WorldWideScience

Sample records for actinide ma recycling

  1. Actinides recycling assessment in a thermal reactor

    International Nuclear Information System (INIS)

    Highlights: • Actinides recycling is assessed using BWR fuel assemblies. • Four fuel rods are substituted by minor actinides rods in a UO2 and in a MOX fuel assembly. • Performance of standard fuel assemblies and the ones with the substitution is compared. • Reduction of actinides is measured for the fuel assemblies containing minor actinides rods. • Thermal reactors can be used for actinides recycling. - Abstract: Actinides recycling have the potential to reduce the geological repository burden of the high-level radioactive waste that is produced in a nuclear power reactor. The core of a standard light water reactor is composed only by fuel assemblies and there are no specific positions to allocate any actinides blanket, in this assessment it is proposed to replace several fuel rods by actinides blankets inside some of the reactor core fuel assemblies. In the first part of this study, a single uranium standard fuel assembly is modeled and the amount of actinides generated during irradiation is quantified for use it as reference. Later, in the same fuel assembly four rods containing 6 w/o of minor actinides and using depleted uranium as matrix were replaced and depletion was simulated to obtain the net reduction of minor actinides. Other calculations were performed using MOX fuel lattices instead of uranium standard fuel to find out how much reduction is possible to obtain. Results show that a reduction of minor actinides is possible using thermal reactors and a higher reduction is obtained when the minor actinides are embedded in uranium fuel assemblies instead of MOX fuel assemblies

  2. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  3. Advanced Recycling Reactor with Minor Actinide Fuel

    International Nuclear Information System (INIS)

    The Advanced Recycling Reactor (ARR) with minor actinide fuel has been studied. This paper presents the pre-conceptual design of the ARR proposed by the International Nuclear Recycling Alliance (INRA) for FOA study sponsored by DOE of the United States of America (U.S.). Although the basic reactor concept is technically mature, it is not suitable for commercial use due to the need to reduce capital costs. As a result of INRA's extensive experience, it is anticipated that a non-commercial ARR1 will be viable and meet U.S. requirements by 2025. Commercial Advanced Recycling Reactor (ARR) operations are expected to be feasible in competition with LWRs by 2050, based on construction of ARR2 in 2035. The ARR based on the Japan Sodium-cooled Fast Reactor (JSFR) is a loop-typed sodium cooled reactor with MOX fuel that is selected because of much experience of SFRs in the world. Major features of key technology enhancements incorporated into the ARR are the following: Decay heat can be removed by natural circulation to improve safety. The primary cooling system consists of two-loop system and the integrated IHX/Pump to improve economics. The steam generator with the straight double-walled tube is used to improve reliability. The reactor core of the ARR1 is 70 cm high and the volume fraction of fuel is 31.6%. The conversion ratio of fissile is set up less than 0.65 and the amount of burned TRU is 45-51 kg/TWeh. According to survey of more effective TRU burning core, the oxide fuel core containing high TRU (MA 15%, Pu 35% average) with moderate pins of 12% arranged driver fuel assemblies can decrease TRU conversion ratio to 0.33 and improve TRU burning capability to 67 kg/TWeh. The moderator can enhance TRU burning, while increasing the Doppler effect and reducing the positive sodium void effect. High TRU fraction promotes TRU burning by curbing plutonium production. High Am fraction and Am blanket promote Am transmutation. The ARR1 consists of a reactor building (including

  4. Actinide recycle in LMFBRs as a waste management alternative

    Energy Technology Data Exchange (ETDEWEB)

    Beaman, S.L.

    1979-08-21

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs.

  5. Future nuclear fuel cycles: Prospect and challenges for actinide recycling

    Science.gov (United States)

    Warin, Dominique

    2010-03-01

    The global energy context pleads in favour of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel. In this context, nuclear power has the worldwide potential to curtail the dependence on fossil fuels and thereby to reduce the amount of greenhouse gas emissions while promoting energy independence. How we deal with nuclear radioactive waste is crucial in this context. In France, the public's concern regarding the long-term waste management made the French Governments to prepare and pass the 1991 and 2006 Acts, requesting in particular the study of applicable solutions for still minimizing the quantity and the hazardousness of final waste. This necessitates High Active Long Life element (such as the Minor Actinides MA) recycling, since the results of fuel cycle R&D could significantly change the challenges for the storage of nuclear waste. HALL recycling can reduce the heat load and the half-life of most of the waste to be buried to a couple of hundred years, overcoming the concerns of the public related to the long-life of the waste and thus aiding the "burying approach" in securing a "broadly agreed political consensus" of waste disposal in a geological repository. This paper presents an overview of the recent R and D results obtained at the CEA Atalante facility on innovative actinide partitioning hydrometallurgical processes. For americium and curium partitioning, these results concern improvements and possible simplifications of the Diamex-Sanex process, whose technical feasibility was already demonstrated in 2005. Results on the first tests of the Ganex process (grouped actinide separation for homogeneous recycling) are also discussed. In the coming years, next steps will involve both better in-depth understanding of the basis of these actinide partitioning processes and, for the new promising

  6. Advanced processes for minor actinides recycling: studies towards potential industrialization

    International Nuclear Information System (INIS)

    In June 2006, a new act on sustainable management of radioactive waste was voted by the French parliament with a national plan on radioactive materials and radioactive waste management (PNG-MDR). Concerning partitioning and transmutation, the program is connected to 4. generation reactors, in which transmutation of minor actinides could be operated. In this frame, the next important milestone is 2012, with the assessment of the possible transmutation roads, which are either homogeneous recycling of the minor actinides in the whole reactor fleet, with a low content of M.A (∼3%) in all fuel assemblies, or heterogeneous recycling of the minor actinides in about one third of the reactor park, with a higher content of M.A. (∼20%) in dedicated targets dispatched in the periphery of the reactor. Advanced processes for the recycling of minor actinides are being developed to address the challenges of these various management options. An important part of the program consists in getting closer to process implementation conditions. The processes based on liquid-liquid extraction benefit from the experience gained by operating the PUREX process at the La Hague plant. In the field of extracting apparatus, a large experience is available. In the field of extracting apparatus, a large experience is already available. Nevertheless, the processes present specificities which have to be considered more precisely. They have been classified in the following fields: - Evolution of the simulation codes, including phenomenological representations: with such a simulation tool, it will be possible to assess operating tolerances, lead sensitivity studies and calculate transient states; - Definition of the implementation conditions in continuous contactors (such as pulse columns), according to the extractant physico-chemical characteristics; - Scale-up of new extractants, such as malonamides used in the DIAMEX process, facing purity specifications and costs estimation; - Solvent clean

  7. Outcomes on Oxide Fuel Development for Minor Actinides Recycling

    International Nuclear Information System (INIS)

    A state of the art review is given of minor actinide (MA)-bearing oxide fuel development for sodium fast reactors (SFRs) and accelerator driven systems (ADS). The homogeneous recycle option in SFRs, where small amounts of MAs are diluted in (U,Pu)O2-x driver fuels, emerges as a technically sound approach, reinforced by national and international programmes. Its technology readiness level is appropriate to implement irradiation tests from pin to bundle scale. Regarding the heterogeneous recycle option in SFRs, a comprehensive database regarding inert matrix fuels is available as the result of ~35 irradiation tests. The promising results gained with MgO, Mo and ZrO2 matrices have to be completed by post-irradiation examinations on optimized fuel microstructures. On the other hand, a first step in the long term (MA,U)O2-x fuel development process is under investigation with MARIOS and DIAMINO tests in the HFR and OSIRIS, before the implementation of prototypical irradiation tests. For ADS, very informative feedback from inert matrix fuel developments has been completed by dedicated collaborative programmes, including major irradiations for the fuel performance assessment from HELIOS and FUTURIX-FTA experiments, whose post-irradiation examinations are under way. (author)

  8. Plutonium and Minor Actinides Recycling in Standard BWR using Equilibrium Burnup Model

    Directory of Open Access Journals (Sweden)

    Abdul Waris

    2008-03-01

    Full Text Available Plutonium (Pu and minor actinides (MA recycling in standard BWR with equilibrium burnup model has been studied. We considered the equilibrium burnup model as a simple time independent burnup method, which can manage all possible produced nuclides in any nuclear system. The equilibrium burnup code was bundled with a SRAC cell-calculation code to become a coupled cell-burnup calculation code system. The results show that the uranium enrichment for the criticality of the reactor, the amount of loaded fuel and the required natural uranium supply per year decrease for the Pu recycling and even much lower for the Pu & MA recycling case compared to those of the standard once-through BWR case. The neutron spectra become harder with the increasing number of recycled heavy nuclides in the reactor core. The total fissile rises from 4.77% of the total nuclides number density in the reactor core for the standard once-through BWR case to 6.64% and 6.72% for the Plutonium recycling case and the Pu & MA recycling case, respectively. The two later data may become the main basis why the required uranium enrichment declines and consequently diminishes the annual loaded fuel and the required natural uranium supply. All these facts demonstrate the advantage of plutonium and minor actinides recycling in BWR.

  9. Fabrication of fuel and recycling of minor actinides in fast reactors

    OpenAIRE

    Somers, Joseph

    2010-01-01

    Fuels for future fast reactors will not only produce energy, but they must also actively contribute to the minimisation of long lived wastes produced by these, and other reactor systems. The fuels must incorporate minor actinides (MA = Np, Am, Cm) for neutron transmutation into short lived isotopes. Within Europe oxide fuels are favoured. Transmutation can be considered in homogeneous or heterogeneous reactor recycle modes (i.e. in fuels or targets, respectively). Fabrication of such fuels...

  10. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    International Nuclear Information System (INIS)

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  11. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  12. The advanced liquid metal reactor actinide recycle system

    International Nuclear Information System (INIS)

    The current U.S. National Energy Strategy includes four key goals for nuclear policy: enhance safety and design standards, reduce economic risk, reduce regulatory risk, and establish an effective high-level nuclear waste program. The U.S. Department of Energy's Advanced Liquid Metal Reactor Actinide Recycle System is consistent with these objectives. The system has the ability to fulfill multiple missions with the same basic design concept. In addition to providing an option for long-term energy security, the system can be effectively utilized for recycling of actinides in light water reactor (LWR) spent fuel, provide waste management flexibility, including the reduction in the waste quantity and storage time and utilization of the available energy potential of LWR spent fuel. The actinide recycle system is comprised of (1) a compact liquid metal (sodium) cooled reactor system with optimized passive safety characteristics, and (2) pyrometallurgical metal fuel cycle presently under development of Argonne National Laboratory. The waste reduction of LWR spent fuel is accomplished by transmutation or fissioning of the longer-lived transuranic isotopes to shorter-lived fission products in the reactor. In this presentation the economical and environmental incentive of the actinide recycle system is addressed and the status of development including licensing aspects is described. 3 refs., 1 tab., 6 figs

  13. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    OpenAIRE

    Salahuddin Asif; Iqbal Masood

    2013-01-01

    Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor....

  14. Feasibility studies of actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    A strategy of actinide burnup in LMFBRs is being investigated as a waste management alternative to long term storage of high level nuclear waste. This strategy is being evaluated because many of the actinides in the waste from spent-fuel reprocessing have half-lives of thousands of years and an alternative to geological storage may be desired. From a radiological viewpoint, the actinides and their daughters dominate the waste hazard for decay times beyond about 400 years. Actinide burnup in LMFBRs may be an attractive alternative to geological storage because the actinides can be effectively transmuted to fission products which have significantly shorter half-lives. Actinide burnup in LMFBRs rather than LWRs is preferred because the ratio of fission reaction rate to capture reaction rate for the actinides is higher in an LMFBR, and an LMFBR is not so sensitive to the addition of the actinide isotopes. An actinide target assembly recycle scheme is evaluated to determine the effects of the actinides on the LMFBR performance, including local power peaking, breeding ratio, and fissile material requirements. Several schemes are evaluated to identify any major problems associated with reprocessing and fabrication of recycle actinide-containing assemblies. The overall efficiency of actinide burnout in LMFBRs is evaluated, and equilibrium cycle conditions are determined. It is concluded that actinide recycle in LMFBRs offers an attractive alternative to long term storage of the actinides, and does not significantly affect the performance of the host LMFBR. Assuming a 0.1 percent or less actinide loss during reprocessing, a 0.1 percent loss of less during fabrication, and proper recycle schemes, virtually all of the actinides produced by a fission reactor economy could be transmuted in fast reactors

  15. Sigma Team for Advanced Actinide Recycle FY2015 Accomplishments and Directions

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    The Sigma Team for Minor Actinide Recycle (STAAR) has made notable progress in FY 2015 toward the overarching goal to develop more efficient separation methods for actinides in support of the United States Department of Energy (USDOE) objective of sustainable fuel cycles. Research in STAAR has been emphasizing the separation of americium and other minor actinides (MAs) to enable closed nuclear fuel recycle options, mainly within the paradigm of aqueous reprocessing of used oxide nuclear fuel dissolved in nitric acid. Its major scientific challenge concerns achieving selectivity for trivalent actinides vs lanthanides. Not only is this challenge yielding to research advances, but technology concepts such as ALSEP (Actinide Lanthanide Separation) are maturing toward demonstration readiness. Efforts are organized in five task areas: 1) combining bifunctional neutral extractants with an acidic extractant to form a single process solvent, developing a process flowsheet, and demonstrating it at bench scale; 2) oxidation of Am(III) to Am(VI) and subsequent separation with other multivalent actinides; 3) developing an effective soft-donor solvent system for An(III) selective extraction using mixed N,O-donor or all-N donor extractants such as triazinyl pyridine compounds; 4) testing of inorganic and hybrid-type ion exchange materials for MA separations; and 5) computer-aided molecular design to identify altogether new extractants and complexants and theory-based experimental data interpretation. Within these tasks, two strategies are employed, one involving oxidation of americium to its pentavalent or hexavalent state and one that seeks to selectively complex trivalent americium either in the aqueous phase or the solvent phase. Solvent extraction represents the primary separation method employed, though ion exchange and crystallization play an important role. Highlights of accomplishments include: Confirmation of the first-ever electrolytic oxidation of Am(III) in a

  16. Sigma Team for Advanced Actinide Recycle FY2015 Accomplishments and Directions

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    The Sigma Team for Minor Actinide Recycle (STAAR) has made notable progress in FY 2015 toward the overarching goal to develop more efficient separation methods for actinides in support of the United States Department of Energy (USDOE) objective of sustainable fuel cycles. Research in STAAR has been emphasizing the separation of americium and other minor actinides (MAs) to enable closed nuclear fuel recycle options mainly within the paradigm of aqueous reprocessing of used oxide nuclear fuel dissolved in nitric acid. Its major scientific challenge concerns achieving selectivity for trivalent actinides vs lanthanides. Not only is this challenge yielding to research advances, but technology concepts such as ALSEP (Actinide Lanthanide Separation) are maturing toward demonstration readiness. Efforts are organized in five task areas: 1) combining bifunctional neutral extractants with an acidic extractant to form a single process solvent, developing a process flowsheet, and demonstrating it at bench scale; 2) oxidation of Am(III) to Am(VI) and subsequent separation with other multivalent actinides; 3) developing an effective soft-donor solvent system for An(III) selective extraction using mixed N,O-donor or all-N donor extractants such as triazinyl pyridine compounds; 4) testing of inorganic and hybrid-type ion exchange materials for MA separations; and 5) computer-aided molecular design to identify altogether new extractants and complexants and theory-based experimental data interpretation. Within these tasks, two strategies are employed, one involving oxidation of americium to its pentavalent or hexavalent state and one that seeks to selectively complex trivalent americium either in the aqueous phase or the solvent phase. Solvent extraction represents the primary separation method employed, though ion exchange and crystallization play an important role. Highlights of accomplishments include: Confirmation of the first-ever electrolytic oxidation of Am(III) in a

  17. ACTINET-I3 Summer School on Analytical Innovation in the field of actinide recycling - Slides of the presentations

    International Nuclear Information System (INIS)

    This conference dealt with 3 main topics: analytical innovation in separation processes (hyphenated techniques, analytical chips,...), actinide recycling (extraction, interfaces, processes,...) and chemistry and thermodynamics of actinides. This document is composed of the slides of the presentations

  18. Actinide recycle potential in the IFR [Integral Fast Reactor

    International Nuclear Information System (INIS)

    Rising concern about the greenhouse effect reinforces the need to reexamine the question of a next-generation reactor concept that can contribute significantly toward substitution for fossil-based energy generation. Even with only the nuclear capacity on-line today, world-wide reasonably assured uranium resources would last for only about 50 years. If nuclear is to make a significant contribution, breeding is a fundamental requirement. Uranium resources can then be extended by two orders of magnitude, making nuclear essentially a renewable energy source. The key technical elements of the IFR concept are metallic fuel and fuel cycle technology based on pyroprocessing. Pyroprocessing is radically different from the conventional PUREX reprocessing developed for the LWR oxide fuel. Chemical feasibility of pyroprocessing has been demonstrated. The next major step in the IFR development program will be the full-scale pyroprocessing demonstration to be carried out in conjunction with EBR-II. IFR fuel cycle closure based on pyroprocessing can also have a dramatic impact on the waste management options, and in particular on the actinide recycling. 6 figs

  19. Some aspects of risk reduction strategy by multiple recycling in fast burner reactors of the plutonium and minor actinide inventories

    International Nuclear Information System (INIS)

    The paper shows the impact of recycling LWR-MOX fuel in a fast burner reactor on the plutonium (Pu) and minor actinide (MA) inventories and on the related radio activities. Reprocessing of the targets for multiple recycling will become increasingly difficult as the burn up increases. Multiple recycling of Pu + MA in fast reactors is a feasible option which has to be studied very carefully: the Pu (except the isotopes Pu-238 and Pu-240), Am and Np levels decrease as a function of the recycle number, while the Cm-244 level accumulates and gradually transforms into Cm-245. Long cooling times (10 + 2 years) are necessary with aqueous processing. The paper discusses the problems associated with multiple reprocessing of highly active fuel types and particularly the impact of Pu-238, Am-241 and Cm-244 on the fuel cycle operations. The calculations were performed with the zero-dimensional ORIGEN-2 code. The validity of the results depends on that of the code and its cross section library. The time span to reduce the initial inventory of Pu + MA by a factor of 10, amounts to 255 years when average burn ups are limited to 150 GWd t-1. (orig.)

  20. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    Directory of Open Access Journals (Sweden)

    Salahuddin Asif

    2013-01-01

    Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.

  1. Impact of actinide recycle on nuclear fuel cycle health risks

    International Nuclear Information System (INIS)

    The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR)1 and Integral Fast Reactor (IF)2 technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle

  2. Reduction of minor actinides for recycling in a light water reactor

    International Nuclear Information System (INIS)

    The aim of actinide transmutation from spent nuclear fuel is the reduction in mass of high-level waste which must be stored in geological repositories and the lifetime of high-level waste; these two achievements will reduce the number of repositories needed, as well as the duration of storage. The present work is directed towards the evaluation of an advanced nuclear fuel cycle in which the minor actinides (Np, Am and Cm) could be recycled to remove most of the radioactive material; a reference of actinides production in standard nuclear fuel of uranium at the end of its burning in a BWR is first established, after a design of fuel rod containing 6% of minor actinides in a matrix of uranium from the enrichment lines is proposed, then 4 fuel rods of standard uranium are replaced by 4 actinides bars to evaluate the production and transmutation of them and finally the minor actinides reduction in the fuel is evaluated. In the development of this work the calculation tool are the codes: Intrepin-3, Casmo-4 and Simulate-3. (Author)

  3. The separation and recycling of actinides: a review of the state of the art

    International Nuclear Information System (INIS)

    The principal objective of this study is to assess the state of the art of separating the actinides and recycling them to reactors. To this end, the literature has been surveyed, discussions have been held at the contractors' laboratories, AERE, Harwell, UK and ECN, Petten, Netherlands, and visits have been paid to the establishments where relevant work is in progress. The study does not include any new experimental work, but a certain amount of computation has been carried out to support it. A programme of installation of reactors within the European Communities was supplied for the purposes of this study. The prospective generating facilities in GW(e) are given. The situation in the various areas of investigation involved is as follows: nuclear physics: favourable; chemical separations: difficult, but probably feasible; nuclear incineration strategies: little studied so far; fuel and fuel elements containing recycled actinides: little development so far

  4. Numerical analysis on reduction of radioactive actinides by recycling of nuclear fuel

    International Nuclear Information System (INIS)

    Worldwide, human growth has reached unparalleled levels historically, this implies a need for more energy, and just in 2007 was consumed in the USA 4157 x 109 kWh of electricity and there were 6 x 109 metric tons of carbon dioxide, which causes a devastating effect on our environment. To this problem, a solution to the demand for non-fossil energy is nuclear energy, which is one of the least polluting and the cheapest among non-fossil energy; however, a problem remains unresolved the waste generation of nuclear fuels. In this work the option of a possible transmutation of actinides in a nuclear reactor of BWR was analyzed, an example of this are the nuclear reactors at the Laguna Verde nuclear power plant, which have generated spent fuel stored in pools awaiting a decision for final disposal or any other existing alternative. Assuming that the spent fuel was reprocessed to separate useful materials and actinides such as plutonium and uranium remaining, could take these actinides and to recycle them inside the same reactor that produced them, so il will be reduced the radiotoxicity of spent fuel. The main idea of this paper is to evaluate by means of numeric simulation (using the Core Management System (CMS)) the reduction of minor actinides in the case of being recycled in fresh fuel of the type BWR. The actinides were introduced hypothetically in the fuel pellets to 6% by weight, and then use a burned in the range of 0-65 G Wd/Tm, in order to have a better panorama of their behavior and thus know which it is the best choice for maximum reduction of actinides. Several cases were studied, that is to say were used as fuels; the UO2 and MOX. Six different cases were also studied to see the behavior of actinides in different situations. The CMS platform calculation was used for the analysis of the cases presented. Favorable results were obtained, having decreased from a range of 35% to 65% of minor actinides initially introduced in the fuel rods, reducing the

  5. Actinides reduction by recycling in a thermal reactor; Reduccion de actinidos por reciclado en un reactor termico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Martinez C, E.; Balboa L, H., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  6. Modeling minor actinide multiple recycling in a lead-cooled fast reactor to demonstrate a fuel cycle without long-lived nuclear waste

    Directory of Open Access Journals (Sweden)

    Stanisz Przemysław

    2015-09-01

    Full Text Available The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System and LEADER (Lead-cooled European Advanced Demonstration Reactor projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs, and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.

  7. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    International Nuclear Information System (INIS)

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  8. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    Energy Technology Data Exchange (ETDEWEB)

    Abonneau, E.; Baron, P.; Berthon, C.; Berthon, L.; Beziat, A.; Bisel, I.; Bonin, L.; Bosse, E.; Boullis, B.; Broudic, J.C.; Charbonnel, M.C.; Chauvin, N.; Den Auwer, C.; Dinh, B.; Duhamet, J.; Escleine, J.M.; Grandjean, S.; Guilbaud, P.; Guillaneux, D.; Guillaumont, D.; Hill, C.; Lacquement, J.; Masson, M.; Miguirditchian, M.; Moisy, P.; Pelletier, M.; Ravenet, A.; Rostaing, C.; Royet, V.; Ruas, A.; Simoni, E.; Sorel, C.; Vaudano, A.; Venault, L.; Warin, D.; Zaetta, A.; Pradel, P.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Forestier, A.; Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Sollogoob, P.; Vernaz, E.; Bazile, F.; Parisot, J.P.; Finot, P.; Roberts, J.F

    2008-07-01

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  9. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Science.gov (United States)

    Rose, S. J.; Wilson, J. N.; Capellan, N.; David, S.; Guillemin, P.; Ivanov, E.; Méplan, O.; Nuttin, A.; Siem, S.

    2012-02-01

    The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR) has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U) is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX) and uranium/plutonium mixed oxide (MOX) fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  10. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Directory of Open Access Journals (Sweden)

    Nuttin A.

    2012-02-01

    Full Text Available The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX and uranium/plutonium mixed oxide (MOX fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  11. 75 FR 49549 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Science.gov (United States)

    2010-08-13

    ... Surface Transportation Board ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D), a noncarrier, has filed a verified notice of exemption... operation of this trackage in FD 35356, ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line...

  12. 75 FR 11991 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Science.gov (United States)

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D), a noncarrier, has filed a verified notice of...

  13. Reduction of minor actinides for recycling in a light water reactor; Reduccion de actinidos menores por reciclado en un reactor de agua ligera

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The aim of actinide transmutation from spent nuclear fuel is the reduction in mass of high-level waste which must be stored in geological repositories and the lifetime of high-level waste; these two achievements will reduce the number of repositories needed, as well as the duration of storage. The present work is directed towards the evaluation of an advanced nuclear fuel cycle in which the minor actinides (Np, Am and Cm) could be recycled to remove most of the radioactive material; a reference of actinides production in standard nuclear fuel of uranium at the end of its burning in a BWR is first established, after a design of fuel rod containing 6% of minor actinides in a matrix of uranium from the enrichment lines is proposed, then 4 fuel rods of standard uranium are replaced by 4 actinides bars to evaluate the production and transmutation of them and finally the minor actinides reduction in the fuel is evaluated. In the development of this work the calculation tool are the codes: Intrepin-3, Casmo-4 and Simulate-3. (Author)

  14. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    OpenAIRE

    Nuttin A.; Siem S.; Ivanov E.; Méplan O.; David S; Guillemin P.; Wilson J.N.; Capellan N.; Rose S.J.

    2012-01-01

    The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR) has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U) is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor ac...

  15. The recycling of the actinides neptunium, americium and curium in a fast power reactor to reduce the long term activity in a final store

    International Nuclear Information System (INIS)

    The starting point for the considerations and calculations given in this dissertation is the inevitable production of radioactive materials in the use of nuclear energy, which creates a considerable potential danger in a final store for a very long period. As one possibility of alleviating this problem, a concept for recycling the waste actinides neptunium, americium and curium was proposed. The waste actinides are separated in the reprocessing of burnt-up fuel elements and reach a further irradiation circuit. There they pass through the stages 'manufacture of irradiation elements', 'use in a fast power reactor' and reprocessing of irradiation elements' several times. In each irradiation and subsequent storage, about 17% of the waste actinides are removed by fission or by conversion into nuclides which can be reused as fuel, so that during the life of 40 years of the fast recycling reacor, the waste actinides can be reduced in mass by one half. In order to determine this mass reduction effect, a model calculation was developed, which includes the representation of the neutron physics and thermal properties of the reactor core and the storage and reprocessing of the irradiation elements. (orig./RB)

  16. Recycle of LWR [Light Water Reactor] actinides to an IFR [Integral Fast Reactor

    International Nuclear Information System (INIS)

    A large quantity of actinide elements is present in irradiated Light Water Reactor (LWR) fuel that is stored throughout the world. Because of the high fission-to-capture ratio for the transuranium (TRU) elements with the high-energy neutrons in the metal-fueled Integral Fast Reactor (IFR), that reactor can consume these elements effectively. The stored fuel represents a valuable resource for an expanding application of fast power reactors. In addition, removal of the TRU elements from the spent LWR fuel has the potential for increasing the capacity of a high-level waste facility by reducing the heat loads and increasing the margin of safety in meeting licensing requirements. Argonne National Laboratory (ANL) is developing a pyrochemical process, which is compatible with the IFR fuel cycle, for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. The major objective of the LWR fuel recovery process is high TRU element recovery, with decontamination a secondary issue, because fission product removal is accomplished in the IFR process. The extensive pyrochemical processing studies of the 1960s and 1970s provide a basis for the design of possible processes. Two processes were selected for laboratory-scale investigation. One is based on the Salt Transport Process studied at ANL for mixed-oxide fast reactor fuel, and the other is based on the blanket processing studies done for ANL's second Experimental Breeder Reactor (EBR-2). This paper discusses the two processes and is a status report on the experimental studies. 5 refs., 2 figs., 2 tabs

  17. Numerical analysis on reduction of radioactive actinides by recycling of nuclear fuel; Analisis numerico sobre reduccion de actinidos radiactivos por reciclado de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Balboa L, H. E.

    2014-07-01

    Worldwide, human growth has reached unparalleled levels historically, this implies a need for more energy, and just in 2007 was consumed in the USA 4157 x 10{sup 9} kWh of electricity and there were 6 x 10{sup 9} metric tons of carbon dioxide, which causes a devastating effect on our environment. To this problem, a solution to the demand for non-fossil energy is nuclear energy, which is one of the least polluting and the cheapest among non-fossil energy; however, a problem remains unresolved the waste generation of nuclear fuels. In this work the option of a possible transmutation of actinides in a nuclear reactor of BWR was analyzed, an example of this are the nuclear reactors at the Laguna Verde nuclear power plant, which have generated spent fuel stored in pools awaiting a decision for final disposal or any other existing alternative. Assuming that the spent fuel was reprocessed to separate useful materials and actinides such as plutonium and uranium remaining, could take these actinides and to recycle them inside the same reactor that produced them, so il will be reduced the radiotoxicity of spent fuel. The main idea of this paper is to evaluate by means of numeric simulation (using the Core Management System (CMS)) the reduction of minor actinides in the case of being recycled in fresh fuel of the type BWR. The actinides were introduced hypothetically in the fuel pellets to 6% by weight, and then use a burned in the range of 0-65 G Wd/Tm, in order to have a better panorama of their behavior and thus know which it is the best choice for maximum reduction of actinides. Several cases were studied, that is to say were used as fuels; the UO{sub 2} and MOX. Six different cases were also studied to see the behavior of actinides in different situations. The CMS platform calculation was used for the analysis of the cases presented. Favorable results were obtained, having decreased from a range of 35% to 65% of minor actinides initially introduced in the fuel rods

  18. Development of a separation process for trivalent actinides and rare earths by extraction with N,N,N',N'-tetradodecyldiglycolamide with the aid of a process simulation code, PARC-MA

    International Nuclear Information System (INIS)

    A separation process for trivalent actinides (An(III)=Am and Cm) and Rare Earths (RE) from high-level liquid waste (HLLW) by extraction with N,N,N',N'-Tetradodecyldiglycolamide (TDdDGA) is being developed by performing counter-current continuous extraction tests using mixer-settler and by calculating element behavior with a process simulation code. The continuous extraction test with a simulated HLLW containing Am and Np tracers showed that Am was recovered with 0.1M TDdDGA - n-dodecane in a high yield. Calculations of process simulation for the continuous extraction test and for optimized process were performed by PARC-MA which was developed by JAEA as a process simulation code for minor actinide (MA) extraction or other various extraction systems. The results of the calculation by PARC-MA agreed well with the results of the continuous extraction tests, which confirm the validity of the calculation and the usefulness of the PARC-MA. The optimized process condition can be derived from the calculation by PARC-MA. By choosing a proper condition of the continuous extraction, La (and a part of the lighter lanthanides) can be transferred to the raffinate keeping the high extraction yield of Am. TDdDGA extraction system has an ability to treat HLLW of high element concentration. (author)

  19. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    International Nuclear Information System (INIS)

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  20. The characteristics of actinide nuclei production and accumulation accompanied with long-term utilization of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Yamana, Hajime [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1997-03-01

    Aiming at quantitative and qualitative assessment of actinide-nuclides, which would accumulate through a long-term utilization of nuclear energy, a convenient calculation method for such assessment was proposed. The nuclides, Pu, Np, Am and Cm were used as the subject and the period of utilization of nuclear energy was supposed as 200 years to make integral assessment for different scenarios of nuclear energy utilization. The standard reactors supposed here were light water reactor charged with concentrated uranium, 1/3 MOX core light reactor and fast breeder reactor. Four kinds of scenarios; LWR(UOX), LWR(UOX+MOX), Pu Recycling FBR and MA Recycling FBR Scenarios were compared and quantitative results concerning those actinide nuclides including multi-recycling effects were obtained. From the aspect of long continuous production of poisonous substance, the most important problem was the production of {sup 241}Am followed by the presence of a large amount of plutonium. (M.N.)

  1. Recovering actinide values

    International Nuclear Information System (INIS)

    Actinide values are recovered from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorus extractants such as tri-n butyl phosphate (TBP) and dihexyl-N, N-diethyl carbamylmethylene phosphonate (DHDECMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant can be recycled after stripping the degradation products with a neutral sodium carbonate solution. (author)

  2. Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong Austin [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-28

    The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.

  3. Actinides-1981

    International Nuclear Information System (INIS)

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  4. Actinides-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  5. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6th of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  6. Heterogeneous Recycling in Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  7. Preparation of actinide targets by electrodeposition

    Science.gov (United States)

    Trautmann, N.; Folger, H.

    1989-10-01

    Actinide targets with varying thicknesses on different substrates have been prepared by electrodeposition either from aqueous solutions or from solutions of their nitrates in isopropyl alcohol. With these techniques the actinides can be deposited almost quantitatively on various backing materials within 15 to 30 min. Targets of thorium, uranium, neptunium, plutonium, americium, curium and californium with areal densities from almost carrier-free up to 1.4 mg/cm 2 on thin beryllium, carbon, titanium, tantalum and platinum foils have been prepared. In most cases, prior to the deposition, the actinides had to be purified chemically and for some of them, due to the limited amount of material available, recycling procedures were required. Applications of actinide targets in heavy-ion reactions are briefly discussed.

  8. Actinide management with commercial fast reactors

    International Nuclear Information System (INIS)

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel

  9. Actinide management with commercial fast reactors

    Science.gov (United States)

    Ohki, Shigeo

    2015-12-01

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  10. Actinide management with commercial fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ohki, Shigeo [Japan Atomic Energy Agency, 4002, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  11. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing keff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR keff markedly. The PWR keff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  12. Nuclear data for plutonium and minor actinides

    International Nuclear Information System (INIS)

    Some experience in the usage of different evaluations of neutron constants for plutonium isotopes and minor actinides (MA) is described. That experience was obtained under designing the ABBN-93 group data set which nowadays is used widely for neutronics calculations of different cores with different spectrum and shielding. Under testing of the ABBN-93 data set through different integral and macroscopic experiments the main attention was paid to fuel nuclides and cross sections for MA practically did not verify. That gave an opportunity to change MA nuclear data for more modern without verification of the hole system. This desire appeared with new data libraries JENDL-3.2, JEF-2.2 and ENDF/B-6.2, which was not accessible under designing the ABBN-93. At the same time with the reevaluation of the basic MA nuclear data the ABBN-93 and the library FOND-2 of evaluated nuclear data files, which used as the basis for retrieving of the ABBN-93 data, were added with not very important MA data. So the FOND-2 library nowadays contents nuclear data files for all actinides with the half-life time more 1 day and also those MA which produce long-life actinides

  13. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  14. The lanthanides and actinides

    International Nuclear Information System (INIS)

    This paper relates the chemical properties of the actinides to their position in the Mendeleev periodic system. The changes in the oxidation states of the actinides with increasing atomic number are similar to those of the 3d elements. Monovalent and divalent actinides are very similar to alkaline and alkaline earth elements; in the 3+ and 4+ oxidation states they resemble d elements in the respective oxidation states. However, in their highest oxidation states the actinides display their individual properties with only a slight resemblance to d elements. Finally, there is a profound similarity between the second half of the actinides and the first half of the lanthanides

  15. Waste disposal aspects of actinide separation

    International Nuclear Information System (INIS)

    Two recent NRPB reports are summarized (Camplin, W.C., Grimwood, P.D. and White, I.F., The effects of actinide separation on the radiological consequences of disposal of high-level radioactive waste on the ocean bed, Harwell, National Radiological Protection Board, NRPB-R94 (1980), London, HMSO; Hill, M.D., White, I.F. and Fleishman, A.B., The effects of actinide separation on the radiological consequences of geologic disposal of high-level waste. Harwell, National Radiological Protection Board, NRPB-R95 (1980), London, HMSO). They describe preliminary environmental assessments relevant to waste arising from the reprocessing of PWR fuel. Details are given of the modelling of transport of radionuclides to man, and of the methodology for calculating effective dose equivalents in man. Emphasis has been placed on the interaction between actinide separation and the disposal options rather than comparison of disposal options. The reports show that the effects of actinide separation do depend on the disposal method. Conditions are outlined where the required substantial further research and development work on actinide separation and recycle would be justified. Toxicity indices or 'toxic potentials' can be misleading and should not be used to guide research and development. (U.K.)

