained in the phosphoric acid are generally realized by extraction or precipitation. It is then very important to understand these impurities behavior in the phosphoric media in order to control their elimination. In this work, the authors considered the presence of some metallic cations (V, Al, fe, U) and fluorides ions as impurity in concentrated phosphoric acid media. (A.L.B.)

  20. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei; Nalaparaju, Anjaiah; Eddaoudi, Mohamed; JIANG, Jianwen

    2012-01-01

    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry's constant

  1. Impact of metal binding on the antitumor activity and cellular imaging of a metal chelator cationic imidazopyridine derivative.

    Science.gov (United States)

    Roy, Mithun; Chakravarthi, Balabhadrapatruni V S K; Jayabaskaran, Chelliah; Karande, Anjali A; Chakravarty, Akhil R

    2011-05-14

    A new water soluble cationic imidazopyridine species, viz. (1E)-1-((pyridin-2-yl)methyleneamino)-3-(3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2(3H)-yl)propan-2-ol (1), as a metal chelator is prepared as its PF(6) salt and characterized. Compound 1 shows fluorescence at 438 nm on excitation at 342 nm in Tris-HCl buffer giving a fluorescence quantum yield (φ) of 0.105 and a life-time of 5.4 ns. Compound 1, as an avid DNA minor groove binder, shows pUC19 DNA cleavage activity in UV-A light of 365 nm forming singlet oxygen species in a type-II pathway. The photonuclease potential of 1 gets enhanced in the presence of Fe(2+), Cu(2+) or Zn(2+). Compound 1 itself displays anticancer activity in HeLa, HepG2 and Jurkat cells with an enhancement on addition of the metal ions. Photodynamic effect of 1 at 365 nm also gets enhanced in the presence of Fe(2+) and Zn(2+). Fluorescence-based cell cycle analysis shows a significant dead cell population in the sub-G1 phase of the cell cycle suggesting apoptosis via ROS generation. A significant change in the nuclear morphology is observed from Hoechst 33258 and an acridine orange/ethidium bromide (AO/EB) dual nuclear staining suggesting apoptosis in cells when treated with 1 alone or in the presence of the metal ions. Apoptosis is found to be caspase-dependent. Fluorescence imaging to monitor the distribution of 1 in cells shows that 1 in the presence of metal ions accumulates predominantly in the cytoplasm. Enhanced uptake of 1 into the cells within 12 h is observed in the presence of Fe(2+) and Zn(2+).

  2. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Chao; Feng, Zhenxing; Scherer, Günther G.; Barber, James; Shao-Horn, Yang; Xu, Zhichuan J. (Nanyang); (ICL); (Oregon State U.); (TUM-CREATE); (MIT)

    2017-04-10

    Exploring efficient and low-cost electrocatalysts for the oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER) is critical for developing renewable energy technologies such as fuel cells, metal–air batteries, and water electrolyzers. A rational design of a catalyst can be guided by identifying descriptors that determine its activity. Here, a descriptor study on the ORR/OER of spinel oxides is presented. With a series of MnCo2O4, the Mn in octahedral sites is identified as an active site. This finding is then applied to successfully explain the ORR/OER activities of other transition-metal spinels, including MnxCo3-xO4 (x = 2, 2.5, 3), LixMn2O4 (x = 0.7, 1), XCo2O4 (X = Co, Ni, Zn), and XFe2O4 (X = Mn, Co, Ni). A general principle is concluded that the eg occupancy of the active cation in the octahedral site is the activity descriptor for the ORR/OER of spinels, consolidating the role of electron orbital filling in metal oxide catalysis.

  3. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  4. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  5. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  6. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations.

    Science.gov (United States)

    Ratheal, Ian M; Virgin, Gail K; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-10-26

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na(+) ions for two extracellular K(+) ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na(+) or K(+); site III binds only Na(+)) are poorly understood. We studied cation selectivity by outward-facing sites (high K(+) affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium(+), methylguanidinium(+), and aminoguanidinium(+) produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K(+), and (ii) induction of pump-mediated, guanidinium-derivative-carried inward current at negative potentials without Na(+) and K(+). In contrast, formamidinium(+) and acetamidinium(+) induced K(+)-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K(+) congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li(+) induced Na(+)-like VDI, whereas all metals tested except Na(+) induced K(+)-like outward currents. Pump-mediated K(+)-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium(+) derivatives suggest that Na(+) binds to site III in a hydrated form and that the inward current observed without external Na(+) and K(+) represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites.

  7. Development of a novel method to determine the concentration of heavy metal cations: application of the specific interaction between heavy metal cation and mismatch DNA base pair.

    Science.gov (United States)

    Kozasa, Tetsuo; Miyakawa, Yukako; Fukushi, Miyako; Ono, Akira; Torigoe, Hidetaka

    2009-01-01

    We have already found that Hg(II) cation specifically binds to T:T mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving T:T mismatch base pair by about 4 degrees C. We have also found that Ag(I) cation specifically binds to C:C mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving C:C mismatch base pair by about 4 degrees C. Using the specific interaction, we developed a novel sensor to determine the concentration of each of Hg(II) and Ag(I) cation. The sensor is composed of a dye-labelled T-rich or C-rich DNA oligonucleotide, F2T6W2D: 5'-Fam-T(2)CT(2)CT(2)C(4)T(2)GT(2)GT(2)-Dabcyl-3' or F2C6W2D: 5'-Fam-C(2)TC(2)TC(2)T(4)C(2)AC(2)AC(2)-Dabcyl-3', where 6-carboxyfluorescein (Fam) is a fluorophore and Dabcyl is a quencher. The addition of Hg(II) cation decreased the intensity of Fam emission of F2T6W2D at 520 nm in a concentration-dependent manner. Also, the addition of Ag(I) cation decreased the intensity of Fam emission of F2C6W2D at 520 nm in a concentration-dependent manner. We conclude that, using the novel sensor developed in this study, the concentration of each of Hg(II) and Ag(I) cation can be determined from the intensity of Fam emission at 520 nm.

  8. ALMR potential for actinide consumption

    International Nuclear Information System (INIS)

    Cockey, C.L.; Thompson, M.L.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. This reactor combines a high degree of passive safety characteristics with a high level of modularity and factory fabrication to achieve attractive economics. The current reference design is a 471 MWt modular reactor fueled with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and for makeup. Actinide transmutation may be accomplished in the ALMR core by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behavior throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. Waste disposal impacts are discussed. (author)

  9. A polyoxometalate-encapsulating cationic metal-organic framework as a heterogeneous catalyst for desulfurization.

    Science.gov (United States)

    Hao, Xiu-Li; Ma, Yuan-Yuan; Zang, Hong-Ying; Wang, Yong-Hui; Li, Yang-Guang; Wang, En-Bo

    2015-02-23

    A new cationic triazole-based metal-organic framework encapsulating Keggin-type polyoxometalates, with the molecular formula [Co(BBPTZ)3][HPMo12O40]⋅24 H2O [compound 1; BBPTZ = 4,4'-bis(1,2,4-triazol-1-ylmethyl)biphenyl] is hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. The structure of compound 1 contains a non-interpenetrated 3D CdSO4 (cds)-type framework with two types of channels that are interconnected with each other; straight channels that are occupied by the Keggin-type POM anions, and wavelike channels that contain lattice water molecules. The catalytic activity of compound 1 in the oxidative desulfurization reaction indicates that it is not only an effective and size-selective heterogeneous catalyst, but it also exhibits distinct structural stability in the catalytic reaction system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Antibacterial Dyeing of Wool with Natural Cationic Dye Using Metal Mordants

    Directory of Open Access Journals (Sweden)

    Aminoddin HAJI

    2012-09-01

    Full Text Available In this study, Berberine colorant extracted from berberis vulgaris root was applied on wool fiber using alum (aluminum potassium sulfate, copper sulfate and potassium dichromate as mordant. The effect of treatment variables such as amount of mordant, time and temperature on the color strength of dyed fibers was examined. The fastness properties of dyed wool against washing, light and wet rubbing were evaluated. the use of metal mordants increased the color strength of the dyed goods. Increase in dyeing time and temperature caused deeper shades. All mordants, increased the rub fastness and wash fastness of dyed samples, but the light fastness was increased except in case of alum. Berberine is a cationic dye and because of it's quaternary ammonium structure can act as an antibacterial agent. So, dyed samples were tested for antibacterial activity using AATCC test method 100-2004. The dyed wool represented a high level of antibacterial activity. The extract of the berberis vulgaris can be considered as a natural dye of acceptable fastness properties together with excellent antibacterial activity for woolen textiles.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2437

  11. Isotope exchange reaction of tritium on precious metal catalyst based on cation-exchanged mordenite for blanket tritium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Precious metal catalyst based on cation-exchanged mordenite was prepared. • Isotope exchange reaction between H{sub 2} and HTO on the catalyst was investigated. • The order of entire reaction is not clear, but it is the first-order reaction as for HTO. • Effect of exchanged cation may appear as the difference of the surface area of catalyst. - Abstract: It is known that the chemical forms of tritium released from a ceramic breeder blanket are hydrogen form and water form. To recover tritiated water vapor, adoption of dryer that is packed column of synthetic zeolite has been proposed. On the other hand, synthetic zeolite is often used as a support of precious metal catalyst. Such catalysts usually have a capability of hydrogen isotope exchange between gas and water vapor. If this catalyst is used to dryer, the dryer may obtain a preferable function for tritium recovery by isotopic exchange reaction. To assess such functions, reaction rate should be estimated. The results of water adsorption experiment on cation-exchanged mordenite-type zeolite suggested the possibility that state of adsorbed water varied by exchanged cation. So, in this work, precious metal catalyst based on cation-exchanged mordenite was prepared, and the reaction rate of chemical exchange between hydrogen and tritiated water was investigated under temperature range between 30 °C and 80 °C by the steady-state approximation. In the case of platinum on Na-mordenite, the reaction between gaseous hydrogen and tritiated water vapor was almost expressed as first-order reaction concerning tritiated water vapor concentration.

  12. Alkali metal cation selectivity of [17]ketonand in methanol: free energy perturbation and molecular dynamics simulation studies

    International Nuclear Information System (INIS)

    Hwang, Sun Gu; Chung, Doo Soo; Jang, Yun Hee; Ryu, Gean Ha

    1999-01-01

    Free energy perturbation and molecular dynamics simulations were carried out to investigate the relative binding affinities of [1 7 ]ketonand (1) toward alkali metal cations in methanol. The binding affinities of 1 toward the alkali metal cations were calculated to be in the order Li + >Na + >K + >Rb + >Cs + , whereas our recent theoretically predicted and experimentally observed binding affinities for [1 8 ]starand (2) were in the order K + >Rb + >Cs + >Na + >Li + . The extremely different affinities of 1 and 2 toward smaller cations, Li + and Na + , were explained in terms of the differences in their ability to change the conformation to accommodate cations of different sizes. The carbonyl groups constituting the central cavity of 1 can reorganize to form a cavity with the optimal M + -O distance, even for the smallest Li + , without imposing serious strain on 1. The highest affinity of 1 for Li + was predominantly due to the highest Coulombic attraction between the smallest Li + and the carbonyl oxygens of 1

  13. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2012-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using highly sensitive and advanced laser-based spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been applied for the chemical speciation of actinide in aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. Development of TRLFS technology for the chemical speciation of actinides, Development of laser-induced photo-acoustic spectroscopy (LPAS) system, Application of LIBD technology to investigate dynamic behaviors of actinides dissolution reactions, Development of nanoparticle analysis technology in groundwater using LIBD, Chemical speciation of plutonium complexes by using a LWCC system, Development of LIBS technology for the quantitative analysis of actinides, Evaluation on the chemical reactions between actinides and humic substances, Spectroscopic speciation of uranium-ligand complexes in aqueous solution, Chemical speciation of actinides adsorbed on metal oxides surfaces

  14. Robust membrane systems for actinide separations

    International Nuclear Information System (INIS)

    Jarvinen, Gordon D.; McCleskey, T. Mark; Bluhm, Elizabeth A.; Abney, Kent D.; Ehler, Deborah S.; Bauer, Eve; Le, Quyen T.; Young, Jennifer S.; Ford, Doris K.; Pesiri, David R.; Dye, Robert C.; Robison, Thomas W.; Jorgensen, Betty S.; Redondo, Antonio; Pratt, Lawrence R.; Rempe, Susan L.

    2000-01-01

    Our objective in this project is to develop very stable thin membrane structures containing ionic recognition sites that facilitate the selective transport of target metal ions, especially the actinides

  15. Investigation of actinides speciation within the presence of ligands of interest for decorporation

    International Nuclear Information System (INIS)

    Bonin, L.

    2008-01-01

    Data about the behaviour of actinides in biological media are required in order to investigate their decorporation. Those data are obtained through in vivo experiments and the study of chemical speciation of actinides within the presence of biological constituents. A part of this work consists in the development of a method leading to the determination of the speciation of actinides at the oxidation state +IV within the presence of a complexing species, as well as its structure. The method was applied to two types of ligands: 1) a constituent of blood plasma: the citrate anion. The various complexes formed were investigated and their formation constants were quantified. The coordination mode of the ligand was then clarified through a structural study of the complexes, underlining the role of only one carboxylic site and of the alcohol function. 2) chelating agents used for decorporation. The formation constants of complexes of An(IV) with NTA and DTPA were determined. The coordination number of the metallic cation in those complexes as well as the role of the nitrogen atom were proved. Lastly, the behaviour of Pu(IV) within the presence of LIHOPO was investigated. This chelating agent, more efficient than DTPA in the case of in vivo decorporation of Np, forms very stable complexes with the metallic cation. One of those complexes can be assumed to present a stoichiometry 2:3. (author)

  16. Solvent-Free Selective Oxidation of Toluene with O2 Catalyzed by Metal Cation Modified LDHs and Mixed Oxides

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-01-01

    Full Text Available A series of metal cation modified layered-double hydroxides (LDHs and mixed oxides were prepared and used to be the selective oxidation of toluene with O2. The results revealed that the modified LDHs exhibited much higher catalytic performance than their parent LDH and the modified mixed oxides. Moreover, the metal cations were also found to play important roles in the catalytic performance and stabilities of modified catalysts. Under the optimal reaction conditions, the highest toluene conversion reached 8.7% with 97.5% of the selectivity to benzyldehyde; moreover, the catalytic performance remained after nine catalytic runs. In addition, the reaction probably involved a free-radical mechanism.

  17. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced...

  18. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  19. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  20. Determination of non-metallic elements in actinide complexes by oxygen flask combustion (OFC): chlorine and fluorine

    International Nuclear Information System (INIS)

    Ruikar, P.B.; Nagar, M.S.; Subramanian, M.S.

    1989-01-01

    The oxygen flask combustion followed by ion selective electrode measurement has been found to be the most suitable from the point of view of elegance and simplicity for the determination of chlorine and fluorine in actinide complexes. The method has been found to be particularly suitable for glove box adaptation. This report describes the determination of chlorine and fluorine in several uranium complexes, some plutonium complexes and organic analytical standards by this method. The precision and accuracy of the measurements in the milligram level has been found to be quite satisfactory. (author). 16 refs., 11 tabs

  1. Actinide separation by electrorefining

    International Nuclear Information System (INIS)

    Fusselman, S.P.; Gay, R.L.; Grantham, L.F.; Grimmett, D.L.; Roy, J.J.; Inoue, T.; Hijikata, T.; Krueger, C.L.; Storvick, T.S.; Takahashi, N.

    1995-01-01

    TRUMP-S is a pyrochemical process being developed for the recovery of actinides from PUREX wastes. This paper describes development of the electrochemical partitioning step for recovery of actinides in the TRUMP-S process. The objectives are to remove 99 % of each actinide from PUREX wastes, with a product that is > 90 % actinides. Laboratory tests indicate that > 99 % of actinides can be removed in the electrochemical partitioning step. A dynamic (not equilibrium) process model predicts that 90 wt % product actinide content can be achieved through 99 % actinide removal. Accuracy of model simulation results were confirmed in tests with rare earths. (authors)

  2. Effect of alkaline earth metal and magnesium cations on cadmium extraction from chloride solutions by tributyl phosphate

    International Nuclear Information System (INIS)

    Prokuev, V.A.; Belousov, E.A.

    1985-01-01

    At 298 K thermodynamic constants of cadmium (2) extraction from chloride solutions of magnesium, calcium, strontium and barium by tributyl phosphate are calculated. It is established, that logarithm of the thermodynamic extraction constant is in a linear dependence from the change in the cation hydration enthalpy in agqueous solution. It is shown, that activity coefficient of neutral complex CdVCl 2 differs from one, and it is the higher the more stable the complex is in alkaline earth metal chloride solutions

  3. Network diversity through decoration of trigonal-prismatic nodes: Two-step crystal engineering of cationic metal-organic materials

    KAUST Repository

    Schoedel, Alexander

    2011-10-05

    MOMs the word! In a two-step process, first a trigonal-prismatic Primary Molecular Building Block ([Cr3O(isonic)6]+, tp-PMBB-1) was formed and then it was connected to linear linkers or square-planar nodes to afford three novel highly charged cationic metal-organic materials (MOMs) with snx, snw, and stp topologies. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  5. γ-radiation effect on dicyclohexano-18-crown-6 aqueous solution in the presence of metal cations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chuhong; Peng, Jing; Li, Jiuqiang; Zhai, Maolina [Peking Univ. (China). Beijing National Laboratory for Molecular Sciences (BNLMS)

    2014-04-01

    γ-radiation effect on dicyclohexano-18-crown-6 (DCH18C6) aqueous solution in the presence of metal cations, such as K{sup +} and Sr{sup 2+}, was investigated, and some pale yellow precipitates were obtained at doses above 100 kGy. It was found that the complexation interaction of metal cations could accelerate the conversion of DCH18C6 into oligomers and the formation of precipitates, but it did not affect the formation mechanism of precipitates. Furthermore, the salting-out effect of metal cations played an important role in the precipitation. In order to inhibit the radiation-induced precipitation of DCH18C6 in water phase, nitric acid with a concentration of more than 1 M could be added to the system. The methods and results for analyzing radiation-induced products reported in this work are useful to understand the radiation chemistry behavior of DCH18C6 which is used as the extractant in the separation of long half-life radionuclides from spent nuclear fuel. (orig.)

  6. Complexing properties of some carbamoylmethylphosphine oxides and methylenediphosphine dioxides with respect to alkali metal cations and the effect of abnormal aryl strengthening

    International Nuclear Information System (INIS)

    Evreinov, V.I.; Safronova, Z.V.; Yarkevich, A.N.; Kharitonov, A.V.; Bondarenko, N.A.; Tsvetkov, E.N.

    1999-01-01

    By the method of conductometry in anhydrous tetrahydrofuran at 25 Deg C stability constants of alkali metal (M = Li, Na, K) cation complexes with certain phosphinoxides have been determined. Abnormal aryl strengthening is first of all pronounced in the cation complexes with tetraphenyldiphosphine dioxide [ru

  7. The electronic structure of vanadium monochloride cation (VCl+): Tackling the complexities of transition metal species

    Science.gov (United States)

    DeYonker, Nathan J.; Halfen, DeWayne T.; Allen, Wesley D.; Ziurys, Lucy M.

    2014-11-01

    Six electronic states (X 4Σ-, A 4Π, B 4Δ, 2Φ, 2Δ, 2Σ+) of the vanadium monochloride cation (VCl+) are described using large basis set coupled cluster theory. For the two lowest quartet states (X 4Σ- and A 4Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, bar De, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X 4Σ-), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state (2Γ) has a Te of ˜11 200 cm-1. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.

  8. Atomistic Modeling of Cation Diffusion in Transition Metal Perovskites La1-xSrxMnO3+/-δfor Solid Oxide Fuel Cell Cathodes Applications

    Science.gov (United States)

    Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; Sorescu, Dan; Abernathy, Harry

    Cation diffusion in La1-xSrxMnO3+/-δ (LSM) and in related perovskite materials play an important role in controlling long term performance and stability of solid oxide fuel cell (SOFCs) cathodes. Due to sluggish rates of cation diffusion and complex coupling between defect chemistry and cation diffusion pathways, currently there is still lack of quantitative theoretical model predictions on cation diffusivity vs. T and P(O2) to describe experimental cation tracer diffusivities. In this work, based on ab initio modeling of LSM defect chemistry and migration barriers of the possible cation diffusion pathways, we assess the rates of A-site and B-site cation diffusion in a wide range of T and P(O2) at x =0.0 and 0.2 for SOFC applications. We demonstrate the active cation diffusion pathways in LSM involve cation defect clusters as cation transport carriers, where reduction in the cation migration barriers, which are governed by the steric effect associated with the metal-oxygen cage in the perovskite lattice, is much greater than the penalty of repulsive interaction in the A-site and B-site cation vacancy clusters, leading to higher cation diffusion rates as compared to those of single cation vacancy hopping mechanisms. The predicted Mn and La/Sr cation self-diffusion coefficients of LSM at at x =0.0 and 0.2 along with their 1/T and P(O2) dependences, are in good agreement with the experimental tracer diffusion coefficients.

  9. Extraction characteristics of trivalent lanthanides and actinides in mixtures of dinonylnaphthalenesulfonic acid and carboxylic acids

    International Nuclear Information System (INIS)

    West, M.H.

    1983-03-01

    Dinonylnaphthalenesulfonic acid (HDNNS) has been shown to be an effective liquid cation exchanger for the extraction of metal ions. This extractant has proven to be successful in the extraction of trivalent lanthanides and actinides in the pH range of 2.0 to 3.0, although it shows little selectivity for individual ions because of its strong acid character. In an effort to improve the selectivity of HDNNS between trivalent lanthanides and actinides, carboxylic acids were added to the organic phase and the effects on the extraction characteristics of HDNNS were investigated. Three carboxylic acids - nonanoic, cyclohexanecarboxylic, and cyclohexanebutyric - were studied with the following metals: Am(III), Cm(III), Ce(III), Eu(III), and Tm(III). The distributions of the metal ions were studied holding the HDNNS concentration constant while varying the carboxylic acid concentrations over a range of 1.0 x 10 -5 M to 1.0 M. Results indicated that the greatest enhancement of the extraction occurred at a carboxylic acid concentration of 1.0 x 10 -2 M with negative effects occurring at 0.5 M and 1.0 M. The effects on the extraction of the trivalent lanthanides and actinides were interpreted in terms of the structural differences of the carboxylic acids, the effect of the carboxylic acids on the HDNNS extraction mechanism, and the ionic properties of the metals studied

  10. Correction: A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    Science.gov (United States)

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-12-22

    Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.

  11. Metal-Cation Recognition in Water by a Tetrapyrazinoporphyrazine-Based Tweezer Receptor

    Czech Academy of Sciences Publication Activity Database

    Lochman, L.; Švec, J.; Roh, J.; Kirakci, Kaplan; Lang, Kamil; Zimčík, P.; Nováková, V.

    2016-01-01

    Roč. 22, č. 7 (2016), s. 2417-2426 ISSN 0947-6539 Institutional support: RVO:61388980 Keywords : cation s * crown compounds * fluorescent probes * phthalocyanines * sensors Subject RIV: CA - Inorganic Chemistry Impact factor: 5.317, year: 2016

  12. Cation sorption at the smectite edges: From transition metals to Y and Lu

    International Nuclear Information System (INIS)

    Schlegel, M.L.

    2007-01-01

    Complete text of publication follows: Introduction: Clay minerals can adsorb trace elements in soils and weathering formations, a sorption property which is also a key-point for the use of clay materials in nuclear waste repositories. Retention can occur either by adsorption on the clay basal plane or at the layer edges, depending on physicochemical conditions. Building on previous identification of sorption sites of transition metals [1-3], this study shows how the geometry of Y and Lu surface complexes on layer edges of clay minerals can be identified. Materials and methods: Suspensions of purified clay minerals (hectorite or Al-montmorillonite, 2 and 1 g/L, respectively) were reacted in 0.5 M NaCl at pH 6 (Al-montmorillonite) and 7 (hectorite) with sorbates at concentrations of 50 μM (Y) and 100 μM (Lu). Self-supporting films of reacted clay minerals were obtained by slowly filtering suspension aliquots on cellulose nitrate filters. Yttrium K-edge and Lu L3-edge polarized EXAFS (PEXAFS) spectra of the self-supporting films were collected in fluorescence mode on the FAME beamline (ESRF, France). PEXAFS data were reduced, and analyzed using standard procedures. Results and interpretation: Small but significant angular dependences were observed for all P-EXAFS data, meaning that the Y and Lu binding environments are anisotropic. Coordination spheres of 7 O at 2.36 Angstroms and 8 O at 2.27 Angstroms, were observed for Y and Lu, respectively, comparable with d(Ln-O) distances measured by EXAFS spectroscopy [4]. Lutetium sorbed on Al-montmorillonite was surrounded by an Al-shell at 3.35 Angstroms, consistent with Lu sharing edges with Al octahedra and partially incorporated in a gibbsite-like interlayer. Both Y and Lu sorbed on hectorite were surrounded by cationic shells. Modelling of these cationic contributions yielded one out-of-plane Si/Mg shell at 3.16 Angstroms (Y) or 3.04 Angstroms (Lu), and two in-plane (Mg/Si) shells at 3.50, and 3.97 Angstroms for Y, or

  13. Cation sorption at the smectite edges: From transition metals to Y and Lu

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, M.L. [CEA/DANS/DPC/SCP Lab React Surfaces and Interfaces, F-91191 Gif Sur Yvette (France)

    2007-07-01

    Complete text of publication follows: Introduction: Clay minerals can adsorb trace elements in soils and weathering formations, a sorption property which is also a key-point for the use of clay materials in nuclear waste repositories. Retention can occur either by adsorption on the clay basal plane or at the layer edges, depending on physicochemical conditions. Building on previous identification of sorption sites of transition metals [1-3], this study shows how the geometry of Y and Lu surface complexes on layer edges of clay minerals can be identified. Materials and methods: Suspensions of purified clay minerals (hectorite or Al-montmorillonite, 2 and 1 g/L, respectively) were reacted in 0.5 M NaCl at pH 6 (Al-montmorillonite) and 7 (hectorite) with sorbates at concentrations of 50 {mu}M (Y) and 100 {mu}M (Lu). Self-supporting films of reacted clay minerals were obtained by slowly filtering suspension aliquots on cellulose nitrate filters. Yttrium K-edge and Lu L3-edge polarized EXAFS (PEXAFS) spectra of the self-supporting films were collected in fluorescence mode on the FAME beamline (ESRF, France). PEXAFS data were reduced, and analyzed using standard procedures. Results and interpretation: Small but significant angular dependences were observed for all P-EXAFS data, meaning that the Y and Lu binding environments are anisotropic. Coordination spheres of 7 O at 2.36 Angstroms and 8 O at 2.27 Angstroms, were observed for Y and Lu, respectively, comparable with d(Ln-O) distances measured by EXAFS spectroscopy [4]. Lutetium sorbed on Al-montmorillonite was surrounded by an Al-shell at 3.35 Angstroms, consistent with Lu sharing edges with Al octahedra and partially incorporated in a gibbsite-like interlayer. Both Y and Lu sorbed on hectorite were surrounded by cationic shells. Modelling of these cationic contributions yielded one out-of-plane Si/Mg shell at 3.16 Angstroms (Y) or 3.04 Angstroms (Lu), and two in-plane (Mg/Si) shells at 3.50, and 3.97 Angstroms for Y

  14. Actinide burning and waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T H [University of California, Berkeley, CA (United States)

    1990-07-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  15. Actinide speciation in the environment

    International Nuclear Information System (INIS)

    Choppin, G.R.

    2007-01-01

    Nuclear test explosions and nuclear reactor wastes and accidents have released large amounts of radioactivity into the environment. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides are introduced into the aquatic system. Chemical speciation, oxidation state, redox reactions, and sorption characteristics are necessary in predicting solubility of the different actinides, their migration behaviors and their potential effects on marine biota. The most significant of these variables is the oxidation state of the metal ion as the simultaneous presence of more than one oxidation state for some actinides in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters, are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is much more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK sp ≥56) but which can be present in the pentavalent form in aqautic phases as colloidal material. The solubility of hexavalent UO 2 2+ in sea water is relatively high due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(OH)(CO 3 ) is the limiting species for the solubility of Am(III) in sea water. Thorium(IV) is present as Th(OH) 4 , in colloidal form. The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in natural waters which must be considered in assessing the environmental behavior of actinides. Much is understood about sorption of actinides on surfaces, the mode of migration of actinides in such waters and the potential effects of these radioactive species on marine biota, but much more understanding of the behavior of the actinides in the environment is

  16. Actinide burning and waste disposal

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1990-01-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  17. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd

    OpenAIRE

    Duguid, J.; Bloomfield, V.A.; Benevides, J.; Thomas Jr, G.J.

    1993-01-01

    Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) ind...

  18. Structures of the dehydrogenation products of methane activation by 5d transition metal cations revisited: Deuterium labeling and rotational contours

    Science.gov (United States)

    Owen, Cameron J.; Boles, Georgia C.; Chernyy, Valeriy; Bakker, Joost M.; Armentrout, P. B.

    2018-01-01

    A previous infrared multiple photon dissociation (IRMPD) action spectroscopy and density functional theory (DFT) study explored the structures of the [M,C,2H]+ products formed by dehydrogenation of methane by four, gas-phase 5d transition metal cations (M+ = Ta+, W+, Ir+, and Pt+). Complicating the analysis of these spectra for Ir and Pt was observation of an extra band in both spectra, not readily identified as a fundamental vibration. In an attempt to validate the assignment of these additional peaks, the present work examines the gas phase [M,C,2D]+ products of the same four metal ions formed by reaction with perdeuterated methane (CD4). As before, metal cations are formed in a laser ablation source and react with methane pulsed into a reaction channel downstream, and the resulting products are spectroscopically characterized through photofragmentation using the free-electron laser for intracavity experiments in the 350-1800 cm-1 range. Photofragmentation was monitored by the loss of D for [Ta,C,2D]+ and [W,C,2D]+ and of D2 in the case of [Pt,C,2D]+ and [Ir,C,2D]+. Comparison of the experimental spectra and DFT calculated spectra leads to structural assignments for all [M,C,2H/2D]+ systems that are consistent with previous identifications and allows a full description of the systematic spectroscopic shifts observed for deuterium labeling of these complexes, some of the smallest systems to be studied using IRMPD action spectroscopy. Further, full rotational contours are simulated for each vibrational band and explain several observations in the present spectra, such as doublet structures in several bands as well as the observed linewidths. The prominent extra bands in the [Pt,C,2D/2H]+ spectra appear to be most consistent with an overtone of the out-of-plane bending vibration of the metal carbene cation structure.

  19. Identification of a crucial histidine involved in metal transport activity in the Arabidopsis cation/H+ exchanger CAX1.

    Science.gov (United States)

    Shigaki, Toshiro; Barkla, Bronwyn J; Miranda-Vergara, Maria Cristina; Zhao, Jian; Pantoja, Omar; Hirschi, Kendal D

    2005-08-26

    In plants, yeast, and bacteria, cation/H+ exchangers (CAXs) have been shown to translocate Ca2+ and other metal ions utilizing the H+ gradient. The best characterized of these related transporters is the plant vacuolar localized CAX1. We have used site-directed mutagenesis to assess the impact of altering the seven histidine residues to alanine within Arabidopsis CAX1. The mutants were expressed in a Saccharomyces cerevisiae strain that is sensitive to Ca2+ and other metals. By utilizing a yeast growth assay, the H338A mutant was the only mutation that appeared to alter Ca2+ transport activity. The CAX1 His338 residue is conserved among various CAX transporters and may be located within a filter for cation selection. We proceeded to mutate His338 to every other amino acid residue and utilized yeast growth assays to estimate the transport properties of the 19 CAX mutants. Expression of 16 of these His338 mutants could not rescue any of the metal sensitivities. However, expression of H338N, H338Q, and H338K allowed for some growth on media containing Ca2+. Most interestingly, H338N exhibited increased tolerance to Cd2+ and Zn2+. Endomembrane fractions from yeast cells were used to measure directly the transport of H338N. Although the H338N mutant demonstrated 25% of the wild type Ca2+/H+ transport, it showed an increase in transport for both Cd2+ and Zn2+ reflected in a decrease in the Km for these substrates. This study provides insights into the CAX cation filter and novel mechanisms by which metals may be partitioned across membranes.

  20. Moessbauer effect studies with actinides

    International Nuclear Information System (INIS)

    Stone, J.A.

    1966-01-01

    Moessbauer resonance studies in the actinide elements offer a new technique for measuring solid-state properties to a region of the periodic chart where such information is relatively sparse. It is well known that the actinides, the elements with atomic numbers from 90 to 103, form a transition series due to filling of the 5f electron shell, analogous to the rare-earth series in which the 4f shell is filled. Like the rare earths, the actinide metals and compounds are expected to exhibit a variety of interesting magnetic properties, but, unlike the rare earths, there have been few studies of the magnetic behaviour of actinides, and these properties are largely unknown. The chemical properties of the actinides have been studied somewhat more extensively, and, in contrast to the rare earths, form a multiplicity of stable valence states, especially in the lighter members of the series. It is just these properties, magnetic and chemical, for which the Moessbauer effect is a valuable probe, sensitive to the magnetic and electric environment of an atom. The rare-earth series has been a particularly fruitful region in terms of the number of elements which have been shown to exhibit the Moessbauer effect, and for this reason the exploitation of the Moessbauer effect to yield new solid-state and chemical information on the rare earths is a highly active field of research today. There is every reason to believe that the actinides can be similarly studied by the Moessbauer effect. 43 refs, 6 figs, 4 tabs

  1. Predictive Modeling in Actinide Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  2. Organic-inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer.

    Science.gov (United States)

    Mitzi, D B

    2000-12-25

    Thin sheetlike crystals of the metal-deficient perovskites (H2AEQT)M2/3I4 [M = Bi or Sb; AEQT = 5,5"'-bis-(aminoethyl)-2,2':5',2'':5'',2'''-quaterthiophene] were formed from slowly cooled ethylene glycol/2-butanol solutions containing the bismuth(III) or antimony(III) iodide and AEQT.2HI salts. Each structure was refined in a monoclinic (C2/m) subcell, with the lattice parameters a = 39.712(13) A, b = 5.976(2) A, c = 6.043(2) A, beta = 92.238(5) degrees, and Z = 2 for M = Bi and a = 39.439(7) A, b = 5.952(1) A, c = 6.031(1) A, beta = 92.245(3) degrees, and Z = 2 for M = Sb. The trivalent metal cations locally adopt a distorted octahedral coordination, with M-I bond lengths ranging from 3.046(1) to 3.218(3) A (3.114 A average) for M = Bi and 3.012(1) to 3.153(2) A (3.073 A average) for M = Sb. The new organic-inorganic hybrids are the first members of a metal-deficient perovskite family consisting of (Mn+)2/nV(n-2)/nX4(2-) sheets, where V represents a vacancy (generally left out of the formula) and the metal cation valence, n, is greater than 2. The organic layers in the AEQT-based organic-inorganic hybrids feature edge-to-face aromatic interactions among the rigid, rodlike quaterthiophene moieties, which may help to stabilize the unusual metal-deficient layered structures.

