WorldWideScience

Sample records for actinide burning experiment

  1. The EBR-II X501 Minor Actinide Burning Experiment

    Energy Technology Data Exchange (ETDEWEB)

    W. J. Carmack; M. K. Meyer; S. L. Hayes; H. Tsai

    2008-01-01

    The X501 experiment was conducted in EBR II as part of the Integral Fast Reactor program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few MA bearing fuel irradiation tests conducted worldwide, and knowledge can be gained by understanding the changes in fuel behavior due to addition of MAs. Of primary interest are the effect of the MAs on fuel cladding chemical interaction and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995–1996 and, currently, represents a set of observations rather than a complete understanding of fuel behavior. This report provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

  2. The ALMR actinide burning system

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, J.E. (General Electric Co., San Jose, CA (United States))

    1993-01-01

    The advanced liquid-metal reactor (ALMR) actinide burning system is being developed under the sponsorship of the US Department of Energy to bring its unique capabilities to fruition for deployment in the early 21st century. The system consists of four major parts: the reactor plant, the metal fuel and its recycle, the processing of light water reactor (LWR) spent fuel to extract the actinides, and the development of a residual waste package. This paper addresses the status and outlook for each of these four major elements. The ALMR is being developed by an industrial group under the leadership of General Electric (GE) in a cost-sharing arrangement with the US Department of Energy. This effort is nearing completion of the advanced conceptual design phase and will enter the preliminary design phase in 1994. The innovative modular reactor design stresses simplicity, economics, reliability, and availability. The design has evolved from GE's PRISM design initiative and has progressed to the final stages of a prelicensing review by the US Nuclear Regulatory Commission (NRC); a safety evaluation report is expected by the end of 1993. All the major issues identified during this review process have been technically resolved. The next design phases will focus on implementation of the basic safety philosophy of passive shutdown to a safe, stable condition, even without scram, and passive decay heat removal. Economic projections to date show that it will be competitive with non- nuclear and advanced LWR nuclear alternatives.

  3. Burning minor actinides in a HTR energy spectrum and effects on the final radiotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Christoph, E-mail: christoph.pohl@de.tuv.com [Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Allelein, Hans-Josef [Forschungszentrum Juelich GmbH, 52425 Juelich (Germany)

    2012-10-15

    The production of nuclear energy with existing nuclear reactors is equivalent to the use of low enriched uranium. But the neutron capture of the large corresponding U-238 fuel fraction also generates a build-up of plutonium isotopes and minor actinides as Neptunium, Americium and Curium. These actinides are dominant for the long time assessment of final disposal therefore a minimization of the long living isotopes is aspired. Burning the actinides in a high temperature helium cooled graphite moderated reactor (HTR) is one of these options. Using plutonium isotopes to sustain the criticality of the system is intended to avoid highly enriched uranium because of international regulations and low enriched uranium because of the build up of new actinides from neutron capture in U-238. Also fractions of plutonium isotopes are build up to minor actinides but for this absorption the overall number of actinides keeps constant. Nevertheless for the final assessment the activity and toxicity of all important actinides have to be taken into account. This paper comprises calculations for plutonium/minor actinides/thorium fuel compositions, their correlated final burn-up and the long term activity and toxicity for a generic pebble bed HTR based on the reference design of the 400 MW PBMR. In particular the behaviour of the different minor actinide isotopes in the higher thermal energy spectrum of a HTR will be discussed. Thorium based fuel - as a promising alternative to uranium based fuel - offers several advantages as a minimized build up of new Pu and MA, a higher thermal conductivity and melting point. Combining the thorium fuel with a significant fraction of minor actinides and an isotope fraction consistent with burned LWR fuel the total amount of the minor actinides stays nearly unchanged while the isotope composition significantly changes. This behaviour with respect to the initial heavy metal load and the influence on the long term activity and toxicity will be discussed.

  4. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  5. The uncertainty analysis of a liquid metal reactor for burning minor actinides from light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)

  6. Design of an Actinide Burning, Lead-Bismuth Cooled Reactor That Produces Low Cost Electricity

    Energy Technology Data Exchange (ETDEWEB)

    C. Davis; S. Herring; P. MacDonald; K. McCarthy; V. Shah; K. Weaver (INEEL); J. Buongiorno; R. Ballinger; K. Doyoung; M. Driscoll; P. Hejzler; M. Kazimi; N. Todreas (MIT)

    1999-07-01

    The purpose of this project is to investigate the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. The choice of lead-bismuth for the reactor coolant is an actinide burning fast reactor offers enhanced safety and reliability. The advantages of lead-bismuth over sodium as a coolant are related to the following material characteristics: chemical inertness with air and water; higher atomic number; lower vapor pressure at operating temperatures; and higher boiling temperature. Given the status of the field, it was agreed that the focus of this investigation in the first two years will be on the assessment of approaches to optimize core and plant arrangements in order to provide maximum safety and economic potential in this type of reactor.

  7. Monte Carlo Modeling of Minor Actinide Burning in Fissile Spallation Targets

    Science.gov (United States)

    Malyshkin, Yury; Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2014-06-01

    Minor actinides (MA) present a harmful part of spent nuclear fuel due to their long half-lives and high radio-toxicity. Neutrons produced in spallation targets of Accelerator Driven Systems (ADS) can be used to transmute and burn MA. Non-fissile targets are commonly considered in ADS design. However, additional neutrons from fission reactions can be used in targets made of fissile materials. We developed a Geant4-based code MCADS (Monte Carlo model for Accelerator Driven Systems) for simulating neutron production and transport in different spallation targets. MCADS is suitable for calculating spatial distributions of neutron flux and energy deposition, neutron multiplication factors and other characteristics of produced neutrons and residual nuclei. Several modifications of the Geant4 source code described in this work were made in order to simulate targets containing MA. Results of MCADS simulations are reported for several cylindrical targets made of U+Am, Am or Am2O3 including more complicated design options with a neutron booster and a reflector. Estimations of Am burning rates are given for the considered cases.

  8. Multi-nucleon transfer experiments in the actinide region

    Energy Technology Data Exchange (ETDEWEB)

    Geibel, Kerstin; Reiter, Peter; Birkenbach, Benedikt [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Valiente-Dobon, Jose Javier; Recchia, Francesco [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (Italy); Gadea, Andres [IFIC, CSIC-Universidad de Valencia (Spain); Lenzi, Silvia [Dipartimento di Fisica, University of Padova (Italy)

    2012-07-01

    Two experiments at the PRISMA-CLARA-Setup at the LNL in Legnaro were analysed focussing on the target-like reaction products in the actinide region after multi-nucleon transfer reactions. Both experiments use {sup 238}U as target; a {sup 70}Zn-beam with 460 MeV and a {sup 136}Xe-beam with 926 MeV were employed. Kinematic correlations between the reaction partners are used to obtain information about the unobserved target-like reaction products by the analysis of the beam-like particles identified with the PRISMA-spectrometer. Clean {gamma}-spectra from neutron-rich actinide nuclei are obtained with the CLARA-array. An extension of the ground state rotational band in {sup 240}U and insights in neutron-rich Th-isotopes were achieved. Based on relative cross section distributions for various reaction channels the perspectives and limitations for in-beam {gamma}-spectroscopy with this experimental method in this mass region are discussed.

  9. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  10. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    Energy Technology Data Exchange (ETDEWEB)

    Barkauskas, V., E-mail: vytenis.barkauskas@ftmc.lt; Plukiene, R., E-mail: rita.plukiene@ftmc.lt; Plukis, A., E-mail: arturas.plukis@ftmc.lt

    2016-10-15

    Highlights: • RBMK-1500 fuel burn-up impact on k{sub eff} in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k{sub eff} in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k{sub eff}) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality

  11. Effect of spectral characterization of gaseous fuel reactors on transmutation and burning of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fung, C.; Anghaie, S. [Florida Univ., Wilmington, NC (United States)

    2007-07-01

    Gaseous Core Reactors (GCR) are fueled with stable uranium compounds in a reflected cavity. The spectral characteristics of neutrons in GCR systems could shift from one end of the spectrum to the other end by changing design parameters such as reflector material and thickness, uranium enrichment, and the average operational temperature and pressure. The rate of actinide generation, transmutation, and burnup is highly influenced by the average neutron energy in reactor core. In particular, the production rate and isotopic mix of plutonium are highly dependent on the neutron spectrum in the reactor. Other actinides of primary interest to this work are neptunium-237 and americium-241 due to their pivotal impact on high-level nuclear waste disposal. In all cavity reactors including GCR's, the reflector material and thickness are the most important design parameters in determining the core spectrum. The increase in the gaseous fuel pressure and enrichment results in relative shift of neutron population toward energies greater than 2 eV. Reflector materials considered in this study are beryllium oxide, lithium hydride, lithium deuteride, zirconium carbide, graphite, lead, and tungsten. Results of the study suggest that the beryllium oxide and tungsten reflected GCR systems set the lower (softest) and upper (hardest) limits of neutron spectra, respectively. The inventory of actinides with half-lives greater than 1000 years can be minimized by increasing neutron flux level in the reactor core. The higher the neutron flux, the lower the inventory of these actinides. The majority of the GCR designs maintained a flux level on the order of 10{sup 15} cm{sup -2}*s{sup -1} while the PWR flux is one order of magnitude lower. The inventory of the feeder isotopes to Np{sup 237} including U{sup 237}, Pu{sup 241}, and Am{sup 241} decreases with relative shift of neutron spectrum toward higher energies. This is due to increased resonance absorption in these isotopes due to higher

  12. Design of an Actinide-Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low-Cost Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Weaver, Kevan Dean; Davis, Cliff Bybee; MIT folks

    2000-07-01

    The purpose of this Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) University Research Consortium (URC) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, material compatibility, plant engineering, and coolant activation. In the area of core neutronic design, the reactivity vs. burnup and discharge isotopics of both non-fertile and fertile fuels were evaluated. An innovative core for pure actinide burning that uses streaming, fertile-free fuel assemblies was studied in depth. This particular core exhibits excellent reactivity performance upon coolant voiding, even for voids that occur in the core center, and has a transuranic (TRU) destruction rate that is comparable to the proposed accelerator transmutation of waste (ATW) facility. These studies suggest that a core can be designed to achieve a long life while maintaining safety and minimizing waste. In the area of material compatibility studies, an experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials has been designed and built at the INEEL. The INEEL forced-convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The corrosion cell is being used to test steel that is commercially available in the United States to temperatures above 650°C. Progress in plant engineering was made for two reactor concepts, one utilizing an indirect cycle with heat exchangers and the other utilizing a direct-contact steam cycle. The evaluation of the

  13. Parents’ experience confronting child burning situation

    Directory of Open Access Journals (Sweden)

    Valdira Vieira de Oliveira

    2015-05-01

    Full Text Available Objective: to understand experiences of parents in a child burning situation during the hospitalization process. Methods: phenomenological research in view of Martin Heidegger, held with seven assisting parents at a pediatrics unit of a general hospital in Montes Claros. The information was obtained by phenomenological interview, containing the question guide: “What does it mean to you being with a son who is suffering with burns?”. Results: during the experience, parents revealed anguish, fear, helplessness, concerns and expectations of “being-in-the-world”. Conclusion: respect, understanding and care from the health team were fundamental for the adaptation and the confrontation demanded by the consequent suffering of the event.

  14. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    Energy Technology Data Exchange (ETDEWEB)

    G. Youinou; G. Palmiotti; M. Salvatorre; G. Imel; R. Pardo; F. Kondev; M. Paul

    2010-01-01

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL’s Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A < 100, there has been recent progress in extending AMS to heavier isotopes – even to A > 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  15. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  16. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  17. Burn patients' experience of pain management: a qualitative study.

    Science.gov (United States)

    Yuxiang, Li; Lingjun, Zhou; Lu, Tang; Mengjie, Liu; Xing, Ming; Fengping, Shen; Jing, Cui; Xianli, Meng; Jijun, Zhao

    2012-03-01

    Pain is a major problem after burns and researchers continue to report that pain from burns remains undertreated. The inadequate pain control results in adverse sequalae physically and psychologically in the burn victims. A better understanding of a burn patient's experience is important in identifying the factors responsible for undertreated pain and establishing effective pain management guidelines or recommendation in the practice of pain relief for burn injuries. This study sought to explore and describe the experience that patients have about pain related to burn-injury during hospitalization. Semi-structured interviews were conducted on eight patients with moderate to severe pain from burn injuries recruited from a Burn Centre in Northwest China. Data was collected by in-depth interviews and qualitative description after full transcription of each interview. Analysis involved the identification of themes and the development of a taxonomy of patients' experience of burn pain and its management. Three themes were indentified: (1) patients' experience of pain control, (2) patients' perception on burn pain management, and (3) patients' expectation of burn pain management. Findings from this study suggested that patients experience uncontrolled pain both physically and psychologically which may serve as an alert for awareness of health professionals to recognize and establish a multidisciplinary pain management team for burn victims, including surgeons, critical care specialists, anesthesiologists, nurses, psychologists, and social workers to accomplish safe and effective strategies for pain control to reach an optimal level of pain management in burn patients. It also provides insights and suggestions for future research directions to address this significant clinical problem.

  18. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Directory of Open Access Journals (Sweden)

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  19. Actinides-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  20. Nurses' emotional experience of caring for children with burns.

    LENUS (Irish Health Repository)

    Hilliard, Carol

    2012-02-01

    AIMS AND OBJECTIVES: The aim of this phenomenological study was to explore the emotions experienced by children\\'s nurses when caring for children with burns, in addition to ascertaining how the nurses dealt with these emotions. BACKGROUND: The nature of nursing practice is such that it inevitably generates some form of emotional response in nurses. The literature reveals that the manner nurses deal with their emotional experiences can impact on their nursing care. DESIGN: The study used Husserlian phenomenology to explore the emotional experiences of eight purposively selected children\\'s nurses who have worked on the burns unit of an Irish paediatric hospital. METHODS: Data were collected using in-depth, unstructured interviews and analysed using Colaizzi\\'s seven stage framework. RESULTS: The phenomenon of participants\\' emotional experiences is captured in four themes: (1) caring for children with burns, (2) supporting parents, (3) sustaining nurses\\' emotional well-being, and (4) learning to be a burns nurse. Nursing children with burns generated a myriad of emotions for participants. Burns dressing-changes, managing burn-related pain, supporting parents and the impact of busy workloads on the emotional care of children and their parents emerged as the most emotionally challenging aspects of participants\\' role. Participants recognised the need to manage their emotional responses and spoke of the benefits of a supportive nursing team. CONCLUSIONS: The findings offer insights into both the rewarding and challenging aspects of nursing children with burns. Nurses in this environment must be supported to recognise and manage their emotional responses to their work. RELEVANCE TO CLINICAL PRACTICE: Helping nurses to manage the emotional consequences of their work will help to sustain their emotional well-being, enhance the care received by children and also enable nurses to support parents in their role as partners in care.

  1. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  2. Burns

    Science.gov (United States)

    A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight, or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...

  3. Experience of nursing staff facing the hospitalization of burned children

    Directory of Open Access Journals (Sweden)

    Nataly Tsumura Inocencio Soares

    2014-04-01

    Full Text Available Objective. To present the experiences of nursing staff working with hospitalized burned children. Methodology. Qualitative study. Data were obtained from semi-structured interviews applied to 16 people of the nursing team (12 professional technicians and 4 working at a burn treatment center. For the analysis, the Method information Interpretation of the Senses was used. The theoretical basis used to support the discussion of the study was proposed by Geertz's interpretive anthropology. Results. The narratives showed that the process of care to burned children is stressful for the participants because they are psychologically involved with the tragic story of a patient who suffered burns, and therefore with the clinical situation. This allows for the development of empathy. On the other hand there cultural involvement facing and accepting the consequences of what happened to the patient, due to the change of body image stigma that the child will suffer hamper the re-socialization of the child after discharge. Conclusion. The nursing team is affected in various ways during the care of hospitalized burned children. There is need for educational programs for their preparation in the care of these patients.

  4. Experience of nursing staff facing the hospitalization of burned children.

    Science.gov (United States)

    Inocencio Soares, Nataly Tsumura; Grubisich Mendes Tacla, Mauren Teresa

    2014-01-01

    To present the experiences of nursing staff working with hospitalized burned children. Qualitative study. Data were obtained from semi-structured interviews applied to 16 people of the nursing team (12 professional technicians and 4) working at a burn treatment center. For the analysis, the Method information Interpretation of the Senses was used. The theoretical basis used to support the discussion of the study was proposed by Geertz's interpretive anthropology. The narratives showed that the process of care to burned children is stressful for the participants because they are psychologically involved with the tragic story of a patient who suffered burns, and therefore with the clinical situation. This allows for the development of empathy. On the other hand there cultural involvement facing and accepting the consequences of what happened to the patient, due to the change of body image stigma that the child will suffer hamper the re-socialization of the child after discharge. The nursing team is affected in various ways during the care of hospitalized burned children. There is need for educational programs for their preparation in the care of these patients.

  5. Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.

    Science.gov (United States)

    Chang, G S; Ambrosek, R G

    2005-01-01

    The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.

  6. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Lesher, S R; Scielzo, N D; Thompson, I J; Younes, W

    2009-10-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,{gamma}) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  7. Advances in fuel materials for the transmutation of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Prunier, C.

    1994-12-31

    The physical feasibility of actinides, spent fuels and fission products burning in fission reactors is well understood. In fast reactors, this operation is more favourable. The homogeneous recycling mode has had a preliminary validation in Phenix (the Super fact experiment). For the heterogenous recycling mode, past experience for {sup 238} Pu production in thermal spectrum was obtained with Np O{sub 2}-Mg O targets. An irradiation experiment in Phenix blanket is foreseen with the same type of target. The {sup 237} Np problem seems to be most conveniently treated, even in the short term, by homogeneous recycling with Pu in fast reactors. (author). 15 figs., 4 tabs.

  8. Burns

    Science.gov (United States)

    To help prevent burns: Install smoke alarms in your home. Check and change batteries regularly. Teach children about fire safety and the danger of matches and fireworks. Keep children from climbing on top of a stove ...

  9. Moessbauer spectroscopy with actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Potzel, W.; Moser, J.; Asch, L.; Kalvius, G.M. (Technische Univ. Muenchen, Garching (Germany, F.R.)

    1983-01-01

    Although formally equivalent to the lanthanide (4f) elements, the light actinides show a much more varied behaviour due to the larger spatial extent and ionizability of the 5f electrons. The application of Moessbauer spectroscopy for the determination of electronic properties of the actinides is outlined. Emphasis is put on high pressure Moessbauer experiments using the 60 keV transition in /sup 237/Np to study questions of delocalization of 5f electrons.

  10. Managing burn patients in a fire disaster: Experience from a burn unit in Bangladesh.

    Science.gov (United States)

    Mashreky, S R; Bari, S; Sen, S L; Rahman, A; Khan, T F; Rahman, F

    2010-09-01

    Although burn disaster is not a frequent event, with urbanisation and industrialisation, burn disaster is becoming an emerging problem in Bangladesh. On 3 June 2010, a fire disaster killed 124 people in Neemtali, Dhaka, Bangladesh. This paper narrates the management of burn patients of this disaster in the burn unit of Dhaka Medical College Hospital. The burn unit managed 192 burn victims of the disaster. Forty-two victims were admitted and 150 of them received primary care at the emergency room and were sent back home. Ten patients among 42 in-patients died. The in-patient mortality was 23.8%. Burn unit in Dhaka Medical College Hospital is the only burn management centre in Bangladesh. Proper planning and coordinated effort by all sectors and persons concerned were the key elements in this successful management.

  11. Managing burn patients in a fire disaster: Experience from a burn unit in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mashreky S

    2010-10-01

    Full Text Available Although burn disaster is not a frequent event, with urbanisation and industrialisation, burn disaster is becoming an emerging problem in Bangladesh. On 3 June 2010, a fire disaster killed 124 people in Neemtali, Dhaka, Bangladesh. This paper narrates the management of burn patients of this disaster in the burn unit of Dhaka Medical College Hospital. The burn unit managed 192 burn victims of the disaster. Forty-two victims were admitted and 150 of them received primary care at the emergency room and were sent back home. Ten patients among 42 in-patients died. The in-patient mortality was 23.8%. Burn unit in Dhaka Medical College Hospital is the only burn management centre in Bangladesh. Proper planning and coordinated effort by all sectors and persons concerned were the key elements in this successful management.

  12. Confinement projections for the Burning Plasma Experiment (BPX)

    Energy Technology Data Exchange (ETDEWEB)

    Goldston, R.J.; Bateman, G.; Kaye, S.M.; Perkins, F.W.; Pomphrey, N.; Stotler, D.P.; Zarnstorff, M.C. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Houlberg, W.A.; Neilson, G.H. (Oak Ridge National Lab., TN (USA)); Porkolab, M. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Reidel, K.S. (New York Univ., NY (USA)); Stambaugh, R.D.; Waltz, R.E. (General Atomics, San Diego, CA (USA))

    1991-01-01

    The mission of the Burning Plasma Experiment (BPX, formerly CIT) is to study the physics of self-heated fusion plasmas (Q = 5 to ignition), and to demonstrate the production of substantial amounts of fusion power (P{sub fus} = 100 to 500 MW). Confinement projections for BPX have been made on the basis of (1) dimensional extrapolation (2) theory-based modeling calibrated to experiment, and (3) statistical scaling from the available empirical data base. The results of all three approaches, discussed in this paper, roughly coincide. We presently view the third approach, statistical scaling, as the most reliable means for projecting the confinement performance of BPX, and especially for assessing the uncertainty in the projection. 11 refs., 2 figs., 1 tab.

  13. Early Sequential Excision of Chemical Burns - our Experience in Riyadh Burns Unit

    OpenAIRE

    Bhat, F.A.

    2006-01-01

    This paper reports on the treatment of chemical burns in a burns unit in Saudi Arabia in the 10-yr period 1993 to 2003. In 1993, in line with new approaches, the protocol for treating deep chemical burns in the first 48 h was modified to employ sequential excision followed by a second-look approach after 24 h, at which stage autografts/homografts were effected, depending upon the extent of the burn and having ascertained that the wound was bleeding and that there was no necrotic tissue. Resul...

  14. High pressure droplet burning experiments in reduced gravity

    Science.gov (United States)

    Chauveau, Christian; Goekalp, Iskender

    1995-01-01

    A parametric investigation of single droplet gasification regimes is helpful in providing the necessary physical ideas for sub-grid models used in spray combustion numerical prediction codes. A research program has been initiated at the LCSR to explore the vaporization regimes of single and interacting hydrocarbon and liquid oxygen droplets under high pressure conditions. This paper summarizes the status of the LCSR program on the high pressure burning of single fuel droplets; recent results obtained under normal and reduced gravity conditions with suspended droplets are presented. In the work described here, parabolic flights of the CNES Caravelle is used to create a reduced gravity environment of the order of 10(exp -2) g(sub O). For all the droplet burning experiments reported here, the suspended droplet initial diameters are scattered around 1.5 mm; and the ambient air temperature is 300 K. The ambient pressure is varied between 0.1 MPa and 12 MPa. Four fuels are investigated: methanol (Pc = 7.9 MPa), n-heptane (Pc = 2.74 MPa), n-hexane (Pc = 3.01 MPa) and n-octane (Pc = 2.48 MPa).

  15. Epidemiology and outcome of burns: early experience at the country's first national burns centre.

    Science.gov (United States)

    Iqbal, Tariq; Saaiq, Muhammad; Ali, Zahid

    2013-03-01

    This study aims to document the epidemiologic pattern and outcome of burn injuries in the country's first national burn centre. This case series study was conducted over a 2-year period at Burns Care Centre (BCC), Pakistan Institute of Medical Sciences (PIMS), Islamabad. The study included all burn injury patients who primarily presented to and were managed at the centre. Those patients who presented more than 24 h after injury or those who were initially managed at some other hospital were excluded from the study. Initial assessment and diagnosis was made by thorough history, physical examination and necessary investigations. Patients with major burns, high voltage electric burns and those needing any surgical interventions were admitted for indoor management. Patients with minor burns were discharged home after necessary emergency management, home medication and follow-up advice. The sociodemographic profile of the patients, site of sustaining burn injury, type and extent (total body surface area (TBSA), skin thickness involved and associated inhalational injury) of burn and outcome in terms of survival or mortality, etc., were all recorded on a proforma. The data were subjected to statistical analysis. Out of a total of 13,295 patients, there were 7503 (56.43%) males and 5792 (43.56%) females. The mean age for adults was 33.63±10.76 years and for children it was 6.71±3.47 years. The household environment constituted the commonest site of burns (68%). Among all age groups and both genders, scalds were the commonest burns (42.48%), followed by flame burns (39%) and electrical burns (9.96%). The affected mean TBSA was 10.64±11.45% overall, while for the hospitalised subset of patients the mean TBSA was 38.04±15.18%. Most of the burns were partial thickness (67%). Inhalation injury was found among 149 (1.12%) patients. Most of the burns were non-intentional and only 96 (0.72%) were intentional. A total of 1405 patients (10.58%) were admitted while the remainder

  16. CLINICAL STUDY OF ELECTRICAL BURNS AMONG ALL BURNS CASES- 3 YEARS’ EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Nagabathula Durga Prasad

    2017-08-01

    Full Text Available BACKGROUND With the advances in technology, electrical injuries are becoming more common and are the leading cause of work-related traumatic death. One third of all electrical traumas and most high-voltage injuries are job related and more than 50% of these injuries result from power line contact. The management of the major burn injury represents a significant challenge to every member of the burns team. Most of electrical burns present with gangrene of toes and limbs with eschar over body parts. Their presentation is mostly due to contact with high-voltage electricity at their work places. MATERIALS AND METHODS A retrospective study was made to study the clinico-social profile of patients suffering electric burns admitted into Department of General Surgery. RESULTS 92 cases were evaluated and studied. Majority of patients developed gangrene of limbs and toes. Amputations and skin grafting was done. Most patients who suffered electric burns were males of age group 21 to 40 years. All cases are accidental and mostly occurred at work places. Most electric burns are high-voltage based and caused deep burns. Major complications like acute renal failure and septicaemia were encountered. Most of them suffered 16 to 30% burns. Most commonly isolated organism from wounds is pseudomonas. Most of them suffered a hospital stay of 1 to 2 months. CONCLUSION Electric burns are a burden to the society. Prevention is the best way to deal with them. Electricity-based employees have to be trained properly regarding safety measures to be taken. General education of public regarding safety measures can prevent electrical burn injuries.

  17. Current applications of actinide-only burn-up credit within the Cogema group and R and D programme to take fission products into account

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H. [Cogema, 78 - Saint Quentin en Yvelines (France); Guillou, E. [Cogema Etablissement de la Hague, D/SQ/SMT, 50 - Beaumont Hague (France); Cousinou, P. [CEA Fontenay aux Roses, Inst. de Protection et de Surete Nucleaire, 92 (France); Barbry, F. [CEA Valduc, Inst. de Protection et de Surete Nucleaire, 21 - Is sur Tille (France); Grouiller, J.P.; Bignan, G. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis.

  18. AGING OF DIESEL AND WOOD BURNING SOOT IN SMOGCHAMBER EXPERIMENTS

    Science.gov (United States)

    Prevot, A. S.; Chirico, R.; Heringa, M.; Decarlo, P. F.; Tritscher, T.; Laborde, M.; Gysel, M.; Weingartner, E.; Elsässer, M.; Schnelle-Kreis, J.; Zimmermann, R.; Aiken, A. C.; Sierau, B.; Filep, A.; Ajtaj, T.; Bozoki, Z.; Baltensperger, U.

    2009-12-01

    Photochemical aging experiments were performed for emissions of a diesel passenger car and logwood-burner at the smogchamber at the Paul Scherrer Institute in Switzerland. The measurements include black carbon measurements (with Aethalometer, Multi-Angle Absorption Photometer, Single Particle Soot Photometer (SP-2), and Photoacoustic Spectrometer), organic mass measurements with the Aerodyne high-resolution Aerosol mass spectrometer and off-line GC-MS measurements. Single particle composition was measured with the TSI-Aerosol time-of-flight mass spectrometer. The size distribution is characterized with a scanning mobility particle sizer, and the hygroscopicity with a hygroscopicity tandem differential mobility analyzer. The given overview of the results of experiments during the last 1.5 years will include the discussion of the formation secondary organic aerosol, the oxidation of primary organic aerosols and the change of optical and hygroscopic properties. A considerable variability of most results are found for different load experiments with the diesel car and for different burning conditions of the log-wood burner which will be discussed in detail.

  19. Burns in Turkish children and adolescents: nine years of experience.

    Science.gov (United States)

    Sakallioğlu, A E; Başaran, O; Tarim, A; Türk, E; Kut, A; Haberal, M

    2007-02-01

    The aim of this study was to describe information about burns that occur in children and adolescents in Turkey. The subjects were 362 patients whom were younger than 18 years who were treated at 3 burn centers in 2 different regions of Turkey between 1997 and 2005. The data collected for each case were age, gender, place of residence, cause and extent of burn, body sites affected, environment in which the injury occurred, interval from injury to arrival at a burn center, hospitalization status (inpatient versus outpatient), surgical treatment, and mortality. The 362 patients comprised 35.5% of all 1021 burn victims admitted during the study period. There were 183 boys and 179 girls (ratio 1:0.98) and the mean total body surface area burned was 17.7+/-16.5%. The highest proportion of patients were in the 1-6 years age group. Non-bath (not immersed) hot water scalding (216 cases, 59.7%) was the leading burn cause. The most common environment in which burn injury occurred was the home. The trunk was the body site most frequently affected (62.7%). 241 (66.6%) subjects lived in urban environments and 121 (33.4%) lived in rural areas. 171 patients (47.2%) were taken directly to the burn units, whereas the others (52.8%) were referred from other medical centers. 124 (34.3%) subjects were treated as outpatients and 238 (65.7%) were hospitalized. The overall mortality rate was 8.6% (31 deaths). Of the 238 inpatients, 92 (38.7%) were treated with daily dressings only, 128 (53.8%) required debridement, and 75 (31.5%) needed both debridement and grafting. Every country needs a nationwide public education system that is aimed at preventing burns and ensuring that burn victims receive proper first aid and age-appropriate, specialized burn care.

  20. Alpha Heating and TN Burn in NIF Experiments

    Science.gov (United States)

    Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Merrill, Frank; Cerjan, Charlie; Batha, Steven

    2015-11-01

    Sustainable TN burn requires alpha-particle energy deposition in the hot fuel. Recently, we developed an analytic model to estimate the neutron yield generated by the alpha-particle energy deposited in the hot spot, in terms of the measured total neutron yield, the adiabat of the cold fuel and the peak implosion kinetic energy of the pusher. Our alpha heating model has been applied to a number of inertial confinement fusion capsule experiments performed at the National Ignition Facility (NIF). Our model predictions are consistent with the post-shot calibrated code simulations and experimental data. We have also studied the uncertainty and sensitivities of alpha heating on various physics parameters, such as the adiabat of cold fuel, total neutron yield and peak implosion velocity. Our analysis demonstrates that the alpha particle heating was appreciable in only high-foot experiments. Based on our work, we will discuss paths and parameters to reach ignition at NIF (LA-UR-15-25507). This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  1. Aging of Diesel and Wood Burning Emissions in Smogchamber Experiments

    Science.gov (United States)

    Prevot, Andre S. H.

    2010-05-01

    Photochemical aging experiments were performed for emissions of a diesel passenger car and logwood-burner at the smogchamber at the Paul Scherrer Institute in Switzerland. The measurements include black carbon measurements (with Aethalometer, Multi-Angle Absorption Photometer, Single Particle Soot Photometer (SP-2), and Photoacoustic Spectrometer), organic mass measurements with the Aerodyne high-resolution Aerosol mass spectrometer and off-line GC-MS measurements. Single particle composition was measured with the TSI-Aerosol time-of-flight mass spectrometer. The size distribution is characterized with a scanning mobility particle sizer, and the hygroscopicity with a hygroscopicity tandem differential mobility analyzer. The given overview of the results of experiments during the last 1.5 years will focus on the formation secondary organic aerosol and include the oxidation of primary organic aerosols and the change of optical and hygroscopic properties. A considerable variability of most results is found for different after treatment systems of diesel cars and for different burning conditions of the log-wood burner which will be discussed in detail.

  2. 33rd Actinide Separations Conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  3. Clinical Experience with Chitosan Matrix and Cultured Fibroblasts for Burns

    Directory of Open Access Journals (Sweden)

    Gaziza Danlybayeva

    2014-12-01

    Full Text Available Introduction. Burns are an important public health challenge due to the frequency of getting burns in day-to-day life, occupational hazards, and catastrophes. Treatment of burns is complex and is associated with high morbidity and mortality. Duration and complexity of burn treatment require finding new ways of curing and rehabilitating burns. The result of burn treatment plays a significant role in post-traumatic status of a patient and his or her consequent adaptation in society. Chitosan is a natural safe non-toxic product compatible with human tissues, characterized by hydrosorbid, anticoagulant, antibacterial, and wound healing features. The study aims to  show a clinical application of chitosan-pectin scaffold with cultured human skin fibroblasts in the treatment of deep burns.Methods. The substrate was prepared by dissolving 3% chitosan in 0.5N acetic acid, which was then mixed with 3% solution of pectin dissolved in distillated water. Chitosan film was formed in a Petri dish for 20-24 hours at 20-25 °C. After drying the film, cultured allogeneic fibroblasts (patent number RK-25091 were seeded on its surface.Results. The results from an in vitro culture study showed that human allogeneic fibroblasts could adhere well and grow on the selected scaffold with a typical morphology. During autodermoplasty surgery, cultured allogeneic fibroblasts were applied on granulating wounds of 9 patients with IIIA to IVB degree burns and limited donor resources. Wounds treated with the fibroblast-seeded scaffold among all patients provided the highest level of re-epithelialization (day 5, in comparison to cell-free scaffold (day 7 and untreated surface of wounds (day 10.Conclusion. Our results indicate the potential use of chitosan for wound healing due to its allogenic fibroblast adherence to scaffolding as well as high epithelization. This warrants further studies on chitosan for use in wounds resulting from third and fourth degree burns.

  4. Coherent diagnostics of burned skin: experiments with phantoms

    Science.gov (United States)

    Bednov, Andrey A.; Cheng, Cecil; Ulyanov, Sergey S.; Yodh, Arjun G.