  16. Overview of the French R&D program for the development of minor actinides separation processes

    International Nuclear Information System (INIS)

    After the scientific and technical feasibility demonstration on 15kg of spent fuel of the Am+Cm separation by DIAMEX-SANEX process, CEA has launched in the framework of the law 2006 R&D program aimed to improve and optimize the minor actinides separation processes for the different recycling modes: • GANEX process for recycling the MA (Np, Am et Cm) with plutonium in the fast reactor core in an homogeneous recycling route; • SANEX-TODGA process for the separation of americium and curium for the heterogeneous transmutation route in the fast reactor blankets; • EXAm process for the separation of the sole americium for the transmutation in heterogeneous concept in dilution on uranium support (UAmO2). Furthermore, additional studies were performed to enlarge the results towards the by-process for the management of the effluents and the development of piloting tool. The demonstration on the genuine solutions of the feasibility of these various separation processes were carried out in the Atalante CBP hot cell between 2008 and 2010 and the main results will be presented. (author)

  17. The ALMR actinide burning system

    International Nuclear Information System (INIS)

    The advanced liquid-metal reactor (ALMR) actinide burning system is being developed under the sponsorship of the US Department of Energy to bring its unique capabilities to fruition for deployment in the early 21st century. The system consists of four major parts: the reactor plant, the metal fuel and its recycle, the processing of light water reactor (LWR) spent fuel to extract the actinides, and the development of a residual waste package. This paper addresses the status and outlook for each of these four major elements. The ALMR is being developed by an industrial group under the leadership of General Electric (GE) in a cost-sharing arrangement with the US Department of Energy. This effort is nearing completion of the advanced conceptual design phase and will enter the preliminary design phase in 1994. The innovative modular reactor design stresses simplicity, economics, reliability, and availability. The design has evolved from GE's PRISM design initiative and has progressed to the final stages of a prelicensing review by the US Nuclear Regulatory Commission (NRC); a safety evaluation report is expected by the end of 1993. All the major issues identified during this review process have been technically resolved. The next design phases will focus on implementation of the basic safety philosophy of passive shutdown to a safe, stable condition, even without scram, and passive decay heat removal. Economic projections to date show that it will be competitive with non- nuclear and advanced LWR nuclear alternatives

  18. Separation of Minor Actinides from Lanthanides by Dithiophosphinic Acid Extractants

    Energy Technology Data Exchange (ETDEWEB)

    D. R. Peterman; M. R. Greenhalgh; R. D. Tillotson; J. R. Klaehn; M. K. Harrup; T. A. Luther; J. D. Law; L. M. Daniels

    2008-09-01

    The selective extraction of the minor actinides (Am(III) and Cm(III)) from the lanthanides is an important part of advanced reprocessing of spent nuclear fuel. This separation would allow the Am/Cm to be fabricated into targets and recycled to a reactor and the lanthanides to be dispositioned. This separation is difficult to accomplish due to the similarities in the chemical properties of the trivalent actinides and lanthanides. Research efforts at the Idaho National Laboratory have identified an innovative synthetic pathway yielding new regiospecific dithiophosphinic acid (DPAH) extractants. The synthesis provides DPAH derivatives that can address the issues concerning minor actinide separation and extractant stability. For this work, two new symmetric DPAH extractants have been prepared. The use of these extractants for the separation of minor actinides from lanthanides will be discussed.

  19. PREFACE: Actinides 2009

    Science.gov (United States)

    Rao, Linfeng; Tobin, James G.; Shuh, David K.

    2010-07-01

    This volume of IOP Conference Series: Materials Science and Engineering consists of 98 papers that were presented at Actinides 2009, the 8th International Conference on Actinide Science held on 12-17 July 2009 in San Francisco, California, USA. This conference was jointly organized by Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory. The Actinides conference series started in Baden-Baden, Germany (1975) and this first conference was followed by meetings at Asilomar, CA, USA (1981), Aix-en-Provence, France (1985), Tashkent, USSR (1989), Santa Fe, NM, USA (1993), Baden-Baden, Germany (1997), Hayama, Japan (2001), and Manchester, UK (2005). The Actinides conference series provides a regular venue for the most recent research results on the chemistry, physics, and technology of the actinides and heaviest elements. Actinides 2009 provided a forum spanning a diverse range of scientific topics, including fundamental materials science, chemistry, physics, environmental science, and nuclear fuels. Of particular importance was a focus on the key roles that basic actinide chemistry and physics research play in advancing the worldwide renaissance of nuclear energy. Editors Linfeng Rao Lawrence Berkeley National Laboratory (lrao@lbl.gov) James G Tobin Lawrence Livermore National Laboratory (tobin1@llnl.gov) David K Shuh Lawrence Berkeley National Laboratory (dkshuh@lbl.gov)

  20. Scenarios for the transmutation of actinides in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, Bronwyn, E-mail: hylandb@aecl.ca [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada); Gihm, Brian, E-mail: gihmb@aecl.ca [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

    2011-12-15

    With world stockpiles of used nuclear fuel increasing, the need to address the long-term utilization of this resource is being studied. Many of the transuranic (TRU) actinides in nuclear spent fuel produce decay heat for long durations, resulting in significant nuclear waste management challenges. These actinides can be transmuted to shorter-lived isotopes to reduce the decay heat period or consumed as fuel in a CANDU(R) reactor. Many of the design features of the CANDU reactor make it uniquely adaptable to actinide transmutation. The small, simple fuel bundle simplifies the fabrication and handling of active fuels. Online refuelling allows precise management of core reactivity and separate insertion of the actinides and fuel bundles into the core. The high neutron economy of the CANDU reactor results in high TRU destruction to fissile-loading ratio. This paper provides a summary of actinide transmutation schemes that have been studied in CANDU reactors at AECL, including the works performed in the past. The schemes studied include homogeneous scenarios in which actinides are uniformly distributed in all fuel bundles in the reactor, as well as heterogeneous scenarios in which dedicated channels in the reactor are loaded with actinide targets and the rest of the reactor is loaded with fuel. The transmutation schemes that are presented reflect several different partitioning schemes. Separation of americium, often with curium, from the other actinides enables targeted destruction of americium, which is a main contributor to the decay heat 100-1000 years after discharge from the reactor. Another scheme is group-extracted transuranic elements, in which all of the transuranic elements, plutonium (Pu), neptunium (Np), americium (Am), and curium (Cm) are extracted together and then transmuted. This paper also addresses ways of utilizing the recycled uranium, another stream from the separation of spent nuclear fuel, in order to drive the transmutation of other actinides.

  1. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  2. Physics studies of higher actinide consumption in an LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.S.

    1990-01-01

    The core physics aspects of the transuranic burning potential of the Integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described. 4 refs., 4 figs., 3 tabs.

  3. MA transmutation performance in the optimized MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Malambu, E.; Van den Eynde, G.; Fernandez, R.; Baeten, P.; Ait Abderrahim, H. [SCK-CEN, Boeretang 200, BE-2400 Mol (Belgium)

    2013-07-01

    MYRRHA (multi-purpose hybrid research reactor for high-tech applications) is a multipurpose research facility currently being developed at SCK-CEN. It will be able to work in both critical and subcritical modes and, cooled by lead-bismuth eutectic. In this paper the minor actinides (MA) transmutation capabilities of MYRRHA are investigated. (Pu + Am, U) MOX fuel and (Np + Am + Cm, Pu) Inert Matrix Fuel test samples have been loaded in the central channel of the MYRRHA critical core and have been irradiated during five cycles, each one consisting of 90 days of operation at 100 MWth and 30 days of shutdown. The reactivity worth of the test fuel assembly was about 1.1 dollar. A wide range of burn-up level has been achieved, extending from 42 to 110 MWd/kg HM, the samples with lower MA-to-Pu ratios reaching the highest burn-up. This study has highlighted the importance of the initial MA content, expressed in terms of MA/Pu ratio, on the transmutation rate of MA elements. For (Pu + Am, U) MOX fuel samples, a net build-up of MA is observed when the initial content of MA is very low (here, 1.77 wt% MA/Pu) while a net decrease in MA is observed in the sample with an initial content of 5 wt%. This suggests the existence of some 'equilibrium' initial MA content value beyond which a net transmutation is achievable.

  4. Evaluation of prompt neutron spectra for minor actinide nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1997-03-01

    Measurement data on fission prompt neutron spectra of minor actinide (MA) is much little, and its accuracy is also unsufficient. Therefore, conventional evaluation value of fission spectra of MA was assumed for its nuclear temperature by using a method of determining from its systemicity owing to assumption of the Maxwell type distribution, but it can be said that this method consider fully to features of MA isotopes. In this paper, some evaluation calculation results are shown by adopting an evaluation method developed by authors and based on modified Madland Nix model and are conducted by concept of physical properties on target nuclei. As a result, by adopting the level density parameter of fission fragments, the inverse process cross section, the fission product yield distribution and the total release energy, effect of inverse process cross section, mass distribution of fission product, calculation results of Cm isotope and systemicity of fission spectra of actinide isotope were investigated. (G.K.)

  5. A transition cycle strategy to enhance minor actinide burning potential in the pan-shape LMR core

    International Nuclear Information System (INIS)

    This study summarizes the neutronic performances and fuel cycle behaviors of the pan-shape transuranic (TRU) burner core from the initial core through the end of a core life. The cycle-by-cycle evolution of isotopic compositions and neutronics characteristics are compared with those calculated from the analysis of an assumed equilibrium cycle. The amount of burnt TRU per cycle after Cycle 8 turned out to be comparable to that of the equilibrium cycle, while the isotopic compositions and the resulting neutronics performances up to about Cycle 20 have shown considerable deviations from those of the equilibrium cycle. The reference core in this analysis has been designed to meet a target sodium void reactivity at the end of the equilibrium cycle by reducing the active core height. Since the core isotopic loading approaches that of the equilibrium cycle after many cycles of operation, significant margins to the target sodium void reactivity are noted in the early cycles. This finding has led to the loading of concentrated minor actinides (MA) relative to the Pu isotopes in the first three cycles. Thereafter, they are homogeneously self-recycled with the external feed TRU makeup composed of typical LWR discharge TRU compositions. The transition cycle analysis with the higher MA loading reveals that the total MA consumed through 50 cycles of operation is 1.89 times larger than the case for the constant external feed makeup TRU with a typical LWR discharge compositions, without exceeding the sodium void reactivity observed in the equilibrium cycle

  6. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    OpenAIRE

    Bourg Stéphane; Geist Andreas; Narbutt Jerzy

    2015-01-01

    Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities strivin...

  7. Conjugates of Actinide Chelator-Magnetic Nanoparticles for Used Fuel Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, You; Paszczynski, Andrzej; Rao, Linfeng

    2011-10-30

    The actinide separation method using magnetic nanoparticles (MNPs) functionalized with actinide specific chelators utilizes the separation capability of ligand and the ease of magnetic separation. This separation method eliminated the need of large quantity organic solutions used in the liquid-liquid extraction process. The MNPs could also be recycled for repeated separation, thus this separation method greatly reduces the generation of secondary waste compared to traditional liquid extraction technology. The high diffusivity of MNPs and the large surface area also facilitate high efficiency of actinide sorption by the ligands. This method could help in solving the nuclear waste remediation problem.

  8. Synthesis of selective extractor for minor actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seung [Konyang University, Nonsan (Korea); Cho, Moon Hwan [Kangwon National University, Chunchon (Korea)

    1998-04-01

    To selectively co-separate the lanthanide and actinide elements (MA) such as Am or Cm ion from radioactive waste, synthesis of diamide derivatives has been accomplished. In addition, picoline amide derivatives were also synthesized for selectively separate the minor actinide elements from lanthanide elements. The content of research has don are as follows: (1) synthesis of diamide as co-extractant (2) introduction of n-tetradecyl to increase the lipophilicity (3) Picolyl chloride, intermediate of the final product, was synthesized by improved method rather than reported method. (4) The length of alkyl side chain was adjusted to increase the lipophilicity of free ligand and its derivatives able to selectively separate the actinide metal from lanthanide metal ions was successfully synthesized and determined their purity by analytical instruments. (author). 12 refs., 28 figs.

  9. Device for Detecting Actinides, Method for Detecting Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Fred J.; Wilkins-Stevens, Priscilla

    1998-10-29

    A heavy metal detector is provided comprising a first molecule and a second molecule, whereby the first and second molecules interact in a predetermined manner; a first region on the first molecule adapted to interact with an actinide; and a second region on the second molecule adapted to interact with the actinide, whereby the interactions of the actinide with the regions effect the predetermined manner of interaction between the molecules.

  10. Actinides: why are they important biologically

    International Nuclear Information System (INIS)

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  11. Photoelectron spectra of actinide compounds

    International Nuclear Information System (INIS)

    A brief overview of the application of photoelectron spectroscopy is presented for the study of actinide materials. Phenomenology as well as specific materials are discussed with illustrative examples

  12. Optical techniques for actinide research

    International Nuclear Information System (INIS)

    In recent years, substantial gains have been made in the development of spectroscopic techniques for electronic properties studies. These techniques have seen relatively small, but growing, application in the field of actinide research. Photoemission spectroscopies, reflectivity and absorption studies, and x-ray techniques will be discussed and illustrative examples of studies on actinide materials will be presented

  13. AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report

    Energy Technology Data Exchange (ETDEWEB)

    William Carmack; Randy D. Lee; Pavel Medvedev; Mitch Meyer; Michael Todosow; Holly B. Hamilton; Juan Nino; Simon Philpot; James Tulenko

    2005-06-01

    potential advantage for more efficient destruction of plutonium and minor actinides (MA) relative to MOX fuel. Greater efficiency in plutonium reduction results in greater flexibility in managing plutonium inventories and in developing strategies for disposition of MA, as well as a potential for fuel cycle cost savings. Because fabrication of plutonium-bearing (and MA-bearing) fuel is expensive relative to UO{sub 2} in terms of both capital and production, cost benefit can be realized through a reduction in the number of plutonium-bearing elements required for a given burn rate. In addition, the choice of matrix material may be manipulated either to facilitate fuel recycling or to make plutonium recovery extremely difficult. In addition to plutonium/actinide management, an inert matrix fuel having high thermal conductivity may have operational and safety benefits; lower fuel temperatures could be used to increase operating and safety margins, uprate reactor power, or a combination of both. The CANDU reactor offers flexibility in plutonium management and MA burning by virtue of online refueling, a simple bundle design, and good neutron economy. A full core of inert matrix fuel containing either plutonium or a plutonium-actinide mix can be utilized, with plutonium destruction efficiencies greater than 90%, and high (>60%) actinide destruction efficiencies. The Advanced CANDU Reactor (ACR) could allow additional possibilities in the design of an IMF bundle, since the tighter lattice pitch and light-water coolant reduce or eliminate the need to suppress coolant void reactivity, allowing the center region of the bundle to include additional fissile material and to improve actinide burning. The ACR would provide flexibility for management of plutonium and MA from the existing LWR fleet, and would be complementary to the AFCI program in the U.S. Many of the fundamental principles concerning the use of IMF are nearly identical in LWRs and the ACR, including fuel

  14. Assessment of Partitioning Processes for Transmutation of Actinides

    International Nuclear Information System (INIS)

    To obtain public acceptance of future nuclear fuel cycle technology, new and innovative concepts must overcome the present concerns with respect to both environmental compliance and proliferation of fissile materials. Both these concerns can be addressed through the multiple recycling of all transuranic elements (TRUs) in fast neutron reactor. This is only possible through a process known as partitioning and transmutation scheme (P and T) as this scheme is expected to reduce the long term radio-toxicity as well as the radiogenic heat production of the nuclear waste. Proliferation resistance of separated plutonium could further be enhanced by mixing with self-generated minor actinides. In addition, P and T scheme is expected to extend the nuclear fuel resources on earth about 100 times because of the recycle and reuse of fissile actinides. Several Member States are actively pursuing the research in the field of P and T and consequently several IAEA publications have addressed this topic. The present coordinated research project (CRP) focuses on the potentials in minimizing the residual TRU inventories of the discharged nuclear waste and in enhancing the proliferation resistance of the future civil nuclear fuel cycle. Partitioning approaches can be grouped into aqueous- (hydrometallurgical) and pyroprocesses. Several aqueous processes based on sequential separation of actinides from spent nuclear fuel have been developed and tested at pilot plant scale. In view of the proliferation resistance of the intermediate and final products of a P and T scheme, a group separation of all actinides together is preferable. The present CRP has gathered experts from different organisations and institutes actively involved in developing P and T scheme as mentioned in the list of contributors and also taken into consideration the studies underway in France and the UK. The scientific objectives of the CRP are: To minimize the environmental impact of actinides in the waste stream; To

  15. Actinide coordination sphere in various U, Np and Pu nitrato coordination complexes

    International Nuclear Information System (INIS)

    Waste management of nuclear fuel represents one of the major environmental concerns of the decade. To recycle fissile valuable materials, intimate knowledge of complexation mechanisms involved in the solvent extraction processes is indispensable. Evolution of the actinide coordination sphere of AnO2(NO3)2TBP-type complexes (an = U, Np, Pu; TBP = tributylphosphate) with the actinide valence state have been probed by XAS at the metal LIII edge. Dramatic changes in the actinide coordination sphere appeared when the An(VI) metal is reduced to An(IV). However, no significant evolution in the actinide environment has been noticed across the series UO22+, NpO22+ and PuO22+. (au)

  16. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    Directory of Open Access Journals (Sweden)

    Bourg Stéphane

    2015-12-01

    Full Text Available Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities striving to meet these challenges, carried out under the Euratom FP7 collaborative project SACSESS (Safety of Actinide Separation Processes. Emphasis is put on the safety issues of fuel reprocessing and waste storage. Two types of actinide separation processes, hydrometallurgical and pyrometallurgical, are considered, as well as related aspects of material studies, process modeling and the radiolytic stability of solvent extraction systems. Education and training of young researchers in nuclear chemistry is of particular importance for further development of this field.

  17. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  18. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  19. Computational Study of Covalency and Complexation in Actinides using Static and Dynamic Simulation and Topological Density Analysis

    OpenAIRE

    Kirker, I. D. J.

    2013-01-01

    The separation of minor actinides such as americium and curium from other actinide and lanthanide-bearing components of used nuclear fuel is a necessary part of post-processing and recycling this fuel into storable components and new fuel material. Separation ratios can be optimised using a comprehensive understanding of the differences between these elements and their aqueous chemistry. This work uses computational simulation to investigate bonding behaviour and covalency differences between...

  20. Concentration of actinides in the food chain

    International Nuclear Information System (INIS)

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  1. Calorimetric assay of minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, C.; Bracken, D.; Cremers, T.; Foster, L.A.; Ensslin, N.

    1996-12-31

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques.

  2. Calorimetric assay of minor actinides

    International Nuclear Information System (INIS)

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques

  3. Reprocessing and partitioning for recycle transmutation to perform geologic disposal by using counter-current, multi-stage, centrifugal extraction process

    International Nuclear Information System (INIS)

    P and T treatment of MA (Minor Actinides) and LLFP (Low level fission products) in HLW (High level wastes) has a role to avoid the unanticipated uncertainty, which might be accompanied by geologic disposal in a super-long period, caused by the change of geologic behavior and/or geologic environment. R and P (reprocessing and partitioning) process should be improved even now for multi-recycling of U and Pu, MA and LLFP for P and T treatment with low inventory. Six-group partitioning based on five criteria for partitioning was studied to make up the concept of zero-release GSC (glass solidified canister), in which MA and LLFP are eliminated by P and T treatment. Drastic number reduction of GSC is another significant role gained by P and T treatment, in order to save the total cost of current geologic disposal and compensate the cost required by P and T treatment. In order to examine the possibility of multi-cycled R and P system for transmutation of MA and LLFP, a compact, counter-current, multi-stage centrifugal extractor and a similar con-current semi-continuous centrifugal separator were studied to get the concept of sharp cut-off extractor and a semi-continuous precipitator, for treating MA, ST and SL (Stable and short-lived nuclides) and LLFP in HLW. (author)

  4. Minor actinides transmutation strategies in sodium fast reactors

    International Nuclear Information System (INIS)

    In minor actinides transmutation strategies for fast spectrum reactors, different possibilities regarding the core loading are considered. We study both homogeneous patterns (HOM) with various minor actinides (MA) content values and heterogeneous schemes (HET) with higher percentages of MA (Np, Am and Cm) at the periphery of reactor. We analyze the capability of transmutation of each design and the reactivity coefficients such as the Doppler constant, void worth and the fraction of delayed neutrons. The EVOLCODE2 code is the computational tool used in this study. It is based on MCNPX and ORIGEN/ACAB codes and allows carrying out burn-up calculations to get the isotopic evolution of fuel composition. Among the three strategies studied (HOM 2.5 %, HOM 4% and HET 20 %) for a possible design of a Sodium Cooled Fast Breeder Reactor, the one with better transmutation results is the HOM 4%, which shows higher absolute and relative values (12 Kg-MA/TWe, 29% respectively). Concerning transmutation in blankets with 20% MA content, results show a very little or no transmutation values when considering Np, Am and Cm together, though a positive small value for Np and Am is obtained

  5. Environmental research on actinide elements

    International Nuclear Information System (INIS)

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers

  6. Actinide partitioning-transmutation program final report. I. Overall assessment

    International Nuclear Information System (INIS)

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of 99Tc and 129I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted

  7. Recovery of actinides from TBP-Na2Co3 scrub-waste solutions: the ARALEX process

    International Nuclear Information System (INIS)

    A flowsheet for the recovery of actinides from TBP-Na2CO3 scrub-waste solutions has been developed, based on batch extraction data, and tested, using laboratory-scale countercurrent extraction techniques. The process, called the ARALEX process, uses 2-ethyl-1-hexanol (2-EHOH) to extract the TBP degradation products (HDBP and H2MBP) from acidified Na2CO3 scrub waste leaving the actinides in the aqueous phase. Dibutyl and monobutyl phosphoric acids are attached to the 2-EHOH molecules through hydrogen bonds, which also diminish the ability of the HDBP and H2MBP to complex actinides. Thus all actinides remain in the aqueous raffinate. Dilute sodium hydroxide solutions can be used to back-extract the dibutyl and monobutyl phosphoric acid esters as their sodium salts. The 2-EHOH can then be recycled. After extraction of the acidified carbonate waste with 2-EHOH, the actinides may be readily extracted from the raffinate with DHDECMP or, in the case of tetra- and hexavalent actinides, with TBP. The ARALEX process can also be applied to other actinide waste streams which contain appreciable concentrations of polar organic compounds (e.g., detergents) that interfere with conventional actinide ion exchange and liquid-liquid extraction procedures. 20 figures, 6 tables

  8. Recovery of actinides from TBP-Na/sub 2/Co/sub 3/ scrub-waste solutions: the ARALEX process

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, E.P.; Bloomquist, C.A.A.; Mason, G.W.; Leonard, R.A.; Ziegler, A.A.

    1979-08-01

    A flowsheet for the recovery of actinides from TBP-Na/sub 2/CO/sub 3/ scrub-waste solutions has been developed, based on batch extraction data, and tested, using laboratory-scale countercurrent extraction techniques. The process, called the ARALEX process, uses 2-ethyl-1-hexanol (2-EHOH) to extract the TBP degradation products (HDBP and H/sub 2/MBP) from acidified Na/sub 2/CO/sub 3/ scrub waste leaving the actinides in the aqueous phase. Dibutyl and monobutyl phosphoric acids are attached to the 2-EHOH molecules through hydrogen bonds, which also diminish the ability of the HDBP and H/sub 2/MBP to complex actinides. Thus all actinides remain in the aqueous raffinate. Dilute sodium hydroxide solutions can be used to back-extract the dibutyl and monobutyl phosphoric acid esters as their sodium salts. The 2-EHOH can then be recycled. After extraction of the acidified carbonate waste with 2-EHOH, the actinides may be readily extracted from the raffinate with DHDECMP or, in the case of tetra- and hexavalent actinides, with TBP. The ARALEX process can also be applied to other actinide waste streams which contain appreciable concentrations of polar organic compounds (e.g., detergents) that interfere with conventional actinide ion exchange and liquid-liquid extraction procedures. 20 figures, 6 tables.

  9. Partitioning technologies and actinide science: towards pilot facilities in Europe (ACSEPT project)

    International Nuclear Information System (INIS)

    ACSEPT is an essential contribution to the demonstration, in the long term, of the potential benefits of actinide recycling to minimize the burden on the geological repositories. To succeed, ACSEPT is organized into three technical domains: (i) Considering technically mature aqueous separation processes, ACSEPT works to optimize and select the most promising ones dedicated either to actinide partitioning or to grouped actinide separation. A substantial review was undertaken either to be sure that the right molecule families are being studied, or, on the contrary, to identify new candidates. Results of the first hot tests allowed the validation of some process options. (ii) Concerning pyrochemical separation processes, ACSEPT is focused on the enhancement of the two reference cores of process selected within EUROPART with specific attention to the exhaustive electrolysis in molten chloride (quantitative recovery of the actinides with the lowest amount of fission products) and to actinide back-extraction from an An-Al alloy. R and D efforts are also brought to key scientific and technical issues compulsory for building a complete separation process (head-end steps, salt treatment for recycling and waste management). (iii) By integrating all the experimental results within engineering and systems studies, both in hydro and pyro domains, ACSEPT will deliver relevant flowsheets and recommendations to prepare for future demonstration at a pilot level, in relation with strategies developed through the SNE-TP. In addition, a training and education programme is implemented to share the knowledge among the partitioning community and the future generations of researchers

  10. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    International Nuclear Information System (INIS)

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SFLn/Am obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as a Zr

  11. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Sypula, Michal

    2013-07-01

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SF{sub Ln/Am} obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as

  12. Pyrometallurgical processes for recovery of actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  13. Pyrometallurgical processes for recovery of actinide elements

    International Nuclear Information System (INIS)

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository

  14. THERMODYNAMICS OF THE ACTINIDES

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Burris B.

    1962-04-01

    Recent work on the thermodynamic properties of the transplutonium elements is presented and discussed in relation to trends in thermodynamic properties of the actinide series. Accurate values are given for room temperature lattice parameters of two crystallographic forms, (facecentred cubic) fcc and dhcp (double-hexagonal closepacked), of americium metal and for the coefficients of thermal expansion between 157 and 878 deg K (dhcp) and 295 to 633 deg K (fcc). The meiting point of the metal, and its magnetic susceptibility between 77 and 823 deg K are reported and the latter compared with theoretical values for the tripositive ion calculated from spectroscopic data. Similar data (crystallography, meiting point and magnetic susceptibility) are given for metallic curium. A value for the heat of formation of americium monoxide is reported in conjunction with crystallographic data on the monoxide and mononitride. A revision is made in the current value for the heat of formation of Am/O/sub 2/ and for the potential of the Am(III)-Am(IV) couple. The crystal structures and lattice parameters are reported for the trichloride, oxychloride and oxides of californium. (auth)

  15. Electrochemical separation of actinides and fission products in molten salt electrolyte

    Science.gov (United States)

    Gay, R. L.; Grantham, L. F.; Fusselman, S. P.; Grimmett, D. L.; Roy, J. J.

    1995-09-01

    Molten salt electrochemical separation may be applied to accelerator-based conversion (ABC) and transmutation systems by dissolving the fluoride transport salt in LiCl-KCl eutectic solvent. The resulting fluoride-chloride mixture will contain small concentrations of fission product rare earths (La, Nd, Gd, Pr, Ce, Eu, Sm, and Y) and actinides (U, Np, Pu, Am, and Cm). The Gibbs free energies of formation of the metal chlorides are grouped advantageously such that the actinides can be deposited on a solid cathode with the majority of the rare earths remaining in the electrolyte. Thus, the actinides are recycled for further transmutation. Rockwell and its partners have measured the thermodynamic properties of the metal chlorides of interest (rare earths and actinides) and demonstrated separation of actinides from rare earths in laboratory studies. A model is being developed to predict the performance of a commercial electrochemical cell for separations starting with PUREX compositions. This model predicts excellent separation of plutonium and other actinides from the rare earths in metal-salt systems.

  16. 33rd Actinide Separations Conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  17. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    International Nuclear Information System (INIS)

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  18. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, B. Y.; Kuijper, J. C.; Oppe, J.; De Haas, J. B. M. [Nuclear Research and Consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2012-07-01

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  19. Actinides and Life's Origins.

    Science.gov (United States)

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  20. Minor actinides impact on basic safety parameters of medium-sized sodium-cooled fast reactor

    Directory of Open Access Journals (Sweden)

    Darnowski Piotr

    2015-03-01

    Full Text Available An analysis of the influence of addition of minor actinides (MA to the fast reactor fuel on the most important safety characteristics was performed. A special emphasis was given to the total control rods worth in order to describe qualitatively and quantitatively its change with MA content. All computations were performed with a homogeneous assembly model of modified BN-600 sodium-cooled fast reactor core with 0, 3 and 6% of MA. A model was prepared for the Monte Carlo neutron transport code MCNP5 for fresh fuel in the beginning-of-life (BOL state. Additionally, some other parameters, such as Doppler constant, sodium void reactivity, delayed neutron fraction, neutron fluxes and neutron spectra distribution, were computed and their change with MA content was investigated. Study indicates that the total control rods worth (CRW decreases with increasing MA inventory in the fuel and confirms that the addition of MA has a negative effect on the delayed neutron fraction.

  1. Actinide recycle utilizing oxide and metallic fuel in prism

    International Nuclear Information System (INIS)

    PRISM is a modular, pool-type sodium-cooled fast reactor employing innovative, passive features to provide an extremely high level of public safety. The PRISM reactor design can accommodate both oxide and metallic fuel forms. A comparison of core design and performance of these forms is made for various options. These options include low fuel cycle cost options, maximum transuranic burning options, and the addition of rare earth elements to the fuel mix. (authors)

  2. Fabrication of actinide mononitride fuel

    International Nuclear Information System (INIS)

    Fabrication of actinide mononitride fuel in JAERI is summarized. Actinide mononitride and their solid solutions were fabricated by carbothermic reduction of the oxides in N2 or N2-H2 mixed gas stream. Sintering study was also performed for the preparation of pellets for the property measurements and irradiation tests. The products were characterized to be high-purity mononitride with a single phase of NaCl-type structure. Moreover, fuel pins containing uranium-plutonium mixed nitride pellets were fabricated for the irradiation tests in JMTR and JOYO. (author)

  3. Fuels and targets for incineration and transmutation of actinides: the ITU programme

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Glatz, J.P.; Haas, D.; Konings, R.J.M.; Somers, J.; Toscano, E.; Walker, C.T.; Wegen, D. [Eurpean Commission, Joint Research Centre, Institute for Transuranium Elements, Kurlsruhe (Germany)

    2000-07-01

    The ITU programme for the development of fuels and targets for transmutation of actinides is presented. The fabrication of various types of oxide fuels/targets by dust-free processes is described. Selected results of post-irradiation examinations of irradiation experiments (SUPERFACT, TRABANT-1, EFTTRA-T4) are presented to demonstrate the irradiation behaviour of these fuels/targets. Finally, the future developments at ITU in this field are described, including the new shielded facility (the MA lab) for fabrication of minor actinide fuels. (authors)

  4. Engineering assessment studies on the JRC's actinides partitioning processes for transmutation

    International Nuclear Information System (INIS)

    Three conceptual processes have been studied and investigated for the feasibility of removing actinides from high active waste. Two of the flowsheets rely completely on counter current techniques for the actinides separation namely the TBP and HDEHP processes, whereas the third process OXAL, uses a precipitation technique in the first instance followed by dissolution of the actinides and rare-earths (RE) for further treatment using a modified HDEHP process. Many important factors such as 'direct' or 'delayed', concentrated or unconcentrated HAW, storage time, activity and heat release levels, solvent irradiation DF's, safety and steady-state recycling conditions for U-LWR, Pu-LWR and FBRs for possible transmutation scenarios have been taken into consideration

  5. Experimental and calculational analyses of actinide samples irradiated in EBR-II

    International Nuclear Information System (INIS)

    Higher actinides influence the characteristics of spent and recycled fuel and dominate the long-term hazards of the reactor waste. Reactor irradiation experiments provide useful benchmarks for testing the evaluated nuclear data for these actinides. During 1967 to 1970, several actinide samples were irradiated in the Idaho EBR-II fast reactor. These samples have now been analyzed, employing mass and alpha spectrometry, to determine the heavy element products. A simple spherical model for the EBR-II core and a recent version of the ORIGEN code with ENDF/B-V data were employed to calculate the exposure products. A detailed comparison between the experimental and calculated results has been made. For samples irradiated at locations near the core center, agreement within 10% was obtained for the major isotopes and their first daughters, and within 20% for the nuclides up the chain. A sensitivity analysis showed that the assumed flux should be increased by 10%

  6. Adsorption of Lanthanides by A{sub y}Mo{sub x}W{sub 1-x}O{sub 3} Hexagonal Tungsten Bronzes and Prospects for their Potential Use as Recyclable Inert Matrix Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Luca, Vittorio; Yang, Bin; Yaman, Ilkay; Griffith, Christopher S.; Scales, Nicholas; Sizgek, Erden [Australian Nuclear Science and Technology Organisation (ANSTO), Institute of Materials Engineering, New Illawarra Road, Lucas Heights, New South Wales, 2234 (Australia)

    2008-07-01

    The hexagonal tungsten bronze (HTB) based adsorbents of general formula A{sub y}M{sub x}W{sub 1-x}O{sub 3}.ZH{sub 2}O have been a particular focus of attention in our laboratory for some time. In the context of a potential partition and transmutation strategy our interest in these HTB materials has been stimulated by their particularly high affinity for lanthanide (LN) and minor actinide (MA). In addition to partitioning operations the materials can also be contemplated for mop-up and decontamination applications. With Cs{sup +} as the target species, HTBs can be converted to very effective waste form materials with performances comparable to the best Cs-containing ceramics such as hollandite. However, their excellent affinity for LNs and MAs suggest their use for MA recycling. When granular variants of the HTB adsorbents are loaded with LNs and are heated in air to relatively modest temperatures these elements preferentially partition into relatively soluble phases imbedded within a durable WO{sub 3} matrix. Since the LN-containing phase is relatively soluble, efficient recovery of the LNs or potentially MAs is feasible. This, together with potentially favorable irradiation properties, suggests they may have uses as recyclable inert matrix fuels. In this communication, we discuss LN and MA adsorption and thermal properties of HTB materials with variable x, as well as resistance to {gamma}-radiation and heavy ion bombardment. Finally, recoverability of the LNs is considered. (authors)

  7. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  8. Environmental research on actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  9. Recycling's technology

    Directory of Open Access Journals (Sweden)

    A. Zajdel

    2007-04-01

    Full Text Available Purpose: Environmental problems have been considered as serious situation in the construction. Waste management is pressing harder with alarming signal warning the industry. This paper discusses the potential impact of biodegradable materials on waste management in terms of landfill, incineration, recycle/reuse composting.Design/methodology/approach: This article reviewed the implementation of strategies of WEEE treatment and the recovery technologies of WEEE. It presented the current status of WEEE and corresponding responses adopted.Findings: The possibility of managing the growing amount of waste and used appliances and equipment according to the accessible literature was shown and the importance of one of the most popular method of waste neutralization (recycling was underlined.Practical implications: The recycling of WEEE is important to introduce and develop cost-effective and environmentally friendly WEEE recycling technologies. it is also necessary to arouse and enhance public awareness regarding environmental protection by publicity, education and so forth, in order to change their traditional viewpoint on the end-of-life electric appliances or cars.Originality/value: This article discusses how environmental science and technology can be applied to hazardous waste management to develop measures by which chemical wastes can be minimized, recycled, treated and disposed.

  10. Sensitivity analysis of minor actinides transmutation to physical and technological parameters

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2015-01-01

    Full Text Available Minor actinides transmutation is one of the three main axis defined by the 2006 French law for management of nuclear waste, along with long-term storage and use of a deep geological repository. Transmutation options for critical systems can be divided in two different approaches: (a homogeneous transmutation, in which minor actinides are mixed with the fuel. This exhibits the drawback of “polluting” the entire fuel cycle with minor actinides and also has an important impact on core reactivity coefficients such as Doppler Effect or sodium void worth for fast reactors when the minor actinides fraction increases above 3 to 5% depending on the core; (b heterogeneous transmutation, in which minor actinides are inserted into transmutation targets which can be located in the center or in the periphery of the core. This presents the advantage of decoupling the management of the minor actinides from the conventional fuel and not impacting the core reactivity coefficients. In both cases, the design and analyses of potential transmutation systems have been carried out in the frame of Gen IV fast reactor using a “perturbation” approach in which nominal power reactor parameters are modified to accommodate the loading of minor actinides. However, when designing such a transmutation strategy, parameters from all steps of the fuel cycle must be taken into account, such as spent fuel heat load, gamma or neutron sources or fabrication feasibility. Considering a multi-recycling strategy of minor actinides, an analysis of relevant estimators necessary to fully analyze a transmutation strategy has been performed in this work and a sensitivity analysis of these estimators to a broad choice of reactors and fuel cycle parameters has been carried out. No threshold or percolation effects were observed. Saturation of transmutation rate with regards to several parameters has been observed, namely the minor actinides volume fraction and the irradiation time

  11. Conjugates of Magnetic Nanoparticle -- Actinide Specific Chelator for Radioactive Waste Separation

    Energy Technology Data Exchange (ETDEWEB)

    Maninder Kaur; Huijin Zhang; Leigh Martin; Terry Todd; You Qiang

    2013-11-01

    A novel nanotechnology for the separation of radioactive waste that uses magnetic nanoparticles (MNPs) conjugated with actinide specific chelators (MNP-Che) is reviewed with a focus on design and process development. The MNP-Che separation process is an effective way of separating heat generating minor actinides (Np, Am, Cm) from spent nuclear fuel solution to reduce the radiological hazard. It utilizes coated MNPs to selectively adsorb the contaminants onto their surfaces, after which the loaded particles are collected using a magnetic field. The MNP-Che conjugates can be recycled by stripping contaminates into a separate, smaller volume of solution, and then become the final waste form for disposal after reusing number of times. Due to the highly selective chelators, this remediation method could be both simple and versatile while allowing the valuable actinides to be recovered and recycled. Key issues standing in the way of large-scale application are stability of the conjugates and their dispersion in solution to maintain their unique properties, especially large surface area, of MNPs. With substantial research progress made on MNPs and their surface functionalization, as well as development of environmentally benign chelators, this method could become very flexible and cost-effective for recycling used fuel. Finally, the development of this nanotechnology is summarized and its future direction is discussed.