  3. Study of actinide paramagnetism in solution

    International Nuclear Information System (INIS)

    Autillo, Matthieu

    2015-01-01

    The physiochemical properties of actinide (An) solutions are still difficult to explain, particularly the behavioral differences between An(III) and Ln(III). The study of actinide paramagnetic behavior may be a 'simple' method to analyze the electronic properties of actinide elements and to obtain information on the ligand-actinide interaction. The objective of this PhD thesis is to understand the paramagnetic properties of these elements by magnetic susceptibility measurements and chemical shift studies. Studies on actinide electronic properties at various oxidation states in solution were carried out by magnetic susceptibility measurements in solution according to the Evans method. Unlike Ln(III) elements, there is no specific theory describing the magnetic properties of these ions in solution. To obtain accurate data, the influence of experimental measurement technique and radioactivity of these elements was analyzed. Then, to describe the electronic structure of their low energy states, the experimental results were complemented with quantum chemical calculations from which the influence of the ligand field was studied. Finally, these interpretations were applied to better understand the variations in the magnetic properties of actinide cations in chloride and nitrate media. Information about ligand-actinide interactions may be determined from an NMR chemical shift study of actinide complexes. Indeed, modifications induced by a paramagnetic complex can be separated into two components. The first component, a Fermi contact contribution (δ_c) is related to the degree of covalency in coordination bonds with the actinide ions and the second, a dipolar contribution (δ_p_c) is related to the structure of the complex. The paramagnetic induced shift can be used only if we can isolate these two terms. To achieve this study on actinide elements, we chose to work with the complexes of dipicolinic acid (DPA). Firstly, to characterize the geometrical parameters, a

  4. Investigation of actinides speciation within the presence of ligands of interest for decorporation; Etude de la speciation des actinides vis-a-vis de ligands d'interet pour la decorporation

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, L

    2008-01-15

    Data about the behaviour of actinides in biological media are required in order to investigate their decorporation. Those data are obtained through in vivo experiments and the study of chemical speciation of actinides within the presence of biological constituents. A part of this work consists in the development of a method leading to the determination of the speciation of actinides at the oxidation state +IV within the presence of a complexing species, as well as its structure. The method was applied to two types of ligands: 1) a constituent of blood plasma: the citrate anion. The various complexes formed were investigated and their formation constants were quantified. The coordination mode of the ligand was then clarified through a structural study of the complexes, underlining the role of only one carboxylic site and of the alcohol function. 2) chelating agents used for decorporation. The formation constants of complexes of An(IV) with NTA and DTPA were determined. The coordination number of the metallic cation in those complexes as well as the role of the nitrogen atom were proved. Lastly, the behaviour of Pu(IV) within the presence of LIHOPO was investigated. This chelating agent, more efficient than DTPA in the case of in vivo decorporation of Np, forms very stable complexes with the metallic cation. One of those complexes can be assumed to present a stoichiometry 2:3. (author)

  5. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    International Nuclear Information System (INIS)

    Hoefer, Christoph; Santner, Jakob; Borisov, Sergey M.; Wenzel, Walter W.; Puschenreiter, Markus

    2017-01-01

    Gel-based, two-dimensional (2D) chemical imaging techniques are versatile methods for investigating biogeochemically active environments at high spatial resolution (sub-mm). State-of-the-art solute imaging techniques, such as diffusive gradients in thin films (DGT) and planar optodes (PO), employ passive solute sampling or sensing. Combining these methods will provide powerful tools for studying the biogeochemistry of biological niches in soils and sediments. In this study we aimed at developing a combined single-layer gel for direct pH imaging using PO and sampling of anionic and cationic solutes by DGT, with subsequent analysis of the bound solutes by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We tested three ultra-thin (<100 μm) polyurethane-based gels, incorporating anion and cation binding materials and the fluorescent pH indicator DCIFODA (2′,7′-dichloro-5(6)-N-octadecyl-carboxamidofluorescein). Results showed that PO-based pH sensing using DCIFODA was impossible in the presence of the anion binding materials due to interferences with DCIFODA protonation. One gel, containing only a cation binding material and DCIFODA, was fully characterized and showed similar performance characteristics as comparable DGT-only gels (applicable pH range: pH 5–8, applicable ionic strength range: 1–20 mmol L"-"1, cation binding capacity ∼24 μg cm"−"2). The dynamic range for PO-based pH mapping was between pH 5.5 and 7.5 with t_9_0 response time of ∼60 min. In a case study we demonstrated the gel's suitability for multi-analyte solute imaging and mapped pH gradients and concurrent metal solubility patterns in the rhizosphere of Salix smithiana. pH decreases in the rooted soil were co-localized with elevated solute fluxes of Al"3"+, Co"2"+, Cu"2"+, Fe, Mn"2"+, Ni"2"+ and Pb"2"+, indicating pH-induced metal solubilisation. - Highlights: • Diffusive gradients in thin films (DGT) and planar optode (PO) imaging is combined. • A

  6. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, Christoph [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Santner, Jakob, E-mail: jakob.santner@boku.ac.at [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Department of Crop Sciences, Division of Agronomy, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Borisov, Sergey M. [Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz (Austria); Wenzel, Walter W.; Puschenreiter, Markus [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria)

    2017-01-15

    Gel-based, two-dimensional (2D) chemical imaging techniques are versatile methods for investigating biogeochemically active environments at high spatial resolution (sub-mm). State-of-the-art solute imaging techniques, such as diffusive gradients in thin films (DGT) and planar optodes (PO), employ passive solute sampling or sensing. Combining these methods will provide powerful tools for studying the biogeochemistry of biological niches in soils and sediments. In this study we aimed at developing a combined single-layer gel for direct pH imaging using PO and sampling of anionic and cationic solutes by DGT, with subsequent analysis of the bound solutes by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We tested three ultra-thin (<100 μm) polyurethane-based gels, incorporating anion and cation binding materials and the fluorescent pH indicator DCIFODA (2′,7′-dichloro-5(6)-N-octadecyl-carboxamidofluorescein). Results showed that PO-based pH sensing using DCIFODA was impossible in the presence of the anion binding materials due to interferences with DCIFODA protonation. One gel, containing only a cation binding material and DCIFODA, was fully characterized and showed similar performance characteristics as comparable DGT-only gels (applicable pH range: pH 5–8, applicable ionic strength range: 1–20 mmol L{sup -1}, cation binding capacity ∼24 μg cm{sup −2}). The dynamic range for PO-based pH mapping was between pH 5.5 and 7.5 with t{sub 90} response time of ∼60 min. In a case study we demonstrated the gel's suitability for multi-analyte solute imaging and mapped pH gradients and concurrent metal solubility patterns in the rhizosphere of Salix smithiana. pH decreases in the rooted soil were co-localized with elevated solute fluxes of Al{sup 3+}, Co{sup 2+}, Cu{sup 2+}, Fe, Mn{sup 2+}, Ni{sup 2+} and Pb{sup 2+}, indicating pH-induced metal solubilisation. - Highlights: • Diffusive gradients in thin films (DGT) and planar

  7. Calcium and sodium as regulators of the recovery of four Daphnia species along a gradient of metal and base cations in metal contaminated lakes in Sudbury, Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Martha Patricia Celis-Salgado

    2016-04-01

    Full Text Available Smelting of sulphur-rich metallic ores in Sudbury, Ontario, Canada, has caused acidification and metal contamination of thousands of lakes in the region. Recent reductions in smelter emissions have resulted in much ecological recovery, but the recovery of Daphnia species has been poor. To determine if Cu and Ni toxicity could explain differences in daphniid recovery among lakes, we compared results of 14 d static with renewal bioassays in waters from Blue Chalk Lake, an uncontaminated reference lake 200 km from Sudbury, and from five Sudbury lakes ranging in distance from the smelters and varying in metal and cation concentrations. We spiked Blue Chalk Lake water with Cu and Ni to levels resembling those of the Sudbury lakes and also tested the lake waters for toxicity. Survival of Daphnia pulex, D. pulicaria and D. mendotae decreased monotonically with increasing metal concentrations in the spiked Blue Chalk Lake treatments, falling from 90% in the controls to 0% at the two highest Cu and Ni levels, reflecting levels of Middle and Hannah lakes. In contrast, survival in waters collected from the actual Sudbury lakes did not monotonically track their total metal concentrations. Rather, survival fell to 0% in Clearwater Lake water, a lake with intermediate metal contamination (8.9 and 79.9 μg L–1 of Cu and Ni, respectively vs 70-100% in the other lakes. We performed an additional assay with Clearwater Lake waters increasing its Ca and Na concentrations, singly and in combination to levels that reflected the levels in Middle Lake. The survival of the four daphniid species increased from 0% up to 80-100% with added Ca and from 0% to 60-90% with added Na. Lipid-ovarian indices had a similar trend to survival for D. mendotae and D. pulicaria in Bioassay 1, varying with the cation concentrations in the lakes for the daphniids in Bioassay 2. The bioassays results imply that regional recovery patterns of daphniids in Sudbury lakes cannot be understood

  8. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    Dye, J.L.

    1979-01-01

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M + with crown-ethers and cryptands and of the alkali metal anion, M - , were made. The first crystalline salt of an alkali metal anion, Na + Cryptand [2.2.2]Na - was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  9. Introduction of a cation in aqueous solution by electrolytic dissolution of metal. Applications to the decontamination of radioactive effluents

    International Nuclear Information System (INIS)

    Gauchon, Jean-Paul

    1979-01-01

    This research thesis aims at comparing results obtained in chemical decontamination of radioactive effluents with a metallic cation introduced by metal electro-dissolution or by dose addition. After an overview of methods used for the purification of radioactive effluents and a more precise presentation of chemical co-precipitation, the author reports preliminary tests of the application of chemical co-precipitation to the decontamination of radioactive effluents, reports the analysis of iron, zinc and copper behaviour in aqueous environment by means of thermodynamic diagrams and current-voltage curves. He reports the design and use of two electro-dissolution sets, and the application of copper electrolytic dissolution to the elimination of ruthenium in radioactive effluents. He finally addresses the purification treatment of effluents of nuclear reactors

  10. Selective adsorption and ion exchange of metal cations and anions with silico-titanates and layered titanates

    International Nuclear Information System (INIS)

    Anthony, R.G.; Philip, C.V.

    1993-01-01

    Metal ions may be removed from aqueous wastes from metal processing plants and from refineries. They may also be used in concentrating radioactive elements found in dilute, aqueous, nuclear wastes. A new series of silico-titanates and alkali titanates are shown to have specific selectivity for cations of lead, mercury, and cadmium and the dichromate anion in solutions with low and high pH. Furthermore, one particular silico-titanate, TAM-5, was found to be highly selective for Cs + and Sr 2+ in solutions of 5.7 M Na + and 0.6 M Oh - . A high potential exists for these materials for removing Cs + and Sr 2+ from radioactive aqueous wastes containing high concentrations of Na + at high and low pH

  11. Minor actinide transmutation - a waste management option

    International Nuclear Information System (INIS)

    Koch, L.

    1986-01-01

    The incentive to recycle minor actinides results from the reduction of the long-term α-radiological risk rather than from a better utilization of the uranium resources. Nevertheless, the gain in generated electricity by minor actinide transmutation in a fast breeder reactor can compensate for the costs of their recovery and make-up into fuel elements. Different recycling options of minor actinides are discussed: transmutation in liquid metal fast breeder reactors (LMFBRs) is possible as long as plutonium is not recycled in light water reactors (LWRs). In this case a minor actinide burner with fuel of different composition has to be introduced. The development of appropriate minor actinide fuels and their properties are described. The irradiation experiments underway or planned are summarized. A review of minor actinide partitioning from the PUREX waste stream is given. From the present constraints of LMFBR technology a reduction of the long-term α-radiological risk by a factor of 200 is deduced relative to that from the direct storage of spent LWR fuel. Though the present accumulation of minor actinides is low, nuclear transmutation may be needed when nuclear energy production has grown. (orig.)

  12. Effects of Organics on the Adsorption and Mobility of Metal Cations in Clay Systems: Computational Molecular Modeling Approach

    International Nuclear Information System (INIS)

    Kalinichev, Andrey G.; Ngouana Wakou, Brice F.; Loganathan, Narasimhan

    2013-01-01

    Understanding and prediction of many natural and anthropogenic environmental processes ultimately depend on a fundamental understanding of the chemistry occurring at the mineral-fluid inter-faces. Clay-related minerals and natural organic matter (NOM) are ubiquitous in the environment, and metal-NOM complexation induces strong correlations between the NOM concentration in water and the capacity of clay particles to bind metals, thus affecting their speciation, solubility and toxicity in the environment. Despite significant geochemical, environmental and technological interest, the molecular-level mechanisms and dynamics of the physical and chemical processes involving NOM are not yet well understood. In this presentation we compare three different molecular dynamics (MD) computer simulations of metal-NOM complexation in aqueous solutions. The simulation results indicate that despite some obvious quantitative variations in the computed values depending on the size of the simulated system and on the parameters of the force field models used, all three simulations are quite robust and consistent. In particular, approximately 35-50% of Ca 2+ ions in all simulations are associated with the carboxylic groups of NOM at near-neutral pH. The stability of bidentate-coordinated contact ion pair complexes is also always strongly preferred. Easy association of metal cations with negatively charged NOM functional groups and negatively charged clay surfaces allows us to predict that cationic bridging could be the most probable mechanism of NOM association with clays in natural environments. New MD simulations are currently in progress to quantitatively assess these predictions on a molecular scale for nuclear waste disposal applications. New larger-scale clay models incorporate a more realistic representation of the structural and compositional disorder of natural illites and smectites and employ CLAYFF - a fully flexible general force field suitable for the molecular simulations

  13. Effects of alkali metal cations on phospho-enzyme levels and [3H] ouabain binding to (Na+ + K+)-ATPase.

    Science.gov (United States)

    Han, C S; Tobin, T; Akera, T; Brody, T M

    1976-05-13

    The effects of several alkali metal cations on the relationship between steady state phospho-enzyme levels and initial velocity and equilibrium levels of [3H]-ouabain binding to (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3.) were examined. Only Na+ increased both phospho-enzyme and [3H] ouabain binding levels above those observed in the presence of Mg2+ alone. While Na+ stimulated phosphorylation with an apparent Km of about 1 mM, its stimulation of [3H] ouabain binding was biphasic, the lower Km for stimulation corresponding to the Km for formation of phospho-enzyme. Among the other alkali metal cations, potassium, rubidium and lithium were at least eight times more effect in reducing phospho-enzyme levels than in reducing [3H] ouabain binding. This discrepancy is not due to the stability of the enzyme-ouabain complex, nor to any action on the rates of formation or dissociation of the enzyme-ouabain complex. The data thus suggest that [3H] ouabain interacts with the K+, Rb+ or Li+ -enzyme complexes. For Li+, this hypothesis is further supported by the observation that Li+ can cirectly increase the equilibrium level of [3H] ouabain binding to this enzyme under certain conditions.

  14. Effect of Variations in Annealing Temperature and Metallic Cations on Nanostructured Molybdate Thin Films

    Directory of Open Access Journals (Sweden)

    Varela JoséArana

    2008-01-01

    Full Text Available AbstractCrystalline molybdate thin films were prepared by the complex polymerization method. The AMoO4(A = Ca, Sr, Ba films were deposited onto Si wafers by the spinning technique. The Mo–O bond in the AMoO4structure was confirmed by FTIR spectra. X-ray diffraction revealed the presence of crystalline scheelite-type phase. The mass, size, and basicity of A2+cations was found to be dependent on the intrinsic characteristics of the materials. The grain size increased in the following order: CaMoO4 < SrMoO4 < BaMoO4. The emission band wavelength was detected at around 576 nm. Our findings suggest that the material’s morphology and photoluminescence were both affected by the variations in cations (Ca, Sr, or Ba and in the thermal treatment.

  15. Association of alkali and alkaline earth metal cations with radical-anions of 9-fluorenone and 9.10-anthraquinone in dimethyl formamide medium

    International Nuclear Information System (INIS)

    Karpinets, A.P.; Bezuglyj, V.D.; Svetlichnaya, T.M.

    1988-01-01

    The polarographic method is used to estimate the stability of associates formed in dimethyl formamide by the products of one-electron reduction of 9-fluorenone and 9.10-anthraquinone with cations of alkali and alkali earth metals. It is shown that the strength of 9-fluorenone and 9.10-anthraquinone radical anion associates studied increases with cation charge increase and decrease of its crystallographic radius

  16. Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

    Directory of Open Access Journals (Sweden)

    Awatef Ayadi

    2015-08-01

    Full Text Available The synthesis and full characterization of two tetrathiafulvalene-appended azine ligands, namely 2-([2,2’-bi(1,3-dithiolylidene]-4-yl-6-((2,4-dinitrophenylhydrazonomethylpyridine (L1 and 5-([2,2’-bi(1,3-dithiolylidene]-4-yl-2-((2,4-dinitrophenylhydrazonomethylpyridine (L2 are described. The crystal structure of ligand L1 indicates that the ligand is completely planar with the presence of a strong intramolecular N3–H3···O1 hydrogen bonding. Titration experiments with inorganic anions showed that both ligands are suitable candidates for the sensing of fluoride anions. Ligand L2 was reacted with a Re(I cation to yield the corresponding rhenium tricarbonyl complex 3. In the crystal structure of the newly prepared electroactive rhenium complex the TTF is neutral and the rhenium cation is hexacoordinated. The electrochemical behavior of the three compounds indicates that they are promising for the construction of crystalline radical cation salts.

  17. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.

    Science.gov (United States)

    Armentrout, P B; Yang, Bo; Rodgers, M T

    2014-04-24

    Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu

  18. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  19. Methods for separating actinides from reprocessing and refabrication plant wastes

    International Nuclear Information System (INIS)

    Tedder, D.W.; Finney, B.C.; Blomeke, J.O.

    1979-01-01

    Chemical processing flowsheets have been developed to partition actinides from all actinide-bearing LWR fuel reprocessing and refabrication plant wastes. These wastes include high-activity-level liquids, scrap recovery liquors, HEPA filters and incinerator ashes, and chemical salt wastes such as sodium carbonate scrub solutions, detergent cleanup streams, and alkaline off-gas scrubber liquors. The separations processes that were adopted for this study are based on solvent extraction, cation exchange chromatography, and leaching with Ce 4+ -HNO 3 solution

  20. Metal, bond energy, and ancillary ligand effects on actinide-carbon σ-bond hydrogenolysis. A kinetic and mechanistic study

    International Nuclear Information System (INIS)

    Lin, Z.; Marks, T.J.

    1987-01-01

    A kineticmechanistic study of actinide hydrocarbyl ligand hydrogenolysis (An-R + H 2 → An-H + RH) is reported. For the complex Cp' 2 TH(CH 2 -t-Bu)(O-t-Bu)(Cp' = eta 5 -Me 5 C 5 ), the rate law is first-order in organoactinide and first-order in H 2 , with k/sub H2/k/sub D2/ = 2.5 (4) and k/sub THF/k/sub toluene/ = 2.9 (4). For a series of complexes, hydrogenolysis rates span a range of ca. 10 5 with Cp' 2 ThCH 2 C(CH 3 ) 2 CH 2 ≅ Cp' 2 U(CH 2 -t-Bu) (too rapid to measure accurately) > Cp' 2 Th(CH 2 -t-Bu)[OCH(t-Bu) 2 ] = Cp' 2 Th(CH 2 -t-Bu)(O-t-Bu) > Cp' 2 Th(CH 2 -t-Bu)(Cl) > Me 2 Si(Me 4 C 5 ) 2 Th(n-Bu) 2 > Cp' 2 Th(n-Bu) 2 ≅ Cp' 2 ThMe 2 > Cp' 2 Th(Me)(O 3 SCF 3 ) > Cp' 2 Th(n-Bu)[OCG(t-Bu) 2 ] ≅ Cp' 2 Th(Me)[OSiMe 2 (t-Bu)] > Cp' 2 ZrMe 2 = Cp' 2 Th(rho-C 6 H 4 NMe 2 )(O-tu-Bu) > Cp' 2 Th(Ph)(O-t-Bu) > Cp' 2 U(Me)[OCH(t-Bu) 2 ] > Cp' 2 Th(Me)[OCH(t-Bu) 2 ]. In the majority of cases, the rate law is cleanly first-order in organoactinide over 3 or more half-lives. However, for Cp' 2 ThMe 2 → (Cp' 2 ThH 2 ) 2 , an intermediate is observe by NMR that is probably [Cp' 2 Th(Me)(μ-H)] 2 . For Cp' 2 Th(Me)(O 3 SCF 3 ), a follow-up reaction, which consumes Cp' 2 TH(H)(O 3 SCF 3 ) is detected. Variable-temperature kinetic studies yield ΔH** = 3.7 (2) kcalmol and ΔS double dagger = -50.8 (7) eu for Cp' 2 Th(CH 2 -t-Bu)(O-t-Bu) and ΔH double dagger = 9 (2) kcalmol and ΔS double dagger = -45 (5) eu for Cp' 2 U(Me)[OCH(O-t-Bu) 2

  1. Reactions of laser-ablated Co, Rh, and Ir with CO: Infrared spectra and density functional calculations of the metal carbonyl molecules, cations and anions in solid neon

    International Nuclear Information System (INIS)

    Zhou, M.; Andrews, L.

    1999-01-01

    Laser ablation produces metal atoms, cations, and electrons for reaction with CO during condensation in excess neon at 4 K. Infrared spectra are observed for the metal carbonyls, cations, and anions, which are identified from isotopic shifts ( 13 CO, C 18 O) and splittings using mixed isotopic precursors. Density functional calculations with pseudopotentials for Rh and Ir predict the observed carbonyl stretching frequencies within 1--2%. This characterization of the simple RhCO + , RhCO, and RhCO - (and Ir) species over a 350 cm -1 range provides a scale for comparison of larger catalytically active Rh and Ir carbonyl complexes in solution and on surfaces to estimate charge on the metal center. This work provides the first spectroscopic characterization of Rh and Ir carbonyl cations and anions except for the stable tetracarbonyl anions in solution

  2. Interaction between actinides and protein: the calmodulin

    International Nuclear Information System (INIS)

    Brulfert, Florian

    2016-01-01

    Considering the environmental impact of the Fukushima nuclear accident, it is fundamental to study the mechanisms governing the effects of the released radionuclides on the biosphere and thus identify the molecular processes generating the transport and deposition of actinides, such as neptunium and uranium. However, the information about the microscopic aspect of the interaction between actinides and biological molecules (peptides, proteins...) is scarce. The data being mostly reported from a physiological point of view, the structure of the coordination sites remains largely unknown. These microscopic data are indeed essential for the understanding of the interdependency between structural aspect, function and affinity.The Calmodulin (CaM) (abbreviation for Calcium-Modulated protein), also known for its affinity towards actinides, acts as a metabolic regulator of calcium. This protein is a Ca carrier, which is present ubiquitously in the human body, may also bind other metals such as actinides. Thus, in case of a contamination, actinides that bind to CaM could avoid the protein to perform properly and lead to repercussions on a large range of vital functions.The complexation of Np and U was studied by EXAFS spectroscopy which showed that actinides were incorporated in a calcium coordination site. Once the thermodynamical and structural aspects studied, the impact of the coordination site distortion on the biological efficiency was analyzed. In order to evaluate these consequences, a calorimetric method based on enzyme kinetics was developed. This experiment, which was conducted with both uranium (50 - 500 nM) and neptunium (30 - 250 nM) showed a decrease of the heat produced by the enzymatic reaction with an increasing concentration of actinides in the medium. Our findings showed that the Calmodulin actinide complex works as an enzymatic inhibitor. Furthermore, at higher neptunium (250 nM) and uranium (500 nM) concentration the metals seem to have a poison

  3. Probing the role of metal cations on the aggregation behavior of amyloid β-peptide at a single molecule level by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yang; Wang, Jianhua, E-mail: wjh@cqu.edu.cn; Liu, Chundong [Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering (China)

    2016-09-15

    With the development of nanotechnology, understanding of intermolecular interactions on a single molecule level by atomic force spectroscopy (AFM) has played an important role in molecular biology and biomedical science. In recent years, some research suggested that the presence of metal cations is an important regulator in the processes of misfolding and aggregation of the amyloid β-protein (Aβ), which may be an important etiological factor of Alzheimer’s disease. However, the knowledge on the principle of interactions between Aβ and metal cations at the single molecule level is still poor understood. In this paper, the amyloid β-protein (Aβ) was fabricated on substrate of mixed thiol-modified gold nanoparticles using self-assembled monolayer method and the adhesion force in the longitudinal direction between metal cations and Aβ42 were investigated by AFM. The role of metal ions on Aβ aggregation is discussed from the perspective of single molecular force. The force results showed that the specific adhesion force F{sub i} and the nonspecific force F{sub 0} between a single Aβ–Aβ pair in control experiment were calculated as 42 ± 3 and 80 pN, respectively. However, F{sub i} between a single Aβ–Aβ pair in the presence of Cu{sup 2+}, Zn{sup 2+}, Ca{sup 2+} and Al{sup 3+} increased dramatically to 84 ± 6, 89 ± 3, 73 ± 5, 95 ± 5 pN successively, which indicated that unbinding between Aβ proteins is accelerated in the presence of metal cations. What is more, the imaging results showed that substoichiometric copper cations accelerate the formation of fibrils within 3 days. The combined atomic force spectroscopy and imaging analysis indicate that metal cations play a role in promoting the aggregating behavior of Aβ42.

  4. Probing the role of metal cations on the aggregation behavior of amyloid β-peptide at a single molecule level by AFM

    Science.gov (United States)

    Xie, Yang; Wang, Jianhua; Liu, Chundong

    2016-09-01

    With the development of nanotechnology, understanding of intermolecular interactions on a single molecule level by atomic force spectroscopy (AFM) has played an important role in molecular biology and biomedical science. In recent years, some research suggested that the presence of metal cations is an important regulator in the processes of misfolding and aggregation of the amyloid β-protein (Aβ), which may be an important etiological factor of Alzheimer's disease. However, the knowledge on the principle of interactions between Aβ and metal cations at the single molecule level is still poor understood. In this paper, the amyloid β-protein (Aβ) was fabricated on substrate of mixed thiol-modified gold nanoparticles using self-assembled monolayer method and the adhesion force in the longitudinal direction between metal cations and Aβ42 were investigated by AFM. The role of metal ions on Aβ aggregation is discussed from the perspective of single molecular force. The force results showed that the specific adhesion force F i and the nonspecific force F 0 between a single Aβ-Aβ pair in control experiment were calculated as 42 ± 3 and 80 pN, respectively. However, F i between a single Aβ-Aβ pair in the presence of Cu2+, Zn2+, Ca2+ and Al3+ increased dramatically to 84 ± 6, 89 ± 3, 73 ± 5, 95 ± 5 pN successively, which indicated that unbinding between Aβ proteins is accelerated in the presence of metal cations. What is more, the imaging results showed that substoichiometric copper cations accelerate the formation of fibrils within 3 days. The combined atomic force spectroscopy and imaging analysis indicate that metal cations play a role in promoting the aggregating behavior of Aβ42.

  5. Probing the role of metal cations on the aggregation behavior of amyloid β-peptide at a single molecule level by AFM

    International Nuclear Information System (INIS)

    Xie, Yang; Wang, Jianhua; Liu, Chundong

    2016-01-01

    With the development of nanotechnology, understanding of intermolecular interactions on a single molecule level by atomic force spectroscopy (AFM) has played an important role in molecular biology and biomedical science. In recent years, some research suggested that the presence of metal cations is an important regulator in the processes of misfolding and aggregation of the amyloid β-protein (Aβ), which may be an important etiological factor of Alzheimer’s disease. However, the knowledge on the principle of interactions between Aβ and metal cations at the single molecule level is still poor understood. In this paper, the amyloid β-protein (Aβ) was fabricated on substrate of mixed thiol-modified gold nanoparticles using self-assembled monolayer method and the adhesion force in the longitudinal direction between metal cations and Aβ42 were investigated by AFM. The role of metal ions on Aβ aggregation is discussed from the perspective of single molecular force. The force results showed that the specific adhesion force F_i and the nonspecific force F_0 between a single Aβ–Aβ pair in control experiment were calculated as 42 ± 3 and 80 pN, respectively. However, F_i between a single Aβ–Aβ pair in the presence of Cu"2"+, Zn"2"+, Ca"2"+ and Al"3"+ increased dramatically to 84 ± 6, 89 ± 3, 73 ± 5, 95 ± 5 pN successively, which indicated that unbinding between Aβ proteins is accelerated in the presence of metal cations. What is more, the imaging results showed that substoichiometric copper cations accelerate the formation of fibrils within 3 days. The combined atomic force spectroscopy and imaging analysis indicate that metal cations play a role in promoting the aggregating behavior of Aβ42.

  6. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    International Nuclear Information System (INIS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-01-01

    The location of extraframework cations in Sr 2+ and Ba 2+ ion-exchanged SAPO-34 was estimated by means of 1 H and 23 Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO 2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO 2 adsorption performance. Highlights: ► Location of extraframework Sr 2+ or Ba 2+ cations was estimated by means of 1 H and 23 Na MAS NMR. ► Level of Sr 2+ or Ba 2+ ion exchange was limited by the presence of protons and sodium cations. ► Presence of ammonium cations in the supercages facilitated the exchange. ► Sr 2+ and Ba 2+ ion exchanged SAPOs are outstanding CO 2 adsorbents.

  7. Effects of humic acid and competing cations on metal uptake by Lolium perenne

    NARCIS (Netherlands)

    Kalis, E.J.J.; Temminghoff, E.J.M.; Weng, L.P.; Riemsdijk, van W.H.

    2006-01-01

    Within the biotic ligand model, which describes relationships between chemical speciation and metal binding at an organism's surface, multicomponent (long-term) metal uptake by plants has seldom been studied. In the present work, we exposed perennial ryegrass to nutrient solutions with two levels of

  8. Metal cluster cation reactions: Carbon monoxide association to Cu + n ions

    Science.gov (United States)

    Leuchtner, R. E.; Harms, A. C.; Castleman, A. W., Jr.

    1990-06-01

    Copper cluster cations (Cu+n,n=1-14) were produced in a laser vaporization/flow tube apparatus and equilibrated to room temperature. The association rate constants of carbon monoxide onto these ions were measured; low-pressure, termolecular behavior was observed for the smaller species while for clusters greater than Cu+7, the longer lifetimes due to the increased number of degrees of freedom leads to pressure independence (>0.3 Torr) of the effective bimolecular rates. Unimolecular decay theory (RRKM) is used to explain the overall trend and when intrinsic surface site reactivity is taken into account, excellent agreement with measured reactivity is obtained.

  9. Actinide immobilization in the subsurface environment by in-situ treatment with a hydrolytically unstable organophosphorus complexant: Uranyl uptake by calcium phytate

    International Nuclear Information System (INIS)

    Nash, K.L.; Jensen, M.P.; Schmidt, M.A.

    1997-01-01

    In addition to naturally occurring uranium and thorium, actinide ions exist in the subsurface environment as a result of accidental releases and intentional disposal practices associated with nuclear weapons production. These species present a significant challenge to cost-effective remediation of contaminated environments. An attractive approach to decreasing the probability of actinide migration in the subsurface is to transform the ions into a less mobile form by remote treatment. We have under development a process which relies on a polyfunctional organophosphorus complexant to sequester the mobile metal ions by complexation/cation exchange in the near term, and to subsequently decompose, transforming the actinides into insoluble phosphate mineral forms in the long term. Studies to date include identification of a suitable organophosphorus reagent, profiling of its decomposition kinetics, verification of the formation of phosphate mineral phases upon decomposition of the reagent, and extensive comparison of the actinide uptake ability of the calcium salt of the reagent as compared with hydroxyapatite. In this report, we briefly describe the process with focus on the cation exchange behavior of the calcium salt of the organophosphorus sequestrant

  10. Selectivity in stripping of alkali-metal cations from crown ether carboxylate complexes

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Walkowiak, W.; Robison, T.W.

    1992-01-01

    To probe the effect of structural variations within the ionophore upon the efficiency and selectivity of solvent extraction, a variety of crown ether carboxylic acids and phosphonic acid monoesters have been synthesized. In other studies the influence of the organic diluent upon extraction efficiency and selectivity has been probed for such proton-ionizable crown ethers. In the present investigation, attention is focused upon selectivity in the stripping step. Although the efficiency of metal ion stripping is often examined in solvent extraction studies, the selectivity of competitive metal ion release under different conditions is much less frequently considered. In this study, competitive stripping of metal ions from chloroform solutions of five-alkali-metal crown ether carboxylates by varying concentrations of aqueous hydrochloric acid is examined. Alkali metals used were Li, Na, K, Rb, and Cs

  11. Synthesis of tetravalent actinide chlorides. Versatile compounds for actinide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Maerz, Juliane [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements

    2016-07-01

    Anhydrous actinide tetrachlorides (AnCl{sub 4}) were synthesized under mild conditions to provide versatile compounds for actinide chemistry. They enable a direct access to actinide complexes with organic and inorganic ligands.

  12. Effect of alkaline metal cations on the ionic structure of cryolite melts: Ab-initio NpT MD study

    Science.gov (United States)

    Bučko, Tomáš; Šimko, František

    2018-02-01

    Ab initio molecular dynamics simulations in an NpT ensemble have been performed to study the role of alkaline metal cations (Me = Li, Na, K, Rb) on the structure and vibrational properties of melts of Me-cryolites (Me3AlF6) at T = 1300 K. In all melts examined in this work, the species AlF52 - has been found to be formed at the highest abundance [from 58% (Li) to 70% (Na)] among the Al-containing anionic clusters. The concentration of clusters AlF4- increases with the size of cations while that of anions AlF63 - follows the opposite trend and it becomes negligible in the melts of the K- and Rb-cryolites. The computed percentage of the Al atoms participating in the formation of dimers Al2Fm6 -m bridged via common F atoms is significant only in the case of Li- and Na-cryolites (16% and 10%, respectively) and the formation of even larger aggregates is found to be unlikely in all four melts. The percentage of the F atoms that are not bound to Al is ˜20% in all four melts and the ions formed by Me+ and F- are found to be only short-lived. Vibrational analysis has been performed using the velocity autocorrelation functions computed for the Cartesian and selected internal coordinates describing Raman-active symmetric stretching vibrations of different AlFn species. The results of vibrational analysis allowed us to identify trends in the variation of positions and shapes of peaks corresponding to the anionic fragments AlF4-, AlF52 -, and AlF63 - with the size of cations, and these trends are found to be consistent with those deduced from the available Raman spectroscopy experiments. Our findings represent a new insight into the properties of cryolite melts, which will be useful for the interpretation of experimental data.

  13. Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface

    Science.gov (United States)

    Zhang, Jie; Li, Fan; Sun, Qian

    2018-05-01

    Organic dye pollutants become a big headache due to their toxic nature to the environment, and it should be one of the best solutions if we can remove and separate them. Here, a metal-organic framework (MOF) (denoted as Zn-MOF) with carbonyl group based on fluorenone-2,7-dicarboxylate ligand, was directly synthesized without post-synthesis method and applied to selectively absorb cationic dyes such as MB, CV, RhB from aqueous solution, while anionic or neutral dyes were excluded. Characterization of the Zn-MOF was achieved by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometry and elemental analysis. The Zn-MOF mainly possesses open pore channels, high surface area, big pore volume, and most important, the pore surface is furnished with carbonyl groups arising from the ligand and pointing toward the centers of the large chambers of the framework, which are benefit for the adsorption of the cationic dyes. The MB maximum adsorption capacities can attain 326 mg g-1, which is probably due to the suitable pore size, higher solvent-accessible void, and the prominent adsorption capacity of the mesoporous material. The dye adsorption process for the material is proven to be charge-selective and size-selective, and the adsorption isotherms, as well as kinetics characteristic of dye adsorption onto the Zn-MOF were also investigated.

  14. Thermogravimetric method of estimation of uranyl cation state in melts of alkali metal chlorides and their mixtures

    International Nuclear Information System (INIS)

    Vorobej, M.P.; Desyatnik, V.N.

    1979-01-01

    The thermogravimetric method was used to study the chloridizing of uranium oxides in molten media. The study of the uranium oxide chloridizing served as a basis for evaluating comparatively, using the DTA method, the uranyl-cation state in a melt. Using the alkali metals as example, it was shown that the decomposition of the frozen uranium oxychlorides proceeds with the formation of intermediate chlorouranates. The final product of the thermolysis are uranates Me 2 U 2 O 7 (Me-Li, Na, K, Rb, Cs). The time and the conditions of the change of uranium oxides to the oxyanion [UO 2 Cl 4 ] 2- were determined as a function of the chloridizing agent. The method can be employed for evaluating uranyl-ions in molten media where they are used as electrolytes in the extraction of uranium dioxide

  15. Natural and Modified Zeolite—Alginate Composites. Application for Removal of Heavy Metal Cations from Contaminated Water Solutions

    Directory of Open Access Journals (Sweden)

    Milan Kragović

    2018-01-01

    Full Text Available In present paper, the influence of the initial pH and concentration of Pb2+ on its adsorption by the natural (NZA and Fe(III-modified zeolite-alginate beads (FeA was studied. Results showed that modification of the starting materials have a positive effect on their adsorption capacities (102 and 136 mg/g for the NZA and FeA, respectively. After encapsulation, the mechanism of lead adsorption by both adsorbents was changed and ion exchange dominates. The best adsorption was achieved for initial pH > 3.8. Cation exchange capacity, structural properties, and hydrophobicity of samples were also determined, and the presence of the alginate has no significant influence on investigated properties of samples. Experiments on wastewater from tailings of lead and zinc mine Grot, Serbia, showed that after treatment with both adsorbents, the content of the most abundant heavy metals (Pb, Zn, Hg, and Mn significantly decreased.

  16. Influence of reason citric acid/ metal cations in the synthesis of mullite by Pechini Method; Iinfluencia da razao acido citrico/cations metalicos na sintese de mulita pelo Metodo Pechini

    Energy Technology Data Exchange (ETDEWEB)

    Braga, A.N.S.; Costa, D.L.; Farias, R.M.C.; Neves, G.A.; Lira, H.L.; Menezes, R.R., E-mail: Alluskynha@homail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    Mullite is a ceramic material with high technological applications. Its synthesis has been extensively studied due to their excellent properties. Thus, this paper proposes to obtain mullite by Pechini method. The amount of acid citric/metal cations in proportions of 3:1 and 1:1 were investigated in order to understand their influence in obtaining the mullite phase. The synthesized samples were characterized by X-ray diffraction (XRD) and thermal analysis (TG/DTG and DTA). The results showed that the ratio citric acid/metal cations influence on the formed phase with the mullite obtained only in proportion 1:1. With the increase of the ratio to 3:1 was observed the formation of the alumina layer. (author)

  17. Extraction of metal cations by polyterephthalamide microcapsules containing a poly(acrylic acid) gel.

    Science.gov (United States)

    Laguecir, A; Ernst, B; Frère, Y; Danicher, L; Burgard, M

    2002-01-01

    Polyterephthalamide microcapsules containing a poly(acrylic acid) gel as a macromolecular ligand (PAA-CAPS) were prepared using an original two step polymerization process in a water-in-oil inverse emulsion system. A polyamide microcapsule containing acrylic acid, initiator and cross-linking agent, is formed by interfacial polycondensation of terephthaloyl dichloride with hexamethylenediamine. In situ radical polymerization of the microcapsule core acrylic acid is initiated to obtain encapsulated poly(acrylic acid) gel. Reference polyamide microcapsules, i.e. without ligand (CAPS), were also synthesized. The mean diameter of synthesized microcapsules was 210 microm, and the microcapsule wall thickness was evaluated by SEM and TEM observations of microcapsule cross-section cuts. The microcapsule water content was determined by thermogravimetric experiments. The extractabilities of Cu(II), Ni(II), Co(II) and Zn(II) into PAA-CAPS were examined. The stripping of the various cations can be promoted in diluted hydrochloric acid solutions.