    2000-04-01

    Modeling of skin burns has been realized in this study. Autocorrelation functions of intensity fluctuations of scattered light were measured for two-layered turbid media. The first layer served as a model of motionless scatterers whereas the second one simulated dynamic light scattering. This medium was used as a model of skin burns. A theory related quasi-elastic light scattering measurements to cutaneous blood flow was used. The dependencies of statistical properties of Doppler signal on the properties of skin burns as well as on the velocity of cutaneous blood flow has ben investigated. Predictions were verified by measurements both of dynamic and stationary light scattering in model media. Experimental results might be used as a basis for blood micro circulation diagnostics as well as for precise measurements of a depth of burned skin.

  5. A Burning Experiment Study of an Integral Medical Waste Incinerator

    OpenAIRE

    Xie, Rong; Lu, Jidong; Li,Jie

    2010-01-01

    Mass burning of the medical waste is becoming attr active in China because Chinese government has banned landfilling of medical waste. Many advantages can be found in this method, such as reduction in waste vol-ume, destruction of pathogens and transformation of waste into the form of ash. However, the medical waste with high moisture in China is not suitable to be trea ted in the present direct mass burning incinerators. In this paper, a novel integral incinera tor is developed with combinin...

  6. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced......The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...

  7. Research in actinide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Choppin, G.R.

    1993-01-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH[sup [minus

  8. Retrospective analysis of burn injuries caused by hot milk in 159 pediatric patients: 14 years of experience in a burn unit.

    Science.gov (United States)

    Yontar, Yalcin; Esmaoglu, Aliye; Coruh, Atilla

    2014-07-01

    The aim of this study was to investigate the hot milk burns among the pediatric patients and to compare our experiences with similar studies in the literature. A 14-year retrospective study was conducted on 159 pediatric patients with hot milk burn who hospitalized at the Burn Unit of Erciyes University Medical Faculty. There were 81 male and 78 female patients with a male to female ratio of 1.03:1. The mean age of the patients was 2.7±1.6 years. The initial injury was immersion in 59.7% of the patients and spillage in 40.3%. The mean burned body surface area of the patients was 18.6±10.8%. Twenty-two percent of the patients had moderate, and 78% had major burn trauma. Forty-nine percent of the patients received burn wound debridement and reconstruction with auto-skin grafts. Our burn unit's mortality rate was 1.5% among 542 pediatric patients with hot water, and 5.6% among 159 pediatric patients with hot milk burn during the same period, respectively. Hot milk burns should be considered as separately from other hot liquid burns which do not contain fat such as water, tea, and coffee. Physical and chemical properties of milk because of its high content of fat give rise to more tissue destruction, increased morbidity and mortality.

  9. The Actinide Transition Revisited by Gutzwiller Approximation

    Science.gov (United States)

    Xu, Wenhu; Lanata, Nicola; Yao, Yongxin; Kotliar, Gabriel

    2015-03-01

    We revisit the problem of the actinide transition using the Gutzwiller approximation (GA) in combination with the local density approximation (LDA). In particular, we compute the equilibrium volumes of the actinide series and reproduce the abrupt change of density found experimentally near plutonium as a function of the atomic number. We discuss how this behavior relates with the electron correlations in the 5 f states, the lattice structure, and the spin-orbit interaction. Our results are in good agreement with the experiments.

  10. Epidemiological Study Of Burn Cases And Their Mortality Experiences Amongst Adults From A Tertiary Level Care Centre

    Directory of Open Access Journals (Sweden)

    Kumar P

    1997-01-01

    Full Text Available Research question: How to use hospital statistics in establishing epidemiology of burns amongst adults? Objectives: To identify epidemiological determinants for Ii Various burn injuries and ii their mortality experiences. Study design: Hospital based study carried out for a period of one year (1st January 1991 to 31st December 1991. Settings: Wards of department of Burn & Plastic Surgery, BJ Medical College, Ahmedabad. Participants: 386 adults (20 years and above admitted at the centre for burn injuries during 1991. Study variables: Epidemiological determinants (age, sex, temporal, place, etc. for various burn injuries and the determinants of mortality (type of burn, extent of burn, referral time lag etc. Outcome profile: Common profile of burn victims with relation to the epidemiological factors and other factors responsible for high mortality in burn cases. Statistical analysis: Chi- square and Z tests. Results:Burns occured more in females specially in the age group of 20-24 years. Eighty five percent were flame burns. Flame burns were more in females, while electric burns were more in males. Burns were less during monsoon (27.7% than winter (32.6% and summer (39.6%, but electric burns were twice more common during monsoon. Maximum burns (81.9% were domestic, occurring mainly either in kitchen or living room. They were seen more in late evening. Sixty two percent cases were severe as total burn surface area (TBSA was >40%. Case fatality correlated positively with TBSA and death was almost universal with TBSA >60%. Early referral reduced fatality significantly in less severe burns (TBSA<40% but failed to influence it in severe burns. Appraisal of alleged suicide cases (2.6% and of stove bursting (4.4% revealed that young females carry additional risk of burn injuries.

  11. The dynamic experience of pain in burn patients: A phenomenological study.

    Science.gov (United States)

    Pérez Boluda, M T; Morales Asencio, J M; Carrera Vela, A; García Mayor, S; León Campos, A; López Leiva, I; Rengel Díaz, C; Kaknani-Uttumchandani, S

    2016-08-01

    Although pain is one of the main sources of suffering during the acute phase and rehabilitation in burn patients, it remains as a major challenge for burn care, and clinical management not always correlates with the experience felt by patients. The aim of this study was to understand the experience of pain from people who has suffered severe burns, to identify personal strategies used to cope with this challenging event. A qualitative phenomenological study with purposive sampling was carried out with severe burn patients admitted to a Burn Unit. Through individual in-depth interviews, verbatim transcription and content analysis, two main categories were isolated: a dynamic and changing experience of pain, from the onset to the hospital discharge, and diverse strategies developed by patients to cope with pain, being distraction the most frequently used. Pain experienced acquires its maximum intensity during wound care, and divergent patients' opinions about sedation are present. This study highlights how understanding subjective experiences is an invaluable aid to improve care in pain assessment and management. Furthermore, it points out the need to guarantee patient involvement in the organization and improvement of burn care, inasmuch as traditional professional centered approach is not ensuring an optimal management.

  12. Clinical Experience in Using the Water Jet in Burn Wound Debridement

    Science.gov (United States)

    Yang, J.-Y.; Hwuang, J.-Y.; Chuang, S.-S.

    2007-01-01

    Summary Water jets have been used in many areas of surgery. Recently a new surgical debridement device was launched onto the market - VersajetTM. VersajetTM is a unique hydrosurgical device that uses a precise jet of water to simultaneously hold, cut, and remove devitalized or necrotic tissue. This paper describes our experience with ten patients comparing Weck knives with the newly designed hydrosurgical device when debriding burn wounds. The patients' age ranged from 27 to 60 yr (average, 37.8 yr) and the burn wounds treated were between 3 and 7% total body surface area, involving the face, abdomen, and limbs. The hydrosurgical system is a very useful tool for irregular and complex burn wound debridement. This paper represents the first written clinical experience utilizing hydrosurgery in the burn wound management in an Eastern country. PMID:21991073

  13. Physics studies of higher actinide consumption in an LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.S.

    1990-01-01

    The core physics aspects of the transuranic burning potential of the Integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described. 4 refs., 4 figs., 3 tabs.

  14. Physics studies of higher actinide consumption in an LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.S.

    1990-01-01

    The core physics aspects of the transuranic burning potential of the Integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described. 4 refs., 4 figs., 3 tabs.

  15. PREFACE: Actinides 2009

    Science.gov (United States)

    Rao, Linfeng; Tobin, James G.; Shuh, David K.

    2010-07-01

    This volume of IOP Conference Series: Materials Science and Engineering consists of 98 papers that were presented at Actinides 2009, the 8th International Conference on Actinide Science held on 12-17 July 2009 in San Francisco, California, USA. This conference was jointly organized by Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory. The Actinides conference series started in Baden-Baden, Germany (1975) and this first conference was followed by meetings at Asilomar, CA, USA (1981), Aix-en-Provence, France (1985), Tashkent, USSR (1989), Santa Fe, NM, USA (1993), Baden-Baden, Germany (1997), Hayama, Japan (2001), and Manchester, UK (2005). The Actinides conference series provides a regular venue for the most recent research results on the chemistry, physics, and technology of the actinides and heaviest elements. Actinides 2009 provided a forum spanning a diverse range of scientific topics, including fundamental materials science, chemistry, physics, environmental science, and nuclear fuels. Of particular importance was a focus on the key roles that basic actinide chemistry and physics research play in advancing the worldwide renaissance of nuclear energy. Editors Linfeng Rao Lawrence Berkeley National Laboratory (lrao@lbl.gov) James G Tobin Lawrence Livermore National Laboratory (tobin1@llnl.gov) David K Shuh Lawrence Berkeley National Laboratory (dkshuh@lbl.gov)

  16. Chemistry of actinides; Chimie des actinides

    Energy Technology Data Exchange (ETDEWEB)

    Vitorge, P. [CEA/Saclay, Dept. d' Entreposage et de Stockage des Dechets (DESD), 91 - Gif-sur-Yvette (France)

    1999-07-01

    This article gives the basic data of the actinides chemistry, describes then qualitatively the main parts of the fuel cycle and concludes with quantitative data. The theoretical recalls give qualitative notions to explain the chemical reactivity of actinides and to understand thus the values of the thermodynamic data which allow quantitative anticipations at equilibrium. The Thermodynamic Data Base (TDB) of the NEA-OECD and the CEA in France have recently estimated some of them in using and developing methodologies whose some are presented here. Some current problems of actinides chemistry are described: analysis of the possibilities to (1)improve the reprocessing of long-lived actinides (2)anticipate their behaviour in the environment in order to compare the impact of the different options of the wastes management. The Pourbaix diagrams summarize the chemistry in solution; the author has added information on the solubility, the influence of the ionic strength and of the complexes formation in bicarbonate/carbonate (HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}) media. The discussion on the choice of the equilibrium constants allows to point out the particular points, the dubiousness and the data which have to be proved. (O.M.)

  17. Pain and anxiety experiences of South African adult burn injury patients during physiotherapy management

    Directory of Open Access Journals (Sweden)

    L.D. Morris

    2010-02-01

    Full Text Available A dequate management of procedural pain during physiotherapy management plays an important role in building a trusting relationship betweenthe burn victim and the physiotherapist, and in ensuring desirable functional outcomes. However, the burn pain management regimens currently utilized inburn units, primarily consist of traditional pharmacologic analgesics which areassociated with numerous side-effects and alone are often reported as inadequateto alleviate procedural pain, warranting safer and effective adjunct therapies.Prior to the introduction and implementation of adjunct therapies into a developing world, it is imperative that the current situation in a burn unit, in terms of whether or not the pain management regimens in place are adequate, is first assessed, due to cost concerns. The following short report exemplifies the pain and anxiety experiences of a small number of burn injury patients during physiotherapy at the Tygerberg Hospital adult burn unit, South A frica.  It was hypothesized that the results of this study would underpin whether adult burn injury patients in a developing countryrequire adjunct therapies during physiotherapy management to supplement traditional pharmacologic analgesics inmanaging their procedural pain and subsequent anxiety.

  18. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  19. Burning a Candle in a Vessel, a Simple Experiment with a Long History

    Science.gov (United States)

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The experiment in which a candle is burned inside an inverted vessel partially immersed in water has a history of more than 2,200 years, but even nowadays it is common that students and teachers relate the change in volume of the enclosed air to its oxygen content. Contrary to what many people think, Lavoisier concluded that any change in volume…

  20. Studies on the properties of hard-spectrum, actinide fissioning reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.B.; Prichard, A.W.; Schofield, P.E.; Robinson, A.H.; Spinrad, B.I.

    1980-01-01

    It is technically feasible to construct an operable (e.g., safe and stable) reactor to burn waste actinides rapidly. The heart of the concept is a driver core of EBR-II type, with a central radial target zone in which fuel elements, made entirely of waste actinides are exposed. This target fuel undergoes fission, as a result of which actinides are rapidly destroyed. Although the same result could be achieved in more conventionally designed LWR or LMFBR systems, the fast spectrum reactor does a much more efficient job, by virtue of the fact that in both LWR and LMFBR reactors, actinide fission is preceded by several captures before a fissile nuclide is formed. In the fast spectrum reactor that is called ABR (actinide burning reactor), these neutron captures are short-circuited.

  1. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    Science.gov (United States)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  2. Clinical characteristics and treatment of burn wound sepsis in extensive burn patients: successful experience with eight cases

    Institute of Scientific and Technical Information of China (English)

    柴家科; 盛志勇; 杨红明

    2000-01-01

    Eight burn wound sepsis patients, in which 6 cases were diagnosed as MODS and two as septic shock, were treated consecutively in our hospital from September 1997 to October 1998. The plasma concentration of IL-6, IL-8, TNFα and LPS were assayed before and after surgical intervention, as well as when the patients' vital signs became stable. The results showed: ①The patients' conditions abruptly deteriorated when the burn wound sepsis emerged;②The major cause related to burn wound sepsis was extensive burn injuries, with large areas of deep burn remaining open; ③Although wound swabs taken on admission revealed the presence of colonization by many pathogenic bacteria, Pseudomonas aeruginosa was one of the most frequent bacteria isolated from the subeschar tissue; ④The plasma concentrations of IL-6, IL-8, TNF and LPS before surgical intervention were significantly higher than that after surgical intervention (P<0.05) ;⑤The lowest level of the inflammatory mediators was observed when the patients' conditions became stable, as compared with before surgical intervention (P<0. 001).These findings suggest that the clinical characteristics of burn wound sepsis are abrupt deterioration of the general condition and prominent septic symptoms, often complicated by MODS. The main cause of burn wound sepsis is the presence of a large area of open deep burn wounds, which should be excised and covered early. LPS and pro-inflammatory mediators play an important role in the pathogenesis of burn wound sepsis. Although success in treating these patients is the result of appropriate application of multiple treatments, early, aggressive and thorough surgical excision of invasive burn infectious tissue and closure of wound play a crucial role in the successful treatment of patients complicated by burn wound sepsis. Other treatments are adjuvant but also important.

  3. Modeling of the jack rabbit series of experiments with a temperature based reactive burn model

    Science.gov (United States)

    Desbiens, Nicolas

    2017-01-01

    The Jack Rabbit experiments, performed by Lawrence Livermore National Laboratory, focus on detonation wave corner turning and shock desensitization. Indeed, while important for safety or charge design, the behaviour of explosives in these regimes is poorly understood. In this paper, our temperature based reactive burn model is calibrated for LX-17 and compared to the Jack Rabbit data. It is shown that our model can reproduce the corner turning and shock desensitization behaviour of four out of the five experiments.

  4. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J.H.

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  5. Microskin autografting in the treatment of burns over 70% of total body surface area: 14 years of clinical experience.

    Science.gov (United States)

    Chen, Xu-Lin; Liang, Xun; Sun, Li; Wang, Fei; Liu, Sheng; Wang, Yong-Jie

    2011-09-01

    Despite the fact that early excision and grafting have significantly improved burn outcomes, the management of severely burned patients whose burn size exceeds 70% total body surface area (TBSA) still represents a big challenge for burn surgeons all over the world. During the period of 1997-2010 at our centre, aggressive excision and microskin autografting were performed in 63 severely burned patients. Their burn sizes ranged from 70% to 98% TBSA with a mean of 84.9%. The average full-thickness burn was 66.3% (range, 29-94%). Thirty patients had concomitant inhalation injury. Two to 7 days after burn, these patients underwent aggressive excisions ranging from 25% to 60% TBSA and transplantation of microskin autograft overlaid with allograft. The ratios of donor-site to recipient-site surface area were between 1:6 and 1:18. Signs of epithelialization were shown within 35-55 days. The wound healing rate was 74.9% (176/235), with 51.1% of cases (120/235) healing completely and 23.8% (56/235) improving. Microskin autografting yielded an overall survival rate of 63.5%; only 23 patients died. Our clinical experience in using the microskin autografting for burn coverage suggests that the technique is very effective in covering extensive burns, and that it is particularly useful when graft donor sites are very limited due to its high utilization rate of donor site. The factors affecting the outcome of microskin autografting are discussed herein.

  6. Actinides and Life's Origins.

    Science.gov (United States)

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  7. Actinides and Life's Origins

    Science.gov (United States)

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uranium- and thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3rd by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  8. Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Timothy A. Hyde

    2012-06-01

    The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

  9. Evaluation of the toxicity of the weathered crude oil used at the Newfoundland Offshore Burn Experiment (NOBE) and the resultant burn residue

    Energy Technology Data Exchange (ETDEWEB)

    Blenkinsopp, S.; Sergy, G. [Environment Canada, Dartmouth, NS (Canada). Conservation and Protection; Doe, K.; Wohlgeschaffen, G. [Environment Canada, Dartmouth, NS (Canada). Conservation and Protection; Li, K.; Fingas, M [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div.

    1997-10-01

    Toxicity of the weathered crude oil Alberta Sweet Mixed Blend (ASMB) used at the Newfoundland Offshore Burn Experiment (NOBE), and the resultant burn residue was evaluated using the newly developed Environment Canada water-accomodated fraction (WAF) method and exposure protocol. Rainbow trout, three-spine stickleback and gametes of sea urchins were exposed to saltwater WAF prepared from both weathered ASMB and burn residue. Gas chromatography/ mass spectrometry headspace analysis of 28 analytes showed low levels of volatile hydrocarbons after 96 hours of exposure (except for sea urchins, in which case the test was only 20 minutes in duration). All samples were found to be not toxic to all species tested. 10 refs., 2 tabs.

  10. Hole-Burning Spectroscopy on Excitonically Coupled Pigments in Proteins: Theory Meets Experiment.

    Science.gov (United States)

    Adolphs, Julian; Berrer, Manuel; Renger, Thomas

    2016-03-09

    A theory for the calculation of resonant and nonresonant hole-burning (HB) spectra of pigment-protein complexes is presented and applied to the water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The theory is based on a non-Markovian line shape theory ( Renger and Marcus J. Chem. Phys. 2002 , 116 , 9997 ) and includes exciton delocalization, vibrational sidebands, and lifetime broadening. An earlier approach by Reppert ( J. Phys. Chem. Lett. 2011 , 2 , 2716 ) is found to describe nonresonant HB spectra only. Here we present a theory that can be used for a quantitative description of HB data for both nonresonant and resonant burning conditions. We find that it is important to take into account the excess energy of the excitation in the HB process. Whereas excitation of the zero-phonon transition of the lowest exciton state, that is, resonant burning allows the protein to access only its conformational substates in the neighborhood of the preburn state, any higher excitation gives the protein full access to all conformations present in the original inhomogeneous ensemble. Application of the theory to recombinant WSCP from cauliflower, reconstituted with chlorophyll a or chlorophyll b, gives excellent agreement with experimental data by Pieper et al. ( J. Phys. Chem. B 2011 , 115 , 4053 ) and allows us to obtain an upper bound of the lifetime of the upper exciton state directly from the HB experiments in agreement with lifetimes measured recently in time domain 2D experiments by Alster et al. ( J. Phys. Chem. B 2014 , 118 , 3524 ).

  11. Perineal burn contractures: An experience in tertiary hospital of a Himalayan state

    OpenAIRE

    Thakur Jagdeep; Chauhan C. G. S; Diwana Vijay; Chuahan Dayal; Thakur Anamika

    2008-01-01

    Perineal burn contracture is a rare burn sequel. We conducted a retrospective analysis of cases with perineal burn contractures managed in a tertiary care centre of a Himalayan state. We found that all cases sustained burn injury from burning firewood and the time of presentation was two to six years after the burn injury. We analyzed our treatment method and have classified these contractures into two types.

  12. Perineal burn contractures: An experience in tertiary hospital of a Himalayan state

    Directory of Open Access Journals (Sweden)

    Thakur Jagdeep

    2008-01-01

    Full Text Available Perineal burn contracture is a rare burn sequel. We conducted a retrospective analysis of cases with perineal burn contractures managed in a tertiary care centre of a Himalayan state. We found that all cases sustained burn injury from burning firewood and the time of presentation was two to six years after the burn injury. We analyzed our treatment method and have classified these contractures into two types.

  13. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  14. Device for Detecting Actinides, Method for Detecting Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Fred J.; Wilkins-Stevens, Priscilla

    1998-10-29

    A heavy metal detector is provided comprising a first molecule and a second molecule, whereby the first and second molecules interact in a predetermined manner; a first region on the first molecule adapted to interact with an actinide; and a second region on the second molecule adapted to interact with the actinide, whereby the interactions of the actinide with the regions effect the predetermined manner of interaction between the molecules.

  15. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    Science.gov (United States)

    Cassayre, L.; Souček, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P.

    2011-07-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl 3. A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl 3 alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl 2/UAl 3 molar ratio, providing complete chlorination of the alloy without formation of volatile UCl 5 and UCl 6. The results showed high efficient chlorination at a temperature of 150 °C.

  16. Thin extractive membrane for monitoring actinides in aqueous streams.

    Science.gov (United States)

    Chavan, Vivek; Paul, Sumana; Pandey, Ashok K; Kalsi, P C; Goswami, A

    2013-09-15

    Alpha spectrometry and solid state nuclear track detectors (SSNTDs) are used for monitoring ultra-trace amount of alpha emitting actinides in different aqueous streams. However, these techniques have limitations i.e. alpha spectrometry requires a preconcentration step and SSNTDs are not chemically selective. Therefore, a thin polymer inclusion membrane (PIM) supported on silanized glass was developed for preconcentraion and determination of ultra-trace concentration of actinides by α-spectrometry and SSNTDs. PIMs were formed by spin coating on hydrophobic glass slide or solvent casting to form thin and self-supported membranes, respectively. Sorption experiments indicated that uptakes of actinides in the PIM were highly dependent on acidity of solution i.e. Am(III) sorbed up to 0.1 molL(-1) HNO₃, U(VI) up to 0.5 molL(-1) HNO₃ and Pu(IV) from HNO₃ concentration as high as 4 molL(-1). A scheme was developed for selective sorption of target actinide in the PIM by adjusting acidity and oxidation state of actinide. The actinides sorbed in PIMs were quantified by alpha spectrometry and SSNTDs. For SSNTDs, neutron induced fission-fragment tracks and α-particle tracks were registered in Garware polyester and CR-39 for quantifications of natural uranium and α-emitting actinides ((241)Am/(239)Pu/(233)U), respectively. Finally, the membranes were tested to quantify Pu in 4 molL(-1) HNO3 solutions and synthetic urine samples.

  17. Actinides reduction by recycling in a thermal reactor; Reduccion de actinidos por reciclado en un reactor termico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Martinez C, E.; Balboa L, H., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  18. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Science.gov (United States)

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-11-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm-3 to peaks of up to 35 000 cm-3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ≅ 0

  19. Ground based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-05-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the Southwestern part of the Brazilian Amazon forest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground based measurements over Brazil, aiming to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ∼1000 cm−3 to peaks of up to 35 000 cm−3 during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed on average at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent Black Carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of Biomass Burning Organic Aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol

  20. Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)

    Energy Technology Data Exchange (ETDEWEB)

    1985-11-01

    The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of this research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations.

  1. Burn-Up Determination by High Resolution Gamma Spectrometry: Axial and Diametral Scanning Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R.S.; Blackadder, W.H.; Ronqvist, N.

    1967-02-15

    In the gamma spectrometric determination of burn-up the use of a single fission product as a monitor of the specimen fission rate is subject to errors caused by activity saturation or, in certain cases, fission product migration. Results are presented of experiments in which all the resolvable gamma peaks in the fission product spectrum have been used to calculate the fission rate; these results form a pattern which reflect errors in the literature values of the gamma branching ratios, fission yields etc., and also represent a series of empirical correction factors. Axial and diametral scanning experiments on a long-irradiated low-enrichment fuel element are also described and demonstrate that it is possible to differentiate between fissions in U-235 and in Pu-239 respectively by means of the ratios of the Ru-106 activity to the activities of the other fission products.

  2. Bushfire disaster burn casualty management: the Australian "Black Saturday" bushfire experience.

    Science.gov (United States)

    Seifman, Marc; Ek, Edmund W; Menezes, Hana; Rozen, Warren M; Whitaker, Iain S; Cleland, Heather J

    2011-11-01

    Mass burn disasters are among the most difficult disasters to manage, with major burns requiring complex management in a multidisciplinary setting and specialist burns services having limited capacity to deal with large numbers of complex patients. There is a paucity of literature addressing health system responses to mass burn disasters resulting from wildfires, with the events of the "Black Saturday" disaster in the state of Victoria, Australia, able to provide a unique opportunity to draw lessons and increase awareness of key management issues arising in mass burn casualty disasters. The event comprised the worst natural disaster in the state's history and one of the worst wildfire disasters in world history, claiming 173 lives and costing more than AUD 4 billion. This article draws on the national burns disaster plan instituted, Australian Mass Casualty Burn Disaster Plan (AUSBURNPLAN), and details the management of mass burn cases through a systems-based perspective.

  3. [Mortality factors in flame and scalds burns: our experience in 816 patients].

    Science.gov (United States)

    Al, Behçet; Yildirim, Cuma; Coban, Sacit; Aldemir, Mustafa; Güloğlu, Cahfer

    2009-11-01

    Our aim was to evaluate the effective factors on mortality in flame and scald burns in the Diyarbakir region. The data of 816 patients who applied to the Dicle University Emergency Department between January 2001 and May 2005 with flame and scald burns were investigated retrospectively. The patients were separated into two groups as alive or deceased. Gender, age, burns shapes, burn degrees and rates, burn regions, admission periods, hospitalization times, complications, and the treatments were analyzed. 43.5% of the patients were female and 57.5% were male. Six hundred fifty-eight patients were under 6 years old. 70.5% of burns occurred as a result of negligence; 76.5% occurred due to scald and 23.5% due to flame. In cases of death, 39 patients were under 10 years old. The mean age was 9.32 years. The average hospitalization period was 10.37 days. The most common complication was wound infection. The mortality rate was 6.1%. The mortality rate was higher among patients who were hospitalized longer than 15 days (p = 0.030); whose burns were due to suicide attempt (p = 0.002); who used shoe paint on the burn wounds instead of treatment (p = 0.000); who had more than 40% second-degree burns (p = 0.000) or more than 20% third-degree burns (p = 0.000); and among those with acute respiratory failure, compartment syndrome, hypoalbuminemia, and sepsis (p = 0.000).

  4. 成批烧伤救治50年%Experiences in rescue and treatment of mass burn casualties in fifty years

    Institute of Scientific and Technical Information of China (English)

    周一平

    2008-01-01

    The article reviewed the history and the main experiences of rescue of mass burn casualties and their treatment during the past fifty years in China. Some issues including medical support for mass burn casually and treatment regime in future, such as the prevention of burn calamities, further elevation of the eure rate and lowering in the rate of disability, further development in network of burn care and preliminary scheme of rescue of mass burn casualties and their treatment, accelerating the development and study on the substitutes of allo-skin graft were discussed.

  5. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-11-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm−3 to peaks of up to 35 000 cm−3 (during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent black carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the

  6. Ground based characterization of biomass burning aerosols during the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    Science.gov (United States)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Johnson, Ben; Haywood, Jim; Longo, Karla; Freitas, Saulo; Coe, Hugh

    2013-04-01

    Biomass burning is one of the major drivers for atmospheric composition in the Southern hemisphere. In Amazonia, deforestation rates have been steadily decreasing, from 27,000 Km² in 2004 to about 5,000 Km² in 2011. This large reduction (by factor 5) was not followed by similar reduction in aerosol loading in the atmosphere due to the increase in agricultural fires. AERONET measurements from 5 sites show a large year-to year variability due to climatic and socio-economic issues. Besides this strong reduction in deforestation rate, biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. To complement the long term biomass burning measurements in Amazonia, it was organized in 2012 the intensive campaign of the South American Biomass Burning Analysis (SAMBBA) experiment with an airborne and a ground based components. A sampling site was set up at Porto Velho, with measurements of aerosol size distribution, optical properties such as absorption and scattering at several wavelengths, organic aerosol characterization with an ACSM - Aerosol Chemical Speciation Monitor. CO, CO2 and O3 were also measured to characterize combustion efficiency and photochemical processes. Filters for trace elements measured by XRF and for OC/EC determined using a Sunset instrument were also collected. An AERONET CIMEL sunphotometer was operated in parallel with a multifilter radiometer (MFR). A large data set was collected from August to October 2012. PM2.5 aerosol concentrations up to 250 ug/m3 were measured, with up to 20 ug/m3 of black carbon. Ozone went up to 60 ppb at mid-day in August. At night time ozone was consumed completely most of the time. ACSM shows that more than 85% of the aerosol mass was organic with a clear diurnal pattern. The organic aerosol volatility was very variable depending on the air mass sampled over Porto Velho. Aerosol optical depth at

  7. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    Directory of Open Access Journals (Sweden)

    Bourg Stéphane

    2015-12-01

    Full Text Available Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities striving to meet these challenges, carried out under the Euratom FP7 collaborative project SACSESS (Safety of Actinide Separation Processes. Emphasis is put on the safety issues of fuel reprocessing and waste storage. Two types of actinide separation processes, hydrometallurgical and pyrometallurgical, are considered, as well as related aspects of material studies, process modeling and the radiolytic stability of solvent extraction systems. Education and training of young researchers in nuclear chemistry is of particular importance for further development of this field.

  8. Nuclear data uncertainty analysis on a minor actinide burner for transmuting spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hangbok

    1998-08-01

    A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWt minor actinides burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities of the performance parameters were generated using depletion perturbation methods for the constrained close fuel cycle of the reactor. The uncertainty analysis was performed using the sensitivity and covariance data taken from ENDF-B/V and other published sources. The uncertainty analysis of a liquid metal reactor for burning minor actinide has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180 %, 97 %, and 46 %, respectively. An analysis was performed to prioritize the minor actinide reactions for reducing the uncertainties. (author). 41 refs., 17 tabs., 1 fig.

  9. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  10. Enzymatic debridement for the treatment of severely burned upper extremities – early single center experiences

    OpenAIRE

    Cordts, Tomke; Horter, Johannes; Vogelpohl, Julian; Kremer, Thomas; Kneser, Ulrich; Hernekamp, Jochen-Frederick

    2016-01-01

    Background Severe burns of hands and arms are complex and challenging injuries. The Standard of care (SOC) – necrosectomy with skin grafting – is often associated with poor functional or aesthetic outcome. Enzymatic debridement (ED) is considered one promising alternative but, until recently, results proved to be highly variable. Methods Between 04/2014 and 04/2015, 16 patients with deep partial- to full-thickness burns of the upper extremities underwent enzymatic debridement (ED) in our Burn...

  11. An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    Science.gov (United States)

    Lin, Neng-Huei; Tsay, Si-Chee; Maring, Hal B.; Yen, Ming-Cheng; Sheu, Guey-Rong; Wang, Sheng-Hsiang; Chi, Kai Hsien; Chuang, Ming-Tung; Ou-Yang, Chang-Feng; Fu, Joshua S.; Reid, Jeffrey S.; Lee, Chung-Te; Wang, Lin-Chi; Wang, Jia-Lin; Hsu, Christina N.; Sayer, Andrew M.; Holben, Brent N.; Chu, Yu-Chi; Nguyen, Xuan Anh; Sopajaree, Khajornsak; Chen, Shui-Jen; Cheng, Man-Ting; Tsuang, Ben-Jei; Tsai, Chuen-Jinn; Peng, Chi-Ming; Schnell, Russell C.; Conway, Tom; Chang, Chang-Tang; Lin, Kuen-Song; Tsai, Ying I.; Lee, Wen-Jhy; Chang, Shuenn-Chin; Liu, Jyh-Jian; Chang, Wei-Li; Huang, Shih-Jen; Lin, Tang-Huang; Liu, Gin-Rong

    2013-01-01

    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and

  12. Interactive effects of acupuncture on pain and distress in major burns: An experiment with rats.

    Science.gov (United States)

    Abali, Ayse Ebru; Cabioglu, Tugrul; Ozdemir, Handan; Haberal, Mehmet

    2015-06-01

    This study sought to investigate the interactive effects of acupuncture on pain and distress and the local progress in the burn wound in an experimental major burn model. Forty-eight male Sprague-Dawley rats were divided into six groups: S group (sham/observation during 7 days after injury); SA group (sham/acupuncture/observation during 7 days after injury); B1 group (burns/observation during 1h after injury); BA1 group (burns/acupuncture/observation during 1 h after injury); B7 group (burns/observation during 7 days after injury); and BA7 group (burns/acupuncture/observation during 7 days after injury). Pain and distress scores were evaluated throughout the study. The amounts of neutrophils and mononuclear cells were evaluated semiquantitatively, and the number of microvessels was evaluated quantitatively. Our data indicated that the average pain score of BA7 group was significantly lower than the other study groups. Histopathologic investigations indicate that the amounts of neutrophil and mononuclear cell and numbers of microvessels in the unburned skin were higher in acupuncture-applied groups. The number of microvessels in burn wounds of BA7 group was significantly higher than that of the other groups. Our data suggest that acupuncture provides low pain and distress scores in experimental rat model, and it contributes to wound healing with an enhanced angiogenesis during the acute phase of burns. Future clinical and experimental studies should be conducted to discern the benefits from acupuncture in pain management of burn patients.