  12. Conjugates of magnetic nanoparticle-actinide specific chelator for radioactive waste separation.

    Science.gov (United States)

    Kaur, Maninder; Zhang, Huijin; Martin, Leigh; Todd, Terry; Qiang, You

    2013-01-01

    A novel nanotechnology for the separation of radioactive waste that uses magnetic nanoparticles (MNPs) conjugated with actinide specific chelators (MNP-Che) is reviewed with a focus on design and process development. The MNP-Che separation process is an effective way of separating heat generating minor actinides (Np, Am, Cm) from spent nuclear fuel solution to reduce the radiological hazard. It utilizes coated MNPs to selectively adsorb the contaminants onto their surfaces, after which the loaded particles are collected using a magnetic field. The MNP-Che conjugates can be recycled by stripping contaminates into a separate, smaller volume of solution, and then become the final waste form for disposal after reusing number of times. Due to the highly selective chelators, this remediation method could be both simple and versatile while allowing the valuable actinides to be recovered and recycled. Key issues standing in the way of large-scale application are stability of the conjugates and their dispersion in solution to maintain their unique properties, especially large surface area, of MNPs. With substantial research progress made on MNPs and their surface functionalization, as well as development of environmentally benign chelators, this method could become very flexible and cost-effective for recycling used fuel. Finally, the development of this nanotechnology is summarized and its future direction is discussed. PMID:24070142

  13. Tire Recycling

    Science.gov (United States)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  14. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    Science.gov (United States)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  15. Actinide chemistry in ionic liquids.

    Science.gov (United States)

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

  16. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  17. Actinide Waste Forms and Radiation Effects

    Science.gov (United States)

    Ewing, R. C.; Weber, W. J.

    Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and

  18. Minor Actinide Burning in Thermal Reactors. A Report by the Working Party on Scientific Issues of Reactor Systems

    International Nuclear Information System (INIS)

    The actinides (or actinoids) are those elements in the periodic table from actinium upwards. Uranium (U) and plutonium (Pu) are two of the principal elements in nuclear fuel that could be classed as major actinides. The minor actinides are normally taken to be the triad of neptunium (Np), americium (Am) and curium (Cm). The combined masses of the remaining actinides (i.e. actinium, thorium, protactinium, berkelium, californium, einsteinium and fermium) are small enough to be regarded as very minor trace contaminants in nuclear fuel. Those elements above uranium in the periodic table are known collectively as the transuranics (TRUs). The operation of a nuclear reactor produces large quantities of irradiated fuel (sometimes referred to as spent fuel), which is either stored prior to eventual deep geological disposal or reprocessed to enable actinide recycling. A modern light water reactor (LWR) of 1 GWe capacity will typically discharge about 20-25 tonnes of irradiated fuel per year of operation. About 93-94% of the mass of uranium oxide irradiated fuel is comprised of uranium (mostly 238U), with about 4-5% fission products and ∼1% plutonium. About 0.1-0.2% of the mass is comprised of neptunium, americium and curium. These latter elements accumulate in nuclear fuel because of neutron captures, and they contribute significantly to decay heat loading and neutron output, as well as to the overall radio-toxic hazard of spent fuel. Although the total minor actinide mass is relatively small - approximately 20-25 kg per year from a 1 GWe LWR - it has a disproportionate impact on spent fuel disposal, and thus the longstanding interest in transmuting these actinides either by fission (to fission products) or neutron capture in order to reduce their impact on the back end of the fuel cycle. The combined masses of the trace actinides actinium, thorium, protactinium, berkelium and californium in irradiated LWR fuel are only about 2 parts per billion, which is far too low for

  19. Long-term plant availability of actinides

    International Nuclear Information System (INIS)

    Environmental releases of actinide elements raise issues about which data are very limited. Quantitative information is required to assess the long-term behavior of actinides and their potential hazards resulting from the transport through food chains leading to man. Of special interest is the effect of time on the changes in the availability of actinide elements for uptake by plants from soil. This study provides valuable information on the effects of weathering and aging on the uptake of actinides from soil by range and crop plants grown under realistic field conditions

  20. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  1. Neutronics design of transmutation of minor actinides in a fusion reactor

    International Nuclear Information System (INIS)

    A concept of transmutation of Minor Actinide (MA) nuclear waste based on the spherical torus (ST) tokamak reactor, FDTR, is put forward. A set of plasma parameter was decided suitable for the ST transmuting nuclear waste blanket. The 2-D neutron transport code TWODANT, 3-D Monte Carlo code MCNP-4B and 1-D burn-up calculation code BISON3.0 and their associated data libraries are used to calculate the transmutation rate, the energy multiplication factor and the tritium breeding rate of the transmutation blanket. The calculation results of the system parameters and the actinide series isotopes for different operation times are also given. The engineering feasibility of the center-post of FDTR is investigated. Relevant results are also given. A preliminary neutronics calculation based on ST transmutation blanket shows that proposed system has high transmuting ability for MA wastes

  2. Tinplate recycling

    Energy Technology Data Exchange (ETDEWEB)

    Linley, B.D.

    1977-05-01

    Present activities in the recycling of industrial tinplate waste, including melting and current practices in electrolytic and alkaline detinning, are reviewed. Present development work taking place in the fields of extraction of used tin cans from domestic refuse, and the preparation of those cans prior to detinning is described. The effect of advancing canmaking technology on the detinning industry are discussed.

  3. Tension mechanical properties of recycled glass-epoxy composite material

    OpenAIRE

    Petrović Jelena M.; Ljubić Darko M.; Stamenović Marina R.; Dimić Ivana D.; Putić Slaviša S.

    2012-01-01

    The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite ma...

  4. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced...

  5. Prompt fission neutron spectrum of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  6. Calculated Atomic Volumes of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  7. Facilities for preparing actinide or fission product-based targets

    CERN Document Server

    Sors, M

    1999-01-01

    Research and development work is currently in progress in France on the feasibility of transmutation of very long-lived radionuclides such as americium, blended with an inert medium such as magnesium oxide and pelletized for irradiation in a fast neutron reactor. The process is primarily designed to produce ceramics for nuclear reactors, but could also be used to produce targets for accelerators. The Actinide Development Laboratory is part of the ATALANTE complex at Marcoule, where the CEA investigates reprocessing, liquid and solid waste treatment and vitrification processes. The laboratory produces radioactive sources; after use, their constituents are recycled, notably through R and D programs requiring such materials. Recovered americium is purified, characterized and transformed for an experiment known as ECRIX, designed to demonstrate the feasibility of fabricating americium-based ceramics and to determine the reactor transmutation coefficients.

  8. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  9. Actinide co-conversion by internal gelation

    International Nuclear Information System (INIS)

    Suitable microstructures and homogenous microspheres of actinide compounds are of interest for future nuclear fuel or transmutation target concepts to prevent the generation and dispersal of actinide powder. Sol-gel routes are being investigated as one of the possible solutions for producing these compounds. Preliminary work is described involving internal gelation to synthesize mixed compounds including minor actinides, particularly mixed actinide or mixed actinide-inert element compounds. A parameter study is discussed to highlight the importance of the initial broth composition for obtaining gel microspheres without major defects (cracks, craters, etc.). In particular, conditions are defined to produce gel beads from Zr(IV)/Y(III)/Ce(III) or Zr(IV)/An(III) systems. After gelation, the heat treatment of these microspheres is described for the purpose of better understanding the formation of cracks after calcination and verifying the effective synthesis of an oxide solid-solution. (authors)

  10. Actinide ion sensor for pyroprocess monitoring

    Science.gov (United States)

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  11. Ionic Interactions in Actinide Tetrahalides

    Science.gov (United States)

    Akdeniz, Z.; Karaman, A.; Tosi, M. P.

    2001-05-01

    We determine a model of the ionic interactions in AX 4 compounds (where A is an atom in the actinide series from Th to Am and X = F, Cl, Br or I) by an analysis of data on the static and dynamic structure of their molecular monomers. The potential energy function that we adopt is taken from earlier work on rare-earth trihalides [Z. Akdeniz, Z. Q q e k and M. P. Tosi, Z. Naturforsch. 55a, 861 (2000)] and in particular allows for the electronic polarizability of the actinide ion. This polarizability quantitatively determines the antisymmetric-bending vibrational mode, but its magnitude remains compatible with a symmetric tetrahedral shape of the molecule at equilibrium. The fluorides have an especially high degree of ionic character, and the interionic-force parameters for each halide of the U, Np, Pu and Am series show regular trends, suggesting that extrapolations to the other transuranic-element halides may usefully be made. The Th compounds show some deviations from these trends, and the interionic-force model that we determine for ThCl4 differs somewhat from that obtained in a previous study. We therefore return on the evaluation of the relative stability of charged oligomers of ThCl4 and ZrCl4 and find confirmation of our earlier results on this problem.

  12. MaXi Avisen

    DEFF Research Database (Denmark)

    Kanstrup, Anne Marie; Sørensen, Marianne; Bertelsen, Pernille

    2008-01-01

    maXi-projektets vision er at sprænge rammerne for sundhedsstøtte med it ved at sætte diabetikere og deres familier i centrum og ved at flytte fokus fra sygdom og hospitaler til samfund, hverdagsliv og services. maXi-projektet har til formål at afprøve og gennemføre brugerdreven innovation som...... eksperimenter i et 'living lab' - som etableres i Skagen. I 2009 udvælges nye brugere til deltagelse i projektet. maXi-projektet opbygges som et modelprojekt i samar-bejde mellem Aalborg Universitet, Fonden Skagen Helse, Teknologisk Institut og Edvantage Group. Se http://www.maxi-projektet.dk/ Projektet er...

  13. Actinides transmutation - a comparison of results for PWR benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Claro, Luiz H. [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil)], e-mail: luizhenu@ieav.cta.br

    2009-07-01

    The physical aspects involved in the Partitioning and Transmutation (P and T) of minor actinides (MA) and fission products (FP) generated by reactors PWR are of great interest in the nuclear industry. Besides these the reduction in the storage of radioactive wastes are related with the acceptability of the nuclear electric power. From the several concepts for partitioning and transmutation suggested in literature, one of them involves PWR reactors to burn the fuel containing plutonium and minor actinides reprocessed of UO{sub 2} used in previous stages. In this work are presented the results of the calculations of a benchmark in P and T carried with WIMSD5B program using its new cross sections library generated from the ENDF-B-VII and the comparison with the results published in literature by other calculations. For comparison, was used the benchmark transmutation concept based in a typical PWR cell and the analyzed results were the k{infinity} and the atomic density of the isotopes Np-239, Pu-241, Pu-242 and Am-242m, as function of burnup considering discharge of 50 GWd/tHM. (author)

  14. Overall assessment of actinide partitioning and transmutation for waste management purposes

    International Nuclear Information System (INIS)

    A program to establish the technical feasibility and incentives for partitioning (i.e., recovering) actinides from fuel cycle wastes and then transmuting them in power reactors to shorter-lived or stable nuclides has recently been concluded at the Oak Ridge National Laboratory. The feasibility was established by experimentally investigating the reduction that can be practicably achieved in the actinide content of the wastes sent to a geologic repository, and the incentives for implementing this concept were defined by determining the incremental costs, risks, and benefits. Eight US Department of Energy laboratories and three private companies participated in the program over its 3-year duration. A reference fuel cycle was chosen based on a self-generated plutonium recycle PWR, and chemical flowsheets based on solvent extraction and ion-exchange techniques were generated that have the potential to reduce actinides in fuel fabrication and reprocessing plant wastes to less than 0.25% of those in the spent fuel. Waste treatment facilities utilizing these flowsheets were designed conceptually, and their costs were estimated. Finally, the short-term (contemporary) risks from fuel cycle operations and long-term (future) risks from deep geologic disposal of the wastes were estimated for cases with and without partitioning and transmutation. It was concluded that, while both actinide partitioning from wastes and transmutation in power reactors appear to be feasible using currently identified and studied technology, implementation of this concept cannot be justified because of the small long-term benefits and substantially increased costs of the concept

  15. MaTeam-projektet

    DEFF Research Database (Denmark)

    Andreasen, Marikka; Damkjær, Helle Sejer; Højgaard, Tomas

    2011-01-01

    Projektet MaTeam beskrives med fokus på et toårigt forsøg hvor matematiklærerne på 4.-6. klassetrin på fire skoler i Silkeborg Kommune samarbejdede med forfatterne. Projektet handlede om udvikling af matematiklærerkompetencer med fokus på samarbejdet i de fire skolers matematiklærerfagteam...... matematiklærerfagteam og samarbejdsrelationer der indgår i projektet. Desuden beskriver vi forskellige typer af fagteam og lærere. Metodisk var MaTeam-projektet struktureret som en didaktisk modelleringsproces....

  16. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    , good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...... and use of recycled products are discussed, as are the resource and environmental issues of plastic recycling....

  17. Ma(d)skulinitet

    DEFF Research Database (Denmark)

    Leer, Jonatan

    , forstås i forhold til en større revision af den maskuline identitet i den aktuelle (flydende) modernitet? Afhandlingen er informeret af poststrukturalistisk kønsteori og har med begrebet Ma(d)skulinitet ønsket at fange afhandlingens grundlæggende forståelse af madlavning og ”mandelavning” som to gensidigt...

  18. MaXi Avisen

    DEFF Research Database (Denmark)

    Kanstrup, Anne Marie; Sørensen, Marianne

    2008-01-01

    eksperimenter i et 'living lab' - som etableres i Skagen. I 2009 udvælges nye brugere til deltagelse i projektet. maXi-projektet opbygges som et modelprojekt i samar-bejde mellem Aalborg Universitet, Fonden Skagen Helse, Teknologisk Institut og Edvantage Group. Se http://www.maxi-projektet.dk/ Projektet er...

  19. Experimental studies of actinides in molten salts

    International Nuclear Information System (INIS)

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  20. Electronic structure and magnetic properties of actinides

    International Nuclear Information System (INIS)

    The study of the actinide series shows the change between transition metal behavior and lanthanide behavior, between constant weak paramagnetism for thorium and strong Curie-Weiss paramagnetism for curium. Curium is shown to be the first metal of the actinide series to be magnetically ordered, its Neel temperature being 52K. The magnetic properties of the actinides depending on all the peripheral electrons, their electronic structure was studied and an attempt was made to determine it by means of a phenomenological model. Attempts were also made to interrelate the different physical properties which depend on the outer electronic structure

  1. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  2. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    OpenAIRE

    Soucek, Pavel; Cassayre, Laurent; Eloirdi, Rachel; Malmbeck, Rikard; Meier, Roland; Nourry, Christophe; Claux, Benoit; Glatz, Jean-Paul

    2014-01-01

    International audience; A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillatio...

  3. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    OpenAIRE

    Cassayre, Laurent; Soucek, Pavel; Mendes, Eric; Malmbeck, Rikard; Nourry, Christophe; Eloirdi, Rachel; Glatz, Jean-Paul

    2011-01-01

    Pyrochemical processes in molten LiCl–KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide–aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorina...

  4. [MaRS Project

    Science.gov (United States)

    Aruljothi, Arunvenkatesh

    2016-01-01

    The Space Exploration Division of the Safety and Mission Assurances Directorate is responsible for reducing the risk to Human Space Flight Programs by providing system safety, reliability, and risk analysis. The Risk & Reliability Analysis branch plays a part in this by utilizing Probabilistic Risk Assessment (PRA) and Reliability and Maintainability (R&M) tools to identify possible types of failure and effective solutions. A continuous effort of this branch is MaRS, or Mass and Reliability System, a tool that was the focus of this internship. Future long duration space missions will have to find a balance between the mass and reliability of their spare parts. They will be unable take spares of everything and will have to determine what is most likely to require maintenance and spares. Currently there is no database that combines mass and reliability data of low level space-grade components. MaRS aims to be the first database to do this. The data in MaRS will be based on the hardware flown on the International Space Stations (ISS). The components on the ISS have a long history and are well documented, making them the perfect source. Currently, MaRS is a functioning excel workbook database; the backend is complete and only requires optimization. MaRS has been populated with all the assemblies and their components that are used on the ISS; the failures of these components are updated regularly. This project was a continuation on the efforts of previous intern groups. Once complete, R&M engineers working on future space flight missions will be able to quickly access failure and mass data on assemblies and components, allowing them to make important decisions and tradeoffs.

  5. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  6. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs

  7. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    We demonstrated a new process for recovering plutonium and americium from pyrochemical waste. The method is based on chloride solution anion exchange at low acidity, or acidity that eliminates corrosive HCl fumes. Developmental experiments of the process flow chart concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 62- from high-chloride low-acid solution. Americium and other metals are washed from the ion exchange column with lN HNO3-4.8M NaCl. After elution, plutonium is recovered by hydroxide precipitation, and americium is recovered by NaHCO3 precipitation. All filtrates from the process can be discardable as low-level contaminated waste. Production-scale experiments are in progress for MSE residues. Flow charts for actinide recovery from electro-refining and direct oxide reduction residues are presented and discussed

  8. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  9. Synthesis and evaluation structure/extracting and complexing properties of new bi-topic ligands for group actinides extraction

    International Nuclear Information System (INIS)

    The aim of this project is to design and study new extractants for spent nuclear fuel reprocessing. To decrease the long-term radiotoxicity of the waste, the GANEX process is an option to homogeneously recycle actinides. All actinides (U, Np, Pu, Am, Cm) would be extracted together from a highly acidic media and separated from fission products (especially from lanthanides). In this context, fourteen new bi-topic ligands constituted of a nitrogen poly-aromatic unit from the dipyridyl-phenanthroline and dipyridyl-1,3,5-triazine families and functionalized by amid groups were synthesized. Extraction studies performed with some of these ligands confirmed their interest to selectively separate actinides at different oxidation states from an aqueous solution 3M HNO3. To determine the influence of ligands structure on cation complexation, a study in a homogenous media (MeOH/H2O) has been carried out. Electro-spray ionization mass spectrometry have been used to characterize the complexes stoichiometries formed with several cations (Eu3+, Nd3+, Am3+, Pu4+ and NpO2+). Stability constants, evaluated by UV-Visible spectrophotometry, confirm the selectivity of these ligands toward actinides. Lanthanides and actinides complexes have also been characterized in the solid state by infra-red spectroscopy and X-Ray diffraction. Associated to nuclear magnetic resonance experiments and DFT calculations (Density Functional Theory), a better knowledge of their coordination mode was achieved. (author)

  10. Actinide research to solve some practical problems

    International Nuclear Information System (INIS)

    The following topics are discussed: generation of plutonium inventories by nuclear power plants; resettlement of the Marshallese Islanders into an actinide contaminated environment; high radiation background areas of the world; and radiation hazards to uranium miners

  11. Electronic structure and correlation effects in actinides

    Energy Technology Data Exchange (ETDEWEB)

    Albers, R.C.

    1998-12-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related.

  12. Overview of actinide chemistry in the WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Marian [Los Alamos National Laboratory; Lucchini, Jean - Francois [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Swanson, Juliet [Los Alamos National Laboratory

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important

  13. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  14. Lanthanides and actinides in ionic liquids

    OpenAIRE

    Binnemans, Koen

    2007-01-01

    This lecture gives an overview of the research possibilities offered by combining f-elements (lanthanides and actinides) with ionic liquids [1] Many ionic liquids are solvents with weakly coordinating anions. Solvation of lanthanide and actinide ions in these solvents is different from what is observed in conventional organic solvents and water. The poorly solvating behavior can also lead to the formation of coordination compounds with low coordination numbers. The solvation of f-elements can...

  15. Superconductivity in rare earth and actinide compounds

    International Nuclear Information System (INIS)

    Rare earth and actinide compounds and the extraordinary superconducting and magnetic phenomena they exhibit are surveyed. The rare earth and actinide compounds described belong to three classes of novel superconducting materials: high temperature, high field superconductors (intermetallics and layered cuprates); superconductors containing localized magnetic moments; heavy fermion superconductors. Recent experiments on the resistive upper critical field of high Tc cuprate superconductors and the peak effect in the critical current density of the f-electron superconductor CeRu2 are discussed. (orig.)

  16. The Actinide Transition Revisited by Gutzwiller Approximation

    Science.gov (United States)

    Xu, Wenhu; Lanata, Nicola; Yao, Yongxin; Kotliar, Gabriel

    2015-03-01

    We revisit the problem of the actinide transition using the Gutzwiller approximation (GA) in combination with the local density approximation (LDA). In particular, we compute the equilibrium volumes of the actinide series and reproduce the abrupt change of density found experimentally near plutonium as a function of the atomic number. We discuss how this behavior relates with the electron correlations in the 5 f states, the lattice structure, and the spin-orbit interaction. Our results are in good agreement with the experiments.

  17. Lattice effects in the light actinides

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, A.C.; Cort, B.; Roberts, J.A.; Bennett, B.I.; Brun, T.O.; Dreele, R.B. von [Los Alamos National Lab., NM (United States); Richardson, J.W. Jr. [Argonne National Lab., IL (United States)

    1998-12-31

    The light actinides show a variety of lattice effects that do not normally appear in other regions of the periodic table. The article will cover the crystal structures of the light actinides, their atomic volumes, their thermal expansion behavior, and their elastic behavior as reflected in recent thermal vibration measurements made by neutron diffraction. A discussion of the melting points will be given in terms of the thermal vibration measurements. Pressure effects will be only briefly indicated.

  18. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  19. Recent progress in actinide borate chemistry.

    Science.gov (United States)

    Wang, Shuao; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-10-21

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB(5)O(6)(OH)(6)][BO(OH)(2)]·2.5H(2)O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO(4)(-). Uranyl borates form noncentrosymmetric structures with extraordinarily rich topological relationships. Neptunium borates are often mixed-valent and yield rare examples of compounds with one metal in three different oxidation states. Plutonium borates display new coordination chemistry for trivalent actinides. Finally, americium borates show a dramatic departure from plutonium borates, and there are scant examples of families of actinides compounds that extend past plutonium to examine the bonding of later actinides. There are several grand challenges that this work addresses. The foremost of these challenges is the development of structure-property relationships in transuranium materials. A deep understanding of the materials chemistry of actinides will likely lead to the development of advanced waste forms for radionuclides present in nuclear waste that prevent their transport in the environment. This work may have also uncovered the solubility-limiting phases of actinides in some repositories, and allows for measurements on the stability of these materials. PMID:21915396

  20. Synthesis and Evaluation of new Polyfunctional Molecules for Group Actinide Extraction

    International Nuclear Information System (INIS)

    The aim of this project is to design new extracting molecules for spent nuclear fuel reprocessing. In order to minimize the long-term residual radiotoxicity of the waste, the GANEX process is an option based on homogeneous recycling of actinides. All actinides (U, Np, Pu, Am, Cm), present in a highly acidic aqueous solution, would be extracted together and separated from fission products (especially from lanthanides) using liquid-liquid extraction. In this context, twenty new bi-topic ligands constituted of a nitrogen poly-aromatic unit functionalized by amide groups were synthesized. Liquid-liquid extraction tests with these ligands dissolved alone in the organic phase show that N, N, N', N'-tetra-alkyl-6, 6''(2, 2':6', 2''-terpyridine)-diamides are able to selectively extract actinides at different oxidation states (Np(V et VI), U(VI), Pu(IV), Am(III), Cm(III)) from an aqueous solution 3M HNO3. Nevertheless, actinides(III) are poorly extracted. According to crystallographic structures of complexes with Nd(III) and U(VI) determined by X-rays diffraction, these ligands are penta-dentate. In solution (methanol), complexes stoichiometries (1:1) of Nd(III), U(VI) and Pu(IV) were determined by electro-spray ionization mass spectrometry. Stability constants, evaluated by UV-visible spectrophotometry in MeOH/H2O solutions, confirm the selectivity of ligands toward actinides(III) with respect to lanthanides(III). Associate to nuclear magnetic resonance experiments and DFT calculations (Density Functional Theory), a better knowledge of their coordination mode was achieved. (author)

  1. Green Science: Revisiting Recycling

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  2. Comparison of different options for minor actinide transmutation in the frame of the French law for waste management

    International Nuclear Information System (INIS)

    In the frame of the French Act for waste management which has been passed by French Parliament on June 28th, 2006, it is requested to obtain in 2012 an assessment of industrial perspectives of partitioning and transmutation of long-lived elements. These studies must be carried out in tight connection with GENIV systems development. The expected results must include the evaluation of technical and economic scenarios taking into account the optimization options between the minor actinide transmutation processes, their interim storage and geological disposal, including an analysis of several criteria. In this perspective, the CEA has established a working group named 'GT TES' (Working Group on Technical and Economic Scenarios) involving EDF and AREVA to define scenarios, the various criteria to evaluate them, to conduct these evaluations and then to highlight the key results. The group also relied on ANDRA for the geological storage studies. The scenarios evaluations take place in the French context. The nuclear energy production is supposed to remain constant during the scenarios and equal to 430 TWhe/year in accordance with the current French nuclear power installed capacity of 60 GW(e). The deployment of the first Sodium-cooled Fast Reactor (SFR) starts in 2040, considering that at this date the SFR technology should be mature. Several management schemes of minor actinides have been studied: Plutonium recycling in SFR (minor actinides are sent to the waste). Plutonium recycling and minor actinide (or Am alone) transmutation in SFR and in homogeneous mode ('Hom.'). Plutonium recycling and minor actinide (or Am alone) transmutation in SFR and in heterogeneous mode ('Het.'). Plutonium recycling in SFR and minor actinide transmutation in Accelerator-Driven-System (ADS). The criteria used to analyze these different scenarios, should take into account the viewpoint of scientists, industrials, administrations, and the general public. They are listed below: Inventories and

  3. Effects of actinide burning on waste disposal at Yucca Mountain

    International Nuclear Information System (INIS)

    Partitioning the actinides in spent fuel and transmuting them in actinide-burning liquid-metal reactors (ALMRs) is a potential method of reducing public risks from the geologic disposal of nuclear waste. In this paper, the authors present a comparison of radionuclide releases from burial at Yucca Mountain of spent fuel and of ALMR wastes. Two waste disposal schemes are considered. In each, the heat generation of the wastes at emplacement is 9.88 x 107 W, the maximum for the repository. In the first scheme, the repository contains 86,700 tonnes of initial heavy metal (IHM) of light water reactor (LWR) spent fuel. In the second scheme, all current LWRs operate for a 40-yr lifetime, producing a total of 84,000 tonnes IHM of spent fuel. This spent fuel is treated using a pyrochemical process in which 98.4% of the uranium and 99.8% of the neptunium, plutonium, americium, and curium are extracted and fabricated into ALMR fuel, with the reprocessing wastes destined for the repository. The ALMR requires this fuel for its startup and first two reloads; thereafter, it is self-sufficient. Spent ALMR fuel is also pyrochemically reprocessed: 99.9% of the transuranics is recovered and recycled into ALMR fuel, and the wastes are placed in the repository. Thus, in the second scheme, the repository contains the wastes from reprocessing all of the LWR spent fuel plus the maximum amount of ALMR reprocessing wastes allowed in the repository based on its heat generation limit

  4. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell; Edward Mausolf

    2013-10-01

    Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but it is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold

  5. PUMA - plutonium and minor actinides management in thermal high-temperature reactors

    International Nuclear Information System (INIS)

    The PUMA project, a Specific Targeted Research Project (STREP) of the European Union EURATOM 6. Framework Program, is mainly aimed at providing additional key elements for the utilisation and transmutation of plutonium and minor actinides in contemporary and future (high temperature) gas-cooled (HTR) reactor designs. The project runs from September 1, 2006 until August 31, 2009. The investigation on core physics aims at optimising the coated particle (CP) fuel and reactor characteristics, and assuring nuclear stability and safety of a Pu/Ma (minor actinides) HTR core. New CP designs will be explored in order to withstand very high burn-ups and obtain optimal adaptation for disposal after irradiation. In particular, helium production in Pu and MA-based fuel will be assessed and supported by experiments. Fuel irradiation performance codes, developed and used by several organisations, will permit convergence on optimized design criteria. The impact of the introduction of Pu/MA fuel on the fuel cycle and future energy mix will be assessed

  6. Solubility of actinide surrogates in nuclear glasses

    International Nuclear Information System (INIS)

    This paper discusses the results of a study of actinide surrogates in a nuclear borosilicate glass to understand the effect of processing conditions (temperature and oxidizing versus reducing conditions) on the solubility limits of these elements. The incorporation of cerium oxide, hafnium oxide, and neodymium oxide in this borosilicate glass was investigated. Cerium is a possible surrogate for tetravalent and trivalent actinides, hafnium for tetravalent actinides, and neodymium for trivalent actinides. The material homogeneity was studied by optical, scanning electron microscopy. Cerium LIII XANES spectroscopy showed that the Ce3+/Cetotal ratio increased from about 0.5 to 0.9 as the processing temperature increased from 1100 to 1400 deg. C. Cerium LIII XANES spectroscopy also confirmed that the increased Ce solubility in glasses melted under reducing conditions was due to complete reduction of all the cerium in the glass. The most significant results pointed out in the current study are that the solubility limits of the actinide surrogates increases with the processing temperature and that Ce3+ is shown to be more soluble than Ce4+ in this borosilicate glass

  7. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  8. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    hill, amanda; Leinikka Dall, Ole; Andersen, Frits Møller

    2014-01-01

    Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22......% for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses...... how the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish...

  9. Bias estimates used in lieu of validation of fission products and minor actinides in MCNP Keff calculations for PWR burnup credit casks

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Don E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wagner, John C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowen, Douglas G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (keff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the bias due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of keff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.

  10. Recycle Used Oil on America Recycles Day.

    Science.gov (United States)

    White, Boyd W.

    2000-01-01

    Explains that motor oils can be reused and recycled. Educates students about environmental hazards and oil management and includes classroom activities. Addresses the National Science Education Standards. (YDS)

  11. Minior Actinide Doppler Coefficient Measurement Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  12. Research on Actinides in Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  13. Coordination chemistry for new actinide separation processes

    International Nuclear Information System (INIS)

    The amount of wastes and the number of chemical steps can be decreased by replacing the PUREX process extractant (TBP) by, N.N- dialkylamides (RCONR'2). Large amounts of deep underground storable wastes can be stored into sub-surface disposals if the long lived actinide isotopes are removed. Spent nuclear fuels reprocessing including the partitioning of the minor actinides Np, Am, Cm and their transmutation into short half lives fission products is appealing to the public who is not favorable to the deep underground storage of large amounts of long half lived actinide isotopes. In this paper coordination chemistry problems related to improved chemical separations by solvent extraction are presented. 2 tabs.; 4 refs

  14. Recycling of magnesium drive train components

    Institute of Scientific and Technical Information of China (English)

    Daniel FEGHNER; Carsten BLAWERT; Norbert HORT; Karl Ulrich KAINER

    2009-01-01

    With the development of new heat resistant magnesium alloys, the automotive industry has introduced several parts to the drive train. The rising number of large magnesium components will result in a higher quantity of automotive post consumer scrap. It was the aim of this work to find a reasonable alloy system for the recycling of these magnesium drive train components. A matrix of potential recy-cling alloys based on the magnesium alloy AM50 was prepared via permanent mould casting. The ma-terials were investigated via tensile testing, creep tests and salt spray tests. Three alloys were selected for processing via high pressure die casting and the tests were repeated on the new materials. A promising system for recycling has been isolated and will be investigated more deeply for the influence of impurities.

  15. Actinide phosphonate complexes in aqueous solutions

    International Nuclear Information System (INIS)

    Complexes formed by actinides with carboxylic acids, polycarboxylic acids, and aminopolycarboxylic acids play a central role in both the basic and process chemistry of the actinides. Recent studies of f-element complexes with phosphonic acid ligands indicate that new ligands incorporating doubly ionizable phosphonate groups (-PO3H2) have many properties which are unique chemically, and promise more efficient separation processes for waste cleanup and environmental restoration. Simple diphosphonate ligands form much stronger complexes than isostructural carboxylates, often exhibiting higher solubility as well. In this manuscript recent studies of the thermodynamics and kinetics of f-element complexation by 1,1 and 1,2 diphosphonic acid ligands are described

  16. Sequential analysis of selected actinides in urine

    International Nuclear Information System (INIS)

    The monitoring of personnel by urinalysis for suspected contamination by actinides necessitated the development and implementation of an analytical scheme that will separate and identify alpha emitting radionuclides of these elements. The present work deals with Pu, Am, and Th. These elements are separated from an ashed urine sample by means of coprecipitation and ion exchange techniques. The final analysis is carried out by electroplating the actinides and counting in a α-spectrometer. Mean recoveries of these elements from urine are: Pu 64%, Am 74% and Th 69%. (auth)

  17. Spin–orbit coupling in actinide cations

    DEFF Research Database (Denmark)

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.;

    2012-01-01

    The limiting case of Russell–Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin–orbit splitting is large enough to cause a significantly reduc...... spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell....

  18. Actinide elements in aquatic and terrestrial environments

    International Nuclear Information System (INIS)

    Progress is reported on the following research projects: water-sediment interactions of U, Pu, Am, and Cm; relative availability of actinide elements from abiotic to aquatic biota; comparative uptake of transuranic elements by biota bordering Pond 3513; metabolic reduction of 239Np from Np(V) to Np(IV) in cotton rats; evaluation of hazards associated with transuranium releases to the biosphere; predicting Pu in bone; adsorption--solubility--complexation phenomena in actinide partitioning between sorbents and solution; comparative soil extraction data; and comparative plant uptake data

  19. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  20. Actinide and fission product separation and transmutation

    International Nuclear Information System (INIS)

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  1. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...... of recycling in the modern quest for a sustainable global society is performed, clearly showing that without intensified focus on recycling, the global community cannot hope to reach even the most modest goals for sustainability in resource use. A general method for finding new recycling alternatives...... resource recovery is largest. It is clearly shown with the two printed circuit board scrap cases that the currently used copper recycling scenario is environmentally inferior to the tin and lead primary production scenarios. The method is a novelty, since no-one has previously put forward a method...

  2. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    Hill, Amanda Louise; Leinikka Dall, Ole; Andersen, Frits M.

    2014-01-01

    the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish municipalities...... will need to make efforts to recover all recyclable fractions, and that the increased recycling efforts of only selected municipalities will not be sufficient to reach the target.......Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22...

  3. Chemical compatibility of HLW borosilicate glasses with actinides

    International Nuclear Information System (INIS)

    During liquid storage of HLLW the formation of actinide enriched sludges is being expected. Also during melting of HLW glasses an increase of top-to-bottom actinide concentrations can take place. Both effects have been studied. Besides, the vitrification of plutonium enriched wastes from Pu fuel element fabrication plants has been investigated with respect to an isolated vitrification process or a combined one with the HLLW. It is shown that the solidification of actinides from HLLW and actinide waste concentrates will set no principal problems. The leaching of actinides has been measured in salt brine at 230C and 1150C. (orig.)

  4. Automotive Aluminium Recycling

    Energy Technology Data Exchange (ETDEWEB)

    Gelas, B. des

    2000-07-01

    This paper aims at providing an overview on the contribution of aluminium recycling in the supply of new aluminium for automotive applications. Based on a presentation on how the global European automotive aluminium supply requirements are met, an analysis of the present and future contribution of automotive aluminium recycling is first presented. Current situation and future developments for automotive aluminium recycling practices are then commented, together with an outline on design principles for easier aluminium recycling. (orig.)

  5. Human factors and safety issues associated with actinide retrieval from spent light water reactor fuel assemblies

    International Nuclear Information System (INIS)

    A major problem in environmental restoration and waste management is the disposition of used fuel assemblies from the many light water reactors in the United States, which present a radiation hazard to those whose job is to dispose of them, with a similar threat to the general environment associated with long-term storage in fuel repositories around the country. Actinides resident in the fuel pins as a result of their use in reactor cores constitute a significant component of this hazard. Recently, the Department of Energy has initiated an Actinide Recycle Program to study the feasibility of using pyrochemical (molten salt) processes to recover actinides from the spent fuel assemblies of commercial reactors. This project concerns the application of robotics technology to the operation and maintenance functions of a plant whose objective is to recover actinides from spent fuel assemblies, and to dispose of the resulting hardware and chemical components from this process. Such a procedure involves a number of safety and human factors issues. The purpose of the project is to explore the use of robotics and artificial intelligence to facilitate accomplishment of the program goals while maintaining the safety of the humans doing the work and the integrity of the environment. This project will result in a graphic simulation on a Silicon Graphics workstation as a proof of principle demonstration of the feasibility of using robotics along with an intelligent operator interface. A major component of the operator-system interface is a hybrid artificial intelligence system developed at Oak Ridge National Laboratory, which combines artificial neural networks and an expert system into a hybrid, self-improving computer-based system interface. 10 refs

  6. The recycling is moving

    CERN Multimedia

    GS Department

    2011-01-01

    The recycling site currently situated near building 133 has been transferred to the car park of building 156. The site is identified by the sign “RECYCLING” and the above logo. In this new, more accessible site, you will find recycling bins for the following waste: PET (recyclable plastic bottles); Aluminium cans; Nespresso coffee capsules.  

  7. Discovery and utilization of sorghum genes (Ma5/Ma6)

    Science.gov (United States)

    Mullet, John E; Rooney, William L; Klein, Patricia E; Morishige, Daryl; Murphy, Rebecca; Brady, Jeff A

    2012-11-13

    Methods and composition for the production of non-flowering or late flowering sorghum hybrid. For example, in certain aspects methods for use of molecular markers that constitute the Ma5/Ma6 pathway to modulate photoperiod sensitivity are described. The invention allows the production of plants having improved productivity and biomass generation.