  18. An independent method for data selection of long-life radionuclides (actinides and fission products) in the geosphere

    International Nuclear Information System (INIS)

    Henry, M.; Merceron, T.

    1994-01-01

    An independent method for data selection of long-life radio-nuclides based on the electronegativity equalization principle is proposed to predict the speciation of metal cations as a function of the solution pH. Hydrolysis, condensation and complexation reactions of metal cations in aqueous media are, by this simple model, unified and can be analyzed in terms of electronegativities, oxidation states and coordination numbers with a specific PC software. This paper describes the thermodynamical basis and the underlying concepts of the model in relation to aqueous actinide chemistry of elements such as U and Tc. It is then shown that the model could provide a complementary approach to existing softwares based on thermodynamic data bases allowing to make intelligent and reasonnable choices for the various complexes to consider in complex geochemical codes. (orig.)

  19. Density Functional Theory of Open-Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations.

    Science.gov (United States)

    Luo, Sijie; Averkiev, Boris; Yang, Ke R; Xu, Xuefei; Truhlar, Donald G

    2014-01-14

    The 3d-series transition metals (also called the fourth-period transition metals), Sc to Zn, are very important in industry and biology, but they provide unique challenges to computing the electronic structure of their compounds. In order to successfully describe the compounds by theory, one must be able to describe their components, in particular the constituent atoms and cations. In order to understand the ingredients required for successful computations with density functional theory, it is useful to examine the performance of various exchange-correlation functionals; we do this here for 4s(N)3d(N') transition-metal atoms and their cations. We analyze the results using three ways to compute the energy of the open-shell states: the direct variational method, the weighted-averaged broken symmetry (WABS) method, and a new broken-symmetry method called the reinterpreted broken symmetry (RBS) method. We find the RBS method to be comparable in accuracy with the WABS method. By examining the overall accuracy in treating 18 multiplicity-changing excitations and 10 ionization potentials with the RBS method, 10 functionals are found to have a mean-unsigned error of systems, the M06-L functional is the most accurate. And by combining the results with our previous studies of p-block and 4d-series elements as well as databases for alkyl bond dissociation, main-group atomization energies, and π-π noncovalent interactions, we find five functionals, namely, PW6B95, MPW1B95, M08-SO, SOGGA11-X, and MPWB1K, to be highly recommended. We also studied the performance of PW86 and C09 exchange functionals, which have drawn wide interest in recent studies due to their claimed ability to reproduce Hartree-Fock exchange at long distance. By combining them with four correlation functionals, we find the performance of the resulting functionals disappointing both for 3d transition-metal chemistry and in broader tests, and thus we do not recommend PW86 and C09 as components of generalized

  20. Fluorescence properties of riboflavin-functionalized mesoporous silica SBA-15 and riboflavin solutions in presence of different metal and organic cations

    Science.gov (United States)

    Lewandowski, Dawid; Schroeder, Grzegorz; Sawczak, Mirosław; Ossowski, Tadeusz

    2015-10-01

    Riboflavin was covalently linked to mesoporous SBA-15 silica surface via grafting technique. Then fluorescence properties of the system obtained were analyzed in the presence of several metal and organic cations. Both quenching and strengthening of fluorescence as well as significant changes in the maximum fluorescence wavelength were observed. The results were compared with absorption and fluorescence data obtained for riboflavin water solutions.

  1. The effect of EDTA and metal cations on the 5-bromoindoxyl acetate esterase activity in the thyroid of the guinea pig

    DEFF Research Database (Denmark)

    Kirkeby, S

    1976-01-01

    Miscellaneous metal cations and EDTA have been used as activators and inhibitors of esterase activity in the thyroid of the guinea-pig. The results indicate that the 5-bromoiondoxyl acetate esterase in the epithelial cells probably consists of two different A-esterase isoenzymes, one present...

  2. Actinide, lanthanide and fission product speciation and electrochemistry in high and low temperature ionic melts

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Anand I.; Kinoshita, Hajime; Koster, Anne L.; May, Iain; Sharrad, Clint A.; Volkovich, Vladimir A.; Fox, O. Danny; Jones, Chris J.; Lewin, Bob G.; Charnock, John M.; Hennig, Christoph

    2004-07-01

    There is currently a great deal of research interest in the development of molten salt technology, both classical high temperature melts and low temperature ionic liquids, for the electrochemical separation of the actinides from spent nuclear fuel. We are interested in gaining a better understanding of actinide and key fission product speciation and electrochemical properties in a range of melts. Our studies in high temperature alkali metal melts (including LiCl and LiCl-KCl and CsCl-NaCl eutectics) have focussed on in-situ species of U, Th, Tc and Ru using X-ray absorption spectroscopy (XAS, both EXAFS and XANES) and electronic absorption spectroscopy (EAS). We report unusual actinide speciation in high temperature melts and an evaluation of the likelihood of Ru or Tc volatilization during plant operation. Our studies in lower temperature melts (ionic liquids) have focussed on salts containing tertiary alkyl group 15 cations and the bis(tri-fluor-methyl)sulfonyl)imide anion, melts which we have shown to have exceptionally wide electrochemical windows. We report Ln, Th, U and Np speciation (XAS, EAS and vibrational spectroscopy) and electrochemistry in these melts and relate the solution studies to crystallographic characterised benchmark species. (authors)

  3. Actinide, lanthanide and fission product speciation and electrochemistry in high and low temperature ionic melts

    International Nuclear Information System (INIS)

    Bhatt, Anand I.; Kinoshita, Hajime; Koster, Anne L.; May, Iain; Sharrad, Clint A.; Volkovich, Vladimir A.; Fox, O. Danny; Jones, Chris J.; Lewin, Bob G.; Charnock, John M.; Hennig, Christoph

    2004-01-01

    There is currently a great deal of research interest in the development of molten salt technology, both classical high temperature melts and low temperature ionic liquids, for the electrochemical separation of the actinides from spent nuclear fuel. We are interested in gaining a better understanding of actinide and key fission product speciation and electrochemical properties in a range of melts. Our studies in high temperature alkali metal melts (including LiCl and LiCl-KCl and CsCl-NaCl eutectics) have focussed on in-situ species of U, Th, Tc and Ru using X-ray absorption spectroscopy (XAS, both EXAFS and XANES) and electronic absorption spectroscopy (EAS). We report unusual actinide speciation in high temperature melts and an evaluation of the likelihood of Ru or Tc volatilization during plant operation. Our studies in lower temperature melts (ionic liquids) have focussed on salts containing tertiary alkyl group 15 cations and the bis(tri-fluor-methyl)sulfonyl)imide anion, melts which we have shown to have exceptionally wide electrochemical windows. We report Ln, Th, U and Np speciation (XAS, EAS and vibrational spectroscopy) and electrochemistry in these melts and relate the solution studies to crystallographic characterised benchmark species. (authors)

  4. TOLERANCE OF AGAVE TEQUILANA TO HIGH LEVELS OF DIVALENT METAL CATIONS

    Directory of Open Access Journals (Sweden)

    Elmi Roseida Cen-Cen

    2015-11-01

    Full Text Available Los agaves son plantas que pertenecen a un género constituido por numerosas especies, adaptadas para crecer en muy diversos hábitats, algunos con condiciones ambientales extremas. Distintas especies de agave crecen sobre distintos tipos de suelos, algunas en suelos con muy bajo contenido de nutrientes minerales y otras en suelos salinos o en suelos contaminados con iones metálicos. La relación planta-suelo ha sido escasamente estudiada en este género por lo que se desconoce, entre otras cuestiones, cuál es la capacidad de los agaves para absorber, transportar y almacenar nutrientes minerales, cuáles son los mecanismos celulares y bioquímicos que utilizan, o si poseen especial sensibilidad o tolerancia a los iones metálicos. Este estudio reporta el efecto de diversas concentraciones de sulfato de cadmio, cobalto, cobre, zinc o de manganeso sobre plántulas deAgave tequilana, bajo condiciones controladas de laboratorio; la concentración mínima de esos iones metálicos requerida para inducir un efecto tóxico visualmente detectable en tiempos cortos (ocho días; describimos los efectos tóxicos que estos metales generan sobre las plántulas de agave; y reportamos la cantidad de Cu2+, Cd2+ y Co2+ que se acumula en las hojas de plántulas de agave tratadas con altas concentraciones (milimolares de esos metales. Nuestros resultados muestran que, en experimentos de toxicidad aguda y bajo las condiciones aquí establecidas, elA. tequilanaposee una notable tolerancia a altas concentraciones de los distintos metales iónicos probados, incluyendo tanto micronutrientes como metales tóxicos, así como la capacidad de transportar en altas cantidades estos metales a tejido aéreo.

  5. Actinide-pnictide (An-Pn) bonds spanning non-metal, metalloid, and metal combinations (An=U, Th; Pn=P, As, Sb, Bi)

    Energy Technology Data Exchange (ETDEWEB)

    Rookes, Thomas M.; Wildman, Elizabeth P.; Gardner, Benedict M.; Wooles, Ashley J.; Gregson, Matthew; Tuna, Floriana; Liddle, Stephen T. [School of Chemistry, The University of Manchester (United Kingdom); Balazs, Gabor; Scheer, Manfred [Institute of Inorganic Chemistry, University of Regensburg (Germany)

    2018-01-26

    The synthesis and characterisation is presented of the compounds [An(Tren{sup DMBS}){Pn(SiMe_3)_2}] and [An(Tren{sup TIPS}){Pn(SiMe_3)_2}] [Tren{sup DMBS}=N(CH{sub 2}CH{sub 2}NSiMe{sub 2}Bu{sup t}){sub 3}, An=U, Pn=P, As, Sb, Bi; An=Th, Pn=P, As; Tren{sup TIPS}=N(CH{sub 2}CH{sub 2}NSiPr{sup i}{sub 3}){sub 3}, An=U, Pn=P, As, Sb; An=Th, Pn=P, As, Sb]. The U-Sb and Th-Sb moieties are unprecedented examples of any kind of An-Sb molecular bond, and the U-Bi bond is the first two-centre-two-electron (2c-2e) one. The Th-Bi combination was too unstable to isolate, underscoring the fragility of these linkages. However, the U-Bi complex is the heaviest 2c-2e pairing of two elements involving an actinide on a macroscopic scale under ambient conditions, and this is exceeded only by An-An pairings prepared under cryogenic matrix isolation conditions. Thermolysis and photolysis experiments suggest that the U-Pn bonds degrade by homolytic bond cleavage, whereas the more redox-robust thorium compounds engage in an acid-base/dehydrocoupling route. (copyright 2018 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  6. Ceruloplasmin revisited: structural and functional roles of various metal cation-binding sites

    International Nuclear Information System (INIS)

    Bento, Isabel; Peixoto, Cristina; Zaitsev, Vjacheslav N.; Lindley, Peter F.

    2007-01-01

    The three-dimensional molecular structure of human serum ceruloplasmin has been reinvestigated using X-ray synchrotron data collected at 100 K from a crystal frozen to liquid-nitrogen temperature. The three-dimensional molecular structure of human serum ceruloplasmin has been reinvestigated using X-ray synchrotron data collected at 100 K from a crystal frozen to liquid-nitrogen temperature. The resulting model, with an increase in resolution from 3.1 to 2.8 Å, gives an overall improvement of the molecular structure, in particular the side chains. In addition, it enables the clear definition of previously unidentified Ca 2+ -binding and Na + -binding sites. The Ca 2+ cation is located in domain 1 in a configuration very similar to that found in the activated bovine factor Va. The Na + sites appear to play a structural role in providing rigidity to the three protuberances on the top surface of the molecule. These features probably help to steer substrates towards the mononuclear copper sites prior to their oxidation and to restrict the size of the approaching substrate. The trinuclear copper centre appears to differ from the room-temperature structure in that a dioxygen moiety is bound in a similar way to that found in the endospore coat protein CotA from Bacillus subtilis

  7. Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation.

    Science.gov (United States)

    Kulkarni, Vihangraj V; Golder, Animes Kumar; Ghosh, Pranab Kumar

    2018-01-05

    A new carboxylic bio-resin was synthesized from raw arecanut husk through mercerization and ethylenediaminetetraacetic dianhydride (EDTAD) carboxylation. The synthesized bio-resin was characterized using thermogravimetric analysis, field emission scanning electron microscopy, proximate & ultimate analyses, mass percent gain/loss, potentiometric titrations, and Fourier transform infrared spectroscopy. Mercerization extracted lignin from the vesicles on the husk and EDTAD was ridged in to, through an acylation reaction in dimethylformamide media. The reaction induced carboxylic groups as high as 0.735mM/g and a cation exchange capacity of 2.01meq/g functionalized mercerized husk (FMH). Potentiometric titration data were fitted to a newly developed single-site proton adsorption model (PAM) that gave pKa of 3.29 and carboxylic groups concentration of 0.741mM/g. FMH showed 99% efficiency in Pb(II) removal from synthetic wastewater (initial concentration 0.157mM), for which the Pb(II) binding constant was 1.73×10 3 L/mol as estimated from modified PAM. The exhaustion capacity was estimated to be 18.7mg/g of FMH. Desorption efficiency of Pb(II) from exhausted FMH was found to be about 97% with 0.1N HCl. The FMH simultaneously removed lead and cadmium below detection limit from a real lead acid battery wastewater along with the removal of Fe, Mg, Ni, and Co. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structural and magnetic characterization of a tetranuclear copper(II) cubane stabilized by intramolecular metal cation-π interactions.

    Science.gov (United States)

    Papadakis, Raffaello; Rivière, Eric; Giorgi, Michel; Jamet, Hélène; Rousselot-Pailley, Pierre; Réglier, Marius; Simaan, A Jalila; Tron, Thierry

    2013-05-20

    A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by μ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(μ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.

  9. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  10. Thermodynamic Properties of Actinides and Actinide Compounds

    Science.gov (United States)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  11. Research in actinide chemistry

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1993-01-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH - , CO 3 2- , PO 4 3- , humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements

  12. Macroscopic and bulk-controlled elastic modes in an interaction of interstitial alcali metal cations within a face-centered cubic crystalline fullerine

    Energy Technology Data Exchange (ETDEWEB)

    Tatarenko, V.A.; Tsysman, C.L.; Oltarzhevskaya, Y.T. [Institute for Metal Physics, Kiev (Ukraine)

    1994-12-31

    The calculations in a majority of previous works for the fulleride (AqC{sub 60}) crystals were performed within the framework of the rigid-lattice model, neglecting the distoration relaxation of the host fullerene (C{sub 60}) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distoration field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. This paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of statistic concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method. In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the statistic inherent reorientation and/or displacements of the solvent molecules from the average-lattice sites as well as on the lattice parameter a of the elastically-anysotropic cubic C{sub 60} crystal are taken into account.

  13. End point control of an actinide precipitation reactor

    International Nuclear Information System (INIS)

    Muske, K.R.

    1997-01-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements

  14. Reversible CO binding enables tunable CO/H₂ and CO/N₂ separations in metal-organic frameworks with exposed divalent metal cations.

    Science.gov (United States)

    Bloch, Eric D; Hudson, Matthew R; Mason, Jarad A; Chavan, Sachin; Crocellà, Valentina; Howe, Joshua D; Lee, Kyuho; Dzubak, Allison L; Queen, Wendy L; Zadrozny, Joseph M; Geier, Stephen J; Lin, Li-Chiang; Gagliardi, Laura; Smit, Berend; Neaton, Jeffrey B; Bordiga, Silvia; Brown, Craig M; Long, Jeffrey R

    2014-07-30

    Six metal-organic frameworks of the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) structure type are demonstrated to bind carbon monoxide reversibly and at high capacity. Infrared spectra indicate that, upon coordination of CO to the divalent metal cations lining the pores within these frameworks, the C-O stretching frequency is blue-shifted, consistent with nonclassical metal-CO interactions. Structure determinations reveal M-CO distances ranging from 2.09(2) Å for M = Ni to 2.49(1) Å for M = Zn and M-C-O angles ranging from 161.2(7)° for M = Mg to 176.9(6)° for M = Fe. Electronic structure calculations employing density functional theory (DFT) resulted in good agreement with the trends apparent in the infrared spectra and crystal structures. These results represent the first crystallographically characterized magnesium and zinc carbonyl compounds and the first high-spin manganese(II), iron(II), cobalt(II), and nickel(II) carbonyl species. Adsorption isotherms indicate reversible adsorption, with capacities for the Fe, Co, and Ni frameworks approaching one CO per metal cation site at 1 bar, corresponding to loadings as high as 6.0 mmol/g and 157 cm(3)/cm(3). The six frameworks display (negative) isosteric heats of CO adsorption ranging from 52.7 to 27.2 kJ/mol along the series Ni > Co > Fe > Mg > Mn > Zn, following the Irving-Williams stability order. The reversible CO binding suggests that these frameworks may be of utility for the separation of CO from various industrial gas mixtures, including CO/H2 and CO/N2. Selectivities determined from gas adsorption isotherm data using ideal adsorbed solution theory (IAST) over a range of gas compositions at 1 bar and 298 K indicate that all six M2(dobdc) frameworks could potentially be used as solid adsorbents to replace current cryogenic distillation technologies, with the choice of M dictating adsorbent regeneration energy and the level of purity of the resulting gases.

  15. Development of Comparative Toxicity Potentials of 14 cationic metals in freshwater

    DEFF Research Database (Denmark)

    Dong, Yan; Gandhi, Nilima; Hauschild, Michael Zwicky

    2014-01-01

    . CTPs were calculated for 7 EUarchetypes, taking bioavailability and speciation pattern into account. The resulting site-dependent CTPs showed up to 2.4–6.5 orders of magnitude variation across archetypes for those metals that form stable hydroxyl compounds in slightly alkaline waters (Al(III), Be, Cr......, while Cd ranked highest in other waters. Based on the site-dependent CTPs, site-generic CTPs were developed applying different averaging principle. Emission weighted average of 7 EU-archetype CTPs was recommended as site-generic CTP for use in LCA studies, where receiving location is unclear. Compared...

  16. Actinides and heavy fermions

    International Nuclear Information System (INIS)

    Smith, J.L.; Fisk, Z.; Ott, H.R.

    1987-01-01

    The actinide series of elements begins with f-shell electrons forming energy bands, contributing to the bonding, and possessing no magnetic moments. At americium the series switches over to localized f electrons with magnetic moments. In metallic compounds this crossover of behavior can be modified and studied. In this continuum of behavior a few compounds on the very edge of localized f-electron behavior exhibit enormous electronic heat capacities at low temperatures. This is associated with an enhanced thermal mass of the conduction electrons, which is well over a hundred times the free electron mass, and is what led to the label heavy fermion for such compounds. A few of these become superconducting at even lower temperatures. The excitement in this field comes from attempting to understand how this heaviness arises and from the likelihood that the superconductivity is different from that of previously known superconductors. The effects of thorium impurities in UBe 13 were studied as a representative system for studying the nature of the superconductivity

  17. Stripping potentiometric analysis: application to determination of metallic cations in presence of uranium

    International Nuclear Information System (INIS)

    Pereira-Ramos, J.P.; Chivot, J.; Sarantopoulos, F.; Godard, R.

    1984-01-01

    Potentiometric stripping analysis consists of a potentiostatic deposition step of trace elements and a subsequent stripping step. The trace metals are simultaneously reduced at a rotating electrode, the working electrode being a mercury film coated glassy carbon electrode; the amalgamated metals are then re-oxidized with an oxidizing agent. The analytical signal of this method is the time required for complete re-oxidation. Influence of different parameters on the analytical signal is studied by using mercury (II) ions as oxidizing agent in 5.10 -4 M H 2 SO 4 aqueous solution. Here, we point out the main characteristics of the potentiometric stripping analysis under the same experimental conditions. The reproductibility ranges are comprised between 0.5% to 1.5% and the detection limit for cadmium (II) is estimated to be 2.10 -10 M with a plating time of 300 seconds. Small quantities, as 10 -7 M Cd 2+ , Pb 2+ and Zn 2+ are simultaneously determined in presence of U (VI) ions (UO 2 2+ ) with an accuracy of 0.5% for Cd 2+ and Zn 2+ , and 4.5% for Pb 2+ . Compared to well-known electrochemical techniques, potentiometric stripping analysis appears to be a performing method for trace analysis in a wide range of media: this method permits the analysis of elements in presence of species more concentrated and being able to oxidize the trace elements [fr

  18. Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates.

    Science.gov (United States)

    Ajisaka, Katsumi; Oyanagi, Yutaka; Miyazaki, Tatsuo; Suzuki, Yasuhiro

    2016-06-01

    The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca(2+), Mg(2+), Mn(2+), or Zn(2+) were prepared, and their antioxidant potencies were compared. CS chelating with Ca(2+) or Mg(2+) ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H(+) form. In contrast, CS chelating with Ca(2+) or Mg(2+) ion showed remarkably enhanced superoxide radical scavenging activity than CS of H(+) or Na(+) form. Moreover, CS chelating with divalent metal ions, Ca(2+), Mg(2+), Mn(2+), or Zn(2+), showed noticeably higher hydroxyl radical scavenging activity than CS of H(+) or Na(+) form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions.

  19. Benzene-centred tripodal diglycolamides for the sequestration of trivalent actinides : Metal ion extraction and luminescence spectroscopic investigations in a room temperature ionic liquid

    NARCIS (Netherlands)

    Ansari, Seraj Ahmad; Mohapatra, Prasanta Kumar; Leoncini, Andrea; Huskens, Jurriaan; Verboom, Willem

    2017-01-01

    Three benzene-centred tripodal diglycolamide (Bz-T-DGA) ligands, where the diglycolamide (DGA) moieties are attached to a central benzene ring through ethylene spacers (LI), amide groups (LII) or ether linkages (LIII), were evaluated for their extraction behaviour towards trivalent actinide and

  20. Synthesis and characterisation of nitrogen-containing poly heterocyclic molecules for the complexation of polluting metal cations

    International Nuclear Information System (INIS)

    Leconte, N.

    2007-12-01

    The recovery of actinides(III) from the mixture actinides(III)/lanthanides(III) is a great deal of the nuclear waste management. Experiences have shown that derivatives of 2,6- bis(1,2,4-triazine-3-yl)pyridine (BTP) are able to extract selectively actinides(III) from lanthanides(III). But the properties of these molecules need to be reinforced to exhibit best extraction performances and to resist to the harsh conditions of the extracting processes. Originally functionalized ligands were synthesized and tested in a radioactive medium. In a second part, this work focuses on the control and the detection of actinides(III). This could be done thanks to the use of a chemical sensor such as quartz crystal microbalance. The study of this apparatus required the preliminary synthesis of original complexing BTP-derived structures. The last part of this work deals with the study of new synthetic ways to afford the BTP moiety. The palladium-catalyzed cross-coupling reaction of 3-methylthio-1,2,4-triazine with various 2-stannylated pyridines have been explored. Our investigations have also allowed to develop a method for synthesizing unsymmetrical 1,2,4,5-tetrazine from the cross-coupling reaction between 3-methylthio-6-(morpholine-N-yl)-1,2,4,5-tetrazine and organoboron / organo-stannane derivatives. (author)

  1. Adsorption properties of cationic rhodamine B dye onto metals chloride-activated castor bean residue carbons.

    Science.gov (United States)

    Zhi, Lee Lin; Zaini, Muhammad Abbas Ahmad

    2017-02-01

    This work was aimed to evaluate the feasibility of castor bean residue based activated carbons prepared through metals chloride activation. The activated carbons were characterized for textural properties and surface chemistry, and the adsorption data of rhodamine B were established to investigate the removal performance. Zinc chloride-activated carbon with specific surface area of 395 m 2 /g displayed a higher adsorption capacity of 175 mg/g. Magnesium chloride and iron(III) chloride are less toxic and promising agents for composite chemical activation. The adsorption data obeyed Langmuir isotherm and pseudo-second-order kinetics model. The rate-limiting step in the adsorption of rhodamine B is film diffusion. The positive values of enthalpy and entropy indicate that the adsorption is endothermic and spontaneous at high temperature.

  2. Combined techniques for studying actinide complexes in room temperature ionic liquids

    International Nuclear Information System (INIS)

    Gaillard, C.; Billard, I.; Mekki, S.; Ouadi, A.; Hennig, Ch.; Denecke, M.A.

    2007-01-01

    Room temperature ionic liquids (RTILs) are a new class of solvents. Their main interest is related to their 'green' properties (non-volatile, non-flammable, etc.), but also from the variability of their physico-chemical properties (stability, hydrophobicity, viscosity) as a function of the RTIL cationic and anionic components. In the frame of the nuclear fuel reprocessing, RTILs are particularly attractive in order to improve existing processes or to develop new ones for actinide and lanthanide partitioning, in replacement of toxic solvents used nowadays, for metal electrodeposition or for liquid/liquid extraction by the use of task specific ionic liquids. However, despite the increasing number of publications devoted to ionic liquids, the solvation effects, the solute-solvent and solvent-solvent interactions are still hardly known. These fundamental aspects are of tremendous importance to the understanding of the solvating properties of these new solvents. In this frame, we have undertaken studies on the solvation and complexation of lanthanides (III) and actinides in RTILs, by the use of spectroscopic techniques. Experiments were led in various ionic liquids in order to highlight the role of the anionic part of the RTILs on the reactivity of the studied cations. Results have clearly shown that solvation phenomena in RTILs are not as 'simple' as in classical solvents. The dissolution of a Ln/An salt, even if complete, does not imply dissociation and solvation of the metal cation by the RTILs anions only. The nature of first co-ordination sphere of Ln/An depends on the competition between its counter-anions and the RTIL anions, which, in turn, influence the complexation reaction with other added anions such as chlorides. (authors)

  3. The clearance of Pu and Am from the respiratory system of rodents after the inhalation of oxide aerosols of these actinides either alone or in combination with other metals

    International Nuclear Information System (INIS)

    Stather, J.W.; James, A.C.; Brightwell, J.; Rodwell, P.

    1979-01-01

    In this series of studies in rodents the lung clearance and tissue distribution of both plutonium and americium have been measured following their inhalation as mixed actinide oxides either alone or in combination with other metals. The aerosols used were materials to which workers in the nuclear industry may be occupationally exposed or which could be generated in the event of an accident in a reactor core or fuel fabrication plant. The studies showed that, at least for some PuO 2 aerosols, the lung model currently being used by ICRP for estimating tissue doses from inhaled actinides may overestimate, by about a factor of ten, the amount of plutonium translocated to the blood. The presence of oxides of other metals can, however, appreciably influence the clearance of plutonium from the lung. While in some mixtures plutonium dioxide behaves as an insoluble (Class Y) compound and in others as a soluble (Class W) compound, it may also have transportability characteristics between these two extremes. Americium-241 behaves as a soluble (Class W) compound when inhaled as the oxide. However, if it is present in trace quantities in mixed-oxide aerosols its behaviour depends upon that of the materials present in greatest mass. (author)

  4. Supercritical fluid carbon dioxide extraction of actinides

    International Nuclear Information System (INIS)

    Rao, Ankita; Tomar, B.S.

    2016-01-01

    Supercritical fluid extraction (SFE) is a process akin to liquid-liquid or solvent extraction where a Supercritical fluid (SCF) is contacted with a solid/ liquid matrix for the purpose of separating the component of interest from the original matrix. Carbon dioxide is a preferred choice as supercritical fluid (SCF) owing to its moderate critical parameter (P c = 7.38 MPa and T c = 304.1K) coupled with radiation and chemical stability, non toxic nature and low cost. Despite widespread applications for extraction of organic compounds and associated advantages especially liquid waste minimization, the SFE of metal ions was left unexplored for quite some time, as direct metal ion extraction is inefficient due charge neutralization requirement and weak solute-solvent interaction. Neutral SCF soluble metal-ligand complexation is imperative and SFE of actinides was reported only in 1994. Several studies have been carried out on SFE of uranium, thorium and plutonium from nitric acid medium employing different sets of ligands (organophosphorus, diketones, amides). Especially attractive is the possibility of direct dissolution and extraction of actinides employing ligand-acid adducts (like TBP.HNO 3 adduct) from solid matrices of different stages of nuclear fuel cycle viz. ores, spent nuclear fuels and radioactive wastes. Also, partitioning of actinides from fission products has been explored in spent nuclear fuel. These studies on supercritical fluid extraction of actinides indicate a more efficient and environmentally sustainable technology. (author)

  5. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II and Pb(II

    Directory of Open Access Journals (Sweden)

    Shengye Wang

    2016-09-01

    Full Text Available Alginate and algal-biomass (Laminaria digitata beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine (PEI was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM coupled with energy dispersive X-ray analysis (EDX: the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads, the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions.

  6. Emission channeling studies on transition-metal doped GaN and ZnO: Cation versus anion substitution

    CERN Document Server

    AUTHOR|(CDS)2070176; Wahl, Ulrich; Martins Correia, Joao; Amorim, Lígia; Silva, Daniel; Decoster, Stefan; Castro Ribeiro Da Silva, Manuel; Temst, Kristiaan; Vantomme, André

    2014-01-01

    The magnetic and electric properties of impurities in semiconductors are strongly dependent on the lattice sites which they occupy. While the majority site can often be predicted based on chemical similarities with the host elements and is usually simple to confirm experimentally, minority sites are far more complicated to predict, detect and identify. We have carried out extensive beta− emission channeling studies on the lattice location of transition metal impurities in wide-gap dilute magnetic semiconductors, namely Co and Mn in GaN and ZnO, making use of radioactive 61Co and 56Mn implanted at the ISOLDE facility at CERN. In addition to the majority occupation of cation (Ga, Zn) sites, we located significant fractions (of the order of 20%) of the Co and Mn impurities in anion (N, O) sites, which are virtually unaffected by thermal annealing up to 900 °C. Here, we present the beta− emission channeling experiments on 61Co-implanted GaN. We discuss these results in the context of our recent reports of mi...

  7. CFA-4 - a fluorinated metal-organic framework with exchangeable interchannel cations.

    Science.gov (United States)

    Fritzsche, J; Grzywa, M; Denysenko, D; Bon, V; Senkovska, I; Kaskel, S; Volkmer, D

    2017-05-23

    The syntheses and crystal structures of the fluorinated linker 1,4-bis(3,5-bis(trifluoromethyl)-1H-pyrazole-4-yl)benzene (H 2 -tfpb; 1) and the novel metal-organic framework family M[CFA-4] (Coordination Framework Augsburg University-4), M[Cu 5 (tfpb) 3 ] (M = Cu(i), K, Cs, Ca(0.5)), are described. The ligand 1 is fully characterized by single crystal X-ray diffraction, photoluminescence-, NMR-, IR spectroscopy, and mass spectrometry. The copper(i)-containing MOF crystallizes in the hexagonal crystal system within the chiral space group P6 3 22 (no. 182) and the unit cell parameters are as follows: a = 23.630(5) Å, c = 41.390(5) Å, V = 20 015(6) Å 3 . M[CFA-4] features a porous 3-D structure constructed from pentanuclear copper(i) secondary building units {Cu(pz) 6 } - (pz = pyrazolate). Cu(I)[CFA-4] is fully characterized by synchrotron single crystal X-ray diffraction, thermogravimetric analysis, variable temperature powder X-ray diffraction, IR spectroscopy, photoluminescence and gas sorption measurements. Moreover, thermal stability and gas sorption properties of K[CFA-4] and Cu(I)[CFA-4] are compared.

  8. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    International Nuclear Information System (INIS)

    Clark, David L.; Fedosseev, Alexander M.

    2001-01-01

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier

  9. Rapid ion-exchange separations of actinides

    International Nuclear Information System (INIS)

    Usuda, Shigekazu

    1988-01-01

    For the purpose of studying short-lived actinide nuclides, three methods for rapid ion exchange separation of actinide elements with mineral acid-alcohol mixed media were developed: anion exchange with nitric acid-methyl alcohol mixed media to separate the transplutonium and rare earth elements from target material, U or Pu and Al catcher foils; anion exchange with hydrochloric acid-methyl alcohol media to separate Am+Cm, Bk and Cf+Fm from the target, catcher foils and major fission products; and cation exchange with hydrochloric acid-methyl alcohol media and with concentrated hydrochloric acid to separate the transplutonium elements as a group from the rare earths after eliminating the large amounts of U, Al, Cu, Fe etc. The methods enable one to perform rapid and effective separation at elevated temperature (90 deg C) and immediate source preparation for alpha-ray spectrometry. (author) 47 refs.; 10 figs

  10. Seventeen-coordinate actinide helium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kaltsoyannis, Nikolas [School of Chemistry, The University of Manchester (United Kingdom)

    2017-06-12

    The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe{sub 17}{sup 3+}, ThHe{sub 17}{sup 4+}, and PaHe{sub 17}{sup 4+} are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHe{sub n}{sup 3+} (n=1-17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R{sup 2}>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac-He distances, and also with the incremental He binding energies. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Pyrometallurgical process of actinide metal

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Kang, Young Ho; Woo, Mun Sik; Hwang, Sung Chan

    1999-06-01

    Major subject on pyrometallurgical partitioning technology is to separate transmutation elements (TRU) from rare earth elements(RE). Distribution coefficients of TRU and RE between molten chloride and liquid cadmium were measured for reductive extraction, and TRU were separated from RE in simplified molten chloride system by electrorefining. And separation efficiency between TRU and RE were estimated by using thermodynamics data. The results indicate that uranium, neptunium and plutonium are easy to separate from RE but some amount of RE accompany americium, and that processes have to be optimized to attain good separation efficiency of TRU. (author)

  12. A study of contaminated soils near Crucea-Botus, ana uranium mine (East Carpathians, Romania): metal distribution and partitioning of natural actinides with implications for vegetation uptake

    Science.gov (United States)

    Petrescu, L.; Bilal, E.

    2012-04-01

    total uranium can be found in the specifically absorbed and carbonate bound fraction, indicated the important role played by the carbonates in the retention of U; one the other hand this fraction is liable to release the uranium if the pH should happen to change. Thorium appear in high-enough concentration in the soil is scarcely available because 70.29% is present in residual fraction, and about 21.78% in the crystalline iron oxides occluded fraction and organically and secondary sulfide bound fraction. This is certainly due to the fact that this naturally occurring radionuclide can be associated with relatively insoluble mineral phases like alumino-silicates and refractory oxides. Its association with the organic matter (10.93%) suggests that it can form soluble organic complexes that can facilitate its removal by the stream waters. Grounded on these results, we were able to prove that the examined mine dumps can represent an impact on the environment, which constitute an argument in favor of the initiation of a program of remedying the quality of the environment from this mining zone. Although from our research it resulted that the natural actinides does not concentrate in the exchangeable fraction (Th) or it concentrates very little in it (U), the isolation of the mineral fraction of soil rich in U and Th helps us in the future identification of the links between the bioavailability and the pedogenesis, connections which control the cycle of the radioactive metals.

  13. Actinide/crown ether chemistry

    International Nuclear Information System (INIS)

    Benning, M.M.

    1988-01-01

    A structural survey of actinide/crown ether compounds was conducted in order to investigate the solid state chemistry of these complexes. Several parameters - the metal size, crown type, counterion, solvent systems and reaction and crystallization conditions - were varied to correlate their importance in complexation. Under atmospheric conditions, two types of complexes were isolated, those containing only hydrogen-bonded crown interactions and instances where the crown interacts directly with the metal center. In both cases, water seems to play a very important role. When coordinated to the metal, water molecules exhibit the necessary donor properties required for the formation of hydrogen-bonded contacts. The water molecules also provide fierce competition with the crown ethers for metal-binding sites and in most cases prohibit the formation of complexes in which direct metal-ligand association exists. The results of this study indicate that direct interaction between the metal atoms and the crown ethers, in the presence of water, can only occur with polyether conformations which limit the steric replusions within the metal coordination sphere

  14. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  15. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    Science.gov (United States)

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  16. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd.