  13. Fusarium spp infections in a pediatric burn unit: nine years of experience.

    Science.gov (United States)

    Rosanova, María Teresa; Brizuela, Martín; Villasboas, Mabel; Guarracino, Fabian; Alvarez, Veronica; Santos, Patricia; Finquelievich, Jorge

    2016-01-01

    Fusarium spp are ubiquitous fungi recognized as opportunistic agents of human infections, and can produce severe infections in burn patients. The literature on Fusarium spp infections in pediatric burn patients is scarce. To describe the clinical and epidemiological features as well as outcome of Fusarium spp infections in pediatric burn patients. Retrospective, descriptive study of Fusarium spp infections in a specialized intensive care burn unit. In 15 patients Fusarium spp infections were diagnosed. Median age was 48 months. Direct fire injury was observed in ten patients. The median affected burn surface area was 45%. Twelve patients had a full thickness burn. Fourteen patients had a Garces Index ≥3. Fungal infection developed at a median of 11 days after burn injury. Fungi were isolated from burn wound in 14 patients and from the bone in one patient. Amphotericin B was the drug of choice for treatment followed by voriconazole. Median time of treatment completion was 23 days. One patient (7%) died of fungal infection-related causes. In our series Fusarium spp was an uncommon pathogen in severely burnt patients. The burn wound was the most common site of infection and mortality was low. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  14. Experiment and Reactive-Burn Modeling in the RDX Based Explosive XTX 8004

    Science.gov (United States)

    Johnson, Carl; Murphy, Mike; Gustavsen, Rick; Jackson, Scott; Vincent, Samuel

    2015-06-01

    XTX 8004 consists of 80 wt. % cyclotrimethylenetrinitramine (RDX), and 20 wt. % Sylgard 182, a silicone rubber used as a binder. Nominal density is 1.5 g/cm3. Uncured XTX 8004 is putty like and can be molded or extruded. The XTX 8004 detonation product Hugoniot calibration was obtained from cylinder tests using a genetic algorithm approach to parameterize a Jones-Wilkins-Lee (JWL) equation of state. Additionally, we conducted four gas-gun experiments that were instrumented with embedded electromagnetic particle velocity gauges. These provided wave profiles to which we calibrated an Ignition and Growth reactive burn (IGRB) model in ALE3D for 1-D shock to detonation transitions. Further, acceptor and donor XTX 8004 were extruded into opposite sides of a monolithic polymethylmethacrylate (PMMA) block with a known thickness of PMMA forming the attenuator plate, the so-called monolithic gap test (MGT). Detonation and initiation in the XTX 8004 was recorded using multiple ultra-high-speed images of the position of the shock front in the PMMA. Input to the acceptor charge was estimated from stress wave profiles photographed inside the attenuator as well as with photonic Doppler velocimetry (PDV) measurements of the free surface velocity beneath the attenuator plate. Results were simulated using IGRB in ALE3D. Parameterization of IGRB to 1-D vs. 2-D experiments will be discussed.

  15. A Summary of Actinide Enrichment Technologies and Capability Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Bradley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robinson, Sharon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The evaluation performed in this study indicates that a new program is needed to efficiently provide a national actinide radioisotope enrichment capability to produce milligram-to-gram quantities of unique materials for user communities as summarized in Table 1. This program xiv should leverage past actinide enrichment, the recent advances in stable isotope enrichment, and assessments of the future requirements to cost effectively develop this capability while establishing an experience base for a new generation of researchers in this vital area. Preliminary evaluations indicate that an EMIS device would have the capability to meet the future needs of the user community for enriched actinides. The EMIS technology could be potentially coupled with other enrichment technologies, such as irradiation, as pre-enrichment and/or post-enrichment systems to increase the throughput, reduce losses of material, and/or reduce operational costs of the base EMIS system. Past actinide enrichment experience and advances in the EMIS technology applied in stable isotope separations should be leveraged with this new evaluation information to assist in the establishment of a domestic actinide radioisotope enrichment capability.

  16. Potential radiation dose from eating fish exposed to actinide contamination

    Energy Technology Data Exchange (ETDEWEB)

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K.

    1980-01-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-Pond, a nuclear waste pond on the Hanford Site. It has concentrations of /sup 238/U, /sup 238/Pu, /sup 239,240/Pu and /sup 241/Am that are approximately three orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated by assuming that actinide behavior in their bodies was similar to that defined for Standard Man by the International Commission on Radiological Protection. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (approx.1 lb) of these fillets every day for 70 years. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. 34 refs., 5 figs., 4 tabs.

  17. Application of Haddon’s matrix in qualitative research methodology: an experience in burns epidemiology

    Directory of Open Access Journals (Sweden)

    Deljavan R

    2012-07-01

    Full Text Available Reza Deljavan,1 Homayoun Sadeghi-Bazarganim,2,3 Nasrin Fouladim,4 Shahnam Arshi,5 Reza Mohammadi61Injury Epidemiology and Prevention Research Center, 2Neuroscience Research Center, Department of Statistics and Epidemiology, Tabriz University of Medical Sciences, Tabriz, Iran; 3Public Health Department, Karolinska Institute, Stockholm, Sweden; 4Ardabil University of Medical Sciences, Ardabil, Iran; 5Shahid Beheshti University of Medical Sciences, Tehran, Iran; 6Public Health Department, Karolinska Institute, Stockholm, SwedenBackground: Little has been done to investigate the application of injury specific qualitative research methods in the field of burn injuries. The aim of this study was to use an analytical tool (Haddon’s matrix through qualitative research methods to better understand people’s perceptions about burn injuries.Methods: This study applied Haddon’s matrix as a framework and an analytical tool for a qualitative research methodology in burn research. Both child and adult burn injury victims were enrolled into a qualitative study conducted using focus group discussion. Haddon’s matrix was used to develop an interview guide and also through the analysis phase.Results: The main analysis clusters were pre-event level/human (including risky behaviors, belief and cultural factors, and knowledge and education, pre-event level/object, pre-event phase/environment and event and post-event phase (including fire control, emergency scald and burn wound management, traditional remedies, medical consultation, and severity indicators. This research gave rise to results that are possibly useful both for future injury research and for designing burn injury prevention plans.Conclusion: Haddon’s matrix is applicable in a qualitative research methodology both at data collection and data analysis phases. The study using Haddon’s matrix through a qualitative research methodology yielded substantially rich information regarding burn injuries

  18. Clinical Experience: Using Dehydrated Human Amnion/Chorion Membrane Allografts for Acute and Reconstructive Burn Care.

    Science.gov (United States)

    Reilly, Debra Ann; Hickey, Sean; Glat, Paul; Lineaweaver, William C; Goverman, Jeremy

    2017-02-01

    Amniotic membrane is immunologically privileged and is a reservoir of growth factors and cytokines known to modulate inflammation and enhance the healing process, while also possessing antimicrobial, antifibrosis, and antiscarring properties. These properties establish a strong argument for using amniotic membrane derived products as a treatment for burns. The purpose of this article is to describe the use of commercially available dehydrated human amnion/chorion membrane allografts in patients with partial-thickness and full-thickness burns.

  19. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    OpenAIRE

    De Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B; Haywood, J.; LONGO, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-01-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field ...

  20. Calculation of cohesive energy of actinide metals

    Institute of Scientific and Technical Information of China (English)

    钱存富; 陈秀芳; 余瑞璜; 耿平; 段占强

    1997-01-01

    According to empirical electron theory of solids and molecules (EET), an equation for calculating the cohesive energy of actinide metals is given, the cohesive energy of 9 actinide metals with known crystal structure is calculated, which is identical with the experimental values on the whole, and the cohesive energy of 6 actinide metals with unknown crystal structure is forecast.

  1. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Timothy M. [Los Alamos National Laboratory; Reimus, Paul W. [Los Alamos National Laboratory

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  2. Overview of a prescribed burning experiment within a boreal forest in Finland

    Directory of Open Access Journals (Sweden)

    A. Virkkula

    2013-08-01

    Full Text Available A prescribed burning of a boreal forest was conducted on 26 June 2009 in Hyytiälä, Finland, to study aerosol and trace gas emissions from wildfires and the effects of fire on soil properties in a controlled environment. A 0.8 ha forest near the SMEAR II was cut clear; some tree trunks, all tree tops and branches were left on the ground and burned. The amount of burned organic material was ~46.8 t (i.e., ~60 t ha−1. The flaming phase lasted 2 h 15 min, the smoldering phase 3 h. Measurements were conducted on the ground with both fixed and mobile instrumentation, and from a research aircraft. In the middle of the burning area, CO2 concentration peaks were around 2000–3000 ppm above the baseline and peak vertical flow velocities were 6 ± 3 m s−1, as measured a 10-Hz 3-D sonic anemometer placed within the burn area. Peak particle number concentrations were approximately 1–2 × 106 cm−3 in the plume at a distance of 100–200 m from the burn area. The geometric mean diameter of the mode with the highest concentration was at 80 ± 1 nm during the flaming phase and in the middle of the smoldering phase but at the end of the smoldering phase the largest mode was at 122 nm. In the volume size distributions geometric mean diameter of the largest volume mode was at 153 nm during the flaming phase and at 300 nm during the smoldering phase. The lowest single-scattering albedo of the ground-level measurents was 0.7 in the flaming-phase plume and ~0.9 in the smoldering phase. The radiative forcing efficiency was negative above dark surfaces, in other words, the particles cool the atmosphere. Elevated concentrations of several VOCs (including acetonitrile which is a biomass burning marker were observed in the smoke plume at ground level. The forest floor (i.e., richly organic layer of soil and debris, characteristic of forested land measurements showed that VOC fluxes were generally low and consisted mainly of monoterpenes, but a clear peak of VOC

  3. Preliminary considerations concerning actinide solubilities

    Energy Technology Data Exchange (ETDEWEB)

    Newton, T.W.; Bayhurst, B.P.; Daniels, W.R.; Erdal, B.R.; Ogard, A.E.

    1980-01-01

    Work at the Los Alamos Scientific Laboratory on the fundamental solution chemistry of the actinides has thus far been confined to preliminary considerations of the problems involved in developing an understanding of the precipitation and dissolution behavior of actinide compounds under environmental conditions. Attempts have been made to calculate solubility as a function of Eh and pH using the appropriate thermodynamic data; results have been presented in terms of contour maps showing lines of constant solubility as a function of Eh and pH. Possible methods of control of the redox potential of rock-groundwater systems by the use of Eh buffers (redox couples) is presented.

  4. Electron-phonon coupling of the actinide metals

    DEFF Research Database (Denmark)

    Skriver, H. L.; Mertig, I.

    1985-01-01

    -phonon parameter λ is found to attain its maximum value in Ac, and they predict a transition temperature of 9K for this metal. In the light actinides Th through Pu, λ is found to be of order 0.4 and within a factor of 2 of experiments which is also the accuracy found in studies of the transition metals...

  5. Management of facial burns with a collagen/glycosaminoglycan skin substitute-prospective experience with 12 consecutive patients with large, deep facial burns.

    Science.gov (United States)

    Klein, Matthew B; Engrav, Loren H; Holmes, James H; Friedrich, Jeffrey B; Costa, Beth A; Honari, Shari; Gibran, Nicole S

    2005-05-01

    Management of deep facial burns remains one of the greatest challenges in burn care. We have developed a protocol over the past 20 years for management of facial burns that includes excision and coverage with thick autograft. However, the results were not perfect. Deformities of the eyelids, nose and mouth as well as the prominence of skin graft junctures demonstrated the need to explore novel approaches. Integra has been used with success in the management of burns of the trunk and extremities. The purpose of this study was to prospectively evaluate the aesthetic outcome of the use of Integra for deep facial burns. Twelve consecutive patients underwent excision of large, deep facial burns and placement of Integra. Integra provides excellent color and minimally visible skin graft junctures. The texture is good but not as supple as thick autograft. Integra is not well suited for use in the coverage of eyelid burns due to the need to wait 2 weeks for adequate vascularization. In summary, thick autograft remains the gold standard for deep facial burns. However, for patients with extensive burns and limited donor sites, Integra provides an acceptable alternative.

  6. 155 burns caused by hair straighteners in children: a single centre's experience over 5 years.

    Science.gov (United States)

    Sarginson, Julia H; Estela, Catalina; Pomeroy, Shirin

    2014-06-01

    Hair straighteners have become a popular and common household appliance. The incidence of burns from these devices is rising, and is of particular concern given that the main casualties are infants. We present the largest case series in the literature of paediatric burns from hair straightening devices. Retrospective data collection of all burns by hair straightening devices presenting to our unit between 2007 and 2011. Details on demographics, time and mechanism of injury, size and depth of injury and treatment received were recorded. There were 155 cases in the five-year period. The mean age was 19 months. The majority of the burns were caused by a 'touch/grab' (49%) or 'stepped-into' (14%) mechanism. The area most frequently burnt was the hand with 60% of the injuries. 8 out of the 155 required excision and grafting. Hair straightening devices can reach temperatures of over 220°C and can cause significant full thickness injuries. Our study shows that infants and toddlers are at most risk. These are preventable burns that warrant our attention, and we would advocate the use of heat-resistant pouches and closure clips on the devices to help minimise the risk of injury. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  7. Occupational chemical burns: a 2-year experience in the emergency department

    Directory of Open Access Journals (Sweden)

    Touzopoulos P

    2011-10-01

    Full Text Available Panagiotis Touzopoulos1, Paul Zarogoulidis2, Alexandros Mitrakas1, Michael Karanikas1, Panagiotis Milothridis1, Dimitrios Matthaios1, Ioannis Kouroumichakis3, Stella Proikaki3, Paschalis Pavlioglou3, Nikolaos Katsikogiannis4, Theodoros C Constantinidis511st University Surgical Department, University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, 2Pulmonary Department, University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, 32nd Internal Medicine Department, University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, 4Surgical Department (NHS, University General Hospital of Alexandroupolis, 5Medical School, Laboratory of Hygiene and Environmental Protection, Democritus University of Thrace, Regional Laboratory of Public Health (Eastern Macedonia-Thrace, GreeceAbstract: Chemical burn injuries are a result of exposure to acid, alkali, or organic compounds. In this retrospective study, a total of 21 patients suffering occupational chemical burns, came to the emergency room at the University General Hospital of Alexandroupolis, from 2008 to 2010; 76.2% were workers, 19% were farmers, and 4.8% were desk officers. The majority of burns were due to exposure to acid (61.9%. Upper extremities were the most frequently injured area followed by the lower extremities and thorax. None of the patients needed further hospital care, but in the follow-up, four of the patients suffered keloid. Proper surgical treatment at the emergency room decreases the length of hospital stay for patients who suffer chemically induced burns.Keywords: chemical burns, surgical treatment, labor accidents

  8. Safe management of actinides in the nuclear fuel cycle: Role of mineralogy; La gestion des actinides dans le cycle du combustible nucleaire: le role de la mineralogie

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C. [Department of Nuclear Engineering and Radiological Sciences, Department of Geological Sciences, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-1005 (United States)

    2011-02-15

    During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the 'minor' actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., {sup 239}Pu), a source of fissile material for nuclear weapons (e.g., {sup 239}Pu and {sup 237}Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., {sup 239}Pu and {sup 237}Np). There are two basic strategies for the disposition of these heavy elements: (1) to 'burn' or transmute the actinides using nuclear reactors or accelerators; (2) to 'sequester' the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A{sub 2}B{sub 2}O{sub 7} (A rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms. (author)

  9. Burn Pits

    Science.gov (United States)

    ... Enter ZIP code here Enter ZIP code here Burn Pits Burn Pits Registry Studies Photo: U.S. Department ... the health of deployed Veterans. Health effects from burn pit smoke Toxins in burn pit smoke may ...

  10. Burn Institute

    Science.gov (United States)

    ... Now Help keep local seniors safe from fire! Burn Survivor Support If you are reading this, chances ... year – a burn injury. Learn more Fire and Burn Prevention Each year, the Burn Institute provides fire ...

  11. Deep sole burns in several participants in a traditional festival of the firewalking ceremony in Kee-lung, Taiwan--clinical experiences and prevention strategies.

    Science.gov (United States)

    Chang, Shun-Cheng; Hsu, Chih-Kang; Tzeng, Yuan-Sheng; Teng, Shou-Cheng; Fu, Ju-Peng; Dai, Niann-Tzyy; Chen, Shyi-Gen; Chen, Tim-Mo; Feng, Chun-Che

    2012-11-01

    Firewalking is a common Taoist cleansing ceremony in Taiwan, but burns associated with the practice have rarely been reported. We analyzed the patients with plantar burns from one firewalking ceremony. In one firewalking ceremony, 12 Taoist disciples suffered from contact burns to the soles of their feet while walking over burning coals. Eight of them had at least second-degree burns over areas larger than 1% of their total body surface areas (TBSAs). The age, sex, medical history, date of injury, time taken to traverse the fire pit, depth and TBSA of the burns, treatment, length of stay, and outcome were recorded and analyzed. Deep, disseminated second- to third-degree burns were noted and healing took as long as three weeks in some patients. Because disseminated hypertrophic scars form after burns, the soles involved regain much of their tensile strength while walking. The patients experienced only a few difficulties in their daily lives three months after injury. From our experience treating patients with deep disseminated second- to third-degree plantar burns caused by firewalking, we conclude that they should be treated conservatively, with secondary healing rather than a skin graft. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  12. The Southwest UK Burns Network (SWUK) experience of electronic cigarette explosions and review of literature.

    Science.gov (United States)

    Arnaout, A; Khashaba, H; Dobbs, T; Dewi, F; Pope-Jones, S; Sack, A; Estela, C; Nguyen, D

    2017-06-01

    Since the introduction of e-cigarettes to the UK market in 2007 their popularity amongst young adults has significantly increased. These lithium-ion powered devices remain unregulated by the Standards Agency and as a result burns centres across the world have seen an increasing number of patients presenting with significant burns, resulting from poor quality batteries that appear to be liable to explode when over-heated, over-charged or incorrectly stored. Retrospective and perspective review of all e-cigarette related burns presenting to the Southwest Burns Network; South Wales Burns Centre (Morriston Hospital) or to Bristol burns centre (Southmead Hospital) between Oct 15-July 16, followed by a review of available literature performed and eligible papers identified using PRISMA 2009 Checklist. South Wales Burns Centre (Morriston Hospital) (N=5), Bristol burns centre (Southmead Hospital) (N=7). 92% of injuries were seen in male patients with a mean age of 34.58 (±12.7). The mean TSBA sustained 2.54% of mixed depth, most common anatomical area is the thigh 83% (n=10) with a mean 23.1(±5) days to heal with conservative management. The literature search yielded 3 case series (Colaianni et al., 2016; Kumetz et al., 2016; Nicoll et al., 2016) [8,9,12] and 4 case reports (Jablow and Sexton, 2015; Harrison and Hicklin, 2016; Walsh et al., 2016; Shastry and Langdorf, 2016) [6,7,10,11]. We compare our findings with the published studies. The import and sale of e-cigarettes remains unrestricted. This increases the risk of devices being available in the UK market that do not meet the British Standard Specification, potentially increasing their risk of causing fire and exploding. Consumers should be made aware of this risk, and advised of adequate charging and storage procedures. In case lithium ion compounds leak following a breach in the battery, first aid with mineral oil use is advocated to avoid a further chemical reaction. Copyright © 2017 Elsevier Ltd and ISBI. All

  13. Experiments on Nitrogen Oxide Production of Droplet Arrays Burning under Microgravity Conditions

    Science.gov (United States)

    Moesl, Klaus; Sattelmayer, Thomas; Kikuchi, Masao; Yamamoto, Shin; Yoda, Shinichi

    The optimization of the combustion process is top priority in current aero-engine and aircraft development, particularly from the perspectives of high efficiency, minimized fuel consumption, and a sustainable exhaust gas production. Aero-engines are exclusively liquid-fueled with a strong correlation between the combustion temperature and the emissions of nitric oxide (NOX ). Due to safety concerns, the progress in NOX reduction has been much slower than in stationary gas turbines. In the past, the mixing intensity in the primary zone of aero-engine combustors was improved and air staging implemented. An important question for future aero-engine combustors, consequently, is how partial vaporization influences the NOX emissions of spray flames? In order to address this question, the combustion of partially vaporized, linear droplet arrays was studied experimentally under microgravity conditions. The influence of fuel pre-vaporization on the NOX emissions was assessed in a wide range. The experiments were performed in a drop tower and a sounding rocket campaign. The microgravity environment provided ideal experiment conditions without the disturbing ef-fect of natural convection. This allowed the study of the interacting phenomena of multi-phase flow, thermodynamics, and chemical kinetics. This way the understanding of the physical and chemical processes related to droplet and spray combustion could be improved. The Bremen drop tower (ZARM) was utilized for the precursor campaign in July 2008, which was com-prised of 30 drops. The sounding rocket experiments, which totaled a microgravity duration of 6 minutes, were finally performed on the flight of TEXUS-46 in November 2009. On both campaigns the "Japanese Combustion Module" (JCM) was used. It is a cooperative experi-ment on droplet array combustion between the Japan Aerospace Exploration Agency (JAXA) and ESA's (European Space Agency) research team, working on the combustion properties of partially premixed sprays

  14. Environmental research on actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  15. Experience of prevention and treatment of deep burn of hand%手部深度烧伤后畸形防治体会

    Institute of Scientific and Technical Information of China (English)

    邢晓萍; 苏永涛; 牛先明; 吕陟

    2003-01-01

    @@ INTRODUCTION How to prevent hand deformity caused by burn, restore appearanceand working ability has been alwaya the main problem, the follow-ing is the report about causes of deformity and experience of pre-vention and treatment.

  16. EXPERIENCE IN TREATING SECONDARY SYSTEMIC MYCOTIC INFECTION AFTER SEVERE BURNS ASSOCIATED WITH ELECTRIC INJURY

    Institute of Scientific and Technical Information of China (English)

    谢卫兴; 李秀芝

    1995-01-01

    One patient with wound surface sepsis caused by secondary pyocyanic infection after extensive burns associated with visceral injuries (peptic ulcer hemorrhage, renal insufficiency and hepatic dysfunction) and generalized candidiasis albicans was cured after anti-infection treatment with proper antibiotics, removal of the infected focus, and effective anti-fungal drugs.

  17. HIV seroprevalence and its effect on outcome of moderate to severe burn injuries: A Ugandan experience

    Directory of Open Access Journals (Sweden)

    Ssentongo Robert

    2011-06-01

    Full Text Available Abstract Background HIV infection in a patient with burn injuries complicates the care of both the patient and the treating burn team. This study was conducted to establish the prevalence of HIV among burn patients in our setting and to compare the outcome of these patients who are HIV positive with those who are HIV negative. Methods This was a prospective cohort study involving burn injury patients admitted to Mulago Hospital between November 2005 and February 2006. Patients were stratified into HIV positive (exposed group and HIV-negative (unexposed group. Data was collected using a pre-tested coded questionnaire and analyzed using SPSS statistical computer software version 11.5. Results Of the 130 patients included in the study, 17 (13.1% patients tested HIV positive and this formed the study (exposed group. The remaining 113 patients (86.9% formed the control (unexposed group. In the HIV positive group, females outnumbered males by a ratio of 1.4:1 and the mean age was 28.4 ± 21.5 years (range 3 months-34 years. 64.7% of HIV positive patients reported to have risk factors for HIV infection. Of these, multiple sexual partners [Odds Ratio 8.44, 95% C.I. (3.87-143.23, P = 0.011] and alcoholism [Odds Ratio 8.34, 95% C.I. (5.76-17.82, P = 0.002] were found to be independently and significantly associated with increased risk to HIV infection. The mean CD4 count for HIV positive and HIV negative patients were 394 ± 328 cells/μL and 912 ± 234 cells/μL respectively which is statistically significant (P = 0.001. There was no difference in the bacteria cultured from the wounds of HIV positive and negative patients (P = 0.322. Patients with clinical signs of sepsis had lower CD4+ counts compared to patients without sepsis (P Conclusion HIV infection is prevalent among burn injury patients in our setting and thus presents an occupational hazard to health care workers who care for these patients. All burn health care workers in this region need to

  18. Treatment Experience on 5 Cases of Electrical Burns, Electrical Contact with the Depth of the Burn%5例电击伤、电接触深度烧伤治疗体会

    Institute of Scientific and Technical Information of China (English)

    李辉武

    2013-01-01

      目的探讨电击伤、电接触深度烧伤后的治疗方法和临床体会。方法对我科收治的5例电击伤、电接触深度烧伤患者,采取早期切削痂植皮以及皮瓣移植治疗。结果电击伤患者普遍恢复较快,没有出现感染的情况,而且创面恢复也较快。结论电击伤、电接触深度烧伤患者,采取早期切削痂植皮以及皮瓣移植减轻患者的疼痛时间,而且安全性好,有利于患者的早日康复。%Objective To investigate the electrical burns, electrical contact treatment and clinical experience in deep burns. Methods 5 cases of electrical injury in our hospital, electrical contact depth of burn patients take the early cutting eschar and flap transplantation therapy. Results The patients with electrical burns patients’ generally faster recovery, no infection, and wound recovery were faster. Conclusion Electrical burns, electrical contact depth of burn patients take the early cutting eschar and flap graft to relieve the patient's pain, and security, and is conducive to the patient's speedy recovery.

  19. Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations.

    Science.gov (United States)

    Bullock, Robin J; Aggarwal, Srijan; Perkins, Robert A; Schnabel, William

    2017-04-01

    In the event of a marine oil spill in the Arctic, government agencies, industry, and the public have a stake in the successful implementation of oil spill response. Because large spills are rare events, oil spill response techniques are often evaluated with laboratory and meso-scale experiments. The experiments must yield scalable information sufficient to understand the operability and effectiveness of a response technique under actual field conditions. Since in-situ burning augmented with surface collecting agents ("herders") is one of the few viable response options in ice infested waters, a series of oil spill response experiments were conducted in Fairbanks, Alaska, in 2014 and 2015 to evaluate the use of herders to assist in-situ burning and the role of experimental scale. This study compares burn efficiency and herder application for three experimental designs for in-situ burning of Alaska North Slope crude oil in cold, fresh waters with ∼10% ice cover. The experiments were conducted in three project-specific constructed venues with varying scales (surface areas of approximately 0.09 square meters, 9 square meters and 8100 square meters). The results from the herder assisted in-situ burn experiments performed at these three different scales showed good experimental scale correlation and no negative impact due to the presence of ice cover on burn efficiency. Experimental conclusions are predominantly associated with application of the herder material and usability for a given experiment scale to make response decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Study of the behavior of actinides continuously recycled in a hard spectrum reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, P.E.

    1980-12-01

    The behavior of actinides continuously recycled through the central region of an EBR-II type reactor was studied. Such a reactor would convert long-lived nuclear wastes to short-lived isotopes, and simultaneously produce useful power. This process is proposed as an alternative to the geological isolation of long-lived actinide wastes. A driver region of 50% U-235 enriched fuel provided a nearly-constant spectrum and flux that was extremely hard compared to standard LMFBRs. This resulted in a high fission-to-capture ratio for most isotopes. The original actinide fuel was the discharge from a LWR, cooled for two years, with 99.9% of the uranium and plutonium removed by chemical processing. Comparison was made between removal of both Pu and U and removal of only U in subsequent cycles. The latter case resulted in substantial quantities of trans-plutonics burned per cycle.

  1. Survey of whole air data from the second airborne Biomass Burning and Lightning Experiment using principal component analysis

    Science.gov (United States)

    Choi, Yunsoo; Elliott, Scott; Simpson, Isobel J.; Blake, Donald R.; Colman, Jonah J.; Dubey, Manvendra K.; Meinardi, Simone; Rowland, F. Sherwood; Shirai, Tomoko; Smith, Felisa A.

    2003-03-01

    Hydrocarbon and halocarbon measurements collected during the second airborne Biomass Burning and Lightning Experiment (BIBLE-B) were subjected to a principal component analysis (PCA), to test the capability for identifying intercorrelated compounds within a large whole air data set. The BIBLE expeditions have sought to quantify and understand the products of burning, electrical discharge, and general atmospheric chemical processes during flights arrayed along the western edge of the Pacific. Principal component analysis was found to offer a compact method for identifying the major modes of composition encountered in the regional whole air data set. Transecting the continental monsoon, urban and industrial tracers (e.g., combustion byproducts, chlorinated methanes and ethanes, xylenes, and longer chain alkanes) dominated the observed variability. Pentane enhancements reflected vehicular emissions. In general, ethyl and propyl nitrate groupings indicated oxidation under nitrogen oxide (NOx) rich conditions and hence city or lightning influences. Over the tropical ocean, methyl nitrate grouped with brominated compounds and sometimes with dimethyl sulfide and methyl iodide. Biomass burning signatures were observed during flights over the Australian continent. Strong indications of wetland anaerobics (methane) or liquefied petroleum gas leakage (propane) were conspicuous by their absence. When all flights were considered together, sources attributable to human activity emerged as the most important. We suggest that factor reductions in general and PCA in particular may soon play a vital role in the analysis of regional whole air data sets, as a complement to more familiar methods.

  2. Actinide cation-cation complexes

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Nancy Jane [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+•UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+•UO22+, NpO2+•Th4+, PuO2+•UO22+, and PuO2+•Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ~0.8 M-1.

  3. Prehospital cooling of severe burns: Experience of the Emergency Department at Edendale Hospital, KwaZulu-Natal, South Africa.

    Science.gov (United States)

    Fiandeiro, D; Govindsamy, J; Maharaj, R C

    2015-06-01

    Early cooling with 10 - 20 minutes of cool running water up to 3 hours after a burn has a direct impact on the depth of the burn and therefore on the clinical outcome of the injury. An assessment of the early cooling of burns is essential to improve this aspect of burns management. To assess the rates and adequacy of prehospital cooling received by patients with severe burns before presentation to the Emergency Department (ED) at Edendale Hospital, Pietermaritzburg, South Africa. Patients with inadequate prehospital cooling who presented to the ED within 3 hours were also identified. A retrospective reviewof the burns database for all the patients with severe burns admitted from the ED at Edendale Hospital from September 2012 to August 2013 was undertaken. Demographic details, characteristics and timing of the burns, and presentation were correlated with burn cooling. Ninety patients were admitted with severe burns. None received sufficient cooling of their burns, 25.6% received cooling of inadequate duration, and 32.3% arrived at the ED within 3 hours after the burn with either inadequate or no cooling. The median time to presentation to the ED after the burn was 260 minutes. Appropriate cooling of severe burns presenting to Edendale Hospital is inadequate. Education of the community and prehospital healthcare workers about the iiportance of early appropriate cooling of severe burns is required. Many patients would benefit from cooling of their burns in the ED, and facilities should be provided for this vital function.

  4. Experiencia en el tratamiento de quemaduras de cuero cabelludo Scalp burns treatment experience

    Directory of Open Access Journals (Sweden)

    N. Pereira

    2013-03-01

    Full Text Available El cuero cabelludo es la barrera más externa y más importante del cráneo y del cerebro. Si bien las quemaduras de esta zona son raras, cuando se producen suelen estar causadas por alta tensión eléctrica, fuego, líquidos hirvientes u otras fuentes de calor. El objetivo de este trabajo es presentar una serie de casos de quemaduras de cuero cabelludo tratadas en los últimos 10 años en el Hospital del Trabajador de Santiago (Chile. Se trata de un estudio descriptivo retrospectivo en el que se analizó la información demográfica y terapéutica de los pacientes que requirieron hospitalización al tiempo que se revisó la literatura al respecto. En total se registraron 2.266 consultas por quemaduras en la cabeza, de las cuales 34 fueron del cuero cabelludo y 11 requirieron hospitalización; la mayoría fueron quemaduras eléctricas, 4 casos y por fuego, otros 4 casos. En el tratamiento, destacó el uso en 1 caso de colgajo libre asociado a colgajos locales de avance. En el tratamiento de las secuelas se utilizaron expansores y posteriormente colgajos locales de avance. Sólo una pequeña parte de los pacientes que consultan por quemaduras en la cabeza corresponden a quemaduras del cuero cabelludo. La mayoría son tratadas de forma ambulatoria y no requieren acciones mayores. Los pacientes con quemaduras eléctricas suelen requerir tratamientos más agresivos. Para el tratamiento de las secuelas son preferibles los expansores y los colgajos de avance.The scalp is the most external and important barrier of the skull and brain. Burns in this area are rare, but often caused by high voltage injuries, fire, liquid or other heat sources. The aim of this paper is to present a series of cases of scalp burns of the last 10 years in the Hospital del Trabajador de Santiago (Chile. This is a retrospective and descriptive study. We analyzed the demography and treatment of patients requiring hospitalization and we reviewed the literature. There were 2

  5. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    Science.gov (United States)

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September-31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p > 0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN

  6. One-electron physics of the actinides

    Science.gov (United States)

    Toropova, A.; Marianetti, C. A.; Haule, K.; Kotliar, G.

    2007-10-01

    We present a detailed analysis of the one-electron physics of the actinides. Various linear muffin-tin orbital basis sets are analyzed in order to determine a robust bare Hamiltonian for the actinides. The hybridization between f and spd states is compared with the f-f hopping in order to understand the Anderson-like and Hubbard-like contributions to itineracy in the actinides. We show that both contributions decrease strongly as one moves from the light actinides to the heavy actinides, while the Anderson-like contribution dominates in all cases. A real-space analysis of the band structure shows that nearest-neighbor hopping dominates the physics in these materials. Finally, we discuss the implications of our results to the delocalization transition as a function of atomic number across the actinide series.

  7. Potential radiation dose from eating fish exposed to actinide contamination

    Energy Technology Data Exchange (ETDEWEB)

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K. (Battelle Pacific Northwest Labs., Richland, WA (USA))

    1981-04-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-pond, a nuclear waste pond on the Hanford Site. It has concentrations of /sup 238/U, /sup 238/Pu, sup(239,240)Pu and /sup 241/Am that are approx. 3 orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-Pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (of the order of 1 lb) of these fillets every day for 70 yr. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources.

  8. NMR studies of actinide dioxides

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Y. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)], E-mail: tokunaga.yo@jaea.go.jp; Sakai, H.; Fujimoto, T.; Kambe, S.; Walstedt, R.E.; Ikushima, K.; Yasuoka, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Aoki, D.; Homma, Y. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Haga, Y.; Matsuda, T.D.; Ikeda, S.; Yamamoto, E.; Nakamura, A. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Shiokawa, Y. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nakajima, K.; Arai, Y. [Department of Nuclear Energy System, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Onuki, Y. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2007-10-11

    {sup 17}O NMR measurements have been performed on a series of the actinide dioxides, UO{sub 2}, NpO{sub 2} and PuO{sub 2}. Although the {sup 17}O NMR spectra in these materials are similar at higher temperatures, the low-temperature spectra present are significantly different. In UO{sub 2} we have observed a wide spectrum, forming a rectangular shape below T{sub N}=30 K. In NpO{sub 2}, on the other hand, the spectra broaden rather gradually and exhibit a two-peak structure below T{sub 0}=26 K. In PuO{sub 2}, neither spectrum broadening nor splitting has been observed. We show that these NMR spectra clearly indicate the different nature of the low-temperature magnetic ground states in these actinide compounds.

  9. Moessbauer spectroscopy of actinide intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kalvius, G.M.; Potzel, W.; Moser, J.; Litterst, F.J.; Asch, L.; Zaenkert, J.; Potzel, U.; Kratzer, A.; Wunsch, M. (Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik); Gal, J.

    1985-04-01

    Due to their wider radical extent the 5f electrons may form bands of different width and hybridization in metallic compounds of the light actinides. This leads to a broad spectrum of magnetic properties ranging from the localized magnetism of the lanthanides to the itinerant electron magnetism often found in transition metal compounds. Also, the influence of the crystalline electric field tends to be more pronounced than in rare earth compounds, but is usually not as dominant as in the 3d series. Magnetic structures and the question of 5f electron delocalization will be reviewed with respect to actinide Moessbauer data and new results will be presented. In particular the influence of applying external pressure will be discussed.