  8. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  9. Treatment of actinide-containing organic waste

    International Nuclear Information System (INIS)

    A method has been developed for reducing the volume of organic wastes and recovering the actinide elements. The waste, together with gaseous oxygen (air) is introduced into a molten salt, preferably an alkali metal carbonate such as sodium carbonate. The bath is kept at 7500 - 10000C and 0.5 - 10 atm to thermally decompose and partially oxidize the waste, while substantially reducing its volume. The gaseous effluent, mainly carbon dioxide and water vapour, is vented to the atmosphere through a series of filters to remove trace amounts of actinide elements or particulate alkali metal salts. The remaining combustion products are entrained in the molten salt. Part of the molten salt-combustion product mixture is withdrawn and mixed with an aqueous medium. Insoluble combustion products are then removed from the aqueous medium and are leached with a mixture of hydrofluoric and nitric acids to solubilize the actinide elements. The actinide elements are easily recovered from the acid solution using conventional techniques. (DN)

  10. Report of the panel on inhaled actinides

    International Nuclear Information System (INIS)

    Some topics discussed are as follows: assessment of risks to man of inhaling actinides; use of estimates for developing protection standards; epidemiology of lung cancer in exposed human populations; development of respiratory tract models; and effects in animals: dose- and effect-modifying factors

  11. Actinide measurements by AMS using fluoride matrices

    Science.gov (United States)

    Cornett, R. J.; Kazi, Z. H.; Zhao, X.-L.; Chartrand, M. G.; Charles, R. J.; Kieser, W. E.

    2015-10-01

    Actinides can be measured by alpha spectroscopy (AS), mass spectroscopy or accelerator mass spectrometry (AMS). We tested a simple method to separate Pu and Am isotopes from the sample matrix using a single extraction chromatography column. The actinides in the column eluent were then measured by AS or AMS using a fluoride target matrix. Pu and Am were coprecipitated with NdF3. The strongest AMS beams of Pu and Am were produced when there was a large excess of fluoride donor atoms in the target and the NdF3 precipitates were diluted about 6-8 fold with PbF2. The measured concentrations of 239,240Pu and 241Am agreed with the concentrations in standards of known activity and with two IAEA certified reference materials. Measurements of 239,240Pu and 241Am made at A.E. Lalonde AMS Laboratory agree, within their statistical uncertainty, with independent measurements made using the IsoTrace AMS system. This work demonstrated that fluoride targets can produce reliable beams of actinide anions and that the measurement of actinides using fluorides agree with published values in certified reference materials.

  12. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  13. Rapid determination of actinides in asphalt samples

    International Nuclear Information System (INIS)

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis. If a radiological dispersive device, improvised nuclear device or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean-up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well. (author)

  14. Electronic Structure of the Actinide Metals

    DEFF Research Database (Denmark)

    Johansson, B.; Skriver, Hans Lomholt

    1982-01-01

    itinerant to localized 5f electron behaviour calculated to take place between plutonium and americium. From experimental data it is shown that the screening of deep core-holes is due to 5f electrons for the lighter actinide elements and 6d electrons for the heavier elements. A simplified model for the full...

  15. Placental transfer of plutonium and other actinides

    International Nuclear Information System (INIS)

    The report is based on an extensive literature search. All data available from studies on placental transfer of plutonium and other actinides in man and animals have been collected and analysed, and the report presents the significant results as well as unresolved questions and knowledge gaps which may serve as a waypost to future research work. (orig./MG)

  16. Usage of Recycled Pet

    Directory of Open Access Journals (Sweden)

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  17. Demonstration of Minor Actinide separation from a genuine PUREX raffinate by TODGA/TBP and SANEX reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, D. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340 D-76125 Karlsruhe (Germany); Chalmers University of Technology, Nuclear Chemistry, Deparment of Chemical and Biological Engineering, Gothenburg (Sweden); Christiansen, B.; Glatz, J.P.; Malmbeck, R.; Serrano-Purroy, D. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340 D-76125 Karlsruhe (Germany); Modolo, G. [Forschungszentrum Juelich, Institute for Energy Research, Safety Research and Reactor Technology, D-52425 Juelich (Germany); Sorel, C. [Commissariat a l' Energie Atomique Valrho (CEA), DRCP/SCPS, BP17171, 30207 Bagnols-sur-Ceze (France)

    2008-07-01

    A genuine High Active Raffinate was produced from small scale Purex reprocessing of a UO{sub 2} spent fuel solution and used as feed for a subsequent TODGA/TBP process. In this process, efficient recovery of the trivalent Minor Actinides (MA) actinides could be demonstrated using a hot cell set-up of 32 centrifugal contactor stages. The feed decontamination factors obtained for Am and Cm were in the range of 4.10{sup 4} which corresponds to a recovery of more than 99.99 % in the product fraction. Trivalent lanthanides and Y were co-extracted, otherwise only a small part of the Ru ended up in the product. The collected actinide/lanthanide fraction was later used as feed for a Sanex (separation of actinides from lanthanides) process based on the CyMe{sub 4}-BTBP ligand. Preliminary results show recoveries of more than 99.9 % of Am, Cm and less than 0.1 % of the major lanthanides in the product. (authors)

  18. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-08

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  19. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    International Nuclear Information System (INIS)

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  20. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    Science.gov (United States)

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  1. Actinides(3)/lanthanides(3) separation by nano-filtration assisted by complexation; Separation actinides(3)lanthanides(3) par nanofiltration assistee par complexation

    Energy Technology Data Exchange (ETDEWEB)

    Sorin, A

    2006-07-01

    In France, one of the research trend concerning the reprocessing of spent nuclear fuel consists to separate selectively the very radio-toxic elements with a long life to be recycled (Pu) or transmuted (Am, Cm, Np). The aim of this thesis concerns the last theme about actinides(III)/lanthanides(III) separation by a process of nano-filtration assisted by complexation. Thus, a pilot of tangential membrane filtration was designed and established in a glove box at the ATALANTE place of CEA-Marcoule. Physico-chemical characterisation of the Desal GH membrane (OSMONICS), selected to carry out actinides(III)/lanthanides(III) separation, was realized to determine the zeta potential of the active layer and its resistance to ionizing radiations. Moreover, a parametric study was also carried out to optimize the selectivity of complexation, and the operating conditions of complex retention (influences of the transmembrane pressure, solute concentration, tangential velocity and temperature). Finally, the separation of traces of Am(III) contained in a mixture of lanthanides(III), simulating the real load coming from a reprocessing cycle, was evaluated with several chelating agents such as poly-amino-carboxylic acids according to the solution acidity and the [Ligand]/[Cation(III)] ratio. (author)

  2. Zircon Recycling in Arc Intrusions

    Science.gov (United States)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically Tzrnsat [3]. A corollary is that slightly older zircon antecrysts that are common in the inner units of the TIS could be considered inherited if they are derived from remelting of slightly older intrusions. Remelting at such low temperatures in the arc would require a source of external water. Refs: [1] Sawyer, J.Pet 32:701-738; [2] Fraser et al, Geology 25:607-610; [3] Harrison et al, Geology 35:635- 638

  3. The importance of recycling - Responsible recycling

    International Nuclear Information System (INIS)

    7 times the total emissions from Sweden are saved each year by the recycling industry. It reduces CO2 emissions and saves the environment. In fact it annually reduces global CO2 emissions by 500 million tons, which is more than what is being emitted by the world wide aviation industry. Recycling of iron and steel saves 74% energy and reduces water and air pollution by respectively 76% and 86%, compared to primary production. It provides new raw materials and contributes to save energy. There's no sense in producing goods in a permanent material like plastics, that's supposed to be used only once. It's a huge waste of resources. Today the recycling industry provides half of the world's raw materials and this figure is set to increase. It's about environmentally sound management of resources. It's about plain common sense. There has to be a political willingness to facilitate recycling in every way. And from a corporate perspective social responsibility is becoming an increasingly important competitive edge. This is also a communication issue, it has to be a fact that is well known to the market when a company is doing valuable environmental work. We also need a well functioning global market with easy to understand regulations to facilitate global trade. The global demand for recycled materials should influence their collection and use. Fraud and theft has also to be kept at bay which calls for a close collaboration between organizations such as The International Chamber of Commerce, The International Trade Council and the International Maritime Bureau of the commercial crime services. Increasing recycling is the only way to go if we want to minimize our effect on the environment. We have to remember that recycling is essential for the environment. An increase would be a tremendous help to reduce the green house effect. Increasing recycling is not rocket science. We know how to do it, we just have to decide to go through with it

  4. Microbial Transformations of Actinides and Other Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  5. Interaction of actinide cations with synthetic polyelectrolytes

    International Nuclear Information System (INIS)

    The binding of Am+3, Th+4 and UO2+2 to polymaleic acid, polyethylenemaleic acid and polymethylvinylethermaleic acid has been measured by a solvent extraction technique at 250C and either 0.02 or 0.10 M ionic strength. The solutions were buffered over a pH range such that the percent of carboxylate groups ionized ranged from 25 to 74%. The binding was described by two constants, β1 and β2, which were evaluated after correction for complexation of the actinide cations by acetate and hydrolysis. For comparable degrees of ionization, all three polyelectrolytes showed similar binding strengths. In general, these results indicated that the binding of actinides to these synthetic polyelectrolytes is basically similar to that of natural polyelectrolytes such as humic and fulvic acids. (orig.)

  6. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  7. Actinides: from heavy fermions to plutonium metallurgy

    International Nuclear Information System (INIS)

    The actinide elements mark the emergence of 5f electrons. The f electrons possess sufficiently unusual characteristics that their participation in atomic binding often result in dramatic changes in properties. This provides an excellent opportunity to study the question of localization of electrons; a question that is paramount in predicting the physical and chemical properties of d and f electron transition metals. The transition region between localized (magnetic) and itinerant (often superconducting) behavior provides for many interesting phenomena such as structural instabilities (polymorphism), spin fluctuations, mixed valences, charge density waves, exceptional catalytic activity and hydrogen storage. This region offers most interesting behavior such as that exhibited by the actinide compounds UBe13 and UPt3. Both compounds are heavy-fermion superconductors in which both magnetic and superconducting behavior exist in the same electrons. The consequences of f-electron bonding (which appears greatest at Plutonium) show dramatic effects on phase stability, alloying behavior, phase transformations and mechanical behavior

  8. The electrochemical properties of actinide amalgams

    International Nuclear Information System (INIS)

    Standard potentials are selected for actinides (An) and their amalgams. From the obtained results, energy characteristics are calculated and analyzed for alloy formation in An-Hg systems. It is found that solutions of the f-elements in mercury are very close in properties to amalgams of the alkali and alkaline-earth metals, except that, for the active Group III metals, the ion skeletons have a greater number of realizable charged states in the condensed phase

  9. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  10. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  11. Lamps recycling aiming at the environment preservation

    International Nuclear Information System (INIS)

    The article discusses the following issues of lamps recycling in Brazil: mercury lamps recycling, recycling potential, energy conservation and environmental impacts, enterprises lamps recycling, and incentives policy

  12. Recycling as moral behaviour

    DEFF Research Database (Denmark)

    Thøgersen, John

    It is argued in this paper that in the affluent, industrial societies, environmental behaviours like recycling are typically classified within ""the domain of morality"" in people's minds. Intentions regarding these types of behaviours are not ba a thorough - conscious or unconscious - calculation...... of Reasoned Action (TRA) with regard to understanding recycling behaviour. Further, examples of misleading policy conclusions are discussed suggested that within the framework of cognitive psychology, Schwartz's model of altruistic behaviour offers a more satisfying starting point for understanding recycling...

  13. Efficient paper recycling

    OpenAIRE

    Gregor-Svetec, Diana; Možina, Klemen; Blaznik, Barbara; Urbas, Raša; Vrabič Brodnjak, Urška; Golob, Gorazd

    2013-01-01

    Used paper and paper products are important raw material for paper and board industry. Paper recycling increases the material lifespan and is a key strategy that contributes to savings of primary raw material, reduction of energy and chemicals consumption, reduction of the impact on fresh water and improvement of waste management strategies. The paper recycling rate is still highly inhomogeneous among the countries of Central Europe. Since recovered paper is not only recycled in the country w...

  14. Benchmarking survey for recycling.

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  15. Successive change regularity of actinide properties with atomic number

    International Nuclear Information System (INIS)

    The development and achievements on chemistry of actinide elements are summarised. The relations of properties of actinides to their electronic configurations of valence electronic shells are discussed. Some anomalies of solid properties, the radius contraction, the stable state effect of f7n-orbits (n = 0, 1, 2) and the tetrad effect of oxidation states, etc., with atomic number (Z) are described. 31 figures appended show directly the successive change regularity of actinide properties with Z

  16. Preparation, properties, and some recent studies of the actinide metals

    Energy Technology Data Exchange (ETDEWEB)

    Haire, R.G.

    1985-01-01

    The actinide elements form a unique series of metals. The variation in their physial properties combined with the varying availability of the different elements offers a challenge to the preparative scientist. This article provides a brief review of selected methods used for preparing ..mu..g to kg amounts of the actinide metals and the properties of these metals. In addition, some recent studies on selected actinide metals are discussed. 62 refs.

  17. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  18. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  19. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  20. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    Science.gov (United States)

    Souček, P.; Cassayre, L.; Eloirdi, R.; Malmbeck, R.; Meier, R.; Nourry, C.; Claux, B.; Glatz, J.-P.

    2014-04-01

    A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillation for removal of the salt adhered on the electrode, chlorination of the alloy by chlorine gas and sublimation of the AlCl3 formed. The processes parameters were set on the base of a previous thermochemical study and an experimental work using pure UAl3 alloy. The present experimental results indicated high efficiency of salt distillation and chlorination steps, while the sublimation step should be further optimised.

  1. Hydrothermal decomposition of actinide(IV oxalates: a new aqueous route towards reactive actinide oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Walter Olaf

    2016-09-01

    Full Text Available The hydrothermal decomposition of actinide(IV oxalates (An= Th, U, Pu at temperatures between 95 and 250 °C is shown to lead to the production of highly crystalline, reactive actinide oxide nanocrystals (NCs. This aqueous process proved to be quantitative, reproducible and fast (depending on temperature. The NCs obtained were characterised by X-ray diffraction and TEM showing their size to be smaller than 15 nm. Attempts to extend this general approach towards transition metal or lanthanide oxalates failed in the 95–250 °C temperature range. The hydrothermal decomposition of actinide oxalates is therefore a clean, flexible and powerful approach towards NCs of AnO2 with possible scale-up potential.

  2. U.S. Study on Impacts of Heterogeneous Recycle in Fast Reactors on Overall Fuel Cycle

    International Nuclear Information System (INIS)

    A study in the United States has evaluated attributes of the heterogeneous recycle approach for plutonium and minor actinides transmutation in fast reactor fuel cycles, with comparison to the homogeneous recycle approach where pertinent. The work investigated the characteristics, advantages and disadvantages of the approach in the overall fuel cycle, including reactor transmutation, systems and safety impacts, fuel separations and fabrication issues, and proliferation risk and transportation impacts. For this evaluation, data from previous and ongoing national studies on heterogeneous recycle were reviewed and synthesized. Where useful, information from international sources were included in the findings. The intent of the work was to provide a comprehensive assessment of the heterogeneous recycle approach at the current time. (author)

  3. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    Science.gov (United States)

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  4. Actinide partitioning-transmutation program. Final report. VII. Long-term risk analysis of the geologic repository (appendix)

    International Nuclear Information System (INIS)

    The Chemical Technology Division of ORNL has prepared a set of documents that evaluate a partitioning-transmutation (PT) fuel cycle relative to a reference cycle employing conventional fuel-material recovery methods. The PT cycle uses enhanced recovery methods so that most of the long-lived actinides are recycled to nuclear power plants and transmuted to shorter-lived materials, thereby reducing waste toxicity. Data pertaining to the long-term risk analysis of waste generated from the PT fuel cycle are presented

  5. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  6. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Gohar, Y. (Nuclear Engineering Division)

    2011-11-04

    In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS

  7. Transmutation of minor actinides discharged from LMFBR spent fuel in a high power density fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uebeyli, Mustafa E-mail: mubeyli@gazi.edu.tr

    2004-12-01

    Significant amounts of nuclear wastes consisting of plutonium, minor actinides and long lived fission products are produced during the operation of commercial nuclear power plants. Therefore, the destruction of these wastes is very important with respect to public health, environment and also the future of nuclear energy. In this study, transmutation of minor actinides (MAs) discharged from LMFBR spent fuel in a high power density fusion reactor has been investigated under a neutron wall load of 10 MW/m{sup 2} for an operation period of 10 years. Also, the effect of MA percentage on the transmutation has been examined. The fuel zone, containing MAs as spheres cladded with W-5Re, has been located behind the first wall to utilize the high neutron flux for transmutation effectively. Helium at 40 atm has been used as an energy carrier. At the end of the operation period, the total burning and transmutation are greater than the total buildups in all investigated cases, and very high burnups (420-470 GWd/tHM) are reached, depending on the MA content. The total transmutation rate values are 906 and 979 kg/GW{sub th} year at startup and decrease to 140 and 178 kg/GW{sub th} year at the end of the operation for fuel with 10% and 20% MA, respectively. Over an operation period of 10 years, the effective half lives decrease from 2.38, 2.21 and 3.08 years to 1.95, 1.80 and 2.59 years for {sup 237}Np, {sup 241}Am and {sup 243}Am, respectively. Total atomic densities decrease exponentially during the operation period. The reductions in the total atomic densities with respect to the initial ones are 79%, 81%, 82%, 83%, 85% and 86% for 10%, 12%, 14%, 16%, 18% and 20% MAs, respectively.

  8. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    International Nuclear Information System (INIS)

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38th JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment

  9. Improvement of ternary recycled polymer blend reinforced with date palm fibre

    International Nuclear Information System (INIS)

    Highlights: • Date palm fibre treated with 1% MA improved adhesion and dispersion in the blend. • The improvement in mechanical properties and thermal stability were confirmed. • Fibre addition did not change melting and crystallisation temperature of the blends. - Abstract: This paper investigates the study and preparation of date palm fibre reinforced recycled polymer blend composites. This is the first paper which describes the recycled polymer ternary blends of (1) recycled low density polyethylene (RLDPE), (2) recycled high density polyethylene (RHDPE) and (3) recycled polypropylene (RPP). The date palm fibre reinforced composites (CD00) were prepared by maintaining constant weight% of fibre of 20 wt% without any fibre treatment. Maleic anhydride (MA) was used as the compatabilizer (1 and 2 wt%) and the effect of compatabilizer on the blend matrix composites was studied. The mechanical, thermal, morphological properties, water absorption and chemical resistance properties were evaluated for these composites and also studied for pure blend matrix (C00). Date palm fibre improved the tensile strength and hardness of recycled polymer blend matrix. Further improvement was achieved with 1% MA (CD1), which showed that 1% MA treated composites (CD1) had higher tensile strength, modulus and hardness properties. Thermal stability and water absorption were improved by 1% MA. These improvements were demonstrated at the nanoscale level by the decrease in roughness appearing in Atomic Force Spectroscopic Microscopy analysis indicating that flow is better under this concentration. The SEM analysis also showed that the fibre matrix adhesion improved by adding 1 wt% (CD1) of MA. The melting and crystallisation temperatures of the blends did not change with the addition of date palm fibre and MA, indicating that the additives did not influence the melting and crystallisation properties of the composites. The chemical resistance test results showed that these composites

  10. Water Recycling in Australia

    Directory of Open Access Journals (Sweden)

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  11. Carbon dioxide recycling

    Science.gov (United States)

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  12. Recycle strategies for fast reactors and related fuel cycle technologies

    International Nuclear Information System (INIS)

    Full text: 1. Introduction Fast reactors and related fuel cycle (hereinafter referred to as 'Fast reactor cycle') technologies have the potential of contributing to long-term energy security due to effective use of uranium and plutonium resources, and reduction of the heat generation and potential toxicity of high-level radioactive wastes by burning long-lived minor actinides (MA) recovered from spent fuels of light-water reactors and fast reactors. Further, it is likely that fast reactor cycle technologies can play a certain role in non- proliferation as addressed in GNEP (Global Nuclear Energy Partnership). With these features, R and Ds toward their commercialization have been promoted vigorously and globally as a future vision of nuclear energy. 2. Recycle strategies in each country In Japan, it is determined that after burning uranium in light water reactors, plutonium is recovered from spent fuel and used for light water reactors at the moment and for fast reactors in the future. In order to make it possible, Fast Reactor Cycle Technology Development (FaCT) Project has been promoted with a combination of oxide-fueled sodium-cooled reactors, advanced aqueous reprocessing, and simplified pelletizing fuel fabrication adopted as a main concept aiming at startup of a demonstration reactor around 2025 and commercialization before around 2050. In France, a comparison of the basic specifications between an oxide-fueled sodium-cooled reactor and a carbide (or nitride)-fueled gas-cooled reactor has currently been promoted towards technological selection for a prototype reactor in 2012 in accordance with 'The 2006 planning act on the sustainable management of radioactive materials and waste (Act 2006- 739)' enacted in 2006. Based on the results, France aims at startup of the prototype reactor in 2020 and commercialization in around 2040. For reprocessing, methods which extract actinides collectively such as GANEX has been developed to enhance proliferation resistance

  13. Actinide partitioning and recovery of valuables from HLW

    International Nuclear Information System (INIS)

    The Indian nuclear power programme is sustained by adoption of a closed fuel cycle where in the fissile and fertile materials are recycled by reprocessing of spent fuel. The reprocessing step leads to the generation of high level waste which is presently vitrified using borosilicate matrices. With the nuclear power profile on the brink of an exponential increase, it becomes imperative to consider and adopt cross-cut technologies that would not only lead to a substantial reduction in repository capacity both in terms of volumes and thermal loads but also lead to a reduction in radiotoxicity of the waste forms. Partitioning of high level waste (HLW) is the first step towards achieving the above objectives. Developmental efforts in the last decade have placed partitioning of high level waste in the realms of practical application. This paper will present a compilation of various R and D efforts on development of processes and technologies under consideration for partitioning of high level waste in the Indian context. While numerous laboratory trials are being pursued, some of them which have matured for plant scale demonstration are related to partitioning of actinides from acidic high level waste and recovery of cesium and strontium from high level waste. A structured R and D framework has been worked out to develop deployable processes and technologies for their demonstration on engineering scale. One of the most defining step in this work is selection of potentially successful extraction system based on the systematic study on the extraction properties and their optimization for full scale studies. (author)

  14. Containment of actinides in zirconolite CaZrTi2O7 and alpha irradiation resistance

    International Nuclear Information System (INIS)

    Zirconolite is a potential inorganic matrix witch is currently investigated in order to provide durable containment of the trivalent and tetravalent minor actinides like neptunium, curium, americium and small quantities of un-recyclable plutonium separated from others nuclear wastes. To confirm the actinide loading capacity of the zirconolite structure and to study the physical and chemical stability of this type of crystalline structure when subjected to alpha self-irradiation, zirconolite ceramic pellets were fabricated with 10 wt% plutonium oxide. An initial pellet batch was fabricated in a glove box with 239PuO2 (half-life 24 000 years) in April 2002 (75.06 at% 239Pu, 0.18 at% 238Pu, 20.96 at% 240Pu, 3.12 at% 241Pu, 0.68 at% 242Pu). Another batch was fabricated in a hot cell with 238PuO2 (half-life 87 years) in July 2002 (83.56 at% 238Pu, 14.34 at% 239Pu, 1.83 at% 240Pu, 0.111 at% 241Pu, 0.152 at% 242Pu). The prepared pellets are dense (> 93.3% of the theoretical density on average) and free of cracks. They are characterized by a grain size of between 10 and 20 micrometers. X-ray diffraction analyses confirmed the presence of the zirconolite 2M crystalline structure. Actinides create irradiation damages (amorphization, He accumulation, etc.) in the zirconolite crystalline structure, as a result of alpha decays. The physical properties of 238Pu-zirconolite ceramics were characterized up to about 2 x 1018 αdecay/g. (authors)

  15. Research needs in metabolism and dosimetry of the actinides

    International Nuclear Information System (INIS)

    The following topics are discussed: uranium mine and mill tailings; environmental standards; recommendations of NCRP and ICRP; metabolic models and health effects; life-time exposures to actinides and other alpha emitters; high-specific-activity actinide isotopes versus naturally occurring isotopic mixtures of uranium isotopes; adequacy of the n factor; and metabolism and dosimetry;

  16. Chemistry of lower valent actinide halides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, K.H.; Hildenbrand, D.L.

    1992-01-01

    This research effort was concerned almost entirely with the first two members of the actinide series, thorium and uranium, although the work was later extended to some aspects of the neptunium-fluorine system in a collaborative program with Los Alamos National Laboratory. Detailed information about the lighter actinides will be helpful in modeling the properties of the heavier actinide compounds, which will be much more difficult to study experimentally. In this program, thermochemical information was obtained from high temperature equilibrium measurements made by effusion-beam mass spectrometry and by effusion-pressure techniques. Data were derived primarily from second-law analysis so as to avoid potential errors in third-law calculations resulting from uncertainties in spectroscopic and molecular constants. This approach has the additional advantage of yielding reaction entropies that can be checked for consistency with various molecular constant assignments for the species involved. In the U-F, U-Cl, and U-Br systems, all of the gaseous species UX, UX{sub 2}, UX{sub 3}, UX{sub 4}, and UX{sub 5}, where X represents the halogen, were identified and characterized; the corresponding species ThX, ThX{sub 2}, ThX{sub 3}, and ThX{sub 4} were studied in the Th-F, Th-Cl, and Th-Br systems. A number of oxyhalide species in the systems U-0-F, U-0-Cl, Th-0-F, and Th-O-Cl were studied thermochemically. Additionally, the sublimation thermodynamics of NpF{sub 4}(s) and NpO{sub 2}F{sub 2}(s) were studied by mass spectrometry.

  17. Actinides(3)/lanthanides(3) separation by nano-filtration assisted by complexation

    International Nuclear Information System (INIS)

    In France, one of the research trend concerning the reprocessing of spent nuclear fuel consists to separate selectively the very radio-toxic elements with a long life to be recycled (Pu) or transmuted (Am, Cm, Np). The aim of this thesis concerns the last theme about actinides(III)/lanthanides(III) separation by a process of nano-filtration assisted by complexation. Thus, a pilot of tangential membrane filtration was designed and established in a glove box at the ATALANTE place of CEA-Marcoule. Physico-chemical characterisation of the Desal GH membrane (OSMONICS), selected to carry out actinides(III)/lanthanides(III) separation, was realized to determine the zeta potential of the active layer and its resistance to ionizing radiations. Moreover, a parametric study was also carried out to optimize the selectivity of complexation, and the operating conditions of complex retention (influences of the transmembrane pressure, solute concentration, tangential velocity and temperature). Finally, the separation of traces of Am(III) contained in a mixture of lanthanides(III), simulating the real load coming from a reprocessing cycle, was evaluated with several chelating agents such as poly-amino-carboxylic acids according to the solution acidity and the [Ligand]/[Cation(III)] ratio. (author)

  18. The electrochemical properties of actinide amalgams

    International Nuclear Information System (INIS)

    Selection of the values of standard potentials of An actinides and their amalgams was made. On the basis of the data obtained energy characteristics of alloy formation processes in the systems An-Hg were calculated and analyzed. It is ascertained that the properties of f-element solutions in mercury are similar to those of alkali and alkaline-earth metal amalgams with the only difference, i.e. in case of active metals of group 3 the number of realized charge value of ionic frames in condensed phase increases

  19. Compilation of actinide neutron nuclear data

    International Nuclear Information System (INIS)

    The Swedish nuclear data committee has compiled a selected set of neutron cross section data for the 16 most important actinide isotopes. The aim of the report is to present available data in a comprehensible way to allow a comparison between different evaluated libraries and to judge about the reliability of these libraries from the experimental data. The data are given in graphical form below about 1 ev and above about 10 keV shile the 2200 m/s cross sections and resonance integrals are given in numerical form. (G.B.)

  20. Status of nuclear data for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  1. Supercritical fluid extraction studies on actinides

    International Nuclear Information System (INIS)

    Uranyl nitrate and plutonium in its Pu (III) as well Pu (IV) form loaded onto a tissue paper was extracted completed from paper, glass, stainless steel as well as teflon matrices using modified SC-CO2. A further investigation on recovery of actinides independent of their drying period is expected to culminate into developing an universal procedure to handle Pu bearing waste for its recovery irrespective of its drying history and oxidation states. Such endeavors ultimately lead to the potential utility of the SFE technology for efficient nuclear waste management

  2. Recent progress in actinide borate chemistry

    OpenAIRE

    Wang, S.; Alekseev, E .V.; Depmeier, W.; Albrecht-Schmitt, T.E.

    2011-01-01

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB(5)O(6)(OH)(6)][BO(OH)(2)]·2.5H(2)O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO(4)(-). Uranyl borates form noncentrosymmetric structures with extraordinarily rich topol...

  3. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  4. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  5. The electronic structure of the lanthanides and actinides, a comparison

    International Nuclear Information System (INIS)

    Full text: Optical spectra of the two f-element series (the lanthanides and actinides) are comparable in many respects. For the trivalent ions isolated in single crystals, both series exhibit rich, narrow line spectra. These data can be analysed in terms of a parametric model based on a free-ion Hamiltonian plus the addition of a crystal field Hamiltonian. For most systems the agreement between the calculated and experimental energy levels is quite good. In the actinide series there appears to be a correlation between the magnitude of the crystal field and the inadequacy of the fits. The early actinides exhibit multiple oxidation states for which there is no precedent in the lanthanide series. The parametric model mentioned earlier has been utilized for some tetravalent actinide systems with reasonably good results. A selective survey of results describing the similarities and differences of various lanthanide and actinide systems will be given

  6. The Compressor Recycle System

    OpenAIRE

    Barstad, Bjørn Ove

    2010-01-01

    The compressor recycle system is the main focus of this thesis. When the mass flow through a compressor becomes too low, the compressor can plunge into surge. Surge is a term that is used for axisymmetric oscillation through a compressor and is highly unwanted. The recycle system feeds compressed gas back to the intake when the mass flow becomes too low, and thereby act as a safety system.A mathematical model of the recycle system is extended and simulated in SIMULINK. The mathematical model ...

  7. Solvent recycle/recovery

    Energy Technology Data Exchange (ETDEWEB)

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  8. Actinide Solubility and Speciation in the WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald T. [Los Alamos National Laboratory

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  9. Fusion-Fission Burner for Transuranic Actinides

    Science.gov (United States)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  10. Electronic structure of the actinide dioxides

    International Nuclear Information System (INIS)

    The electronic properties of the fluorite structured actinide dioxides have been investigated using the linear muffin tin orbital method in the atomic sphere approximation. CaF2 with the same structure was also studied because of the relative simplicity of its electronic structure and the greater amount of experimental data available. Band structures were calculated both non self consistently and self consistently. In the non self consistent calculations the effect of changing the approximation to the exchange-correlation potential and the starting atomic configurations was examined. Using the concepts of canonical bands the effects of hybridization were investigated. In particular the 5f electrons included in the band picture were found to mix more strongly into the valence band than indicated by experiment. On this basis the 5f electrons were not included in self consistent calculations which in the density functional formalism are capable of yielding ground state properties. Because of the non participation of the f electrons in the bonding UO2 only was considered as representative of the actinide dioxides. For comparison CaF2 was also examined. Using Pettifor's pressure formula to determine the equilibrium condition the lattice constants were calculated to be 0.5% and 5% respectively below the experimental values. (author)

  11. Engineered Plastics Containing Recycled Rubber

    Institute of Scientific and Technical Information of China (English)

    Dong Yang Wu

    2000-01-01

    @@ 1. Introduction In Australia 10.5 million rubber tyres are discarded annually, representing 120,000 tonnes of wasted rubber resource. Growing local and global concern about the impact of this waste on the environment requires action for the management and recycling of this highly valuable resource through the development of recycling technologies and innovative recycled/recyclable products.

  12. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann;

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  13. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  14. MaMa,你不知道的事

    Institute of Scientific and Technical Information of China (English)

    阿菲

    2014-01-01

    <正>MaMa:你好。我爸昨天说你又离婚了,他说这句话的时候哭了,我扭过头假装没看到。他喝过酒之后鼻子变得通红,我觉得他喝醉了,就自顾自地收拾碗筷,转身准备走进厨房的时候他叫住我,然后就听到上面那句话。我在他面前坐下,给自己倒了一杯水,开始听他讲你的故事。对了,你还记得我吗,我叫阿菲,今年20岁了,我是你的女儿。你对我而言,就只是一个名

  15. MaMa,你不知道的事

    Institute of Scientific and Technical Information of China (English)

    阿菲

    2014-01-01

    MaMa,你好。我爸昨天说你又离婚了,他说这句话的时候哭了,我扭过头假装没看到。他喝过洒之后鼻子变得通红,我觉得他喝醉了,就白顾自地收拾碗筷,转身准备走进厨房时他叫住我,

  16. Recycling glass packaging

    OpenAIRE

    Monica Delia DOMNICA; Leila BARDAªUC

    2015-01-01

    From the specialized literature it follows that glass packaging is not as used as other packages, but in some industries are highly needed. Following, two features of glass packaging will become important until 2017: the shape of the glass packaging and glass recycling prospects in Romania. The recycling of glass is referred to the fact that it saves energy, but also to be in compliance with the provisions indicating the allowable limit values for the quantities of lead and cadmium.

  17. Neutronics of LBE target-cooled ADS for MA transmutation: Japan

    International Nuclear Information System (INIS)

    Purpose and goal: JAEA's reference design of ADS is a tank type 800 MWth subcritical reactor to transmute about 250 kg of minor actinides annually. A lead-bismuth eutectic (LBE) is used as both the primary coolant and the spallation target. A superconducting linear accelerator (SC-LINAC), whose proton energy and maximum current are 1.5 GeV and 20 mA (30 MW), is connected to produce spallation neutrons. The (MA, Pu) N fuel diluted by ZrN is used in the subcritical core. Because the relatively high power peaking factor will be observed at the burnup stage of low HII value, where the influence of the spallation neutrons is strong, Pu is added at the beginning of the first burnup cycle to mitigate the rapid increase of the burnup reactivity

  18. Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R; Moir, R W; Abbott, R

    2006-09-19

    This report documents results of LLNL's work in support of two studies being conducted by Sandia National Laboratories (SNL): the development of the Z-pinch driven inertial fusion energy (Z-IFE), and the use of Z-pinch driven inertial fusion as a neutron source to destroy actinides from fission reactor spent fuel. LLNL's efforts in FY06 included: (1) Development of a systems code for Z-IFE and use of the code to examine the operating parameter space in terms of design variables such as the Z-pinch driver energy, the chamber pulse repetition rate, the number of chambers making up the power plant, and the total net electric power of the plant. This is covered in Section 3 with full documentation of the model in Appendix A. (2) Continued development of innovative concepts for the design and operation of the recyclable transmission line (RTL) and chamber for Z-IFE. The work, which builds on our FY04 and FY05 contributions, emphasizes design features that are likely to lead to a more attractive power plant including: liquid jets to protect all structures from direct exposure to neutrons, rapid insertion of the RTL to maximize the potential chamber rep-rate, and use of cast flibe for the RTL to reduce recycling and remanufacturing costs and power needs. See Section 4 and Appendix B. (3) Description of potential figures of merit (FOMs) for actinide transmutation technologies and a discussion of how these FOMs apply and can be used in the ongoing evaluation of the Z-pinch actinide burner, referred to as the In-Zinerator. See Section 5. (4) A critique of, and suggested improvements to, the In-Zinerator chamber design in response to the SNL design team's request for feedback on its preliminary design. This is covered in Section 6.

  19. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull. 2007; 6(4: 307-312

  20. Recycling of nonmetallics

    Science.gov (United States)

    Amey, E.B.; Kelly, T.D.

    1996-01-01

    The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.

  1. Plutonium and minor actinides management in thermal high - temperature reactors - the EU FP6 project puma

    International Nuclear Information System (INIS)

    The High Temperature gas-cooled Reactor (HTR) can fulfil a very useful niche for the purposes of Pu and Minor Actinide (MA) incineration due to its unique and unsurpassed safety features, as well as to the attractive incentives offered by the nature of the coated particle (CP) fuel. No European reactor of this type is currently available, but there has been, and still is, considerable interest internationally. Decisions to construct such a reactor in China and in South Africa have already been made or are about to be made. Apart from the unique and unsurpassed safety features offered by this reactor type, the nature of the CP fuel offers a number of attractive characteristics. In particular, it can withstand burn-ups far beyond that in either LWR or FR systems. Demonstrations as high as 75% FIMA have been achieved. The coated particle itself offers significantly improved proliferation resistance, and finally with a correct choice of the kernel composition, it can be a very effective support for direct geological disposal of the fuel. The overall objective of the PUMA project, a Specific Targeted Research Project (STREP) within the European Union 6th Framework (EU FP6), is to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO2-free energy generation. A number of important issues concerning the use of Pu and MA in gas-cooled reactors have already been dealt with in other projects, or are being treated in ongoing projects, e.g. as part of EU FP6. However, further steps are required to demonstrate the potential of HTRs as Pu/MA transmuters based on realistic/feasible designs of CP Pu/MA fuel and the PUMA focuses on necessary

  2. Gas core reactors for actinide transmutation. [uranium hexafluoride

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  3. Separation of actinides from spent nuclear fuel: A review.

    Science.gov (United States)

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials.