    Science.gov (United States)

    Duguid, J; Bloomfield, V A; Benevides, J; Thomas, G J

    1993-11-01

    Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) induce the greatest structural changes in B-DNA. The Raman (vibrational) band differences are extensive and indicate partial disordering of the B-form backbone, reduction in base stacking, reduction in base pairing, and specific metal interaction with acceptor sites on the purine (N7) and pyrimidine (N3) rings. Many of the observed spectral changes parallel those accompanying thermal denaturation of B-DNA and suggest that the metals link the bases of denatured DNA. While exocyclic carbonyls of dT, dG, and dC may stabilize metal ligation, correlation plots show that perturbations of the carbonyls are mainly a consequence of metal-induced denaturation of the double helix. Transition metal interactions with the DNA phosphates are weak in comparison to interactions with the bases, except in the case of Cu2+, which strongly perturbs both base and phosphate group vibrations. On the other hand, the Raman signature of B-DNA is largely unperturbed by Mg2+, Ca2+, Sr2+, and Ba2+, suggesting much weaker interactions of the alkaline earth metals with both base and phosphate sites. A notable exception is a moderate perturbation by alkaline earths of purine N7 sites in 160-base pair DNA, with Ca2+ causing the greatest effect. Correlation plots demonstrate a strong interrelationship between perturbations of Raman bands assigned to ring vibrations of the bases and those of bands assigned to exocyclic carbonyls and backbone phosphodiester groups. However, strong correlations do not occur between

  17. Rice Na+/H+- antiporter Nhx1 partially complements the alkali-metal-cation sensitivity of yeast strains lacking three sodium transporters

    Czech Academy of Sciences Publication Activity Database

    Kinclová-Zimmermannová, Olga; Flegelová, Hana; Sychrová, Hana

    2004-01-01

    Roč. 49, č. 5 (2004), s. 519-525 ISSN 0015-5632 R&D Projects: GA ČR GA204/02/1240; GA AV ČR IAA5011407 Grant - others:EU(XE) QLK3-CT-2001-00533 Institutional research plan: CEZ:AV0Z5011922 Keywords : alkali metal cations * Na/H antiporter * yeast Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.034, year: 2004

  18. A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    Science.gov (United States)

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-09-27

    Binary catalyst systems comprising a cationic Ru-CNC pincer complex and an alkali metal salt were developed for selective hydroboration of CO 2 utilizing pinacolborane at r.t. and 1 atm CO 2 , with the combination of [Ru(CNC Bn )(CO) 2 (H)][PF 6 ] and KOCO 2 t Bu producing formoxyborane in 76% yield. A bicyclic catalytic mechanism was proposed and discussed.

  19. Affinity of hydroxyapatite to metal cations. A study on the composition and structure of phosphates formed in the presence of titanium and aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, C.C. [Instituto de Eng. Biomedica, Porto (Portugal). Lab. de Biomateriais; Porto Univ. (Portugal). Faculdade de Engenharia; Inst. Superior de Engenharia, Porto (Portugal); Barbosa, M.A. [Instituto de Eng. Biomedica, Porto (Portugal). Lab. de Biomateriais; Porto Univ. (Portugal). Faculdade de Engenharia

    2001-07-01

    The purpose of this study was to contribute to the understanding of the effect of titanium, aluminium and titanium/aluminium on the Hap structure and to investigate if a synergistic effect between the two cations exists. The effect of the metal ion concentration was studied. The solids were analysed by X-ray diffraction, Fourier transform infrared spectroscopy, FT-Raman spectroscopy and energy dispersive X-ray analysis. (orig.)

  20. On flotation separation of oxo-anions of transition metals by the use of fine-emulsified solutions of cationic collector in non-polar liquids

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Purich, A.N.; Babinets, S.K.

    1980-01-01

    Experimentally shown is a principle possibility of flotation separation of oxo-anions of transition metals by the use of fine-emulsified solutions of cationic collector in non-polar liquids. Ammonium vanadate and sodium tuno.state solutions have been the objects of study. Hexadezilamine has been used as collector. The collector has been introduced in the form of hexadecylamine emulsions in n-decane, in tetrachloromethane or alcohol. Optimum pH value ranges are determined for separation processes

  1. Actinide science. Fundamental and environmental aspects

    International Nuclear Information System (INIS)

    Choppin, Gregory R.

    2005-01-01

    Nuclear test explosions and reactor wastes have deposited an estimated 16x10 15 Bq of plutonium into the world's aquatic systems. However, plutonium concentration in open ocean waters is orders of magnitude less, indicating that most of the plutonium is quite insolvable in marine waters and has been incorporated into sediments. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides were introduced into the aquatic system. Actinide solubility depends on such factors as pH(hydrolysis), E H (oxidation state), reaction with complexants (e.g. carbonate, phosphate, humic acid, etc.) sorption to surfaces of minerals and/or colloids, etc., in the water. The most significant of these variables is the oxidation sate of the metal ion. The simultaneous presence of more than one oxidation state for some actinides (e.g. plutonium) in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation but can undergo reduction to the Pu(IV) oxidation state with its different elemental behavior. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK SP - 56). The net solubility of hexavalent UO 2 2+ in sea water is also limited by hydrolysis; however, it has a relatively high concentration due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(CO) 3 (OH), is the limiting species for the solubility of Am(III) in sea water. Thorium is found exclusively as the tetravalent species and its solubility is limited by the formation of quite insoluble Th(OH) 4 . The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in

  2. Synthesis and characterisation of nitrogen poly-heterocyclic molecules using as selective complexing agents of metallic cations

    International Nuclear Information System (INIS)

    Alphonse, F.A.

    2003-12-01

    Separation of actinides (III) from lanthanides (III) is a crucial problem in the reprocessing of used nuclear fuels. Experimental results shown that soft donor extractants such as nitrogen polydentate heterocycles containing a NCCNCCN coordination site are potentials ligands for selective extraction of actinides (III). In those cases, two types of liquid-liquid extractions are employed: synergistic combination with lipophilic acid extractants and direct extraction. On the basis of the Hard and Soft Acids and Bases theory and basicity evaluation, new extractants were defined. We have first studied the synthesis of potential 1,3,5-triazine ligands designed for extraction in synergy with α-bromodecanoic acid. Secondly, we have examined the synthesis of bis-triazinyl-pyridine ligands for direct extraction studies. Extraction tests were carried out and perspectives of synthesis were deducted from those extraction results. (author)

  3. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  4. Variation in whole DNA methylation in red maple (Acer rubrum) populations from a mining region: association with metal contamination and cation exchange capacity (CEC) in podzolic soils.

    Science.gov (United States)

    Kalubi, K N; Mehes-Smith, M; Spiers, G; Omri, A

    2017-04-01

    Although a number of publications have provided convincing evidence that abiotic stresses such as drought and high salinity are involved in DNA methylation reports on the effects of metal contamination, pH, and cation exchange on DNA modifications are limited. The main objective of the present study is to determine the relationship between metal contamination and Cation exchange capacity (CEC) on whole DNA modifications. Metal analysis confirms that nickel and copper are the main contaminants in sampled sites within the Greater Sudbury Region (Ontario, Canada) and liming has increased soil pH significantly even after 30 years following dolomitic limestone applications. The estimated CEC values varied significantly among sites, ranging between 1.8 and 10.5 cmol(+) kg -1 , with a strong relationship being observed between CEC and pH (r = 0.96**). Cation exchange capacity, significantly lower in highly metal contaminated sites compared to both reference and less contaminated sites, was higher in the higher organic matter limed compared to unlimed sites. There was a significant variation in the level of cytosine methylation among the metal-contaminated sites. Significant and strong negative correlations between [5mdC]/[dG] and bioavailable nickel (r = -0.71**) or copper (r = -0.72**) contents were observed. The analysis of genomic DNA for adenine methylation in this study showed a very low level of [6N-mdA]/dT] in Acer rubrum plants analyzed ranging from 0 to 0.08%. Significant and very strong positive correlation was observed between [6N-mdA]/dT] and soil bioavailable nickel (r = 0.78**) and copper (r = 0.88**) content. This suggests that the increased bioavailable metal levels associated with contamination by nickel and copper particulates are associated with cytosine and adenine methylation.

  5. A new look at actinide recycle

    International Nuclear Information System (INIS)

    Burch, W.D.; Croff, A.G.; Rawlins, J.A.; Schulz, W.W.

    1991-01-01

    This paper will address the justification for reexamination of the value of recovering the minor actinides and certain fission products from spent light-water reactor fuels and describe some of the technical progress that has been made since the major studies of a decade ago. During this time, the US Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission have begun establishing detailed criteria and regulations for geologic repositories. An examination of the hazards of waste disposal relative to the EPA release standards reveals that removal of 99.9% of the actinides (Pu, Am, and Np) reduces these hazards quite close to the EPA standards after 300 years' decay of the strontium and cesium. It may be also useful to remove and separately manage and dispose of certain of the long-lived fission products, such as 99 Tc and 129 I. Much additional work is required to fully assess the appropriate target recoveries as the hazards and risks are more closely examined and as the standards are reworked and refined. The two decades before the projected start of the US repository may present a window of opportunity to introduce several better management practices that act to simplify the repository safety issues. From a technical standpoint, significant progress has been made on recovery of the actinides from aqueous wastes though use of the TRUEX process. Additional work is required to demonstrate the application of the process to spent LWR fuels, but it appears straightforward. In addition, work at the Argonne National Laboratory on the liquid-metal reactor metal fuel cycle shows the relative simplicity of recycle of the actinides in that fast reactor cycle. Much work remains to fully demonstrate that actinides from all secondary waste streams can be removed to the target levels from both the aqueous reprocessing of LWR fuel and the pyro processes for the metal-fueled fast reactor. 9 refs., 2 figs

  6. Design and synthesis of some polyaminopolycarboxylic acids and the structural influence of their anions on the separation of actinides and lanthanides

    International Nuclear Information System (INIS)

    Tse, P.K.

    1983-01-01

    Investigation of some methods for the preparation of four polyaminopolycarboxylic acids: thiobis(ethylenenitrilo)-N,N,N',N'-tetraacetic acid, N,N-bis(2-aminoethyl)aniline-N',N',N'',N''-tetraacetic acid, bis(3-aminopropyl)ether-N,N,N',N'-tetraacetic acid and N,N-bis[N',N'-dicarboxymethyl-3-aminopropyl]-N-methylammonioacetate are reported. The coordinating properties of their anions with regard to lanthanide ions have been examined. Polyaminopolycarboxylates form 1:1 chelate species with trivalent lanthanide ions in aqueous media. The stability constants of their metal chelate species depend upon the size of the chelating rings formed, the basicity of the middle atom in the chain, and the number of coordination points between anion and metal cation. Tracer level 241 Am- 155 Eu cation-exchange experiments explore how the relative magnitude of the chelate stability constants affects the separation of members of the lanthanide and actinide series

  7. Critical masses for the even-neutron-numbered transuranium actinides

    International Nuclear Information System (INIS)

    Westfall, R.M.

    1981-01-01

    As part of a standards effort of the American Nuclear Society to establish subcritical mass limits for the transuranium actinides, critical masses were calculated for seven actinides, critical masses were calculated for seven actinide elements in bare, water-reflected, and steel-reflected metal systems. For the nuclides /sup 242/Pu and /sup 241/Am, values obtained with ENDF/B-V cross-section data were in much better agreement with values inferred from experimental measurement than were initial values calculated with ENDF/B-IV data. A brief description of the analytical methods employed is followed by a presentation of the results. 10 refs

  8. Self-interaction corrected local spin density calculations of actinides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z

    2010-01-01

    We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration...... of the actinide ions in these compounds from first principles. Here we review a number of applications, ranging from electronic structure calculations of actinide metals, nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in PuO2....

  9. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  10. Gas sorption and transition-metal cation separation with a thienothiophene based zirconium metal–organic framework

    Energy Technology Data Exchange (ETDEWEB)

    SK, Mostakim [Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam (India); Grzywa, Maciej; Volkmer, Dirk [Institute of Physics, Chair of Solid State Science, Augsburg University, Universitätsstrasse 1, D-86135 Augsburg (Germany); Biswas, Shyam, E-mail: sbiswas@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam (India)

    2015-12-15

    The modulated synthesis of the thienothiophene based zirconium metal–organic framework (MOF) material having formula [Zr{sub 6}O{sub 4}(OH){sub 4}(DMTDC){sub 6}]·4.8DMF·10H{sub 2}O (1) (H{sub 2}DMTDC=3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid; DMF=N,N'-dimethylformamide) was carried out by heating a mixture of ZrCl{sub 4}, H{sub 2}DMTDC linker and benzoic acid (used as a modulator) with a molar ratio of 1:1:30 in DMF at 150 °C for 24 h. Systematic investigations have been performed in order to realize the effect of ZrCl{sub 4}/benzoic acid molar ratio on the crystallinity of the material. The activation (i.e., the removal of the guest solvent molecules from the pores) of as-synthesized compound was achieved by stirring it with methanol and subsequently heating under vacuum. A combination of X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric (TG) and elemental analysis was used to examine the phase purity of the as-synthesized and thermally activated 1. The material displays high thermal stability up to 310 °C in an air atmosphere. As revealed from the XRD measurements, the compound retains its crystallinity when treated with water, acetic acid and 1 M HCl solutions. The N{sub 2} and CO{sub 2} sorption analyses suggest that the material possesses remarkably high microporosity (S{sub BET}=1236 m{sup 2} g{sup −1}; CO{sub 2} uptake=3.5 mmol g{sup −1} at 1 bar and 0 °C). The compound also shows selective adsorption behavior for Cu{sup 2+} over Co{sup 2+} and Ni{sup 2+} ions. - Graphical abstract: Selective transition-metal cation adsorption by a thienothiophene based zirconium metal–organic framework material. - Highlights: • The modulated synthesis of a thienothiophene based Zr(IV) MOF has been described. • Effect of metal salt/modulator ratio on the crystallinity was thoroughly studied. • The compound showed high thermal and physiochemical stability. • N{sub 2} and CO{sub 2} sorption experiments

  11. Gas sorption and transition-metal cation separation with a thienothiophene based zirconium metal–organic framework

    International Nuclear Information System (INIS)

    SK, Mostakim; Grzywa, Maciej; Volkmer, Dirk; Biswas, Shyam

    2015-01-01

    The modulated synthesis of the thienothiophene based zirconium metal–organic framework (MOF) material having formula [Zr_6O_4(OH)_4(DMTDC)_6]·4.8DMF·10H_2O (1) (H_2DMTDC=3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid; DMF=N,N'-dimethylformamide) was carried out by heating a mixture of ZrCl_4, H_2DMTDC linker and benzoic acid (used as a modulator) with a molar ratio of 1:1:30 in DMF at 150 °C for 24 h. Systematic investigations have been performed in order to realize the effect of ZrCl_4/benzoic acid molar ratio on the crystallinity of the material. The activation (i.e., the removal of the guest solvent molecules from the pores) of as-synthesized compound was achieved by stirring it with methanol and subsequently heating under vacuum. A combination of X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric (TG) and elemental analysis was used to examine the phase purity of the as-synthesized and thermally activated 1. The material displays high thermal stability up to 310 °C in an air atmosphere. As revealed from the XRD measurements, the compound retains its crystallinity when treated with water, acetic acid and 1 M HCl solutions. The N_2 and CO_2 sorption analyses suggest that the material possesses remarkably high microporosity (S_B_E_T=1236 m"2 g"−"1; CO_2 uptake=3.5 mmol g"−"1 at 1 bar and 0 °C). The compound also shows selective adsorption behavior for Cu"2"+ over Co"2"+ and Ni"2"+ ions. - Graphical abstract: Selective transition-metal cation adsorption by a thienothiophene based zirconium metal–organic framework material. - Highlights: • The modulated synthesis of a thienothiophene based Zr(IV) MOF has been described. • Effect of metal salt/modulator ratio on the crystallinity was thoroughly studied. • The compound showed high thermal and physiochemical stability. • N_2 and CO_2 sorption experiments revealed significantly high microporosity. • The material showed high adsorption selectivity for Cu"2

  12. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.

    Science.gov (United States)

    Wang, Hong-Yan; Gao, Hong-Wen

    2009-05-01

    Dye pollutants are a major class of environmental contaminants. Over 100,000 dyes have been synthesized worldwide and more than 700,000 tons are produced annually and over 5% are discharged into aquatic environments. The adsorption or sorption is one of the most efficient methods to remove dye and heavy metal pollutants from wastewater. However, most of the present sorbents often bear some disadvantages, e.g. low sorption capacity, difficult separation of spoil, complex reproduction, or secondary pollution. Development of novel sorbents that can overcome these limitations is desirable. On the basis of the chemical coprecipitation of calcium oxalate (CaC(2)O(4)), bromopyrogallol red (BPR) was embedded during the growing of CaC(2)O(4) particles. The ternary C(2)O(4) (2-)-BPR-Ca(2+) sorbent was yielded by the centrifugation. Its composition was determined by spectrophotometry and AAS, and its structure and morphology were characterized by powder X-ray diffraction (XRD), laser particle-size analysis, and scanning electron microscopy (SEM). The adsorption of ethyl violet (EV) and heavy metals, e.g. Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) were carried out and their removal rate determined by spectrophotometry and ICP-OES. The adsorption performance of the sorbent was compared with powder activated carbon. The Langmuir isothermal model was applied to fit the embedment of BPR and adsorption of EV. The saturation number of BPR binding to CaC(2)O(4) reached 0.0105 mol/mol and the adsorption constant of the complex was 4.70 x 10(5) M(-1). Over 80% of the sorbent particles are between 0.7 and 1.02 microm, formed by the aggregation of the global CaC(2)O(4)/BPR inclusion grains of 30-50 nm size. Such a material was found to adsorb cationic dyes selectively and sensitively. Ethyl violet (EV) was used to investigate the adsorption mechanism of the material. One BPR molecule may just bind with one EV molecule. The CaC(2)O(4)/BPR inclusion material adsorbed EV over two times more

  13. Actinide isotopic analysis systems

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Ruhter, W.D.; Gunnink, R.

    1990-01-01

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  14. Burning minor actinides in a HTR energy spectrum

    International Nuclear Information System (INIS)

    Pohl, Christoph; Rütten, H. Jochem

    2012-01-01

    Highlights: ► Burn-up analysis for varying plutonium/minor actinide fuel compositions. ► The influence of varying heavy metal fuel element loads is investigated. ► Significant burn-up via radiative capture and subsequently fission is observed. ► Difference observed between fuel element burn-up and total actinide burning rate. - Abstract: The generation of nuclear energy by means of the existing nuclear reactor systems is based mainly on the fission of U-235. But this comes along with the capture of neutrons by the U-238 faction and results in a build-up of plutonium isotopes and minor actinides as neptunium, americium and curium. These actinides are dominant for the long time assessment of the radiological risk of a final disposal therefore a minimization of the long living isotopes is aspired. Burning the actinides in a high temperature helium cooled graphite moderated reactor (HTR) is one of these options. The use of plutonium isotopes to sustain the criticality of the system is intended to avoid on the one hand highly enriched uranium because of international regulations and on the other hand low enriched uranium because of the build up of new actinides from neutron capture in the U-238 fraction. Because initial minor actinide isotopes are typically not fissionable by thermal neutrons the idea is to fission instead the intermediate isotopes generated by the first neutron capture. This paper comprises calculations for plutonium/minor actinides/thorium fuel compositions and their correlated final burn-up for a generic pebble bed HTR based on the reference design of the 400 MW PBMR. In particular the cross sections and the neutron balance of the different minor actinide isotopes in the higher thermal energy spectrum of a HTR will be discussed. For a fuel mixture of plutonium and minor actinides a significant burn-up of these actinides up to 20% can be achieved but at the expense of a higher residual fraction of plutonium in the burned fuel. Combining

  15. Creation, synthesis and characterisation of nitrogenous poly-heterocyclic new molecules for specific complexation of metallic cations

    International Nuclear Information System (INIS)

    Dupont, C.

    2010-01-01

    In France, the nuclear waste issued from the industrial reprocessing of spent nuclear fuels (by the PUREX process) are currently vitrified at the La Hague plant, waiting for a final disposal in a deep geological repository. The law voted in June 2006 on the management of highly active nuclear waste plans to look for solutions enabling the separation and transmutation of long-lived radionuclides so as to reduce the quantity and noxiousness of the final nuclear waste. To address this issue, the CEA investigates and elaborates advanced separation processes based on specially designed complexing or extracting molecules to selectively extract minor actinides from PUREX raffinates containing fission products like lanthanides, which are neutron scavengers. BTP or bis-triazinyl-pyridines have been extensively studied at the CEA (and in Europe) for actinides(III)/lanthanides(III) separation. They complex actinides(III) selectively. However, they are sensitive to degradation by hydrolysis and radiolysis. Besides, their separation mechanisms are not well understood, especially the influence of their substituting groups on their complexing and extracting properties. The first part of work reports the syntheses of various BTP and BTBP molecules, differently substituted, as well as a new family of poly-aromatic nitrogen-contained ligands: BPBT, presenting a pyridine/triazine sequence that has never been reported in the literature. The second part is devoted to the physico-chemistry studies of the synthesized molecules, such as the determination of their protonation and complexation constants to describe the influence of different substituting groups. Finally, the last part outlines solvent extraction studies by using these ligands either like extractants or like complexants. (author) [fr

  16. Extraction chromatography of actinides

    International Nuclear Information System (INIS)

    Muller, W.

    1978-01-01

    Extraction chromatography of actinides in the oxidation state from 2 to 6 is reviewed. Data on using neutral (tbp), basic (substituted ammonium salts) and acidic [di-(2-ethylhexyl)-phosphoric acid (D2EHPA)] extracting agents ketones, esters, alcohols and β-diketones in this method are given. Using the example of actinide separation using D2EHPA, discussed are factors influencing the efficiency of their chromatography separation (nature and particle size of the carrier materials, extracting agents amount on the carrier, temperature and elution rate)

  17. Actinide nanoparticle research

    International Nuclear Information System (INIS)

    Kalmykov, Stepan N.; Denecke, Melissa A.

    2011-01-01

    This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale. (orig.)

  18. Radiochemistry and actinide chemistry

    International Nuclear Information System (INIS)

    Guillaumont, R.; Peneloux, A.

    1989-01-01

    The analysis of trace amounts of actinide elements by means of radiochemistry, is discussed. The similarities between radiochemistry and actinide chemistry, in the case of species amount by cubic cm below 10 12 , are explained. The parameters which allow to define what are the observable chemical reactions, are given. The classification of radionuclides in micro or macrocomponents is considered. The validity of the mass action law and the partition function in the definition of the average number of species for trace amounts, is investigated. Examples illustrating the results are given

  19. Coupling of terminal alkynes and isonitriles by organo-actinide complexes: Scope and mechanistic insights

    International Nuclear Information System (INIS)

    Barnea, E.; Andrea, T.; Eisen, M. S.; Berthet, J.C.; Ephritikhine, M.

    2008-01-01

    The coupling reaction of terminal alkynes with several isonitriles, catalyzed by the neutral organo-actinide complexes Cp * 2 AnMe 2 (Cp * = C 5 Me 5 , An = Th, U) or the cationic complex [(Et 2 N) 3 U][BPh 4 ], yielded substituted α, β-acetylenic aldimines, in good to excellent yields. The reaction proceeded via a 1,1-insertion of the isonitrile carbon into a metal-acetylide bond, followed by a protonolysis by the acidic proton of the terminal alkyne. Additional insertion products were obtained by altering the catalyst and the reactant ratios. A plausible mechanism for the catalytic reaction is also presented, based on kinetics measurements and thermodynamic studies of the coupling reaction with Cp * 2 ThMe 2 or [(Et 2 N) 3 U][BPh 4 ] as catalysts. The reaction is first-order in catalyst and isonitrile and zero-order in alkyne. (authors)

  20. Actinides and rare earths complexation with adenosine phosphate nucleotides

    International Nuclear Information System (INIS)

    Mostapha, Sarah

    2013-01-01

    demonstrated that the dominant interaction is between the cations and the phosphate groups of the ligands. Complexes with monophosphate ligands (AMP-Lu, Lu-Th-AEP and AMP) show similar organizations with bridging phosphates indicating that the organic part does not have a significant effect on their structure. ADP and ATP solid state complexes (with two spheroid metal ions: Lu and Th) show several similarities in terms of local environment indicating that the occurrence of a third phosphate group has no significant effect on the local organization of the complex. However, despite the theoretical approaches that have been conducted, the right structure of these complexes has not been accurately determined. Complexes of lanthanides and actinide(III) (Am) with ATP behave similarly at macroscopic level suggesting an identical structure at the molecular level for these complexes. With uranyl, U-AMP complex synthesized at acidic pH show different behaviour at molecular level than that observed at alkaline pH but the same coordination sites (phosphates and hydroxyls ribose groups) have been demonstrated for both complexes. (author) [fr

  1. Advanced Extraction Methods for Actinide/Lanthanide Separations

    International Nuclear Information System (INIS)

    Scott, M.J.

    2005-01-01

    high level liquid wastes and a general actinide clean-up procedure. The selectivity of the standard extractant for tetravalent actinides, (N,N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide (CMPO), was markedly improved by the attachment of three CMPO-like functions onto a triphenoxymethane platform, and a ligand that is both highly selective and effective for An(IV) ions was isolated. A 10 fold excess of ligand will remove virtually all of the 4+ actinides from the acidic layer without extracting appreciable quantities of An(III) and Ln(III) unlike simple CMPO ligands. Inspired by the success of the DIAMEX industrial process for extractions, three new tripodal chelates bearing three diglycolamide and thiodiglycolamide units precisely arranged on a triphenoxymethane platform have been synthesized for an highly efficient extraction of trivalent f-element cations from nitric acid media. A single equivalent of ligand will remove 80% of the Ln(III) ion from the acidic layer since the ligand is perfectly suited to accommodate the tricapped trigonal prismatic geometry preferred by the metal center. The ligand is perhaps the most efficient binder available for the heavier lanthanides and due to this unique attribute, the extraction event can be easily followed by 1H NMR spectroscopy confirming the formation of a TPP complex. The most lipophilic di-n-butyl tris-diglycolamide was found to be a significantly weaker extractant in comparison to the di-isopropyl analogs. The tris-thiodiglycolamide derivative proved to be an ineffective chelate for f-elements and demonstrated the importance of the etheric oxygens in the metal binding. The results presented herein clearly demonstrate a cooperative action of these three ligating groups within a single molecule, confirmed by composition and structure of the extracted complexes, and since actinides prefer to have high coordination numbers, the ligands should be particularly adept at binding with three arms. The use of such an

  2. Advanced Extraction Methods for Actinide/Lanthanide Separations

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.

    2005-12-01

    high level liquid wastes and a general actinide clean-up procedure. The selectivity of the standard extractant for tetravalent actinides, (N,N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide (CMPO), was markedly improved by the attachment of three CMPO-like functions onto a triphenoxymethane platform, and a ligand that is both highly selective and effective for An(IV) ions was isolated. A 10 fold excess of ligand will remove virtually all of the 4+ actinides from the acidic layer without extracting appreciable quantities of An(III) and Ln(III) unlike simple CMPO ligands. Inspired by the success of the DIAMEX industrial process for extractions, three new tripodal chelates bearing three diglycolamide and thiodiglycolamide units precisely arranged on a triphenoxymethane platform have been synthesized for an highly efficient extraction of trivalent f-element cations from nitric acid media. A single equivalent of ligand will remove 80% of the Ln(III) ion from the acidic layer since the ligand is perfectly suited to accommodate the tricapped trigonal prismatic geometry preferred by the metal center. The ligand is perhaps the most efficient binder available for the heavier lanthanides and due to this unique attribute, the extraction event can be easily followed by 1H NMR spectroscopy confirming the formation of a TPP complex. The most lipophilic di-n-butyl tris-diglycolamide was found to be a significantly weaker extractant in comparison to the di-isopropyl analogs. The tris-thiodiglycolamide derivative proved to be an ineffective chelate for f-elements and demonstrated the importance of the etheric oxygens in the metal binding. The results presented herein clearly demonstrate a cooperative action of these three ligating groups within a single molecule, confirmed by composition and structure of the extracted complexes, and since actinides prefer to have high coordination numbers, the ligands should be particularly adept at binding with three arms. The use of such an

  3. Hydrothermal decomposition of actinide(IV oxalates: a new aqueous route towards reactive actinide oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Walter Olaf

    2016-01-01

    Full Text Available The hydrothermal decomposition of actinide(IV oxalates (An= Th, U, Pu at temperatures between 95 and 250 °C is shown to lead to the production of highly crystalline, reactive actinide oxide nanocrystals (NCs. This aqueous process proved to be quantitative, reproducible and fast (depending on temperature. The NCs obtained were characterised by X-ray diffraction and TEM showing their size to be smaller than 15 nm. Attempts to extend this general approach towards transition metal or lanthanide oxalates failed in the 95–250 °C temperature range. The hydrothermal decomposition of actinide oxalates is therefore a clean, flexible and powerful approach towards NCs of AnO2 with possible scale-up potential.

  4. Chemistry of the actinide elements. Second edition

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1987-01-01

    This is an exhaustive, updated discourse on the chemistry of Actinides, Volume 1 contains a systematic coverage of the elements Ac, Th, Pa, U, Np, and Pu, which constitutes Part 1 of the work. The characterization of each element is discussed in terms of its nuclear properties, occurrence, preparation, atomic and metallic properties, chemistry of specific compounds, and solution chemistry. The first part of Volume 2 follows the same format as Volume 1 but is confined to the elements Am, Cm, Bk, Cf, and Es, plus a more condensed coverage of the Transeinsteinium elements (Fm, Md, No, Lw, and 104-109). Part 2 of this volume is devoted to a discussion of the actinide elements in general, with a specific focus on electronic spectra, thermodynamic and magnetic properties, the metallic state, structural chemistry, solution kinetics, organometallic chemistry for σ- and π-bonded compounds, and some concluding remarks on the superheavy elements

  5. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication.

    Science.gov (United States)

    Bryant, Kevin F; Yan, Zhipeng; Dreyfus, David H; Knipe, David M

    2012-06-01

    Herpes simplex virus 1 (HSV-1) ICP8 is a single-stranded DNA-binding protein that is necessary for viral DNA replication and exhibits recombinase activity in vitro. Alignment of the HSV-1 ICP8 amino acid sequence with ICP8 homologs from other herpesviruses revealed conserved aspartic acid (D) and glutamic acid (E) residues. Amino acid residue D1087 was conserved in every ICP8 homolog analyzed, indicating that it is likely critical for ICP8 function. We took a genetic approach to investigate the functions of the conserved ICP8 D and E residues in HSV-1 replication. The E1086A D1087A mutant form of ICP8 failed to support the replication of an ICP8 mutant virus in a complementation assay. E1086A D1087A mutant ICP8 bound DNA, albeit with reduced affinity, demonstrating that the protein is not globally misfolded. This mutant form of ICP8 was also recognized by a conformation-specific antibody, further indicating that its overall structure was intact. A recombinant virus expressing E1086A D1087A mutant ICP8 was defective in viral replication, viral DNA synthesis, and late gene expression in Vero cells. A class of enzymes called DDE recombinases utilize conserved D and E residues to coordinate divalent metal cations in their active sites. We investigated whether the conserved D and E residues in ICP8 were also required for binding metal cations and found that the E1086A D1087A mutant form of ICP8 exhibited altered divalent metal binding in an in vitro iron-induced cleavage assay. These results identify a novel divalent metal cation-binding site in ICP8 that is required for ICP8 functions during viral replication.

  6. Quantum-chemistry based calibration of the alkali metal cation series (Li(+)-Cs(+)) for large-scale polarizable molecular mechanics/dynamics simulations.

    Science.gov (United States)

    Dudev, Todor; Devereux, Mike; Meuwly, Markus; Lim, Carmay; Piquemal, Jean-Philip; Gresh, Nohad

    2015-02-15

    The alkali metal cations in the series Li(+)-Cs(+) act as major partners in a diversity of biological processes and in bioinorganic chemistry. In this article, we present the results of their calibration in the context of the SIBFA polarizable molecular mechanics/dynamics procedure. It relies on quantum-chemistry (QC) energy-decomposition analyses of their monoligated complexes with representative O-, N-, S-, and Se- ligands, performed with the aug-cc-pVTZ(-f) basis set at the Hartree-Fock level. Close agreement with QC is obtained for each individual contribution, even though the calibration involves only a limited set of cation-specific parameters. This agreement is preserved in tests on polyligated complexes with four and six O- ligands, water and formamide, indicating the transferability of the procedure. Preliminary extensions to density functional theory calculations are reported. © 2014 Wiley Periodicals, Inc.

  7. The large second-harmonic generation of LiCs{sub 2}PO{sub 4} is caused by the metal-cation-centered groups

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiyue; Guo, Guo-Cong; Hong, Maochun; Deng, Shuiquan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Whangbo, Myung-Hwan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Department of Chemistry, North Carolina State University, Raleigh, NC (United States)

    2018-04-03

    We evaluated the individual atom contributions to the second harmonic generation (SHG) coefficients of LiCs{sub 2}PO{sub 4} (LCPO) by introducing the partial response functionals on the basis of first principles calculations. The SHG response of LCPO is dominated by the metal-cation-centered groups CsO{sub 6} and LiO{sub 4}, not by the nonmetal-cation-centered groups PO{sub 4} expected from the existing models and theories. The SHG coefficients of LCPO are determined mainly by the occupied orbitals O 2p and Cs 5p as well as by the unoccupied orbitals Cs 5d and Li 2p. For the SHG response of a material, the polarizable atomic orbitals of the occupied and the unoccupied states are both important. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. The electronic structure of vanadium monochloride cation (VCl{sup +}): Tackling the complexities of transition metal species

    Energy Technology Data Exchange (ETDEWEB)

    DeYonker, Nathan J., E-mail: ndyonker@memphis.edu [Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152 (United States); Halfen, DeWayne T.; Ziurys, Lucy M. [Department of Chemistry, Department of Astronomy, Arizona Radio Observatory, and Steward Observatory, University of Arizona, Tucson, Arizona 85721 (United States); Allen, Wesley D. [Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602 (United States)

    2014-11-28

    Six electronic states (X {sup 4}Σ{sup −}, A {sup 4}Π, B {sup 4}Δ, {sup 2}Φ, {sup 2}Δ, {sup 2}Σ{sup +}) of the vanadium monochloride cation (VCl{sup +}) are described using large basis set coupled cluster theory. For the two lowest quartet states (X {sup 4}Σ{sup −} and A {sup 4}Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T{sub 0}) and spectroscopic constants (r{sub e}, r{sub 0}, B{sub e}, B{sub 0}, D{sup ¯}{sub e}, H{sub e}, ω{sub e}, v{sub 0}, α{sub e}, ω{sub e}x{sub e}) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X {sup 4}Σ{sup −}), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state ({sup 2}Γ) has a T{sub e} of ∼11 200 cm{sup −1}. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.

  9. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    Avens, L.R.; Clifton, D.G.; Vigil, A.R.

    1984-01-01

    A new process for recovery of plutonium and americium from pyrochemical waste has been demonstrated. It is based on chloride solution anion exchange at low acidity, which eliminates corrosive HCl fumes. Developmental experiments of the process flowsheet concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 6 = from high chloride-low acid solution. Americium and other metals are washed from the ion exchange column with 1N HNO 3 -4.8M NaCl. The plutonium is recovered, after elution, via hydroxide precipitation, while the americium is recovered via NaHCO 3 precipitation. All filtrates from the process are discardable as low-level contaminated waste. Production-scale experiments are now in progress for MSE residues. Flow sheets for actinide recovery from electrorefining and direct oxide reduction residues are presented and discussed

  10. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    Avens, L.R.; Clifton, D.G.; Vigil, A.R.

    1985-05-01

    We demonstrated a new process for recovering plutonium and americium from pyrochemical waste. The method is based on chloride solution anion exchange at low acidity, or acidity that eliminates corrosive HCl fumes. Developmental experiments of the process flow chart concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 6 2- from high-chloride low-acid solution. Americium and other metals are washed from the ion exchange column with lN HNO 3 -4.8M NaCl. After elution, plutonium is recovered by hydroxide precipitation, and americium is recovered by NaHCO 3 precipitation. All filtrates from the process can be discardable as low-level contaminated waste. Production-scale experiments are in progress for MSE residues. Flow charts for actinide recovery from electro-refining and direct oxide reduction residues are presented and discussed

  11. Actinides, the narrowwest bands

    International Nuclear Information System (INIS)

    Smith, J.L.; Riseborough, P.S.

    1984-01-01

    A table of elements is shown that demonstrates the crossover from superconductivity to magnetism as well as regions of mixed valence. In particular, the actinides must eventually show 4f-electron like mixed valence, after the 5f-electrons become localized. There also seems to be an adiabatic continuation between heavy fermion and mixed valence behavior

  12. Actinide separative chemistry

    International Nuclear Information System (INIS)

    Boullis, B.