  10. Mossbauer spectroscopy of actinide intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kalvius, G.M.; Potzel, W.; Moser, J.; Litterst, F.J.; Asch, L.; Zankert, J.; Potzel, U.; Kratzer, A.; Wunsch, M.; Gal, J.

    1984-09-01

    Due to their wider radial extend the 5f electrons may form bands of different width and hybridization in metallic compounds of the light actinides. This leads to a broad spectrum of magnetic properties ranging from the localized magnetism of the lanthanides to the itinerant electron magnetism often found in transition metal compounds. Also, the influence of the crystalline electric field tends to be more pronounced than in rare earth compounds, but is usually not as dominant as in the 3d series. Magnetic structures and the question of 5f electron delocalization are reviewed with respet to actinide Moessbauer data and new results are presented. In particular the influence of applying external pressure is discussed. 60 references, 24 figures.

  11. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    neutron irradiation allows to infer energy-integrated neutron cross sections, i.e. ∫₀σ(E)φ(E)dE, where φ(E) is the neutron flux “seen” by the sample. This approach, which is usually defined and led by reactor physicists, is referred to as integral and is the object of this report. These two sources of information, i.e. differential and integral, are complementary and are used by the nuclear physicists in charge of producing the evaluated nuclear data files used by the nuclear community (ENDF, JEFF…). The generation of accurate nuclear data files requires an iterative process involving reactor physicists and nuclear data evaluators. This experimental program has been funded by the ATR National Scientific User Facility (ATR-NSUF) and by the DOE Office of Science in the framework of the Recovery Act. It has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation.

  12. Safe management of actinides in the nuclear fuel cycle: Role of mineralogy

    Science.gov (United States)

    Ewing, Rodney C.

    2011-02-01

    During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239Pu and 237Np). There are two basic strategies for the disposition of these heavy elements: (1) to "burn" or transmute the actinides using nuclear reactors or accelerators; (2) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A 2B 2O 7 (A = rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms.

  13. Building a multidisciplinary team for burn treatment - Lessons learned from the Montreal tendon transfer experience.

    Science.gov (United States)

    Karam, E; Lévesque, M C; Jacquemin, G; Delure, A; Robidoux, I; Laramée, M T; Odobescu, A; Harris, P G; Danino, A M

    2014-03-31

    Multidisciplinary teams (MDTs) represent a recognized component of care in the treatment of complex conditions such as burns. However, most institutions do not provide adequate support for the formation of these teams. Furthermore, the majority of specialists lack the managerial skills required to create a team and have difficulties finding the proper tools. Our objective is to provide an insight for health care professionals, who wish to form a MDT for burn treatment, on the challenges that are likely to be faced, and to identify key elements that may facilitate the establishment of such a project. The setting for this was a plastic surgery department and rehabilitation center at a national reference center. A qualitative analysis was performed on all correspondences related to our tetraplegia project, from 2006 to 2008. To guide our thematic analysis, we used a form of systems theory known as the complexity theory. The qualitative analysis was performed using the NVivo software (Version 8.0 QSR International Melbourne, Australia). Lastly, the data was organized in chronologic order. Three main themes emerged from the results: knowledge acquisition, project organizational setup and project steps design. These themes represented respectively 24%, 50% and 26% of all correspondences. Project steps design and knowledge acquisition correspondences increased significantly after the introduction of the mentor team to our network. We conclude that an early association with a mentor team is beneficial for the establishment of a MDT.

  14. Building a multidisciplinary team for burn treatment – Lessons learned from the Montreal tendon transfer experience

    Science.gov (United States)

    Karam, E.; Lévesque, M.C.; Jacquemin, G.; Delure, A.; Robidoux, I.; Laramée, M.T.; Odobescu, A.; Harris, P.G..; Danino, A.M.

    2014-01-01

    Summary Multidisciplinary teams (MDTs) represent a recognized component of care in the treatment of complex conditions such as burns. However, most institutions do not provide adequate support for the formation of these teams. Furthermore, the majority of specialists lack the managerial skills required to create a team and have difficulties finding the proper tools. Our objective is to provide an insight for health care professionals, who wish to form a MDT for burn treatment, on the challenges that are likely to be faced, and to identify key elements that may facilitate the establishment of such a project. The setting for this was a plastic surgery department and rehabilitation center at a national reference center. A qualitative analysis was performed on all correspondences related to our tetraplegia project, from 2006 to 2008. To guide our thematic analysis, we used a form of systems theory known as the complexity theory. The qualitative analysis was performed using the NVivo software (Version 8.0 QSR International Melbourne, Australia). Lastly, the data was organized in chronologic order. Three main themes emerged from the results: knowledge acquisition, project organizational setup and project steps design. These themes represented respectively 24%, 50% and 26% of all correspondences. Project steps design and knowledge acquisition correspondences increased significantly after the introduction of the mentor team to our network. We conclude that an early association with a mentor team is beneficial for the establishment of a MDT. PMID:25249840

  15. Experiments and theoretical approaches on the burning behaviors of single n-heptane droplet

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Hyun Kyu [Kongju National University, Cheonan (Korea, Republic of)

    2015-05-15

    This study was conducted to improve the theoretical prediction of the burning characteristics of an n-heptane droplet by comparing them with experimental results. To achieve this, numerical approaches were conducted by assuming that the droplet combustion can be described by both quasi-steady behavior for the region between the droplet surface and the flame interface, and transient behavior for the region between the flame interface and ambient surrounding. Comparisons were considered for droplet diameter (d{sub t}), flame diameter (d{sub f}), flame standoff ratio (FSR), and viscous drag induced fluxes which are Stefan flux and thermophoretic flux for various initial droplet diameter (d{sub 0}) and oxygen (O{sub 2}) concentration conditions. It was revealed that the flame diameter (d{sub f}) and flame standoff ratio (FSR) initially increase dramatically and approach quasi-steady behavior within the observation period, and the flame standoff ratio (FSR) increases a little with the initial droplet diameter (d{sub 0}) both experimentally and theoretically. The value of flame diameter (d{sub f}) decreases from its maximum value when oxygen (O{sub 2}) concentration is increased from a value of 18% to 40%. The burning rate (K) constant becomes higher as the oxygen (O{sub 2}) concentration increases since the increase of oxygen (O{sub 2}) concentration produces a higher maximum flame temperature (T{sub f}) which enhances the effective thermo-physical properties of the gas-phase bounded by droplet and flame front.

  16. Prevention and treatment of gastrointestinal dysfunction following severe burns:A summary of recent 30-year clinical experience

    Institute of Scientific and Technical Information of China (English)

    Shi-Chu Xiao; Shi-Hui Zhu; Zhao-Fan Xia; Wei Lu; Guang-Qing Wang; Dao-Feng Ben; Guang-Yi Wang; Da-Sheng Cheng

    2008-01-01

    AIM:To sum up the recent 30-year experience in the prevention and treatment of gastrointestinal dysfunction in severe burn patients,and propose practicable guidelines for the prevention and treatment of gastrointestinal (GI) dysfunction.METHODS= From 1980 to 2007,a total of 219 patients with large area and extraordinarily large area burns (LAB) were admitted,who were classified into three stages according the therapeutic protocols used at the time:Stage 1 from 1980 to 1989,stage 2 from 1990 to 1995,and stage 3 from 1996 to 2007.The occurrence and mortality of GI dysfunction in patients of the three stages were calculated and the main causes were analyzed.RESULTS:The occurrence of stress ulcer in patients with LAB was 8.6% in stage 1,which was significantly lower than that in stage 1 (P < 0.05).No massive hemorrhage from severe stress ulcer and enterogenic infections occurred in stages 2 and 3.The occurrence of abdominal distension and stress ulcer and the mortality in stage 3 patients with extraordinarily LAB was 7.1%,21.4% and 28.5%,respectively,which were significantly lower than those in stage 1 patients (P < 0.05 or P < 0.01),and the occurrence of stress ulcer was also significantly lower than that in stage 2 patients (P < 0.05).CONCLUSION:Comprehensive fluid resuscitation,early excision of necrotic tissue,staged food ingestion,and administration of specific nutrients are essential strategies for preventing gastrointestinal complications and lowering mortality in severely burned patients.

  17. Status of measurements of fission neutron spectra of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Drapchinsky, L.; Shiryaev, B. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    The report considers experimental and theoretical works on studying the energy spectra of prompt neutrons emitted in spontaneous fission and neutron induced fission of Minor Actinides. It is noted that neutron spectra investigations were done for only a small number of such nuclei, most measurements, except those of Cf-252, having been carried out long ago by obsolete methods and imperfectapparatus. The works have no detailed description of experiments, analysis of errors, detailed numerical information about results of experiments. A conclusion is made that the available data do not come up to modern requirements. It is necessary to make new measurements of fission prompt neutron spectra of transuranium nuclides important for the objectives of working out a conception of minor actinides transmutation by means of special reactors. (author)

  18. Status of measurements of fission neutron spectra of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Drapchinsky, L.; Shiryaev, B. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    The report considers experimental and theoretical works on studying the energy spectra of prompt neutrons emitted in spontaneous fission and neutron induced fission of Minor Actinides. It is noted that neutron spectra investigations were done for only a small number of such nuclei, most measurements, except those of Cf-252, having been carried out long ago by obsolete methods and imperfectapparatus. The works have no detailed description of experiments, analysis of errors, detailed numerical information about results of experiments. A conclusion is made that the available data do not come up to modern requirements. It is necessary to make new measurements of fission prompt neutron spectra of transuranium nuclides important for the objectives of working out a conception of minor actinides transmutation by means of special reactors. (author)

  19. Overview of Asian Biomass Burning and Dust Aerosols Measured during the Dongsha Experiment in the Spring of 2010

    Science.gov (United States)

    Lin, N.; Tsay, S.; Wang, S.; Sheu, G.; Chi, K.; Lee, C.; Wang, J.

    2010-12-01

    The international campaign of Dongsha Experiment was conducted in the northern SE Asian region during March-May 2010. It is a pre-study of the Seven South East Asian Studies (7SEAS) which seeks to perform interdisciplinary research in the field of aerosol-meteorology and climate interaction in the Southeast Asian region, particularly for the impact of biomass burning on cloud, atmospheric radiation, hydrological cycle, and regional climate. Participating countries include Indonesia, Malaysia, Philippines, Singapore, Thailand, Taiwan, Vietnam, and USA (NASA, NRL, and NOAA). The main goals of Dongsha Experiment are (1) to develop the Dongsha Island (about 2 km2, 20°42'52" N, 116°43'51" E) in the South China Sea as an atmospheric observing platform of atmospheric chemistry, radiation and meteorological parameters, and (2) to characterize the chemical and physical properties of biomass burning aerosols in the northern SE Asian region. A monitoring network for ground-based measurements includes the Lulin Atmospheric Background Station (2,862 m MSL) in central Taiwan, Hen-Chun (coastal) in the very southern tip of Taiwan, Dongsha Island in South China Sea, Da Nang (near coastal region) in central Vietnam, and Chiang Mai (about 1,400 m, MSL) in northern Thailand. Besides, the Mobile Air Quality Station of Taiwan EPA and NASA/COMMIT were shipped to Dongsha Island for continuous measurements of CO, SO2, NOx, O3, and PM10, and aerosol optical and vertical profiles. Two Intensive Observation Periods (IOPs) for aerosol chemistry were conducted during 14-30 March and 10-20 April 2010, respectively. Ten aerosol samplers were deployed for each station for characterizing the compositions of PM2.5/PM10 (some for TSP) including water-soluble ions, metal elements, BC/OC, Hg and dioxins. Sampling tubes of VOCs were also deployed. Concurrent measurements with IOP-1, Taiwanese R/V also made a mission to South China Sea during 14-19 March. Enhanced sounding at Dongsha Island was

  20. Prompt fission neutron spectrum of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  1. Calculated Atomic Volumes of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  2. Estimation of aerosol transport from biomass burning areas during the SCAR-B experiment

    Science.gov (United States)

    Trosnikov, Igor V.; Nobre, Carlos A.

    1998-12-01

    A transport model for the estimation of tracers spreading from biomass burning areas has been developed on the basis of the semi-Lagrangian technique. The model consists of a three-dimensional Lagrangian form transport equation for tracers and uses the quasi-monotone local cubic-spline interpolation for calculation of unknown values at irregular points. A mass-conserving property of the model is based on the flux-corrected transport method using the algorithm of Priestley. The transport of the smoke particles from Amazonia was simulated for the period from August 20 to 29, 1995. During this period the air mass located below 2 km moved to the south and carried the smoke particles until 30°S.

  3. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  4. Actinide ion sensor for pyroprocess monitoring

    Science.gov (United States)

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  5. Development of Metallic Fuels for Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Steven Lowe [Idaho National Laboratory; Fielding, Randall Sidney [Idaho National Laboratory; Benson, Michael Timothy [Idaho National Laboratory; Chichester, Heather Jean MacLean [Idaho National Laboratory; Carmack, William Jonathan [Idaho National Laboratory

    2015-09-01

    and 60%. In general, the performance of all of these substantially disparate metallic fuel alloys has been observed to be excellent, and their irradiation behaviors are generally consistent with historic norms for metallic fuels without minor actinide additions and having lower Pu or Zr contents. Future work is being undertaken with a view toward increasing the burnup potential of metallic fuels even more. Design innovations under investigation include: 1) lowering the fuel smear density in order to accommodate more swelling, 2) annular fuel geometry to eliminate the need for a sodium bond, 3) minor alloy additions to stabilize lanthanide fission products inside the fuel and prevent their transport to the cladding where they can participate in fuel-cladding chemical interaction (FCCI), and 4) coatings/liners on the cladding inner surface to mitigate FCCI and enable higher temperature operation. This paper will present the current state of development of metallic fuels for actinide transmutation in the US. Highlights will include recent results from metallic fuel casting experiments, experiments to identify alloy additions to immobilize lanthanide fission products, and postirradiation examinations of annular metallic fuels at low burnup.

  6. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: From laboratory studies to large-scale field experiments

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-01-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF’s laboratories in Trondheim, field research station on Svalbard and in broken ice (70–90% ice cover......) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering...... process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool...

  7. [The pain from burns].

    Science.gov (United States)

    Latarjet, J

    2002-03-01

    The painful events associated with the treatment of a severe burn can, because of their long-lasting and repetitive characteristics, be one of the most excruciating experiences in clinical practice. Moreover, burn pain has been shown to be detrimental to burn patients. Although nociception and peripheral hyperalgesia are considered the major causes of burn pain, the study of more hypothetical mechanisms like central hyperalgesia and neuropathic pain may lead to a better understanding of burn pain symptoms and to new therapeutic approaches. Continuous pain and intermittent pain due to therapeutic procedures are two distinct components of burn pain. They have to be evaluated and managed separately. Although continuous pain is by far less severe than intermittent pain, the treatment is, in both cases, essentially pharmacological relying basically on opioids. Because of wide intra- and inter-individual variations, protocols will have to leave large possibilities of adaptation for each case, systematic pain evaluation being mandatory to achieve the best risk/benefit ratio. Surprisingly, the dose of medication decreases only slowly with time, a burn often remaining painful for long periods after healing. Non pharmacological treatments are often useful and sometimes indispensable adjuncts; but their rationale and their feasibility depends entirely on previous optimal pharmacological control of burn pain. Several recent studies show that burn pain management is inadequate in most burn centres.

  8. Photofission of actinide and pre-actinide nuclei in the quasideuteron and delta energy regions

    CERN Document Server

    Berman, B L; Cole, P L; Dodge, W R; Feldman, G; Sanabria, J C; Kolb, N; Pywell, R E; Vogt, J; Nedorezov, V; Sudov, A; Kezerashvili, G Ya

    1999-01-01

    The photofission cross sections for the actinide nuclei sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 3 sup , sup 2 sup 3 sup 5 sup , sup 2 sup 3 sup 8 U, and sup 2 sup 3 sup 7 Np have been measured from 68 to 264 MeV and those for the pre-actinide nuclei sup 1 sup 9 sup 7 Au and sup N sup A sup T Pb from 122 to 222 MeV at the Saskatchewan Accelerator Laboratory, using monoenergetic tagged photons and novel parallel-plate avalanche detectors for the fission fragments. The aim of the experiment was to obtain a comprehensive and self-consistent data set and to investigate previous anomalous results in this energy region. The fission probability for transuranic nuclei is expected to be close to unity here. However, important discrepancies have been confirmed for sup 2 sup 3 sup 7 Np and sup 2 sup 3 sup 2 Th, compared with sup 2 sup 3 sup 8 U, which have serious implications for the inferred total photoabsorption strengths, and hence call into question the 'Universal Curve' for photon absorption at these energies. High-s...

  9. Burns and epilepsy.

    Science.gov (United States)

    Berrocal, M

    1997-01-01

    This is a report of the first descriptive analytic study of a group of 183 burn patients, treated in the Burn Unit at the University Hospital of Cartagena, Colombia during the period since January 1985 until December 1990. There is presented experience with the selected group of 24 patients in whom the diagnosis of burn was associated with epilepsy. There is also analysed and described the gravity of the scars sequels, neurological disorders, the complication of the burn and an impact of this problem on the patient, his (her) family and the community. It is very important to report that there was found Neurocisticercosis in 66.6% of the group of burn patients with epilepsy, and it is probably the first risk factor of burn in this group.

  10. A qualitative study of teachers' experiences of a school reintegration programme for young children following a burn injury.

    Science.gov (United States)

    Wilson, Hannah M N; Gaskell, Sarah L; Murray, Craig D

    2014-11-01

    School reintegration programmes provide support to both children absent from school as a result of a serious health problem and their teachers, but little is known regarding their efficacy, or the impact of the situation on teachers. This qualitative study explored the experience of primary school teachers who were involved in a school reintegration programme, following a burn injury to a child in their class. Data was collected using semi-structured interviews with four primary school teachers. Transcripts were analysed using interpretative phenomenological analysis. The findings indicated that participants were positive regarding the programme, but detailed aspects which could be improved, for example better communication before the child's return. They discussed their fears and concerns, including a strong need to protect the child from further harm. Implications of this study include the need to provide adequate support to teachers in similar positions, and further develop school reintegration programmes to best facilitate the child's return to school.

  11. Ionic Interactions in Actinide Tetrahalides

    Science.gov (United States)

    Akdeniz, Z.; Karaman, A.; Tosi, M. P.

    2001-05-01

    We determine a model of the ionic interactions in AX 4 compounds (where A is an atom in the actinide series from Th to Am and X = F, Cl, Br or I) by an analysis of data on the static and dynamic structure of their molecular monomers. The potential energy function that we adopt is taken from earlier work on rare-earth trihalides [Z. Akdeniz, Z. Q q e k and M. P. Tosi, Z. Naturforsch. 55a, 861 (2000)] and in particular allows for the electronic polarizability of the actinide ion. This polarizability quantitatively determines the antisymmetric-bending vibrational mode, but its magnitude remains compatible with a symmetric tetrahedral shape of the molecule at equilibrium. The fluorides have an especially high degree of ionic character, and the interionic-force parameters for each halide of the U, Np, Pu and Am series show regular trends, suggesting that extrapolations to the other transuranic-element halides may usefully be made. The Th compounds show some deviations from these trends, and the interionic-force model that we determine for ThCl4 differs somewhat from that obtained in a previous study. We therefore return on the evaluation of the relative stability of charged oligomers of ThCl4 and ZrCl4 and find confirmation of our earlier results on this problem.

  12. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    Science.gov (United States)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  13. Why Do Emergency Medicine Residents Experience Burn Out? A qualitative study

    Directory of Open Access Journals (Sweden)

    Atefe Kamaloo

    2017-06-01

    Full Text Available Objective: Emergency medicine residents are a high–risk group for burnout syndrome. This was a qualitative study with content analysis on emergency medical residents with 2 aims: evaluating the incidence of occupational burnout syndrome and identifying the points of view and attitudes of emergency medical residents about factors related to occupational burnout syndrome.Method: For this study, 2 sessions of focus group discussions were set up at Imam Khomeini hospital affiliated to Tehran University of Medical Sciences. Each session took 90 minutes, and 20 emergency medicine residents in their first or second year of emergency medicine residency participated in the sessions. Data were coded   by MAXQDA10 software.Results: Data were categorized in 4 themes as follow: (1 the characteristics of emergency medicine; (2 ambiguity in residents’ duties; (3 educational planning; and (4 careers.Data on the proposed solutions by residents were analyzed and coded in 3 groups including (1 changes in personal life; (2 arrangement in shifts; and  (3 educational issues.Conclusion: According to findings of this qualitative study, most of emergency medicine residents have experienced exhaustion sometime during the course of their residency. Psychological supports may help the residents to cope with their career difficulties and probable burn out.

  14. All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry

    Science.gov (United States)

    Tugov, A. N.; Ryabov, G. A.; Shtegman, A. V.; Ryzhii, I. A.; Litun, D. S.

    2016-07-01

    This article presents the results of the research carried out at the All-Russia Thermal Engineering Institute (VTI) aimed at using saline coal, municipal solid waste and bark waste, sunflower husk, and nesting/ manure materials from poultry farms. The results of saline coal burning experience in Troitsk and Verkhny Tagil thermal power plants (TPP) show that when switching the boiler to this coal, it is necessary to take into account its operating reliability and environmental safety. Due to increased chlorine content in saline coal, the concentration of hydrogen chloride can make over 500 mg/m3. That this very fact causes the sharp increase of acidity in sludge and the resulting damage of hydraulic ash removal system equipment at these power stations has been proven. High concentration of HCl can trigger damage of the steam superheater due to high-temperature corrosion and result in a danger of low-temperature corrosion of air heating surfaces. Besides, increased HCl emissions worsen the environmental characteristics of the boiler operation on the whole. The data on waste-to-energy research for municipal solid waste (MSW) has been generalized. Based on the results of mastering various technologies of MSW thermal processing at special plants nos. 2 and 4 in Moscow, as well as laboratory, bench, and industrial studies, the principal technical solutions to be implemented in the modern domestic thermal power plant with the installed capacity of 24 MW and MSW as the primary fuel type has been developed. The experience of the VTI in burning various kinds of organic waste—bark waste, sunflower husk, and nesting/manure materials from poultry farms—has been analyzed.

  15. Development of a remote bushing for actinide vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.; Ramsey, W.G.; Johnson, F.M. [and others

    1996-12-31

    The Savannah River Site (SRS) and the Savannah River Technology Center (SRTC) are combining their existing experience in handling highly radioactive, special nuclear materials with commercial glass fiberization technology in order to assemble a small vitrification system for radioactive actinide solutions. The vitrification system or {open_quotes}brushing{close_quotes}, is fabricated from platinum-rhodium alloy and is based on early marble remelt fiberization technology. Advantages of this unique system include its relatively small size, reliable operation, geometrical safety (nuclear criticality), and high temperature capability. The bushing design should be capable of vitrifying a number of the actinide nuclear materials, including solutions of americium/curium, neptunium, and possibly plutonium. State of the art, mathematical and oil model studies are being combined with basic engineering evaluations to verify and improve the thermal and mechanical design concepts.

  16. Burning high-level TRU waste in fusion fission reactors

    Science.gov (United States)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  17. Actinides transmutation - a comparison of results for PWR benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Claro, Luiz H. [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil)], e-mail: luizhenu@ieav.cta.br

    2009-07-01

    The physical aspects involved in the Partitioning and Transmutation (P and T) of minor actinides (MA) and fission products (FP) generated by reactors PWR are of great interest in the nuclear industry. Besides these the reduction in the storage of radioactive wastes are related with the acceptability of the nuclear electric power. From the several concepts for partitioning and transmutation suggested in literature, one of them involves PWR reactors to burn the fuel containing plutonium and minor actinides reprocessed of UO{sub 2} used in previous stages. In this work are presented the results of the calculations of a benchmark in P and T carried with WIMSD5B program using its new cross sections library generated from the ENDF-B-VII and the comparison with the results published in literature by other calculations. For comparison, was used the benchmark transmutation concept based in a typical PWR cell and the analyzed results were the k{infinity} and the atomic density of the isotopes Np-239, Pu-241, Pu-242 and Am-242m, as function of burnup considering discharge of 50 GWd/tHM. (author)

  18. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  19. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    OpenAIRE

    Cassayre, Laurent; Soucek, Pavel; Mendes, Eric; Malmbeck, Rikard; Nourry, Christophe; Eloirdi, Rachel; Glatz, Jean-Paul

    2011-01-01

    Pyrochemical processes in molten LiCl–KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide–aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorina...

  20. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments

    Science.gov (United States)

    Park, Seung Shik; Yu, Jaemyeong

    2016-07-01

    PM2.5 samples from biomass burning (BB) emissions of three types - rice straw (RS), pine needles (PN), and sesame stems (SS) - were collected through laboratory-controlled combustion experiments and analyzed for the mass, organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water soluble inorganic species (Na+, NH4+, K+, Ca2+, Mg2+, Cl-, NO3-, SO42-, and oxalate). The combustion experiments were carried out at smoldering conditions. Water-soluble HULIS in BB samples was isolated using a one-step solid phase extraction method, followed by quantification with a total organic carbon analyzer. This study aims to explore chemical and light absorption characteristics of HULIS from BB emissions. The contributions of HULIS (=1.94 × HULIS-C) to PM2.5 emissions were observed to be 29.5 ± 2.0, 15.3 ± 3.1, and 25.8 ± 4.0%, respectively, for RS, PN, and SS smoke samples. Contributions of HULIS-C to OC and WSOC for the RS, PN, and SS burning emissions were 0.26 ± 0.03 and 0.63 ± 0.05, 0.15 ± 0.04 and 0.36 ± 0.08, and 0.29 ± 0.08 and 0.51 ± 0.08, respectively. Light absorption by the water extracts from BB aerosols exhibited strong wavelength dependence, which is characteristic of brown carbon spectra with a sharply increasing absorption as wavelength decreases. The average absorption Ångström exponents (AAE) of the water extracts (WSOC) fitted between wavelengths of 300-400 nm were 8.3 (7.4-9.0), 7.4 (6.2-8.5), and 8.0 (7.1-9.3) for the RS, PN, and SS burning samples, which are comparable to the AAE values of BB samples reported in previous publications (e.g., field and laboratory chamber studies). The average mass absorption efficiencies of WSOC measured at 365 nm (MAE365) were 1.37 ± 0.23, 0.86 ± 0.09, and 1.38 ± 0.21 m2/gṡC for RS, PN, and SS burning aerosols, respectively. Correlations of total WSOC, hydrophilic WSOC (= total WSOC-HULIS-C), and HULIS-C concentrations in solution with the light

  1. AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report

    Energy Technology Data Exchange (ETDEWEB)

    William Carmack; Randy D. Lee; Pavel Medvedev; Mitch Meyer; Michael Todosow; Holly B. Hamilton; Juan Nino; Simon Philpot; James Tulenko

    2005-06-01

    The U.S. Advanced Fuel Cycle Program and the Atomic Energy Canada Ltd (AECL) seek to develop and demonstrate the technologies needed to minimize the overall Pu and minor actinides present in the light water reactor (LWR) nuclear fuel cycles. It is proposed to reuse the Pu from LWR spent fuel both for the energy it contains and to decrease the hazard and proliferation impact resulting from storage of the Pu and minor actinides. The use of fuel compositions with a combination of U and Pu oxide (MOX) has been proposed as a way to recycle Pu and/or minor actinides in LWRs. It has also been proposed to replace the fertile U{sup 238} matrix of MOX with a fertile-free matrix (IMF) to reduce the production of Pu{sup 239} in the fuel system. It is important to demonstrate the performance of these fuels with the appropriate mixture of isotopes and determine what impact there might be from trace elements or contaminants. Previous work has already been done to look at weapons-grade (WG) Pu in the MOX configuration [1][2] and the reactor-grade (RG) Pu in a MOX configuration including small (4000 ppm additions of Neptunium). This program will add to the existing database by developing a wide variety of MOX fuel compositions along with new fuel compositions called inert-matrix fuel (IMF). The goal of this program is to determine the general fabrication and irradiation behavior of the proposed IMF fuel compositions. Successful performance of these compositions will lead to further selection and development of IMF for use in LWRs. This experiment will also test various inert matrix material compositions with and without quantities of the minor actinides Americium and Neptunium to determine feasibility of incorporation into the fuel matrices for destruction. There is interest in the U.S. and world-wide in the investigation of IMF (inert matrix fuels) for scenarios involving stabilization or burn down of plutonium in the fleet of existing commercial power reactors. IMF offer the

  2. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  3. The patient–body relationship and the "lived experience" of a facial burn injury: a phenomenological inquiry of early psychosocial adjustment

    Directory of Open Access Journals (Sweden)

    McLean LM

    2015-08-01

    Full Text Available Loyola M McLean,1–3 Vanessa Rogers,3–4 Rachel Kornhaber,5–7 Marie-Therese Proctor,8 Julia Kwiet,3–4 Jeffrey Streimer,3–4 John Vanderord6 1Brain and Mind Centre and Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; 2Westmead Psychotherapy Program, Discipline of Psychiatry, Sydney Medical School, University of Sydney and Western Sydney Local Health District, Parramatta, NSW, Australia; 3Consultation-Liaison Psychiatry, Royal North Shore Hospital, Sydney, NSW, Australia; 4Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; 5School of Health Sciences, Faculty of Health, University of Tasmania, Alexandria, NSW, Australia; 6Severe Burns Injury Unit, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia; 7School of Nursing, University of Adelaide, SA, Australia; 8Graduate School of Counselling, Excelsia College, Sydney, NSW, Australia Background: Throughout development and into adulthood, a person's face is the central focus for interpersonal communication, providing an important insight into one's identity, age, sociocultural background, and emotional state. The face facilitates important social, including nonverbal, communication. Therefore, sustaining a severe burn, and in particular a facial burn, is a devastating and traumatizing injury. Burn survivors may encounter unique psychosocial problems and experience higher rates of psychosocial maladjustment, although there may be a number of potentially mediating factors. Objectives: The purpose of this phenomenological study was to examine the early recovery experience of patients with a facial burn. In particular, this study focused on how the injury impacted on the participants’ relationship with their own body and the challenges of early psychosocial adjustment within the first 4 months of sustaining the injury. Methods: In 2011, six adult participants encompassing two females and four males

  4. A literature review of actinide-carbonate mineral interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stout, D.L. [Missouri Univ., Columbia, MO (United States). Dept. of Geological Sciences; Carroll, S.A. [Lawrence Livermore National Lab., CA (United States)

    1993-10-01

    Chemical retardation of actinides in groundwater systems is a potentially important mechanism for assessing the performance of the Waste Isolation Pilot Plant (WIPP), a facility intended to demonstrate safe disposal of transuranic waste. Rigorous estimation of chemical retardation during transport through the Culebra Dolomite, a water-bearing unit overlying the WIPP, requires a mechanistic understanding of chemical reactions between dissolved elements and mineral surfaces. This report represents a first step toward this goal by examining the literature for pertinent experimental studies of actinide-carbonate interactions. A summary of existing models is given, along with the types of experiments on which these models are based. Articles pertaining to research into actinide interactions with carbonate minerals are summarized. Select articles involving trace element-carbonate mineral interactions are also reviewed and may serve as templates for future research. A bibliography of related articles is included. Americium(III), and its nonradioactive analog neodymium(III), partition strongly from aqueous solutions into carbonate minerals. Recent thermodynamic, kinetic, and surface studies show that Nd is preferentially removed from solution, forming a Nd-Ca carbonate solid solution. Neptunium(V) is rapidly removed from solution by carbonates. Plutonium incorporation into carbonates is complicated by multiple oxidation states. Little research has been done on the radium(H) and thorium(IV) carbonate systems. Removal of uranyl ion from solution by calcite is limited to monolayer surface coverage.

  5. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  6. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  7. New Fashioned Book Burning.

    Science.gov (United States)

    Gardner, Robert

    1997-01-01

    Reports on results of a teacher's experiment in book burning as a lesson accompanying the teaching of Ray Bradbury's "Fahrenheit 451." Discusses student reactions and the purpose of or justification for the experimental lesson. (TB)

  8. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  9. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  10. Overview of actinide chemistry in the WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Marian [Los Alamos National Laboratory; Lucchini, Jean - Francois [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Swanson, Juliet [Los Alamos National Laboratory

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important

  11. Scald Burns

    Science.gov (United States)

    Safety Tips & Info Scald Burns Thousands of scald burns occur annually, and ALL are preventable! The two high-risk populations are children under the age ... the single most important factor in preventing scald burns. Increased awareness is the key to scald prevention! ...

  12. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  13. Predictive Modeling in Actinide Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  14. Lattice effects in the light actinides

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, A.C.; Cort, B.; Roberts, J.A.; Bennett, B.I.; Brun, T.O.; Dreele, R.B. von [Los Alamos National Lab., NM (United States); Richardson, J.W. Jr. [Argonne National Lab., IL (United States)

    1998-12-31

    The light actinides show a variety of lattice effects that do not normally appear in other regions of the periodic table. The article will cover the crystal structures of the light actinides, their atomic volumes, their thermal expansion behavior, and their elastic behavior as reflected in recent thermal vibration measurements made by neutron diffraction. A discussion of the melting points will be given in terms of the thermal vibration measurements. Pressure effects will be only briefly indicated.

  15. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  16. Burn Rehabilitation

    Directory of Open Access Journals (Sweden)

    Koray Aydemir

    2011-07-01

    Full Text Available Burn injuries are important in terms of causing serious disability and threatening life. With the establishment of modern burn treatment units and advances in acute care management contributed to a reduced mortality rate over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive burn rehabilitation program. Burn rehabilitation is a process that starts from day of admission and continues for months or sometimes years after the initial event. The term ‘burn rehabilitation’ incorporates the physical, physiological and social aspects of care. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Burn rehabilitation aims to prevent the possible complications, minimalize joint contractures and deformities, increase range of motion, control hypertrophic scarring, achieve the best possible functional capacity and to regain the patients vocational and recreational activities. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 70-7

  17. Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments

    Science.gov (United States)

    Carrico, Christian M.; Petters, Markus D.; Kreidenweis, Sonia M.; Collett, Jeffrey L.; Engling, Guenter; Malm, William C.