  4. Separation of actinides from spent nuclear fuel: A review.

    Science.gov (United States)

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials. PMID:27427893

  5. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  6. Demonstration of a TODGA based Extraction Process for the Partitioning of Minor Actinides from a PUREX Raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, D.; Christiansen, B.; Glatz, J.P.; Malmbeck, R.; Serrano-Purroy, D. [Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, (Germany); Modolo, G. [Forschungszentrum Julich, Inst Energy Res Safety Res and Reactor Technol, D-52425 Julich, (Germany); Sorel, Ch. [Commissariat Energie Atom Valrho CEA, DRCP SCPS, F-30207 Bagnols Sur Ceze, (France); Magnusson, D. [Chalmers, Dept Chem and Biol Engn, S-41296 Gothenburg, (Sweden)

    2009-07-01

    Efficient recovery of minor actinides (MA) from genuine PUREX raffinate has been successfully demonstrated by the TODGA + TBP extractant mixture dissolved in an industrial aliphatic solvent TPH. The process was carried out in centrifugal contactors using an optimized flow-sheet involving a total of 32 stages, divided into 4 stages for extraction, 12 stages for scrubbing and 16 stages for back-extraction. Very high feed decontamination factors were obtained (Am, Cm 40 000) and the recovery of these elements was higher than 99.99%. Of the non-lanthanide fission products only Y and a small part of Ru were co-separated into the product fraction together with the lanthanides and the MA. (authors)

  7. An emergency bioassay method for actinides in urine.

    Science.gov (United States)

    Dai, Xiongxin; Kramer-Tremblay, Sheila

    2011-08-01

    A rapid bioassay method has been developed for the sequential measurements of actinides in human urine samples. The method involves actinide separation from a urine matrix by co-precipitation with hydrous titanium oxide (HTiO), followed by anion exchange and extraction chromatography column purification, and final counting by alpha spectrometry after cerium fluoride micro-precipitation. The minimal detectable activities for the method were determined to be 20 mBq L(-1) or less for plutonium, uranium, americium and curium isotopes, with an 8-h sample turn-around time. Spike tests showed that this method would meet the requirements for actinide bioassay following a radiation emergency. PMID:21709501

  8. Distribution of actinides in SFR1; Aktinidfoerdelning i SFR1

    Energy Technology Data Exchange (ETDEWEB)

    Ingemansson, Tor [ALARA Engineering, Skultuna (Sweden)

    2000-02-01

    The amount of actinides in the Swedish repository for intermediate level radioactive wastes has been estimated. The sources for the actinides are mainly the purification filters of the reactors and the used fuel pools. Defect fuel elements are the originating source of the actinides. It is estimated that the 12 Swedish reactors, in total, have had 2.2 kg of fuel dissolved in their systems since start-up. About 880 g of this amount has been brought to the intermediate-level repository.

  9. Report of the panel on practical problems in actinide biology

    International Nuclear Information System (INIS)

    Practical problems are classified as the need to make operational decisions, the need for regulatory assessment either of individual facilities or of generic actions, and the overt appearance of radiobiological effects in man or radioactivity in man or the environment. Topics discussed are as follows: simulated reactor accident; long term effects of low doses; effects of repeated exposures to actinides; inhaled uranium mine air contaminants; metabolism and dosimetry; environmental equilibrium models; patterns of alpha dosimetry; internal dose calculations; interfaces between actinide biology and environmental studies; removal of actinides deposited in the body; and research needs related to uranium isotopes

  10. Status report on actinide and fission product transmutation studies

    International Nuclear Information System (INIS)

    The management of radioactive waste is one of the key issues in today's political and public discussions on nuclear energy. One of the fields that looks into the future possibilities of nuclear technology is the neutronic transmutation of actinides and of some most important fission products. Studies on transmutation of actinides are carried out in various countries and at an international level. This status report which gives an up-to-date general overview of current and planned research on transmutation of actinides and fission products in non-OECD countries, has been prepared by a Technical Committee meeting organized by the IAEA in September 1995. 168 refs, 16 figs, 34 tabs

  11. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  12. Actinide interactions at microbial interfaces: an interdisciplinary challenge

    International Nuclear Information System (INIS)

    An overview on the current state of knowledge of microbial actinide interaction processes is presented. Several detailed examples of the interaction of aerobic soil bacteria (Pseudomonas, Bacillus and Deinococcus strains) with uranium and plutonium are discussed. Details of the nature of the bacterial functional groups involved in the interfacial actinide interaction process are reported. Based on time-resolved laser-induced fluorescence spectroscopy (TRLFS) and synchrotron X-ray absorption spectroscopy (XANES and EXAFS) studies, molecular-level mechanistic details of the different interaction processes are discussed. Areas of this emerging field in actinide research are outlined where additional information and integrated interdisciplinary research is required

  13. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  14. Solidification of simulated actinides by natural zircon

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-Wen; LUO Shang-Geng

    2004-01-01

    Natural zircon was used as precursor material to produce a zircon waste form bearing 20wt% simulated actinides (Nd2O3 and UO2) through a solid state reaction by a typical synroc fabrication process. The fabricated zircon waste form has relatively good physical properties (density 5.09g/cm3, open porosity 4.0%, Vickers hardness 715kg/mm2). The XRD, SEM/EDS and TEM/EDS analyses indicate that there are zircon phases containing waste elements formed through the reaction. The chemical durability and radiation stability are determined by the MCC-1method and heavy ion irradiation; the results show that the zircon waste form is highly leach resistance and relatively stable under irradiation (amorphous dose 0.7dpa). From this study, the method of using a natural mineral to solidify radioactive waste has proven to be feasible.

  15. Actinide elements in aquatic and terrestrial environments

    International Nuclear Information System (INIS)

    Progress is reported in terrestrial ecology studies with regard to plutonium in biota from the White Oak Creek forest; comparative distribution of plutonium in two forest ecosystems; an ecosystem model of plutonium dynamics; actinide element metabolism in cotton rats; and crayfish studies. Progress is reported in aquatic studies with regard to transuranics in surface waters, frogs, benthic algae, and invertebrates from pond 3513; and radioecology of transuranic elements in cotton rats bordering waste pond 3513. Progress is also reported in stability of trivalent plutonium in White Oak Lake water; chemistry of plutonium, americium, curium, and uranium in pond water; uranium, thorium, and plutonium in small mammals; and effect of soil pretreatment on the distribution of plutonium

  16. Gamma spectroscopy of neutron rich actinide nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Birkenbach, Benedikt; Geibel, Kerstin; Vogt, Andreas; Hess, Herbert; Reiter, Peter; Steinbach, Tim; Schneiders, David [Koeln Univ. (Germany). IKP; Collaboration: AGATA-Collaboration

    2013-07-01

    Excited states in neutron-rich actinide Th and U nuclei were investigated after multi nucleon transfer reactions employing the AGATA demonstrator and PRISMA setup at LNL (INFN, Italy). A primary {sup 136}Xe beam of 1 GeV hitting a {sup 238}U target was used to produce the nuclei of interest. Beam-like reaction products of Xe- and Ba isotopes after neutron transfer were selected by the PRISMA spectrometer. The recoil like particles were registered by a MCP detector inside the scattering chamber. Coincident γ-rays from excited states in beam and target like particles were measured with the position sensitive AGATA HPGe detectors. Improved Doppler correction and quality of the γ-spectra is based on the novel γ-ray tracking technique which was successfully exploited. First results on the collective properties of various Th and U isotopes are discussed.

  17. Studies of actinides in a superanoxic fjord

    Energy Technology Data Exchange (ETDEWEB)

    Roos, P.

    1997-04-01

    Water column and sediment profiles of Pu, Am, Th and U have been obtained in the superanoxic Framvaren fjord, southern Norway. The concentration of bomb test fallout Pu, Am as well as `dissolved` Th in the bottom water are the highest recorded in the marine environment. The behaviour of the actinides in the anoxic water mass is to a large extent governed by the behaviour of the colloidal material. Ultrafiltration reveals that 40-60% of the actinides are associated to the large colloids, surprisingly this is valid also for U. The sediment acts as a source for Pu, Am, and Th to the water column but primarily as a sink for U. The remobilization of Pu, Am and Th is evident from the water column profiles which have similar diffusion shape profiles as other constituents originating from the sediments. The vertical eddy diffusion coefficient calculated from the Pu profile is in the same order of magnitude as reported from the H{sub 2}S profile. Decreased bottom water concentrations (but a constant water column inventory) between 1989 and 1995 as well as pore water Pu concentrations nearly identical to the overlaying bottom water indicates that the present Pu flux from the sediments are low. Contrary to Pu and Am, the water column Th inventory ({sup 232}Th and {sup 230}Th) continues to increase. The flux of {sup 232}Th from the sediments was determined from changes in water column inventory between 1989 and 1995 and from a pore water profile to be in the order of 2-8 Bq/m{sup 2}/y. 208 refs.

  18. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  19. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    International Nuclear Information System (INIS)

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate - and should not be equated - with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with a decrease in proliferation risks. On the other hand, at this moment, advanced technologies with reduced proliferation risks are being developed. Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEXTM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the U.S., GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R and D and robust flow-sheets. Finally, future generation recycling schemes will likely handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that have less proliferation risk than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will

  20. Separation of actinides from irradiated An–Zr based fuel by electrorefining on solid aluminium cathodes in molten LiCl–KCl

    International Nuclear Information System (INIS)

    Highlights: • Electrorefining process in molten LiCl-KCl using solid Al electrodes was demonstrated. • High separation factors of actinides over lanthanides were achieved. • Efficient recovery of actinides from irradiated nuclear fuel was achieved. • Uniform, dense and well adhered deposits were obtained and characterised. • Kinetic parameters of actinide–aluminium alloy formation were evaluated. - Abstract: An electrorefining process for metallic spent nuclear fuel treatment is being investigated in ITU. Solid aluminium cathodes are used for homogeneous recovery of all actinides within the process carried out in molten LiCl–KCl eutectic salt at a temperature of 500 °C. As the selectivity, efficiency and performance of solid Al has been already shown using un-irradiated An–Zr alloy based test fuels, the present work was focused on laboratory-scale demonstration of the process using irradiated METAPHIX-1 fuel composed of U67–Pu19–Zr10–MA2–RE2 (wt.%, MA = Np, Am, Cm, RE = Nd, Ce, Gd, Y). Different electrorefining techniques, conditions and cathode geometries were used during the experiment yielding evaluation of separation factors, kinetic parameters of actinide–aluminium alloy formation, process efficiency and macro-structure characterisation of the deposits. The results confirmed an excellent separation and very high efficiency of the electrorefining process using solid Al cathodes

  1. Separation of actinides from irradiated An–Zr based fuel by electrorefining on solid aluminium cathodes in molten LiCl–KCl

    Energy Technology Data Exchange (ETDEWEB)

    Souček, P., E-mail: Pavel.Soucek@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Murakami, T. [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Claux, B.; Meier, R.; Malmbeck, R. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Tsukada, T. [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Glatz, J.-P. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany)

    2015-04-15

    Highlights: • Electrorefining process in molten LiCl-KCl using solid Al electrodes was demonstrated. • High separation factors of actinides over lanthanides were achieved. • Efficient recovery of actinides from irradiated nuclear fuel was achieved. • Uniform, dense and well adhered deposits were obtained and characterised. • Kinetic parameters of actinide–aluminium alloy formation were evaluated. - Abstract: An electrorefining process for metallic spent nuclear fuel treatment is being investigated in ITU. Solid aluminium cathodes are used for homogeneous recovery of all actinides within the process carried out in molten LiCl–KCl eutectic salt at a temperature of 500 °C. As the selectivity, efficiency and performance of solid Al has been already shown using un-irradiated An–Zr alloy based test fuels, the present work was focused on laboratory-scale demonstration of the process using irradiated METAPHIX-1 fuel composed of U{sub 67}–Pu{sub 19}–Zr{sub 10}–MA{sub 2}–RE{sub 2} (wt.%, MA = Np, Am, Cm, RE = Nd, Ce, Gd, Y). Different electrorefining techniques, conditions and cathode geometries were used during the experiment yielding evaluation of separation factors, kinetic parameters of actinide–aluminium alloy formation, process efficiency and macro-structure characterisation of the deposits. The results confirmed an excellent separation and very high efficiency of the electrorefining process using solid Al cathodes.

  2. Un nouveau concept de séparation actinides-lanthanides en milieu sel fondu : mise en oeuvre d'une cathode liquide à surface renouvelée

    OpenAIRE

    Huguet, Anne

    2009-01-01

    This study is part of a research program concerning the assessment of pyrochemical methods for the nuclear waste processing. The An-Ln partitioning could be achieved by an electrolytic selective extraction in molten salt media. It has been decided to focus on liquid reactive cathode which seems promising for a group actinides co-recycling. The aim of the study is to propose, define and initiate the development of an electrolytic pyroprocess dedicated to the quantitative and selective recovery...

  3. An atomic beam source for actinide elements: concept and realization

    International Nuclear Information System (INIS)

    For ultratrace analysis of actinide elements and studies of their atomic properties with resonance ionization mass spectroscopy (RIMS), efficient and stable sources of actinide atomic beams are required. The thermodynamics and kinetics of the evaporation of actinide elements and oxides from a variety of metals were considered, including diffusion, desorption, and associative desorption. On this basis various sandwich-type filaments were studied. The most promising system was found to consist of tantalum as the backing material, an electrolytically deposited actinide hydroxide as the source of the element, and a titanium covering layer for its reduction to the metal. Such sandwich sources were experimentally proven to be well suited for the production of atomic beams of plutonium, curium, berkelium and californium at relatively low operating temperatures and with high and reproducible yields. (orig.)

  4. Distribution of actinide elements in sediments: leaching studies

    International Nuclear Information System (INIS)

    Previous investigations have shown that Fe and Mn oxides and organic matter can significantly influence the behavior of Pu and other actinides in the environment. A sequential leaching procedure has been developed in order to investigate the solid phase distribution of the actinides in riverine and marine sediments. Seven different sedimentary fractions are defined by this leaching experiment: an exchangeable metals fraction, an organic fraction, a carbonate fraction, a Mn oxide fraction, an amorphous Fe fraction, a crystalline Fe oxide fraction and a lattice-held or residual fraction. There is also the option of including a metal sufide fraction. A preliminary experiment, analyzing only the metals and not the actinide elements, indicates that this leaching procedure (with some modifications) is a viable procedure. The subsequent data should result in information concerning the geochemical history and behavior of these actinide elements in the environment

  5. Element Partitioning in Glass-Ceramic Designed for Actinides Immobilization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Glass-ceramics were designed for immobilization of actinides. In order to immobilizing more wastes in the matrix and to develop the optimum formulation for the glass-ceramic, it is necessary to study the

  6. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    International Nuclear Information System (INIS)

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  7. In-situ mineralization of actinides with phytic acid

    International Nuclear Information System (INIS)

    A new approach to the remediation of actinide contamination is described. A hydrolytically unstable organophosphorus compound, phytic acid, is introduced into the contaminated environment. In the short term (up to several hundred years), phytate acts as a cation exchanger to absorb mobile actinide ions from ground waters. Ultimately, phytate decomposes to release phosphate and promote the formation of insoluble phosphate mineral phases, considered an ideal medium to immobilize actinides, as it forms compounds with the lowest solubility of any candidate mineral species. This overview will discuss the rate of hydrolysis of phytic acid, the formation of lanthanide/actinide phosphate mineral forms, the cation exchange behavior of insoluble phytate, and results from laboratory demonstration of the application to soils from the Fernald site

  8. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  9. Gamma-radiolytic stability of new methylated TODGA derivatives for minor actinide recycling.

    Science.gov (United States)

    Galán, Hitos; Zarzana, Christopher A; Wilden, Andreas; Núñez, Ana; Schmidt, Holger; Egberink, Richard J M; Leoncini, Andrea; Cobos, Joaquín; Verboom, Willem; Modolo, Giuseppe; Groenewold, Gary S; Mincher, Bruce J

    2015-11-01

    The stability against gamma radiation of MeTODGA (methyl tetraoctyldiglycolamide) and Me2TODGA (dimethyl tetraoctyldiglycolamide), derivatives from the well-known extractant TODGA (N,N,N',N'-tetraoctyldiglycolamide), were studied and compared. Solutions of MeTODGA and Me2TODGA in alkane diluents were subjected to (60)Co γ-irradiation in the presence and absence of nitric acid and analyzed using LC-MS to determine their rates of radiolytic concentration decrease, as well as to identify radiolysis products. The results of product identification from three different laboratories are compared and found to be in good agreement. The diglycolamide (DGA) concentrations decreased exponentially with increasing absorbed dose. The MeTODGA degradation rate constants (dose constants) were uninfluenced by the presence of nitric acid, but the acid increased the rate of degradation for Me2TODGA. The degradation products formed by irradiation are also initially produced in greater amounts in acid-contacted solution, but products may also be degraded by continued radiolysis. The identified radiolysis products suggest that the weakest bonds are those in the diglycolamide center of these molecules. PMID:26412572

  10. Recycling of actinides produced in LWR and FBR fuel cycles by applying pyrometallurgical process

    International Nuclear Information System (INIS)

    Integrated pyrometallurgical technology will be applied on the fuel reprocessing of oxide and metal fuels and on the recovery of transuranium elements. The main processes consisted of electrorefining, reductive extraction and waste treatment. The oxides will be reduced to metals by using reductant agent prior to the application of electrorefining. The high level liquid waste coming from purex type of reprocessing of LWR fuels can be also treated in order to separate transuranium elements at the reduction extraction process. The salt waste treatment was evaluated on the methods of direct solidification by artificial rock and vitrification after electrolysis. The process flow was proposed based on the experimental results for the partitioning of transuranium elements from high level liquid waste. (author)

  11. Electronic structure and properties of rare earth and actinide intermetallics

    International Nuclear Information System (INIS)

    There are 188 contributions, experimental and theoretical, a few on rare earth and actinide elements but mostly on rare earth and actinide intermetallic compounds and alloys. The properties dealt with include 1) crystal structure, 2) magnetic properties and magnetic structure, 3) magnetic phase transformations and valence fluctuations, 4) electrical properties and superconductivity and their temperature, pressure and magnetic field dependence. A few papers deal with crystal growth and novel measuring methods. (G.Q.)

  12. The effect of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    The near field of the proposed UK repository for ILW/LLW will contain containers of conditioned waste in contact with a cementious backfill. It will contain significant quantities of iron and steel, Magnox and Zircaloy. Colloids deriving from their corrosion products may possess significant sorption capacity for radioelements. If the colloids are mobile in the groundwater flow, they could act as a significant vector for activity transport into the far field. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium has been studied under chemical conditions representing the transition from the near field to the far field. Desorption Rd values of ≥ 5 x 106 ml g-1 were measured for both actinides on these oxides and hydroxides when actinide sorption took place under the near-field conditions and desorption took place under the far-field conditions. Desorption of the actinides occurred slowly from the colloids under far-field conditions when the colloids had low loadings of actinide and more quickly at high loadings of actinide. Desorbed actinide was lost to the walls of the experimental vessel. (author)

  13. Research on the actinide chemistry in Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Fundamental technique to measure chemical behaviors and properties of lanthanide and actinide in radioactive waste is necessary for the development of pryochemical process. First stage, the electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipments, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media. In the second stage, measurement system for physical properties at pyrochemical process such as viscosity, melting point and conductivity is established, and property database at different compositions of lanthanide and actinide is collected. And, both interactions between elements and properties with different potential are measured at binary composition of actinide-lanthanide in molten salt using electrochemical/spectroscopic integrated measurement system.

  14. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  15. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    Energy Technology Data Exchange (ETDEWEB)

    Perkasa, Y. S. [Department of Physics, Sunan Gunung Djati State Islamic University Bandung, Jl. A.H Nasution No. 105 Cibiru, Bandung (Indonesia); Waris, A., E-mail: awaris@fi.itb.ac.id; Kurniadi, R., E-mail: awaris@fi.itb.ac.id; Su' ud, Z., E-mail: awaris@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa No. 10 Bandung 40132 (Indonesia)

    2014-09-30

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator.

  16. Business Plan: Paper Recycling Plant

    OpenAIRE

    Ali, Muhammad; Askari, Sana; Salman, Muhammad; Askari, Sheba

    2008-01-01

    This Business Plan was written for Business Plan competition organized by Ministry of Youth Affairs Government of Pakistan. It explains the paper recycling business, its pros and cons, cost of paper recycling, plant options and feasibility.

  17. Sustainable Concrete with Recycled Aggregate

    OpenAIRE

    Kara, P

    2012-01-01

    Concretes produced with recycled aggregates are the subject of several papers recently published in the technical literature. Substitution of natural aggregates can be one of possibilities to take care of landfills and increase of CO2 emissions into the atmosphere in Latvia. Recycled aggregate is a valuable resource; value-added consumption of recycled aggregate, as replacement for virgin aggregate in concrete, can yield significant energy and environmental benefits. In present study recycled...

  18. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis;

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  19. Recycled Insect Models

    Science.gov (United States)

    Rule, Audrey C.; Meyer, Mary Ann

    2007-01-01

    This article presents an engaging activity in which high school students use a dichotomous key to guide the creation and classification of model insects from recycled plastic lids and containers. Besides teaching the use of a dichotomous key and the effect of evolutionary descent upon groupings of organisms, this activity focuses on an…

  20. Systematic photovoltaic waste recycling

    Energy Technology Data Exchange (ETDEWEB)

    Palitzsch, Wolfram; Loser, Ulrich [Loser Chemie GmbH, Langenweissbach (Germany)

    2013-04-01

    Indium, selenium, tellurium, gallium, molybdenum, cadmium and silicon are some of the major elements used in photovoltaic cells. Fully aware of the limited availability of these metals in future, recycling has been recognized as the most advisable end-of-life strategy to save these raw materials from turning into production wastes. On the other hand, statutory measures such as 'Kreislaufwirtschaftsgesetz' (the German law encouraging closed-loop economy) aim to achieve a maximum quota of recycling and a minimum use of resources such as energy and raw materials. By the year of 2050, end-of-life photovoltaic panels are anticipated to amount to 9.57 million tons. Although we are not there yet, discussions on recycling have already started. We have to prepare for higher waste volumes expected in the coming years. But already today we need to solve some environmental problems like loss of conventional resources (e.g., glass) and rare metals. All of the known approaches for recycling photovoltaic semiconductor material seem economically and environmentally inefficient. In this paper, we report about reclaiming metals from scrap of thin film systems and associated photovoltaic manufacturing wastes like sandblasting dust and overspray. We also report one universal wet-chemical treatment for reclaiming the metals from CIS, CIGS or CdTe photovoltaic waste. Further, we discuss the application of our method to new PV systems, such as substrates other than glass (stainless steel, aluminum or plastic foil sheets) and alternative semiconductor alloys such as GaAs. (orig.)

  1. RECYCLABILITY INDEX FOR AUTOMOBILES

    Science.gov (United States)

    The project's purpose is to create a rating system for the ecological impacts of vehicles at the end of their life based on recyclability, toxic material content, and ultimate disposal. Each year, 10-11 million vehicles are retired from service in the United States. The vehi...

  2. Vehicle recycling regulations

    DEFF Research Database (Denmark)

    Smink, Carla

    2007-01-01

    The number of end-of-life vehicles (ELVs) in the EU is increasing continously. Around 75 percent of an ELV are recyclable metals. The forecast growth in the number of ELVs calls for regulation that aims to minimise the environmental impact of a car. Using Denmark as an example, this article...

  3. Recycling of the #5 polymer.

    Science.gov (United States)

    Xanthos, Marino

    2012-08-10

    Polypropylene (PP) is a widely used plastic with consumer applications ranging from food packaging to automotive parts, including car battery casings. To differentiate it from other recyclable plastics, it is designated as #5. Here, the factors contributing to PP recycling rates are briefly reviewed. Considerations include collection and separation efficiency, processing chemistry, and market dynamics for the products derived from recyclates. PMID:22879510

  4. 33 CFR 80.125 - Marblehead Neck, MA to Nahant, MA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marblehead Neck, MA to Nahant, MA... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.125 Marblehead Neck, MA to Nahant, MA. The 72 COLREGS apply on the harbors, bays, and inlets on the east coast of Massachusetts...

  5. 33 CFR 80.135 - Hull, MA to Race Point, MA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hull, MA to Race Point, MA. 80.135 Section 80.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.135 Hull, MA to Race Point, MA....

  6. Interaction of actinides with amino acids: from peptides to proteins

    International Nuclear Information System (INIS)

    Structural information on complexes of actinides with molecules of biological interest is required to better understand the mechanisms of actinides transport in living organisms, and can contribute to develop new decorporation treatments. Our study is about Th(IV), Np(IV), Pu(IV) and uranyl(VI) cations, which have a high affinity for some protein domains, and Fe(III), which is the natural cation of these biological systems. In this work, chelation of actinides has been brought to light with UV-visible-Near Infra Red spectroscopy, NMR, EPR, and ultrafiltration. Determination of the structure of the complexation site has been undertaken with Exafs measurements, and of the tertiary structure of the protein with SANS measurements. The first approach was to describe the interaction modes between actinides and essential chemical functions of proteins. Thus, the Ac-AspAspProAspAsp-NH2 peptide was studied as a possible chelate of actinides. Polynuclear species with μ-oxo or μ-hydroxo bridges were identified. The iron complex is binuclear, and the actinide ones have a higher nuclearity. The second approach was to study a real case of complexation of actinide with a protein: transferrin. Results show that around physiological ph a mononuclear complex is formed with Np(IV) and Pu(IV), while transferrin does not complex Th(IV) in the same conditions. Characteristic distances of M-transferrin complexes (M = Fe, Np, Pu) were determined. Moreover, the protein seems to be in its close conformation with Pu(IV), and in its open form with Np(IV) and UO22+. (author)

  7. Actinide production in 136Xe bombardments of 249Cf

    International Nuclear Information System (INIS)

    The production cross sections for the actinide products from 136Xe bombardments of 249Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these 136Xe + 249Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the 136Xe + 248Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs

  8. Actinides in irradiated graphite of RBMK-1500 reactor

    International Nuclear Information System (INIS)

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  9. Actinides in irradiated graphite of RBMK-1500 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Plukienė, R., E-mail: rita@ar.fi.lt; Plukis, A.; Barkauskas, V.; Gudelis, A.; Gvozdaitė, R.; Duškesas, G.; Remeikis, V.

    2014-10-01

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  10. The Fernald Waste Recycling Program

    Energy Technology Data Exchange (ETDEWEB)

    Motl, G.P.

    1993-10-26

    Recycling is considered a critical component of the waste disposition strategy at the Fernald Plant. It is estimated that 33 million cubic feet of waste will be generated during the Fernald cleanup. Recycling some portion of this waste will not only conserve natural resources and disposal volume but will, even more significantly, support the preservation of existing disposition options such as off-site disposal or on-site storage. Recognizing the strategic implications of recycling, this paper outlines the criteria used at Fernald to make recycle decisions and highlights several of Fernald`s current recycling initiatives.

  11. Studies on Neutron, Photon (Bremsstrahlung and Proton Induced Fission of Actinides and Pre-Actinides

    Directory of Open Access Journals (Sweden)

    H. Naik

    2015-08-01

    Full Text Available We present the yields of various fission products determined in the reactor neutron, 3.7-18.1 MeV quasi-mono energetic neutron, 8-80 MeV bremsstrahlung and 20-45 MeV proton induced fission of 232Th and 238U using radiochemical and off-line beta or gamma ray counting. The yields of the fission products in the bremsstrahlung induced fission natPb and 209Bi with 50- 70 MeV and 2.5 GeV based on off-line gamma ray spectrometric technique were also presented. From the yields of fission products, the mass chains yields were obtained using charge distribution correction. From the mass yield distribution, the peak-to-valley (P/V ratio was obtained. The role of excitation energy on the peak-to-valley ratio and fine structure such as effect of shell closure proximity and even-odd effect of mass yield distribution were examined. The higher yields of the fission products around A=133-134, 138-140 and 143-144 and their complementary products explained from the nuclear structure effect and role of standard I and II mode of asymmetric fission. In the neutron, photon (bremsstrahlung and proton induced fission, the asymmetric mass distribution for actinides (Th, U and symmetric distribution for pre-actinides (Pb, Bi were explained from different type of potential fission barrier

  12. Photofission of actinide and pre-actinide nuclei in the quasideuteron and delta energy regions

    CERN Document Server

    Berman, B L; Cole, P L; Dodge, W R; Feldman, G; Sanabria, J C; Kolb, N; Pywell, R E; Vogt, J; Nedorezov, V; Sudov, A; Kezerashvili, G Ya

    1999-01-01

    The photofission cross sections for the actinide nuclei sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 3 sup , sup 2 sup 3 sup 5 sup , sup 2 sup 3 sup 8 U, and sup 2 sup 3 sup 7 Np have been measured from 68 to 264 MeV and those for the pre-actinide nuclei sup 1 sup 9 sup 7 Au and sup N sup A sup T Pb from 122 to 222 MeV at the Saskatchewan Accelerator Laboratory, using monoenergetic tagged photons and novel parallel-plate avalanche detectors for the fission fragments. The aim of the experiment was to obtain a comprehensive and self-consistent data set and to investigate previous anomalous results in this energy region. The fission probability for transuranic nuclei is expected to be close to unity here. However, important discrepancies have been confirmed for sup 2 sup 3 sup 7 Np and sup 2 sup 3 sup 2 Th, compared with sup 2 sup 3 sup 8 U, which have serious implications for the inferred total photoabsorption strengths, and hence call into question the 'Universal Curve' for photon absorption at these energies. High-s...

  13. Actinide speciation bound to hydrous ferric oxide colloids in the near-field conditions of the waste pond at 'Mayak' facility (Russia)

    International Nuclear Information System (INIS)

    Full text of publication follows: 'Mayak' facility is a nuclear waste and spent nuclear fuel reprocessing plant located in Ural Mountains, Russia. The opened pond, Karachay Lake, was used for several decades for the discharge of low- and intermediate level waste solutions containing fission products and traces of actinides. Due to high salt concentration and high density of waste solutions, they are penetrating into the groundwater system that is represented by oxic Eh conditions. The speciation of actinides in groundwater samples collected close to Karachay Lake was studied by successive micro- and ultra-filtrations with subsequent SEM, TEM, nano-SIMS, membrane extraction and other techniques. It was established that U and Np were found in soluble fraction (pass through 10 kD ultra-filter) in the form of their bi- and tri-carbonate complexes that was supported by chemical thermodynamic calculations. In contrast, Pu and Am were bound to nano-colloids 10 kD - 50 nm in size. The SEM and TEM data indicate the presence of variety of different colloidal particles which relative concentration decrease in the row: hydrous ferric oxides (HFO) >> clays ≅ calcite > rutile ≅ hematite ≅ barite ≅ MnO2 > monazite > other phases. The SIMS with submicron resolution (Cameca nanoSIMS-50) was used to study local concentration of actinides. According to the obtained data among different colloids detected in the sample actinides were preferentially bound to HFO and MnO2 while other phases did not sorb actinides. In order to determine actinide speciation bound to HFO colloids XPS and An L3 edge XAFS measurements were done at Siberian Synchrotron Radiation Centre. The storage ring VEPP-3 with electron beam energy of 2 GeV and an average stored current of 80 mA was used as the source of radiation. Since the concentration of actinides in actual samples was too low for XAFS, the samples for measurements were prepared by contacting about 10-5 M solutions of Np(V) and Pu(V) with UFO

  14. The actinides-a beautiful ending of the Periodic Table

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Boerje [Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvaegen 23, SE-100 44 Stockholm (Sweden)], E-mail: borje.johansson@fysik.uu.se; Li, Sa [Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvaegen 23, SE-100 44 Stockholm (Sweden); Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2007-10-11

    The 5f elements, actinides, show many properties which have direct correspondence to the 4f transition metals, the lanthanides. The remarkable similarity between the solid state properties of compressed Ce and the actinide metals is pointed out in the present paper. The {alpha}-{gamma} transition in Ce is considered as a Mott transition, namely, from delocalized to localized 4f states. An analogous behavior is also found for the actinide series, where the sudden volume increase from Pu to Am can be viewed upon as a Mott transition within the 5f shell as a function of the atomic number Z. On the itinerant side of the Mott transition, the earlier actinides (Pa-Pu) show low symmetry structures at ambient conditions; while across the border, the heavier elements (Am-Cf) present the dhcp structure, an atomic arrangement typical for the trivalent lanthanide elements with localized 4f magnetic moments. The reason for an isostructural Mott transition of the f electron in Ce, as opposed to the much more complicated cases in the actinides, is identified. The strange appearance of the {delta}-phase (fcc) in the phase diagram of Pu is another consequence of the border line behavior of the 5f electrons. The path leading from {delta}-Pu to {alpha}-Pu is identified.

  15. Rapid determination of alpha emitters using Actinide resin.

    Science.gov (United States)

    Navarro, N; Rodriguez, L; Alvarez, A; Sancho, C

    2004-01-01

    The European Commission has recently published the recommended radiological protection criteria for the clearance of building and building rubble from the dismantling of nuclear installations. Radionuclide specific clearance levels for actinides are very low (between 0.1 and 1 Bq g(-1)). The prevalence of natural radionuclides in rubble materials makes the verification of these levels by direct alpha counting impossible. The capability of Actinide resin (Eichrom Industries, Inc.) for extracting plutonium and americium from rubble samples has been tested in this work. Besides a strong affinity for actinides in the tri, tetra and hexavalent oxidation states, this extraction chromatographic resin presents an easy recovery of absorbed radionuclides. The retention capability was evaluated on rubble samples spiked with certified radionuclide standards (239Pu and 241Am). Samples were leached with nitric acid, passed through a chromatographic column containing the resin and the elution fraction was measured by LSC. Actinide retention varies from 60% to 80%. Based on these results, a rapid method for the verification of clearance levels for actinides in rubble samples is proposed. PMID:15177360

  16. Development of the Chalmers Grouped Actinide Extraction Process

    Directory of Open Access Journals (Sweden)

    Halleröd Jenny

    2015-12-01

    Full Text Available Several solvents for Grouped ActiNide EXtraction (GANEX processes have been investigated at Chalmers University of Technology in recent years. Four different GANEX solvents; cyclo-GANEX (CyMe4- -BTBP, 30 vol.% tri-butyl phosphate (TBP and cyclohexanone, DEHBA-GANEX (CyMe4-BTBP, 20 vol.% N,N-di-2(ethylhexyl butyramide (DEHBA and cyclohexanone, hexanol-GANEX (CyMe4-BTBP, 30 vol.% TBP and hexanol and FS-13-GANEX (CyMe4-BTBP, 30 vol.% TBP and phenyl trifluoromethyl sulfone (FS-13 have been studied and the results are discussed and compared in this work. The cyclohexanone based solvents show fast and high extraction of the actinides but a somewhat poor diluent stability in contact with the acidic aqueous phase. FS-13-GANEX display high separation factors between the actinides and lanthanides and a good radiolytic and hydrolytic stability. However, the distribution ratios of the actinides are lower, compared to the cyclohexanone based solvents. The hexanol-GANEX is a cheap solvent system using a rather stable diluent but the actinide extraction is, however, comparatively low.

  17. Usage of Recycled Pet

    OpenAIRE

    A. Ebru Tayyar; Sevcan Üstün

    2010-01-01

    The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bot...

  18. Machine coolant recycling system

    International Nuclear Information System (INIS)

    Machining processes at the 272W Site Fabrication Services (SFS) produce a waste stream consisting of dirty machine coolant. During use the coolant becomes contaminated with metal chips from milling, and oil, dirt and solvents from the machining process. The mixture is designated as a Washington State dangerous waste with WP02 (persistence), D007 (chromium) and D008 (lead) waste codes. This process results in the generation of 13.5 m3 of hazardous waste per year with an annual cost for coolant replacement, waste management and waste disposal of approximately $137,000. To identify alternatives to this situation, ICF Kaiser Hanford Company (ICF KH) North Environmental Services conducted a pollution prevention opportunity assessment (P20A) on the machining processes. A coolant recycler and sump sucker unit were selected as the most cost-effective waste reduction options. In December 1994, ICF KH received return on investment (ROI) funding from the U.S. Department of Energy Richland Operations Office (DOE-RL) to implement this option. The coolant recycling and the sump sucker units were purchased and installed in July 1995 at a total cost of $61,000. The sump sucker removes the dirty coolant from the fabrication machinery and filters it to remove shavings and sludge. The filtered coolant then is transferred to the coolant recycling system for further processing. The coolant recycling system reconditions the filtered coolant for use in the machining equipment, and mixes the concentrated coolant to the correct concentration. As a result of implementing this option, the annual generation of waste coolant was reduced by 12 m3. The annual cost savings exceed $119,000 with an ROI of 186%. Additional benefits include reduced coolant usage; improved tool life, wheel life, finish, size control, corrosion protection, and operator working conditions; increase machine open-quotes up-timeclose quotes; and reduced machine tool maintenance

  19. Building M&A Integration capabilities

    OpenAIRE

    Heimeriks, Koen H.; Zollo, Maurizio; Gates, Stephen

    2006-01-01

    While firms increasingly rely on mergers and acquisitions as a key growth instrument, many firms have difficulty successfully integrating the target. To counter the disappointing statistics, some firms like IBM and Xerox use M&A practices that capture learnings to improve M&A integrations. Comparing occasional with master acquirers, we find that those that make effective use of such M&A practices increase their chances of success with up to 24%. While there are plenty of ...

  20. Prompt Fission Neutron Spectra of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data

  1. Actinide consumption: Nuclear resource conservation without breeding

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.; Battles, J.E.; Johnson, T.R.; McPheeters, C.C.