    2004-01-01

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  13. Uranyl and/or rare-earth mellitates in extended organic-inorganic networks: A unique case of hetero-metallic cation-cation interaction with U-VI=O-Ln(III) bonding (Ln = Ce, Nd)

    International Nuclear Information System (INIS)

    Volkringer, Christophe; Henry, Natacha; Grandjean, Stephane; Loiseau, Thierry

    2012-01-01

    A series of uranyl and lanthanide (trivalent Ce, Nd) mellitates (mel) has been hydrothermally synthesized in aqueous solvent. Mixtures of these 4f and 5f elements also revealed the formation of a rare case of lanthanide-uranyl coordination polymers. Their structures, determined by XRD single-crystal analysis, exhibit three distinct architectures. The pure lanthanide mellitate Ln 2 (H 2 O) 6 (mel) possesses a 3D framework built up from the connection of isolated LnO 6 (H 2 O) 3 polyhedra (tri-capped trigonal prism) through the mellitate ligand. The structure of the uranyl mellitate (UO 2 ) 3 (H 2 O) 6 - (mel).11.5H 2 O is lamellar and consists of 8-fold coordinated uranium atoms linked to each other through the organic ligand giving rise to the formation of a 2D 3 6 net. The third structural type, (UO 2 ) 2 Ln(OH)(H 2 O) 3 (mel).2.5H 2 O, involves direct oxygen bondings between the lanthanide and uranyl centers, with the isolation of a hetero-metallic dinuclear motif. The 9-fold coordinated Ln cation, LnO 5 (OH)(H 2 O) 3 , is linked to the 7-fold coordinated uranyl (UO 2 )O-4(OH) (pentagonal bipyramid) via one μ 2 -hydroxo group and one μ 2 -oxo group. The latter is shared between the uranyl bonding (U=O = 1.777(4)1.779(6) angstrom) and a long Ln-O bonding (Ce-O = 2.822(4) angstrom; Nd-O = 2.792(6) angstrom). This unusual linkage is a unique illustration of the so-called cation cation interaction associating 4f and 5f metals. The dinuclear motif is then further connected through the mellitate ligand, and this generates organic inorganic layers that are linked to each other via discrete uranyl (UO 2 )O 4 units (square bipyramid), which ensure the three-dimensional cohesion of the structure. The mixed U-Ln carboxylate is thermally decomposed from 260 to 280 degrees C and then transformed into the basic uranium oxide (U 3 O 8 ) together with U-Ln oxide with the fluorite structural type ('(Ln,U)O 2 '). At 1400 degrees C, only fluorite type '(Ln,U)O 2 ' is formed with

  14. Effect of the cationic composition of sorption solution on the quantification of sorption-desorption parameters of heavy metals in soils

    International Nuclear Information System (INIS)

    Sastre, J.; Rauret, G.; Vidal, M.

    2006-01-01

    We obtained the sorption isotherms of Cd, Cu, Pb and Zn in clay, clay saline and organic soils. The distribution coefficients (K d ) were determined in 0.02 eq l -1 CaCl 2 and in a solution that simulated the soil solution cationic composition. The K d values greatly varied with the composition of the sorption solution and the initial metal concentration. The sorption experiments were complemented with the quantification of the extractable metal, to estimate the reversibility of metal sorption. The extraction yields depended on the metal-soil combination, and the initial metal concentration, showing no correlation with previous K d values. The effect of the solution composition in mobility predictions was estimated through a Retention Factor, defined as the ratio of the K d versus the extraction yield. Results showed that risk was over- or underestimated using the CaCl 2 medium in soils with a markedly different soil solution composition. - Sorption solution composition modifies metal sorption-desorption pattern in soils

  15. Evaluating the efficacy of a minor actinide burner

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Omberg, R.P.; Wootan, D.W.

    1993-06-01

    The efficacy of a minor actinide burner can be evaluated by comparing safety and economic parameters to the support ratio. Minor actinide mass produced per unit time in this number of Light Water Reactors (LWRs) can be burned during the same time period in one burner system. The larger the support ratio for a given set of safety and economic parameters, the better. To illustrate this concept, the support ratio for selected Liquid Metal Reactor (LMR) burner core designs was compared with corresponding coolant void worths, a fundamental safety concern following the Chernobyl accident. Results can be used to evaluate the cost in reduced burning of minor actinides caused by LMR sodium void reduction efforts or to compare with other minor actinide burner systems

  16. The chemistry of the actinide elements. Volume I

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1986-01-01

    The Chemistry of the Actinide Elements is a comprehensive, contemporary and authoritative exposition of the chemistry and related properties of the 5f series of elements: actinium, thorium, protactinium, uranium and the first eleven. This second edition has been completely restructured and rewritten to incorporate current research in all areas of actinide chemistry and chemical physics. The descriptions of each element include accounts of their history, separation, metallurgy, solid-state chemistry, solution chemistry, thermo-dynamics and kinetics. Additionally, separate chapters on spectroscopy, magnetochemistry, thermodynamics, solids, the metallic state, complex ions and organometallic compounds emphasize the comparative chemistry and unique properties of the actinide series of elements. Comprehensive lists of properties of all actinide compounds and ions in solution are given, and there are special sections on such topics as biochemistry, superconductivity, radioisotope safety, and waste management, as well as discussion of the transactinides and future elements

  17. Actinide burning in the integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1993-01-01

    During the past few years, Argonne National Laboratory has been developing the integral fast reactor (IFR), an advanced liquid-metal reactor concept. In the IFR, the inherent properties of liquid-metal cooling are combined with a new metallic fuel and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics, and waste management. A key feature of the IFR concept is its unique pyroprocessing. Pyroprocessing has the potential to radically improve long-term waste management strategies by exploiting the following attributes: 1. Minor actinides accompany plutonium product stream; therefore, actinide recycling occurs naturally. Actinides, the primary source of long-term radiological toxicity, are removed from the waste stream and returned to the reactor for in situ burning, generating useful energy. 2. High-level waste volume from pyroprocessing call be reduced substantially as compared with direct disposal of spent fuel. 3. Decay heat loading in the repository can be reduced by a large factor, especially for the long-term burden. 4. Low-level waste generation is minimal. 5. Troublesome fission products, such as 99 Tc, 129 I, and 14 C, are contained and immobilized. Singly or in combination, the foregoing attributes provide important improvements in long-term waste management in terms of the ease in meeting technical performance requirements (perhaps even the feasibility of demonstrating that technical performance requirements can be met) and perhaps also in ultimate public acceptance. Actinide recycling, if successfully developed, could well help the current repository program by providing an opportunity to enhance capacity utilization and by deferring the need for future repositories. It also represents a viable technical backup option in the event unforeseen difficulties arise in the repository licensing process

  18. Experimental and theoretical studies on extraction of actinides and lanthanides by alicyclic H-phosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Annam, Suresh; Sivaramakrishna, Akella; Vijayakrishna, Kari [VIT Univ., Tamil Nadu (India). Dept. of Chemistry; Gopakumar, Gopinadhanpillai; Rao, C.V.S. Brahmmananda; Sivaraman, N. [Indira Gandhi Centre for Atomic Research (IGCAR), Tamil Nadu (India). Chemistry Group

    2017-06-01

    Three different alicyclic substituents H-phosphonates, namely, dicyclopentyl H-phosphonate, dicyclohexyl H-phosphonate and dimenthyl H-phosphonate were synthesized and used for liquid-liquid extraction of actinide elements (U, Am and Th) and lanthanide (Gd) in n-dodecane from nitric acid medium. The physicochemical properties of the extractants, such as density, viscosity, solubility were determined. At lower acidities, these H-phosphonates exhibit higher distribution values and the extraction following cation exchange mechanism through P-OH group of tri-coordinated phosphite form. At higher acidities (2N), the extraction is primarily via solvation mechanism through P=O group of penta-coordinated phosphonate form. Amongst the three H-phosphonates, examined dimenthyl H-phosphonate showed the best results for the actinide extraction. Density functional theory (DFT) calculations were applied to understand the electronic structure of the ligands and the metal complexes. The calculated large complexation energy of UO{sub 2}(NO{sub 3}){sub 2}.@2DMnHP is in agreement with the observed trend in experimental distribution ratio data.

  19. Actinide oxide photodiode and nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Milan; Usov, Igor

    2017-12-05

    Photodiodes and nuclear batteries may utilize actinide oxides, such a uranium oxide. An actinide oxide photodiode may include a first actinide oxide layer and a second actinide oxide layer deposited on the first actinide oxide layer. The first actinide oxide layer may be n-doped or p-doped. The second actinide oxide layer may be p-doped when the first actinide oxide layer is n-doped, and the second actinide oxide layer may be n-doped when the first actinide oxide layer is p-doped. The first actinide oxide layer and the second actinide oxide layer may form a p/n junction therebetween. Photodiodes including actinide oxides are better light absorbers, can be used in thinner films, and are more thermally stable than silicon, germanium, and gallium arsenide.

  20. Movement of metal cations through the soil to the plant root membrane. Final technical report, June 1, 1966--November 30, 1978

    International Nuclear Information System (INIS)

    Barber, S.A.

    1978-11-01

    This project concerns metal cation flux through the soil and into the plant. Some highlights resulting from this research are as follows. Effect of soil properties on relative adsorption of Ca, Sr, K, Rb, and Cs by soil was measured. A theoretically developed concept explained differences between Ca and Sr adsorption on inorganic and organic exchange sites. A convenient method was developed to characterize cation absorption kinetics of intact plant roots. Use of this method showed genotypic variation in effect of ion concentration on influx. Corn absorbed Ca and Sr and K and Rb indiscriminantly. A method, using Ca/Sr and K/Rb ratio of ion influx into the plant, was developed to determine the source of these ions absorbed from the soil. Uptake of these ions from soil by corn was in the ratio on exchange sites rather than that in solution. The method was also used to compare uptake of chelated with ionized cations. A simulation model was developed that described ion flux from the soil into the plant. Ten independently measured soil and plant parameters were used. A computer program was prepared to calculate uptake with time. The model was verified in both growth chamber and field experiments

  1. Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds.

    Science.gov (United States)

    Tran, Hai Nguyen; Viet, Pham Van; Chao, Huan-Ping

    2018-01-01

    A hydrophilic Y zeolite was primarily treated with sodium hydroxide to enhance its cation exchange capacity (Na-zeolite). The organo-zeolite (Na-H-zeolite) was prepared by a modification process of the external surface of Na-zeolite with a cationic surfactant (hexadecyltrimethylammonium; HDTMA). Three adsorbents (i.e., pristine zeolite, Na-zeolite, and Na-H-zeolite) were characterized with nitrogen adsorption/desorption isotherms, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, cation exchange capacities, and zeta potential. Results demonstrated that HDTMA can be adsorbed on the surface of Na-zeolite to form patchy bilayers. The adsorption capacity of several hazardous pollutants (i.e., Pb 2+ , Cu 2+ , Ni 2+ , Cr 2 O 7 2- , propylbenzene, ethylbenzene, toluene, benzene, and phenol) onto Na-H-zeolite was investigated in a single system and multiple-components. Adsorption isotherm was measured to further understand the effects of the modification process on the adsorption behaviors of Na-H-zeolite. Adsorption performances indicated that Na-H-zeolite can simultaneously adsorb the metal cations (on the surface not covered by HDTMA), oxyanions (on the surface covered by HDTMA). Na-H-zeolite also exhibited both hydrophilic and hydrophobic surfaces to uptake organic compounds with various water solubilities (from 55 to 75,000mg/L). It was experimentally concluded that Na-H-zeolite is a potential dual-electronic and amphiphilic adsorbent for efficiently removing a wide range of potentially toxic pollutants from aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effects of the spaces available for cations in strongly acidic cation-exchange resins on the exchange equilibria by quaternary ammonium ions and on the hydration states of metal ions.

    Science.gov (United States)

    Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio

    2011-10-01

    The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.

  3. The effect of specific solvent-solute interactions on complexation of alkali-metal cations by a lower-rim calix[4]arene amide derivative.

    Science.gov (United States)

    Horvat, Gordan; Stilinović, Vladimir; Kaitner, Branko; Frkanec, Leo; Tomišić, Vladislav

    2013-11-04

    Complexation of alkali-metal cations with calix[4]arene secondary-amide derivative, 5,11,17,23-tetra(tert-butyl)-25,26,27,28-tetra(N-hexylcarbamoylmethoxy)calix[4]arene (L), in benzonitrile (PhCN) and methanol (MeOH) was studied by means of microcalorimetry, UV and NMR spectroscopies, and in the solid state by X-ray crystallography. The inclusion of solvent molecules (including acetonitrile, MeCN) in the calixarene hydrophobic cavity was also investigated. The classical molecular dynamics (MD) simulations of the systems studied were carried out. By combining the results obtained using the mentioned experimental and computational techniques, an attempt was made to get an as detailed insight into the complexation reactions as possible. The thermodynamic parameters, that is, equilibrium constants, reaction Gibbs energies, enthalpies, and entropies, of the investigated processes were determined and discussed. The stability constants of the 1:1 (metal:ligand) complexes measured by different methods were in very good agreement. Solution Gibbs energies of the ligand and its complexes with Na(+) and K(+) in methanol and acetonitrile were determined. It was established that from the thermodynamic point of view, apart from cation solvation, the most important reason for the huge difference in the stability of these complexes in the two solvents lay in the fact that the transfer of complex species from MeOH to MeCN was quite favorable. That could be at least partly explained by a more exergonic inclusion of the solvent molecule in the complexed calixarene cone in MeCN as compared to MeOH, which was supported by MD simulations. Molecular and crystal structures of the lithium cation complex of L with the benzonitrile molecule bound in the hydrophobic calixarene cavity were determined by single-crystal X-ray diffraction. As far as we are aware, for the first time the alkali-metal cation was found to be coordinated by the solvent nitrile group in a calixarene adduct. According to

  4. Actinide recycling in reactors

    International Nuclear Information System (INIS)

    Kuesters, H.; Wiese, H.W.; Krieg, B.

    1995-01-01

    The objective is an assessment of the transmutation of long-lived actinides and fission products and the incineration of plutonium for reducing the risk potential of radioactive waste from reactors in comparison to direct waste disposal. The contribution gives an interim account on homogeneous and heterogeneous recycling of 'risk nuclides' in thermal and fast reactors. Important results: - A homogeneous 5 percent admixture of minor actinides (MA) from N4-PWRs to EFR fuel would allow a transmutation not only of the EFR MA, but in addition of the MA from 5 or 6 PWRs of equal power. However, the incineration is restricted by safety considerations. - LWR have only a very low MA incineration potential, due to their disadvantageous neutron capture/fission ratio. - In order to keep the Cm inventory at a low level, it is advantageous to concentrate the Am heterogeneously in particular fuel elements or rods. (orig./HP)

  5. Photochemistry of the actinides

    International Nuclear Information System (INIS)

    Toth, L.M.; Bell, J.T.; Friedman, H.A.

    1979-01-01

    It has been found that all three major actinides have a useful variety of photochemical reactions which could be used to achieve a separations process that requires fewer reagents. Several features merit enumerating: (1) Laser photochemistry is not now as uniquely important in fuel reprocessing as it is in isotopic enrichment. The photochemistry can be successfully accomplished with conventional light sources. (2) The easiest place to apply photo-reprocessing is on the three actinides U, Pu, and Np. The solutions are potentially cleaner and more amenable to photoreactions. (3) Organic-phase photoreactions are probably not worth much attention because of the troublesome solvent redox chemistry associated with the photochemical reaction. (4) Upstream process treatment on the raffinate (dissolver solution) may never be too attractive since the radiation intensity precludes the usage of many optical materials and the nature of the solution is such that light transmission into it might be totally impossible

  6. Applicability of a valence fluctuation model to the observed physical property response of actinide materials

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1978-01-01

    It is shown that the physical property behavior of the light actinide elements, U, Np, and Pu, and certain of their alloys, is like that of known mixed-valence, R.E. metallic compounds. It is inferred that interconfiguration fluctuation (ICF) theory should also be applicable to actinide materials

  7. Actinides: from heavy fermions to plutonium metallurgy

    International Nuclear Information System (INIS)

    Smith, J.L.; Fisk, Z.; Hecker, S.S.

    1984-01-01

    The actinide elements mark the emergence of 5f electrons. The f electrons possess sufficiently unusual characteristics that their participation in atomic binding often result in dramatic changes in properties. This provides an excellent opportunity to study the question of localization of electrons; a question that is paramount in predicting the physical and chemical properties of d and f electron transition metals. The transition region between localized (magnetic) and itinerant (often superconducting) behavior provides for many interesting phenomena such as structural instabilities (polymorphism), spin fluctuations, mixed valences, charge density waves, exceptional catalytic activity and hydrogen storage. This region offers most interesting behavior such as that exhibited by the actinide compounds UBe 13 and UPt 3 . Both compounds are heavy-fermion superconductors in which both magnetic and superconducting behavior exist in the same electrons. The consequences of f-electron bonding (which appears greatest at Plutonium) show dramatic effects on phase stability, alloying behavior, phase transformations and mechanical behavior

  8. Analytical chemistry of actinides

    International Nuclear Information System (INIS)

    Chollet, H.; Marty, P.

    2001-01-01

    Different characterization methods specifically applied to the actinides are presented in this review such as ICP/OES (inductively coupled plasma-optical emission spectrometry), ICP/MS (inductively coupled plasma spectroscopy-mass spectrometry), TIMS (thermal ionization-mass spectrometry) and GD/OES (flow discharge optical emission). Molecular absorption spectrometry and capillary electrophoresis are also available to complete the excellent range of analytical tools at our disposal. (authors)

  9. Conception and synthesis of new molecular platforms based on cryptophanes. Application for the encapsulation of xenon and metallic cations in aqueous solution

    International Nuclear Information System (INIS)

    Chapellet, Laure-Lise

    2015-01-01

    Cryptophanes are molecular receptors known for their complexation properties of various substrates. Over the last fifteen years, cryptophanes were the subject of numerous studies for they can be used to obtain biosensors for xenon MRI. This field has experienced significant growth and advances to the point were in vivo applications are now envisioned, provided that large amounts of biosensors can be synthesized. More recently, polyphenolic cryptophanes have been studied for their ability to encapsulate monovalent metallic cations like Cs"+ and Tl"+ in aqueous solution. This could lead to applications for depollution of contaminated water sources but would require, once again, the synthesis of large amounts of cryptophanes.The work carried out during this thesis focus on the conception and the synthesis of new molecular platforms that could either be used to obtain new hyper-polarized xenon biosensors or to encapsulate monovalent metallic cations as Cs"+ and Tl"+. Synthetic routes have been developed to produce good amounts of a variety of new hydrosoluble molecular platforms designed for each application. The encapsulation properties of these new host molecules were studied through NMR of the encapsulated nucleus, circular dichroism or isothermal calorimetry. In each case, the new platforms meet the expected requirements thus opening the door for the envisioned applications. (author)

  10. Metallomics for Alzheimer's disease treatment: Use of new generation of chelators combining metal-cation binding and transport properties.

    Science.gov (United States)

    D'Acunto, Cosimo Walter; Kaplánek, Robert; Gbelcová, Helena; Kejík, Zdeněk; Bříza, Tomáš; Vasina, Liudmila; Havlík, Martin; Ruml, Tomáš; Král, Vladimír

    2018-04-25

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting tens of million people. Currently marketed drugs have limited therapeutic efficacy and only slowing down the neurodegenerative process. Interestingly, it has been suggested that biometal cations in the amyloid beta (Aβ) aggregate deposits contribute to neurotoxicity and degenerative changes in AD. Thus, chelation therapy could represent novel mode of therapeutic intervention. Here we describe the features of chelators with therapeutically relevant mechanism of action. We have found that the tested compounds effectively reduce the toxicity of exogenous Aβ and suppress its endogenous production as well as decrease oxidative stress. Cholyl hydrazones were found to be the most active compounds. In summary, our data show that cation complexation, together with improving transport efficacy may represent basis for eventual treatment strategy in AD. Copyright © 2018. Published by Elsevier Masson SAS.

  11. Actinides: why are they important biologically

    International Nuclear Information System (INIS)

    Durbin, P.W.

    1978-01-01

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  12. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides.

    Science.gov (United States)

    Allred, Benjamin E; Rupert, Peter B; Gauny, Stacey S; An, Dahlia D; Ralston, Corie Y; Sturzbecher-Hoehne, Manuel; Strong, Roland K; Abergel, Rebecca J

    2015-08-18

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.

  13. Actinide transmutation in nuclear reactors

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1995-01-01

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP)

  14. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J H

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  15. Simultaneous anionic and cationic redox

    Science.gov (United States)

    Jung, Sung-Kyun; Kang, Kisuk

    2017-12-01

    It is challenging to unlock anionic redox activity, accompanied by full utilization of available cationic redox process, to boost capacity of battery cathodes. Now, material design by tuning the metal-oxygen interaction is shown to be a promising solution.

  16. Effect of temperature, solvent and nature of metal cations on the potentiometric titration S of iron oxide

    International Nuclear Information System (INIS)

    Tasleem, S.; Ishrat, B.

    2008-01-01

    A comprehensive study of the potentiometric titrations of iron oxide in the presence of CU/sub 2/ and Mg/sup 2/ were under taken under different experimental conditions of temperature and concentration of metal ions in aqueous and aqueous/organic mixed solvent. The adsorption of both the metal ions were observed to increase with the increase in pH and temperature of the system. The adsorbent iron oxide preferentially adsorbs transition metal as compared to alkaline earth metal ion. (author)

  17. Synthesis and characterisation of nitrogen-containing poly heterocyclic molecules for the complexation of polluting metal cations; Synthese et caracterisation de molecules polyheterocycliques azotees pour la complexation de cations metalliques polluants

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, N

    2007-12-15

    The recovery of actinides(III) from the mixture actinides(III)/lanthanides(III) is a great deal of the nuclear waste management. Experiences have shown that derivatives of 2,6- bis(1,2,4-triazine-3-yl)pyridine (BTP) are able to extract selectively actinides(III) from lanthanides(III). But the properties of these molecules need to be reinforced to exhibit best extraction performances and to resist to the harsh conditions of the extracting processes. Originally functionalized ligands were synthesized and tested in a radioactive medium. In a second part, this work focuses on the control and the detection of actinides(III). This could be done thanks to the use of a chemical sensor such as quartz crystal microbalance. The study of this apparatus required the preliminary synthesis of original complexing BTP-derived structures. The last part of this work deals with the study of new synthetic ways to afford the BTP moiety. The palladium-catalyzed cross-coupling reaction of 3-methylthio-1,2,4-triazine with various 2-stannylated pyridines have been explored. Our investigations have also allowed to develop a method for synthesizing unsymmetrical 1,2,4,5-tetrazine from the cross-coupling reaction between 3-methylthio-6-(morpholine-N-yl)-1,2,4,5-tetrazine and organoboron / organo-stannane derivatives. (author)

  18. Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant MGDA in biological fluids and natural waters.

    Science.gov (United States)

    Bretti, Clemente; Cigala, Rosalia Maria; De Stefano, Concetta; Lando, Gabriele; Sammartano, Silvio

    2017-09-01

    Thermodynamic information about the metal-ligand interaction between Fe 3+ , Zn 2+ , Cu 2+ and Sn 2+ , and a biodegradable ligand as MGDA is reported. The speciation scheme was obtained by means of potentiometric measurements and isothermal titration calorimetry (to determine enthalpy changes) in NaCl medium. The formation of the ML and MLOH species was evidenced for all the metal cations, and for Fe 3+ also the ML 2 and ML(OH) 2 were found. The relative stability, for the ML species, follows the order: Sn 2+  > Fe 3+  > Cu 2+  > Zn 2+ . Stability constants and enthalpy changes were obtained at different ionic strengths, and data were modeled using the Debye-Hückel and SIT approaches to obtain data in a standard state. At infinite dilution, the enthalpy changes are largely negative for Cu 2+ (-34.1 kJ mol -1 ) and Sn 2+ (-16.6 kJ mol -1 ), slightly negative for Fe 3+ (-3.3 kJ mol -1 ) and positive for Zn 2+ (8.7 kJ mol -1 ). In all cases, the entropic contribution to the stability is predominant. The sequestering ability of MGDA was evaluated determining the pL 0.5 values in different conditions. Comparing the data reported in this work and literature ones, some empirical relationships were obtained with predictive purpose. For example, using 11 data in the test set we have: log K (M/MGDA) ± 0.1 = 1.13 + 0.84·log K (M/NTA) Case studies were built up in the conditions of seawater, fresh water and urine to study the possible use of MGDA towards the metal cations here studied. Some considerations were also done in the light of the ocean acidification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis of selective extractor for minor actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seung [Konyang University, Nonsan (Korea); Cho, Moon Hwan [Kangwon National University, Chunchon (Korea)

    1998-04-01

    To selectively co-separate the lanthanide and actinide elements (MA) such as Am or Cm ion from radioactive waste, synthesis of diamide derivatives has been accomplished. In addition, picoline amide derivatives were also synthesized for selectively separate the minor actinide elements from lanthanide elements. The content of research has don are as follows: (1) synthesis of diamide as co-extractant (2) introduction of n-tetradecyl to increase the lipophilicity (3) Picolyl chloride, intermediate of the final product, was synthesized by improved method rather than reported method. (4) The length of alkyl side chain was adjusted to increase the lipophilicity of free ligand and its derivatives able to selectively separate the actinide metal from lanthanide metal ions was successfully synthesized and determined their purity by analytical instruments. (author). 12 refs., 28 figs.

  20. Methods for separation of actinides

    International Nuclear Information System (INIS)

    Keller, C.

    1976-01-01

    Methods of actinoids separation are reviewed, including precipitation, sublimation, paper chromatography and electrophoresis. Compounds typically used for co-precipitation of actinoid ions are listed. Ion-exchange methods considered include cation and ion exchange. Factors are described, which affect the efficiency of separation of transuranium elements in the same degrees of oxidation: complex-forming agents, temperature, ion-exchange resin, rate of elution, the size of the column, the influence of salts. Extraction of actinoid ions upon formation of solvate complexes, inner complex compounds and metal salts is discussed. Combining the advantages of ion exchange and extraction, the method of extraction chromatography can be widely used for separation of actinoids

  1. Synthesis, chemistry and catalytic activity of complexes of lanthanide and actinide metals in unusual oxidation states and coordination environments. Progress report, February 1, 1979-January 31, 1980

    International Nuclear Information System (INIS)

    Evans, W.J.

    1979-10-01

    The new synthetic and catalytic reactions involving lanthanide metals which were discovered in the first years of this project have been examined in more detail in the past year. Synthetic and catalytic model systems have been theoretically developed and experimental testing of these hypotheses is in progress. New techniques are being applied to the lanthanide metals to further elucidate the chemistry of these complexes

  2. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  3. Structural organization and spectroscopy of peptide-actinide(IV) complexes

    International Nuclear Information System (INIS)

    Dahou, S.

    2010-01-01

    The contamination of living organisms by actinide elements is at the origin of both radiological and chemical toxicity that may lead to severe dysfunction. Most of the data available on the actinide interaction with biological systems are macroscopic physiological measurements and are lacking a molecular description of the systems. Because of the intricacy of these systems, classical biochemical methods are difficult to implement. Our strategy consisted in designing simplified biomimetic peptides, and describing the corresponding intramolecular interactions with actinides. A carboxylic pentapeptide of the form DDPDD has been at the starting point of this work in order to further assess the influence of the peptide sequence on the topology of the complexes.To do so, various linear (Asp/Ala permutations, peptoids) and cyclic analogues have been synthesized. Furthermore, in order to include the hydroxamic function (with a high affinity for Fe(III)) in the peptide, both desferrioxamine and acetohydroxamic acid have been investigated. However because of difficulties in synthesis, we have not been able to test these peptides. Three actinide cations have been considered at oxidation state +IV (Th, Np, Pu) and compared to Fe(III), often considered as a biological surrogate of Pu(IV). The spatial arrangement of the peptide around the cation has been probed by spectrophotometry and X-ray Absorption Spectroscopy. The spectroscopic data and EXAFS data adjustment lead us to rationalize the topology of the complexes as a function of the peptide sequence: mix hydroxy polynuclear species for linear and cyclic peptides, mononuclear for the desferrioxamine complexes. Furthermore, significant differences have appeared between Fe(III) and actinide(IV), related to differences of reactivity in aqueous medium. (author)

  4. The structure of actinide ions exchanged into native and modified zeolites and clays

    International Nuclear Information System (INIS)

    Wasserman, S. R.; Soderholm, L.; Giaquinta, D. M.

    2000-01-01

    X-ray absorption spectroscopy (XAS) has been used to investigate the structure and valence of thorium (Th 4+ ) and uranyl (UO 2 2+ ) cations exchanged into two classes of microporous aluminosilicate minerals: zeolites and smectite clays. XAS is also employed to examine the fate of the exchanged cations after modification of the mineral surface using self-assembled organic films and/or exposure to hydrothermal conditions. These treatments serve as models for the forces that ultimately determine the chemical fate of the actinide cations in the environment. The speciation of the cations depends on the pore size of the aluminosilicate, which is fixed for the zeolites and variable for the smectites

  5. Comparison of immobilized poly-L-aspartic acid and poly-L-glutamic acid for chelation of metal cations

    International Nuclear Information System (INIS)

    Malachowski, Lisa; Holcombe, James A.

    2004-01-01

    Poly-L-aspartic acid (PLAsp) and poly-L-glutamic acid (PLGlu) were individually immobilized onto controlled pore glass (CPG) and compared according to their metal-binding capabilities in a solution of pH 7.0. The metal-binding capacities were calculated through the analysis of breakthrough curves generated by monitoring the metal concentrations on a flow injection-flame atomic absorption system. Capacities for individual metals were comparable and in the order of Cu 2+ >> Pb 2+ > Ni 2+ ∼ Cd 2+ > Co 2+ > Mn 2+ >> Na + . Elemental combustion analysis yielded polymer coverage on the CPG of approximately 4 x 10 12 to 5 x 10 12 chains/cm 2 , when average chain lengths were used in the calculations. Formation constants and site capacities of both polymers for Cd 2+ were determined through equilibrium and breakthrough studies. The maximum log K values for the strong sites were determined to be ∼13 for both PLAsp and for PLGlu. Additionally, the metal selectivity of PLAsp and PLGlu was evaluated when breakthrough curves were run with several metals present in solution at one time. Both polymers showed selectivities in the order of their single metal-binding capacities, i.e., Cu 2+ > Pb 2+ > Ni 2+ ∼ Cd 2+ . Both polymers exhibited similar binding trends and binding strengths for all of the metals studied. This likely reflects the absence of a predetermined tertiary structure of the polymers on the surface and the relatively high residue-per-metal ratio (∼20:1), which places less stringent requirements on the steric hindrance between the side chains and the resultant 'wrapping' of the peptide around the metal

  6. Thermal neutron actinide data

    International Nuclear Information System (INIS)

    Tellier, H.

    1992-01-01

    During the 70's, the physicists involved in the cross section measurements for the low energy neutrons were almost exclusively interested in the resonance energy range. The thermal range was considered as sufficiently known. In the beginning of the 80's, reactor physicists had again to deal with the delicate problem of the power reactor temperature coefficient, essentially for the light water reactors. The measured value of the reactivity temperature coefficient does not agree with the computed one. The later is too negative. For obvious safety reasons, it is an important problem which must be solved. Several causes were suggested to explain this discrepancy. Among all these causes, the spectral shift in the thermal energy range seems to be very important. Sensibility calculations shown that this spectral shift is very sensitive to the shape of the neutron cross sections of the actinides for energies below one electron-volt. Consequently, reactor physicists require new and accurate measurements in the thermal and subthermal energy ranges. A part of these new measurement results were recently released and reviewed. The purpose of this study is to complete the preceding review with the new informations which are now available. In reactor physics the major actinides are the fertile nuclei, uranium 238, thorium 232 and plutonium 240 and the fissile nuclei, uranium 233, uranium 235 and plutonium 239. For the fertile nuclei the main datum is the capture cross section, for the fissile nuclei the data of interest are nu-bar, the fission and capture cross sections or a combination of these data such as η or α. In the following sections, we will review the neutron data of the major actinides for the energy below 1 eV

  7. The actinides-a beautiful ending of the Periodic Table

    International Nuclear Information System (INIS)

    Johansson, Boerje; Li, Sa

    2007-01-01

    The 5f elements, actinides, show many properties which have direct correspondence to the 4f transition metals, the lanthanides. The remarkable similarity between the solid state properties of compressed Ce and the actinide metals is pointed out in the present paper. The α-γ transition in Ce is considered as a Mott transition, namely, from delocalized to localized 4f states. An analogous behavior is also found for the actinide series, where the sudden volume increase from Pu to Am can be viewed upon as a Mott transition within the 5f shell as a function of the atomic number Z. On the itinerant side of the Mott transition, the earlier actinides (Pa-Pu) show low symmetry structures at ambient conditions; while across the border, the heavier elements (Am-Cf) present the dhcp structure, an atomic arrangement typical for the trivalent lanthanide elements with localized 4f magnetic moments. The reason for an isostructural Mott transition of the f electron in Ce, as opposed to the much more complicated cases in the actinides, is identified. The strange appearance of the δ-phase (fcc) in the phase diagram of Pu is another consequence of the border line behavior of the 5f electrons. The path leading from δ-Pu to α-Pu is identified

  8. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  9. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    International Nuclear Information System (INIS)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P.; Cassayre, L.

    2008-01-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl 3 . A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl 3 is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl 5 and UCl 6 . It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  10. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Cassayre, L. [Laboratoire de Genie Chimique (LGC), Universite Paul Sabatier, UMR CNRS 5503, 118 route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2008-07-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl{sub 3}. A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl{sub 3} is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl{sub 5} and UCl{sub 6}. It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  11. Heavy metals removal in wastewater by activated carbon adsorption and clays of cationic interchange; Eliminacion de metales pesados en disolucion mediante adsorcion en carbon activo y arcillas de intercambio cationico

    Energy Technology Data Exchange (ETDEWEB)

    Montes, M. A.; Medialdea, J. M.; Garcia Mediavilla, B.; Moron, M. J.; Arnaiz, M. C.; Garcia Martinez de Simon, I.; Lopez, C. M.; Escot, E.; Lebrato, J. [Universidad de Sevilla. Sevilla (Spain)

    1999-11-01

    Among the different treatment systems assessed for the purification of the wastewaters poured from Aznalcollar quarry the last April 25, 1998, physical and chemical adsorption proved highly efficient for the removal of refractory heavy metals. In laboratory experiments, 99% of dissolved Mn and Zn was removed when wastewater passed through a packedbed column filled with a cationic exchange clay. In the same way, activated-carbon adsorption removed more than 80% of dissolved Zn and 11-16% of Mn. Results confirm the feasibility of these processes and contribute knowledge on their operational characteristics so that in any other similar situation we can consider all treatment possibilities. 8 refs.

  12. Handbook on the physics and chemistry of rare earths: Volume 19: Lanthanides/Actinides: Physics, 2

    International Nuclear Information System (INIS)

    Gschneidner, Karl A.; Eyring, LeRoy; Choppin, G.R.; Lander, G.H.

    1994-01-01

    This handbook comprises five chapters on the lanthanide and actinide materials. In the first chapter the inelastic neutron scattering behaviors of the lanthanides and actinides are compared. In the next chapter the focus is on neutron scattering by heavy fermion single crystal materials, including metallic materials with a paramagnetic ground state, superconductors, metallic and semiconducting antiferromagnets and nearly insulating paramagnets. In chapter three a comprehensive review of intermediate valence and heavy fermions in a wide variety of lanthanide and actinide compounds is given, ranging from metallic to insulating materials. In chapter four two issues on the high pressure behaviours of anomalous cerium, ytterbium and uranium compounds are dealt with. In the final chapter an extensive review is given the thermodynamic properties of lanthanide and actinide metallic systems

  13. Effects of inorganic acids and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process.

    Science.gov (United States)

    Zhang, Jian; Xia, Yuguo; Zhang, Li; Chen, Dairong; Jiao, Xiuling

    2015-11-07

    In-depth understanding of the sol-gel process plays an essential role in guiding the preparation of new materials. Herein, the effects of different inorganic acids (HCl, HNO3 and H2SO4) and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process were studied based on experiments and density functional theory (DFT) calculations. In these experiments, the sol originating from the γ-AlOOH suspension was formed only with the addition of HCl and HNO3, but not with H2SO4. Furthermore, the DFT calculations showed that the strong adsorption of HSO4(-) on the surface of the γ-AlOOH particles, and the hydrogen in HSO4(-) pointing towards the solvent lead to an unstable configuration of electric double layer (EDL). In the experiment, the gelation time sequence of γ-AlOOH sol obtained by adding metal ions changed when the ionic strength was equal to or greater than 0.198 mol kg(-1). The DFT calculations demonstrated that the adsorption energy of hydrated metal ions on the γ-AlOOH surface can actually make a difference in the sol-gel process.

  14. Removal of strontium and transuranics from Hanford tank waste via addition of metal cations and chemical oxidant: FY 1995 test results

    International Nuclear Information System (INIS)

    Orth, R.J.; Zacher, A.H.; Schmidt, A.J.; Elmore, M.R.; Elliott, K.R.; Neuenschwander, G.G.; Gano, S.R.