    2008-04-01

    In this laboratory closure study, we compare sub- and supersaturated water uptake properties for aerosol particles possessing a range of hygroscopicity. Measurements for water sub-saturated conditions used a hygroscopic tandem differential mobility analyzer (HTDMA). Simultaneously, measurements of particle critical supersaturation were conducted on the same sample stream with a continuous flow cloud condensation nuclei (CCN) counter. For these experiments, we used filter-collected samples of biomass smoke generated in the combustion of two common wildland fire fuels, western sagebrush and Alaskan duff core. Extractions of separate sections of the filter were performed using two solvents, ultrapure water and methanol. The extracts were subsequently atomized, producing aerosols having a range of hygroscopic responses. HTDMA and CCN measurements were fit to a single-parameter model of water uptake, in which the fit parameter is denoted κ, the hygroscopicity parameter. Here, for the four extracts we observed mean values of the hygroscopicity parameter of 0.06 CCN-derived values of κ for each experiment agreed within approximately 20%. Applicability of the κ-parameterization to other multicomponent aerosols relevant to the atmosphere remains to be tested.

  18. Build-up of actinides in irradiated fuel rods of the ET-RR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Naguib, K.; Morcos, H.N

    2001-09-01

    The content concentrations of actinides are calculated as a function of operating reactor regime and cooling time at different percentage of fuel burn-up. The build-up transmutation equations of actinides content in an irradiated fuel are solved numerically .A computer code BAC was written to operate on a PC computer to provide the required calculations. The fuel element of 10% {sup 235}U enrichment of ET-RR-1 reactor was taken as an example for calculations using the BAC code. The results are compared with other calculations for the ET-RR-1 fuel rod. An estimation of fissile build-up content of a proposed new fuel of 20% {sup 235}U enrichment for ET-RR-1 reactor is given. The sensitivity coefficients of build-up plutonium concentrations as a function of cross-section data uncertainties are also calculated.

  19. Tropospheric O3 over Indonesia during biomass burning events measured with GOME (Global Ozone Monitoring Experiment) and compared with backtrajectory calculation

    Science.gov (United States)

    Ladstaetter-Weissenmayer, A.; Meyer-Arnek, J.; Burrows, J. P.

    During the dry season, biomass burning is an important source of ozone precursors for the tropical troposphere, and ozone formation can occur in biomass burning plumes originating in Indonesia and northern Australia. Satellite based GOME (Global Ozone Measuring experiment) data are used to characterize the amount of tropospheric ozone production over this region during the El Niño event in September 1997 compared to a so called "normal" year 1998. Large scale biomass burning occurred over Kalimantan in 1997 caused by the absence of the northern monsoon rains, leading to significant increases in tropospheric ozone. Tropospheric ozone was determined from GOME data using the Tropospheric Excess Method (TEM). Backtrajectory calculations show that Indonesia is influenced every summer by the emissions of trace gases from biomass buring over northern Australia. But in 1997 over Indonesia an increasing of tropospheric ozone amounts can be observed caused by the fires over Indonesia itself as well as by northern Australia. The analysis of the measurements of BIBLE-A (Biomass Burning and Lightning Experiment) and using ATSR (Along the Track Scanning Radiometer) data show differences in the view to the intensity of fire counts and therefore in the amount of the emission of precursors of tropospheric ozone comparing September 1997 to September 1998.

  20. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from garbage burning, wood and dung cooking fires, motorcycles and brick kilns

    Science.gov (United States)

    Jayarathne, T. S.; Rathnayake, C.; Stockwell, C.; Daugherty, K.; Islam, R. M.; Christian, T. J.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Adhikari, S.; Rasmi, M.; Goetz, D.; DeCarlo, P. F.; Saikawa, E.; Yokelson, R. J.; Stone, E. A.

    2016-12-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in-situ characterization of widespread and under-sampled combustion sources in South Asia by determining emission factors (EF) for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon, inorganic ions, trace metals, and organic species. Garbage burning had the highest EF PM2.5 among the sampled sources ranging 7-124 g kg-1, with maximum EFs for garbage burned under higher moisture conditions. Garbage burning emissions contained high concentrations of polycyclic aromatic compounds (PAHs) and heavy metals (Pb, Cd, Zn) that are associated with acute and chronic health effects. Triphenylbenzene and antimony (Sb) were unique to garbage burning are good candidates for tracing this source. Cook stove emissions varied largely by stove technology (traditional mud stove, 3-stone cooking fire, chimney stove, etc.) and biomass fuel (dung, hardwood, twigs, and mixtures thereof). Burning dung consistently emitted more PM2.5 than burning wood and contained characteristic fecal sterols and stanols. Motorcycle emissions were evaluated before and after servicing, which decreased EF PM2.5 from 8.8 g kg-1 to 0.7 g kg-1. Organic species analysis indicated that this reduction in PM2.5­ is largely due to a decrease in emission of motor oil. For brick kilns, the forced draft zig-zag kilns had higher EF PM2.5 (12-19 g kg-1) compared to clamp kilns (8-13 g kg-1) and also exhibited chemical differences. PM2.5 emitted from the zig-zag kiln were mainly OC (7%), sulfate (32%) and uncharacterized chemical components (60%), while clamp kiln emissions were dominated by OC (64%) and ammonium sulfate (36%). The quantitative emission factors developed in this study may be used for source apportionment and to update regional emission inventories.

  1. Ablative fractional photothermolysis for the treatment of hypertrophic burn scars in adult and pediatric patients: a single surgeon's experience.

    Science.gov (United States)

    Khandelwal, Anjay; Yelvington, Miranda; Tang, Xinyu; Brown, Susan

    2014-01-01

    Many patients develop hypertrophic scarring after a burn injury. Numerous treatment modalities have been described and are currently in practice. Photothermolysis or laser therapy has been recently described as an adjunct for management of hypertrophic burn scars. This study is a retrospective chart review of adult and pediatric patients undergoing fractional photothermolysis at a verified burn center examining treatment parameters as well as pre- and post-Vancouver Scar Scale scores. Forty-four patients underwent fractional photothermolysis during the study period of 8 months. Mean pretreatment score was 7.6, and mean posttreatment score was 5.4. The mean decrease in score was 2.2, which was found to be statistically significant. There were no complications. Fractional photothermolysis is a safe and efficacious adjunct therapy for hypertrophic burn scars. Prospective trials would be beneficial to determine optimal therapeutic strategies.

  2. PF-4 actinide disposition strategy

    Energy Technology Data Exchange (ETDEWEB)

    Margevicius, Robert W [Los Alamos National Laboratory

    2010-05-28

    The dwindling amount of Security Category I processing and storage space across the DOE Complex has driven the need for more effective storage of nuclear materials at LANL's Plutonium Facility's (PF-4's) vault. An effort was begun in 2009 to create a strategy, a roadmap, to identify all accountable nuclear material and determine their disposition paths, the PF-4 Actinide Disposition Strategy (PADS). Approximately seventy bins of nuclear materials with similar characteristics - in terms of isotope, chemical form, impurities, disposition location, etc. - were established in a database. The ultimate disposition paths include the material to remain at LANL, disposition to other DOE sites, and disposition to waste. If all the actions described in the document were taken, over half of the containers currently in the PF-4 vault would been eliminated. The actual amount of projected vault space will depend on budget and competing mission requirements, however, clearly a significant portion of the current LANL inventory can be either dispositioned or consolidated.

  3. Surgical treatment of burns sequelae. our experience in the Department of Plastic and Reconstructive Surgery, Pristina, Kosovo.

    Science.gov (United States)

    Buja, Z; Arifi, H; Hoxha, E; Duqi, S

    2015-09-30

    Burn injuries are very frequent in Kosovo, leading to long-lasting physical, functional, aesthetic, psychological and social consequences directly proportional to the time of healing; the longer it takes for the burn wound to heal, the more serious are the sequelae. The objectives of the present study are to review the epidemiological, clinical and therapeutic aspects of burn patients presenting with post-burn sequelae and treated at the Department of Plastic and Reconstructive Surgery, Pristina, Kosovo, from January 2005 until December 2011. This study included 188 patients with burns sequelae. The following variables were considered: age, sex, anatomical location, pathological types, and surgical procedure. There were 82 men (43.6%) and 106 women (56.4%), ranging in age from 0 to 67 years (mean age 33.5 years), most of the patients were children (139 = 73.9%). Burn contractures were observed in 135 (71.8%) patients, hypertrophic scars in 32 (17%), keloids in 10 (5.3%), alopecia in 6 (3.2%), syndactyly in 12 (6.4%), ectropion in 4 (2.1%) and ear deformity in 1 (0.53%) cases. To correct the deformities the most common choice was the Z-plasty technique, used in 31.4% of cases, followed by Z-plasty+full thickness skin grafts in 21.8%, full thickness skin grafts in 18.1%, tissue expansion in 8%, Z-plasty+local flaps in 4.8%, flaps (local, fascio-cutaneous, radial forearm) in 6.9% and direct closure in 6.4%. Timely wound closure and the development of an individual programme for surgical treatment of burns sequelae are crucial for optimal outcomes in patients with burns.

  4. Risk factors for nosocomial infection and mortality in burn patients: 10 years of experience at a university hospital.

    Science.gov (United States)

    Alp, Emine; Coruh, Atilla; Gunay, Galip K; Yontar, Yalcin; Doganay, Mehmet

    2012-01-01

    To evaluate the risk factors for nosocomial infection (NI) and mortality in a university hospital, 10-year data of burn patients were assessed retrospectively. The study was conducted at Erciyes University's Burn Center during 2000 and 2009. The records of 1190 patients were obtained. Overall, 131 (11%) patients had 206 NIs with an incidence density of 14.7 infections/1000 patient days. Burn wound infection (n = 109, 53%) was the most common NI. High (%TBSA burned) and late excision were found to be the most significant risk factors for the development of NI. Pseudomonas aeruginosa was the most frequent causative microorganism. However, the prevalence of multidrug-resistant Acinetobacter baumannii has increased in recent years with a prevalence of 47% in 2009. The carbapenem resistance of P. aeruginosa has decreased in recent years, whereas that of A. baumannii increased and it had a prevalence of 94% in the last year. Conversely, the most important risk factors for mortality were advanced age, high %TBSA and having an underlying disease. Prevention of NI is an important issue in burn units to reduce mortality rates. Early excision and wound closure are important therapeutic approaches for the prevention of burn wound infection.

  5. Minor actinide fission induced by multi-nucleon transfer reaction in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Taieb J.

    2010-03-01

    Full Text Available In the framework of nuclear waste incineration and design of new generation nuclear reactors, experimental data on fission probabilities and on fission fragment yields of minor actinides are crucial to design prototypes. Transfer-induced fission has proven to be an efficient method to study fission probabilities of actinides which cannot be investigated with standard techniques due to their high radioactivity. We report on the preliminary results of an experiment performed at GANIL that investigates fission probabilities with multi-nucleon transfer reactions in inverse kinematics between a 238U beam on a 12C target. Actinides from U to Cm were produced with an excitation energy range from 0 to 30 MeV. In addition, inverse kinematics allowed to characterize the fission fragments in mass and charge. A key point of the analysis resides in the identification of the actinides produced in the different transfer channels. The new annular telescope SPIDER was used to tag the target-like recoil nucleus of the transfer reaction and to determine the excitation energy of the actinide. The fission probability for each transfer channel is accessible and the preliminary results for 238U are promising.

  6. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  7. Detection of Actinides via Nuclear Isomer De-Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Francy, Christopher J. [Oregon State Univ., Corvallis, OR (United States)

    2009-07-01

    This dissertation discusses a data collection experiment within the Actinide Isomer Identification project (AID). The AID project is the investigation of an active interrogation technique that utilizes nuclear isomer production, with the goal of assisting in the interdiction of illicit nuclear materials. In an attempt to find and characterize isomers belonging to 235U and its fission fragments, a 232Th target was bombarded with a monoenergetic 6Li ion beam, operating at 45 MeV.

  8. A comparison of new reagents and processes for hydrometallurgical processing of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States). Chemistry Div

    2001-07-01

    The future viability of nuclear power as an electricity generation technology depends greatly on addressing all aspects of radioactive waste disposal. A closed fuel cycle with recycle and burnup of actinides is one important option for solving long-term waste sequestration issues. The 50 years of accumulated experience in application of solvent extraction to the processing of spent nuclear fuels uniquely qualifies this technology for actinide partitioning. However, employment of new reagents and development of new processes must be reconciled with century 21 expectations for environment protection. The interrelationship between the separations potential and waste disposal aspects of new reagents and processes are discussed in this report. (author)

  9. Electronic Structure of the Actinide Metals

    DEFF Research Database (Denmark)

    Johansson, B.; Skriver, Hans Lomholt

    1982-01-01

    Some recent experimental photoelectron spectroscopic results for the actinide metals are reviewed and compared with the theoretical picture of the basic electronic structure that has been developed for the actinides during the last decade. In particular the experimental data confirm the change from...... itinerant to localized 5f electron behaviour calculated to take place between plutonium and americium. From experimental data it is shown that the screening of deep core-holes is due to 5f electrons for the lighter actinide elements and 6d electrons for the heavier elements. A simplified model for the full...... LMTO electronic structure calculations is introduced. In this model the spd and 5f electronic contributions are treated as separable entities. It is shown that the model reproduces quite well the results from the full treatment. The equilibrium volume, cohesive energy and bulk modulus are calculated...

  10. Monazite as a suitable actinide waste form

    Energy Technology Data Exchange (ETDEWEB)

    Schlenz, Hartmut; Heuser, Julia; Schmitz, Stephan; Bosbach, Dirk [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie und Klimaforschung (IEK), Nukleare Entsorgung und Reaktorsicherheit (IEK-6); Neumann, Andreas [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie und Klimaforschung (IEK), Nukleare Entsorgung und Reaktorsicherheit (IEK-6); RWTH Aachen Univ. (Germany). Inst. for Crystallography

    2013-03-01

    The conditioning of radioactive waste from nuclear power plants and in some countries even of weapons plutonium is an important issue for science and society. Therefore the research on appropriate matrices for the immobilization of fission products and actinides is of great interest. Beyond the widely used borosilicate glasses, ceramics are promising materials for the conditioning of actinides like U, Np, Pu, Am, and Cm. Monazite-type ceramics with general composition LnPO{sub 4} (Ln = La to Gd) and solid solutions of monazite with cheralite or huttonite represent important materials in this field. Monazite appears to be a promising candidate material, especially because of its outstanding properties regarding radiation resistance and chemical durability. This article summarizes the most recent results concerning the characterization of monazite and respective solid solutions and the study of their chemical, thermal, physical and structural properties. The aim is to demonstrate the suitability of monazite as a secure and reliable waste form for actinides. (orig.)

  11. Reduction of minor actinides for recycling in a light water reactor; Reduccion de actinidos menores por reciclado en un reactor de agua ligera

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The aim of actinide transmutation from spent nuclear fuel is the reduction in mass of high-level waste which must be stored in geological repositories and the lifetime of high-level waste; these two achievements will reduce the number of repositories needed, as well as the duration of storage. The present work is directed towards the evaluation of an advanced nuclear fuel cycle in which the minor actinides (Np, Am and Cm) could be recycled to remove most of the radioactive material; a reference of actinides production in standard nuclear fuel of uranium at the end of its burning in a BWR is first established, after a design of fuel rod containing 6% of minor actinides in a matrix of uranium from the enrichment lines is proposed, then 4 fuel rods of standard uranium are replaced by 4 actinides bars to evaluate the production and transmutation of them and finally the minor actinides reduction in the fuel is evaluated. In the development of this work the calculation tool are the codes: Intrepin-3, Casmo-4 and Simulate-3. (Author)

  12. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    Energy Technology Data Exchange (ETDEWEB)

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  13. Spin–orbit coupling in actinide cations

    DEFF Research Database (Denmark)

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.

    2012-01-01

    The limiting case of Russell–Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin–orbit splitting is large enough to cause a significantly reduced...... spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell....

  14. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  15. Comparison of experimental and theoretical binding and transition energies in the actinide region. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Krause, M.O.; Nestor, C.W. Jr.

    1977-01-01

    The status of experimental and theoretical binding and transition energy determinations is reviewed extending the comparison between experiment and theory to encompass representative series of data for all actinides. This comprehensive comparison reveals areas where improvements may be indicated, showing whether theoretical treatments including all known contributions to the lowest order would be adequate in all instances. 45 references. (JFP)

  16. AECL/U.S. INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors Fuel Requirements and Down-Select Report

    Energy Technology Data Exchange (ETDEWEB)

    William Carmack; Randy Fielding; Pavel Medvedev; Mitch Meyer

    2005-08-01

    This report documents the first milestone of the International Nuclear Energy Research Initiative (INERI) U.S./Euratom Joint Proposal 1.8 entitled “Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Light-Water Reactors.” The milestone represents the assessment and preliminary study of a variety of fuels that hold promise as transmutation and minor actinide burning fuel compositions for light-water reactors. The most promising fuels of interest to the participants on this INERI program have been selected for further study. These fuel compositions are discussed in this report.

  17. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  18. Microbial effects on sorption and transport of actinides in tuff samples from the Nevada Test Site and soils from McGuire AFB, NJ

    Science.gov (United States)

    Fisher, J. C.; Gostic, R.; Gostic, J.; Czerwinski, K.; Moser, D. P.

    2009-12-01

    The sorption and behavior of various actinides were examined for two sets of environmental samples. The Nevada Test Site (NTS) harbors a variety of radionuclides resulting from atomic weapons testing from the 1950s-1990s. Modeling the transport of radionuclides at the NTS is difficult because each detonation cavity is a unique environment with distinct hydrologic characteristics, chemical composition, and microbial community structure. McGuire AFB was the site of an explosion that resulted in the burning of a BOMARC nuclear missile and deposition of particles containing high-fired oxides of Am, Pu, and U in soils on the base. Analysis of the NTS samples focused on sorption/desorption of 233-U and 241-Am in the presence/absence of bacteria, and work on the BOMARC cores addressed the potential role of microorganisms in mediating particle degradation and movement. Batch experiments with various NTS tuff samples and strains of bacteria showed that sorption of actinides may be enhanced by >25% under certain conditions by bacteria. Sorption of 233-U was highly dependent on carbonate concentrations in the liquid matrix, while 241-Am was unaffected. Different bacterial species also affected sorption differently. Sorption kinetics for both actinides were rapid, with maximum sorption usually occurring within 4 hours. Actinides bound tightly to tuff and little desorption occurred in carbonate-free batch experiments. Column experiments showed that bacterial cultures in minimal salts buffer desorbed significantly more 233-U from tuff than low carbonate NTS water, but less than 30 mM bicarbonate buffer. Hot particles in the BOMARC cores were located using CT mapping and were extracted from the soil prior to analysis of core sections by gamma spectroscopy. Subcores for DNA extraction and culturing were collected from soil in direct contact with hot particles. The extracted particles consisted of a mixture of weapons-grade Pu, 241-Am and 235-U and ranged in activity from 5-66 k

  19. Transmuting minor actinides with thermal reactor neutrons

    Directory of Open Access Journals (Sweden)

    Yu. A Kazansky

    2015-11-01

    The final conclusion about the practicability of Americium and Curium transmutation must be drawn by taking into account in the considered scenarios the difference in probability of the environmental release, the difference of biological effect and the transmutation efficiency of minor actinides continuously fed to spent fuel storages by the operating nuclear energy industry.

  20. Actinide valences in xenotime and monazite

    Energy Technology Data Exchange (ETDEWEB)

    Vance, E.R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC, NSW 2232 (Australia); Zhang, Y., E-mail: yzx@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC, NSW 2232 (Australia); McLeod, T.; Davis, J. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC, NSW 2232 (Australia)

    2011-02-28

    Tetravalent U, Np and Pu can be substituted by ceramic methods into the rare earth site of xenotime and monazite in air atmospheres using Ca ions as charge compensators, while no evidence of penta- or hexavalent actinide ions was found. Some Pu{sup 3+} and Np{sup 3+} can be incorporated in xenotime samples fired in a reducing atmosphere.

  1. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  2. Scalar Static Polarizabilities of Lanthanides and Actinides

    CERN Document Server

    Dzuba, V A; Flambaum, V V

    2014-01-01

    We calculate scalar static polarizabilities for lanthanides and actinides, the atoms with open $4f$ or $5f$ subshell. We show that polarizabilities of the low states are approximately the same for all states of given configuration and present a way of calculating them reducing valence space to just two or three valence electrons occupying $6s$ and $5d$ states for lanthanides or $7s$ and $6d$ states for actinides while $4f$ and $5f$ states are considered to be in the core. Configuration interaction technique is used to calculate polarizabilities of lanthanides and actinides for all states of the $4f^n6s^2$ and $4f^{n-1}6s^25d$ configurations of lanthanides and all states of the $5f^{n}7s^2$ and $5f^{n-1}7s^26d$ configurations of actinides. Polarizability of the electron core (including f-orbitals) has been calculated in the RPA approximation.

  3. Actinide measurements by AMS using fluoride matrices

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, R.J., E-mail: Jack.Cornett@uottawa.ca [André E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Kazi, Z.H. [André E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Zhao, X.-L. [André E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Chartrand, M.G. [André E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Charles, R.J.; Kieser, W.E. [André E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada)

    2015-10-15

    Actinides can be measured by alpha spectroscopy (AS), mass spectroscopy or accelerator mass spectrometry (AMS). We tested a simple method to separate Pu and Am isotopes from the sample matrix using a single extraction chromatography column. The actinides in the column eluent were then measured by AS or AMS using a fluoride target matrix. Pu and Am were coprecipitated with NdF{sub 3}. The strongest AMS beams of Pu and Am were produced when there was a large excess of fluoride donor atoms in the target and the NdF{sub 3} precipitates were diluted about 6–8 fold with PbF{sub 2}. The measured concentrations of {sup 239,240}Pu and {sup 241}Am agreed with the concentrations in standards of known activity and with two IAEA certified reference materials. Measurements of {sup 239,240}Pu and {sup 241}Am made at A.E. Lalonde AMS Laboratory agree, within their statistical uncertainty, with independent measurements made using the IsoTrace AMS system. This work demonstrated that fluoride targets can produce reliable beams of actinide anions and that the measurement of actinides using fluorides agree with published values in certified reference materials.

  4. Prompt Fission Neutron Spectra of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data

  5. Synthesis and Evaluation of new Polyfunctional Molecules for Group Actinide Extraction; Synthese et evaluation de Nouvelles Molecules Polyfonctionnelles pour la Separation Groupee des Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Marie, C.

    2009-10-15

    The aim of this project is to design new extracting molecules for spent nuclear fuel reprocessing. In order to minimize the long-term residual radiotoxicity of the waste, the GANEX process is an option based on homogeneous recycling of actinides. All actinides (U, Np, Pu, Am, Cm), present in a highly acidic aqueous solution, would be extracted together and separated from fission products (especially from lanthanides) using liquid-liquid extraction. In this context, twenty new bi-topic ligands constituted of a nitrogen poly-aromatic unit functionalized by amide groups were synthesized. Liquid-liquid extraction tests with these ligands dissolved alone in the organic phase show that N, N, N', N'-tetra-alkyl-6, 6''(2, 2':6', 2''-terpyridine)-diamides are able to selectively extract actinides at different oxidation states (Np(V et VI), U(VI), Pu(IV), Am(III), Cm(III)) from an aqueous solution 3M HNO{sub 3}. Nevertheless, actinides(III) are poorly extracted. According to crystallographic structures of complexes with Nd(III) and U(VI) determined by X-rays diffraction, these ligands are penta-dentate. In solution (methanol), complexes stoichiometries (1:1) of Nd(III), U(VI) and Pu(IV) were determined by electro-spray ionization mass spectrometry. Stability constants, evaluated by UV-visible spectrophotometry in MeOH/H{sub 2}O solutions, confirm the selectivity of ligands toward actinides(III) with respect to lanthanides(III). Associate to nuclear magnetic resonance experiments and DFT calculations (Density Functional Theory), a better knowledge of their coordination mode was achieved. (author)

  6. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-08

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  7. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M. [French Alternative Energies and Atomic Energy Commission - CEA, CEA Cadarache, DEN/DEC/SESC, 13108 Saint Paul lez Durance (France); Di Marcello, V.; Van Uffelen, P.; Walker, C. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D- 76344 Eggenstein-Leopoldshafen (Germany)

    2013-07-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  8. Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments

    Directory of Open Access Journals (Sweden)

    D. Streets

    2012-09-01

    Full Text Available Two historical emission inventories of black carbon (BC, primary organic carbon (OC, and SO2 emissions from land-based anthropogenic sources, ocean-going vessels, air traffic, biomass burning, and volcanoes are presented and discussed for the period 1980–2010. These gridded inventories are provided to the internationally coordinated AeroCom Phase II multi-model hindcast experiments. The horizontal resolution is 0.5°×0.5° and 1.0°×1.0°, while the temporal resolution varies from daily for volcanoes to monthly for biomass burning and aircraft emissions, and annual averages for land-based and ship emissions. One inventory is based on inter-annually varying activity rates of land-based anthropogenic emissions and shows strong variability within a decade, while the other one is derived from interpolation between decadal endpoints and thus exhibits linear trends within a decade. Both datasets capture the major trends of decreasing anthropogenic emissions over the USA and Western Europe since 1980, a sharp decrease around 1990 over Eastern Europe and the former USSR, and a steep increase after 2000 over East and South Asia. The inventory differences for the combined anthropogenic and biomass burning emissions in the year 2005 are 34% for BC, 46% for OC, and 13% for SO2. They vary strongly depending on species, year and region, from about 10% to 40% in most cases, but in some cases the inventories differ by 100% or more. Differences in emissions from wild-land fires are caused only by different choices of the emission factors for years after 1996 which vary by a factor of about 1 to 2 for OC depending on region, and by a combination of emission factors and the amount of dry mass burned for years up to 1996. Volcanic SO2 emissions, which are only provided in one inventory, include emissions from explosive, effusive, and quiescent degassing events for 1167 volcanoes.

  9. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    Science.gov (United States)

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  10. Octupole correlations in excited 0{sup +} states of the actinides

    Energy Technology Data Exchange (ETDEWEB)

    Spieker, Mark; Endres, Janis; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne (Germany); Bucurescu, Dorel; Pascu, Sorin; Zamfir, Nicolae-Victor [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Faestermann, Thomas [Physik Department, Technische Universitaet Muenchen, Munich (Germany); Hertenberger, Ralf; Wirth, Hans-Friedrich [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Munich (Germany)

    2014-07-01

    New experimental data has once again shown the importance of the octupole degree of freedom in the actinides. To further study possible admixtures of double-octupole structures to the wave function of positive-parity states, a high-resolution (p,t) experiment on {sup 242}Pu has been recently performed at the Q3D magnetic spectrograph in Munich. Excited 0{sup +} states were populated in {sup 240}Pu up to an excitation energy of 3 MeV. The new data allowed for a stringent test of the predictions of the spdf interacting boson model. In order to find possible double-octupole 0{sup +} candidates in the actinides, the signature of close-lying first and second excited 0{sup +} states has been proposed. It is found that the observation of this signature coincides with an E1 γ-decay of the first excited 0{sup +} state, while this state is strongly populated in the (p,t) reaction.

  11. FY2011 Annual Report for the Actinide Isomer Detection Project

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Glen A.; Francy, Christopher J.; Ressler, Jennifer J.; Erikson, Luke E.; Tatishvili, Gocha; Hatarik, R.

    2011-10-01

    This project seeks to identify a new signature for actinide element detection in active interrogation. This technique works by exciting and identifying long-lived nuclear excited states (isomers) in the actinide isotopes and/or primary fission products. Observation of isomers in the fission products will provide a signature for fissile material. For the actinide isomers, the decay time and energy of the isomeric state is unique to a particular isotope, providing an unambiguous signature for SNM. This project entails isomer identification and characterization and neutron population studies. This document summarizes activities from its third year - completion of the isomer identification characterization experiments and initialization of the neutron population experiments. The population and decay of the isomeric state in 235U remain elusive, although a number of candidate gamma rays have been identified. In the course of the experiments, a number of fission fragment isomers were populated and measured [Ressler 2010]. The decays from these isomers may also provide a suitable signature for the presence of fissile material. Several measurements were conducted throughout this project. This report focuses on the results of an experiment conducted collaboratively by PNNL, LLNL and LBNL in December 2010 at LBNL. The measurement involved measuring the gamma-rays emitted from an HEU target when bombarded with 11 MeV neutrons. This report discussed the analysis and resulting conclusions from those measurements. There was one strong candidate, at 1204 keV, of an isomeric signature of 235U. The half-life of the state is estimated to be 9.3 {mu}s. The measured time dependence fits the decay time structure very well. Other possible explanations for the 1204-keV state were investigated, but they could not explain the gamma ray. Unfortunately, the relatively limited statistics of the measurement limit, and the lack of understanding of some of the systematic of the experiment, limit

  12. Electrorecovery of actinides at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, Michael E [Los Alamos National Laboratory; Oldham, Warren J [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  13. The meanings of quality of life: interpretative analysis based on experiences of people in burns rehabilitation Significados para la calidad de vida: análisis interpretativo fundamentado en la experiencia de personas quemadas em rehabilitación Significados de qualidade de vida: análise interpretativa baseada na experiência de pessoas em reabilitação de queimaduras

    OpenAIRE

    Maria Cristina Silva Costa; Lídia Aparecida Rossi; Lívia Mara Lopes; Caroline Lopes Cioffi

    2008-01-01

    This research aimed to interpret the meanings of quality of life, taking into consideration the meanings attributed by those who have undergone serious burns, their experiences and social/cultural background. We used the ethnographic method based on modern hermeneutics. Nineteen patients with burn sequelae, already discharged from the Burns Unit of the Ribeirão Preto Medical School Clinical Hospital participated in this study, along with their relatives. Participants belong to the working cla...

  14. Actinide Isotopes for the Synthesis of Superheavy Nuclei

    Science.gov (United States)

    Roberto, J. B.; Alexander, C. W.; Boll, R. A.; Dean, D. J.; Ezold, J. G.; Felker, L. K.; Rykaczewski, K. P.

    2014-09-01

    Recent research resulting in the synthesis of isotopes of new elements 113-118 has demonstrated the importance of actinide targets in superheavy element research. Oak Ridge National Laboratory (ORNL) has unique facilities for the production and processing of actinide target materials, including the High Flux Isotope Reactor (HFIR) and the Radiochemical Engineering Development Center (REDC). These facilities have provided actinide target materials that have been used for the synthesis of all superheavy (SHE) elements above Copernicium (element 112). In this paper, the use of actinide targets for SHE research and discovery is described, including recent results for element 117 using 249Bk target material from ORNL. ORNL actinide capabilities are reviewed, including production and separation/purification, availabilities of actinide materials, and future opportunities including novel target materials such as 251Cf.

  15. Microbial Transformations of Actinides and Other Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  16. Seventeen-coordinate actinide helium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kaltsoyannis, Nikolas [School of Chemistry, The University of Manchester (United Kingdom)

    2017-06-12

    The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe{sub 17}{sup 3+}, ThHe{sub 17}{sup 4+}, and PaHe{sub 17}{sup 4+} are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHe{sub n}{sup 3+} (n=1-17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R{sup 2}>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac-He distances, and also with the incremental He binding energies. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  18. ENHANCED CHEMICAL CLEANING OF SRS WASTE TANKS TO IMPROVE ACTINIDE SOLUBILITY

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.; Thompson, M.

    2011-09-20

    Processes for the removal of residual sludge from SRS waste tanks have historically used solutions containing up to 0.9 M oxalic acid to dissolve the remaining material following sludge removal. The selection of this process was based on a comparison of a number of studies performed to evaluate the dissolution of residual sludge. In contrast, the dissolution of the actinide mass, which represents a very small fraction of the waste, has not been extensively studied. The Pu, Np, and Am in the sludge is reported to be present as hydrated and crystalline oxides. To identify aqueous solutions which have the potential to increase the solubility of the actinides, the alkaline and mildly acidic test solutions shown below were selected as candidates for use in a series of solubility experiments. The efficiency of the solutions in solubilizing the actinides was evaluated using a simulated sludge prepared by neutralizing a HNO{sub 3} solution containing Pu, Np, and Am. The hydroxide concentration was adjusted to a 1.2 M excess and the solids were allowed to age for several weeks prior to starting the experiments. The sludge was washed with 0.01 M NaOH to prepare the solids for use. Following the addition of an equal portion of the solids to each test solution, the concentrations of Pu, Np, and Am were measured as a function of time over a 792 h (33 day) period to provide a direct comparison of the efficiency of each solution in solubilizing the actinide elements. Although the composition of the sludge was limited to the hydrated actinide oxides (and did not contain other components of demonstrated importance), the results of the study provides guidance for the selection of solutions which should be evaluated in subsequent tests with a more realistic surrogate sludge and actual tank waste.

  19. Preparation, properties, and some recent studies of the actinide metals

    Energy Technology Data Exchange (ETDEWEB)

    Haire, R.G.

    1985-01-01

    The actinide elements form a unique series of metals. The variation in their physial properties combined with the varying availability of the different elements offers a challenge to the preparative scientist. This article provides a brief review of selected methods used for preparing ..mu..g to kg amounts of the actinide metals and the properties of these metals. In addition, some recent studies on selected actinide metals are discussed. 62 refs.

  20. SPECIFIC SEQUESTERING AGENTS FOR THE ACTINIDES

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth N.; Smith, William L.; Weitl, Frederick L.; Durbin, Patricia W.; Jones, E.Sarah; Abu-Dari, Kamal; Sofen, Stephen R.; Cooper, Stephen R.

    1979-09-01

    This paper summarizes the current status of a continuing project directed toward the synthesis and characterization of chelating agents which are specific for actinide ions - especially Pu(IV) - using a biomimetic approach that relies on the observation that Pu(IV) and Fe(III) has marked similarities that include their biological transport and distribution in mammals. Since the naturally-occurring Fe(III) sequestering agents produced by microbes commonly contain hydroxamate and catecholate functional groups, these groups should complex the actinides very strongly and macrocyclic ligands incorporating these moieties are being prepared. We have reported the isolation and structure analysis of an isostructural series of tetrakis(catecholato) complexes with the general stoichiometry Na{sub 4}[M(C{sub 6}H{sub 4}O{sub 2}){sub 4}] • 21 H{sub 2}O (M = Th, U, Ce, Hf). These complexes are structural archetypes for the cavity that must be formed if an actinide-specific sequestering agent is to conform ideally to the coordination requirements of the central metal ion. The [M(cat){sub 4}]{sup 4-} complexes have the D{sub 2d} symmetry of the trigonal-faced dodecahedron.. The complexes Th [R'C(0)N(O)R]{sub 4} have been prepared where R = isopropyl and R' = t-butyl or neopentyl. The neopentyl derivative is also relatively close to an idealized D{sub 2d} dodecahedron, while the sterically more hindered t-butyl compound is distorted toward a cubic geometry. The synthesis of a series of 2, 3-dihydroxy-benzoyl amide derivatives of linear and cyclic tetraaza- and diazaalkanes is reported. Sulfonation of these compounds improves the metal complexation and in vivo removal of plutonium from test animals. These results substantially exceed the capabilities of compounds presently used for the therapeutic treatment of actinide contamination.