    1991-01-01

    A new approach to the nuclear power issue based on a metallic fast reactor fuel and pyrometallurgical processing of spent fuel is showing great potential and is approaching a critical demonstration phase. If successful, this approach will complement and validate the LWR reactor systems and the attendant infrastructure (including repository development) and will alleviate the dominant concerns over the acceptability of nuclear power. The Integral Fast Reactor (IFR) concept is a metal-fueled, sodium-cooled pool-type fast reactor supported by a pyrometallurgical reprocessing system. The concept of a sodium cooled fast reactor is broadly demonstrated by the EBR-II and FFTF in the US; DFR and PFR in the UK; Phenix and SuperPhenix in France; BOR-60, BN-350, BN-600 in the USSR; and JOYO in Japan. The metallic fuel is an evolution from early EBR-II fuels. This fuel, a ternary U-Pu-Zr alloy, has been demonstrated to be highly reliable and fault tolerant even at very high burnup (160-180,000 MWd/MT). The fuel, coupled with the pool type reactor configuration, has been shown to have outstanding safety characteristics: even with all active safety systems disabled, such a reactor can survive a loss of coolant flow, a loss of heat sink, or other major accidents. Design studies based on a small modular approach show not only its impressive safety characteristics, but are projected to be economically competitive. The program to explore the feasibility of actinide recovery from spent LWR fuel is in its initial phase, but it is expected that technical feasibility could be demonstrated by about 1995; DOE has not yet committed funds to achieve this objective. 27 refs.

  2. Actinide consumption: Nuclear resource conservation without breeding

    International Nuclear Information System (INIS)

    A new approach to the nuclear power issue based on a metallic fast reactor fuel and pyrometallurgical processing of spent fuel is showing great potential and is approaching a critical demonstration phase. If successful, this approach will complement and validate the LWR reactor systems and the attendant infrastructure (including repository development) and will alleviate the dominant concerns over the acceptability of nuclear power. The Integral Fast Reactor (IFR) concept is a metal-fueled, sodium-cooled pool-type fast reactor supported by a pyrometallurgical reprocessing system. The concept of a sodium cooled fast reactor is broadly demonstrated by the EBR-II and FFTF in the US; DFR and PFR in the UK; Phenix and SuperPhenix in France; BOR-60, BN-350, BN-600 in the USSR; and JOYO in Japan. The metallic fuel is an evolution from early EBR-II fuels. This fuel, a ternary U-Pu-Zr alloy, has been demonstrated to be highly reliable and fault tolerant even at very high burnup (160-180,000 MWd/MT). The fuel, coupled with the pool type reactor configuration, has been shown to have outstanding safety characteristics: even with all active safety systems disabled, such a reactor can survive a loss of coolant flow, a loss of heat sink, or other major accidents. Design studies based on a small modular approach show not only its impressive safety characteristics, but are projected to be economically competitive. The program to explore the feasibility of actinide recovery from spent LWR fuel is in its initial phase, but it is expected that technical feasibility could be demonstrated by about 1995; DOE has not yet committed funds to achieve this objective. 27 refs

  3. Selective extraction of actinides from high level liquid wastes. Study of the possibilities offered by the Redox properties of actinides

    International Nuclear Information System (INIS)

    Partitioning of high level liquid wastes coming from nuclear fuel reprocessing by the PUREX process, consists in the elimination of minor actinides (Np, Am, and traces of Pu and U). Among the possible processes, the selective extraction of actinides with oxidation states higher than three is studied. First part of this work deals with a preliminary step; the elimination of the ruthenium from fission products solutions using the electrovolatilization of the RuO4 compound. The second part of this work concerns the complexation and oxidation reactions of the elements U, Np, Pu and Am in presence of a compound belonging to the insaturated polyanions family: the potassium phosphotungstate. For actinide ions with oxidation state (IV) complexed with phosphotungstate anion the extraction mechanism by dioctylamine was studied and the use of a chromatographic extraction technic permitted successful separations between tetravalents actinides and trivalents actinides. Finally, in accordance with the obtained results, the basis of a separation scheme for the management of fission products solutions is proposed

  4. Actinide-handling experience for training and education of future expert under J-ACTINET

    International Nuclear Information System (INIS)

    Summer schools for future experts have successfully been completed under Japan Actinide Network (J-ACTINET) for the purpose of development of human resources who are expected to be engaged in every areas of actinide-research/engineering. The first summer school was held in Ibaraki-area in August 2009, followed by the second one in Kansai-area in August 2010. Two summer schools have focused on actual experiences of actinides in actinide-research fields for university students and young researchers/engineers as an introductory course of actinide-researches. Many efforts were made to awaken interests into actinide-researches inside the participants during short periods of schools, 3 to 4 days. As actinides must be handled inside special apparatuses such as an air-tight globe-box with well-trained and qualified technicians, programs were optimized for effective experiences of actinides-handling. Several quasi actinide-handling experiences at the actinide-research fields have attracted attentions of participants at the first school in Ibaraki-area. The actual experiments using actinides-containing solutions have been carried out at the second school in Kansai-area. Future summer schools will be held every year for the sustainable human resource development in various actinide-research fields, together with other training and education programs conducted by the J-ACTINET. (author)

  5. Fluoride-conversion synthesis of homogeneous actinide oxide solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, G W Chinthaka M [ORNL; Hunn, John D [ORNL; Yeamans, Charles B. [University of California, Berkeley; Cerefice, Gary S. [University of Nevada, Las Vegas; Czerwinski, Ken R. [University of Nevada, Las Vegas

    2011-01-01

    Here, a novel route to synthesize (U, Th)O2 solid solutions at a relatively low temperature of 1100 C is demonstrated. First, the separate actinide oxides reacted with ammonium bifluoride to form ammonium actinide fluorides at room temperature. Subsequently, this mixture was converted to the actinide oxide solid solution using a two-phased heat treatment, first at 610 C in static air, then at 1100 C in flowing argon. Solid solutions obeying Vegard s Law were synthesized for ThO2 content from 10 to 90 wt%. Microscopy showed that the (U, Th)O2 solid solutions synthesized with this method to have considerably high crystallinity and homogeneity, suggesting the suitability of material thus synthesized for sintering into nuclear fuel pellets at low temperatures.

  6. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  7. Laser resonant-ionization mass spectrometry of actinides

    International Nuclear Information System (INIS)

    Laser resonant-ionization mass spectrometry has been used to determine small amounts of actinides. The high sensitivity and selectivity of this method has been achieved by three-step photoionization of actinide atoms followed by time-of-flight measurement. The laser system for photoionization consists of a pulsed copper vapour laser of 30 W average power at a pulse repetition rate of 6.5 kHz which is coupled to three dye lasers. The time-of-flight spectrometer has a mass resolution of about 2500. Resonance signals with count rates of several kilohertz were obtained with actinide samples of 1010-1012 atoms yielding a detection limit of 108 atoms in the sample. With some improvements a detection sensitivity of about 106 atoms of plutonium, americium and curium should be reached. (orig.)

  8. Actinide-Lanthanide separation by an electrolytic method in molten salt media: feasibility assessment of a renewed liquid cathode

    International Nuclear Information System (INIS)

    This study is part of a research program concerning the assessment of pyrochemical methods for the nuclear waste processing. The An-Ln partitioning could be achieved by an electrolytic selective extraction in molten salt media. It has been decided to focus on liquid reactive cathode which better suits to a group actinides co-recycling. The aim of the study is to propose, define and initiate the development of an electrolytic pyro-process dedicated to the quantitative and selective recovery of the actinides. Quantitativeness is related to technology, whereas selectivity is governed by chemistry. The first step consisted in selecting the adequate operating conditions, which enables a sufficient An-Ln separation. The first step consisted, by means of thermodynamic calculi and electrochemical investigations, in selecting a promising combination between molten electrolyte and cathodic material, regarding the process constraints. To improve the recovery yield, it is necessary to develop a disruptive technology: here comes the concept of a dynamic electrodeposition carried out onto liquid metallic drops. The next step consisted in designing and manufacturing a lab-scale device which enables dropping flow studies. Since interfacial phenomena are of primary meaning in such a concept, it has been decided to focus on high temperature liquid-liquid interfacial measurements. (author)

  9. Bioreduction amenability testing of actinide contaminated soils. The systems: Am241-Pu238, Am241-Pu239/40, U

    International Nuclear Information System (INIS)

    Bioreductive processing of actinide contaminated soils can achieve extraction levels in excess of 97% for both plutonium and uranium contaminants. Reasonable reaction rates of 4 to 6 day resident times for Pu-Am have been demonstrated on 4 gram sample charges. Longer reaction times of 17 days required for uranium extraction can be improved by soil sample preconditioning and/or an increase in process reagent concentrations. The environmentally benign treatment process operates at pH 6--7, preserves the original soil matrix, and utilizes standard processing equipment. The process reagent component (inoculum SD-1 and biological growth medium PX100 trademark) are available for utilization in an integrated system. Process techniques developed by MBX, involving graduated volume bioreactors have been proven to alleviate biological toxicity problems in treatment leachates. Bioreduction processing of actinide contaminated soils, preconditioning of soil charges, and recycling or vegetation of unacceptable tailings can be combined to provide an effective and environmentally attractive method of remediation. The soil test program was designed to determine the applicability of the MBX bioreductive technology to solubilize Pu and Am from RFP, Mound and LANL soils and uranium from Hanford and Fernald soils

  10. Sequential determination of actinides in a variety of matrices

    International Nuclear Information System (INIS)

    A large number of analytical procedures for the actinides have been published, each catering for a specific need. Due to the bioassay programme in our laboratory, a need arose for a method to determine natural (Th and U) and anthropogenic actinides (Np, Pu and Am/Cm) together in a variety of samples. The method would have to be suitable for routine application: simple, inexpensive, rapid and robust. In some cases, the amount of material available is not sufficient for the determination of separate groups of actinides, and a sequential separation and measurement of the analytes would therefore be required. The types of matrices vary from aqueous samples to radiological surveillance (urine and faeces) to environmental studies (soil, sediment and fish), but the separation procedure should be able to service all of these. The working range of the method would have to cater for lower levels of the transuranium actinides in particular sample types containing higher levels of the natural actinides (U and Th). The first analytical problem to be discussed, is how to get the different sample types into the same loading solution required by a single separation approach. This entails sample dissolution or decomposition in some cases, and pre-concentration or pre-separation in others. A separation scheme is presented for the clean separation of all the actinides in a form suitable for alpha spectrometry. The development of a single column separation of the analytes of interest are looked at, as well as observations made during the development of the separation scheme, such as concentration effects. Results for test samples and certified reference materials are be presented. (author)

  11. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  12. Why recycle? A comparison of recycling motivations in four communities

    Science.gov (United States)

    Vining, Joanne; Linn, Nancy; Burdge, Rabel J.

    1992-11-01

    Four Illinois communities with different sociode-mographic compositions and at various stages of planning for solid waste management were surveyed to determine the influence of sociodemographic variables and planning stages on the factors that motivate recycling behavior. A factor analysis of importance ratings of reasons for recycling and for not recycling yielded five factors interpreted as altruism, personal inconvenience, social influences, economic incentives, and household storage. The four communities were shown to be significantly different in multivariate analyses of the five motivational factors. However, attempts to explain these community differences with regression analyses, which predicted the motivational factors with dummy codes for planning stages, a measure of self-reported recycling behavior, and sociodemographic measures were unsatisfactory. Contrary to expectation, the solid waste management planning stages of the cities (curbside pickup, recycling dropoff center, and planning in progress) contributed only very slightly to the prediction of motivational factors for recycling. Community differences were better explained by different underlying motivational structures among the four communities. Altruistic reasons for recycling (e.g., conserving resources) composed the only factor which was similar across the four communities. This factor was also perceived to be the most important reason for recycling by respondents from all four communities. The results of the study supported the notion that convenient, voluntary recycling programs that rely on environmental concern and conscience for motivation are useful approaches to reducing waste.

  13. Analogue Study of Actinide Transport at Sites in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, A P; Simmons, A M; Halsey, W G

    2003-02-12

    The U. S. Department of Energy (DOE) and the Russian Academy of Sciences (RAS) are engaged in a three-year cooperative study to observe the behavior of actinides in the natural environment at selected disposal sites and/or contamination sites in Russia. The purpose is to develop experimental data and models for actinide speciation, mobilization and transport processes in support of geologic repository design, safety and performance analyses. Currently at the mid-point of the study, the accomplishments to date include: evaluation of existing data and data needs, site screening and selection, initial data acquisition, and development of preliminary conceptual models.

  14. Thermally unstable complexants/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K. [Argonne National Lab., IL (United States)

    1996-10-01

    In situ immobilization is an approach to isolation of radionuclides from the hydrosphere that is receiving increasing attention. Rather than removing the actinides from contaminated soils, this approach transforms the actinides into intrinsically insoluble mineral phases resistant to leaching by groundwater. The principal advangates of this concept are the low cost and low risk of operator exposure and/or dispersion of the radionuclides to the wider environment. The challenge of this approach is toe accomplish the immobilization without causing collateral damage to the environment (the cure shouldn`t be worse than the disease) and verification of system performance.

  15. INERT-MATRIX FUEL: ACTINIDE ''BURNING'' AND DIRECT DISPOSAL

    International Nuclear Information System (INIS)

    Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am, 244 Cm and 237 Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burnup of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-cycle of burn-up. Direct disposal can considerably reduce cost, processing requirements, and radiation exposure to workers

  16. Production of heavy actinides in incomplete fusion reactions

    Science.gov (United States)

    Antonenko, N. V.; Cherepanov, E. A.; Iljinov, A. S.; Mebel, M. V.

    1994-10-01

    We present preliminary results of calculations by the phenomenological model of the estimated yield of some heavy actinide isotopes. It is assumed that these isotopes are produced as a result of multinucleon transfers followed by neutrons and charged particle emission A.S. Iljinov and E.A. Cherepanov (1980). The yield P(sub Z, N)(E*) of primary excited actinides is found using the model of N.V. Antonenko and R.V. Jolos (1991). Absolute cross-sections for different binary reaction channels are obtained by summing the cross-sections for all subchannels with an appreciable yield according to J. Wilczynski et al. (1980).

  17. In vivo measurement of actinides in the human lung

    International Nuclear Information System (INIS)

    The problems associated with the in vivo detection and measurement of actinides in the human lung are discussed together with various measurement systems currently in use. In particular, the methods and calibration procedures employed at the Lawrence Livermore Laboratory, namely, the use of twin Phoswich detectors and a new, more realistic, tissue-equivalent phantom, are described. Methods for the measurement of chest-wall thickness, fat content, and normal human background counts are also discussed. Detection-efficiency values and minimum detectable activity estimates are given for three common actinides, 238Pu, 239Pu, and 241Am

  18. Actinide geochemistry: from the molecular level to the real system.

    Science.gov (United States)

    Geckeis, Horst; Rabung, Thomas

    2008-12-12

    Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid-liquid interface reactions to obtain molecular level speciation insight. We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto gamma-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S-O-An(III)(OH)x(2-x)(H2O)5-x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions. The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide-colloid interaction. Kinetic stabilization of colloid bound actinides can be due

  19. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob;

    2010-01-01

    and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed...... by means of a life cycle assessment and an assessment of the municipality's costs. Kerbside collection would provide the highest recycling rate, 31% compared to 25% in the baseline scenario, but bring schemes with drop-off containers would also be a reasonable solution. Collection of recyclables...... at recycling centres was not recommendable because the recycling rate would decrease to 20%. In general, the results showed that enhancing recycling and avoiding incineration was recommendable because the environmental performance was improved in several impact categories. The municipal costs for collection...

  20. Chemistry of tetravalent actinides phosphates. The thorium phosphate-diphosphate as immobilisation matrix of actinides

    International Nuclear Information System (INIS)

    The author presents in this document its scientific works from 1992 to 2001, in order to obtain the enabling to manage scientific and chemical researches at the university Paris Sud Orsay. The first part gives an abstract of the thesis on the characterizations, lixiviation and synthesis of uranium and thorium based phosphate matrix in the framework of the search for a ceramic material usable in the radioactive waste storage. The second part presents briefly the researches realized at the CEA, devoted to a reliable, independent and accurate measure of some isotopes activity. The last part presents the abstracts of researches activities from 1996 to 2001 on the tetravalent actinides phosphates chemistry, the sintering of PDT and solid solutions of PDTU and the kinetic and thermodynamical studies of the PDT dissolution. Many references and some publication in full text are provided. (A.L.B.)

  1. Non-compound nucleus fission in actinide and pre-actinide regions

    Indian Academy of Sciences (India)

    R Tripathi; S Sodaye; K Sudarshan

    2015-08-01

    In this article, some of our recent results on fission fragment/product angular distributions are discussed in the context of non-compound nucleus fission. Measurement of fission fragment angular distribution in 28Si+176Yb reaction did not show a large contribution from the non-compound nucleus fission. Data on the evaporation residue cross-sections, in addition to those on mass and angular distributions, are necessary for better understanding of the contribution from non-compound nucleus fission in the pre-actinide region. Measurement of mass-resolved angular distribution of fission products in 20Ne+232Th reaction showed an increase in angular anisotropy with decreasing asymmetry of mass division. This observation can be explained based on the contribution from pre-equilibrium fission. Results of these studies showed that the mass dependence of anisotropy may possibly be used to distinguish pre-equilibrium fission and quasifission.

  2. Recycled aggregate concrete; an overview

    OpenAIRE

    Sorato, Renan

    2016-01-01

    The aim of this Bachelor’s thesis was to investigate whether recycled materials can be incorporated into the production of concrete without compromising the compressive strength of the concrete produced. In order to shed light on the compressive strength of concrete made from recycled materials, the thesis reviewed studies in which waste materials are utilised as recycled aggregates in the composition of concrete and presented the results of this synthesis and analysis. It was found that som...

  3. Recycle Glass in Foam Glass Production

    OpenAIRE

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2014-01-01

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses in foam glass industry and the supply sources and capacity of recycle glass.

  4. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  5. Recycler barrier RF buckets

    CERN Document Server

    Bhat, C M

    2012-01-01

    The Recycler Ring at Fermilab uses a barrier rf system for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf systems, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  6. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  7. Molecular and electronic structure of actinide hexa-cyanoferrates; Structure moleculaire et electronique des hexacyanoferrates d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Bonhoure, I

    2001-07-01

    The goal of this work is to improve our knowledge on the actinide-ligand bond properties. To this end, the hexacyanoferrate entities have been used as pre-organized ligand. We have synthesized, using mild chemistry, the following series of complexes: An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Th, U, Np, Pu); Am{sup III}[Fe{sup III}(CN){sub 6}].xH{sub 2}O; Pu {sup III}[Co{sup III}(CN){sub 6}].xH{sub 2}O and K(H?)An{sup III}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Pu, Am). The metal oxidation states have been obtained thanks to the {nu}{sub CN}, stretching vibration and to the actinide L{sub III} absorption edge studies. As Prussian Blue, the An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Np, Pu) are class II of Robin and Day compounds. X-ray Diffraction has shown besides that these complexes crystallize in the P6{sub 3}/m space group, as the isomorphic LaKFe(CN){sub 6}.4H{sub 2}O complex used as structural model. The EXAFS oscillations at the iron K edge and at the An L{sub III} edge allowed to determine the An-N, An-O, Fe-C and Fe-N distances. The display of the multiple scattering paths for both edges explains the actinide contribution absence at the iron edge, whereas the iron signature is present at the actinide edge. We have shown that the actinide coordination sphere in actinides hexa-cyanoferrates is comparable to the one of lanthanides. However, the actinides typical behavior towards the lanthanides is brought to the fore by the An{sup IV} versus Ln{sup III} ions presence in this family of complexes. Contrarily to the 4f electrons, the 5f electrons influence the electronic properties of the compounds of this family. However, the gap between the An-N and Ln-N distances towards the corresponding metals ionic radii do not show any covalence bond evolution between the actinide and lanthanide series. (author)

  8. 33 CFR 80.120 - Cape Ann, MA to Marblehead Neck, MA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cape Ann, MA to Marblehead Neck, MA. 80.120 Section 80.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.120 Cape Ann, MA...

  9. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    Science.gov (United States)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  10. Recycling process assessment of mechanical recycling of printed circuit board

    Institute of Scientific and Technical Information of China (English)

    PAN Jun-qi; LIU Zhi-feng; LIU Guang-fu; WANG Shu-wang; HUANG Hai-hong

    2005-01-01

    A comprehensive assessment index system was established. The mechanical recycling process of printed circuit board was evaluated according to the comprehensive evaluation index system using the fuzzy analytic hierarchy process. A process assessment software system of mechanical recycling was established to evaluate different recy cling technologies. And the software system was developed in the environment of VB 6.0 and Access 2000.

  11. Impact of a single generation of uranium- and thorium-fueled recycling reactors on repository loading

    International Nuclear Information System (INIS)

    Full recycling of transuranic isotopes can in theory lead to a reduction in repository radiotoxicity to reference levels in as little as ∼500 years provided reprocessing and fuel fabrication losses are limited. However, over a limited time-frame, the radiotoxicity of the 'final' core can dominate over reprocessing losses, leading to a much lower reduction in radiotoxicity compared to that achievable at equilibrium. In this paper, the change in repository radio-toxicity for a single generation of U- or Th-fuelled 'recycling' reactors is evaluated using the UK fuel cycle scenario code ORION. Use of a single pass of U-Pu or Th-Pu mixed-oxide (MOX) fuel in a conventional PWR is also considered in isolation, and in combination with a subsequent multi-recycle reactor. Sodium-cooled fast reactor (SFR) scenarios are compared to Th-based transmutation in reduced-moderation BWRs (RBWRs). For a single generation of SFRs, use of Th fuel results in generally lower radiotoxicity than U fuel until ∼45,000 years. However, the radiotoxicity at discharge is very similar, and for limited recycling the increase in radiotoxicity beyond 45,000 years results in a slower decay to the reference level. The relatively low power density and incineration rate of the RBWR significantly limits its effectiveness for actinide transmutation for a single generation of RBWRs, and hence a long-term political commitment to a closed fuel cycle would be necessary to make them worthwhile. The advantage of recycling MAs is relatively limited in the short term. In particular, recycling Pa does not significantly affect the radiotoxicity, which weakens the argument for recycling it given the technical difficulties involved. (authors)

  12. Open-loop recycling: A LCA case study of PET bottle-to-fibre-recycling

    NARCIS (Netherlands)

    Shen, L.; Worrell, E.; Patel, M.K.

    2010-01-01

    This study assesses the environmental impact of polyethylene terephthalate (PET) bottle-to-fibre recycling using the methodology of life-cycle assessment (LCA). Four recycling cases, including mechanical recycling, semi-mechanical recycling, back-to-oligomer recycling and back-to-monomer recycling w

  13. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern...... recycling has been recognised as a backbone of circular economy, with constant measures and initiatives being proposed in order to increase the recycling rates of materials being consumed. Material cycles are complex and dynamic systems where chemicals are added and removed in production, manufacturing......, consumption and waste management stages within a product’s lifecycle (Figure 1). Hence, waste materials contain potentially hazardous chemicals that are unwanted in the new products made of the recycled raw materials. So far, the presence of such chemicals in materials for recycling has not been...

  14. Reversible optical sensor for the analysis of actinides in solution

    International Nuclear Information System (INIS)

    In this work is presented a concept of reversible optical sensor for actinides. It is composed of a p doped conducing polymer support and of an anion complexing the actinides. The chosen conducing polymer is the thiophene-2,5-di-alkoxy-benzene whose solubility and conductivity are perfectly known. The actinides selective ligand is a lacunar poly-oxo-metallate such as P2W17O6110- or SiW11O398- which are strong anionic complexing agents of actinides at the oxidation state (IV) even in a very acid medium. The sensor is prepared by spin coating of the composite mixture 'polymer + ligand' on a conducing glass electrode and then tested towards its optical and electrochemical answer in presence of uranium (IV). The absorption change due to the formation of cations complexes by poly-oxo-metallate reveals the presence of uranium (IV). After the measurement, the sensor is regenerated by anodic polarization of the support and oxidation of the uranium (IV) into uranium (VI) which weakly interacts with the poly-oxo-metallate and is then released in solution. (O.M.)

  15. Program and presentations of the 33th Actinide Days

    International Nuclear Information System (INIS)

    The 'Journees des Actinides' (JDA) is an annual conference which provides a forum for discussions on all aspects related to the chemical and physical properties of the actinides. At the 2003 meeting, mainly the following properties were discussed of actinides and a number of actinide compounds and complexes: crystal structure, crystal-phase transformations and transformation temperatures; electrical properties including superconductivity and superconducting transition temperatures; magnetic properties; specific heat and other thermodynamic properties; electronic structure, especially in condensed matter; chemical and physico-chemical properties. The relevant experimental techniques were also dealt with, such as neutron diffraction; X-ray diffraction, in particular using synchrotron radiation; photoemission techniques, electron microscopy and spectroscopy, etc. Altogether 96 contributions were presented, of which 42 were oral presentations and 54 poster presentations. A program of the meeting and texts of both type of presentations were published in electronic form in the PDF format. All contributions were inputted to INIS; the full text of the program and the presentations has been incorporated into the INIS collection of non-conventional literature on CD-ROM. (A.K.)

  16. Preparation of actinide targets and sources using nonaqueous electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.M.; Gursky, J.C.; Wilhelmy, J.B. (Los Alamos National Lab., NM (USA))

    1991-05-15

    Application of the method of 'molecular plating' to prepare actinide targets suitable for accelerator bombardment is presented. Two example applications involving {sup 229}Th and {sup 254}Es are discussed along with the merits and liabilities of the method. (orig.).

  17. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    International Nuclear Information System (INIS)

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide

  18. Surface energy and work function of the light actinides

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and work function of the light actinides Fr, Ra, Ac, Th, Pa, U, Np, and Pu by means of a Green's-function technique based on the linear-muffin-tin-orbitals method within the tight-binding representation. In these calculations we apply an energy functional whi...

  19. Self-interaction corrected local spin density calculations of actinides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z;

    2010-01-01

    We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration of the...

  20. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-07-28

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  1. RAPID SEPARATION OF ACTINIDES AND RADIOSTRONTIUM IN VEGETATION SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.

    2010-06-01

    A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and {sup 90}Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.

  2. Synthesis and structural characterization of actinide oxalate compounds

    International Nuclear Information System (INIS)

    Oxalic acid is a well-known reagent to recover actinides thanks to the very low solubility of An(IV) and An(III) oxalate compounds in acidic solution. Therefore, considering mixed-oxide fuel or considering minor actinides incorporation in ceramic fuel materials for transmutation, oxalic co-conversion is convenient to synthesize mixed oxalate compounds, precursors of oxide solid solutions. As the existing oxalate single crystal syntheses are not adaptable to the actinide-oxalate chemistry or to their manipulation constrains in gloves box, several original crystal growth methods were developed. They were first validate and optimized on lanthanides and uranium before the application to transuranium elements. The advanced investigations allow to better understand the syntheses and to define optimized chemical conditions to promote crystal growth. These new crystal growth methods were then applied to a large number of mixed An1(IV)-An2(III) or An1(IV)-An2(IV) systems and lead to the formation of the first original mixed An1(IV)-An2(III) and An1(IV)-An2(IV) oxalate single crystals. Finally thanks to the first thorough structural characterizations of these compounds, single crystal X-ray diffraction, EXAFS or micro-RAMAN, the particularly weak oxalate-actinide compounds structural database is enriched, which is essential for future studied nuclear fuel cycles. (author)

  3. Functionalized pyrazines as ligands for minor actinide extraction and catalysis

    NARCIS (Netherlands)

    Nikishkin, N.

    2013-01-01

    The research presented in this thesis concerns the design of ligands for a wide range of applications, from nuclear waste treatment to catalysis. The strategies employed to design actinide-selective extractants, for instance, comprise the fine tuning of the ligand electronic properties as well as us

  4. Actinides How well do we know their stellar production?

    CERN Document Server

    Goriely, S

    2001-01-01

    The reliable evaluation of the r-process production of the actinides and careful estimates of the uncertainties affecting these predictions are key ingredients especially in nucleo-cosmochronology studies based on the analysis of very metal-poor stars or on the composition of meteorites. This type of information is also required in order to make the best possible use of future high precision data on the actinide composition of galactic cosmic rays, of the local interstellar medium, or of meteoritic grains of presumed circumstellar origin. This paper provides the practitioners in these various fields with the most detailed and careful analysis of the r-process actinide production available to-date. In total, thirty-two different multi-event canonical calculations using different nuclear ingredients or astrophysics conditions are presented, and are considered to give a fair picture of the level of reliability of the predictions of the actinide production, at least in the framework of a simple r-process model. T...

  5. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Timothy M. [Los Alamos National Laboratory; Reimus, Paul W. [Los Alamos National Laboratory

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  6. Inhaled actinides: some safety issues and some research problems

    International Nuclear Information System (INIS)

    The following topics are discussed: limited research funds; risk coefficients for inhaled particles; the hot particle hypothesis; the Gofman-Martell contention; critical tissues for inhaled actinides inhalation hazards associated with future nuclear fuel cycles; and approach to be used by the inhalation panel

  7. The Dynamic Earth: Recycling Naturally!

    Science.gov (United States)

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  8. Making sense of plastics recycling

    NARCIS (Netherlands)

    Van Bruggen, E.; Koster, R.P.; Rageart, K.; Cardon, L.; Moerman, M.; Blessing, E.

    2012-01-01

    Major benefits of plastics recycling are reduced depletion of non-renewable resources and reduction of world-wide waste. Traditional thermo-mechanical recycling causes reduction of mechanical properties for most thermoplastics. Down-cycled materials may nevertheless be suited for certain useful appl

  9. Collection of Recyclables from Cubes

    DEFF Research Database (Denmark)

    Wøhlk, Sanne; Bogh, Morten Bie; Mikkelsen, Hardy

    2014-01-01

    Collection of recyclable materials is a major part of reverse logistics and an important issue in sustainable logistics. In this paper we consider a case study where paper and glass are collected from recycling cubes and transported to a treatment facility where it is processed for reuse. We...

  10. Actinide Speciation and Solubility in a Salt Repository (Invited)

    Science.gov (United States)

    Reed, D.; Borkowski, M.; Richmann, M.; Lucchini, J.; Khaing, H.; Swanson, J.

    2009-12-01

    The use of bedded salt deposits for the permanent disposal of nuclear waste continues to receive much attention in the United States and internationally. This is largely based on the highly successful Waste Isolation Pilot Plant (WIPP) transuranic waste repository that was opened in 1999 in Southeastern New Mexico. A bedded salt formation, such as the one in which the WIPP is located, has many advantages that make it an ideal geology for permanent disposal of nuclear waste. This includes well established mining techniques, self-sealing that lead to a naturally-induced geologic isolation, a relatively dry environment, and a favorable chemistry. Herein we report on recent progress in our investigations, as part of ongoing recertification effort for the operating WIPP repository, to establish the redox distribution and overall solubility of actinides in brine. The overall ranking of actinides, from the perspective of potential contribution to release from the WIPP, is: Pu ~ Am >>U > Th >> Np, Cm. Our recent research emphasis has centered on the redox chemistry of multivalent actinides (e.g., U, Pu and Np) with the use of oxidation-state-invariant analogs (Th and Nd) to establish the solubilities. Under a wide range of conditions investigated, the predominant oxidation states established are Pu(III) and Pu(IV) for plutonium, U(IV) and U(VI) for uranium, and Am (III) for americium. Reduction pathways for plutonium include reaction with organics, reaction with reduced iron, and bioreduction by halophiles under anaerobic conditions. Uranium(VI) can also be reduced to U(IV) by reduced iron and microbial processes. Solubility data for neodymium (+3 analog), Uranium (+6 analog) and thorium (+4 analog) in brine are also reported. These data extend our past understanding of WIPP-specific actinide chemistry and show the WIPP, and salt-based repositories in general, to be a robust repository design from the perspective of actinide containment and immobilization.

  11. Sequestering agents for the removal of actinides from waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R. [Univ. of California, Berkeley, CA (United States)

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  12. Nanodomains in biomembranes with recycling

    CERN Document Server

    Berger, Mareike; Destainville, Nicolas

    2016-01-01

    Cell membranes are out of thermodynamic equilibrium notably because of membrane recycling, i.e. active exchange of material with the cytosol. We propose an analytically tractable model of biomembrane predicting the effects of recycling on the size of protein nanodomains. It includes a short-range attraction between proteins and a weaker long-range repulsion which ensures the existence of so-called cluster phases at equilibrium, where monomeric proteins coexist with finite-size domains. Our main finding is that when taking recycling into account, the typical cluster size increases logarithmically with the recycling rate. Using physically realistic model parameters, the predicted two-fold increase due to recycling in living cells is very likely experimentally measurable with the help of super-resolution microscopy.

  13. Recycling of Paper and Cardboard

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Paper and cardboard are produced from pulp derived from plant fibers, primarily wood. Paper and cardboard is used for many different products, such as for packaging material, newsprint and advertisements. Most of these products have very short lifetimes and thus constitute a major fraction of most...... waste. Recycling of paper and cardboard production waste and postconsumer waste has a long history in the pulp and paper industry. The recycled material now makes up more than half of the raw material used in European pulp and paper industry (ERPC, 2004). This chapter describes briefly how paper...... and cardboard are produced and how waste paper is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of paper recycling....

  14. PiMA Survey Design and Methodology

    OpenAIRE

    Mudhai, Okoth Fred; Abreu Lopes, Claudia; Mitullah, Winnie; Fraser, Alastair; Milapo, Nalukui; Mwangi, Sammy; Srinivasan, Sharath

    2015-01-01

    The PiMA Working Papers are a series of peer-reviewed working papers that present findings and insights from Centre of Governance and Human Rights? (CGHR) Politics and Interactive Media in Africa (PiMA) research project (2012-14). The project, jointly funded by the ESRC and DFID, focuses on expressions of ?public opinion? in broadcast media via new information and communication technologies (ICT) such as mobile phones in Kenya and Zambia. PiMA examines the political implications of such i...

  15. Speciation of actinides by the mean of synchrotron radiation; Speciation des actinides au moyen du rayonnement synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Simoni, E. [Institut de Physique Nucleaire, (IN2P3/CNRS) 91 - Orsay (France); Den Auwer, Ch. [CEA Marcoule, Dept. Radiochimie et Procedes (DRCP/SCPS), 30 (France)

    2005-09-01

    After having recalled the principle of the X absorption spectroscopy, the authors give examples illustrating the analytical possibilities of this technique and the different application fields concerning the actinides physico-chemistry (coordination chemistry, interface, solid state, solution). (O.M.)

  16. Urban water recycling.

    Science.gov (United States)

    Asano, T

    2005-01-01

    Increasing urbanization has resulted in an uneven distribution of population, industries, and water in urban areas; thus, imposing unprecedented pressures on water supplies and water pollution control. These pressures are exacerbated during the periods of drought and climatic uncertainties. The purpose of this paper is to summarize emergence of water reclamation, recycling and reuse as a vital component of sustainable water resources in the context of integrated water resources management in urban and rural areas. Water quality requirements and health and public acceptance issues related to water reuse are also discussed. Reclaimed water is a locally controllable water resource that exists right at the doorstep of the urban environment, where water is needed the most and priced the highest. Closing the water cycle loop not only is technically feasible in agriculture, industries, and municipalities but also makes economic sense. Society no longer has the luxury of using water only once.

  17. Internal contamination by actinides after wounding: a robust rodent model for assessment of local and distant actinide retention.

    Science.gov (United States)

    Griffiths, N M; Wilk, J C; Abram, M C; Renault, D; Chau, Q; Helfer, N; Guichet, C; Van der Meeren, A

    2012-08-01

    Internal contamination by actinides following wounding may occur in nuclear fuel industry workers or subsequent to terrorist activities, causing dissemination of radioactive elements. Contamination by alpha particle emitting actinides can result in pathological effects, either local or distant from the site of entry. The objective of the present study was to develop a robust experimental approach in the rat for short- and long- term actinide contamination following wounding by incision of the skin and muscles of the hind limb. Anesthetized rats were contaminated with Mixed OXide (MOX, uranium, plutonium oxides containing 7.1% plutonium) or plutonium nitrate (Pu nitrate) following wounding by deep incision of the hind leg. Actinide excretion and tissue levels were measured as well as histological changes from 2 h to 3 mo. Humid swabs were used for rapid evaluation of contamination levels and proved to be an initial guide for contamination levels. Although the activity transferred from wound to blood is higher after contamination with a moderately soluble form of plutonium (nitrate), at 7 d most of the MOX (98%) or Pu nitrate (87%) was retained at the wound site. Rapid actinide retention in liver and bone was observed within 24 h, which increased up to 3 mo. After MOX contamination, a more rapid initial urinary excretion of americium was observed compared with plutonium. At 3 mo, around 95% of activity remained at the wound site, and excretion of Pu and Am was extremely low. This experimental approach could be applied to other situations involving contamination following wounding including rupture of the dermal, vascular, and muscle barriers.

  18. Actinides: How well do we know their stellar production?

    Science.gov (United States)

    Goriely, S.; Arnould, M.