    1995-09-01

    Chelating organics and some of their degradation products in the Hanford tank waste, such as EDTA, HEDTA, and NTA act to solubilize strontium and transuranics (TRU) in the tank waste supernatant. Displacement of strontium and TRU will facilitate the removal of these radionuclides via precipitation/filtration, ion exchange, or solvent extraction so that low-level waste feed specifications can be met. Pacific Northwest Laboratory has investigated two methods for releasing organic-complexed strontium and TRU components to allow for effective pretreatment of tank waste supernatant: metal cation addition (to promote displacement and flocculation) and chemical oxidant (pennanganate) addition (to promote chelator destruction/defunctionalization and possibly flocculation). These methods, which can be conducted at near-ambient. temperatures and pressures, could be deployed as intank processes

  15. Synthesis of aluminum oxide by the polymer precursor method (Pechini) in 4: 1 ratio of citric acid: metal cation: calcination temperature effect

    International Nuclear Information System (INIS)

    Silva, M.C.; Lira, H.L.; Ribeiro, P.C.; Freitas, N.L.

    2014-01-01

    The technology field is nanopowders prominent in science since these materials fall in various sectors regarding their applications. This work aims at the synthesis of aluminum oxide by polymeric precursors in 4:1 ratio of citric acid:metal cation and evaluate the influence of calcination temperature on their structural and morphological characteristics. The samples after reaction were characterized by XRD and thermal analysis. After calcination 500-1200°C the samples were characterized by XRD, SEM and particle size distribution. The results showed that the variation of the calcination temperature is sufficient to achieve a same material with different structural and morphological characteristics. The most stable phase aluminum oxide arose only after calcination at 1100°C, below 900°C, the amorphous material appeared. As regards the morphology, the change was not as significant as compared to the structure. (author)

  16. Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, A. U.; Mishra, Brajendra [Colorado School of Mines, Denver (United States); Mittal, Vikas [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2016-01-15

    The aim of this study was to evaluate the use of iron-nickel oxide (Fe{sub 2}O{sub 3}.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.

  17. Recovery actinide values

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Delphin, W.H.; Mason, G.W.

    1979-01-01

    A process is described for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of di-hexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate solution of tetramethylammonium hydrogen oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid. (author)

  18. Actinide AMS at DREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Khojasteh, Nasrin B.; Merchel, Silke; Rugel, Georg; Scharf, Andreas; Ziegenruecker, Rene [HZDR, Dresden (Germany); Pavetich, Stefan [HZDR, Dresden (Germany); ANU, Canberra (Australia)

    2016-07-01

    Radionuclides such as {sup 236}U and {sup 239}Pu were introduced into the environment by atmospheric nuclear weapon tests, reactor accidents (Chernobyl, Fukushima), releases from nuclear reprocessing facilities (Sellafield, La Hague), radioactive waste disposal, and accidents with nuclear devices (Palomares, Thule) [1]. Accelerator Mass Spectrometry (AMS) is the most sensitive method to measure these actinides. The DREsden AMS (DREAMS) facility is located at a 6 MV accelerator, which is shared with ion beam analytics and implantation users, preventing major modifications of the accelerator and magnetic analyzers. DREAMS was originally designed for {sup 10}Be, {sup 26}Al, {sup 36}Cl, {sup 41}Ca, and {sup 129}I. To modify the system for actinide AMS, a Time-of-Flight (TOF) beamline at the high-energy side has been installed and performance tests are on-going. Ion beam and detector simulations are carried out to design a moveable ionization chamber. Especially, the detector window and anode dimensions have to be optimized. This ionization chamber will act as an energy detector of the system and its installation is planned as closely as possible to the stop detector of the TOF beamline for highest detection efficiency.

  19. Effect of cation nature of Cl2- yields in pulse radiolysis of alkali metal chloride aqueous solutions

    International Nuclear Information System (INIS)

    Kabakchi, S.A.; Zansokhova, A.A.; Pikaev, A.K.

    1975-01-01

    A study is made of the amount of Cl 2 - formed during a pulsating radiolysis of potassium, rubidium and cesium chlorides in aqueous solutions saturated with air. An equation is presented relating the yield of Cl 2 - and the concentration of the starting materials. Various mechanisms describing the radiolysis of neutral aqueous solutions of the chlorides are proposed. The observed effect of the cation on the efficiency of Cl 2 - formations favours the mechanism according to which Cl 2 - forms through the reaction of Cl - ion with a ''hole''. Due to charge migration in the conductivity zone the electron transfer reaction either goes steadily by jumps. As a result of the interaction between the ''hole'' and water [H 3 O + ...OH] a complex is formed from a hydrogen ion and OH radical, which are united trhough the hydrogen bond. Disturbance of the hydrogen bond structure should increase the probability of disintegration of the complex

  20. Design, synthesis, and evaluation of polyhydroxamate chelators for selective complexation of actinides

    International Nuclear Information System (INIS)

    Gopalan, A.; Jacobs, H.; Koshti, N.; Stark, P.; Huber, V.; Dasaradhi, L.; Caswell, W.; Smith, P.; Jarvinen, G.

    1995-01-01

    Specific chelating polymers targeted for actinides have much relevance to problems involving remediation of nuclear waste. Goal is to develop polymer supported, ion specific extraction systems for removing actinides and other hazardous metal ions from wastewaters. This is part of an effort to develop chelators for removing actinide ions such as Pu from soils and waste streams. Selected ligands are being attached to polymeric backbones to create novel chelating polymers. These polymers and other water soluble and insoluble polymers have been synthesized and are being evaluated for ability to selectively remove target metal ions from process waste streams

  1. Synthesis and characterisation of nitrogen poly-heterocyclic molecules using as selective complexing agents of metallic cations; Synthese et caracterisation de molecules polyheterocycliques azotees utilisables en tant que complexants selectifs de cations metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Alphonse, F.A

    2003-12-15

    Separation of actinides (III) from lanthanides (III) is a crucial problem in the reprocessing of used nuclear fuels. Experimental results shown that soft donor extractants such as nitrogen polydentate heterocycles containing a NCCNCCN coordination site are potentials ligands for selective extraction of actinides (III). In those cases, two types of liquid-liquid extractions are employed: synergistic combination with lipophilic acid extractants and direct extraction. On the basis of the Hard and Soft Acids and Bases theory and basicity evaluation, new extractants were defined. We have first studied the synthesis of potential 1,3,5-triazine ligands designed for extraction in synergy with {alpha}-bromodecanoic acid. Secondly, we have examined the synthesis of bis-triazinyl-pyridine ligands for direct extraction studies. Extraction tests were carried out and perspectives of synthesis were deducted from those extraction results. (author)

  2. Lithium actinide recycle process demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.K.; Pierce, R.D.; McPheeters, C.C. [Argonne National Laboratory, IL (United States)

    1995-10-01

    Several pyrochemical processes have been developed in the Chemical Technology Division of Argonne Laboratory for recovery of actinide elements from LWR spent fuel. The lithium process was selected as the reference process from among the options. In this process the LWR oxide spent fuel is reduced by lithium at 650{degrees}C in the presence of molten LiCl. The Li{sub 2}O formed during the reduction process is soluble in the salt. The spent salt and lithium are recycled after the Li{sub 2}O is electrochemically reduced. The oxygen is liberated as CO{sub 2} at a carbon anode or oxygen at an inert anode. The reduced metal components of the LWR spent fuel are separated from the LiCL salt phase and introduced into an electrorefiner. The electrorefining step separates the uranium and transuranium (TRU) elements into two product streams. The uranium product, which comprises about 96% of the LWR spent fuel mass, may be enriched for recycle into the LWR fuel cycle, stored for future use in breeder reactors, or converted to a suitable form for disposal as waste. The TRU product can be recycled as fast reactor fuel or can be alloyed with constituents of the LWR cladding material to produce a stable waste form.

  3. Review of the sorption of actinides on natural minerals

    International Nuclear Information System (INIS)

    Beall, G.W.

    1981-01-01

    Over the past few years, a large body of data concerning sorption of actinides on geologic media has been built in connection with high-level-waste disposal. The primary aim of the work has been to allow predictions of the migration behavior of these radionuclides in the case of a breach of the repository that allowed groundwater flow through the repository. As a result of this work, some new backfill materials specifically tailored for the actinides have also been designed. Several major mechanisms of sorption that appear to dominate the sorption of actinides have emerged from these studies. These mechanisms can be divided into solution reactions dominated by hydrolysis, chemisorption reactions, and oxidation-reduction reactions. Each of these mechanisms will be discussed in detail, with experimental examples. Surprisingly, one mechanism, cation exchange, does not play an important role; why it fails to operate in any significant way in the environmental pH region will be discussed. The implications of the sorption mechanisms for waste forms and backfill materials will be discussed in detail. These discussions will center primarily around the valence state of the actinide in various waste forms and the effect of various anions on leachability from waste forms and backfill materials

  4. Complexes of actinides with naturally occuring organic substances - Literature survey

    International Nuclear Information System (INIS)

    Olofsson, U.; Allard, B.

    1983-02-01

    Properties of naturally occurring humic and fulvic acids and their formation of actinide complexes are reviewed. Actinides in all the oxdation states III, IV, V and VI would form complexes with many humic and fulvic acids, comparable in strength to the hydroxide and carbonate complexes. Preliminary experiments have shown, that the presence of predominantly humic acid complexes would significantly reduce the sorption of americium on geologic media. This does not, however, necessarily lead to a potentially enhanced mobility under environmental conditions, since humic and fulvic acids carrying trace metals also would be strongly bound to e.g. clayish material. (author)

  5. Experimental studies of narrow band effects in the actinides

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, M.B.

    1976-01-01

    In many actinide metallic systems the f-electrons exhibit band behavior. This is a consequence of direct f-f wave function overlap or hybridization of f-electrons with s-, p-, and d-electrons. The f-bands can be responsible for large electronic densities of states at the Fermi level which may lead to band magnetism of various types. Although the concept of valence instabilities must be approached cautiously especially in the light actinides, it would not be surprising to observe them in the future, especially in Am compounds.

  6. Experimental studies of narrow band effects in the actinides

    International Nuclear Information System (INIS)

    Brodsky, M.B.

    1976-01-01

    In many actinide metallic systems the f-electrons exhibit band behavior. This is a consequence of direct f-f wave function overlap or hybridization of f-electrons with s-, p-, and d-electrons. The f-bands can be responsible for large electronic densities of states at the Fermi level which may lead to band magnetism of various types. Although the concept of valence instabilities must be approached cautiously especially in the light actinides, it would not be surprising to observe them in the future, especially in Am compounds

  7. Mechanism of protodesorption—exchange of heavy metal cations for protons in a heterophase system of H{sub 2}O–H{sub 2}SO{sub 4}–MSO{sub 4}—cellulose sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, V.A.; Nikiforova, T.E., E-mail: tatianaenik@mail.ru; Loginova, V.A.; Koifman, O.I.

    2015-12-15

    Highlights: • Protodesorption takes place with participation of anions. • The interphase indicator MSO{sub 4} is used in ion exchange investigation. • In ion exchange process salt and acid participate in equivalent proportions. • In a protodesorption process proton acts in degree of ½. • M{sup 2+}/2Na{sup +} and M{sup 2+}/2H{sup +} exchanges take place in ion and molecular forms. - Abstract: The influence of pH on the distribution of metal cations [Cd(II), Cu(II), Fe(II), Ni(II), Zn(II)] in a four-component heterophase system (H{sub 2}O–H{sub 2}SO{sub 4}–MSO{sub 4}–cellulose sorbent) was studied. Protodesorption of metal cations was studied with indicator and constant quantities of [MSO{sub 4}] salts and constant solvent–sorbent ratio. Linear dependence lgK{sub DM2+} = f(pH) with tgα = 1/2 of the K{sub DM2+} metal ions distribution coefficients from the acidity of the aqueous phase is observed in logarithmic coordinates. Depression of the exponent corresponding to proton involvement in protodesorption from 2 (theory) to 0.5 (experiment) indicates that anions of the aqueous phase are involved in the process of exchange of metal cation for proton on the anionic centers of the sorbent, which corresponds to participation of the salt and acid components of the system in molecular non-dissociated form in an equivalent proportion H{sub 2}SO{sub 4}/MSO{sub 4} = 1/1. Different behavior of the salt and acid components in ion exchange of cations for cations and cations for protons is due to the differences in the constraint coefficients of their molecular and ionic forms which must be taken into consideration in equations describing thermodynamics of the interphase exchange.

  8. Concentration of actinides in the food chain

    International Nuclear Information System (INIS)

    Bulman, R.A.

    1976-06-01

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  9. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    Science.gov (United States)

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.

  10. Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions

    Science.gov (United States)

    David, Calin; Mongin, Sandrine; Rey-Castro, Carlos; Galceran, Josep; Companys, Encarnació; Garcés, José Luis; Salvador, José; Puy, Jaume; Cecilia, Joan; Lodeiro, Pablo; Mas, Francesc

    2010-09-01

    Information on the Pb and Cd binding to a purified Aldrich humic acid (HA) is obtained from the influence of different fixed total metal concentrations on the acid-base titrations of this ligand. NICA (Non-Ideal Competitive Adsorption) isotherm has been used for a global quantitative description of the binding, which has then been interpreted by plotting the Conditional Affinity Spectra of the H + binding at fixed total metal concentrations (CAScTM). This new physicochemical tool, here introduced, allows the interpretation of binding results in terms of distributions of proton binding energies. A large increase in the acidity of the phenolic sites as the total metal concentration increases, especially in presence of Pb, is revealed from the shift of the CAScTM towards lower affinities. The variance of the CAScTM distribution, which can be used as a direct measure of the heterogeneity, also shows a significant dependence on the total metal concentration. A discussion of the factors that influence the heterogeneity of the HA under the conditions of each experiment is provided, so that the smoothed pattern exhibited by the titration curves can be justified.

  11. Creation, synthesis and characterisation of nitrogenous poly-heterocyclic new molecules for specific complexation of metallic cations; Conception, synthese et caracterisation de molecules polyheterocycliques azotees pour la complexation specifique de cations metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, C.

    2010-12-10

    In France, the nuclear waste issued from the industrial reprocessing of spent nuclear fuels (by the PUREX process) are currently vitrified at the La Hague plant, waiting for a final disposal in a deep geological repository. The law voted in June 2006 on the management of highly active nuclear waste plans to look for solutions enabling the separation and transmutation of long-lived radionuclides so as to reduce the quantity and noxiousness of the final nuclear waste. To address this issue, the CEA investigates and elaborates advanced separation processes based on specially designed complexing or extracting molecules to selectively extract minor actinides from PUREX raffinates containing fission products like lanthanides, which are neutron scavengers. BTP or bis-triazinyl-pyridines have been extensively studied at the CEA (and in Europe) for actinides(III)/lanthanides(III) separation. They complex actinides(III) selectively. However, they are sensitive to degradation by hydrolysis and radiolysis. Besides, their separation mechanisms are not well understood, especially the influence of their substituting groups on their complexing and extracting properties. The first part of work reports the syntheses of various BTP and BTBP molecules, differently substituted, as well as a new family of poly-aromatic nitrogen-contained ligands: BPBT, presenting a pyridine/triazine sequence that has never been reported in the literature. The second part is devoted to the physico-chemistry studies of the synthesized molecules, such as the determination of their protonation and complexation constants to describe the influence of different substituting groups. Finally, the last part outlines solvent extraction studies by using these ligands either like extractants or like complexants. (author) [French] Resume: La loi du 6 juin 2006 sur la gestion des dechets radioactifs de haute activite et a vie longue prevoit la recherche de solutions permettant la separation et la transmutation des

  12. Lanthanide/Actinide Opacities

    Science.gov (United States)

    Hungerford, Aimee; Fontes, Christopher J.

    2018-06-01

    Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.

  13. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  14. Neutronics design study on a minor actinide burner for transmuting spent fuel

    International Nuclear Information System (INIS)

    Choi, Hang Bok

    1998-08-01

    A liquid metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors. The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the doppler coefficient, and the sodium void worth. Sensitivity studies were performed for homogeneous and decoupled core designs, and a minor actinide burner design was determined to maximize actinide consumption and satisfy safety constraints. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200 MWth core is able to transmute the annual minor actinide inventory of about 16 LWRs and still exhibit reasonable safety characteristics. (author). 34 refs., 22 tabs., 14 figs

  15. Projected benefits of actinide partitioning

    International Nuclear Information System (INIS)

    Braun, C.; Goldstein, M.

    1976-05-01

    Possible benefits that could accrue from actinide separation and transmutations are presented. The time frame for implementing these processes is discussed and the expected benefits are qualitatively described. These benefits are provisionally quantified in a sample computation

  16. Environmental research on actinide elements

    International Nuclear Information System (INIS)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G.

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers

  17. Amperometric Ion-Selective Electrode for Alkali Metal Cations Based on a Room-Temperature Ionic Liquid Membrane

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Trojánek, Antonín; Samec, Zdeněk

    2009-01-01

    Roč. 21, 17-18 (2009), s. 1977-1983 ISSN 1040-0397 R&D Projects: GA MŠk ME08098; GA AV ČR IAA400400704 Institutional research plan: CEZ:AV0Z40400503 Keywords : room-temperature ionic liquid * alkali metals * Crown ether * cyclic voltammetry * amperometric ion-selective elkectrode Subject RIV: CG - Electrochemistry Impact factor: 2.630, year: 2009

  18. Combined action of taurine and cations of certain metals on post-irradiation survival of SOC cell culture

    International Nuclear Information System (INIS)

    Yartsev, E.I.; Aldonyasov, V.I.; Yakovlev, V.G.

    1975-01-01

    Effects of combined application of taurine and metals (potassium, magnesium, calcium and zinc) on the cell level have been studied. It has been found that various concentrations of taurine and potassium and zinc salts increase the survival of irradiated SOC cells up to 40% while addition of magnesium and calcium salts does not affect the taurine effectiveness. The highest effectiveness is obtained when potassium and taurine are added in equimolar amounts to the incubation medium

  19. Solid-State Properties of One-Dimensional Metals Based on bis(oxalato)platinate Anions with Divalent Cations

    DEFF Research Database (Denmark)

    Braude, A.; Carneiro, K.; Jacobsen, Claus Schelde

    1987-01-01

    The crystal structures, superstructures, dc conductivity, optical properties, and thermopower of six linear-chain conductors of the type M0.8[Pt(C2O4)2]⋅(M=Ni,Co,Zn,Fe,Mg,Mn), where M is a divalent metal (M=Ni,Co,Zn,Fe,Mg,Mn), have been studied. At high temperatures they form a common orthorhombi...

  20. Extraction of actinides from chloride medium using pentaalkylpropanediamides

    International Nuclear Information System (INIS)

    Cuillerdier, C.; Musikas, C.

    1991-01-01

    Pyrometallurgical processes for the purification of plutonium create waste solutions containing actinides, mainly americium, in chloride medium. Studies have been undertaken to study the extraction of actinides in chloride medium (hydrochloric acid mixed with concentrated salts such as LiCl, CaCl 2 , MgCl 2 , KCl) using pentaalkylpropanediamides as extractants. Plutonium (IV) is very easily extracted, Am (III) needs a salting out agent such as LiCl. Back extraction of trivalent cations is easy in HCl <5M. Plutonium(IV) and (VI) can be stripped by reduction either with ascorbic acid or hydroxylammonium salts in weak acid medium. Several diluents can be used (aromatic, chlorinated or even aliphatic) with addition of decanol to prevent third phase formation. In conclusion diamides can be used for various wastes declassification, they are potentially completely incinerable, and, as the synthesis has been optimized, they appear to be promising extractants

  1. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  2. Furfural to Furfuryl Alcohol: Computational Study of the Hydrogen Transfer on Lewis Acidic BEA Zeolites and Effects of Cation Exchange and Tetravalent Metal Substitution.

    Science.gov (United States)

    Prasertsab, Anittha; Maihom, Thana; Probst, Michael; Wattanakit, Chularat; Limtrakul, Jumras

    2018-06-04

    The hydrogen transfer of furfural to furfuryl alcohol with i-propanol as the hydrogen source over cation-exchanged Lewis acidic BEA zeolite has been investigated by means of density functional calculations. The reaction proceeds in three steps. First the O-H bond of i-propanol is broken to form a propoxide intermediate. After that, the furylmethoxy intermediate is formed via hydrogen transfer process, and finally furylmethoxy abstracts the proton to form the furfuryl alcohol product. The second step is rate-determining by requiring the highest activation energy (23.8 kcal/mol) if the reaction takes place on Li-Sn-BEA zeolite. We find that the catalytic activity of various cation-exchanged Sn-BEA zeolites is in the order Li-Sn-BEA > Na-Sn-BEA > K-Sn-BEA. The lower activation energy for Li-Sn-BEA compared to Na-Sn-BEA and K-Sn-BEA can be explained by the larger charge transfer from the carbonyl bond to the catalyst, leading to its activation and to the attraction of the hydrogen being transferred. The larger charge transfer in turn is due to the smaller gap between the energies of furfural HOMO and the zeolite LUMO in Li-Sn-BEA, compared to both Na-Sn-BEA and K-Sn-BEA. In a similar way, we also compare the catalytic activity of tetravalent metal centers (Sn, Zr, and Hf) substituted into BEA and find in the order Zr ≥ Hf > Sn, based on activation energies. Finally we investigate statistically which property of the reactants is a suitable descriptor for an approximative prediction of the reaction rate in order to be able to quickly screen promising catalytic materials for this reaction.

  3. Recycle of LWR actinides to an IFR

    International Nuclear Information System (INIS)

    Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

    1991-01-01

    Large quantities of actinide elements are present in irradiated light water reactor fuel that is stored throughout the world. Because of the high fission to capture ratio for the transuranium (TRU) elements with the high energy neutrons in metal-fueled integral fast reactors (IFR), that reactor can consume these elements effectively. The stored fuel may represent valuable resource for the expanding application of fast power reactors. In addition, the removal of TRU elements from spent LWR fuel has the potential for increasing the capacity of high level waste facilities by reducing the heat load and may increase the margin of safety in meeting licensing requirement. Argonne National Laboratory is developing a pyrochemical process, which is compatible with the IFR fuel cycle for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. Two pyrochemical processes, that is, salt transport process and blanket processing study, are discussed in this paper. Also the experimental studies are reported. (K.I.)

  4. Determining the selectivity of divalent metal cations for the carboxyl group of alginate hydrogel beads during competitive sorption.

    Science.gov (United States)

    An, Byungryul; Lee, Healim; Lee, Soonjae; Lee, Sang-Hyup; Choi, Jae-Woo

    2015-11-15

    To investigate the competitive sorption of divalent metal ions such as Ca(2+), Cu(2+), Ni(2+), and Pb(2+) on alginate hydrogel beads, batch and column tests were conducted. The concentration of carboxyl group was found to be limited in the preparation of spherical hydrogel beads. From kinetic test results, 80% of sorption was observed within 4h, and equilibrium was attained in 48 h. According to the comparison of the total uptake and release, divalent metal ions were found to stoichiometrically interact with the carboxyl group in the alginate polymer chain. From the Langmuir equation, the maximum capacities of Pb(2+), Cu(2+), and Ni(2+) were calculated to be 1.1, 0.48, and 0.13 mmol/g, respectively. The separation factor (α) values for αPb/Cu, αPb/Ni, and αCu/Ni were 14.0, 98.9, and 7.1, respectively. The sorption capacity of Pb(2+) was not affected by the solution pH; however, the sorption capacities of Cu(2+) and Ni(2+) decreased with increasing solution pH, caused by competition with hydrogen. According to the result from the fixed column test, Pb(2+) exhibited the highest affinity, followed by Cu(2+) and Ni(2+), which is in exact agreement with those of kinetic and isotherm tests. The sorbent could be regenerated using 4% HCl, and the regenerated sorbent exhibited 90% capacity upto 9 cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Iminodiacetic acid functionalised organopolymer monoliths: application to the separation of metal cations by capillary high-performance chelation ion chromatography.

    Science.gov (United States)

    Moyna, Áine; Connolly, Damian; Nesterenko, Ekaterina; Nesterenko, Pavel N; Paull, Brett

    2013-03-01

    Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35%, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC(4)D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.

  6. Phoenix type concepts for transmutation of LWR waste minor actinides

    International Nuclear Information System (INIS)

    Segev, M.

    1994-01-01

    A number of variations on the original Phoenix theme were studied. The basic rationale of the Phoenix incinerator is making oxide fuel of the LWR waste minor actinides, loading it in an FFTF-like subcritical core, then bombarding the core with the high current beam accelerated protons to generate considerable energy through spallation and fission reactions. As originally assessed, if the machine is fed with 1600 MeV protons in a 102 mA current, then 8 core modules are driven to transmute the yearly minor actinides waste of 75 1000 MW LWRs into Pu 238 and fission products; in a 2 years cycle the energy extracted is 100000 MW d/T. This performance cannot be substantiated in a rigorous analysis. A calculational consistent methodology, based on a combined execution of the Hermes, NCNP, and Korigen codes, shows, nonetheless that changes in the original Phoenix parameters can upgrade its performance.The original Phoenix contains 26 tons minor actinides in 8 core modules; 1.15 m 3 module is shaped for 40% neutron leakage; with a beam of 102 mA the 8 modules are driven to 100000 MW/T in 10.5 years, burning out the yearly minor actinide waste of 15 LWRs; the operation must be assisted by grid electricity. If the 1.15 m 3 module is shaped to allow only 28% leakage, then a beam of 102 mA will drive the 8 modules to 100000 MW/T in 3.5 years, burning out the yearly minor actinides waste of 45 LWRs. Some net grid electricity will be generated. If 25 tons minor actinides are loaded into 5 modules, each 1.72 m 3 in volume and of 24% leakage, then a 97 mA beam will drive the module to 100000 MW/T in 2.5 years, burning out the yearly minor actinides waste of 70 LWRs. A considerable amount of net grid electricity will be generated. If the lattice is made of metal fuel, and 26 tons minor actinides are loaded into 32 small modules, 0.17 m 3 each, then a 102 mA beam will drive the modules to 100000 MW/T in 2 years, burning out the yearly minor actinides waste of 72 LWRs. A considerable

  7. Synthesis and characterization of templated ion exchange resins for the selective complexation of actinide ions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Murray, G.M.; Uy, O.M.

    1998-01-01

    'The purpose of this research is to develop polymeric extractants for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions (lakes, streams, waste tanks and body fluids). Selectivity for a specific actinide ion is obtained by providing polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide metal ion. These cavity-containing polymers will be produced using a specific actinide ion (or surrogate) as a template around which monomeric complexing ligands will be polymerized. The polymers will provide useful sequestering agents for removing actinide ions from wastes and will form the basis for a variety of analytical techniques for actinide determinations.'

  8. Light element thermodynamics related to actinide separations

    International Nuclear Information System (INIS)

    Johnson, I.; Johnson, C.E.

    1997-01-01

    The accumulation of waste from the last five decades of nuclear reactor development has resulted in large quantities of materials of very diverse chemical composition. An electrometallurgical (EM) method is being developed to separate the components of the waste into several unique streams suitable for permanent disposal and an actinide stream suitable for retrievable storage. The principal types of nuclear wastes are spent oxide or metallic fuel. Since the EM module requires a metallic feed, and oxygen interferes with its operation, the oxide fuel has to be reduced prior to EM treatment. Further, the wastes contain, in addition to oxygen, other light elements (first- and second-row elements) that may also interfere with the operation of the EM module. The extent that these light elements interfere with the operation of the EM module has been determined by chemical thermodynamic calculations. (orig.)

  9. Actinide colloid generation in groundwater. Part 2

    International Nuclear Information System (INIS)

    Kim, J.I.

    1991-01-01

    The progress made in the investigation of actinide colloid generation in groundwater is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudo colloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC Mirage II project, in particular the complexation and colloids research area

  10. Development of a surfactant liquid membrane extraction process for the cleansing of industrial aqueous effluents containing metallic cation traces

    International Nuclear Information System (INIS)

    Rapaumbya Akaye, Guy-Roland

    1994-01-01

    The purpose of this work was to develop a process of surfactant liquid membrane extraction to purify industrial waste solution containing Cu(II), Fe(III), and Zn(II) (about 0,1 g/L). The extractant is the ammonium salt of Cyanex 306 and Aliquat 336. The first part of this work deals with the study of the liquid-liquid extraction of the metals. The efficiency of the extractant has been shown for the extraction of each metal alone and for Cu(II) and Zn(II) in the case of a mixture of the three metals. During this study we have observed that Fe(III) is reduced to Fe(II) (which is not extracted by the salt of Cyanex 301) in presence of Cu(II) and the quaternary ammonium salt (Aliquat 336). The optimisation of the experimental conditions for the discontinuous surfactant liquid membrane process led us to choose the following composition of the emulsion: 1,5 % of Cyanex 301 salt, 2,5 % of ECA 4360, dodecan. The internal phase is an aqueous solution containing 3,5 mol/L of NaOH and 0,5 mol/L tri-ethanolamin The residual concentration of Cu(II) and Zn(II) in the external phase is very low. In the case of iron, only 60 % are extracted because of the reduction phenomenon (10 % in liquid-liquid extraction). The realisation of the continuous process in pulsed column, after optimisation of hydrodynamics conditions, leads to similar results. In stationary conditions, we obtain a raffinate containing less than 0,5 mg/L of Cu(II) and Zn(II) and 36 mg/L of iron. The internal phase contains about 2 g/L of Cu(II) an Zn(II). We tried and minimize the reduction of Fe(III) in surfactant liquid membrane process. Less than 16 % of iron cannot be reduced. This leads to a purification of only 84 % In the basis of these results, processes of purification have been proposed for effluents of various composition. They enable to purify the effluent and besides to concentrate the pollutants about twenty times. (author) [fr

  11. Metal extraction by alkyl substituted diphosphonic acids. Part 1. P,P'-Di(2-ethylhexyl) methanediphosphonic acid

    International Nuclear Information System (INIS)

    Chiarizia, R.; Horwitz, E.P.; Rickert, P.G.; Herlinger, A.W.

    1996-01-01

    Two novel extractants, p,p'-di(2-ethylhexyl) methanediphosphonic acid (H 2 DEH[MDP]) and p,p'-dioctyl methanediphosphonic acid (H 2 DO[MDP]) have been synthesized at high purity and yield. H 2 DEH[MDP] was selected for metal extraction studies because of its better physical properties. An investigation of the extraction of alkaline earth cations, Fe(111) and representative tri-, tetra- and hexavalent actinide ions from nitric acid solutions into o-xylene solutions of H 2 DEH[MDP] at different concentrations was performed. With a few exceptions, the acid dependencies of the extraction of the above metal species strongly resembles those measured in the uptake of the same metals by the chelating ion exchange resin Diphonix R , which contains gem-diphosphonic acid groups chemically attached to a polymeric matrix. The almost lack of acid dependency observed with Fe(III) and tetra- and hexavalent actinides indicates that these ions are chelated by H 2 DEH[MDP] mostly through the P=O groups of the extractant. With Fe(111) and the actinides, variable slopes of the extractant dependencies were measured, their values being strongly dependent on the acidity of the aqueous phase. H 2 DEH[MDP] possesses an extraordinary affinity for actinides and Fe(111). 26 refs., 7 figs

  12. Accuracy of the DLPNO-CCSD(T) method for non-covalent bond dissociation enthalpies from coinage metal cation complexes

    KAUST Repository

    Minenkov, Yury; Chermak, Edrisse; Cavallo, Luigi

    2015-01-01

    The performance of the domain based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) method has been tested to reproduce the experimental gas phase ligand dissociation enthalpy in a series of Cu+, Ag+ and Au+ complexes. For 33 Cu+ - non-covalent ligand dissociation enthalpies all-electron calculations with the same method result in MUE below 2.2 kcal/mol, although a MSE of 1.4 kcal/mol indicates systematic underestimation of the experimental values. Inclusion of scalar relativistic effects for Cu either via effective core potential (ECP) or Douglass-Kroll-Hess Hamiltonian, reduces the MUE below 1.7 kcal/mol and the MSE to -1.0 kcal/mol. For 24 Ag+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) method results in a mean unsigned error (MUE) below 2.1 kcal/mol and vanishing mean signed error (MSE). For 15 Au+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) methods provides larger MUE and MSE, equal to 3.2 and 1.7 kcal/mol, which might be related to poor precision of the experimental measurements. Overall, for the combined dataset of 72 coinage metal ion complexes DLPNO-CCSD(T) results in a MUE below 2.2 kcal/mol and an almost vanishing MSE. As for a comparison with computationally cheaper density functional theory (DFT) methods, the routinely used M06 functional results in MUE and MSE equal to 3.6 and -1.7 kca/mol. Results converge already at CC-PVTZ quality basis set, making highly accurate DLPNO-CCSD(T) estimates to be affordable for routine calculations (single-point) on large transition metal complexes of > 100 atoms.

  13. Accuracy of the DLPNO-CCSD(T) method for non-covalent bond dissociation enthalpies from coinage metal cation complexes

    KAUST Repository

    Minenkov, Yury

    2015-08-27

    The performance of the domain based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) method has been tested to reproduce the experimental gas phase ligand dissociation enthalpy in a series of Cu+, Ag+ and Au+ complexes. For 33 Cu+ - non-covalent ligand dissociation enthalpies all-electron calculations with the same method result in MUE below 2.2 kcal/mol, although a MSE of 1.4 kcal/mol indicates systematic underestimation of the experimental values. Inclusion of scalar relativistic effects for Cu either via effective core potential (ECP) or Douglass-Kroll-Hess Hamiltonian, reduces the MUE below 1.7 kcal/mol and the MSE to -1.0 kcal/mol. For 24 Ag+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) method results in a mean unsigned error (MUE) below 2.1 kcal/mol and vanishing mean signed error (MSE). For 15 Au+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) methods provides larger MUE and MSE, equal to 3.2 and 1.7 kcal/mol, which might be related to poor precision of the experimental measurements. Overall, for the combined dataset of 72 coinage metal ion complexes DLPNO-CCSD(T) results in a MUE below 2.2 kcal/mol and an almost vanishing MSE. As for a comparison with computationally cheaper density functional theory (DFT) methods, the routinely used M06 functional results in MUE and MSE equal to 3.6 and -1.7 kca/mol. Results converge already at CC-PVTZ quality basis set, making highly accurate DLPNO-CCSD(T) estimates to be affordable for routine calculations (single-point) on large transition metal complexes of > 100 atoms.