  1. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    Science.gov (United States)

    2014-03-27

    In this method, the powdered material is placed in a solution which contains extremely powerful mineralizers , such as cesium fluoride for actinide...environmentally triggered background counts and it subtends a very small solid angle with respect to the detector. Thus, the benefit of the lead sheet outweighs...low electron density. This is mainly a property of their atomic makeup , though the microstructure of the paper is porous as well. In addition, a

  2. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  3. MSFR TRU-burning potential and comparison with an SFR

    Energy Technology Data Exchange (ETDEWEB)

    Fiorina, C.; Cammi, A. [Politecnico di Milano: Via La Masa 34, 20136 Milan (Italy); Franceschini, F. [Westinghouse Electric Company LL: 1000 Westinghouse Dr., Cranberry Township, PA 16066 (United States); Krepel, J. [Paul Scherrer Institut - PSI WEST, 5234 Villigen (Switzerland)

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed only of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)

  4. Actinide and lanthanide separation process (ALSEP)

    Science.gov (United States)

    Guelis, Artem V.

    2013-01-15

    The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).

  5. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    Science.gov (United States)

    Souček, P.; Cassayre, L.; Eloirdi, R.; Malmbeck, R.; Meier, R.; Nourry, C.; Claux, B.; Glatz, J.-P.

    2014-04-01

    A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillation for removal of the salt adhered on the electrode, chlorination of the alloy by chlorine gas and sublimation of the AlCl3 formed. The processes parameters were set on the base of a previous thermochemical study and an experimental work using pure UAl3 alloy. The present experimental results indicated high efficiency of salt distillation and chlorination steps, while the sublimation step should be further optimised.

  6. Hydrothermal decomposition of actinide(IV oxalates: a new aqueous route towards reactive actinide oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Walter Olaf

    2016-01-01

    Full Text Available The hydrothermal decomposition of actinide(IV oxalates (An= Th, U, Pu at temperatures between 95 and 250 °C is shown to lead to the production of highly crystalline, reactive actinide oxide nanocrystals (NCs. This aqueous process proved to be quantitative, reproducible and fast (depending on temperature. The NCs obtained were characterised by X-ray diffraction and TEM showing their size to be smaller than 15 nm. Attempts to extend this general approach towards transition metal or lanthanide oxalates failed in the 95–250 °C temperature range. The hydrothermal decomposition of actinide oxalates is therefore a clean, flexible and powerful approach towards NCs of AnO2 with possible scale-up potential.

  7. Advanced techniques in actinide spectroscopy (ATAS 2014). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2014-07-01

    In 2012, The Institute of Resource Ecology at the Helmholtz-Zentrum Dresden Rossendorf organized the first international workshop of Advanced Techniques in Actinide Spectroscopy (ATAS). A very positive feedback and the wish for a continuation of the workshop were communicated from several participants to the scientific committee during the workshop and beyond. Today, the ATAS workshop has been obviously established as an international forum for the exchange of progress and new experiences on advanced spectroscopic techniques for international actinide and lanthanide research. In comparison to already established workshops and conferences on the field of radioecology, one main focus of ATAS is to generate synergistic effects and to improve the scientific discussion between spectroscopic experimentalists and theoreticians. The exchange of ideas in particular between experimental and theoretical applications in spectroscopy and the presentation of new analytical techniques are of special interest for many research institutions working on the improvement of transport models of toxic elements in the environment and the food chain as well as on reprocessing technologies of nuclear and non-nuclear waste. Spectroscopic studies in combination with theoretical modelling comprise the exploration of molecular mechanisms of complexation processes in aqueous or organic phases and of sorption reactions of the contaminants on mineral surfaces to obtain better process understanding on a molecular level. As a consequence, predictions of contaminant's migration behaviour will become more reliable and precise. This can improve the monitoring and removal of hazardous elements from the environment and hence, will assist strategies for remediation technologies and risk assessment. Particular emphasis is placed on the results of the first inter-laboratory Round-Robin test on actinide spectroscopy (RRT). The main goal of RRT is the comprehensive molecular analysis of the actinide

  8. Comparative analysis between measured and calculated concentrations of major actinides using destructive assay data from Ohi-2 PWR

    Directory of Open Access Journals (Sweden)

    Oettingen Mikołaj

    2015-09-01

    Full Text Available In the paper, we assess the accuracy of the Monte Carlo continuous energy burnup code (MCB in predicting final concentrations of major actinides in the spent nuclear fuel from commercial PWR. The Ohi-2 PWR irradiation experiment was chosen for the numerical reconstruction due to the availability of the final concentrations for eleven major actinides including five uranium isotopes (U-232, U-234, U-235, U-236, U-238 and six plutonium isotopes (Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242. The main results were presented as a calculated-to-experimental ratio (C/E for measured and calculated final actinide concentrations. The good agreement in the range of ±5% was obtained for 78% C/E factors (43 out of 55. The MCB modeling shows significant improvement compared with the results of previous studies conducted on the Ohi-2 experiment, which proves the reliability and accuracy of the developed methodology.

  9. Modeling Deep Burn TRISO particle nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M., E-mail: besmanntm@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Stoller, R.E., E-mail: stollerre@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Samolyuk, G., E-mail: samolyukgd@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Schuck, P.C., E-mail: schuckpc@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Golubov, S.I., E-mail: golubovsi@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Rudin, S.P., E-mail: srudin@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wills, J.M., E-mail: jxw@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Coe, J.D., E-mail: jcoe@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wirth, B.D., E-mail: bdwirth@utk.edu [University of Tennessee, Knoxville, TN 37996-0750 (United States); Kim, S., E-mail: sungtae@cae.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States); Morgan, D.D., E-mail: ddmorgan@engr.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States); Szlufarska, I., E-mail: izabela@engr.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States)

    2012-11-15

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel, the fission product's attack on the SiC coating layer, as well as fission product diffusion through an alternative coating layer, ZrC. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  10. Burns (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Burns KidsHealth > For Parents > Burns A A A What's ... outlets, etc.) overexposure to the sun Types of Burns Burns are often categorized as first-, second-, or ...

  11. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  12. Complexation parameters for the actinides(IV)-humic acid system: a search for consistency and application to laboratory and field observations

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, P.E. [Commissariat a l' Energie Atomique, CE Saclay, Gif-sur Yvette (France). Nuclear Energy Div./DPC/SECR/Lab. de Speciation des Radionucleides et des Molecules; Evans, N.D.M. [Loughborough Univ., Leics (United Kingdom). Dept. of Chemistry; Szabo, G. [' Frederic Joliot-Curie' National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary)

    2008-07-01

    The coherence of actinide(IV) complexation by humic substances (HS) is reviewed and new data are proposed. In a first attempt, the values of independent data from literature on Th(IV), U(IV), and Pu(IV) are collected, selected, and compiled. The data obtained follow the 'classical' trend of increasing conditional formation 'constants' with pH, led both by the increasing ionisation of HS and by the extensive hydrolysis of the tetravalent actinides. Even though a fair agreement is evident, the experimental uncertainties do not permit a full analogy between the actinides(IV) to be ascertained. In a second attempt, the experiments from which the original data are available were reinterpreted using only one hydrolysis constant set for U(IV) as an example, considering that all actinides(IV) have analogous humic complexation behaviour. Hence, the obtained evolution of conditional formation 'constants' is much more coherent and the uncertainties do not permit to distinguish an actinide(IV) from one another. The obtained data are then applied to independent laboratory and in situ experiments in order to delimit the domain of possible applicability. This exercise demonstrates the treatment of data through analogy in the case of actinides(IV) and would permit to limit and orientate the number of necessary, but difficult, experiment with redox sensitive elements like U, Np, or Pu. It also demonstrates that complexation-only mechanisms may not be sufficient to understand field observations. (orig.)

  13. Facilities for preparing actinide or fission product-based targets

    CERN Document Server

    Sors, M

    1999-01-01

    Research and development work is currently in progress in France on the feasibility of transmutation of very long-lived radionuclides such as americium, blended with an inert medium such as magnesium oxide and pelletized for irradiation in a fast neutron reactor. The process is primarily designed to produce ceramics for nuclear reactors, but could also be used to produce targets for accelerators. The Actinide Development Laboratory is part of the ATALANTE complex at Marcoule, where the CEA investigates reprocessing, liquid and solid waste treatment and vitrification processes. The laboratory produces radioactive sources; after use, their constituents are recycled, notably through R and D programs requiring such materials. Recovered americium is purified, characterized and transformed for an experiment known as ECRIX, designed to demonstrate the feasibility of fabricating americium-based ceramics and to determine the reactor transmutation coefficients.

  14. Pillared metal(IV) phosphate-phosphonate extraction of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Burns, J.D.; Clearfield, A. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Borkowski, M.; Reed, D.T. [Los Alamos National Laboratory, Carlsbad, NM (United States). Earth and Environmental Sciences Div.

    2012-07-01

    Four pillared metal(IV) phosphate-phosphonate ion exchange materials were synthesized and characterized. Studies were conducted to determine their affinity for the lanthanides (Ln's) and actinides (An's). It was determined that by simply manipulating the metal source (Zr or Sn) and the phosphate source (H{sub 3}PO{sub 4} or Na{sub 3}PO{sub 4}) large differences were seen in the extraction of the Ln and An species. K{sub d} values higher than 4 x 10{sup 5} were observed for the AnO{sub 2}{sup 2+} species in nitric acid at pH 2. These basic uptake experiments are important, as the data they provide may indicate the possibility of a separation of Ln's from An's or even more notably americium from curium and Ln's. (orig.)

  15. Actinides and lanthanides under pressure: the pseudopotential approach; Actinides et terres rares sous pression: approche pseudopotentiel

    Energy Technology Data Exchange (ETDEWEB)

    Richard, N

    2002-07-01

    In the Density Functional Theory Framework, the pseudopotential formalism offers a broader scope of study than other theoretical methods such as global relaxation of the parameters of the cell or ab initio molecular dynamics simulations. This method has been widely used to study light elements or transition metals but never to study f elements. We have generated two non local norm conserving Trouillier-Martins pseudopotentials (one in LDA and one in GGA) for the cerium. To check the validity of the pseudopotentials, we have calculated the equilibrium volume and the incompressibility modulus and compared our results to previous all-electron calculations. If the GGA and non linear core corrections are used, the equation of state is in a good agreement with the experimental equation of state. A static study of the previously proposed high pressure phases give a transitions fcc-a''(I)-bct. Using the pseudopotentials we have generated, an ab initio molecular dynamics simulation at constant pressure, in the region between 5 and 12 GPa where the stable phase of cerium is not well defined, lead us to predict that a centred monoclinic structure, as the a''(I) phase previously observed in some experiments, is the most stable phase. We have also generated pseudopotentials for the light actinides (Th, Pa, U and Np). We have study their phase transitions under pressure at zero temperature. We compared our results with all electron results. The structure parameters have always been relaxed in this study. And for the first time in pseudopotential calculation, the spin-orbit coupling has been taken into account. The curves describing the variation of the volume or the incompressibility modulus depending on the elements and the phase transitions are always in agreement with the one found in the all electron calculations. (author)

  16. Optimization of SFR Reactor design with recycling or minor actinides; Optimizacion del diseno de reactor SFR con reciclado de actinidos minoritarios

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Fuertes, F.; Vazquez, M.; Alvarez, F.

    2012-07-01

    In this paper we show results of the design features and ESFR optimized in three configurations: the reference, load the minority actinides homogeneous throughout the reactor and the high content of AM on a radial mantle. Was calculated reactivity evolution in five cycles burned (2050 days) to recharge One approach. To do this, we have employed EVOLCODE2 a development tool of CIEMAT own coupling MCNPX and ORIGEN.

  17. Actinide neutron induced cross section measurements using the oscillation technique in the Minerve reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, B.; Leconte, P.; Gruel, A.; Antony, M.; Di-Salvo, J.; Hudelot, J.P.; Pepino, A.; Lecluze, A. [CEA Cadarache, DEN/CAD/DER/SPRC/LEPh, 13 - Saint-Paul-lez-Durance (France)

    2009-07-01

    CEA is deeply involved research programs concerning nuclear fuel advanced studies (actinides, plutonium), waste management, the scientific and technical support of French PWR reactors and EPR reactor, and innovative systems. In this framework, specific neutron integral experiments have been carried out in the critical ZPR (zero power reactor) facilities of the CEA at Cadarache such as MINERVE, EOLE and MASURCA. This paper deals with MINERVE Pool Reactor experiments. MINERVE is mainly devoted to neutronics studies of different reactor core types. The aim is to improve the knowledge of the integral absorption cross sections of actinides (OSMOSE program), of new absorbers (OCEAN program) and also for fission Products (CBU program) in thermal, epithermal and fast neutron spectra. (authors)

  18. Burning vasculitis.

    Science.gov (United States)

    Chadha, Priyanka; Hobday, Dorian; O'Connor, Edmund Fitzgerald; D'Cruz, David

    2016-04-26

    We present the case of a 69-year-old man who was found collapsed close to a heat source and admitted to hospital for severe sepsis. He was also found to have widespread blistering and ulceration of his right leg; however, a history was unobtainable due to reduced consciousness levels. The leg lesions had the initial appearance of mixed depth burns and a management plan was made to transfer the patient to a burns unit for debridement. It was subsequently noted that the patient had a previous diagnosis of seropositive erosive rheumatoid arthritis. A biopsy of the leg lesion was performed and a diagnosis of rheumatoid vasculitis confirmed. Treatment with systemic steroids, intravenous antibiotics and intravenous immunoglobulin therapy for severe hypogammaglobulinaemia was started, and the patient was not transferred for surgical debridement. Rheumatoid vasculitis is a rare and extremely serious complication of rheumatoid arthritis that can manifest in a number of ways, occasionally mimicking other conditions. This case is essential to raise awareness of rare, severe rheumatoid vasculitis and of the potential for its misdiagnosis as a mixed depth burn.

  19. Nuclear fuel activity with minor actinides after their useful life in a BWR; Actividad del combustible nuclear con actinidos menores despues de su vida util en un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    Nuclear fuel used in nuclear power reactors has a life cycle, in which it provides energy, at the end of this cycle is withdrawn from the reactor core. This used fuel is known as spent nuclear fuel, a strong problem with this fuel is that when the fuel was irradiated in a nuclear reactor it leaves with an activity of approximately 1.229 x 10{sup 15} Bq. The aim of the transmutation of actinides from spent nuclear fuel is to reduce the activity of high level waste that must be stored in geological repositories and the lifetime of high level waste; these two achievements would reduce the number of necessary repositories, as well as the duration of storage. The present work is aimed at evaluating the activity of a nuclear fuel in which radioactive actinides could be recycled to remove most of the radioactive material, first establishing a reference of actinides production in the standard nuclear fuel of uranium at end of its burning in a BWR, and a fuel rod design containing 6% of actinides in an uranium matrix from the enrichment tails is proposed, then 4 standard uranium fuel rods are replaced by 4 actinide bars to evaluate the production and transmutation of the same, finally the reduction of actinide activity in the fuel is evaluated. (Author)

  20. Research in actinide chemistry. Progress report, 1990--1993

    Energy Technology Data Exchange (ETDEWEB)

    Choppin, G.R.

    1993-04-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH{sup {minus}}, CO{sub 3}{sup 2{minus}}, PO{sub 4}{sup 3{minus}}, humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements.

  1. Chemistry of lower valent actinide halides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, K.H.; Hildenbrand, D.L.

    1992-01-01

    This research effort was concerned almost entirely with the first two members of the actinide series, thorium and uranium, although the work was later extended to some aspects of the neptunium-fluorine system in a collaborative program with Los Alamos National Laboratory. Detailed information about the lighter actinides will be helpful in modeling the properties of the heavier actinide compounds, which will be much more difficult to study experimentally. In this program, thermochemical information was obtained from high temperature equilibrium measurements made by effusion-beam mass spectrometry and by effusion-pressure techniques. Data were derived primarily from second-law analysis so as to avoid potential errors in third-law calculations resulting from uncertainties in spectroscopic and molecular constants. This approach has the additional advantage of yielding reaction entropies that can be checked for consistency with various molecular constant assignments for the species involved. In the U-F, U-Cl, and U-Br systems, all of the gaseous species UX, UX{sub 2}, UX{sub 3}, UX{sub 4}, and UX{sub 5}, where X represents the halogen, were identified and characterized; the corresponding species ThX, ThX{sub 2}, ThX{sub 3}, and ThX{sub 4} were studied in the Th-F, Th-Cl, and Th-Br systems. A number of oxyhalide species in the systems U-0-F, U-0-Cl, Th-0-F, and Th-O-Cl were studied thermochemically. Additionally, the sublimation thermodynamics of NpF{sub 4}(s) and NpO{sub 2}F{sub 2}(s) were studied by mass spectrometry.

  2. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  3. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  4. Actinide management with commercial fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ohki, Shigeo [Japan Atomic Energy Agency, 4002, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  5. Electronic structure and magnetism in actinide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Durakiewicz, T. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)]. E-mail: tomasz@lanl.gov; Joyce, J.J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lander, G.H. [JRC, Institute of Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Olson, C.G. [Ames Laboratory, Iowa State University, Ames, Iowa 5011 (United States); Butterfield, M.T. [Lawrence Livermoore National Laboratory, Livermoore, CA 94550 (United States); Guziewicz, E. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Batista, C.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Arko, A.J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Morales, L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mattenberger, K. [Laboratorium fur Festkorperphysik, ETH, CH-8093, Zurich (Switzerland); Vogt, O. [Laboratorium fur Festkorperphysik, ETH, CH-8093, Zurich (Switzerland)

    2006-05-01

    A close relationship between electronic structure and magnetic properties is observed in actinide compounds. The exact nature of this relationship is under investigation. We present examples of a direct link between electronic structure and ordered magnetic moment and/or magnetization. Specifically, results obtained for cubic U, Np and Pu compounds and quasi-2D U compounds are be presented. In the case of cubic compounds, a direct relationship between binding energy of valence band features and magnetic moment will be discussed. A Stoner-like mechanism and simple mean-field explanation is proposed for ferromagnetic UTe.

  6. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  7. Actinide management with commercial fast reactors

    Science.gov (United States)

    Ohki, Shigeo

    2015-12-01

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  8. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  9. Status of nuclear data for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  10. Estimation of lifetime of carbonaceous aerosol from open crop residue burning during Mount Tai Experiment 2006 (MTX2006

    Directory of Open Access Journals (Sweden)

    X. L. Pan

    2012-06-01

    Full Text Available Studying the emission ratios of carbonaceous aerosols (element carbon, EC, and organic carbon, OC from open biomass burning helps to reduce uncertainties in emission inventories and provides necessary constraints for model simulations. We measured apparent elemental carbon (ECa and OC concentrations at the summit of Mount Tai (Mt. Tai during intensive open crop residue burning (OCRB episodes using a Sunset OCEC analyzer. Equivalent black carbon (BCe concentrations were determined using a Multiple Angle Absorption Photometer (MAAP. In the fine particle mode, OC and EC showed strong correlations (r > 0.9 with carbon monoxide (CO. Footprint analysis using the FLEXPART_WRF model indicated that OCRB in central east China (CEC had a significant influence on ambient carbonaceous aerosol loadings at the summit of Mt. Tai. ΔECa/ΔCO ratios resulting from OCRB plumes were 14.3 ± 1.0 ng m−3 ppbv−1 at Mt. Tai. This ratio was more than three times those resulting from urban pollution in CEC, demonstrating that significant concentrations of soot particles were released from OCRB. ΔOC/ΔCO ratio from fresh OCRB plumes was found to be 41.9 ± 2.6 ng m−3 ppbv−1 in PM1. The transport time of smoke particles was estimated using the FLEXPART_WRF tracer model by releasing inert particles from the ground layer inside geographical regions where large numbers of hotspots were detected by a MODIS satellite sensor. Fitting regressions using the e-folding exponential function indicated that the removal efficiency of OC (normalized to CO was much larger than that of ECa mass, with mean lifetimes of 27 h (1.1 days for OC and 105 h (4.3 days for ECa, respectively. The lifetime of black carbon estimated for the OCRB events in east China was comparably lower than the values normally adopted in the transport models. Short lifetime of organic carbon

  11. Estimation of lifetime of carbonaceous aerosol from open crop residue burning during Mount Tai Experiment 2006 (MTX2006)

    Science.gov (United States)

    Pan, X. L.; Kanaya, Y.; Wang, Z. F.; Komazaki, Y.; Taketani, F.; Akimoto, H.; Pochanart, P.; Liu, Y.

    2012-06-01

    Studying the emission ratios of carbonaceous aerosols (element carbon, EC, and organic carbon, OC) from open biomass burning helps to reduce uncertainties in emission inventories and provides necessary constraints for model simulations. We measured apparent elemental carbon (ECa) and OC concentrations at the summit of Mount Tai (Mt. Tai) during intensive open crop residue burning (OCRB) episodes using a Sunset OCEC analyzer. Equivalent black carbon (BCe) concentrations were determined using a Multiple Angle Absorption Photometer (MAAP). In the fine particle mode, OC and EC showed strong correlations (r > 0.9) with carbon monoxide (CO). Footprint analysis using the FLEXPART_WRF model indicated that OCRB in central east China (CEC) had a significant influence on ambient carbonaceous aerosol loadings at the summit of Mt. Tai. ΔECa/ΔCO ratios resulting from OCRB plumes were 14.3 ± 1.0 ng m-3 ppbv-1 at Mt. Tai. This ratio was more than three times those resulting from urban pollution in CEC, demonstrating that significant concentrations of soot particles were released from OCRB. ΔOC/ΔCO ratio from fresh OCRB plumes was found to be 41.9 ± 2.6 ng m-3 ppbv-1 in PM1. The transport time of smoke particles was estimated using the FLEXPART_WRF tracer model by releasing inert particles from the ground layer inside geographical regions where large numbers of hotspots were detected by a MODIS satellite sensor. Fitting regressions using the e-folding exponential function indicated that the removal efficiency of OC (normalized to CO) was much larger than that of ECa mass, with mean lifetimes of 27 h (1.1 days) for OC and 105 h (4.3 days) for ECa, respectively. The lifetime of black carbon estimated for the OCRB events in east China was comparably lower than the values normally adopted in the transport models. Short lifetime of organic carbon highlighted the vulnerability of OC to cloud scavenging in the presence of water-soluble organic species from biomass combustion.

  12. Identifying and Understanding the Health Information Experiences and Preferences of Individuals With TBI, SCI, and Burn Injuries

    Directory of Open Access Journals (Sweden)

    Nathan T Coffey MPH

    2016-09-01

    Full Text Available Introduction: Traumatic brain injury, spinal cord injury, and burn injury can cause lifelong disability and changes in quality of life. In order to meet the challenges of postinjury life, various types of health information are needed. We sought to identify preferred sources of health information and services for persons with these injuries and discover how accessibility could be improved. Methods: Thirty-three persons with injury participated in semistructured interviews. Responses to interview questions were coded using NVivo. Results: Participants’ difficulties accessing health information varied by injury type and individually. The majority of respondents found information via the Internet and advocated its use when asked to describe their ideal health information system. Nearly all participants supported the development of a comprehensive care website. When searching for health information, participants sought doctor and support group networks, long-term health outcomes, and treatments specific to their injury. Conclusion: To optimize the quality of health information resources, Internet-based health-care platforms should add or highlight access points to connect patients to medical professionals and support networks while aggregating specialized, injury-specific research and treatment information.

  13. Actinide Solubility and Speciation in the WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald T. [Los Alamos National Laboratory

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  14. Evaluation of actinide biosorption by microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Happel, A.M.

    1996-06-01

    Conventional methods for removing metals from aqueous solutions include chemical precipitation, chemical oxidation or reduction, ion exchange, reverse osmosis, electrochemical treatment and evaporation. The removal of radionuclides from aqueous waste streams has largely relied on ion exchange methods which can be prohibitively costly given increasingly stringent regulatory effluent limits. The use of microbial cells as biosorbants for heavy metals offers a potential alternative to existing methods for decontamination or recovery of heavy metals from a variety of industrial waste streams and contaminated ground waters. The toxicity and the extreme and variable conditions present in many radionuclide containing waste streams may preclude the use of living microorganisms and favor the use of non-living biomass for the removal of actinides from these waste streams. In the work presented here, we have examined the biosorption of uranium by non-living, non-metabolizing microbial biomass thus avoiding the problems associated with living systems. We are investigating biosorption with the long term goal of developing microbial technologies for the remediation of actinides.

  15. A many-body potential approach to modelling the thermomechanical properties of actinide oxides.

    Science.gov (United States)

    Cooper, M W D; Rushton, M J D; Grimes, R W

    2014-03-12

    A many-body potential model for the description of actinide oxide systems, which is robust at high temperatures, is reported for the first time. The embedded atom method is used to describe many-body interactions ensuring good reproduction of a range of thermophysical properties (lattice parameter, bulk modulus, enthalpy and specific heat) between 300 and 3000 K for AmO2, CeO2, CmO2, NpO2, ThO2, PuO2 and UO2. Additionally, the model predicts a melting point for UO2 between 3000 and 3100 K, in close agreement with experiment. Oxygen-oxygen interactions are fixed across the actinide oxide series because it facilitates the modelling of oxide solid solutions. The new potential is also used to predict the energies of Schottky and Frenkel pair disorder processes.

  16. Spent nuclear fuel corrosion: The application of ICP-MS to direct actinide analysis

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R. [Caledon-Consult AB, Nykoeping (Sweden); Eklund, U.B. [Studsvik Nuclear AB, Nykoeping (Sweden)

    1995-01-01

    The ICP-MS technique has been applied to the analysis of the actinide contents of corrodant solutions from experiments performed to study the corrosion of spent nuclear fuel in simulated groundwaters. Analysis was performed directly on the solutions, without employing separation or isotope dilution techniques. The results from two analytical campaigns using natural indium and thorium internal standards are compared. Under both oxic and anoxic conditions, the U contents can be determined with good accuracy and precision. The same applies to Np and Pu under oxic conditions, where the solution concentrations range down to about 0.1 ppb. Under anoxic conditions, where solution concentrations are lower by one or two orders of magnitude, reasonable results for these two actinides can be obtained, but with much lower precision. Direct analysis of Am and Cm, however, gave unsatisfactory results, since the technique is limited by poor measurement statistics and background uncertainty.

  17. First Aid: Burns

    Science.gov (United States)

    ... Your 1- to 2-Year-Old First Aid: Burns KidsHealth > For Parents > First Aid: Burns A A A Scald burns from hot water and other liquids are the most common burns in early childhood. Because burns range from mild ...

  18. First Aid: Burns

    Science.gov (United States)

    ... Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old First Aid: Burns KidsHealth > For Parents > First Aid: Burns Print A A A Scald burns from hot water and other liquids are the most common burns in early childhood. Because burns range from mild to life threatening, ...

  19. The contrasting fission potential-energy structure of actinides and mercury isotopes

    CERN Document Server

    Ichikawa, Takatoshi; Möller, Peter; Sierk, Arnold J

    2012-01-01

    Fission-fragment mass distributions are asymmetric in fission of typical actinide nuclei for nucleon number $A$ in the range $228 \\lnsim A \\lnsim 258$ and proton number $Z$ in the range $90\\lnsim Z \\lnsim 100$. For somewhat lighter systems it has been observed that fission mass distributions are usually symmetric. However, a recent experiment showed that fission of $^{180}$Hg following electron capture on $^{180}$Tl is asymmetric. An earlier experiment has shown fission of $^{198}$Hg and nearby nuclei is symmetric, but with hints of asymmetric yield distributions up to about 10 MeV above the saddle-point energy. We calculate potential-energy surfaces for a typical actinide nucleus and for 12 even isotopes in the range $^{178}$Hg--$^{200}$Hg, demonstrating the radical differences between actinide and mercury potential surfaces. We discuss these differences and how the changing potential-energy structure along the mercury isotope chain affects the observed (a)symmetry of the fission fragments. We show that the ...

  20. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    Science.gov (United States)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  1. End point control of an actinide precipitation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muske, K.R. [Villanova Univ., PA (United States). Dept. of Chemical Engineering; Palmer, M.J. [Los Alamos National Lab., NM (United States)

    1997-10-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements.

  2. Separation of actinides from spent nuclear fuel: A review.

    Science.gov (United States)

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials.

  3. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    Energy Technology Data Exchange (ETDEWEB)

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  4. Scenarios for the transmutation of actinides in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, Bronwyn, E-mail: hylandb@aecl.ca [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada); Gihm, Brian, E-mail: gihmb@aecl.ca [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

    2011-12-15

    With world stockpiles of used nuclear fuel increasing, the need to address the long-term utilization of this resource is being studied. Many of the transuranic (TRU) actinides in nuclear spent fuel produce decay heat for long durations, resulting in significant nuclear waste management challenges. These actinides can be transmuted to shorter-lived isotopes to reduce the decay heat period or consumed as fuel in a CANDU(R) reactor. Many of the design features of the CANDU reactor make it uniquely adaptable to actinide transmutation. The small, simple fuel bundle simplifies the fabrication and handling of active fuels. Online refuelling allows precise management of core reactivity and separate insertion of the actinides and fuel bundles into the core. The high neutron economy of the CANDU reactor results in high TRU destruction to fissile-loading ratio. This paper provides a summary of actinide transmutation schemes that have been studied in CANDU reactors at AECL, including the works performed in the past. The schemes studied include homogeneous scenarios in which actinides are uniformly distributed in all fuel bundles in the reactor, as well as heterogeneous scenarios in which dedicated channels in the reactor are loaded with actinide targets and the rest of the reactor is loaded with fuel. The transmutation schemes that are presented reflect several different partitioning schemes. Separation of americium, often with curium, from the other actinides enables targeted destruction of americium, which is a main contributor to the decay heat 100-1000 years after discharge from the reactor. Another scheme is group-extracted transuranic elements, in which all of the transuranic elements, plutonium (Pu), neptunium (Np), americium (Am), and curium (Cm) are extracted together and then transmuted. This paper also addresses ways of utilizing the recycled uranium, another stream from the separation of spent nuclear fuel, in order to drive the transmutation of other actinides.

  5. Crystal growth methods dedicated to low solubility actinide oxalates

    Energy Technology Data Exchange (ETDEWEB)

    Tamain, C., E-mail: christelle.tamain@cea.fr [CEA, Nuclear Energy Division, Marcoule, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Arab-Chapelet, B. [CEA, Nuclear Energy Division, Marcoule, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Rivenet, M. [University Lille Nord de France, Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, ENSCL-USTL, B.P. 90108, F-59652 Villeneuve d’Ascq Cedex (France); Grandjean, S. [CEA, Nuclear Energy Division, Marcoule, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Abraham, F. [University Lille Nord de France, Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, ENSCL-USTL, B.P. 90108, F-59652 Villeneuve d’Ascq Cedex (France)

    2016-04-15

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 3}·xH{sub 2}O, Th(C{sub 2}O{sub 4}){sub 2}·6H{sub 2}O, M{sub 2+x}[Pu{sup IV}{sub 2−x}Pu{sup III}{sub x}(C{sub 2}O{sub 4}){sub 5}]·nH{sub 2}O and M{sub 1−x}[Pu{sup III}{sub 1−x}Pu{sup IV}{sub x}(C{sub 2}O{sub 4}){sub 2}·H{sub 2}O]·nH{sub 2}O. It is the first time that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV–visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds. - Graphical abstract: Two new single crystal growth methods dedicated to actinide oxalate compounds. - Highlights: • Use of diester as oxalate precursor for crystal growth of actinide oxalates. • Use of actinide oxide as precursor for crystal growth of actinide oxalates. • Crystal growth of Pu(III) and Am(III) oxalates. • Crystal growth of mixed Pu(III)/Pu(IV) oxalates.

  6. Rehabilitation of the burn patient

    Directory of Open Access Journals (Sweden)

    Procter Fiona

    2010-10-01

    Full Text Available Rehabilitation is an essential and integral part of burn treatment. It is not something which takes place following healing of skin grafts or discharge from hospital; instead it is a process that starts from day one of admission and continues for months and sometimes years after the initial event. Burns rehabilitation is not something which is completed by one or two individuals but should be a team approach, incorporating the patient and when appropriate, their family. The term ′Burns Rehabilitation′ incorporates the physical, psychological and social aspects of care and it is common for burn patients to experience difficulties in one or all of these areas following a burn injury. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. The aims of burn rehabilitation are to minimise the adverse effects caused by the injury in terms of maintaining range of movement, minimising contracture development and impact of scarring, maximising functional ability, maximising psychological wellbeing, maximising social integration

  7. Distribution of actinides in SFR1; Aktinidfoerdelning i SFR1

    Energy Technology Data Exchange (ETDEWEB)

    Ingemansson, Tor [ALARA Engineering, Skultuna (Sweden)

    2000-02-01

    The amount of actinides in the Swedish repository for intermediate level radioactive wastes has been estimated. The sources for the actinides are mainly the purification filters of the reactors and the used fuel pools. Defect fuel elements are the originating source of the actinides. It is estimated that the 12 Swedish reactors, in total, have had 2.2 kg of fuel dissolved in their systems since start-up. About 880 g of this amount has been brought to the intermediate-level repository.

  8. Self-interaction corrected local spin density calculations of actinides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z

    2010-01-01

    We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration...... of the actinide ions in these compounds from first principles. Here we review a number of applications, ranging from electronic structure calculations of actinide metals, nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in PuO2....

  9. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  10. Electronic structure and ionicity of actinide oxides from first principles

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, which...... in the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onward. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground-state configurations of the corresponding...

  11. An emergency bioassay method for actinides in urine.

    Science.gov (United States)

    Dai, Xiongxin; Kramer-Tremblay, Sheila

    2011-08-01

    A rapid bioassay method has been developed for the sequential measurements of actinides in human urine samples. The method involves actinide separation from a urine matrix by co-precipitation with hydrous titanium oxide (HTiO), followed by anion exchange and extraction chromatography column purification, and final counting by alpha spectrometry after cerium fluoride micro-precipitation. The minimal detectable activities for the method were determined to be 20 mBq L(-1) or less for plutonium, uranium, americium and curium isotopes, with an 8-h sample turn-around time. Spike tests showed that this method would meet the requirements for actinide bioassay following a radiation emergency.