    2001-12-01

    The reliable evaluation of the r-process production of the actinides and careful estimates of the uncertainties affecting these predictions are key ingredients especially in nucleo-cosmochronology studies based on the analysis of very metal-poor stars or on the composition of meteorites. This type of information is also required in order to make the best possible use of future high precision data on the actinide composition of galactic cosmic rays, of the local interstellar medium, or of meteoritic grains of presumed circumstellar origin. This paper provides the practitioners in these various fields with the most detailed and careful analysis of the r-process actinide production available to-date. This study is based on a version of the multi-event canonical model of the r-process which discards the largely used waiting point approximation. It considers also different combinations of models for the calculation of nuclear masses, beta -decay and fission rates. Two variants of the model used to predict nuclear reaction rates are adopted. In addition, the influence of the level of Pb and Bi production by the r-process on the estimated actinide production is evaluated by relying on the solar abundances of these two elements. In total, thirty-two different cases are presented, and are considered to give a fair picture of the level of reliability of the predictions of the actinide production, at least in the framework of a simple r-process model. This simplicity is imposed by our inability to identify the proper astrophysical sites for the r-process. As a guide to the practitioners, constraints on the actinide yield predictions and associated uncertainties are suggested on grounds of the measured abundances of r-nuclides, including Th and U, in the star CS 31082-001, and under the critical and questionable assumption of the ``universality'' of the r-process. We also define alternative constraints based on the nucleo-cosmochronological results derived from the present

  19. Programme of research and development on plutonium recycling in light-water reactors; indirect nuclear action

    International Nuclear Information System (INIS)

    This report is a summary of the results obtained during the five-year programme 'Plutonium recycle in LWRs' (1975-79) which has been made possible after the completion of the synthesis studies on 'Control and Safety' and on the 'Environmental impact'. The work performed during the programme is reported; the contracts concluded and their main results and conclusions are summarized. The activity was devoted to studies of general interest and to R and D in order to improve the scientific and technical knowledge of plutonium recycling. General studies included an assessment of the environmental impact of plutonium recycling in the EC as well as research aimed at reducing this impact. Improvements were achieved on neutron-physics parameters of the actinides, on neutron computer codes for plutonium-fuelled LWRs, on control and safety and on the in-pile behaviour of mixed-oxide fuels. The conclusions state that, while fostering a fruitful exchange of information in the Community, the programme has contributed to demonstrating the feasibility of plutonium recycling in LWRs

  20. GCFR Coupled Neutronic and Thermal-Fluid-Dynamics Analyses for a Core Containing Minor Actinides

    Directory of Open Access Journals (Sweden)

    Diego Castelliti

    2009-01-01

    Full Text Available Problems about future energy availability, climate changes, and air quality seem to play an important role in energy production. While current reactor generations provide a guaranteed and economical energy production, new nuclear power plant generation would increase the ways and purposes in which nuclear energy can be used. To explore these new technological applications, several governments, industries, and research communities decided to contribute to the next reactor generation, called “Generation IV.” Among the six Gen-IV reactor designs, the Gas Cooled Fast Reactor (GCFR uses a direct-cycle helium turbine for electricity generation and for a CO2-free thermochemical production of hydrogen. Additionally, the use of a fast spectrum allows actinides transmutation, minimizing the production of long-lived radioactive waste in an integrated fuel cycle. This paper presents an analysis of GCFR fuel cycle optimization and of a thermal-hydraulic of a GCFR-prototype under steady-state and transient conditions. The fuel cycle optimization was performed to assess the capability of the GCFR to transmute MAs, while the thermal-hydraulic analysis was performed to investigate the reactor and the safety systems behavior during a LOFA. Preliminary results show that limited quantities of MA are not affecting significantly the thermal-fluid-dynamics behavior of a GCFR core.

  1. Solubility of actinides and surrogates in nuclear glasses; Solubilite des actinides et de leurs simulants dans les verres nucleaires. Limites d'incorporation et comprehension des mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Ch

    2003-07-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO{sub 2} at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  2. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Directory of Open Access Journals (Sweden)

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  3. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    Science.gov (United States)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  4. Actinides and fission products partitioning from high level liquid waste

    International Nuclear Information System (INIS)

    The presence of small amount of mixed actinides and long-lived heat generators fission products as 137Cs and 90Sr are the major problems for safety handling and disposal of high level nuclear wastes. In this work, actinides and fission products partitioning process, as an alternative process for waste treatment is proposed. First of all, ammonium phosphotungstate (PWA), a selective inorganic exchanger for cesium separation was chosen and a new procedure for synthesizing PWA into the organic resin was developed. An strong anionic resin loaded with tungstate or phosphotungstate anion enables the precipitation of PWA directly in the resinous structure by adding the ammonium nitrate in acid medium (R-PWA). Parameters as W/P ratio, pH, reactants, temperature and aging were studied. The R-PWA obtained by using phosphotungstate solution prepared with W/P=9.6, 9 hours digestion time at 94-106 deg C and 4 to 5 months aging time showed the best capacity for cesium retention. On the other hand, Sr separation was performed by technique of extraction chromatography, using DH18C6 impregnated on XAD7 resin as stationary phase. Sr is selectively extracted from acid solution and >99% was recovered from loaded column using distilled water as eluent. Concerning to actinides separations, two extraction chromatographic columns were used. In the first one, TBP(XAD7) column, U and Pu were extracted and its separations were carried-out using HNO3 and hydroxylamine nitrate + HNO3 as eluent. In the second one, CMP0-TBP(XAD7) column, the actinides were retained on the column and the separations were done by using (NH4)2C2O4 , DTPA, HNO3 and HCl as eluent. The behavior of some fission products were also verified in both columns. Based on the obtained data, actinides and fission products Cs and Sr partitioning process, using TBP(XAD7) and CMP0-TBP(XAD7) columns for actinides separation, R-PWA column for cesium retention and DH18C6(XAD7) column for Sr isolation was performed. (author)

  5. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  6. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  7. Actinide coordination chemistry: towards the limits of the periodic table; Chimie de coordination des actinides: vers les frontieres du tableau periodique

    Energy Technology Data Exchange (ETDEWEB)

    Den Auwer, C.; Moisy, P. [CEA Marcoule (DEN/DRCP/SCPS), 30 (France); Simoni, E. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    2009-05-15

    Actinide elements represent a distinct chemical family at the bottom of the periodic table. Among the major characteristics of this 14 element family is their high atomic numbers and their radioactivity. Actinide chemistry finds its roots in the history of the 20. century and plays a very important role in our contemporary world. Energetic as well as technical challenges are facing the development of nuclear energy. In this pedagogical introduction to actinide chemistry, the authors draw a comparison between the actinides family and the chemistry of two other families, lanthanides and transition metals. This article focuses on molecular and aqueous chemistry. It has been based on class notes aiming to present an overview of the chemical diversity of actinides, and its future challenges for modern science. (authors)

  8. MA Transmutation Strategy%MA嬗变策略研究

    Institute of Scientific and Technical Information of China (English)

    左国平; 柯国土; 龚学余

    2011-01-01

    According to the development plan envisagement for nuclear power plant in China, the development of China's nuclear power in the next decades is predicted with the. nuclear fuel cycle software NFCSS provided by IAEA. The amounts of the spent fuel generated and accumulated by the year of 2050 are analyzed. According to the assumption model, the accumulated spent fuel by the year of 2050 will reach at 54791t including 57.89t Minor Actinides (MA) (237Np, 42.91t; Am, ll.17t; Cm, 3.81t) and 2778t FP. One group effective cross section of MA in the thermal, well thermalized, and fast neutron field is calculated based on ENDF/B-VII nuclear evaluation database. The transmutation way for three main MA, i.e. 237Np, 241Am, and 246Cm is also analyzed. It is more suitable for 237Np transmutation in well thermalized neutron field and for 241Am, the high flux thermalized neutron field is better. But it is difficult for 246Cm transmutation in thermal or fast neutron field due to its little fission cross section. Its transmutation ability can be improved if transmutation occurs in a high fluxes resonance energy area. The two-stage transmutation strategy is presented according to their characteristics in the thermal, well thermalized, and fast neutron field. Based on the two stage transmutation concept, the transmutation is performed in a well thermalized neutron field first. Small amount of residual of the first stage transmutation is transmuted in a thermal field with a spectrum. It is expected to achieve a good result.%根据中国核电发展战略,采用国际原子能机构(IAEA)的核燃料循环软件NFCSS,对未来中国核电发展情景进行了预测,分析了2050年以前中国乏燃料的产生和累积情况.采用NJOY和ENDF/B-VII数据库,计算分析了次锕系核素在热谱、超热谱和快谱中的一群等效截面,分析了研237Np、241Am、246Cm等主要次锕系核素的可能嬗变途径,提出了两阶段嬗变MA策略.即将从压水堆中分离出来

  9. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  10. Review of Integral Experiments for Minor Actinide Management

    International Nuclear Information System (INIS)

    Spent nuclear fuel contains minor actinides (MAs) such as neptunium, americium and curium, which require careful management. This becomes even more important when mixed oxide (MOX) fuel is being used on a large scale since more MAs will accumulate in the spent fuel. One way to manage these MAs is to transmute them in nuclear reactors, including in light water reactors, fast reactors or accelerator-driven subcritical systems. The transmutation of MAs, however, is not straightforward, as the loading of MAs generally affects physics parameters, such as coolant void, Doppler and burn-up reactivity. This report focuses on nuclear data requirements for minor actinide management, the review of existing integral data and the determination of required experimental work, the identification of bottlenecks and possible solutions, and the recommendation of an action programme for international co-operation. (authors)

  11. Accuracy Improvement of Neutron Nuclear Data on Minor Actinides

    Directory of Open Access Journals (Sweden)

    Harada Hideo

    2015-01-01

    Full Text Available Improvement of accuracy of neutron nuclear data for minor actinides (MAs and long-lived fission products (LLFPs is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as “Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC” has been started as one of the “Innovative Nuclear Research and Development Program” in Japan at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background and research plan of the AIMAC project are presented.

  12. Preparation of isotopes and sources of actinide elements

    International Nuclear Information System (INIS)

    As the C.E.A. possesses no isotopic separation facility, the productions of isotopes of actinide elements are performed: a) by neutron irradiation and chemical treatment of special targets, b) by milking decay products from stocks of aged actinide elements, c) by chemical treatment of alpha active wastes. These productions concern the following isotopes: 233U, 238Pu, 242Pu, 243Cm, 242Cm, 244Cm (a); 228Th, 229Th, 234U, 237U, 239Np, 240Pu, 241Am, 248Cm (b); 237Np, 241Am (c). These isotopes are produced to satisfy French and international needs and are sent to users in various forms: solutions, metals, oxides, fluorides, or in different sources forms. The preparation of the sources represents an important field of activities divided into two parts: 1/Industrial sources: production of large series of different sources, 2/ Scientific sources: production of sources suitable for a specific scientific problem. A large overview of these activities is given

  13. Superabsorbing gel for actinide, lanthanide, and fission product decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael D.; Mertz, Carol J.

    2016-06-07

    The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M) carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.

  14. Lanthanide and actinide complexation studies with tetradentate 'N' donor ligands

    International Nuclear Information System (INIS)

    Because of their similar charge and chemical behaviour separation of trivalent actinides and lanthanides is an important and challenging task in nuclear fuel cycle. Soft (S,N) donor ligands show selectivity towards the trivalent actinides over the lanthanides. Out of various 'N' donor ligands studied, bis(1,2,4)triazinyl bipyridine (BTBP) and bis(1,2,4)triazinyl phenanthroline (BTPhen) were found to be most promising. In order to understand the separation behaviour of these ligands, their complexation studies with these 'f' block elements are essential. In the present work, complexation studies of various lanthanide ions (La3+, Eu3+ and Er3+) was studied with ethyl derivatives of BTBP (C2BTBP) and BTBPhen (C2BTPhen) and pentyl derivative of BTBP (C5BTBP) in acetonitrile medium using UV-Vis spectrophotometry, fluorescence spectroscopy and solution calorimetry. Computational studies were also carried out to understand the experimental results

  15. The effects of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    This report assesses the possible effects of colloidal corrosion products on the transport of actinides from the near field of radioactive waste repositories. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium was studied under conditions simulating a transition from near-field to far-field environmental conditions. Desorption of actinides occurred slowly from the colloids under far-field conditions. Measurements of particle stability showed all the colloids to be unstable in the near field. Stability increased under far-field conditions or as a result of the evolution of the near field. Migration of colloids from the near field is unlikely except in the presence of organic materials. (Author)

  16. X-Ray Absorption Spectroscopy of the Actinides

    Science.gov (United States)

    Antonio, Mark R.; Soderholm, Lynda

    The recent availability of synchrotron radiation has revolutionized actinide chemistry. This is particularly true in environmental studies, where heterogeneous samples add to the already multifaceted chemistry exhibited by these ions. Environmental samples are often inhomogeneous, chemically diverse, and amorphous or poorly crystalline. Even surrogates prepared in the laboratory to simplify the natural complexity are plagued by multiple oxidation state and varied coordination polyhedra that are a reflection of inherent 5f chemistry. For example, plutonium can be found as Pu3+ Pu4+ Pu(V)O2 +, and Pu(VI)O2 2 + within naturally occurring pH-Eh conditions, consequently complex equilibria are found between these oxidation states in one solution. In addition, dissolved actinides have significant affinities for various mineral surfaces, to which they can adsorb with or without concomitant reduction-oxidation (redox) activity, depending on details of the solution and surface conditions.

  17. Status of measurements of fission neutron spectra of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Drapchinsky, L.; Shiryaev, B. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    The report considers experimental and theoretical works on studying the energy spectra of prompt neutrons emitted in spontaneous fission and neutron induced fission of Minor Actinides. It is noted that neutron spectra investigations were done for only a small number of such nuclei, most measurements, except those of Cf-252, having been carried out long ago by obsolete methods and imperfectapparatus. The works have no detailed description of experiments, analysis of errors, detailed numerical information about results of experiments. A conclusion is made that the available data do not come up to modern requirements. It is necessary to make new measurements of fission prompt neutron spectra of transuranium nuclides important for the objectives of working out a conception of minor actinides transmutation by means of special reactors. (author)

  18. Actinide-specific sequestering agents and decontamination applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, William L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Raymond, Kenneth N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1981-04-07

    With the commercial development of nuclear reactors, the actinides have become very important industrial elements. A major concern of the nuclear industry is the biological hazard associated with nuclear fuels and their wastes. The acute chemical toxicity of tetravalent actinides, as exemplified by Th(IV), is similar to Cr(III) or Al(III). However, the acute toxicity of 239Pu(IV) is similar to strychnine, which is much more toxic than any of the non-radioactive metals such as mercury. Although the more radioactive isotopes of the transuranium elements are more acutely toxic by weight than plutonium, the acute toxicities of 239Pu, 241Am, and 244Cm are nearly identical in radiation dose, ~100 μCi/kg in rodents. Finally and thus, the extreme acute toxicity of 239Pu is attributed to its high specific activity of alpha emission.

  19. Strength Loss in MA-MOX Green Pellets from Radiation Damage to Binders

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Lessing; W.R. Cannon; Gerald W. Egeland; Larry D. Zuck; James K. Jewell; Douglas W. Akers; Gary S. Groenewold

    2013-06-01

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt. % PuO2, 3 wt. % AmO2 and 2 wt. % NpO2 was studied as a function of storage time, after mixing in the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and Styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed strength degradation was more rapid in pellets containing 1.0 wt. % Carbowax PEG 8000 compared to those containing only 0.2 wt. %, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 day period. It was suggested that the styrene portion of the Duramax B1022 copolymer provided the radiation resistance.

  20. Strength loss in MA-MOX green pellets from radiation damage to binders

    Energy Technology Data Exchange (ETDEWEB)

    Lessing, Paul A. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cannon, W. Roger, E-mail: wrogercannon@gmail.com [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Egeland, Gerald W.; Zuck, Larry D.; Jewell, James K.; Akers, Douglas W.; Groenewold, Gary S. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2013-06-15

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO{sub 2}, 20 wt.% PuO{sub 2}, 3 wt.% AmO{sub 2} and 2 wt.% NpO{sub 2} was studied as a function of storage time, after mixing with the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and styrene–acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA-MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed that strength degradation was more rapid in pellets containing 1.0 wt.% Carbowax PEG 8000 compared to those containing only 0.2 wt.%, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 days period. It was suggested that the styrene portion present in the Duramax B1022 copolymer provided the radiation resistance.

  1. Strength loss in MA-MOX green pellets from radiation damage to binders

    Science.gov (United States)

    Lessing, Paul A.; Cannon, W. Roger; Egeland, Gerald W.; Zuck, Larry D.; Jewell, James K.; Akers, Douglas W.; Groenewold, Gary S.

    2013-06-01

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt.% PuO2, 3 wt.% AmO2 and 2 wt.% NpO2 was studied as a function of storage time, after mixing with the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA-MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed that strength degradation was more rapid in pellets containing 1.0 wt.% Carbowax PEG 8000 compared to those containing only 0.2 wt.%, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 days period. It was suggested that the styrene portion present in the Duramax B1022 copolymer provided the radiation resistance.

  2. You're a "What"? Recycling Coordinator

    Science.gov (United States)

    Torpey, Elka Maria

    2011-01-01

    Recycling coordinators supervise curbside and dropoff recycling programs for municipal governments or private firms. Today, recycling is mandatory in many communities. And advancements in collection and processing methods have helped to increase the quantity of materials for which the recycling coordinator is responsible. In some communities,…

  3. Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

    2010-02-24

    A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

  4. Molecular Characterization of Actinide Oxocations from Protactinium to Plutonium

    International Nuclear Information System (INIS)

    This presentation addresses the structural characterization by EXAFS of actinide cations at oxidation states (V) and (VI) as one walks across the periodic table from Z = 91 (protactinium) to Z = 94 (plutonium). A structural comparison between Pa, U, Np and Pu oxocations in aqueous solution at formal oxidation states (V) and (VI) is carried out. These results are corroborated by quantum chemical and molecular dynamics calculations

  5. Validation of minor actinides fission neutron cross-sections

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2015-01-01

    Full Text Available Verification of neutron fission cross-sections of minor actinides from some recently available evaluated nuclear data libraries was carried out by comparison of the reaction rates calculated by the MCNP6.1 computer code to the experimental values. The experimental samples, containing thin layers of 235U, 237Np, 238,239,240,241Pu, 242mAm, 243Cm, 245Cm, and 247Cm, deposited on metal support and foils of 235U (pseudo-alloy 27Al + 235U, 238U, natIn, 64Zn, 27Al, and multi-component sample alloy 27Al + 55Mn + natCu + natLu + 197Au, were irradiated in the channels of the tank containing fluorine salts 0.52NaF + 0.48ZrF4, labelled as the Micromodel Salt Blanket, inserted in the lattice centre of the MAKET heavy water critical assembly at the Institute for Theoretical and Experimental Physics, Moscow. This paper is a continuation of earlier initiated scientific-research activities carried out for validation of the evaluated fission cross-sections of actinides that were supposed to be used for the quality examination of the fuel design of the accelerator driven systems or fast reactors, and consequently, determination of transmutation rates of actinides, and therefore, determination of operation parameters of these reactor facilities. These scientific-research activities were carried out within a frame of scientific projects supported by the International Science and Technology Center and the International Atomic Energy Agency co-ordinated research activities, from 1999 to 2010. Obtained results confirm that further research is needed in evaluations in order to establish better neutron cross-section data for the minor actinides and selected nuclides which could be used in the accelerator driven systems or fast reactors.

  6. EXAFS studies of actinide ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Karim, D P; Georgopoulos, P; Knapp, G S

    1979-01-01

    The applicability of the EXAFS technique in the study of actinide systems is discussed. Uranium L/sub III/-edge spectra obtained on an in-lab rotating anode EXAFS facility are presented and analyzed for crystalline UO/sub 2/F/sub 2/ and aqueous solutions containing hexavalent uranium ions. Methods for the extension of the technique to more dilute systems are discussed.

  7. Chemical and Ceramic Methods Toward Safe Storage of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    P.E.D. Morgan; R.M. Housley; J.B. Davis; M.L. DeHaan

    2005-08-19

    A very import, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. THe use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements )e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations.

  8. Chemical properties of the heavier actinides and transactinides

    International Nuclear Information System (INIS)

    The chemical properties of each of the elements 99 (Es) through 105 are reviewed and their properties correlated with the electronic structure expected for 5f and 6d elements. A major feature of the heavier actinides, which differentiates them from the comparable lanthanides, is the increasing stability of the divalent oxidation state with increasing atomic number. The divalent oxidation state first becomes observable in the anhydrous halides of californium and increases in stability through the series to nobelium, where this valency becomes predominant in aqueous solution. In comparison with the analogous 4f electrons, the 5f electrons in the latter part of the series are more tightly bound. Thus, there is a lowering of the 5f energy levels with respect to the Fermi level as the atomic number increases. The metallic state of the heavier actinides has not been investigated except from the viewpoint of the relative volatility among members of the series. In aqueous solutions, ions of these elements behave as a normal trivalent actinides and lanthanides (except for nobelium). Their ionic radii decrease with increasing nuclear charge which is moderated because of increased screening of the outer 6p electrons by the 5f electrons. The actinide series of elements is completed with the element lawrencium (Lr) in which the electronic configuration is 5f147s27p. From Mendeleev's periodicity and Dirac-Fock calculations, the next group of elements is expected to be a d-transition series corresponding to the elements Hf through Hg. The chemical properties of elements 104 and 105 only have been studied and they indeed appear to show the properties expected of eka-Hf and eka-Ta. However, their nuclear lifetimes are so short and so few atoms can be produced that a rich variety of chemical information is probably unobtainable

  9. Prediction of thermodynamic properties of actinide and lanthanide compounds

    Institute of Scientific and Technical Information of China (English)

    LU Chunhai; NI Shijun; SUN Ying; CHEN Wenkai; ZHANG Chengjiang

    2008-01-01

    Several relationship models for thermodynamic functions of actinide and lanthanide compounds are built. The descriptors such as the difference of atomic radii between metal atoms and nonmetal atoms and the molecular mass are used in quantitative structure-activity/property relationships. The relative errors for entropy and heat capacity are less than 20% in the majority of gaseous compounds. Similar results are obtained from solid compounds.

  10. Covariance evaluation for actinide nuclear data in JENDL-4

    International Nuclear Information System (INIS)

    Full text: The JENDL-4.0 was released in March 2010. It provides neutron nuclear data for 79 actinides from Ac to Fm. All of the actinides include covariance data. The covariance data were evaluated for reaction cross sections, resonance parameters, angular distributions of elastic scattering, average number of neutrons per fission, and prompt fission neutron spectra. They were deduced basically based on the consistent methodologies with the nuclear data evaluations. Statistical processing of experimental data sometimes gives unacceptably small uncertainty compared with experimental data. They may arise from ignoring unknown errors and correlation of experimental data and also from the modeling errors. The covariance data obtained from statistical estimation using the least-squares method were sometimes modified to be reasonable taking account of consistency with dispersion of experimental data, which may reflect the uncertainties of the data. For the fast neutron fission cross sections of 6 major actinides of 233,235,238U and 239,240,241Pu were evaluated simultaneously using both cross section and their ratio data with the least- squares fitting code SOK. It gave the covariance matrices that have cross correlations between different nuclei included in the analyses. For the minor actinide, the least-squares fitting code GMA was used for fission cross section evaluation for fast neutrons. The covariance data were obtained from the calculations at the same time. For other reaction cross sections, covariance matrices were evaluated using CCONE-KALMAN code system. Sensitivities to model parameters were calculated by CCONE code and used to estimate covariance matrices of the parameters with KALMAN code. Covariance matrices for other data such as resonance parameters and average numbers of fission neutrons were also evaluated based on experimental data. The evaluated covariance data were compiled to the ENDF-6 format files and included in JENDL-4.

  11. Analytical applications of superacid dissolution of actinide and lanthanide substrates

    International Nuclear Information System (INIS)

    The superacid system HF/SbF5 is extraordinarily effective for total dissolution of actinide and lanthanide ceramic oxides, fluorides, and metals. Optical or gamma spectroscopy can be used directly on the solutions. Evaporation of the HF/SbF5 solvent under vacuum leaves a residue which is easily dissolved by ordinary mineral acids. The resulting aqueous solutions are readily amenable to conventional analytical methods. (author) 14 refs.; 1 tab

  12. Chemical and Ceramic Methods Toward Safe Storage of Actinides

    International Nuclear Information System (INIS)

    A very important, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. The use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements (e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations

  13. Chemical properties of the heavier actinides and transactinides

    Energy Technology Data Exchange (ETDEWEB)

    Hulet, E.K.

    1981-01-01

    The chemical properties of each of the elements 99 (Es) through 105 are reviewed and their properties correlated with the electronic structure expected for 5f and 6d elements. A major feature of the heavier actinides, which differentiates them from the comparable lanthanides, is the increasing stability of the divalent oxidation state with increasing atomic number. The divalent oxidation state first becomes observable in the anhydrous halides of californium and increases in stability through the series to nobelium, where this valency becomes predominant in aqueous solution. In comparison with the analogous 4f electrons, the 5f electrons in the latter part of the series are more tightly bound. Thus, there is a lowering of the 5f energy levels with respect to the Fermi level as the atomic number increases. The metallic state of the heavier actinides has not been investigated except from the viewpoint of the relative volatility among members of the series. In aqueous solutions, ions of these elements behave as a normal trivalent actinides and lanthanides (except for nobelium). Their ionic radii decrease with increasing nuclear charge which is moderated because of increased screening of the outer 6p electrons by the 5f electrons. The actinide series of elements is completed with the element lawrencium (Lr) in which the electronic configuration is 5f/sup 14/7s/sup 2/7p. From Mendeleev's periodicity and Dirac-Fock calculations, the next group of elements is expected to be a d-transition series corresponding to the elements Hf through Hg. The chemical properties of elements 104 and 105 only have been studied and they indeed appear to show the properties expected of eka-Hf and eka-Ta. However, their nuclear lifetimes are so short and so few atoms can be produced that a rich variety of chemical information is probably unobtainable.

  14. Molecular Characterization of Actinide Oxocations from Protactinium to Plutonium

    Science.gov (United States)

    Den Auwer, C.; Guilbaud, P.; Guillaumont, D.; Moisy, P.; Digandomenico, V.; Le Naour, C.; Trubert, D.; Simoni, E.; Hennig, C.; Scheinost, A.; Conradson, S. D.

    2007-02-01

    This presentation addresses the structural characterization by EXAFS of actinide cations at oxidation states (V) and (VI) as one walks across the periodic table from Z = 91 (protactinium) to Z = 94 (plutonium). A structural comparison between Pa, U, Np and Pu oxocations in aqueous solution at formal oxidation states (V) and (VI) is carried out. These results are corroborated by quantum chemical and molecular dynamics calculations.

  15. ACTINIDE-SPECIFIC SEQUESTERING AGENTS AND DECONTAMINATION APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, William L.; Raymond, Kenneth N.

    1980-07-01

    We have briefly reviewed the biological hazards associated with the actinide elements. The most abundant transuranium element produced by both industrial nuclear power plants and nuclear weapons programs is plutonium. It is also potentially the most toxic - particularly due to its long-term hazard as a carcinogen if it is introduced into the body. This toxicity is due in large part to the chemical and biochemical similarities of Pu(IV) and Fe(III). Thus in mammals plutonium is transported and stored by the transport and storage systems for iron. This results in the concentration and long-term retention of an alpha-emitting radionuclide ({sup 239}Pu) at sites such as the bone marrow where cell division occurs at a high rate. The earliest attempts at removal of actinide contamination by chelation therapy were essentially heuristic in that sequestering agents known to be effective at binding other elements were tried with plutonium. The research described here is intended to be a rational approach that begins with the observation that since Fe(III) and Pu(IV) are so similar, and since microbes produce agents called siderophores that are extremely effective and selective sequestering agents for Fe(III), the construction of similar chelating agents for the actinides should be possible using the same chelating groups found in the siderophores. The incorporation of four such groups (primarily catechol and hydroxamic acid) results in multidentate chelating agents that can completely encapsulate the central actinide(IV) ion and achieve the eight-coordinate environment most favored by such ions. The continuing development and improvement of such sequestering agents has produced compounds which remove significant amounts of plutonium deposited in bone and which remove a greater fraction of the total body burden than any other chelation therapy developed to date.

  16. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  17. DEVELOPMENT OF VEHICLES RECYCLING SYSTEM

    OpenAIRE

    PAWE£ SMOLNIK

    2014-01-01

    Fast development of automotive industry in Poland in recent years involves the need for rational waste management from the destruction and exploitation of vehicles. Rising number of new cars in Poland and existing age structure of the domestic park of vehicles will contribute to the increase number cars withdrawn from use. The way to solve the growing problem of waste recycling is the development of vehicles recycling system which contributes to the economic management of natural resources an...

  18. Recycling in early modern science

    OpenAIRE

    Werrett, S.

    2013-01-01

    ABSTRACT: This essay follows recent work in environmental history to explore the history of recycling in physical sciences in Britain and North America since the seventeenth century. The term 'recycling' is here used broadly to refer to a variety of practices that extended the life of material resources for doing science in the early modern period. These included practices associated with maintenance, repair, exchange and the adaptation or reuse of material culture. The essay argues that such...

  19. Molecular cluster theory of chemical bonding in actinide oxide

    International Nuclear Information System (INIS)

    The electronic structure of actinide monoxides AcO and dioxides AcO2, where Ac = Th, U, Np, Pu, Am, Cm and Bk has been studied by molecular cluster methods based on the first-principles one-electron local density theory. Molecular orbitals for nearest neighbor clusters AcO10-6 and AcO12-8 representative of monoxide and dioxide lattices were obtained using non-relativistic spin-restricted and spin-polarized Hartree-Fock-Slater models for the entire series. Fully relativistic Dirac-Slater calculations were performed for ThO, UO and NpO in order to explore magnitude of spin-orbit splittings and level shifts in valence structure. Self-consistent iterations were carried out for NpO, in which the NpO6 cluster was embedded in the molecular field of the solid. Finally, a ''moment polarized'' model which combines both spin-polarization and relativistic effects in a consistent fashion was applied to the NpO system. Covalent mixing of oxygen 2p and Ac 5f orbitals was found to increase rapidly across the actinide series; metal s,p,d covalency was found to be nearly constant. Mulliken atomic population analysis of cluster eigenvectors shows that free-ion crystal field models are unreliable, except for the light actinides. X-ray photoelectron line shapes have been calculated and are found to compare rather well with experimental data on the dioxides

  20. Crystalline matrices for the immobilization of plutonium and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.; Starchenko, V.A.; Vasiliev, V.G. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    1996-05-01

    The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressing method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.

  1. The chemical thermodynamics of actinide elements and compounds

    International Nuclear Information System (INIS)

    This compilation forms the twelfth part of a comprehensive assessment and selection of actinide thermodynamic data. The other parts of the compilation deal mostly with actinide elements and compounds. This part, which is the last one to be published in this Series, concerns inorganic actinide complexes in aqueous solution. The properties considered include the stability constant as a function of ionic strength and temperature and, whenever possible, enthalpy and entropy values. The present assessment is based on a literature survey that was terminated in early 1989. In tabulating literature data, only experimental results were used; estimates as well as recalculated data were ignored. Unlike in previous assessments of this kind in this assessment the selection of a best value is discussed and justified, and reasons are given for the rejection of data. In addition, our estimates of the thermodynamic properties, based on interrelationships between analogous systems, are given when this can be done reliably. Another essential aim of this assessment is to indicate those areas in which additional research is required. Refs

  2. Toward laser ablation Accelerator Mass Spectrometry of actinides

    Science.gov (United States)

    Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Paul, M.; Collon, P.; Deibel, C.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Fonnesbeck, J.; Imel, G.

    2013-01-01

    A project to measure neutron capture cross sections of a number of actinides in a reactor environment by Accelerator Mass Spectrometry (AMS) at the ATLAS facility of Argonne National Laboratory is underway. This project will require the precise and accurate measurement of produced actinide isotopes in many (>30) samples irradiated in the Advanced Test Reactor at Idaho National Laboratory with neutron fluxes having different energy distributions. The AMS technique at ATLAS is based on production of highly-charged positive ions in an electron cyclotron resonance (ECR) ion source followed by acceleration in the ATLAS linac and mass-to-charge (m/q) measurement at the focus of the Fragment Mass Analyzer. Laser ablation was selected as the method of feeding the actinide material into the ion source because we expect it will have higher efficiency and lower chamber contamination than either the oven or sputtering techniques, because of a much narrower angular distribution of emitted material. In addition, a new multi-sample holder/changer to allow quick change between samples and a computer-controlled routine allowing fast tuning of the accelerator for different beams, are being developed. An initial test run studying backgrounds, detector response, and accelerator scaling repeatability was conducted in December 2010. The project design, schedule, and results of the initial test run to study backgrounds are discussed.

  3. Value of 236U to actinide-only burnup credit

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) submitted a topical report to the US Nuclear Regulatory Commission (NRC) in May 1995 in order to gain approval of a method for criticality analysis of transport packages that takes account for the change in actinide isotopes with burnup [pressurized water reactors (PWRs) only]. Historically, the NRC has conservatively assumed that the fuel was in its initial conditions (without any burnable absorbers). In order to permit credit for the changes in actinide content, the NRC has required validation of the depletion and criticality codes for spent nuclear fuel, justification of conservative depletion modeling, and finally confirmation measurements before loading. The NRC requested additional information on March 22, 1996. The DOE responded by a revision of the topical report in May 1997. The NRC again responded with another set of requests of additional information in April 1998. In that set of questions, the NRC challenged the use of 236U in burnup credit. Uranium-236 is not found in any significant amount in any available critical experiments. The authors explore the value of 236U to actinide-only burnup credit

  4. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.; Noyes, G.; Culligan, B.

    2010-02-03

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

  5. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.;

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually...... of competing localized and delocalized f-electron configurations underlies the ground states of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f7), CmN (f7), and AmN (f6). The observed sudden increase in lattice parameter from PuN to AmN is found to be related...... increasing degree of f electron localization from U to Cm, with the tendency toward localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band picture is found to be adequate for UC and acceptable for UN, while a more complex manifold...

  6. Electronic structure and ionicity of actinide oxides from first principles

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.;

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, which...... for AO2 and A2O3 is found to follow the stoichiometry, namely, corresponding to A4+ ions in the dioxide and A3+ ions in the sesquioxides. In contrast, the A2+ ionic configuration is not favorable in the monoxides, which therefore become metallic. The energetics of the oxidation and reduction...... in the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onward. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground-state configurations of the corresponding...

  7. Actinides and lanthanides under pressure: the pseudopotential approach; Actinides et terres rares sous pression: approche pseudopotentiel

    Energy Technology Data Exchange (ETDEWEB)

    Richard, N

    2002-07-01

    In the Density Functional Theory Framework, the pseudopotential formalism offers a broader scope of study than other theoretical methods such as global relaxation of the parameters of the cell or ab initio molecular dynamics simulations. This method has been widely used to study light elements or transition metals but never to study f elements. We have generated two non local norm conserving Trouillier-Martins pseudopotentials (one in LDA and one in GGA) for the cerium. To check the validity of the pseudopotentials, we have calculated the equilibrium volume and the incompressibility modulus and compared our results to previous all-electron calculations. If the GGA and non linear core corrections are used, the equation of state is in a good agreement with the experimental equation of state. A static study of the previously proposed high pressure phases give a transitions fcc-a''(I)-bct. Using the pseudopotentials we have generated, an ab initio molecular dynamics simulation at constant pressure, in the region between 5 and 12 GPa where the stable phase of cerium is not well defined, lead us to predict that a centred monoclinic structure, as the a''(I) phase previously observed in some experiments, is the most stable phase. We have also generated pseudopotentials for the light actinides (Th, Pa, U and Np). We have study their phase transitions under pressure at zero temperature. We compared our results with all electron results. The structure parameters have always been relaxed in this study. And for the first time in pseudopotential calculation, the spin-orbit coupling has been taken into account. The curves describing the variation of the volume or the incompressibility modulus depending on the elements and the phase transitions are always in agreement with the one found in the all electron calculations. (author)

  8. Imperfect Competition in the Recycling Industry

    OpenAIRE

    Eichner, Thomas

    2003-01-01

    This paper studies the market allocation in an economy where material is used for producing a consumption good, then recycled and finally landfilled, and where a recycling firm has market power. The material content constitutes an aspect of green product design and affects the recycling costs. Although the recycling firm's supply of recycling services is inefficiently low, she does not abuse her market power to distort the product design allocation. Different policy schemes are proposed which...

  9. Investigations of actinides in the context of final disposal of high-level radioactive waste - trivalent actinides in aqueous solution

    International Nuclear Information System (INIS)

    This contribution presents a small piece of research work at KIT-INE dealing with the speciation of redox sensitive trivalent actinides like Pu(III), Np(III), and U(III) in aqueous solution. The redox preparation, stabilization, and speciation of trivalent actinide in aqueous systems are discussed here. The reductants investigated were rongalite, HYA (hydroxylamine hydrochloride), and AHA (acetohydroxamic acid). The time dependence of An(III) stability at different pH values was investigated. The An(III) species in aqueous solution have been characterized by UV-Vis and XANES spectroscopy. A broader overview of the work at KIT-INE is given in the oral presentation at the NUCAR2013 conference. (author)

  10. Factors affecting actinide solubility in a repository for spent fuel, 1

    International Nuclear Information System (INIS)

    The main tasks in the study were to get information on the chemical conditions in a repository for spent fuel and information on factors affecting releases of actinides from spent fuel and solubility of actinides in a repository for spent fuel. The work in this field started at the Reactor Laboratory of the Technical Research Centre of Finland (VTT) in 1982. This is a report on the effects on the main parameters, Eh, pH, carbonate, organic compounds, colloids, microbes and radiation on the actinide solubility in the nearfield of the repository. Another task has been to identify available models and reported experience from actinide solubility calculations with different codes. 167 refs

  11. Utilization of Minor Actinides (Np, Am, Cm) in Nuclear Power Reactor

    Science.gov (United States)

    Gerasimov, A.; Bergelson, B.; Tikhomirov, G.