  14. Research in actinide chemistry. Progress report, March 1, 1980-February 28, 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The primary purpose of this research is to study the behavior of actinide cations in aqueous solution. The interaction of trivalent actinides with a wide variety of both inorganic and organic ligands has been investigated with emphasis on the thermodynamics and kinetics of complexation at tracer concentrations using radiochemical techniques. In order to expand the scope of the experimental techniques, thereby obtaining additional understanding of the fundamental processes involved, non-radioactive experiments with the trivalent lanthanides have been conducted. Visible spectroscopy, nmr ( 1 1 H, 6 13 C, 57 139 La) spectroscopy, potentiometry, solvent extraction and calorimetry are examples of techniques for these lanthanide studies which have allowed much more thorough interpretation of the actinide tracer data due to the close chemical similarity of the lanthanide and actinide families of trivalent cations. The following were investigated: nmr shifts of 139 La for both halate and chloroacetate complexes; interaction of Pu(VI) with carbonates and bicarbonates; Ca +2 , UO 2 +2 , and Th +4 reactions with halate and chloroacetate anions; complexation of the lanthanides by benzoic acid; thermodynamic formation constants for trivalent lanthanide ions with succinic, glutaric, and adipic acids; complexation of benzene polycarboxylates with lanthanides; complexation of lanthanide ions by AMP (adenosine monophosphate), ADP (adenosine diphosphate) and ATP (adenosine triphosphate); interaction of the actinides ions with humic acid; measurements of water and benzoic acid concentrations in several organic solvents by potentiometric and spectral methods; and plutonium and neptunium redox behavior in the presence of organic complexing agents

  15. Calculation of critical concentrations of actinides in an infinite medium of silicon dioxide

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Sato, Shohei; Kawasaki, Hiromitsu

    2009-01-01

    The critical concentrations of actinides in metal-silicon-dioxide (SiO 2 ) and in metal-water (H 2 O) mixtures were calculated for 26 actinides including 233,235 U, 239,241 Pu, 242m Am, 243,245,247 Cm, and 249,251 Cf. The calculations were performed using the Monte Carlo neutron transport calculation code MCNP5 combined with the evaluated nuclear data library JENDL3.3. The results showed that the critical concentration of actinide in metal-SiO 2 mixtures was about 1/5 of that in metal-H 2 O mixtures for all the fissile nuclides investigated. The k ∞ 's of metal-SiO 2 and metal-H 2 O at one-half of the respective critical concentration of actinide, which was assumed as the subcritical concentration limit, were found to be less than 0.8 for all the actinides considered. By applying the sum-of-fractions rule to the concentrations of six nuclides in metal-SiO 2 mixtures, the subcriticality of high-level radioactive wastes was confirmed for a reported sample. The effects of different nuclear data libraries on the results of critical concentrations were found to be large for 242 Cm, 247 Cm, and 250 Cf by comparison with the results calculated with another evaluated nuclear data library, ENDF/B-VI. (author)

  16. Final Project Report for ER15351 ''A Study of New Actinide Zintl Ions Materials''

    International Nuclear Information System (INIS)

    Peter K. Dorhout

    2007-01-01

    The structural chemistry of actinide main-group metal materials provides the fundamental basis for the understanding of structural coordination chemistry and the formation of materials with desired or predicted structural features. The main-group metal building blocks, comprising sulfur-group, phosphorus-group, or silicon-group elements, have shown versatility in oxidation state, coordination, and bonding preferences. These building blocks have allowed us to elucidate a series of structures that are unique to the actinide elements, although we can find structural relationships to transition metal and 4f-element materials. In the past year, we investigated controlled metathesis and self-propagating reactions between actinide metal halides and alkali metal salts of main-group metal chalcogenides such as K-P-S salts. Ternary plutonium thiophosphates have resulted from these reactions at low temperature in sealed ampules. we have also focused efforts to examine reactions of Th, U, and Pu halide salts with other alkali metal salts such as Na-Ge-S and Na-Si-Se and copper chloride to identify if self-propagating reactions may be used as a viable reaction to prepare new actinide materials and we prepared a series of U and Th copper chalcogenide materials. Magnetic measurements continued to be a focus of actinide materials prepared in our laboratory. We also contributed to the XANES work at Los Alamos by preparing materials for study and for comparison with environmental samples

  17. Conception, synthesis and application of tripodands in actinide/lanthanide separation

    International Nuclear Information System (INIS)

    Bobet, Josselin

    1997-01-01

    The purpose of this work is the synthesis of C, H, O and N containing compounds able to separate '4f' and '5f' elements by liquid/liquid extraction. In a first part, the literature's study allow us to point out actinide and lanthanide ions actual nature and the different ways offered by organic chemistry to share two metallic ions between two liquid phases. On one hand, these trivalent cations' high coordination numbers drive us to synthesize tripodands with hard sites which were fitted for complexation. On the other hand, it appeared that carboxylate or even less-hard site like pyridine chelate selectively actinides, allowing separation. In a second part, 60 ligands were synthesized. In each of the ligands families, a structural parameter changes (site nature, distance between two neighbouring sites, sites respective orientation, lipophilicity and rigidity). 2,2-dihydroxymethyl-dodecanol and 1,3,5- tri(chlorocarbonyl) benzene were chosen as core. O-alkylation and amidation reactions were also peculiarly studied. Rekker's proceeding for lipophilicity calculation was used in order to establish a structure-activity relationship. In a third part, extraction assays with radioactive effluents ( 152 Eu and 241 Am) point out extraction and separation abilities of our compounds. Different operating ways were used according as ligand is soluble in aqueous or organic phase. Organic phase-soluble compounds were compared to DcH18C6, pyridine ones to 2,4,6-tri(2-pyridyl)-l,3,5-triazine (TPTZ) and carboxylate ones to diethylenetriamine-tetracetic acid (DTPA, Talspeak proceeding). The third phase phenomenon was encountered and studied. Influence of salt, pH and organic phase were also studied. (author) [fr

  18. Sequestering agents for the removal of actinides from waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R. [Univ. of California, Berkeley, CA (United States)

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  19. Molecular and electronic structure of actinide hexa-cyanoferrates; Structure moleculaire et electronique des hexacyanoferrates d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Bonhoure, I

    2001-07-01

    The goal of this work is to improve our knowledge on the actinide-ligand bond properties. To this end, the hexacyanoferrate entities have been used as pre-organized ligand. We have synthesized, using mild chemistry, the following series of complexes: An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Th, U, Np, Pu); Am{sup III}[Fe{sup III}(CN){sub 6}].xH{sub 2}O; Pu {sup III}[Co{sup III}(CN){sub 6}].xH{sub 2}O and K(H?)An{sup III}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Pu, Am). The metal oxidation states have been obtained thanks to the {nu}{sub CN}, stretching vibration and to the actinide L{sub III} absorption edge studies. As Prussian Blue, the An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Np, Pu) are class II of Robin and Day compounds. X-ray Diffraction has shown besides that these complexes crystallize in the P6{sub 3}/m space group, as the isomorphic LaKFe(CN){sub 6}.4H{sub 2}O complex used as structural model. The EXAFS oscillations at the iron K edge and at the An L{sub III} edge allowed to determine the An-N, An-O, Fe-C and Fe-N distances. The display of the multiple scattering paths for both edges explains the actinide contribution absence at the iron edge, whereas the iron signature is present at the actinide edge. We have shown that the actinide coordination sphere in actinides hexa-cyanoferrates is comparable to the one of lanthanides. However, the actinides typical behavior towards the lanthanides is brought to the fore by the An{sup IV} versus Ln{sup III} ions presence in this family of complexes. Contrarily to the 4f electrons, the 5f electrons influence the electronic properties of the compounds of this family. However, the gap between the An-N and Ln-N distances towards the corresponding metals ionic radii do not show any covalence bond evolution between the actinide and lanthanide series. (author)

  20. Lanthanides and actinides extraction by calixarenes containing CMPO groups

    International Nuclear Information System (INIS)

    Garcia Carrera, A.

    2001-01-01

    In the framework of the French program SPIN concerning the radioactive waste management, researches are performed to develop processes allowing the separation of long-lived radioisotopes in order to their transmutation or their specific conditioning. These studies deal with the extraction and the separation of trivalent lanthanides and actinides in acid solution. Many systems ''calixarene-diluent-aqueous phase'' are examined by extraction liquid-liquid and membrane transport. The extraction efficiency and the selectivity of the synthesized calixarene-CMPO and of the CMPO are compared with these cations, as the nitric acid extraction by these molecules. (A.L.B.)

  1. chemical studies and sorption behavior of some hazardous metal ions on polyacrylamide stannic (IV) molybdophosphate as 'organic - inorganic' composite cation - exchanger

    International Nuclear Information System (INIS)

    Abdel-Galil, E.A.M.

    2010-01-01

    compsite materials formed by the combination of multivalent metal acid salts and organic polymers provide a new class of (organic-inorganic) hypride ion exchangers with better mechanical and granulometric properties, good ion-exchange capacity, higher chemical and radiation stabilites, reproducibility and selectivity for heavy metals. this material was characterized using X-ray (XRD and XRF), IR, TGA-DTA and total elemental analysis studies. on the basis of distribution studies, the material has been found to be highly selective for pb(II). thermodynamic parameters (i.e δG 0 , δ S 0 and δH 0 ) have also been calculated for the adsorption of Pb 2+ , Cs + , Fe 3+ , Cd 2+ , Cu +2 , Zn 2+ , Co 2+ and Eu 3+ ions on polyacrylamide Sn(IV) molybdophosphate showing that the overall adsorption process is spontaneous endothermic. the mechanism of diffusion of Fe 3+ , Co 2+ , Cu +2 , Zn 2+ , Cd 2+ , Cs + , Pb 2+ and Eu 3+ in the H-form of polyacrylamide Sn(IV) molybdophosphate composite as cation exchanger was studied as a function of particle size, concentration of the exchanging ions, reaction temperature, dring temperature and pH. the exchange rate was controlled by particle diffusion mechanism as a limited batch techneque and is confirmed from straight lines of B versus 1/r 2 polts. the values of diffusion coefficients, activation energy and entropy of activation were calculated and their significance was discussed. the data obtained have been comared with that reported for other organic and inorganic exchangers.

  2. Synthesis, characterization and analytical application of hybrid; Acrylamide zirconium (IV) arsenate a cation exchanger, effect of dielectric constant on distribution coefficient of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, Syed A. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)], E-mail: sanabi@rediffmail.com; Shalla, Aabid H. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2009-04-30

    A new hybrid inorganic-organic cation exchanger acrylamide zirconium (IV) arsenate has been synthesized, characterized and its analytical application explored. The effect of experimental parameters such as mixing ratio of reagents, temperature, and pH on the properties of material has been studied. FTIR, TGA, X-ray, UV-vis spectrophotometry, SEM and elemental analysis were used to determine the physiochemical properties of this hybrid ion exchanger. The material behaves as a monofunctional acid with ion-exchange capacity of 1.65 meq/g for Na{sup +} ions. The chemical stability data reveals that the exchanger is quite stable in mineral acids, bases and fairly stable in organic solvents, while as thermal analysis shows that the material retain 84% of its ion-exchange capacity up to 600 deg. C. Adsorption behavior of metal ions in solvents with increasing dielectric constant has also been explored. The sorption studies reveal that the material is selective for Pb{sup 2+} ions. The analytical utility of the material has been explored by achieving some binary separations of metal ions on its column. Pb{sup 2+} has been selectively removed from synthetic mixtures containing Mg{sup 2+}, Ca{sup 2+}, Sr{sup 2+}, Zn{sup 2+} and Cu{sup 2+}, Al{sup 3+}, Ni{sup 2+}, Fe{sup 3+}. In order to demonstrate practical utility of the material quantitative separation of the Cu{sup 2+} and Zn{sup 2+} in brass sample has been achieved on its columns.

  3. Theoretical study for the reduction of N2O with CO Mediated by alkaline-earth metal oxide cations 2MO+(M=Ca, Sr, Ba)

    International Nuclear Information System (INIS)

    Zhang Jianhui; Leng Yanli; Wang Yongcheng

    2013-01-01

    The reaction mechanism of the reaction N 2 O( 0 Σ + ) + CO ( 1 Σ + )→N 2 ( 1 Σ g + ) + CO 2 ( 1 Σ g + ) mediated by alkaline-earth metal oxide cations 2 MO + (m=Ca, Sr, Ba) have been investigated by using the UB3LYP and CCSD (T) levels of theory. The O-atom affinities (OA) testified that only the 2 CaO + can capture O from N 2 O and transfer O to CO is thermodynamically allowed in three ions. The processes can be expressed as channels l and 2 for the reaction of N 2 O and CO mediated by 2 MO + (M=Ca, Sr, Ba). For the former, the main reaction processes in a two-step manner to products, the 2 MO + , as a catalyzer, transports an oxygen atom from N 2 O to CO. For the latter, firstly, the N 2 O interact with the 2 MO + to form IM1, then IM1 interact with the CO to form IM2', along the reaction pathway the intermediate species convert into products 2 1MO + , N 2 and CO 2 . From above results, the following conclusion was drawn. The channel 2 is kinetically and thermodynamically feasible. Our calculated results show the title reactions are accord with the experiment. (authors)

  4. Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes.

    Science.gov (United States)

    Shao, Zi-Jian; Huang, Xue-Lian; Yang, Fan; Zhao, Wei-Feng; Zhou, Xin-Zhi; Zhao, Chang-Sheng

    2018-05-01

    Sodium alginate (SA) beads with ultrahigh adsorption capacity were prepared via hydrogen bonds between SA and 2-acrylamido-2-methylpropa-1-propanesulfonic acid (AMPS), and the AMPS was then post-cross-linked to manufacture SA/PAMPS beads. The equilibrium adsorption capacities of methylene blue (MB) and Pb 2+ for the SA/PAMPS10 beads were 2977 and 2042 mg/g, respectively. Although the SA beads exhibited higher equilibrium adsorption capacities of MB and Pb 2+ than those of the SA/PAMPS10 beads, the SA/PAMPS10 beads had better mechanical property and higher stability. The pseudo-second-order kinetic model and the Langmuir isotherm described the adsorption processes of the SA/PAMPS10 beads for MB well. In addition, the SA/PAMPS10 beads could be reused with stable adsorption capacity for at least three cycles. The beads also had excellent performances on absorbing methylene violet and other heavy metal ions (Cu 2+ , Cd 2+ and Ni 2+ ). Therefore, the SA-based beads with high adsorption capacity might be good candidates for industrial pollutant treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. 33rd Actinide Separations Conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  6. 33rd Actinide Separations Conference

    International Nuclear Information System (INIS)

    McDonald, L.M.; Wilk, P.A.

    2009-01-01

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  7. Factors influencing the transport of actinides in the groundwater environment. Final report

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Kittrick, J.A.

    1983-01-01

    This report summarizes investigations of factors that significantly influence the transport of actinide cations in the groundwater environment. Briefly, measurements of diffusion coefficients for Am(III), Cm(III), and Np(V) in moist US soils indicated that diffusion is negligible compared to mass transport in flowing groundwater. Diffusion coefficients do, however, indicate that, in the absence of flowing water, actinide elements will migrate only a few centimeters in a thousand years. The remaining investigations were devoted to the determination of distribution ratios (K/sub d/s) for representative US soils, factors influencing them, and chemical and physical processes related to transport of actinides in groundwaters. The computer code GARD was modified to include complex formation to test the importance of humic acid complexing on the rate of transport of actinides in groundwaters. Use of the formation constant and a range of humic acid, even at rather low concentrations of 10 -5 to 10 -6 molar, significantly increases the actinide transport rate in a flowing aquifer. These computer calculations show that any strong complexing agent will have a similar effect on actinide transport in the groundwater environment. 32 references, 9 figures

  8. Design of Nickel-Based Cation-Disordered Rock-Salt Oxides: The Effect of Transition Metal (M = V, Ti, Zr) Substitution in LiNi0.5M0.5O2 Binary Systems.

    Science.gov (United States)

    Cambaz, Musa Ali; Vinayan, Bhaghavathi P; Euchner, Holger; Johnsen, Rune E; Guda, Alexander A; Mazilkin, Andrey; Rusalev, Yury V; Trigub, Alexander L; Gross, Axel; Fichtner, Maximilian

    2018-06-20

    Cation-disordered oxides have been ignored as positive electrode material for a long time due to structurally limited lithium insertion/extraction capabilities. In this work, a case study is carried out on nickel-based cation-disordered Fm3 ̅m LiNi 0.5 M 0.5 O 2 positive electrode materials. The present investigation targets tailoring the electrochemical properties for nickel-based cation-disordered rock-salt by electronic considerations. The compositional space for binary LiM +3 O 2 with metals active for +3/+4 redox couples is extended to ternary oxides with LiA 0.5 B 0.5 O 2 with A = Ni 2+ and B = Ti 4+ , Zr 4+ , and V +4 to assess the impact of the different transition metals in the isostructural oxides. The direct synthesis of various new unknown ternary nickel-based Fm3̅ m cation-disordered rock-salt positive electrode materials is presented with a particular focus on the LiNi 0.5 V 0.5 O 2 system. This positive electrode material for Li-ion batteries displays an average voltage of ∼2.55 V and a high discharge capacity of 264 mAhg -1 corresponding to 0.94 Li. For appropriate cutoff voltages, a long cycle life is achieved. The charge compensation mechanism is probed by XANES, confirming the reversible oxidation and reduction of V 4+ /V 5+ . The enhancement in the electrochemical performances within the presented compounds stresses the importance of mixed cation-disordered transition metal oxides with different electronic configuration.

  9. Proceedings of the symposium Actinides 2006 - Basic Science, Applications and Technology

    International Nuclear Information System (INIS)

    Blobaum, Kerri J.M.; Chandler, Elaine A.; Havela, Ladislav; Maple, M. Brian; Neu, Mary P.

    2007-01-01

    These proceedings from the September 2006 symposium includes papers presented on experimental and modeling work with the intention of broadening understanding of the field of actinide research. Actinides have gained attention recently because of their roles in the threat of nuclear terrorism (e.g., 'dirty bombs') and the use of nuclear power to offset fossil fuel consumption. Actinide science is the study of the elements with atomic numbers in the range of 90 to 103, which includes uranium and plutonium. Beyond the well-known nuclear reactions of these heavy radioactive metals, the large electron clouds with 5f electrons in the outer shell yield fascinating and complex chemistries, crystal structures, and physical properties. Traditionally, actinide research has been divided among three scientific disciplines: chemistry (nuclear chemistry and radiochemistry); physics (condensed matter physics and electronic structure); and materials science (metallurgy). Modern actinide research, however, has become an interdisciplinary blend of these traditional fields, and it also incorporates developing fields such as environmental chemistry and superconductivity. Improved scientific understanding of actinides is needed for development of materials for actinide detection and nuclear fuels, and for safer management of nuclear waste. Recently, there has been a resurgence of actinide science at national laboratories and universities. The current multidisciplinary approach to actinide science lays the groundwork for understanding the connection between the 5f electronic structure and observed chemical reactions and physical properties such as structural phase transformations and novel ground states. This work provides many opportunities for new researchers in actinide science. These proceedings gather 25 selected papers among the 53 presentations given at this symposium

  10. Some activities in the United States concerning the physics aspects of actinide waste recycling

    International Nuclear Information System (INIS)

    Raman, S.

    1976-01-01

    This review paper briefly discusses the reactor types being considered in the United States for the purpose of actinide waste recycling. The reactor types include thermal reactors operating on the 3.3% 235 U- 238 U and the 233 U- 232 Th fuel cycles, liquid metal fast breeder reactors, reactors fueled entirely by actinide wastes, gaseous fuel reactors and fusion reactors. This paper also discusses cross section measurements in progress or planned toward providing basic data for testing the recycle concept. (author)

  11. Some activities in the United States concerning the physics aspects of actinide waste recycling

    International Nuclear Information System (INIS)

    Raman, S.

    1975-01-01

    Reactor types being considered in the United States for the purpose of actinide waste recycling are discussed briefly. The reactor types include thermal reactors operating on the 3.3 percent 235 U-- 238 U and the 233 U-- 232 Th fuel cycles, liquid metal fast breeder reactors, reactors fueled entirely by actinide wastes, gaseous fuel reactors, and fusion reactors. Cross section measurements in progress or planned toward providing basic data for testing the recycle concept are also discussed

  12. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Mukaiyama, Takehiko; Takano, Hideki; Ogawa, Toru; Osakabe, Masahiro.

    1989-07-01

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  13. Fusion barrier characteristics of actinides

    Science.gov (United States)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-03-01

    We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6 projectile target combinations. The values produced by the present formula are also compared with experiments. The present pocket formula produces fusion barrier characteristics of actinides with the simple inputs of mass number (A) and atomic number (Z) of projectile-targets.

  14. Thin layers in actinide research

    International Nuclear Information System (INIS)

    Gouder, T.

    1998-01-01

    Surface science research at the ITU is focused on the synthesis and surface spectroscopy studies of thin films of actinides and actinide compounds. The surface spectroscopies used are X-ray and ultra violet photoelectron spectroscopy (XPS and UPS, respectively), and Auger electron spectroscopy (AES). Thin films of actinide elements and compounds are prepared by sputter deposition from elemental targets. Alloy films are deposited from corresponding alloy targets and could be used, in principle, as replicates of these targets. However, there are deviations between alloy film and target composition, which depend on the deposition conditions, such as pressure and target voltage. Mastering of these effects may allow us to study stoichiometric film replicates instead of thick bulk compounds. As an example, we discuss the composition of U-Ni films prepared from a UNi 5 target. (orig.)

  15. Nuclear waste forms for actinides

    Science.gov (United States)

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  16. Extraction chromatogrpahy of actinides, ch. 7

    International Nuclear Information System (INIS)

    Mueller, W.

    1975-01-01

    This review on extraction chromatography of actinides emphasizes the important usage of neutral (Tributylphosphate), basic (substituted ammonium salts), and acidic (HDEHP) extractants, and their application to separations of actinides in the di-to hexavalent oxidation state. Furthermore, the actinide extraction by ketones, ethers, alcohols and β-diketones is discussed

  17. Actinides integral measurements on FCA assemblies

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko; Okajima, Shigeaki

    1984-01-01

    Actinide integral measurements were performed on eight assemblies of FCA where neutron energy spectra were shifted systematically from soft to hard in order to evaluate and modify the nuclear cross section data of major actinides. Experimental values on actinide fission rates and sample reactivity worths are compared with the calculated values using JENDL-2 and ENDF/B-V (or IV) data sets. (author)

  18. Electrochemical separation of actinides and fission products in molten salt electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gay, R.L.; Grantham, L.F.; Fusselman, S.P. [Rockwell International/Rocketdyne Division, Canoga Park, CA (United States)] [and others

    1995-10-01

    Molten salt electrochemical separation may be applied to accelerator-based conversion (ABC) and transmutation systems by dissolving the fluoride transport salt in LiCl-KCl eutectic solvent. The resulting fluoride-chloride mixture will contain small concentrations of fission product rare earths (La, Nd, Gd, Pr, Ce, Eu, Sm, and Y) and actinides (U, Np, Pu, Am, and Cm). The Gibbs free energies of formation of the metal chlorides are grouped advantageously such that the actinides can be deposited on a solid cathode with the majority of the rare earths remaining in the electrolyte. Thus, the actinides are recycled for further transmutation. Rockwell and its partners have measured the thermodynamic properties of the metal chlorides of interest (rare earths and actinides) and demonstrated separation of actinides from rare earths in laboratory studies. A model is being developed to predict the performance of a commercial electrochemical cell for separations starting with PUREX compositions. This model predicts excellent separation of plutonium and other actinides from the rare earths in metal-salt systems.

  19. Preliminary considerations concerning actinide solubilities

    International Nuclear Information System (INIS)

    Newton, T.W.; Bayhurst, B.P.; Daniels, W.R.; Erdal, B.R.; Ogard, A.E.

    1980-01-01

    Work at the Los Alamos Scientific Laboratory on the fundamental solution chemistry of the actinides has thus far been confined to preliminary considerations of the problems involved in developing an understanding of the precipitation and dissolution behavior of actinide compounds under environmental conditions. Attempts have been made to calculate solubility as a function of Eh and pH using the appropriate thermodynamic data; results have been presented in terms of contour maps showing lines of constant solubility as a function of Eh and pH. Possible methods of control of the redox potential of rock-groundwater systems by the use of Eh buffers (redox couples) is presented

  20. Orbital effects in actinide systems

    International Nuclear Information System (INIS)

    Lander, G.H.

    1983-01-01

    Actinide magnetism presents a number of important challenges; in particular, the proximity of 5f band to the Fermi energy gives rise to strong interaction with both d and s like conduction electrons, and the extended nature of the 5f electrons means that they can interact with electron orbitals from neighboring atoms. Theory has recently addressed these problems. Often neglected, however, is the overwhelming evidence for large orbital contributions to the magnetic properties of actinides. Some experimental evidence for these effects are presented briefly in this paper. They point, clearly incorrectly, to a very localized picture for the 5f electrons. This dichotomy only enhances the nature of the challenge

  1. Actinides and environmental interfaces: striving for molecular-level understanding

    International Nuclear Information System (INIS)

    Heino Nitsche

    2005-01-01

    enhanced second harmonic generation can probe the electronic (UV-vis region) structure of metal species adsorbed at a surface or interface. Infrared-visible sum frequency generation spectroscopy probes the infrared vibrational spectrum of molecules adsorbed at the interface. SHG/SFG studies will greatly assist with understanding reactivity at interfaces of oxides and soil organic matter with heavy metals and radionuclides/actinides. Time-resolved Laser-fluorescence spectroscopy (TRLFS) is a highly sensitive tool for actinides that absorb light and de-excite by fluorescence emission, e.g., U(VI) and Cm(III), to probe changes in actinide speciation and coordination environment in solution. This method can also be used to differentiate whether adsorbed species form surface complexes or surface precipitates. Recently, it was shown that the intense synchrotron radiation can change the oxidation states of redox-sensitive actinide samples which may cause erroneous results, and low temperature measurements are now used to alleviate this shortcoming. X-ray Absorption Fine Structure (XAFS) Spectroscopy is composed of two component spectroscopies, X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) which provide element specific oxidation state and local structure information, respectively. EXAFS (Extended X-ray Absorption Fine Structure Spectroscopy) provides information on the chemical environment of particular actinide, in particular bond lengths and the number of neighboring atoms. Combining both methods, detailed knowledge of the different processes resulting from the interaction of the selected actinides with environmental interfaces can be gained. XANES and EXAFS measurements and TRLFS studies to obtain molecular-level mechanistic details of actinide interaction with common environmental solutions and interfaces will be presented together with first SHG/SFG characterization results of model systems for environmental interfaces

  2. 2-(1,3-Dithiolan-2-ylidene)-5-(1,3-dithian-2-ylidene)-1,3,4,6- tetrathiapentalene(DHDA-TTP), a hybrid of BDH-TTP and BDA-TTP, and its metallic cation-radical salts.

    Science.gov (United States)

    Yamada, Jun-ichi; Watanabe, Maki; Toita, Takashi; Akutsu, Hiroki; Nakatsuji, Shin'ichi; Nishikawa, Hiroyuki; Ikemoto, Isao; Kikuchi, Koichi

    2002-05-21

    The synthesis and electrochemical properties of the DHDA-TTP donor, a hybrid of 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP) and 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP), has been investigated, and its ability to form metallic cation-radical salts is elucidated.

  3. Role of Metal Cations on the corrosion behaviour of 8090-T851 in a pH 2.0 solution

    DEFF Research Database (Denmark)

    Murthy, K.S.N.; Ambat, Rajan; Dwarakadasa, E.S.

    1994-01-01

    The influence of cations such as Cu2+, Al3+ and Li+ on the corrosion behaviour of 8090-T851(Al-Li) alloy in a pH 2.0 HCl solution was investigated by weight loss and polarisation techniques. Weight loss experiments showed that the effect of cation is a strong function of its nature...

  4. Medium temperature reaction between lanthanide and actinide carbides and hydrogen

    International Nuclear Information System (INIS)

    Dean, G.; Lorenzelli, R.; Pascard, R.

    1964-01-01

    Hydrogen is fixed reversibly by the lanthanide and actinide mono carbides in the range 25 - 400 C, as for pure corresponding metals. Hydrogen goes into the carbides lattice through carbon vacancies and the total fixed amount is approximately equal to two hydrogen atoms per initial vacancy. Final products c.n thus be considered as carbo-hydrides of general formula M(C 1-x , H 2x ). The primitive CFC, NaCl type, structure remains unchanged but expands strongly in the case of actinide carbides. With lanthanide carbides, hydrogenation induces a phase transformation with reappearance of the metal structure (HCP). Hydrogen decomposition pressures of all the studied carbo-hydrides are greater than those of the corresponding di-hydrides. (authors) [fr

  5. Valence instabilities as a source of actinide system inconsistencies

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1979-01-01

    Light actinide elements alone, and in some of their alloys, may exist as a static or dynamic mixture of two configurations. Such a state can explain both a resistivity maximum and lack of magnetic order observed in so many actinide materials, and still be compatible with the existence of f-electrons in narrow bands. Impurity elements may stabilize slightly different intermediate valence states in U, Np, and Pu, thus contributing to inconsistencies in published results. The physical property behavior of mixed-valence, rare-earth compounds is very much like that observed in development of antiphase (martensitic) structures. Martensitic transformations in U, Np, and Pu, from high-temperature b. c. c. to alpha phase, may be a way of ordering an alloy-like metal of mixed or intermediate valence. The relative stability of each phase structure may depend upon its electron-valence ratio. A Hubbard model for electron correlations in a narrow energy band has been invoked in most recent theories for explaining light actinide behavior. Such a model may also be applicable to crystal symmetry changes in martensitic transformations in actinides

  6. Analytical applications of superacid dissolution of actinide and lanthanide substrates

    International Nuclear Information System (INIS)

    Avens, L.R.; Eller, P.G.; Asprey, L.B.; Abney, K.D.; Kinkead, S.A.

    1987-01-01

    The superacid system HF/SbF 5 is extraordinarily effective for total dissolution of actinide and lanthanide ceramic oxides, fluorides, and metals. Optical or gamma spectroscopy can be used directly on the solutions. Evaporation of the HF/SbF 5 solvent under vacuum leaves a residue which is easily dissolved by ordinary mineral acids. The resulting aqueous solutions are readily amenable to conventional analytical methods

  7. Impact of actinide recycle on nuclear fuel cycle health risks

    International Nuclear Information System (INIS)

    Michaels, G.E.

    1992-06-01

    The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR) 1 and Integral Fast Reactor (IF) 2 technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle

  8. Safe actinide disposition in molten salt reactors

    International Nuclear Information System (INIS)

    Gat, U.

    1997-01-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs

  9. Burning actinides in very hard spectrum reactors

    International Nuclear Information System (INIS)

    Robinson, A.H.; Shirley, G.W.; Prichard, A.W.; Trapp, T.J.

    1978-01-01

    The major unresolved problem in the nuclear industry is the ultimate disposition of the waste products of light water reactors. The study demonstrates the feasibility of designing a very hard spectrum actinide burner reactor (ABR). A 1100 MW/sub t/ ABR design fueled entirely with actinides reprocessed from light water reactor (LWR) wastes is proposed as both an ultimate disposal mechanism for actinides and a means of concurrently producing usable power. Actinides from discharged ABR fuel are recycled to the ABR while fission products are routed to a permanent repository. As an integral part of a large energy park, each such ABR would dispose of the waste actinides from 2 LWRs

  10. New Routes to Lanthanide and Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Jaques, B.J.; Osterberg, D.D. [Boise State University, 1910 University Dr., Boise, Idaho 83725-2075 (United States); Marx, B.M. [Concurrent Technologies Corporation, Johnstown, PA (United States); Callahan, P.G. [Carnegie Mellon University, Pittsburgh, PA (United States); Hamdy, A.S. [Central Metallurgical R and D Institute, Helwan, Cairo (Egypt)

    2009-06-15

    The future of nuclear energy in the U.S. and its expansion worldwide depends greatly on our ability to reduce the levels of high level waste to minimal levels, while maintaining proliferation resistance. Implicit in the so-called advanced fuel cycle is the need for higher levels of fuel burn-up and consequential use of complex nuclear fuels comprised of fissile materials such as Pu, Am, Np, and Cm. Advanced nitride fuels comprised ternary and quaternary mixtures of uranium and these actinides have been considered for applications in advanced power plants, but there remain many processing challenges as well as necessary qualification testing. In this presentation, the advantages and disadvantages of nitride fuels are discussed. Methods of synthesizing the raw materials and sintering of fuels are described including a discussion of novel, low cost routes to nitrides that have the potential for reducing the cost and footprint of a fuel processing plant. Phase pure nitrides were synthesized via four primary methods; reactive milling metal flakes in nitrogen at room temperature, directly nitriding metal flakes in a pure nitrogen atmosphere, hydriding metal flakes prior to nitridation, and carbo-thermically reducing the metal oxide and carbon mixture prior to nitridation. In the present study, the sintering of UN, DyN, and their solid solutions (U{sub x}, Dy{sub 1-x}) (x = 1 to 0.7) were also studied. (authors)

  11. Sequential injection chromatography with post-column reaction/derivatization for the determination of transition metal cations in natural water samples.

    Science.gov (United States)

    Horstkotte, Burkhard; Jarošová, Patrícia; Chocholouš, Petr; Sklenářová, Hana; Solich, Petr

    2015-05-01

    In this work, the applicability of Sequential Injection Chromatography for the determination of transition metals in water is evaluated for the separation of copper(II), zinc(II), and iron(II) cations. Separations were performed using a Dionex IonPAC™ guard column (50mm×2mm i.d., 9 µm). Mobile phase composition and post-column reaction were optimized by modified SIMPLEX method with subsequent study of the concentration of each component. The mobile phase consisted of 2,6-pyridinedicarboxylic acid as analyte-selective compound, sodium sulfate, and formic acid/sodium formate buffer. Post-column addition of 4-(2-pyridylazo)resorcinol was carried out for spectrophotometric detection of the analytes׳ complexes at 530nm. Approaches to achieve higher robustness, baseline stability, and detection sensitivity by on-column stacking of the analytes and initial gradient implementation as well as air-cushion pressure damping for post-column reagent addition were studied. The method allowed the rapid separation of copper(II), zinc(II), and iron(II) within 6.5min including pump refilling and aspiration of sample and 1mmol HNO3 for analyte stacking on the separation column. High sensitivity was achieved applying an injection volume of up to 90µL. A signal repeatability of<2% RSD of peak height was found. Analyte recovery evaluated by spiking of different natural water samples was well suited for routine analysis with sub-micromolar limits of detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. ENDF/B-V actinides

    International Nuclear Information System (INIS)

    Kocherov, N.; Lemmel, H.D.

    1981-01-01

    This document summarizes the contents of the actinides part of the ENDF/B-V nuclear data library released by the US National Nuclear Data Center. This library or selective retrievals of it, are available from the IAEA Nuclear Data Section. (author)

  13. Environmental research on actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  14. Photochemical reactions of actinide ions

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi

    1995-01-01

    This paper reviews the results of photochemical studies of actinide ions, which have been performed in our research group for past several years as follows: I) behavior of the excited uranyl(VI) ion; II) photo-reductions of the uranyl ion with organic and inorganic compounds; III) photo-oxidations of uranium(IV) and plutonium(III) in nitric acid solutions. (author)

  15. Angular overlap model in actinides

    International Nuclear Information System (INIS)

    Gajek, Z.; Mulak, J.

    1991-01-01

    Quantitative foundations of the Angular Overlap Model in actinides based on ab initio calculations of the crystal field effect in the uranium (III) (IV) and (V) ions in various crystals are presented. The calculations justify some common simplifications of the model and fix up the relations between the AOM parameters. Traps and limitations of the AOM phenomenology are discussed

  16. Angular overlap model in actinides

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z.; Mulak, J. (Polska Akademia Nauk, Wroclaw (PL). Inst. Niskich Temperatur i Badan Strukturalnych)

    1991-01-01

    Quantitative foundations of the Angular Overlap Model in actinides based on ab initio calculations of the crystal field effect in the uranium (III) (IV) and (V) ions in various crystals are presented. The calculations justify some common simplifications of the model and fix up the relations between the AOM parameters. Traps and limitations of the AOM phenomenology are discussed.

  17. Pyrometallurgical processes for recovery of actinide elements

    International Nuclear Information System (INIS)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository

  18. Pyrometallurgical processes for recovery of actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  19. Actinide solubility in deep groundwaters - estimates for upper limits based on chemical equilibrium calculations

    International Nuclear Information System (INIS)

    Schweingruber, M.

    1983-12-01

    A chemical equilibrium model is used to estimate maximum upper concentration limits for some actinides (Th, U, Np, Pu, Am) in groundwaters. Eh/pH diagrams for solubility isopleths, dominant dissolved species and limiting solids are constructed for fixed parameter sets including temperature, thermodynamic database, ionic strength and total concentrations of most important inorganic ligands (carbonate, fluoride, phosphate, sulphate, chloride). In order to assess conservative conditions, a reference water is defined with high ligand content and ionic strength, but without competing cations. In addition, actinide oxides and hydroxides are the only solid phases considered. Recommendations for 'safe' upper actinide solubility limits for deep groundwaters are derived from such diagrams, based on the predicted Eh/pH domain. The model results are validated as far as the scarce experimental data permit. (Auth.)

  20. Effects of humic substances on the migration of radionuclides: Complexation of actinides with humic substances. 3. Progress report

    International Nuclear Information System (INIS)

    Kim, J.I.; Rhee, D.S.; Buckau, G.; Moulin, V.; Tits, J.; Decambox, P.; Franz, C.; Herrmann, G.; Trautmann, N.; Dierckx, A.; Vancluysen, J.; Maes, A.

    1993-03-01

    The aim of the present research programme is to study the complexation behaviour of actinide ions with humic substances in natural aquifer systems and hence to quantify the effect of humic substances on the actinide migration. Aquatic humic substances commonly found in all groundwaters in different concentrations have a strong tendency towards complexation with actinide ions. This is one of the major geochemical reactions but hitherto least quantified. Therefore, the effect of humic substances on the actinide migration is poorly understood. In the present research programme the complexation of actinide ions with humic substances will be described thermodynamically. This description will be based on a model being as simple as possible to allow an easy introduction of the resulting reaction constants into geochemical modelling of the actinide migration. This programme is a continuation of the activities of the COCO group in the second phase of the CEC-MIRAGE project. The programme consists of the following three main tasks: Task 1: Complexation reactions of actinide ions with well characterized reference and site-specific humic and fulvic acids; Task 2: Competition reactions with major cations in natural groundwaters; Task 3: Validation of the complexation data in natural aquatic systems by comparison of calculation with spectroscopic experiment. (orig./EF)

  1. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.

    Science.gov (United States)

    Han, Gyeo-Re; Jang, Chang-Hyun

    2014-10-01

    Herein, we demonstrated a simple, sensitive, and rapid label-free detection method for heavy-metal (HM) ions using liquid crystal (LC) droplet patterns on a solid surface. Stearic-acid-doped LC droplet patterns were spontaneously generated on an n-octyltrichlorosilane (OTS)-treated glass substrate by evaporating a solution of the nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), dissolved in heptane. The optical appearance of the droplet patterns was a dark crossed texture when in contact with air, which represents the homeotropic orientation of the LC. This was caused by the steric interaction between the LC molecules and the alkyl chains of the OTS-treated surface. The dark crossed appearance of the acid-doped LC patterns was maintained after the addition of phosphate buffered saline (PBS) solution (pH 8.1 at 25°C). The deprotonated stearic-acid molecules self-assembled through the LC/aqueous interface, thereby supporting the homeotropic anchoring of 5CB. However, the optical image of the acid-doped LC droplet patterns incubated with PBS containing HM ions appeared bright, indicating a planar orientation of 5CB at the aqueous/LC droplet interface. This dark to bright transition of the LC patterns was caused by HM ions attached to the deprotonated carboxylate moiety, followed by the sequential interruption of the self-assembly of the stearic acid at the LC/aqueous interface. The results showed that the acid-doped LC pattern system not only enabled the highly sensitive detection of HM ions at a sub-nanomolar concentration but it also facilitated rapid detection (<10 min) with simple procedures. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Actinide science with soft x-ray synchrotron radiation

    International Nuclear Information System (INIS)

    Shuh, D.