  12. Burns (For Parents)

    Science.gov (United States)

    ... Child What Kids Say About: Handling Stress Anxiety, Fears, and Phobias Community Service: A Family's Guide to Getting ... What's in this article? Common Causes Types of Burns First-Degree Burns Second-Degree Burns ...

  13. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  14. Hair dryer burns in children.

    Science.gov (United States)

    Prescott, P R

    1990-11-01

    Three children with burn injuries caused by home hair dryers are described. In one patient the injury was believed to be accidental, and in the other two cases the injuries were deliberately caused by a caretaker. The lack of prior experience with hair dryer burns initially led to suspicion of other causes. The characteristics of each case aided in the final determination of accidental vs nonaccidental injury. These cases prompted testing of home hair dryers to determine their heat output. At the highest heat settings, the dryers rapidly generated temperatures in excess of 110 degrees C. After the dryers were turned off, the protective grills maintained sufficient temperatures to cause full-thickness burns for up to 2 minutes. These cases and the results of testing demonstrate that hair dryers must be added to the list of known causes of accidental and nonaccidental burns in children.

  15. Modelling winter organic aerosol at the European scale with CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments

    Directory of Open Access Journals (Sweden)

    G. Ciarelli

    2017-06-01

    Full Text Available We evaluated a modified VBS (volatility basis set scheme to treat biomass-burning-like organic aerosol (BBOA implemented in CAMx (Comprehensive Air Quality Model with extensions. The updated scheme was parameterized with novel wood combustion smog chamber experiments using a hybrid VBS framework which accounts for a mixture of wood burning organic aerosol precursors and their further functionalization and fragmentation in the atmosphere. The new scheme was evaluated for one of the winter EMEP intensive campaigns (February–March 2009 against aerosol mass spectrometer (AMS measurements performed at 11 sites in Europe. We found a considerable improvement for the modelled organic aerosol (OA mass compared to our previous model application with the mean fractional bias (MFB reduced from −61 to −29 %. We performed model-based source apportionment studies and compared results against positive matrix factorization (PMF analysis performed on OA AMS data. Both model and observations suggest that OA was mainly of secondary origin at almost all sites. Modelled secondary organic aerosol (SOA contributions to total OA varied from 32 to 88 % (with an average contribution of 62 % and absolute concentrations were generally under-predicted. Modelled primary hydrocarbon-like organic aerosol (HOA and primary biomass-burning-like aerosol (BBPOA fractions contributed to a lesser extent (HOA from 3 to 30 %, and BBPOA from 1 to 39 % with average contributions of 13 and 25 %, respectively. Modelled BBPOA fractions were found to represent 12 to 64 % of the total residential-heating-related OA, with increasing contributions at stations located in the northern part of the domain. Source apportionment studies were performed to assess the contribution of residential and non-residential combustion precursors to the total SOA. Non-residential combustion and road transportation sector contributed about 30–40 % to SOA formation (with increasing

  16. Factors affecting the placental transfer of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Sikov, M.R.; Kelman, B.J. (Pacific Northwest Laboratory, Richland, WA (USA))

    1989-01-01

    The primary goal of this paper is to consider factors that affect the availability and transport of actinides from maternal blood, through the placenta, to the conceptus. These factors, of particular importance in scaling results from animals to man, include the route and temporal pattern of administration, the mass and physicochemical state of material administered, metabolism of the pregnant animal and fetal organs or tissue, and species-specific changes in placental structure relative to stage of gestation at exposure. Preliminary concepts for descriptive and kinetic models are proposed to integrate these results, to identify additional information required for developing more comprehensive models, and to provide a basis for scaling to human pregnancies for purposes of radiation dosimetry.

  17. Solidification of simulated actinides by natural zircon

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-Wen; LUO Shang-Geng

    2004-01-01

    Natural zircon was used as precursor material to produce a zircon waste form bearing 20wt% simulated actinides (Nd2O3 and UO2) through a solid state reaction by a typical synroc fabrication process. The fabricated zircon waste form has relatively good physical properties (density 5.09g/cm3, open porosity 4.0%, Vickers hardness 715kg/mm2). The XRD, SEM/EDS and TEM/EDS analyses indicate that there are zircon phases containing waste elements formed through the reaction. The chemical durability and radiation stability are determined by the MCC-1method and heavy ion irradiation; the results show that the zircon waste form is highly leach resistance and relatively stable under irradiation (amorphous dose 0.7dpa). From this study, the method of using a natural mineral to solidify radioactive waste has proven to be feasible.

  18. Gamma spectroscopy of neutron rich actinide nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Birkenbach, Benedikt; Geibel, Kerstin; Vogt, Andreas; Hess, Herbert; Reiter, Peter; Steinbach, Tim; Schneiders, David [Koeln Univ. (Germany). IKP; Collaboration: AGATA-Collaboration

    2013-07-01

    Excited states in neutron-rich actinide Th and U nuclei were investigated after multi nucleon transfer reactions employing the AGATA demonstrator and PRISMA setup at LNL (INFN, Italy). A primary {sup 136}Xe beam of 1 GeV hitting a {sup 238}U target was used to produce the nuclei of interest. Beam-like reaction products of Xe- and Ba isotopes after neutron transfer were selected by the PRISMA spectrometer. The recoil like particles were registered by a MCP detector inside the scattering chamber. Coincident γ-rays from excited states in beam and target like particles were measured with the position sensitive AGATA HPGe detectors. Improved Doppler correction and quality of the γ-spectra is based on the novel γ-ray tracking technique which was successfully exploited. First results on the collective properties of various Th and U isotopes are discussed.

  19. Benchmark Evaluation of Dounreay Prototype Fast Reactor Minor Actinide Depletion Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hess, J. D.; Gauld, I. C.; Gulliford, J.; Hill, I.; Okajima, S.

    2017-01-01

    Historic measurements of actinide samples in the Dounreay Prototype Fast Reactor (PFR) are of interest for modern nuclear data and simulation validation. Samples of various higher-actinide isotopes were irradiated for 492 effective full-power days and radiochemically assayed at Oak Ridge National Laboratory (ORNL) and Japan Atomic Energy Research Institute (JAERI). Limited data were available regarding the PFR irradiation; a six-group neutron spectra was available with some power history data to support a burnup depletion analysis validation study. Under the guidance of the Organisation for Economic Co-Operation and Development Nuclear Energy Agency (OECD NEA), the International Reactor Physics Experiment Evaluation Project (IRPhEP) and Spent Fuel Isotopic Composition (SFCOMPO) Project are collaborating to recover all measurement data pertaining to these measurements, including collaboration with the United Kingdom to obtain pertinent reactor physics design and operational history data. These activities will produce internationally peer-reviewed benchmark data to support validation of minor actinide cross section data and modern neutronic simulation of fast reactors with accompanying fuel cycle activities such as transportation, recycling, storage, and criticality safety.

  20. Study on separation of minor actinides from HLLW with new extractant of TODGA-DHOA/Kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Guo-an; Zhu, Wen-bin; Li, Feng-feng; Lin, Ru-shan; Li, Hui-rong [China Institute of Atomic Energy, P.O.Box 275-26, Beijing 102413 (China)

    2013-07-01

    The extraction behavior of U, Np, Pu, Am, rare earth elements and Sr from nitric acid solutions by TODGA/dodecan, DHOA/dodecane and TODGA-DHOA/dodecane were investigated, respectively. Based on experimental results, a separation process was proposed for minor actinide isolation from high level liquid waste (HLLW): the TODGA-DHOA/kerosene system. The multi-stage counter-current cascade experiments were carried out for the purpose by 0.1 mol/l TODGA-1.0 mol/l DHOA/kerosene with miniature mixer- settler contactor rigs (8 stages for extraction, 6 stages for scrubbing, 8 stages for first stripping, 8 stages for second stripping). The results show that the recovery efficiencies of the actinides and lanthanides are more than 99.9%, whereas less than 1% Sr was extracted by 0.1 mol/l TODGA - 1.0 mol/l DHOA/kerosene. The stripping efficiencies of U, Np and Pu are more than 95% in the first stripping step by 0.5 mol/l HNO{sub 3} + 0.5 mol/l AHA(aceto-hydroxamic acid), all of the remained actinides and lanthanides can be stripped by 0.01 mol/l HNO{sub 3} in the second stripping step. 99% Sr was extracted by 0.1 mol/l TODGA/kerosene, so Sr can be recovered efficiently directly from the raffinate by 0.1 mol/l TODGA/kerosene. (authors)

  1. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  2. Studies of actinides in a superanoxic fjord

    Energy Technology Data Exchange (ETDEWEB)

    Roos, P.

    1997-04-01

    Water column and sediment profiles of Pu, Am, Th and U have been obtained in the superanoxic Framvaren fjord, southern Norway. The concentration of bomb test fallout Pu, Am as well as `dissolved` Th in the bottom water are the highest recorded in the marine environment. The behaviour of the actinides in the anoxic water mass is to a large extent governed by the behaviour of the colloidal material. Ultrafiltration reveals that 40-60% of the actinides are associated to the large colloids, surprisingly this is valid also for U. The sediment acts as a source for Pu, Am, and Th to the water column but primarily as a sink for U. The remobilization of Pu, Am and Th is evident from the water column profiles which have similar diffusion shape profiles as other constituents originating from the sediments. The vertical eddy diffusion coefficient calculated from the Pu profile is in the same order of magnitude as reported from the H{sub 2}S profile. Decreased bottom water concentrations (but a constant water column inventory) between 1989 and 1995 as well as pore water Pu concentrations nearly identical to the overlaying bottom water indicates that the present Pu flux from the sediments are low. Contrary to Pu and Am, the water column Th inventory ({sup 232}Th and {sup 230}Th) continues to increase. The flux of {sup 232}Th from the sediments was determined from changes in water column inventory between 1989 and 1995 and from a pore water profile to be in the order of 2-8 Bq/m{sup 2}/y. 208 refs.

  3. Pyrometallurgical processes for recovery of actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  4. Experience of rehabilitation treatment on 234 cases of burn%烧伤患者234例康复治疗体会

    Institute of Scientific and Technical Information of China (English)

    严刚; 付晋凤; 谢丽华; 葛茂星; 张嘉; 曹文德

    2003-01-01

    @@ BACKGROUND:At present,treatment of burn is not only to save life and promote healing of wound surface,but lateral rehabilitation and problems about returning to society are included.Rehabilitation treatment of burn should be performed through the entire therapeutic course.

  5. Numerical analysis on reduction of radioactive actinides by recycling of nuclear fuel; Analisis numerico sobre reduccion de actinidos radiactivos por reciclado de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Balboa L, H. E.

    2014-07-01

    Worldwide, human growth has reached unparalleled levels historically, this implies a need for more energy, and just in 2007 was consumed in the USA 4157 x 10{sup 9} kWh of electricity and there were 6 x 10{sup 9} metric tons of carbon dioxide, which causes a devastating effect on our environment. To this problem, a solution to the demand for non-fossil energy is nuclear energy, which is one of the least polluting and the cheapest among non-fossil energy; however, a problem remains unresolved the waste generation of nuclear fuels. In this work the option of a possible transmutation of actinides in a nuclear reactor of BWR was analyzed, an example of this are the nuclear reactors at the Laguna Verde nuclear power plant, which have generated spent fuel stored in pools awaiting a decision for final disposal or any other existing alternative. Assuming that the spent fuel was reprocessed to separate useful materials and actinides such as plutonium and uranium remaining, could take these actinides and to recycle them inside the same reactor that produced them, so il will be reduced the radiotoxicity of spent fuel. The main idea of this paper is to evaluate by means of numeric simulation (using the Core Management System (CMS)) the reduction of minor actinides in the case of being recycled in fresh fuel of the type BWR. The actinides were introduced hypothetically in the fuel pellets to 6% by weight, and then use a burned in the range of 0-65 G Wd/Tm, in order to have a better panorama of their behavior and thus know which it is the best choice for maximum reduction of actinides. Several cases were studied, that is to say were used as fuels; the UO{sub 2} and MOX. Six different cases were also studied to see the behavior of actinides in different situations. The CMS platform calculation was used for the analysis of the cases presented. Favorable results were obtained, having decreased from a range of 35% to 65% of minor actinides initially introduced in the fuel rods

  6. Element Partitioning in Glass-Ceramic Designed for Actinides Immobilization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Glass-ceramics were designed for immobilization of actinides. In order to immobilizing more wastes in the matrix and to develop the optimum formulation for the glass-ceramic, it is necessary to study the

  7. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  8. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oliver, Michael S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  9. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Gohar, Y. (Nuclear Engineering Division)

    2011-11-04

    In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS

  10. Fluid management in major burn injuries

    Directory of Open Access Journals (Sweden)

    Haberal Mehmet

    2010-10-01

    Full Text Available It is a widely accepted fact that severe fluid loss is the greatest problem faced following major burn injuries. Therefore, effective fluid resuscitation is one of the cornerstones of modern burn treatment. The aim of this article is to review the current approaches available for modern trends in fluid management for major burn patients. As these current approaches are based on various experiences all over the world, the knowledge is essential to improve the status of this patient group.

  11. Selective Media for Actinide Collection and Pre-Concentration: Results of FY 2006 Studies

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Addleman, Raymond S.; Hay, Benjamin P.; Hubler, Timothy L.; Levitskaia, Tatiana G.; Sinkov, Sergey I.; Snow, Lanee A.; Warner, Marvin G.; Latesky, Stanley L.

    2006-11-17

    3] > 0.3 M. Preliminary results suggest that the Kl?ui resins can separate Pu(IV) from sample solutions containing high concentrations of competing ions. Conceptual protocols for recovery of the Pu from the resin for subsequent analysis have been proposed, but further work is needed to perfect these techniques. Work on this subject will be continued in FY 2007. Automated laboratory equipment (in conjunction with Task 3 of the NA-22 Automation Project) will be used in FY 2007 to improve the efficiency of these experiments. The sorption of actinide ions on self-assembled monolayer on mesoporous supports materials containing diphosphonate groups was also investigated. These materials also showed a very high affinity for tetravalent actinides, and they also sorbed U(VI) fairly strongly. Computational Ligand Design An extended MM3 molecular mechanics model was developed for calculating the structures of Kl?ui ligand complexes. This laid the groundwork necessary to perform the computer-aided design of bis-Kl?ui architectures tailored for Pu(IV) complexation. Calculated structures of the Kl?ui ligand complexes [Pu(Kl?ui)2(OH2)2]2+ and [Fe(Kl?ui)2]+ indicate a ''bent'' sandwich arrangement of the Kl?ui ligands in the Pu(IV) complex, whereas the Fe(III) complex prefers a ''linear'' octahedral arrangement of the two Kl?ui ligands. This offers the possibility that two Kl?ui ligands can be tethered together to form a material with very high binding affinity for Pu(IV) over Fe(III). The next step in the design process is to use de novo molecule building software (HostDesigner) to identify potential candidate architectures.

  12. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  13. Clinical study of burn patients requiring admission: A single center experience at North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences

    Directory of Open Access Journals (Sweden)

    Donkupar Khongwar

    2016-01-01

    Full Text Available Background: Although burns are a major problem in health care, a lot of the variation in risk factors exists from region to region which if uncovered correctly could help take effective prevention measures. Aims and Objectives: To assess the 3-year (January 2012 to January 2015 epidemiology of burn injuries admitted to our hospital (primary objective and to find areas of improvement in burn care (secondary objective. Materials and Methods: After obtaining ethical approval data were obtained from the medical record section regarding age, sex, residence, occupation, marital status, socioeconomic status, dates of admission and discharge, circumstances regarding the place, intent, cause, and source of heat. Clinical assessment was done using Wallace's “Rule of Nine” in adult and “Lund and Browder” chart in the pediatric age groups. The interrelationships between clinical and epidemiological variables with burn injury were studied. Results: An increasing trend in the admission rates of burn victims noted in last 3 years males (55.47% outnumbered females (44.52%. The most common age group affected is older children, adolescents, and young adults (between 11 and 30 years. Flame (38.3% and scald (25.3% burns contributed to most of the injuries. Females (52.30% are the major victim of flame burns. Electrical and chemical burns affected only the males suggesting work-related injuries. Trunk (30.8% is the most severely affected site in all cases. Depression (6.8% and power line workers (4.7% seem to be important risk factors in our study. Inability to complete treatment (26.7% was a major concern in our study. Conclusions: This study highlights the need for proper burn care that could be provided at the primary health-care level. The majority of burns were accidental in nature in school going children, young adults, and females. Flame and scald burns were the most common cause. Preventive measures directed toward burn safety and first aid measures

  14. Development of a polar direct drive platform for mix and burn experiments on the National Ignition Facility

    Science.gov (United States)

    Murphy, T. J.; Kyrala, G. A.; Krasheninnikova, N. S.; Bradley, P. A.; Cobble, J. A.; Tregillis, I. L.; Obrey, K. A. D.; Baumgaertel, J. A.; Hsu, S. C.; Shah, R. C.; Hakel, P.; Kline, J. L.; Schmitt, M. J.; Kanzleiter, R. J.; Batha, S. H.; Wallace, R. J.; Bhandarkar, S.; Fitzsimmons, P.; Hoppe, M.; Nikroo, A.; McKenty, P.

    2016-03-01

    Capsules driven with polar drive [1, 2] on the National Ignition Facility [3] are being used [4] to study mix in convergent geometry. In preparation for experiments that will utilize deuterated plastic shells with a pure tritium fill, hydrogen-filled capsules with copper- doped deuterated layers have been imploded on NIF to provide spectroscopic and nuclear measurements of capsule performance. Experiments have shown that the mix region, when composed of shell material doped with about 1% copper (by atom), reaches temperatures of about 2 keV, while undoped mixed regions reach about 3 keV. Based on the yield from these implosions, we estimate the thickness of CD that mixed into the gas as between about 0.25 and 0.43 μm of the inner capsule surface, corresponding to about 5 to 9 μg of material. Using 5 atm of tritium as the fill gas should result in over 1013 DT neutrons being produced, which is sufficient for neutron imaging [5].

  15. AMS of actinides in groundwater: development of a new procedure for trace analysis of Np, Pu, Am and Cm isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, Francesca; Lagos, Markus; Plaschke, Markus; Schaefer, Thorsten; Geckeis, Horst [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Steier, Peter [VERA Laboratory, Faculty of Physics, University of Vienna, Waehringer Strasse 17, A-1090 Vienna (Austria)

    2014-07-01

    In order to assess the actinides contamination in groundwater, their geochemistry is intensely studied in field and laboratory experiments focusing on speciation and ways of transport through the aquifers. A challenge lies in the analysis of actinides below ppq levels. We present a new analytical protocol suited to the measurement by accelerator mass spectrometry of Np, Pu, Am and Cm isotopes without previous chemical separation from each other. The actinides are quantitatively co-precipitated with Fe-hydroxide from the groundwater specimens. This procedure allows the pre-concentration of the actinides from the bulk elements and their incorporation into a sample matrix suited to the AMS measurements. The chemical yield of the co-precipitation is estimated measuring samples with suitable spikes by HR ICP-MS. At the AMS sytem: (a) the ionization yield of Np, Pu, Am and Cm in the given sample matrix, (b) the maximum number of nuclides per sample allowing detection limits below 0.01 ppq, and (c) the influence of the laboratory background on the results, are determined.

  16. Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Clausen, Sønnik

    2012-01-01

    an acceptable agreement. The discrepancies are analyzed from different aspects. The lessons learned and experience gained from this and other case studies are summarized and discussed in detail, which can facilitate the modeling validation effort as well as improve grate-firing technology. Some of the addressed......Grate-firing is one of the main technologies currently used for biomass combustion for heat and power production. However, grate-firing is yet to be further developed, towards a better technology for biomass combustion, particularly towards higher efficiency, lower emissions, and better reliability...... and availability. To better understand grate-firing of biomass and to establish a reliable but relatively simple Computational Fluid Dynamics (CFD) modeling methodology for industrial applications, biomass combustion in a number of different grate boilers has been measured and modeled. As one of the case studies...

  17. Thermodynamic analysis for high burn-up fuel internal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Fuji, Kensho; Kyoh, Bunkei [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1997-09-01

    Chemical states of fission products and actinide elements in high burn-up LWR fuel pellets have been analyzed thermodynamically using the computer program SOLGASMIX-PV. Calculations with this computer code have been performed for a complex multi-component system, which comprises 54 chemical species. The analysis shows that neither alkali nor alkaline-earth uranates are formed, but alkali and alkaline-earth molybdates exist in irradiated LWR fuel pellets in contrast with their post irradiation examinations. These molybdates tend to increase with increasing oxygen potential in the fuel under operating conditions, whereas the zirconates decrease. (author)

  18. Smoke plume trajectory from in situ burning of crude oil in Alaska: Field experiments and modeling of complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    McGrattan, K.B.; Baum, H.R.; Walton, W.D.; Trelles, J.

    1997-01-01

    The model, ALOFT (A Large Outdoor Fire plume Trajectory), is based on the fundamental conservation equations that govern the introduction of hot gases and particulate matter from a large fire into the atmosphere. Two forms of the Navier-Stokes equations are solved numerically--one to describe the plume rise in the first kilometer, the other to describe the plume transport over tens of kilometers of complex terrain. Each form of the governing equations resolves the flow field at different length scales. Particulate matter, or any non-reacting combustion product, is represented by Lagrangian particles that are advected by the fire-induced flow field. Background atmospheric motion is described in terms of the angular fluctuation of the prevailing wind, and represented by random perturbations to the mean particle paths. Results of the model are compared with three sets of fields experiments. Estimates are made of distances from the fire where ground level concentrations of the combustion products fall below regulatory threshold levels.

  19. "My heart burns" - A qualitative study of perceptions and experiences of type 1 diabetes among children and youths in Tajikistan.

    Science.gov (United States)

    Haugvik, Severina; Beran, David; Klassen, Pamela; Hussain, Akhtar; Haaland, Ane

    2017-06-01

    Aims To explore and describe perceptions and experiences of living with type 1 Diabetes Mellitus among children/youths in Tajikistan. Methods Qualitative methods were employed. Participants were recruited through purposive and snowball samplings. Data were collected using a semi-structured interview guide with children/youths having diabetes, their parents as well as health professionals. Data were analyzed according to Malterud's systematic text condensation. Results Children/youths with diabetes (n = 18), their parents (n = 19) and endocrinologists (n = 4) were interviewed. Families described unique stories in which "emotional stress" and a spiritual "evil eye" were perceived as possible causes of diabetes. Life-threatening complications and maltreatment preceding diagnosis of diabetes were frequent. From manifestation of diabetes onwards, families struggled with systemic and cultural obstacles, causing stigma, discrimination, high school-drop-out rates, diabetic coma, chronic complications or death of the child/youth with diabetes. Conclusions Results of this qualitative study highlight the severity and complexity of challenges families living with a child/youth having diabetes in this low-income country face. Efforts to improve life expectancy and life quality are strongly needed and require addressing both systemic and cultural factors in order to accomplish sustainable impact.

  20. On the valence fluctuation in the early actinide metals

    Energy Technology Data Exchange (ETDEWEB)

    Söderlind, P., E-mail: soderlind@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Landa, A.; Tobin, J.G.; Allen, P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Medling, S.; Booth, C.H. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bauer, E.D.; Cooley, J.C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sokaras, D.; Weng, T.-C.; Nordlund, D. [Stanford Synchrotron Radiation Lightsource, SLAC National Laboratory, Menlo Park, CA 94025 (United States)

    2016-02-15

    Highlights: • We make a connection between experimentally observed valence fluctuations and density functional theory. • We present a new model for valence fluctuations. • We present new experimental data for uranium and valence fluctuations. - Abstract: Recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the α phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the δ phase. The model predicts uranium and neptunium to be dominated by the f{sup 3} and f{sup 4} configurations, respectively, with only minor contributions from other configurations. For plutonium (both α and δ phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The δ phase has a greater configuration fraction of f{sup 6} compared to that of the α phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for α-uranium.

  1. Actinide-specific complexing agents: their structural and solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; Freeman, G.E.; Kappel, M.J.

    1983-07-01

    The synthesis of a series of tetracatecholate ligands designed to be specific for Pu(IV) and other actinide(IV) ions has been achieved. Although these compounds are very effective as in vivo plutonium removal agents, potentiometric and voltammetric data indicate that at neutral pH full complexation of the Pu(IV) ion by all four catecholate groups does not occur. Spectroscopic results indicate that the tetracatecholates, 3,4,3-LICAMS and 3,4,3-LICAMC, complex Am(III). The Am(IV)/(III)-catecholate couple (where catecholate = 3,4,3-LICAMS or 3,4,3-LICAMC) is not observed, but may not be observable due to the large currents associated with ligand oxidation. However, within the potential range where ligand oxidation does not occur, these experiments indicate that the reduction potential of free Am(IV)/(III) is probably greater than or equal to + 2.6 V vs NHE or higher. Proof of the complexation of americium in the trivalent oxidation state by 3,4,3-LICAMS and 3,4,3-LICAMC elimates the possibility of tetracatholates stabilizing Am(IV) in vivo.

  2. Patterns of grease burn injury: development of a classification system.

    Science.gov (United States)

    Klein, Matthew B; Gibran, Nicole S; Emerson, Dominic; Sullivan, Stephen R; Honari, Shari; Engrav, Loren H; Heimbach, David M

    2005-09-01

    Grease burns occur commonly in the home during food preparation. It has been our observation that grease burns follow a particular pattern of injury. The purpose of this study was to review our institutional experience in the management of these burns to develop a classification scheme. We performed a retrospective review of patients admitted to our burn center with grease burns. Subjects were identified through our database and their charts were reviewed with particular attention to burn distribution, TBSA and need for grafting. We excluded workplace burns and children under the age of six. A total of 249 patients who fit the above criteria were admitted with grease burns to our burn center from 1993 to 2003. The sequence of events leading to burn and its distribution followed a consistent pattern. The majority of patients (86%) had an isolated upper extremity burn or upper extremity burn in combination with a face, trunk or lower extremity burn. Forty percent of patients required at least one excision and grafting procedure. Grease burns associated with cooking at home follow predictable patterns of injury. Based on these patterns we proposed a classification system for domestic grease burns.

  3. Actinides in irradiated graphite of RBMK-1500 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Plukienė, R., E-mail: rita@ar.fi.lt; Plukis, A.; Barkauskas, V.; Gudelis, A.; Gvozdaitė, R.; Duškesas, G.; Remeikis, V.

    2014-10-01

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  4. Burn Injuries: Burn Depth, Physiopathology and Type of Burns

    Directory of Open Access Journals (Sweden)

    Kemalettin Koltka

    2011-07-01

    Full Text Available A significant burn injury is a serious and mortal event. The most important threat to life is hypovolemic shock with complex pathophysiologic mechanisms. Burn depth is classified as first, second, or third degree. Local inflammatory response results a vasodilatation and an increase in vascular permeability. A burn injury is a three dimensional ischemic wound. Zone of coagulation is the zone with maximum damage. Zone of stasis consists of damaged but viable tissues, the tissue is salvageable. In zone of hyperemia tissue perfusion is increased. At the beginning, cardiac output falls and systemic vascular resistance increases; cardiac performance improves as hypovolemia is corrected with fluid resuscitation. While cardiac output increases systemic vascular resistance falls below normal values and a hypermetabolic state develops. Pulmonary vascular resistance increases immediately after thermal injury and this is more prolonged. To avoid secondary pulmonary complications, the smallest resuscitation volume of fluids that maintains adequate tissue perfusion should be given. Changes parallel to the cardiovascular response develop in other organ systems. The reasons of burn injury can be thermal, electrical, chemical or radiation. It is important to know the exact mechanism of burn injury because of different therapies for a specific cause. In this review information about burn depth, local and systemic responses to burn injury and major causes of burn injury are presented. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl:1-6

  5. Emergency in Burn; Burn in Emergency

    Directory of Open Access Journals (Sweden)

    Yalcin Bayram

    2012-06-01

    Full Text Available Physicians who first meet with burned patients are often emergency service employees. When the patient was admitted to emergency service, especially in patients with major burn injury, is a matter should be dealt with strongly. Before sending the patients to a burn center, some interventions could became life saving which should be done as a first line treatment. Herein, review of the literature related to emergency burn treatment was performed and presented to all physicians as a summary guide. In addition, some questions such as how should be physician, who first meet with the burned patient, evaluated the patient, what should be physician paid attention, which principles should be employed for fluid replacement, how should be approached to burn wound are tried to be addressed. [TAF Prev Med Bull 2012; 11(3.000: 365-368

  6. The interaction of actinide and lanthanide ions with hemoglobin and its relevance to human and environmental toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit, E-mail: amitk@barc.gov.in [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ali, Manjoor [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ningthoujam, Raghumani S. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Gaikwad, Pallavi [Department of Zoology, Savitribai Phule Pune University, Pune 411 007, Mumbai (India); Kumar, Mukesh [Solid State, Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Nath, Bimalendu B. [Department of Zoology, Savitribai Phule Pune University, Pune 411 007, Mumbai (India); Pandey, Badri N. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2016-04-15

    Highlights: • The sites of Ln and An interaction in Hb depend upon their charge-to-ionic-radii ratio. • Th(IV), Ce(IV) and U(VI) altered structure and oxygen-binding of Hb. • Spectroscopic studies determined binding characteristics of actinides. • Metal–Hb interaction was tested in an environmentally-important aquatic midge, Chironomus. - Abstract: Due to increasing use of lanthanides/actinides in nuclear and civil applications, understanding the impact of these metal ions on human health and environment is a growing concern. Hemoglobin (Hb), which occurs in all the kingdom of living organism, is the most abundant protein in human blood. In present study, effect of lanthanides and actinides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] on the structure and function of Hb has been investigated. Results showed that these metal ions, except Ce(IV) interacted with carbonyl and amide groups of Hb, which resulted in the loss of its alpha-helix conformation. However, beyond 75 μM, these ions affected heme moiety. Metal–heme interaction was found to affect oxygen-binding of Hb, which seems to be governed by their closeness with the charge-to-ionic-radius ratio of iron(III). Consistently, Ce(IV) being closest to iron(III), exhibited a greater effect on heme. Binding constant and binding stoichiometry of Th(IV) were higher than that of U(VI). Experiments using aquatic midge Chironomus (possessing human homologous Hb) and human blood, further validated metal–Hb interaction and associated toxicity. Thus, present study provides a biochemical basis to understand the actinide/lanthanide-induced interference in heme, which may have significant implications for the medical and environmental management of lanthanides/actinides toxicity.

  7. Electrochemical decontamination system for actinide processing gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL`s Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused.

  8. Analysis methodology and development of a statistical tool for biodistribution data from internal contamination with actinides.

    Science.gov (United States)

    Lamart, Stephanie; Griffiths, Nina M; Tchitchek, Nicolas; Angulo, Jaime F; Van der Meeren, Anne

    2017-03-01

    The aim of this work was to develop a computational tool that integrates several statistical analysis features for biodistribution data from internal contamination experiments. These data represent actinide levels in biological compartments as a function of time and are derived from activity measurements in tissues and excreta. These experiments aim at assessing the influence of different contamination conditions (e.g. intake route or radioelement) on the biological behavior of the contaminant. The ever increasing number of datasets and diversity of experimental conditions make the handling and analysis of biodistribution data difficult. This work sought to facilitate the statistical analysis of a large number of datasets and the comparison of results from diverse experimental conditions. Functional modules were developed using the open-source programming language R to facilitate specific operations: descriptive statistics, visual comparison, curve fitting, and implementation of biokinetic models. In addition, the structure of the datasets was harmonized using the same table format. Analysis outputs can be written in text files and updated data can be written in the consistent table format. Hence, a data repository is built progressively, which is essential for the optimal use of animal data. Graphical representations can be automatically generated and saved as image files. The resulting computational tool was applied using data derived from wound contamination experiments conducted under different conditions. In facilitating biodistribution data handling and statistical analyses, this computational tool ensures faster analyses and a better reproducibility compared with the use of multiple office software applications. Furthermore, re-analysis of archival data and comparison of data from different sources is made much easier. Hence this tool will help to understand better the influence of contamination characteristics on actinide biokinetics. Our approach can aid

  9. Studies on Neutron, Photon (Bremsstrahlung and Proton Induced Fission of Actinides and Pre-Actinides

    Directory of Open Access Journals (Sweden)

    H. Naik

    2015-08-01

    Full Text Available We present the yields of various fission products determined in the reactor neutron, 3.7-18.1 MeV quasi-mono energetic neutron, 8-80 MeV bremsstrahlung and 20-45 MeV proton induced fission of 232Th and 238U using radiochemical and off-line beta or gamma ray counting. The yields of the fission products in the bremsstrahlung induced fission natPb and 209Bi with 50- 70 MeV and 2.5 GeV based on off-line gamma ray spectrometric technique were also presented. From the yields of fission products, the mass chains yields were obtained using charge distribution correction. From the mass yield distribution, the peak-to-valley (P/V ratio was obtained. The role of excitation energy on the peak-to-valley ratio and fine structure such as effect of shell closure proximity and even-odd effect of mass yield distribution were examined. The higher yields of the fission products around A=133-134, 138-140 and 143-144 and their complementary products explained from the nuclear structure effect and role of standard I and II mode of asymmetric fission. In the neutron, photon (bremsstrahlung and proton induced fission, the asymmetric mass distribution for actinides (Th, U and symmetric distribution for pre-actinides (Pb, Bi were explained from different type of potential fission barrier

  10. Development of the Chalmers Grouped Actinide Extraction Process

    Directory of Open Access Journals (Sweden)

    Halleröd Jenny

    2015-12-01

    Full Text Available Several solvents for Grouped ActiNide EXtraction (GANEX processes have been investigated at Chalmers University of Technology in recent years. Four different GANEX solvents; cyclo-GANEX (CyMe4- -BTBP, 30 vol.% tri-butyl phosphate (TBP and cyclohexanone, DEHBA-GANEX (CyMe4-BTBP, 20 vol.% N,N-di-2(ethylhexyl butyramide (DEHBA and cyclohexanone, hexanol-GANEX (CyMe4-BTBP, 30 vol.% TBP and hexanol and FS-13-GANEX (CyMe4-BTBP, 30 vol.% TBP and phenyl trifluoromethyl sulfone (FS-13 have been studied and the results are discussed and compared in this work. The cyclohexanone based solvents show fast and high extraction of the actinides but a somewhat poor diluent stability in contact with the acidic aqueous phase. FS-13-GANEX display high separation factors between the actinides and lanthanides and a good radiolytic and hydrolytic stability. However, the distribution ratios of the actinides are lower, compared to the cyclohexanone based solvents. The hexanol-GANEX is a cheap solvent system using a rather stable diluent but the actinide extraction is, however, comparatively low.