    2014-06-01

    Calculation research of the utilization process of minor actinides (transmutation with use of power released) is performed for specialized power reactor of the VVER type operating on the level of electric power of 1000 MW. Five subsequent cycles are considered for the reactor with fuel elements containing minor actinides along with enriched uranium. It was shown that one specialized reactor for the one cycle (900 days) can utilize minor actinides from several VVER-1000 reactors without any technological and structural modifications. Power released because of minor actinide fission is about 4% with respect to the total power

  12. Status of the French research program for actinides and fission products partitioning and transmutation

    International Nuclear Information System (INIS)

    The global energy context pleads in favour of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel sources. How we deal with radioactive waste is crucial in this context. The production of nuclear energy in France has been associated, since its inception, with the optimization of radioactive waste management, including the partitioning and the recycling of recoverable energetic materials. From the start, the CEA has devoted considerable effort to management of the back end of the cycle. It furnished the process and techniques used in the La Hague facility to extract the re-usable materials, uranium and plutonium, and condition the resulting waste. Towards the end of the 1960's, it developed the process of vitrification for highly active waste that has become the world reference. The public's concern regarding the log-term waste management made the French Government to delay the implementation of the geological disposal and to prepare a law, passed on December 30, 1991, requesting in particular the study for fifteen years of solutions and processes for: minimizing the quantity and the hazardousness of waste, via partitioning and transmutation, either reversibly or irreversibly disposing the waste in deep geological formation, waste conditioning and long-term interim storage. We present in this paper the French program and an overview of the results obtained by the research conducted in the framework of the law on partitioning and transmutation between 1991 and 2005. Over these past fifteen years, all of the P and T research has been conducted by CEA in close collaboration with the CNRS and French universities, and with the support of partners from industry (EDF, COGEMA, FRAMATOME-ANP). Significant results have been obtained and changed the prospects for nuclear waste management; these results are

  13. Investigations of actinides in the context of final disposal of high-level radioactive waste. Trivalent actinides in aqueous solution

    International Nuclear Information System (INIS)

    The speciation of redox sensitive trivalent actinides Pu(III), Np(III), and U(III) has been studied in aqueous solution. The redox preparation, stabilization, and speciation of these trivalent actinides in aqueous systems are discussed here. The reductants investigated were rongalite, hydroxylamine hydrochloride, and acetohydroxamic acid and the An(III) species have been characterized by UV-Vis and XANES spectroscopy. The results show that the effectiveness of stabilization decreases generally in the order Pu(III) > Np(III) > U(III) and that the effectiveness of each reducing agent depends on the experimental conditions. More than 80 % of Pu(III) aquo species have been stabilized up to pH 5.5, whereas the Np(III) aquo ion could be stabilized in a pH range 0-2.5, and U(III) aquo ion is sufficiently stable at pH 1.0 and below over time periods suitable for experiments. However, this study gives a basis for the characterisation of the trivalent lighter actinides involved in complexation, sorption, and solid formation reactions in the future. (author)

  14. M&A information technology best practices

    CERN Document Server

    Roehl-Anderson, Janice M

    2013-01-01

    Add value to your organization via the mergers & acquisitions IT function  As part of Deloitte Consulting, one of the largest mergers and acquisitions (M&A) consulting practice in the world, author Janice Roehl-Anderson reveals in M&A Information Technology Best Practices how companies can effectively and efficiently address the IT aspects of mergers, acquisitions, and divestitures. Filled with best practices for implementing and maintaining systems, this book helps financial and technology executives in every field to add value to their mergers, acquisitions, and/or divestitures via the IT

  15. MaRIE Undulator & XFEL Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Laboratory; Marksteiner, Quinn R. [Los Alamos National Laboratory; Anisimov, Petr Mikhaylovich [Los Alamos National Laboratory; Buechler, Cynthia Eileen [Los Alamos National Laboratory

    2015-03-23

    The 22 slides in this presentation treat the subject under the following headings: MaRIE XFEL Performance Parameters, Input Electron Beam Parameters, Undulator Design, Genesis Simulations, Risks, and Summary It is concluded that time-dependent Genesis simulations show the MaRIE XFEL can deliver the number of photons within the required bandwidth, provided a number of assumptions are met; the highest risks are associated with the electron beam driving the XFEL undulator; and risks associated with the undulator and/or distributed seeding technique may be evaluated or retired by performing early validation experiments.

  16. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  17. Recycling as Habitual Behavior: The Impact of Habit on Household Waste Recycling Behavior in Thailand

    OpenAIRE

    Achapan Ittiravivongs

    2012-01-01

    This research aims to permit a better understanding of factors influencing recycling behavior of Thai households in a habitual perspective. The study applied theory of interpersonal as critical framework and investigated the role of habit on recycling involvement of 381 samples in Bangkok. The outcomes indicated that recycling behavior was significantly predicted by recycling intention, habit, recycling ability, facility condition, and adequacy of recycling information, in order of strength. ...

  18. COEX{sup tm} Recycling Plant: A New Standard for an Integrated Plant

    Energy Technology Data Exchange (ETDEWEB)

    Senentz, G.; Drain, F. [AREVA-SGN, 1 Rue des Herons, Montigny le Bretonneux Cedex, 78182 (France); Baganz, C. [AREVA-NC-Bur (France)

    2009-06-15

    fuel for fast neutron reactors and is compatible with future scenarios involving homogeneous or heterogeneous recycling of minor actinides. Another major requirement during the definition of this new standard was for it to provide cost benefits from an investment and operational point of view. The COEXtm process implemented in an integrated reprocessing and recycling site, provides several cost saving opportunities, by reducing the size of interim storage, simplifying recycling operations, suppressing unnecessary intermediate operations, and reducing waste. After a short description of the COEXtm process main steps, this paper describes improvements and benefits made possible thanks to the COEXtm process and an integrated plant (co-located fuel treatment and recycling facilities). Then, it discusses further evolutions to address future needs for fast reactors and possible recycling of some minor actinides. COEX is a trademark of AREVA Group. (authors)

  19. 46 CFR 308.550 - Certificate, Form MA-320.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Certificate, Form MA-320. 308.550 Section 308.550... Risk Cargo Insurance Iv-General § 308.550 Certificate, Form MA-320. Wherever any provision of this... execute a certificate on Form MA-320-A for an individual, on Form MA-320-B for a partnership, or on...

  20. 42 CFR 422.4 - Types of MA plans.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Types of MA plans. 422.4 Section 422.4 Public...) MEDICARE PROGRAM MEDICARE ADVANTAGE PROGRAM General Provisions § 422.4 Types of MA plans. (a) General rule. An MA plan may be a coordinated care plan, a combination of an MA MSA plan and a contribution into...

  1. DWPF Recycle Evaporator Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted

  2. 76 FR 36953 - Massachusetts Disaster #MA-00036

    Science.gov (United States)

    2011-06-23

    ... From the Federal Register Online via the Government Publishing Office ] SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00036 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the State...

  3. 77 FR 76585 - Massachusetts Disaster # MA-00052

    Science.gov (United States)

    2012-12-28

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00052 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the Commonwealth...

  4. 77 FR 66214 - Massachusetts Disaster # MA-00049

    Science.gov (United States)

    2012-11-02

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00049 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the Commonwealth...

  5. 76 FR 56859 - Massachusetts Disaster #MA-00039

    Science.gov (United States)

    2011-09-14

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00039 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the Commonwealth...

  6. 75 FR 45681 - Massachusetts Disaster #MA-00028.

    Science.gov (United States)

    2010-08-03

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00028. AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the Commonwealth...

  7. 75 FR 22874 - Massachusetts Disaster # MA-00027

    Science.gov (United States)

    2010-04-30

    ... From the Federal Register Online via the Government Publishing Office ] SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00027 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance...

  8. 76 FR 56853 - Massachusetts Disaster #MA-00040

    Science.gov (United States)

    2011-09-14

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00040 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance...

  9. Teacher MA Attainment Rates, 1970-2000

    Science.gov (United States)

    Larsen, S. Eric

    2010-01-01

    The share of female teachers in the U.S. with an MA more than doubled between 1970 and 2000. This increase is puzzling, as it is much larger than that of other college-educated women, and it occurred over a period of declining teacher aptitude. I estimate the contribution of changes in teacher demographic characteristics, increases in the returns…

  10. 77 FR 12350 - Massachusetts Disaster #MA-00047

    Science.gov (United States)

    2012-02-29

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00047 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the Commonwealth...

  11. 76 FR 40766 - Massachusetts Disaster #MA-00035

    Science.gov (United States)

    2011-07-11

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00035 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the Commonwealth...

  12. 76 FR 65557 - Massachusetts Disaster #MA-00043

    Science.gov (United States)

    2011-10-21

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00043 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the Commonwealth...

  13. 75 FR 17177 - Massachusetts Disaster #MA-00025

    Science.gov (United States)

    2010-04-05

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00025 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the State...

  14. 76 FR 30748 - Massachusetts Disaster #MA-00033

    Science.gov (United States)

    2011-05-26

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00033 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the Commonwealth...

  15. 76 FR 36952 - Massachusetts Disaster #MA-00037

    Science.gov (United States)

    2011-06-23

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00037 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance...

  16. 77 FR 76584 - Massachusetts Disaster # MA-00051

    Science.gov (United States)

    2012-12-28

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00051 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the Commonwealth...

  17. 77 FR 2600 - Massachusetts Disaster #MA-00046

    Science.gov (United States)

    2012-01-18

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00046 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance...

  18. 76 FR 13697 - Massachusetts Disaster #MA-00032

    Science.gov (United States)

    2011-03-14

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00032 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance...

  19. 75 FR 79064 - Massachusetts Disaster #MA-00030

    Science.gov (United States)

    2010-12-17

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00030 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the Commonwealth...

  20. 75 FR 3764 - Massachusetts Disaster # MA-00024

    Science.gov (United States)

    2010-01-22

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00024 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the Commonwealth...

  1. 77 FR 33263 - Massachusetts Disaster #MA-00048

    Science.gov (United States)

    2012-06-05

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Massachusetts Disaster MA-00048 AGENCY: U.S. Small Business Administration. ACTION: Notice... Application Deadline Date: 03/01/2013. ADDRESSES: Submit completed loan applications to: U.S. Small...

  2. 78 FR 25336 - Massachusetts Disaster #MA-00054

    Science.gov (United States)

    2013-04-30

    ... ADMINISTRATION Massachusetts Disaster MA-00054 AGENCY: U.S. Small Business Administration. ACTION: Notice...: 01/21/2014. ADDRESSES: Submit completed loan applications to: U.S. Small Business Administration... CONTACT: A. Escobar, Office of Disaster Assistance, U.S. Small Business Administration, 409 3rd Street...

  3. 78 FR 2708 - Massachusetts Disaster # MA-00050

    Science.gov (United States)

    2013-01-14

    ... ADMINISTRATION Massachusetts Disaster MA-00050 AGENCY: U.S. Small Business Administration. ACTION: Notice... completed loan applications to: U.S. Small Business Administration, Processing and Disbursement Center... Disaster Assistance, U.S. Small Business Administration, 409 3rd Street SW., Suite 6050, Washington,...

  4. Fabrication technology for ODS Alloy MA957

    Energy Technology Data Exchange (ETDEWEB)

    ML Hamilton; DS Gelles; RJ Lobsinger; MM Paxton; WF Brown

    2000-03-16

    A successful fabrication schedule has been developed at Carpenter Technology Corporation for the production of MA957 fuel and blanket cladding. Difficulties with gun drilling, plug drawing and recrystallization were overcome to produce a pilot lot of tubing. This report documents the fabrication efforts of two qualified vendors and the support studies performed at WHC to develop the fabrication-schedule.

  5. Global Plate Driving Forces at 50Ma

    Science.gov (United States)

    Butterworth, N. P.; Quevedo, L. E.; Müller, R. D.

    2011-12-01

    We apply a novel workflow utilising the BEM-Earth geodynamic software to analyse the global coupled plate-mantle dynamics at 50 Ma. A subduction history model based on kinematic data going as far back as 80 Ma was developed using the GPlates software. Advection of the plates into the mantle takes into account the absolute plate motions and lithospheric thickness derived from its age to produce an estimated density heterogeneity initial model condition in the upper mantle. The resulting global model consists of regions of a mantle viscosity and density structure that is post-processed to ensure smooth non-overlapping 3D surfaces. BEM-Earth is then free to evolve the model toward the 50 Ma solution. The evolution of the model is driven by self-consistent buoyancy driven mantle dynamics. We use the model velocity output to quantify changes in forces driving the plates before and after 50 Ma. We analyse the rapid change in plate motion of India, Africa and plates in the Pacific Ocean basin by considering slab-pull, ridge-push and mantle drag/suction forces that naturally result from such top-down driven mantle flow. We compare the results with plate kinematic reconstructions and other geological observations.

  6. Salatoimikud : ma tahan uskuda / Mart Rummo

    Index Scriptorium Estoniae

    Rummo, Mart

    2008-01-01

    USA sarjale "The X-Files" põhinev teine järjefilm "Salatoimikud: Ma tahan uskuda" ("The X-Files: I Want to Believe") : režissöör Chris Carter : peaosades David Duchovny, Gillian Anderson : Ameerika Ühendriigid - Kanada 2008

  7. Recycling of polymers: a review.

    Science.gov (United States)

    Ignatyev, Igor A; Thielemans, Wim; Vander Beke, Bob

    2014-06-01

    Plastics are inexpensive, easy to mold, and lightweight. These and many other advantages make them very promising candidates for commercial applications. In many areas, they have substantially suppressed traditional materials. However, the problem of recycling still is a major challenge. There are both technological and economic issues that restrain the progress in this field. Herein, a state-of-art overview of recycling is provided together with an outlook for the future by using popular polymers such as polyolefins, poly(vinyl chloride), polyurethane, and poly(ethylene terephthalate) as examples. Different types of recycling, primary, secondary, tertiary, quaternary, and biological recycling, are discussed together with related issues, such as compatibilization and cross-linking. There are various projects in the European Union on research and application of these recycling approaches; selected examples are provided in this article. Their progress is mirrored by granted patents, most of which have a very limited scope and narrowly cover certain technologies. Global introduction of waste utilization techniques to the polymer market is currently not fully developed, but has an enormous potential.

  8. Recycling of plastics in Germany

    International Nuclear Information System (INIS)

    This article deals with the waste management of post-consumer plastics in Germany and its potential to save fossil fuels and reduce CO2 emissions. Since most experience is available for packaging, the paper first gives an overview of the legislative background and the material flows for this sector. Then recycling and recovery processes for plastics waste from all sectors are assessed in terms of their contribution to energy saving and CO2 abatement. Practically all the options studied show a better performance than waste treatment in an average incinerator which has been chosen as the reference case. High ecological benefits can be achieved by mechanical recycling if virgin polymers are substituted. The paper then presents different scenarios for managing plastic waste in Germany in 1995: considerable savings can be made by strongly enhancing the efficiency of waste incinerators. Under these conditions the distribution of plastics waste among mechanical recycling, feedstock recycling and energy recovery has a comparatively mall impact on the overall results. The maximum savings amount to 74 PJ of energy, i.e, 9% of the chemical sector energy demand in 1995 and 7.0 Mt CO2, representing 13% of the sector's emissions. The assessment does not support a general recommendation of energy recovery due to the large difference between the German average and the best available municipal waste-to-energy facilities and also due to new technological developments in the field of mechanical recycling

  9. Economic analysis of fuel recycle

    International Nuclear Information System (INIS)

    Economic analysis was performed at KAERI with the assistance of US DOE to compare single reactor fuel cycle costs for a once-through option and a thermal recycle option to operate 1 GWe of a PWR plant for its lifetime. A reference fuel cycle cost was first calculated for each option with best estimated reference input data. Then a sensitivity analysis was performed changing each single value of such fuel cycle component costs as yellow cake price, enrichment charges, spent fuel storage cost, reprocessing cost, spent fuel disposal cost and reprocessing waste disposal cost. Savings due to thermal recycle in requirements of uranium, conversion, and enrichment were examined using formulas suggested by US DOE, while MOX fabrication penalty was accounted for. As a result of the reference fuel cycle cost analysis, it is calculated that the thermal recycle option is marginally more economical than the once-through option. The major factors affecting the comparative costs between thermal recycle and once-through are the costs of reprocessing, spent fuel storage and the difference between spent fuel disposal and reprocessing waste disposal. However, considering the uncertainty in these cost parameters there seems no immediate economic incentive for thermal recycle at the present time

  10. Recycling assessment of multilayer flexible packaging films using design of experiments

    OpenAIRE

    Gabriel Abreu Uehara; Marcos Pini França; Sebastiao Vicente Canevarolo Junior

    2015-01-01

    AbstractThe viability of recycling post-industrial packaging waste, compounded from multilayer laminated PET-PE films, for production of polymer blends with good physico-mechanical performance is analyzed. Initially, several PET-PE model-blends were prepared from fresh polymers and were compounded with different formulations, based on design of experiments (DOE). Polymer compatibilizers based on maleic anhydride (PE-g-MA) and glycidyl methacrylate (E-GMA) have been used to promote the compati...

  11. Actinides inventory of the nuclear power plant of Laguna Verde Unit 1

    International Nuclear Information System (INIS)

    At the present time 435 nuclear power reactors exist for the electricity generation operating in the world and 63 in construction. Mexico has two reactors type BWR in the nuclear power plant of Laguna Verde. The nuclear fuel that is used in the nuclear reactors is retired of the reactor core when the energy that this contained has been extracted. This used fuel is known as spent nuclear fuel, the problem with this fuel is that was irradiated inside the reactor and continuous emitting a high radiation, as well as a significant heat quantity when being extracted, for what is necessary to maintain it in cooling and with some shielding to be protected of the radiation that emits. This objective is achieved confining the fuel in the spent nuclear fuel pool, where it is cooled and the same pool provides the necessary shielding to maintain the surroundings in safety radiation levels for the personnel that work in the power plant. An inconvenience of the pools is its limited storage capacity and that after certain time is necessary to remove the fuel, according to the established regulation to continue operating. To correct this inconvenience, two alternatives of spent fuel disposition exist, 1) the final disposition in deep geologic repositories and 2) the reprocessing and recycled of spent fuel. Each alternative presents its particularities and specific problems; however taking many years to be able to implement anyone of them. To carry out the second option, is indispensable to estimate the total mass of actinides generated in the spent nuclear fuel, that which represents to develop a methodology for it, this action is the main purpose of the present work. Inside our calculation method was necessary to appeal to diverse computation tools as the codes Origin-S and Keno V.a. Later on the obtained were compared with a problem type Benchmark, being obtained a smaller absolute error to 1.0%. (Author)

  12. Proliferation resistance assessments during the design phase of a recycling facility as a means of reducing proliferation risks

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, M.A.; Grape, S.; Haekansson, A.; Jacobsson Svaerd, S. [Department of Physics and Astronomy, Uppsala University: Box 516, SE-75120 Uppsala (Sweden)

    2013-07-01

    The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design. Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakest barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS (Technological Opportunities to increase Proliferation resistance of nuclear power Systems) and PR-PP (Proliferation Resistance and Physical Protection evaluation methodology). The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined. The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can then be carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified. This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities. (authors)

  13. Systematic Characteristics of Fast Neutron Fission Cross Sections for Actinide Nuclei

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The neutron fission cross sections of actinide nuclei are important data for the design of nuclear reactor and nuclear engineering, and so on. So far, there has been a certain amount of experimental data for the fission cross sections of actinide nuclei. However,

  14. Actinide Partitioning and Transmutation Program. Progress report, April 1--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Tedder, D. W.; Blomeke, J. O. [comps.

    1977-10-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was continued. Summaries of work are given on Purex Process modifications, actinide recovery, Am-Cm recovery, radiation effects on ion exchangers, LMFBR transmutation studies, thermal reactor transmutation studies, fuel cycle studies, and partitioning-transmutation evaluation. (JRD)

  15. Mathematical modelling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and hence, the mobility of actinides in subsurface environments. We combined mathematical modelling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bioutilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modelling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems. (orig.)

  16. Separation of actinides from lanthanides using acidic organophosphorus compounds: extraction chromatographic studies

    International Nuclear Information System (INIS)

    The partitioning of actinides from HLW using TBP and CMPO generates a mixture of actinides and lanthanides as one of the secondary streams. The paper discusses the results of the extraction chromatographic separation using KSM-17 and HDEHP supported on Chromosorb-102. (author)

  17. J-ACTINET activities of training and education for actinide science research

    International Nuclear Information System (INIS)

    Actinide science research is indispensable to maintain sustainable development of innovative nuclear technology, especially advanced fuels, partitioning/reprocessing, and waste management. For actinide science research, special facilities with containment and radiation shields are needed to handle actinide materials since actinide elements are γ-, α- and neutron-emitters. The number of facilities for actinide science research has been decreased, especially in universities, due to the high maintenance cost. J-ACTINET was established in 2008 to promote and facilitate actinide science research in close cooperation with the facilities and to foster many of young scientists and engineers to be actively engaged in the fields of actinide science. The research program was carried out, through which young researchers were expected to learn how to make experiments with advanced experimental tools and to broaden their horizons. The summer schools and computational science school were held to provide students, graduate students, and young researchers with the opportunities to come into contact with actinide science research. In these schools, not only the lectures, but also the practical exercises were made as essential part. The overseas dispatch program was also carried out, where graduate students and young researchers were sent to the international summer schools and conferences. (author)

  18. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F

    2014-01-01

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  19. Use of high gradient magnetic separation for actinide application

    International Nuclear Information System (INIS)

    Decontamination of materials such as soils or waste water that contain radioactive isotopes, heavy metals, or hazardous components is a subject of great interest. Magnetic separation is a physical separation process that segregates materials on the basis of magnetic susceptibility. Because the process relies on physical properties, separations can be achieved while producing a minimum of secondary waste. Most traditional physical separation processes effectively treat particles larger than 70 microns. In many situations, the radioactive contaminants are found concentrated in the fine particle size fraction of less than 20 microns. For effective decontamination of the fine particle size fraction most current operations resort to chemical dissolution methods for treatment. High gradient magnetic separation (HGMS) is able to effectively treat particles from 90 to ∼0.1 micron in diameter. The technology is currently used on the 60 ton per hour scale in the kaolin clay industry. When the field gradient is of sufficiently high intensity, paramagnetic particles can be physically captured and separated from extraneous nonmagnetic material. Because all actinide compounds are paramagnetic, magnetic separation of actinide containing mixtures is feasible. The advent of reliable superconducting magnets also makes magnetic separation of weakly paramagnetic species attractive. HGMS work at Los Alamos National Laboratory (LANL) is being developed for soil remediation, waste water treatment and treatment of actinide chemical processing residues. LANL and Lockheed Environmental Systems and Technologies Company (LESAT) have worked on a co-operative research and development agreement (CRADA) to develop HGMS for radioactive soil decontamination. The program is designed to transfer HGMS from the laboratory and other industries for the commercial treatment of radioactive contaminated materials. 9 refs., 2 figs., 2 tabs

  20. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a

  1. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  2. Hybridization effects in selected actinides and their compounds

    Science.gov (United States)

    El-Khatib, Sami T.

    Many actinide systems exhibit 'unusual' phenomena that differ from the normal text-book behavior. This occurs because the 5f electrons of the actinides and their compounds experience a delicate balance between local-moment and itinerant magnetism. It is well established that strong-electron correlations affect the different properties in such systems. Even though the actinides and their compounds have been extensively studied in recent decades, both experimentally and theoretically, to date, no complete understanding of the full range of their properties has been achieved. My thesis focuses mainly on understanding the role of 5f electrons and their interactions with the electron states of the surrounding ligands. Particularly, the effect of the 5f-ligand hybridization in the development of bulk properties is investigated. The experimental studies utilized macroscopic techniques, such as magnetization, electrical-resistivity, specific-heat and resonant-ultrasound-spectroscopy measurements, as well as microscopic techniques, such as neutron-diffraction and muon-spin-resonance studies. The results are used to disentangle the importance of direct 5f--5f overlap and 5 f-ligand hybridization. The following features have been investigated in this thesis: (a) the dual nature of hybridization effects (magnetic moment reduction vs. exchange mediation) was studied for two isostructural uranium compounds U2Pd2Sn and U2Ni2 In; (b) the formation of complex magnetic structures and its connection to the hybridization effects was studied for UCuSn, UPdSn and UPdGe; (c) the tuning of the hybridization to critical values through substitutions was attempted for two single crystals of UCoAl1-xSn x and UNi1-xRh xAl alloys; (d) the effects of compositional deficiencies was studied for the copper-deficient compound in UCu1.5Sn 2; and finally, (e) the influence of strong electron correlations on the elastic properties was studied in the case of alpha-Pu.

  3. MaJAZ1 Attenuates the MaLBD5-Mediated Transcriptional Activation of Jasmonate Biosynthesis Gene MaAOC2 in Regulating Cold Tolerance of Banana Fruit.

    Science.gov (United States)

    Ba, Liang-jie; Kuang, Jian-fei; Chen, Jian-ye; Lu, Wang-jin

    2016-02-01

    Previous studies indicated that methyl jasmonate (MeJA) treatment could effectively reduce the chilling injury of many fruits, including banana, but the underlying mechanism is poorly understood. In this study, one lateral organ boundaries (LOB) domain (LBD) gene, designated as MaLBD5, was isolated and characterized from banana fruit. Expression analysis revealed that accumulation of MaLBD5 was induced by cold temperature and MeJA treatment. Subcellular localization and transactivation assays showed that MaLBD5 was localized to the nucleus and possessed transcriptional activation activity. Protein-protein interaction analysis demonstrated that MaLBD5 physically interacted with MaJAZ1, a potential repressor of jasmonate signaling. Furthermore, transient expression assays indicated that MaLBD5 transactivated a jasmonate biosynthesis gene, termed MaAOC2, which was also induced by cold and MeJA. More interestingly, MaJAZ1 attenuated the MaLBD5-mediated transactivation of MaAOC2. These results suggest that MaLBD5 and MaJAZ1 might act antagonistically in relation to MeJA-induced cold tolerance of banana fruit, at least partially via affecting jasmonate biosynthesis. Collectively, our findings expand the knowledge of the transcriptional regulatory network of MeJA-mediated cold tolerance of banana fruit.

  4. Process to recycle shredder residue

    Science.gov (United States)

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.

    2001-01-01

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  5. Review of alpha-particle spectrometric measurements of actinides

    International Nuclear Information System (INIS)

    At present the silicon surface-barrier detector is the most used α-particle detector mainly due to its high energy resolution, excellent stability, low background and low cost. In this presentation various parameters of importance for α-particle spectrometry are discussed, i.e. energy resolution and interval selection, energy calibration, background and peak tailing. Examples of α-particle spectra recorded from various actinides (Th, U, Np, Pu, Am, and Cm) separated from environmental samples are shown, and the choice of yield determinants is discussed for each case. (author)

  6. Hydrometallurgical minor actinide separation in hollow fiber modules

    International Nuclear Information System (INIS)

    Hollow fiber modules (HFM) were used as phase contacting devices for hydrometallurgical minor actinide separation in the Partitioning and Transmutation context. Two single-HFM setups, one using commercially available HFM, the other one using miniature HFM, have been developed and manufactured. Several very successful DIAMEX and SANEX once-through tests were performed. The major advantage of the new miniature HFM is their size drastically reducing chemicals consumption: only several 10 mL of feed phases are required for a test. (authors)

  7. Neutron absorption spectroscopy for identification of light elements in actinides

    International Nuclear Information System (INIS)

    We are developing cryogenic high-energy resolution fast-neutron spectrometers using superconducting transition-edge sensors (TES) for nuclear science and non-proliferation applications. Fast neutrons are absorbed in 94% enriched 6LiF single crystals with volumes of ∼1 cm3 in an exothermic 6Li(n,α)3H capture reaction. The neutron energy is measured from the subsequent temperature rise with a Mo/Cu multilayer TES. Fast-neutron spectra from a 252Cf source show an energy resolution of 55 kev. Here, we discuss the instrument performance, with emphasis on the identification of light elements in actinide matrices

  8. Voluntary activities on actinides by the public in Peninsula Shimokita

    International Nuclear Information System (INIS)

    Peninsula Shimokita is known as a Nuclear Peninsula. A technical term actinides', however, is not used among the public here. It is not only used, but also is not probably known among them, although an investigation for the terminology and vocabulary on the nuclear science and technology among the public in this district has not ever performed. The terms in use here widely are uranium (-235, -238), plutonium (-239), and trans-uranium elements for what are heavier than the uranium. The present paper will report on voluntary activities by the public in the Penin. Shimokita performed after the neutron criticality accident at JCO Tokai of a company for nuclear fuel conversion. (author)

  9. Fission of actinides using a table-top laser

    CERN Document Server

    Schwoerer, H; Sauerbrey, R; Galy, J; Magill, J; Rondinella, V; Schenkel, R; Butz, T

    2003-01-01

    Powerful table-top lasers are now available in the laboratory and can be used to induce nuclear reactions. We report the first demonstration of nuclear fission using a high repetition rate table-top laser with intensities of 10 sup 2 sup 0 W/cm sup 2. Actinide photo-fission has been achieved in both sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th from the high-energy Bremsstrahlung radiation produced by laser acceleration of electrons. The fission products were identified by time-resolved gamma-spectroscopy. (authors)

  10. Detection of Actinides via Nuclear Isomer De-Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Francy, Christopher J. [Oregon State Univ., Corvallis, OR (United States)

    2009-07-01

    This dissertation discusses a data collection experiment within the Actinide Isomer Identification project (AID). The AID project is the investigation of an active interrogation technique that utilizes nuclear isomer production, with the goal of assisting in the interdiction of illicit nuclear materials. In an attempt to find and characterize isomers belonging to 235U and its fission fragments, a 232Th target was bombarded with a monoenergetic 6Li ion beam, operating at 45 MeV.

  11. Electron-phonon coupling of the actinide metals

    DEFF Research Database (Denmark)

    Skriver, H. L.; Mertig, I.

    1985-01-01

    -phonon parameter λ is found to attain its maximum value in Ac, and they predict a transition temperature of 9K for this metal. In the light actinides Th through Pu, λ is found to be of order 0.4 and within a factor of 2 of experiments which is also the accuracy found in studies of the transition metals...... be related to the changeover from an s-to- d to an s-to-f electronic transition and a related change in the topology of the Fermi surface...

  12. Heavy element and actinide decay data: UKHEDD-2 data files

    International Nuclear Information System (INIS)

    A re-evaluation has been made of the decay data for 126 heavy elements and actinides of direct application in nuclear fuel cycle calculations. Computer-based data files have been produced in ENDF/B-VI format, including lists of the references used to produce the proposed decay schemes and comments that identify their inadequacies. These evaluated data include half-lives, average decay energies, branching ratios, alpha, beta and gamma-ray energies and emission probabilities, internal conversion coefficients, spontaneous fission decay data and all associated uncertainties. (author)

  13. Formation of new actinide nuclides and their reaction cross section

    International Nuclear Information System (INIS)

    Helium jet transfer system, which had been designed and constructed for the study of actinide nuclides, was examined for the transfer efficiency of recoils and fission products formed in the nuclear reaction induced by α particles. The efficiency was found to be close to unity for products coming out of a 232Th target bombarded with 110 MeV α particles of intensity less than 40 nA. Residual radio-activities of a target chamber and a collection chamber were also measured. (author)

  14. Geochemistry of actinides and fission products in natural aquifer systems

    International Nuclear Information System (INIS)

    The progress in the research area of the community project MIRAGE: 'Geochemistry of actinides and fission products in natural aquatic systems' has been reviewed. This programme belongs to a specific research and technical development programme for the European Atomic Energy Community in the field of management and storage of radioactive waste. The review summarizes research progresses in subject areas: complexation with organics, colloid generation in groundwater and basic retention mechanisms in the framework of the migration of radionuclides in the geosphere. The subject areas are being investigated by 23 laboratories under interlaboratory collaborations or independent studies. (orig.)

  15. Pu and MA management in thermal HTGRs - impact at fuel, reactor and fuel cycle levels - HTR2008-58176

    International Nuclear Information System (INIS)

    The PUMA project, a Specific Targeted Research Project (STREP) of the European Union EURATOM 6. Framework Program, is mainly aimed at providing additional key elements for the utilisation and transmutation of plutonium and minor actinides (neptunium and americium) in contemporary and future (high temperature) gas-cooled reactor design, which are promising tools for improving the sustainability of the nuclear fuel cycle. PUMA would also contribute to the reduction of Pu and MA stockpiles and to the development of safe and sustainable reactors for CO2-free energy generation. The project runs from September 1, 2006 until August 31, 2009. PUMA also contributes to technological goals of the Generation IV International Forum. It contributes to developing and maintaining the competence in reactor technology in the EU and addresses European stakeholders on key issues for the future of nuclear energy in the EU. An overview is presented of the status of the project at mid-term. (authors)

  16. Neutronics design study on a minor actinide burner for transmuting spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    1998-08-01

    A liquid metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors. The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the doppler coefficient, and the sodium void worth. Sensitivity studies were performed for homogeneous and decoupled core designs, and a minor actinide burner design was determined to maximize actinide consumption and satisfy safety constraints. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200 MWth core is able to transmute the annual minor actinide inventory of about 16 LWRs and still exhibit reasonable safety characteristics. (author). 34 refs., 22 tabs., 14 figs.

  17. Selective extraction of trivalent actinides from lanthanides with dithiophosphinic acids and tributylphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.; Barrans, R.; Schroeder, N.; Wade, K.; Jones, M.; Smith, B.F. [Los Alamos National Lab., NM (United States); Mills, J.; Howard, G. [Texas Tech Univ., Lubbock, TX (United States); Freiser, H.; Muralidharan, S. [Arizona Univ., Tucson, AZ (United States)

    1995-01-01

    A variety of chemical systems have been developed to separate trivalent actinides from lanthanides based on the slightly stronger complexation of the trivalent actinides with ligands that contain soft donor atoms. The greater stability of the actinide complexes in these systems has often been attributed to a slightly greater covalent bonding component for the actinide ions relative to the lanthanide ions. The authors have investigated several synergistic extraction systems that use ligands with a combination of oxygen and sulfur donor atoms that achieve a good group separation of the trivalent actinides and lanthanides. For example, the combination of dicyclohexyldithiophosphinic acid and tributylphosphate has shown separation factors of up to 800 for americium over europium in a single extraction stage. Such systems could find application in advanced partitioning schemes for nuclear waste.

  18. Mass and Reliability System (MaRS)

    Science.gov (United States)

    Barnes, Sarah

    2016-01-01

    The Safety and Mission Assurance (S&MA) Directorate is responsible for mitigating risk, providing system safety, and lowering risk for space programs from ground to space. The S&MA is divided into 4 divisions: The Space Exploration Division (NC), the International Space Station Division (NE), the Safety & Test Operations Division (NS), and the Quality and Flight Equipment Division (NT). The interns, myself and Arun Aruljothi, will be working with the Risk & Reliability Analysis Branch under the NC Division's. The mission of this division is to identify, characterize, diminish, and communicate risk by implementing an efficient and effective assurance model. The team utilizes Reliability and Maintainability (R&M) and Probabilistic Risk Assessment (PRA) to ensure decisions concerning risks are informed, vehicles are safe and reliable, and program/project requirements are realistic and realized. This project pertains to the Orion mission, so it is geared toward a long duration Human Space Flight Program(s). For space missions, payload is a critical concept; balancing what hardware can be replaced by components verse by Orbital Replacement Units (ORU) or subassemblies is key. For this effort a database was created that combines mass and reliability data, called Mass and Reliability System or MaRS. The U.S. International Space Station (ISS) components are used as reference parts in the MaRS database. Using ISS components as a platform is beneficial because of the historical context and the environment similarities to a space flight mission. MaRS uses a combination of systems: International Space Station PART for failure data, Vehicle Master Database (VMDB) for ORU & components, Maintenance & Analysis Data Set (MADS) for operation hours and other pertinent data, & Hardware History Retrieval System (HHRS) for unit weights. MaRS is populated using a Visual Basic Application. Once populated, the excel spreadsheet is comprised of information on ISS components including

  19. The Recycling Solution: How I Increased Recycling on Dilworth Road

    Science.gov (United States)

    Keller, J. Jacob

    2010-01-01

    The grandson of Fred Keller, one of the founders of behavior analysis, Jacob was 10 years old when he conducted the project for his elementary school science fair. We recently contacted Jacob to learn more about his project. He told us the inspiration came from a class field trip to the county recycling center, which included seeing video footage…

  20. Measurement of standard potentials of actinides (U,Np,Pu,Am) in LiCl-KCl eutectic salt and separation of actinides from rare earths by electrorefining

    International Nuclear Information System (INIS)

    Pyrochemical separation of actinides from rare earths in LiCl-KCl eutectic-liquid metal systems has been studied. The electromotive forces of galvanic cells of the form, Ag vertical stroke Ag(I), LiCl-KCl parallel actinide(III), LiCl-KCl vertical stroke actinide, were measured and standard potentials were determined for uranium, neptunium and plutonium to be -1.283 V, -1.484 V and -1.593 V (at 450 C vs. Ag/AgCl (1wt%-AgCl)), respectively. A typical cyclic voltammogram of americium chloride has two cathodic peaks, which suggests reduction Am(III)→Am(II) occurs followed by reduction of Am(II) to americium metal. Standard potential of Am(II)/Am(0) was estimated to be -1.642 V. Electrorefining experiments to separate actinides (U, Np, Pu and Am) from rare earths (Y, La, Ce, Nd and Gd) in LiCl-KCl eutectic salt were carried out. It was shown that the actinide metals were recovered on the cathodes and that americium was the most difficult to separate from rare earths. The actinide separation will be achieved by means of the combination of electrorefining with multistage extraction. (orig.)