    2002-01-01

    Several workshops, some dating back more than fifteen years, recognised both the potential scientific impact and opportunities that would be made available by the capability to investigate actinide materials in the vacuum ultraviolet (VUV)/soft X-ray region of the synchrotron radiation (SR) spectrum. This spectral region revolutionized the approach to surface materials chemistry and physics nearly two decades ego. The actinide science community was unable to capitalize on these SR methodologies for the study of actinide materials until recently because of radiological safety concerns. ,The Advanced Light Source (ALS) at LBNL is a third-generation light source providing state-of-the-art performance in the VUV/soft X-ray region. Along with corresponding improvements in detector and vacuum technology, the ALS has rendered experiments with small amounts of actinide materials possible. In particular, it has been the emergence and development of micro-spectroscopic techniques that have enabled investigations of actinide materials at the ALS. The primary methods for the experimental investigation of actinide materials in the VUV/soft X-ray region are the complementary photoelectron spectroscopies, near-edge X-ray absorption fine structure (NEXAFS) and X-ray emission spectroscopy (XES) techniques. Resonant photo-emission is capable of resolving the 5f electron contributions to actinide bonding and can be used to characterise the electronic structure of actinide materials. This technique is clearly a most important methodology afforded by the tunable SR source. Core level and valence band photoelectron spectroscopies are valuable for the characterisation of the electronic properties of actinide materials, as well as for general analytical purposes. High-resolution core-level photo-emission and resonant photo-emission measurements from the a (monoclinic) and δ (FCC) allotropic phases of plutonium metal have been collected on beam line 7.0 at the ALS and the spectra show

  3. A metal-ion NMR investigation of the antibiotic facilitated transport of monovalent cations through the walls of phospholipid vesicles. II. Sulfur-33 NMR

    International Nuclear Information System (INIS)

    Buster, D.C.

    1988-01-01

    A technique has been developed to investigate the antibiotic facilitated transmembrane transport of monovalent cations using 23 Na and 7 Li Nuclear Magnetic Resonance spectroscopy. The initial portion of this thesis outlines the production and characterization of a model lipid system amenable to the NMR detection of cation transport. Large unilamellar vesicles (LUV) have been prepared from a 4:1 mixture of phosphatidylcholine and phosphatidylglycerol. The presence of the anionic chemical shift reagent dysprosium (III) tripolyphosphate, either inside or outside of the vesicles, allows for the spectroscopic separation of the NMR resonances arising from the inter- and extravesicular cation pools. The cation transporting properties of the channel-forming pentadecapeptide, gramicidin D, have been studied using the NMR technique

  4. Ionic Liquid and Supercritical Fluid Hyphenated Techniques for Dissolution and Separation of Lanthanides, Actinides, and Fission Products

    International Nuclear Information System (INIS)

    Wai, Chien M.; Mincher, Bruce

    2012-01-01

    This project is investigating techniques involving ionic liquids (IL) and supercritical (SC) fluids for dissolution and separation of lanthanides, actinides, and fission products. The research project consists of the following tasks: Study direct dissolution of lanthanide oxides, uranium dioxide and other actinide oxides in [bmin][Tf 2 N] with TBP(HNO 3 ) 1.8 (H 2 O) 0.6 and similar types of Lewis acid-Lewis base complexing agents; Measure distributions of dissolved metal species between the IL and the sc-CO 2 phases under various temperature and pressure conditions; Investigate the chemistry of the dissolved metal species in both IL and sc-CO 2 phases using spectroscopic and chemical methods; Evaluate potential applications of the new extraction techniques for nuclear waste management and for other projects. Supercritical carbon dioxide (sc-CO 2 ) and ionic liquids are considered green solvents for chemical reactions and separations. Above the critical point, CO 2 has both gas- and liquid-like properties, making it capable of penetrating small pores of solids and dissolving organic compounds in the solid matrix. One application of sc-CO 2 extraction technology is nuclear waste management. Ionic liquids are low-melting salts composed of an organic cation and an anion of various forms, with unique properties making them attractive replacements for the volatile organic solvents traditionally used in liquid-liquid extraction processes. One type of room temperature ionic liquid (RTIL) based on the 1-alkyl-3-methylimidazolium cation [bmin] with bis(trifluoromethylsulfonyl)imide anion [Tf 2 N] is of particular interest for extraction of metal ions due to its water stability, relative low viscosity, high conductivity, and good electrochemical and thermal stability. Recent studies indicate that a coupled IL sc-CO 2 extraction system can effectively transfer trivalent lanthanide and uranyl ions from nitric acid solutions. Advantages of this technique include operation at

  5. Recent development in computational actinide chemistry

    International Nuclear Information System (INIS)

    Li Jun

    2008-01-01

    Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of actinide compounds and materials using first-principle theory and computational modeling. Actinide compounds are challenging to computational chemistry because of their complicated electron correlation effects and relativistic effects, including spin-orbit coupling effects. There have been significant developments in theoretical studies on actinide compounds in the past several years. The theoretical capabilities coupled with new experimental characterization techniques now offer a powerful combination for unraveling the complexities of actinide chemistry. In this talk, we will provide an overview of our own research in this field, with particular emphasis on applications of relativistic density functional and ab initio quantum chemical methods to the geometries, electronic structures, spectroscopy and excited-state properties of small actinide molecules such as CUO and UO 2 and some large actinide compounds relevant to separation and environment science. The performance of various density functional approaches and wavefunction theory-based electron correlation methods will be compared. The results of computational modeling on the vibrational, electronic, and NMR spectra of actinide compounds will be briefly discussed as well [1-4]. We will show that progress in relativistic quantum chemistry, computer hardware and computational chemistry software has enabled computational actinide chemistry to emerge as a powerful and predictive tool for research in actinide chemistry. (authors)

  6. Chemical reactivity of cation-exchanged zeolites

    OpenAIRE

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed by Brønsted acid sites in the hydrogen forms of zeolites, the nature of chemical reactivity, and related, the structure of the metal-containing ions in cation-exchanged zeolites remains the subject...

  7. Effects of humic substances on the migration of radionuclides: Complexation of actinides with humic substances. (6th progress report, project summary). Period covered: January 1994 - July 1994

    International Nuclear Information System (INIS)

    Czerwinski, K.R.; Rhee, D.S.; Scherbaum, F.; Buckau, G.; Kim, J.I.; Moulin, V.; Tits, J.; Laszak, I.; Moulin, C.; Decambox, P.; Ruty, O. de; Marquardt, C.; Franz, C.; Herrmann, G.; Trautmann, N.; Dierckx, A.; Vancluysen, J.; Maes, A.; Bidoglio, G.; Eliet, V.; Grenthe, I.

    1995-03-01

    The goal of the research project is to examine the complexation behaviour of actinide ions with humic substances and thermodynamically describe the binding based upon a simple complexation model. This program is a continuation of the activities of the colloid and complexation group (COCO) in the second phase of the EC-MIRAGE project. A number of different experimental methods are used to determine speciation. The metal ions examined are the trivalent lanthanides, UO 2 2+ , NpO 2 + , Am 3+ , and Cm 3+ . The project is divided into three tasks: Task 1: complexation reactions of actinide ions with well characterized reference and site-specific humic and fulvic acids, Task 2: complexation reactions with major cations in natural groundwaters; Task 3: validation of the complexation data in natural aquatic systems by comparison of calculation with spectroscopic experiment. Five European community laboratories participated in the program: Technische Universitaet Muenchen, Commissariat a l'Energie Atomique Fontenay-Aux-Roses and Saclay, Universitaet Mainz, Katolieke Universiteit Leuven, and Joint Research Centre, Ispra. The evaluated stability constants are similar for all laboratories when the same humic substance complexation model is applied. Humic acid is shown to reduce NpO 2 + to Np 4+ , while no reduction of UO 2 2+ is observed. Temperature effects are seen on the Np humate complex. Competition is observed between NpO 2 + and Ca 2+ , but not between the trivalent lanthanides and Ca 2+ . No influence of humic acid purification on the evaluated stability constants is seen. Using the evaluated constants, calculations are conducted for natural water systems which indicate the trivalent actinide humate complex to be an important species. (orig.)

  8. Sol-gel chemistry applied to the synthesis of polymetallic oxides including actinides reactivity and structure from solution to solid state; Synthese par voie douce d'oxydes polymetalliques incluant des actinides: reactivite et structure de la solution au solide

    Energy Technology Data Exchange (ETDEWEB)

    Lemonnier, St

    2006-02-15

    Minor actinides transmutation is studied at present in order to reduce the radiotoxicity of nuclear waste and the assessment of its technical feasibility requires specific designed materials. When considering americium, yttria stabilized zirconia (Am{sup III} YII Zriv)Or{sub x} is among the ceramic phases that one which presents the required physico-chemical properties. An innovative synthesis of this mixed oxide by sol-gel process is reported in this manuscript. The main aim of this work is to adjust the reactivity of the different metallic cations in aqueous media using complexing agent, in order to initiate a favourable interaction for a homogeneous elements repartition in the forming solid phase. The originality of the settled synthesis lies on an in-situ formation of a stable and monodisperse nano-particles dispersion in the presence of acetylacetone. The main reaction mechanisms have been identified: the sol stabilisation results from an original interaction between the three compounds (Zrly, trivalent cations and acetylacetone). The sol corresponds to a structured system at the nanometer scale for which zirconium and trivalent cations are homogeneously dispersed, preliminary to the sol-gel transition. Furthermore, preliminary studies were carried out with a view to developing materials. They have demonstrated that numerous innovative and potential applications can be developed by taking advantage of the direct and controlled formation of the sol and by adapting the sol-gel transition. The most illustrating result is the preparation of a sintered pellet with the composition Am0,13Zro,73Yo,0901,89 using this approach. (author)

  9. Simulations of the Thermodynamic and Diffusion Properties of Actinide Oxide Fuel Materials

    International Nuclear Information System (INIS)

    Becker, Udo

    2013-01-01

    Spent nuclear fuel from commercial reactors is comprised of 95-99 percent UO 2 and 1-5 percent fission products and transuranic elements. Certain actinides and fission products are of particular interest in terms of fuel stability, which affects reprocessing and waste materials. The transuranics found in spent nuclear fuels are Np, Pu, Am, and Cm, some of which have long half- lives (e.g., 2.1 million years for 237 Np). These actinides can be separated and recycled into new fuel matrices, thereby reducing the nuclear waste inventory. Oxides of these actinides are isostructural with UO 2 , and are expected to form solid solutions. This project will use computational techniques to conduct a comprehensive study on thermodynamic properties of actinide-oxide solid solutions. The goals of this project are to: Determine the temperature-dependent mixing properties of actinide-oxide fuels; Validate computational methods by comparing results with experimental results; Expand research scope to complex (ternary and quaternary) mixed actinide oxide fuels. After deriving phase diagrams and the stability of solid solutions as a function of temperature and pressure, the project team will determine whether potential phase separations or ordered phases can actually occur by studying diffusion of cations and the kinetics of potential phase separations or ordered phases. In addition, the team will investigate the diffusion of fission product gases that can also have a significant influence on fuel stability. Once the system has been established for binary solid solutions of Th, U, Np, and Pu oxides, the methodology can be quickly applied to new compositions that apply to ternaries and quaternaries, higher actinides (Am, Cm), burnable poisons (B, Gd, Hf), and fission products (Cs, Sr, Tc) to improve reactivity

  10. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management

    International Nuclear Information System (INIS)

    2008-01-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX TM process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel cycles

  11. Effect of cation competition on cadmium uptake from solution by the earthworm Eisenia fetida.

    NARCIS (Netherlands)

    Li, L.-Z.; Zhou, D.-M.; Wang, P.; Jin, S.-Y.; Peijnenburg, W.J.G.M.; Reinecke, A.J.; van Gestel, C.A.M.

    2009-01-01

    Metal speciation alone is insufficient to predict metal accumulation in aquatic and terrestrial organisms, because competition between cations can play an important role. In the present study, the effects of competing cations (Ca

  12. Estimation of formation heat of rare earth and actinide alloys

    International Nuclear Information System (INIS)

    Shubin, A.B.; Yamshchikov, L.F.; Raspopin, S.P.

    1986-01-01

    A method for forecasting the enthalpy of formation of scandium, yttrium, lanthanum and lanthanides, thorium, uranium and plutonium alloys with a series of fusible metals (Al, Ga, In, Tl, Sn, Pb, Sb, Bi) is proposed. The obtained confidence internal value for the calculated Δ f H 0 values exceeds sufficiently the random error of the experimental determination of the rare metal alloy formation enthalpies. However, taking into account considerable divergences in results of Δ f H 0 determinations performed by different science groups, one may conclude, that such forecasting accuracy may be useful in the course of estimation calculations, especially, for actinide element alloys

  13. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... highly enantioselective silylation reactions in polyether-generated chiral environments, and leading to a record-high turnover in asymmetric organocatalysis. This can lead to further applications by the asymmetric use of other inorganic salts in various organic transformations....

  14. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  15. Actinide behavior in the Integral Fast Reactor. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C.

    1994-11-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and weapons grade plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for seven day exposure in the Experimental Breeder Reactor-II which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction rates and neutron spectra. These experimental data increase the authors confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  16. Actinide behavior in the Integral Fast Reactor. Final project report

    International Nuclear Information System (INIS)

    Courtney, J.C.

    1994-11-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ( 237 Np, 240 Pu, 241 Am, and 243 Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and weapons grade plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for seven day exposure in the Experimental Breeder Reactor-II which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction rates and neutron spectra. These experimental data increase the authors confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs

  17. Behavior of actinides in the Integral Fast Reactor fuel cycle

    International Nuclear Information System (INIS)

    Courtney, J.C.; Lineberry, M.J.

    1994-01-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ( 237 Np, 240 Pu, 241 Am, and 243 Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors' confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs

  18. Spectroscopic properties of tetravalent actinide ions in solids

    International Nuclear Information System (INIS)

    Krupa, J.C.

    1987-01-01

    Optical spectroscopy is a powerful tool to study the electronic structure of an optically active transition ion in the condensed phase media and consequently to study the interactions between the central ion and its environment. The main interactions that are essential for an understanding of the energy level distribution of an f N ion in solids is briefly examined and the deduced free-ion and crystal field parameters for Pa 4+ , U 4+ , Np 4+ are compared to those of the isoelectronic configuration lanthanide ions. At last, the actinide series offers an interesting situation since the 5f electrons in the metals are delocalized in the light actinides and then localized, that sould affect the nature of the chemical bonding in the two parts of the series. Is this trend reflected in the An 4+ spectroscopic parameters

  19. Analytical evaluation of actinide sensitivities

    International Nuclear Information System (INIS)

    Sola, A.

    1977-01-01

    The analytical evaluation of the sensitivities of actinides to various parameters such as cross sections, decay constants, flux and time is presented. The formulae are applied to isotopes of the Uranium, Neptunium, Plutonium and Americium series. The agreement between analytically obtained and computer evaluated sensitivities being always good, it is throught that the formulation includes all the important parameters entering in the evaluation of sensitivities. A study of the published data is made

  20. Room temperature electrodeposition of actinides from ionic solutions

    Science.gov (United States)

    Hatchett, David W.; Czerwinski, Kenneth R.; Droessler, Janelle; Kinyanjui, John

    2017-04-25

    Uranic and transuranic metals and metal oxides are first dissolved in ozone compositions. The resulting solution in ozone can be further dissolved in ionic liquids to form a second solution. The metals in the second solution are then electrochemically deposited from the second solutions as room temperature ionic liquid (RTIL), tri-methyl-n-butyl ammonium n-bis(trifluoromethansulfonylimide) [Me.sub.3N.sup.nBu][TFSI] providing an alternative non-aqueous system for the extraction and reclamation of actinides from reprocessed fuel materials. Deposition of U metal is achieved using TFSI complexes of U(III) and U(IV) containing the anion common to the RTIL. TFSI complexes of uranium were produced to ensure solubility of the species in the ionic liquid. The methods provide a first measure of the thermodynamic properties of U metal deposition using Uranium complexes with different oxidation states from RTIL solution at room temperature.

  1. Functionalized ionic liquids: new agents for the extraction of actinides/lanthanides

    International Nuclear Information System (INIS)

    Ouadi, A.; Hesemann, P.; Billard, I.; Gaillard, C.; Gadenne, B.; Moreau, Joel J.E; Moutiers, G.; Mariet, C.; Labet, A.

    2004-01-01

    The potentialities of hydrophobic ionic liquids BumimPF 6 and BumimTf 2 N for their use in the nuclear fuel cycle were investigated, in particular for the liquid liquid extraction. We demonstrate that the use of RTILs in replacement of the organic diluents for actinides partitioning is promising. In our contribution, we present the synthesis of several task-specific ionic liquids. Our results show that grafting metal complexing groups increases the affinity of metals to the IL phase and gives rise to suitable media for the liquid-liquid extraction of actinides. (authors)

  2. Solid-state actinide acid phosphites from phosphorous acid melts

    International Nuclear Information System (INIS)

    Oh, George N.; Burns, Peter C.

    2014-01-01

    The reaction of UO 3 and H 3 PO 3 at 100 °C and subsequent reaction with dimethylformamide (DMF) produces crystals of the compound (NH 2 (CH 3 ) 2 )[UO 2 (HPO 2 OH)(HPO 3 )]. This compound crystallizes in space group P2 1 /n and consists of layers of uranyl pentagonal bipyramids that share equatorial vertices with phosphite units, separated by dimethylammonium. In contrast, the reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup. Subsequent dilution in solvents and use of standard solution-state methods results in the crystallization of two polymorphs of the actinide acid phosphites An(HPO 2 OH) 4 (An=U, Th) and of the mixed acid phosphite–phosphite U(HPO 3 )(HPO 2 OH) 2 (H 2 O)·2(H 2 O). α- and β-An(HPO 2 OH) 4 crystallize in space groups C2/c and P2 1 /n, respectively, and comprise a three-dimensional network of An 4+ cations in square antiprismatic coordination corner-sharing with protonated phosphite units, whereas U(HPO 3 )(HPO 2 OH) 2 (H 2 O) 2 ·(H 2 O) crystallizes in a layered structure in space group Pbca that is composed of An 4+ cations in square antiprismatic coordination corner-sharing with protonated phosphites and water ligands. We discuss our findings in using solid inorganic reagents to produce a solution-workable precursor from which solid-state compounds can be crystallized. - Graphical abstract: Reaction of UO 3 and H 3 PO 3 at 100 °C and subsequent reaction with DMF produces crystals of (NH 2 (CH 3 ) 2 )[UO 2 (HPO 2 OH)(HPO 3 )] with a layered structure. Reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup and further solution-state reactions result in the crystallization of the actinide acid phosphites An(HPO 2 OH) 4 (An=U, Th), with a three-dimensional network structure, and the mixed acid phosphite–phosphite U(HPO 3 )(HPO 2 OH) 2 (H 2 O) 2 ·(H 2 O) with a layered structure. - Highlights: • U(VI), U(IV) and Th(IV) phosphites were synthesized by solution

  3. Coordination chemistry of several radius-sensitive complexones and applications to lanthanide-actinide separations

    Energy Technology Data Exchange (ETDEWEB)

    Potter, M.W.

    1981-10-01

    The relationships between the lanthanide complex formation equilibria and the lanthanide-actinide separation application of three radius sensitive ligands have been studied. The consecutive stepwise formation constants of the 1:1, 2:1, and 3:1 chelate species formed by the interaction of DHDMB and the tripositive lanthanides and yttrium were determined potentiometrically at 0.1 M ionic strength and 25/sup 0/C. Results indicate that three different coordination modes, one tridentate and two bidentate are in evidence. Tracer level /sup 241/Am - /sup 155/Eu cation-exchange experiments utilizing DHDMB eluents indicate that this dihydroxycarboxylate does not form a sufficiently strong americium complex to elute that actinide ahead of europium. The overall stability of the americium 3:1 complex appears intermediate between samarium and europium. Cation-exchange elutions of /sup 241/Am, /sup 155/Eu, and /sup 160/Tb mixtures with EEDTA solutions prove that the EEDTA ligand is capable of eluting americium ahead of all of the tripositive lanthanide cations. The minimum separation occurs with terbium, where the Am-Tb separation factor is 1.71. 1,5-diaminopentane-N,N,N',N'-tetraacetic acid (PMDTA) was synthesized using cation exchange. A mathematical method was developed for the formation constants of the protonated and unprotonated lanthanide-PMDTA complexes from potentiometry. Cation-exchange elutions of tracer quantities of Am, Eu, and Tb revealed that terbium is eluted ahead of both americium and europium.

  4. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    Pruett, D.J.; Sherrow, S.A.; Toth, L.M.

    1988-01-01

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  5. Chemical interaction of tetravalent actinides simulators and the engineering barrier

    International Nuclear Information System (INIS)

    Chain, Pablo; Alba, Maria D.; Castro, Miguel A.; Pavon, Esperanza; Mar Orta, M.

    2010-01-01

    Document available in extended abstract form only. The Deep Geological Repository (DGR) is the most internationally accepted option for the storage of high radioactive wastes. This confinement is based on the Multi-barrier Concept where the engineered barrier is a crucial safety wise. Nowadays, bentonite is accepted as the best argillaceous material in the engineered barrier of DGR. Additionally to its well-known physical role, a chemical interaction between lutetium, as actinide simulator, and the smectite has been demonstrated. The existence of a reaction mechanism, which was not previously described, based on the chemical interaction between the lanthanide cations and the orthosilicate anions of the lamellar structure has been identified. This finding has aroused the interest of the scientific community because lanthanides are used as simulators of high activity radionuclide (HAR) in agreement with the guidelines established in the bibliography. It has been observed that in conditions of moderate temperature and pressure a chemical interaction exists between smectites and rare earth elements (RE) and phases of insoluble di-silicate, RE 2 Si 2 O 7 , which would immobilize RE, are generated. It is remarkable that the reaction extends to all the set of the smectites, although they do not display the same reactivity, the saponite being the most reactive. The main isotopes present in the HLW belong to the actinide elements Np, Pu, Am and Cm, in addition to uranium generated by neutron capture during the fuel combustion process. The study of the mobilization of actinide (IV) thorough the bentonite barrier is limited because of their radioactivity. However, U(IV), Np(IV), Pu(IV) and Th(IV) can be simulated by the stable isotopes of the Zr(IV) and Hf(IV), because they exhibit ionic radius and physicochemical properties very similar to those of the actinide elements. It is the main objective of this research to investigate the chemical interaction of Zr(IV) as actinide

  6. Synthesis and evaluation structure/extracting and complexing properties of new bi-topic ligands for group actinides extraction

    International Nuclear Information System (INIS)

    Bisson, J.

    2011-01-01

    The aim of this project is to design and study new extractants for spent nuclear fuel reprocessing. To decrease the long-term radiotoxicity of the waste, the GANEX process is an option to homogeneously recycle actinides. All actinides (U, Np, Pu, Am, Cm) would be extracted together from a highly acidic media and separated from fission products (especially from lanthanides). In this context, fourteen new bi-topic ligands constituted of a nitrogen poly-aromatic unit from the dipyridyl-phenanthroline and dipyridyl-1,3,5-triazine families and functionalized by amid groups were synthesized. Extraction studies performed with some of these ligands confirmed their interest to selectively separate actinides at different oxidation states from an aqueous solution 3M HNO 3 . To determine the influence of ligands structure on cation complexation, a study in a homogenous media (MeOH/H 2 O) has been carried out. Electro-spray ionization mass spectrometry have been used to characterize the complexes stoichiometries formed with several cations (Eu 3+ , Nd 3+ , Am 3+ , Pu 4+ and NpO 2 + ). Stability constants, evaluated by UV-Visible spectrophotometry, confirm the selectivity of these ligands toward actinides. Lanthanides and actinides complexes have also been characterized in the solid state by infra-red spectroscopy and X-Ray diffraction. Associated to nuclear magnetic resonance experiments and DFT calculations (Density Functional Theory), a better knowledge of their coordination mode was achieved. (author) [fr

  7. Study of transition metal cations state on the catalyst surface by IR-spectroscopy of adsorbed test-molecules (CO, NO)

    International Nuclear Information System (INIS)

    Davydov, A.A.

    1993-01-01

    Using the methods of IR spectroscopy and ESR spectral manifestations of CO and NO in complexes with cations of vanadium in different oxidation degrees and coordination states have been studied. V 5+ cations do not coordinate NO and CO, but coordinate ammonia. Regular decrease of νCO values in V n+ -CO complexes with vanadium oxidation degree decrease has been shown. Spectral manifestation of NO complexes with V 4+ and V 3+ have been followed. The formation of V 4+ -NO, V 3+ -NO and V 3+ (NO) complexes has been established

  8. Separation by liquid-liquid extraction of actinides(III) from lanthanides(III) using new molecules: the picolinamides; Separation par extraction liquide-liquide des actinides(III) des lanthanides(III) par de nouvelles molecules: les picolinamides

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, P Y [CEA Marcoule, Departement de Recherche en Retraitement et en Vitrification, 30 - Bagnols-sur-Ceze (France); [Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1996-07-01

    In the field of long-lived radionuclides separation from waste generated during spent fuel reprocessing, the picolinamides have been chosen as potential extractants for the selective extraction of actinides (III) from lanthanides (III). The first studies initiated on the most simple molecule of the picolinamide family, namely 2-pyridinecarboxamide, pointed out that in an aqueous media the complexation stability constant between this ligand and Am(III) is roughly 10 times higher than the ones corresponding to Ln(III). The synthesis of lipophilic derivatives of 2-pyridinecarboxamide leaded to extraction experiments. The extraction of metallic cation by lipophilic picolinamides, according to a solvatation mechanism, is strongly dependent on the nature of the amide function: a primary amide function (group I) leads to a good extraction; on the contrary, there is a decrease for secondary (group II) and tertiary (group III) amide functions. From a theoretical point of view, this work leads finally to the following conclusions: confirmation of the importance of the presence of soft donor atoms within the extractants (nitrogen in our case) for An(III)/Ln(III). Also, sensitivity of this soft donor atom regarding the protonation reaction; prevalence in our case of the affinity of the extractant for the metallic cation over the lipophilia of the extractant to ensure good distribution coefficients. The extraction and Am(III)/Ln(III) separation performances of the picolinamides from pertechnetic media leads to the design of a possible flowsheet for the reprocessing of high level liquid waste, with the new idea of an integrated technetium reflux. (author) 105 refs.

  9. Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

    2010-02-24

    A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

  10. The chemistry of molten salt mixtures: application to the reductive extraction of lanthanides and actinides by a liquid metal; Chimie des melanges de sels fondus. Application a l'extraction reductrice d'actinides et de lanthanides par un metal liquide

    Energy Technology Data Exchange (ETDEWEB)

    Finne, J

    2005-10-15

    The design of a process of An/Ln separation by liquid - liquid extraction can be used for on-line purification of the molten salt in a molten salt nuclear reactor (Generation IV) as well as reprocessing various spent fuels. In order to establish the chemical properties of An and Ln in molten salt mediums, E - pO{sub 2} - diagrams were established for the relevant chemical elements. With the purpose of checking the possibilities of separating the An from Ln, the real activity coefficients in liquid metals were measured. An experimental protocol was developed and validated on the Gd/Ga system. It was then transferred to radioactive environment to measure the activity coefficient of Pu in Ga. The results made it possible to estimate the effectiveness of the Pu extraction and its separation from Gd and Ce. The selectivity was shown to decrease with the temperature and Al and Ga showed a good selectivity between Pu and the Ce in fluoride medium. (author)

  11. Separation by liquid-liquid extraction of actinides(III) from lanthanides(III) using new molecules: the picolinamides

    International Nuclear Information System (INIS)

    Cordier, P.Y.

    1996-07-01

    In the field of long-lived radionuclides separation from waste generated during spent fuel reprocessing, the picolinamides have been chosen as potential extractants for the selective extraction of actinides (III) from lanthanides (III). The first studies initiated on the most simple molecule of the picolinamide family, namely 2-pyridinecarboxamide, pointed out that in an aqueous media the complexation stability constant between this ligand and Am(III) is roughly 10 times higher than the ones corresponding to Ln(III). The synthesis of lipophilic derivatives of 2-pyridinecarboxamide leaded to extraction experiments. The extraction of metallic cation by lipophilic picolinamides, according to a solvatation mechanism, is strongly dependent on the nature of the amide function: a primary amide function (group I) leads to a good extraction; on the contrary, there is a decrease for secondary (group II) and tertiary (group III) amide functions. From a theoretical point of view, this work leads finally to the following conclusions: confirmation of the importance of the presence of soft donor atoms within the extractants (nitrogen in our case) for An(III)/Ln(III). Also, sensitivity of this soft donor atom regarding the protonation reaction; prevalence in our case of the affinity of the extractant for the metallic cation over the lipophilia of the extractant to ensure good distribution coefficients. The extraction and Am(III)/Ln(III) separation performances of the picolinamides from pertechnetic media leads to the design of a possible flowsheet for the reprocessing of high level liquid waste, with the new idea of an integrated technetium reflux. (author)

  12. The complex formation of selected actinides (U, Np, Cm) with microbial ligands

    International Nuclear Information System (INIS)

    Glorius, Maja

    2009-01-01

    One of the urgent tasks in the field of nuclear technology is the final storage of radioactive substances. As a part of the safety requirements the protection of humans and the environment from the danger of radioactive substances in case of the release from the final storage is essential. For performing long-term safety calculations the detailed understanding of the physico-chemical effects and influences which cause the mobilisation and transport of actinides are necessary. The presented work was a discrete part of a project, which was focused on the clarification of the influence of microorganisms on the migration of actinides in case of the release of actinides from a final storage. The influence of microbial produced substances on the mobilisation of selected actinides was studied thereby. The microbial produced substances studied in this project were synthesized by bacteria from the Pseudomonas genus under special conditions. Fluorescent Pseudomonads secrete bacterial pyoverdin-type siderophores with a high potential to complex and transport metals, especially iron(III). The aim of the project was to determine how and under which conditions the bioligands are able to complex also radioactive substances and therefore to transport them. For this work the alpha-emitting actinides uranium, curium and neptunium were chosen because their long-life cycle and their radiotoxicity are a matter of particular interest. This work dealed with the interaction of the actinides U(VI), Np(V) and Cm(III) with model ligands simulating the functionality of the pyoverdins. So, such bioligands can essentially influence the behaviour of actinides in the environment. The results of this work contribute to a better understanding and assessment of the influence of the microbial ligands to the mobilisation and migration of the radionuclides. The outcomes could be used to quantify the actinide-mobilising effect of the bioligands, which are released, for example, in the vicinity of a

  13. Role of the metal oxidation state in the SNS-Cr catalyst for ethylene trimerization: Isolation of Di- and trivalent cationic intermediates

    NARCIS (Netherlands)

    Jabri, A.; Temple, C.N.; Crewdson, P.; Gambarotta, S.; Korobkov, I.V.; Duchateau, R.

    2006-01-01

    The reaction of the highly selective [CySCH2CH2N(H)CH2CH2SCy]CrCl3 catalyst precursor with alkyl aluminum activators was examined with the aim of isolating reactive intermediates. Reaction with Me3Al afforded a cationic trivalent chromium alkyl species

  14. Systematics of criticality data of special actinide nuclides deduced through the Trombay criticality formula

    International Nuclear Information System (INIS)

    Srinivasan, M.; SubbaRao, K.; Garg, S.B.; Acharya, G.V.

    1989-01-01

    The authors describe a number of interesting systematics and correlations deduced by analyzing the criticality data of special actinide nuclides using concepts embodied in the Trombay critically formula (TCF). The κ ∞ of fast metal actinide nuclides gives a remarkable linear correlation with the fissility parameter Z 2 /A. The neutron leakage probability of all fast metal cores characterized using a constant parameter σ std enables computation of the critical mass value of any unknown fissile nuclide knowing only its Z 2 /A value. Since the neutron leakage probability from dilute fissile solutions is primarily governed by the scattering/slowing down properties of the hydrogen present in water, critical masses and subcritical limits can be predicted for any water-reflected system at any specified hydrogen-to-actinide atomic ratio knowing only the κ ∞ value of the given fissile solution

  15. Lanthanide and actinide ion phytoextraction: investigations of biosorption chemistry

    International Nuclear Information System (INIS)

    Rayson, Gary D.; Serna, Debbie D.; Moore, Jessica L.

    2009-01-01

    Investigations of the chemical interactions responsible for passive biosorption of a lanthanide (Eu (III)) and an actinide (U (VI)) metal ion is described. Spectroscopic methods for the elucidation of chemical functionalities on cultured anther cell walls from the plant Datura innoxia include metal ion luminescence measurements. These have revealed the presence of distinctly different binding environments involving one, two, and three carboxylate moieties for Eu (III) and UO 2 2+ binding and sulfonates (or sulfates) and phosphates for sequestration of Eu (III) on the uranyl ion, respectively. Additional investigations of the apparent affinities of these metals to this material have revealed the presence of both low and high affinity sites for the binding of Eu (III) with weak electrostatic attractions proposed for binding at high metal concentrations (i.e., low affinities) and surface coordination interactions responsible for higher affinities. Conversely, total uranyl ion binding revealed only a single distribution of interactions based on apparent affinities. (author)

  16. Electrochemical reduction of actinides oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.

    2011-01-01

    Reactive metals are currently produced from their oxide by multiple steps reduction techniques. A one step route from the oxide to the metal has been suggested for metallic titanium production by electrolysis in high temperature molten chloride salts. In the so-called FFC process, titanium oxide is electrochemically reduced at the cathode, generating O 2- ions, which are converted on a graphite anode into carbon oxide or dioxide. After this process, the spent salt can in principle be reused for several batches which is particularly attractive for a nuclear application in terms of waste minimization. In this work, the electrochemical reduction process of cerium oxide (IV) is studied in CaCl 2 and CaCl 2 -KCl melts to understand the oxide reduction mechanism. Cerium is used as a chemical analogue of actinides. Electrolysis on 10 grams of cerium oxide are made to find optimal conditions for the conversion of actinides oxides into metals. The scale-up to hundred grams of oxide is also discussed. (author) [fr

  17. Analysis of large soil samples for actinides

    Science.gov (United States)

    Maxwell, III; Sherrod, L [Aiken, SC

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  18. Burn of actinides in MOX fuel cells

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2017-09-01

    The spent fuel from nuclear reactors is stored temporarily in dry repositories in many countries of the world. However, the main problem of spent fuel, which is its high radio-toxicity in the long term, is not solved. A new strategy is required to close the nuclear fuel cycle and for the sustain ability of nuclear power generation, this strategy could be the recycling of plutonium to obtain more energy and recycle the actinides generated during the irradiation of the fuel to transmute them in less radioactive radionuclides. In this work we evaluate the quantities of actinides generated in different fuels and the quantities of actinides that are generated after their recycling in a thermal reactor. First, we make a reference calculation with a regular enriched uranium fuel, and then is changed to a MOX fuel, varying the plutonium concentrations and determining the quantities of actinides generated. Finally, different amounts of actinides are introduced into a new fuel and the amount of actinides generated at the end of the fuel burn is calculated, in order to determine the reduction of minor actinides obtained. The results show that if the concentration of plutonium in the fuel is high, then the production of minor actinides is also high. The calculations were made using the cell code CASMO-4 and the results obtained are shown in section 6 of this work. (Author)

  19. Environmental chemistry of the actinide elements

    International Nuclear Information System (INIS)

    Rao Linfeng

    1986-01-01

    The environmental chemistry of the actinide elements is a new branch of science developing with the application of nuclear energy on a larger and larger scale. Various aspects of the environmental chemistry of the actinide elements are briefly reviewed in this paper, such as its significance in the nuclear waste disposal, its coverage of research fields and possible directions for future study

  20. [Noncovalent cation-π interactions--their role in nature].

    Science.gov (United States)

    Fink, Krzysztof; Boratyński, Janusz

    2014-11-07

    Non-covalent interactions play an extremely important role in organisms. The main non-covalent interactions in nature are: ion-ion interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals interactions. A new kind of intermolecular interactions--cation-π interactions--is gaining increasing attention. These interactions occur between a cation and a π system. The main contributors to cation-π interactions are electrostatic, polarization and, to a lesser extent, dispersion interactions. At first, cation-π interactions were studied in a gas phase, with metal cation-aromatic system complexes. The characteristics of these complexes are as follows: an increase of cation atomic number leads to a decrease of interaction energy, and an increase of cation charge leads to an increase of interaction energy. Aromatic amino acids bind with metal cations mainly through interactions with their main chain. Nevertheless, cation-π interaction with a hydrophobic side chain significantly enhances binding energy. In water solutions most cations preferentially interact with water molecules rather than aromatic systems. Cation-π interactions occur in environments with lower accessibility to a polar solvent. Cation-π interactions can have a stabilizing role on the secondary, tertiary and quaternary structure of proteins. These interactions play an important role in substrate or ligand binding sites in many proteins, which should be taken into consideration when the screening of effective inhibitors for these proteins is carried out. Cation-π interactions are abundant and play an important role in many biological processes.