  11. The actinides-a beautiful ending of the Periodic Table

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Boerje [Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvaegen 23, SE-100 44 Stockholm (Sweden)], E-mail: borje.johansson@fysik.uu.se; Li, Sa [Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvaegen 23, SE-100 44 Stockholm (Sweden); Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2007-10-11

    The 5f elements, actinides, show many properties which have direct correspondence to the 4f transition metals, the lanthanides. The remarkable similarity between the solid state properties of compressed Ce and the actinide metals is pointed out in the present paper. The {alpha}-{gamma} transition in Ce is considered as a Mott transition, namely, from delocalized to localized 4f states. An analogous behavior is also found for the actinide series, where the sudden volume increase from Pu to Am can be viewed upon as a Mott transition within the 5f shell as a function of the atomic number Z. On the itinerant side of the Mott transition, the earlier actinides (Pa-Pu) show low symmetry structures at ambient conditions; while across the border, the heavier elements (Am-Cf) present the dhcp structure, an atomic arrangement typical for the trivalent lanthanide elements with localized 4f magnetic moments. The reason for an isostructural Mott transition of the f electron in Ce, as opposed to the much more complicated cases in the actinides, is identified. The strange appearance of the {delta}-phase (fcc) in the phase diagram of Pu is another consequence of the border line behavior of the 5f electrons. The path leading from {delta}-Pu to {alpha}-Pu is identified.

  12. Recovery and chemical purification of actinides at JRC, Karlsruhe

    Science.gov (United States)

    Bokelund, H.; Apostolidis, C.; Glatz, J.-P.

    1989-07-01

    The application of actinide elements in research and in technology is many times subject to rather stringent purity requirements; often a nuclear grade quality is specified. The additional possible demand for a high isotopic purity is a special feature in the handling of these elements. The amount of actinide elements contained in or adhering to materials declared as waste should be low for safety reasons and out of economic considerations. The release of transuranium elements to the environment must be kept negligible. For these and for other reasons a keen interest in the separation of actinides from various materials exists, either for a re-use through recycling, or for their safe confinement in waste packages. This paper gives a short review of the separation methods used for recovery and purification of actinide elements over the past years in the European Institute for Transuranium Elements. The methods described here involve procedures based on precipitation, ion exchange or solvent extraction; often used in a combination. The extraction methods were preferably applied in a Chromatographie column mode. The actinide elements purified and/or separated from each other by the above methods include uranium, neptunium, plutonium, americium, curium, and californium. For the various elements the work was undertaken with different aims, ranging from reprocessing and fabrication of nuclear fuels on a kilogramme scale, over the procurement of alpha-free waste, to the preparation of neutron sources of milligramme size.

  13. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry and Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs.

  14. Fusion Techniques for the Oxidation of Refractory Actinide Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.S.

    1999-04-15

    Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due

  15. Tweens feel the burn: "salt and ice challenge" burns.

    Science.gov (United States)

    Roussel, Lauren O; Bell, Derek E

    2016-05-01

    To review our institution's experience with frostbite injury secondary to "salt and ice challenge" (SIC) participation. We conducted a retrospective analysis of intentional freezing burns from 2012 to 2014. Demographics, depth and location of burn, total body surface area of burn, treatment, time to wound healing, length of stay, complications, and motives behind participation were analyzed. Five patients were seen in the emergency department for intentional freezing burns that resulted from SIC (all females; mean age: 12.3 years; range age: 10.0-13.2 years). Mean total body surface area was 0.408%. Salt and ice was in contact with skin for >10 min for two patients, >20 min for two patients, and an unknown duration for one patient. Complications included pain and burn scar dyschromia. Four patients cited peer pressure and desire to replicate SIC as seen on the Internet as their motivation in attempting the challenge. SIC has become a popular, self-harming behavior among youths. Increased public education, and provider and parent awareness of SIC are essential to address this public health concern.

  16. Ventilation system of actinides handling facility in Oarai-branch of Tohoku University

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshimitsu; Watanabe, Makoto; Hara, Mituo; Shikama, Tatsuo; Kayano, Hideo; Mitsugashira, Toshiaki [Oarai Branch, Institute for Materials Research, Tohoku Univ., Oarai, Ibaraki (Japan)

    1999-09-01

    We have reported the development of the facility for handling actinides in Tohoku University at the second KAERI-JAERI joint seminar on PIE technology. Actinide isotopes have most hazurdous {alpha}-radioactivity. Therefore, a specially designed facility is necessary to carry out experimental study for actinide physics and chemistry. In this paper, we will describe the ventilation system and monitoring system for actinide handling facility. (author)

  17. ORNL actinide materials and a new detection system for superheavy nuclei

    Directory of Open Access Journals (Sweden)

    Rykaczewski Krzysztof P.

    2016-01-01

    Full Text Available The actinide resources and production capabilities at Oak Ridge National Laboratory (ORNL are reviewed, including potential electromagnetic separation of rare radioactive materials. The first experiments at the Dubna Gas Filled Recoil Separator (DGFRS with a new digital detection system developed at ORNL and University of Tennessee Knoxville (UTK are presented. These studies used 240Pu material provided by ORNL and mixed-Cf targets made at ORNL. The proposal to use an enriched 251Cf target and a large dose of 58Fe beam to reach the N = 184 shell closure and to observe new elements with Z = 124, 122 and 120 is discussed.

  18. Uncertainty analysis of thermocouple measurements used in normal and abnormal thermal environment experiments at Sandia's Radiant Heat Facility and Lurance Canyon Burn Site.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James Thomas

    2004-04-01

    It would not be possible to confidently qualify weapon systems performance or validate computer codes without knowing the uncertainty of the experimental data used. This report provides uncertainty estimates associated with thermocouple data for temperature measurements from two of Sandia's large-scale thermal facilities. These two facilities (the Radiant Heat Facility (RHF) and the Lurance Canyon Burn Site (LCBS)) routinely gather data from normal and abnormal thermal environment experiments. They are managed by Fire Science & Technology Department 09132. Uncertainty analyses were performed for several thermocouple (TC) data acquisition systems (DASs) used at the RHF and LCBS. These analyses apply to Type K, chromel-alumel thermocouples of various types: fiberglass sheathed TC wire, mineral-insulated, metal-sheathed (MIMS) TC assemblies, and are easily extended to other TC materials (e.g., copper-constantan). Several DASs were analyzed: (1) A Hewlett-Packard (HP) 3852A system, and (2) several National Instrument (NI) systems. The uncertainty analyses were performed on the entire system from the TC to the DAS output file. Uncertainty sources include TC mounting errors, ANSI standard calibration uncertainty for Type K TC wire, potential errors due to temperature gradients inside connectors, extension wire uncertainty, DAS hardware uncertainties including noise, common mode rejection ratio, digital voltmeter accuracy, mV to temperature conversion, analog to digital conversion, and other possible sources. Typical results for 'normal' environments (e.g., maximum of 300-400 K) showed the total uncertainty to be about {+-}1% of the reading in absolute temperature. In high temperature or high heat flux ('abnormal') thermal environments, total uncertainties range up to {+-}2-3% of the reading (maximum of 1300 K). The higher uncertainties in abnormal thermal environments are caused by increased errors due to the effects of imperfect TC attachment to

  19. Fluoride-conversion synthesis of homogeneous actinide oxide solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, G W Chinthaka M [ORNL; Hunn, John D [ORNL; Yeamans, Charles B. [University of California, Berkeley; Cerefice, Gary S. [University of Nevada, Las Vegas; Czerwinski, Ken R. [University of Nevada, Las Vegas

    2011-01-01

    Here, a novel route to synthesize (U, Th)O2 solid solutions at a relatively low temperature of 1100 C is demonstrated. First, the separate actinide oxides reacted with ammonium bifluoride to form ammonium actinide fluorides at room temperature. Subsequently, this mixture was converted to the actinide oxide solid solution using a two-phased heat treatment, first at 610 C in static air, then at 1100 C in flowing argon. Solid solutions obeying Vegard s Law were synthesized for ThO2 content from 10 to 90 wt%. Microscopy showed that the (U, Th)O2 solid solutions synthesized with this method to have considerably high crystallinity and homogeneity, suggesting the suitability of material thus synthesized for sintering into nuclear fuel pellets at low temperatures.

  20. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  1. X-ray and electron microscopy of actinide materials.

    Science.gov (United States)

    Moore, Kevin T

    2010-06-01

    Actinide materials demonstrate a wide variety of interesting physical properties in both bulk and nanoscale form. To better understand these materials, a broad array of microscopy techniques have been employed, including transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field imaging (HAADF), scanning electron microscopy (SEM), wavelength dispersive X-ray spectroscopy (WDXS), electron back scattered diffraction (EBSD), scanning tunneling microscopy (STM), atomic force microscopy (AFM), and scanning transmission X-ray microscopy (STXM). Here these techniques will be reviewed, highlighting advances made in the physics, materials science, chemistry, and biology of actinide materials through microscopy. Construction of a spin-polarized TEM will be discussed, considering its potential for examining the nanoscale magnetic structure of actinides as well as broader materials and devices, such as those for computational magnetic memory. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Electronic, structural, and thermodynamic properties of actinide dioxides

    Science.gov (United States)

    Ma, Li; Atta-Fynn, Raymond; Ray, Asok K.

    2010-03-01

    As a continuation of our studies of pure actinide metals using hybrid density functional theory,footnotetextR. Atta-Fynn and A. K. Ray, Europhysics Letters, 85, 27008-p1- p6 (2009); Chemical Physics Letters, 482, 223-227 (2009). we present here a systematic study of the electronic and geometric structure properties of the actinide dioxides, UO2, PuO2 and AmO2, using both density functional and hybrid density functional theories. For the hybrid density functionals, the fractions of exact Hartree-Fock exchange used were 25% and 40%. Each compound has been studied at the nonmagnetic, ferromagnetic and antiferromagnetic configurations, with and without spin-orbit coupling (SOC). The influence of SOC on the properties of the actinide dioxides will be discussed. Thermodynamic properties such as phonon dispersion curves, heat capacity, entropy, internal energy and free energy have been calculated by a coupling of first-principles calculations and lattice dynamics.

  3. Stability of artificial ferrite garnets with actinides and lanthanoids in water solutions

    Science.gov (United States)

    Livshits, T. S.

    2008-12-01

    Extraction of the actinide-REE fraction and its subsequent incorporation into sparingly soluble crystalline phases (confinement matrices) is assumed in processing of spent nuclear fuel from high-level radioactive wastes (HLW). The chemical stability in the process of interaction with subsurface water governs the capability of a matrix phase to keep radionuclides from getting into the biosphere. In static experiments at 90 and 150°C, the chemical stability of ferrite garnets was investigated for three compositions with Th4+, Ce4+ and Gd3+ + serving as simulator components of the actinide fraction of HLW. Experiments were carried out in distilled water (pH 6.5), 0.01 M HCl solution (pH 2), and 0.01 M NaOH solution (pH 12). The behavior of ferrigarnet matrices depends on the acidity of the solution. In neutral and alkaline media, Th, Ce, and Gd are virtually not transferred into the liquid phase. Acid leaching promotes intense dissolution of garnet matrices. In this case, the leaching rate of Gd and Th from ceramics into the liquid phase is two orders of magnitude lower than the leaching rate of Ce because the Ce-doped phases contain less stable (relative to garnet) Ce-rich perovskite. Amorphization of the ferrigarnet structure due to 244Cm isotope decay leads to an increase in the leaching rate of Cm by no more than five times. In terms of radiation and chemical stability, ferrite garnets are not inferior to zirconolites and titanate pyrochlores. The experimental results suggest that garnet matrices can reliably immobilize actinides in subsurface repositories.

  4. Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P; Zavarin, M; Leif, R; Powell, B; Singleton, M; Lindvall, R; Kersting, A

    2007-12-17

    The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15 to 19 mg C/L) compared to samples with DOM removed (< 0.4 mg C/L) or samples with naturally low DOM (0.2 mg C/L). In contrast, Np(V) and U(VI) sorption to zeolitized tuff was much less affected by the presence of DOM. The Np(V) and U(VI) sorption Kds were low under all conditions. Importantly, the DOM was not found to significantly sorb to the zeolitized tuff during these experiment. The concentration of DOM in groundwater affects the transport behavior of actinides in the subsurface. The mobility of Am(III) and Pu(IV) is significantly higher in groundwater with elevated levels of DOM resulting in potentially enhanced transport. To accurately model the transport behavior of actinides in groundwater at Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.

  5. Actinide Production in the Reaction of Heavy Ions withCurium-248

    Energy Technology Data Exchange (ETDEWEB)

    Moody, K.J.

    1983-07-01

    Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z = 91) to mendelevium (Z = 101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of {sup 248}Cm with {sup 18}O, {sup 86}Kr and {sup 136}Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from {sup 48}Ca and {sup 238}U bombardments of {sup 248}Cm. Simple extrapolation of the product yields into unknown regions of charge and mass indicates that the use of heavy ion transfer reactions to produce new, neutron-rich above-target species is limited. The substantial production of neutron-rich below-target species, however, indicates that with very heavy ions like {sup 136}Xe and {sup 238}U the new species {sup 248}Am, {sup 249}Am and {sup 247}Pu should be produced with large cross sections from a {sup 248}Cm target. A preliminary, unsuccessful attempt to isolate {sup 247}Pu is outlined. The failure is probably due to the half life of the decay, which is calculated to be less than 3 minutes. The absolute gamma ray intensities from {sup 251}Bk decay, necessary for calculating the {sup 251}Bk cross section, are also determined.

  6. Trivalent Actinide Uptake by Iron (Hydr)oxides.

    Science.gov (United States)

    Finck, Nicolas; Nedel, Sorin; Dideriksen, Knud; Schlegel, Michel L

    2016-10-04

    The retention of Am(III) by coprecipitation with or adsorption onto preformed magnetite was investigated by X-ray diffraction (XRD), solution chemistry, and X-ray absorption spectroscopy (XAS). In the coprecipitation experiment, XAS data indicated the presence of seven O atoms at 2.44(1) Å, and can be explained by an Am incorporation at Fe structural sites at the magnetite surface. Next-nearest Fe were detected at distances suggesting that Am and Fe polyhedra share corners in geometries ranging from bent to close to linear Am-O-Fe bonds. After aging for two years, the coordination number and the distance to the first O shell significantly decreased, and atomic shells were detected at higher distances. These data suggest a structural reorganization and an increase in structural order around sorbed Am. Upon contact with preformed Fe3O4, Am(III) forms surface complexes with cosorbed Fe at the surface of magnetite, a possible consequence of the high concentration of dissolved Fe. In a separate experiment, chloride green rust (GR) was synthesized in the presence of Am(III), and subsequently converted to Fe(OH)2(s) intermixed with magnetite. XAS data indicated that the actinide is successively located first at octahedral brucite-like sites in the GR precursor, then in Fe(OH)2(s), an environment markedly distinct from that of Am(III) in Fe3O4. The findings indicate that the magnetite formation pathway dictates the magnitude of Am(III) incorporation within this solid.

  7. Transmutation of minor actinides discharged from LMFBR spent fuel in a high power density fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uebeyli, Mustafa E-mail: mubeyli@gazi.edu.tr

    2004-12-01

    Significant amounts of nuclear wastes consisting of plutonium, minor actinides and long lived fission products are produced during the operation of commercial nuclear power plants. Therefore, the destruction of these wastes is very important with respect to public health, environment and also the future of nuclear energy. In this study, transmutation of minor actinides (MAs) discharged from LMFBR spent fuel in a high power density fusion reactor has been investigated under a neutron wall load of 10 MW/m{sup 2} for an operation period of 10 years. Also, the effect of MA percentage on the transmutation has been examined. The fuel zone, containing MAs as spheres cladded with W-5Re, has been located behind the first wall to utilize the high neutron flux for transmutation effectively. Helium at 40 atm has been used as an energy carrier. At the end of the operation period, the total burning and transmutation are greater than the total buildups in all investigated cases, and very high burnups (420-470 GWd/tHM) are reached, depending on the MA content. The total transmutation rate values are 906 and 979 kg/GW{sub th} year at startup and decrease to 140 and 178 kg/GW{sub th} year at the end of the operation for fuel with 10% and 20% MA, respectively. Over an operation period of 10 years, the effective half lives decrease from 2.38, 2.21 and 3.08 years to 1.95, 1.80 and 2.59 years for {sup 237}Np, {sup 241}Am and {sup 243}Am, respectively. Total atomic densities decrease exponentially during the operation period. The reductions in the total atomic densities with respect to the initial ones are 79%, 81%, 82%, 83%, 85% and 86% for 10%, 12%, 14%, 16%, 18% and 20% MAs, respectively.

  8. Modeling actinide chemistry with ASPEN PLUS

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, C.O.

    1995-12-31

    When chemical engineers think of chemical processing, they often do not include the US government or the national laboratories as significant participants. Compared to the scale of chemical processing in the chemical process, petrochemical and pharmaceutical industries, the government contribution to chemical processing is not large. However, for the past fifty years, the US government has been, heavily involved in chemical processing of some very specialized materials, in particular, uranium and plutonium for nuclear weapons. Individuals and corporations have paid taxes that, in part have been used to construct and to maintain a series of very expensive laboratories and production facilities throughout the country. Even ignoring the ongoing R & D costs, the price per pound of enriched uranium or of plutonium exceeds that of platinum by a wide margin. Now, with the end of the cold war, the government is decommissioning large numbers of nuclear weapons and cleaning up the legacy of radioactive wastes generated over the last fifty years. It is likely that the costs associated with the build-down and clean-up of the nuclear weapons complex will exceed the investment of the past fifty years of production. Los Alamos National Laboratory occupies a special place in the history of nuclear weapons. The first weapons were designed and assembled at Los Alamos using uranium produced in Oak Ridge, Tennessee or plutonium produced in Richland, Washington. Many of the thermophysical and metallurgical properties of actinide elements have been investigated at Los Alamos. The only plutonium processing facility currently operating in the US is in Los Alamos, and the Laboratory is striving to capture and maintain the uranium processing technology applicable to the post-cold war era. Laboratory researchers are actively involved in developing methods for cleaning up the wastes associated with production of nuclear weapons throughout the US.

  9. In pursuit of homoleptic actinide alkyl complexes.

    Science.gov (United States)

    Seaman, Lani A; Walensky, Justin R; Wu, Guang; Hayton, Trevor W

    2013-04-01

    This Forum Article describes the pursuit of isolable homoleptic actinide alkyl complexes, starting with the pioneering work of Gilman during the Manhattan project. The initial reports in this area suggested that homoleptic uranium alkyls were too unstable to be isolated, but Wilkinson demonstrated that tractable uranium alkyls could be generated by purposeful "ate" complex formation, which serves to saturate the uranium coordination sphere and provide the complexes with greater kinetic stability. More recently, we reported the solid-state molecular structures of several homoleptic uranium alkyl complexes, including [Li(THF)4][U(CH2(t)Bu)5], [Li(TMEDA)]2[UMe6], [K(THF)]3[K(THF)2][U(CH2Ph)6]2, and [Li(THF)4][U(CH2SiMe3)6], by employing Wilkinson's strategy. Herein, we describe our attempts to extend this chemistry to thorium. The treatment of ThCl4(DME)2 with 5 equiv of LiCH2(t)Bu or LiCH2SiMe3 at -25 °C in THF affords [Th(CH2(t)Bu)5] (1) and [Li(DME)2][Th(CH2SiMe3)5 (2), respectively, in moderate yields. Similarly, the treatment of ThCl4(DME)2 with 6 equiv of K(CH2Ph) produces [K(THF)]2[Th(CH2Ph)6] (3), in good yield. Complexes 1-3 have been fully characterized, while the structures of 1 and 3 were confirmed by X-ray crystallography. Additionally, the electronic properties of 1 and 3 were explored by density functional theory.

  10. Actinide consumption: Nuclear resource conservation without breeding

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.; Battles, J.E.; Johnson, T.R.; McPheeters, C.C.

    1991-01-01

    A new approach to the nuclear power issue based on a metallic fast reactor fuel and pyrometallurgical processing of spent fuel is showing great potential and is approaching a critical demonstration phase. If successful, this approach will complement and validate the LWR reactor systems and the attendant infrastructure (including repository development) and will alleviate the dominant concerns over the acceptability of nuclear power. The Integral Fast Reactor (IFR) concept is a metal-fueled, sodium-cooled pool-type fast reactor supported by a pyrometallurgical reprocessing system. The concept of a sodium cooled fast reactor is broadly demonstrated by the EBR-II and FFTF in the US; DFR and PFR in the UK; Phenix and SuperPhenix in France; BOR-60, BN-350, BN-600 in the USSR; and JOYO in Japan. The metallic fuel is an evolution from early EBR-II fuels. This fuel, a ternary U-Pu-Zr alloy, has been demonstrated to be highly reliable and fault tolerant even at very high burnup (160-180,000 MWd/MT). The fuel, coupled with the pool type reactor configuration, has been shown to have outstanding safety characteristics: even with all active safety systems disabled, such a reactor can survive a loss of coolant flow, a loss of heat sink, or other major accidents. Design studies based on a small modular approach show not only its impressive safety characteristics, but are projected to be economically competitive. The program to explore the feasibility of actinide recovery from spent LWR fuel is in its initial phase, but it is expected that technical feasibility could be demonstrated by about 1995; DOE has not yet committed funds to achieve this objective. 27 refs.

  11. Emotional associations with skin: differences between burned and non-burned individuals.

    Science.gov (United States)

    Titscher, A; Lumenta, D B; Kamolz, L P; Mittlboeck, M; Frey, M

    2010-09-01

    The appearance of skin is crucial for our physical and psychological integrity, and is strongly associated with our emotional self-awareness. Burn victims have to cope with negative and even threatening sensations resulting from the changed appearance of their skin after injury and also linked to experiences during the treatment. The aim of this study was to analyse differences regarding the emotional associations with skin in burn victims (burn group) to persons not having subdued any burn (control group). In the first instance over 960 volunteers were recruited for the rating of emotional associations with skin in the control group and thereby a representative profile for non-injured individuals. In the second part, 44 burn patients of the Vienna Burn Center answered the same questionnaire. The quantitative rating of emotional associations with skin was performed with a newly designed questionnaire using a semantic differential on eight dimensions with a 5-point scale system. Both groups have positive associations with skin. One significant difference (p=0.0090, Chi-square test for trend) was the overall rating of the item "importance": for burn victims skin is more "important" than for controls. Patients with visible burns tended to put more emphasize on the possible exposure to danger ("threatened") of skin, and patients with >/=20% TBSA rated skin as more "noticeable" and "strong" as compared to small burns (<20% TBSA). Patients with burns to the face, hands and neck ("visible burns") were more likely to judge skin as threatened item. Our poll suggests that despite long treatment, rehabilitation and even near-death experiences burn patients continue to have positive associations with skin. This in turn, should encourage all specialists dealing with burns to engage in a continuous follow-up as well as enhance psychological and social support. 2010 Elsevier Ltd and ISBI. All rights reserved.

  12. Instant release of fission products in leaching experiments with high burn-up nuclear fuels in the framework of the Euratom project FIRST- Nuclides

    Science.gov (United States)

    Lemmens, K.; González-Robles, E.; Kienzler, B.; Curti, E.; Serrano-Purroy, D.; Sureda, R.; Martínez-Torrents, A.; Roth, O.; Slonszki, E.; Mennecart, T.; Günther-Leopold, I.; Hózer, Z.

    2017-02-01

    The instant release of fission products from high burn-up UO2 fuels and one MOX fuel was investigated by means of leach tests. The samples covered PWR and BWR fuels at average rod burn-up in the range of 45-63 GWd/tHM and included clad fuel segments, fuel segments with opened cladding, fuel fragments and fuel powder. The tests were performed with sodium chloride - bicarbonate solutions under oxidizing conditions and, for one test, in reducing Ar/H2 atmosphere. The iodine and cesium release could be partially explained by the differences in sample preparation, leading to different sizes and properties of the exposed surface areas. Iodine and cesium releases tend to correlate with FGR and linear power rating, but the scatter of the data is significant. Although the gap between the fuel and the cladding was closed in some high burn-up samples, fissures still provide possible preferential transport pathways.

  13. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... to the predictions of four conceptual models that describe the burning mechanism of multicomponent fuels. Based on the comparisons, hydrocarbon liquids were found to be best described by the Equilibrium Flash Vaporization model, showing a constant gas composition and gasification rate. The multicomponent fuels...... followed the diffusion-limited gasification model, showing a change in the hydrocarbon composition of the fuel and its evaporating gases, as well as a decreasing gasification rate, as the burning progressed. This burning mechanism implies that the residue composition and burning efficiency mainly depend...

  14. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  15. Selection of actinide chemical analogues for WIPP tests

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal, R.; Spall, D.

    1995-07-05

    The Department of Energy must demonstrate the effectiveness of the Waste Isolation Pilot Plant (WIPP) as a permanent repository for the disposal of transuranic (TRU) waste. Performance assessments of the WIPP require that estimates of the transportability and outcome of the radionuclides (actinides) be determined from disposal rooms that may become either partially or completely filled with brine. Federal regulations limit the amount of radioactivity that may be unintentionally released to the accessible environment by any mechanism during the post closure phase up to 10,000 years. Thermodynamic models have been developed to predict the concentrations of actinides in the WIPP disposal rooms under various situations and chemical conditions. These models are based on empirical and theoretical projections of the chemistry that might be present in and around the disposal room zone for both near and long-term periods. The actinides that are known to be present in the TRU wastes (and are included in the model) are Th, U, Np, Pu, and Am. Knowledge of the chemistry that might occur in the disposal rooms when the waste comes in contact with brine is important in understanding the range of oxidation states that might be present under different conditions. There is a need to establish the mechanisms and resultant rate of transport, migration, or effective retardation of actinides beyond the disposal rooms to the boundary of the accessible environment. The influence of the bulk salt rock, clay sediments and other geologic matrices on the transport behavior of actinides must be determined to establish the overall performance and capability of the WIPP in isolating waste from the environment. Tests to determine the capabilities of the WIPP geologic formations in retarding actinide species in several projected oxidation states would provide a means to demonstrate the effectiveness of the WIPP in retaining TRU wastes.

  16. Thermally unstable complexants/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K. [Argonne National Lab., IL (United States)

    1996-10-01

    In situ immobilization is an approach to isolation of radionuclides from the hydrosphere that is receiving increasing attention. Rather than removing the actinides from contaminated soils, this approach transforms the actinides into intrinsically insoluble mineral phases resistant to leaching by groundwater. The principal advangates of this concept are the low cost and low risk of operator exposure and/or dispersion of the radionuclides to the wider environment. The challenge of this approach is toe accomplish the immobilization without causing collateral damage to the environment (the cure shouldn`t be worse than the disease) and verification of system performance.

  17. New cubic structure compounds as actinide host phases

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S V [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation); Yudintsev, S V; Livshits, T S, E-mail: profstef@mtu-net.ru [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Staromonetny lane 35, Moscow 119017 (Russian Federation)

    2010-03-15

    Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds - stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd{sub 2}Zr{sub 2}O{sub 7}) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 deg. C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn{sup 4+} substitution for Zr{sup 4+} reduces production temperature and the compounds REE{sub 2}ZrSnO{sub 7} may be hot-pressed or cold pressed and sintered at {approx}1400 deg. C. Pyrochlore, A{sub 2}B{sub 2}O{sub 7-x} (two-fold elementary fluorite unit cell), and murataite, A{sub 3}B{sub 6}C{sub 2}O{sub 20-y} (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C - murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO{sub 2} (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C {yields} 8C {yields} 3C phases with the highest actinide concentration in the core and the lowest - in the rim of the grains. Radiation resistance of the 'murataite' is comparable to titanate pyrochlores. One

  18. New molecules for the separation of actinides (III): the picolinamides

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, P.Y.; Condamines, N.; Berthon, L.; Madic, C.

    1994-12-31

    Minor actinide partitioning from high level liquid wastes produced during the reprocessing of nuclear fuels by the Purex process, requires the design of new extracting molecules. These new extractants must be able to separate, for example, actinides from lanthanides. This separation is very difficult, due to the similar chemical properties of these metallic species, but it can possibly be reached by using extractants with soft donor atoms (N or S). Some new molecules : the picolinamides are investigated in this way. The general chemical formula and the behaviour of these compounds in acidic media are given. (O.L.). 3 refs.

  19. Production of heavy actinides in incomplete fusion reactions

    Science.gov (United States)

    Antonenko, N. V.; Cherepanov, E. A.; Iljinov, A. S.; Mebel, M. V.

    1994-10-01

    We present preliminary results of calculations by the phenomenological model of the estimated yield of some heavy actinide isotopes. It is assumed that these isotopes are produced as a result of multinucleon transfers followed by neutrons and charged particle emission A.S. Iljinov and E.A. Cherepanov (1980). The yield P(sub Z, N)(E*) of primary excited actinides is found using the model of N.V. Antonenko and R.V. Jolos (1991). Absolute cross-sections for different binary reaction channels are obtained by summing the cross-sections for all subchannels with an appreciable yield according to J. Wilczynski et al. (1980).

  20. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    Science.gov (United States)

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  1. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  2. Modeling Deep Burn TRISO Particle Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

    2012-01-01

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  3. Learn Not To Burn.

    Science.gov (United States)

    English, Nancy; Hendricks, Charlotte M.

    1997-01-01

    Describes the "Learn Not to Burn Preschool Program," a low-cost fire safety awareness and burn prevention curriculum for young children. The program promotes eight burn prevention methods--including practicing an escape plan--using developmentally appropriate learning objectives to increase children's fire safety knowledge, skill, and…

  4. Economics of pediatric burns.

    Science.gov (United States)

    Bass, Michael J; Phillips, Linda G

    2008-07-01

    Sustaining a burn injury sets in motion a cycle of pain, disfigurement, and a search for survival. In pediatric burns, the injury extends to the parents where fear, ignorance, and helplessness forever change their lives. Pediatric burn injuries are caused by fire, hot liquids, clothing irons, hair curlers, caustic substances like drain cleaner, the grounding of an electrical source, and exposure to radiation. Efficiency in the delivery of pediatric burn care is critical. Maximizing resource utilization means continual self-evaluation and economic analysis of therapeutic modalities. Griffiths et al found that most childhood burns are due to scalds, which can be treated for $1061 per percent burn. Paddock et al reduced the cost of treating superficial pediatric burns and reduced the length of stay in hospital using silver-impregnated gauze over traditional methods. Barrett et al found improved cosmesis of skin grafts using cultured epithelial autografts but at a substantially increased cost. Corpron et al showed that pediatric burn units that treat burns >10% total body surface area and operative treatment of pediatric burns regardless of size generate positive revenue. There is a paucity of evidentiary pediatric burn economic data. More research is needed to address areas of pediatric burn care inefficiency. Improving knowledge of cost in all health care endeavors will create competition and drive down expenditures.

  5. Minor burns - aftercare

    Science.gov (United States)

    ... the burn: Use cool water, not ice. The extreme cold from ice can injure the tissue even more. If possible, especially if the burn is caused by chemicals, hold the burned skin under cool running water for 10 to 15 minutes until it ...

  6. Optimization of burn referrals

    DEFF Research Database (Denmark)

    Reiband, Hanna K; Lundin, Kira; Alsbjørn, Bjarne

    2014-01-01

    INTRODUCTION: Correct estimation of the severity of burns is important to obtain the right treatment of the patient and to avoid over- and undertriage. In this study we aimed to assess how often the guidelines for referral of burn injured patients are met at the national burn centre (NBC), Denmar...

  7. Epidemiology of burns

    NARCIS (Netherlands)

    Dokter, Jan

    2016-01-01

    The aim of this thesis is to understand the epidemiology, treatment and outcomes of specialized burn care in The Netherlands. This thesis is mainly based on historical data of the burn centre in Rotterdam from 1986, combined with historical data from the burn centres in Groningen and Beverwijk from

  8. High burn rate solid composite propellants

    Science.gov (United States)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  9. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR

  10. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR

  11. 糖尿病烧伤患者15例的康复护理介入体会%Experience in rehabilitation care intervention to 15 burned patients with diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    韩淑芬; 李朱仙

    2002-01-01

    @@ Objective: Analysis the rehabilitation care condition of burn patients with diabetes mellitus. @@ Unit: 175th Hospital of PLA. Subjects:15 burn patients with diabetes mellitus received during January 1995 to December 2001,11 males and 4 females aged from 36~ 74 years.Burn area varied from 1% to 56% . Burn of faces and trunk,3 cases;burn of articular area(including hand,elbow,shoulder,ankle,knee and coxae),10 cases;Burn of perineal region,2 cases.

  12. Non-compound nucleus fission in actinide and pre-actinide regions

    Indian Academy of Sciences (India)

    R Tripathi; S Sodaye; K Sudarshan

    2015-08-01

    In this article, some of our recent results on fission fragment/product angular distributions are discussed in the context of non-compound nucleus fission. Measurement of fission fragment angular distribution in 28Si+176Yb reaction did not show a large contribution from the non-compound nucleus fission. Data on the evaporation residue cross-sections, in addition to those on mass and angular distributions, are necessary for better understanding of the contribution from non-compound nucleus fission in the pre-actinide region. Measurement of mass-resolved angular distribution of fission products in 20Ne+232Th reaction showed an increase in angular anisotropy with decreasing asymmetry of mass division. This observation can be explained based on the contribution from pre-equilibrium fission. Results of these studies showed that the mass dependence of anisotropy may possibly be used to distinguish pre-equilibrium fission and quasifission.

  13. Study of irradiation effects in perovskite: use of this matrix for actinides conditioning; Effets de l'irradiation dans une perovskite: utilisation de cette matrice pour un conditionnement des actinides

    Energy Technology Data Exchange (ETDEWEB)

    Sabathier, C

    2003-07-01

    The aim of this work is to study a specific conditioning matrix (ceramics) for actinides: the strontium titanate. At first, the choice of strontium titanate is discussed as well as its structure and its ability to incorporate actinides. The different studies carried out on the irradiation effects on the strontium titanate are reviewed. The main ion-matter interactions considered in the energy range used during our experiments are given. The different devices and techniques used with ion beams to carry out our experiments according to the type of sample: monocrystal or polycrystal are described. The experimental results on the behaviour of strontium titanate in terms of irradiation, temperature and ion flux used to damage the matrix are presented. The experimental results on the different steps of strontium titanate annealing are given as well as the identifying of the defects by different analyses techniques (Rutherford backscattering spectroscopy, transmission electron spectroscopy and x-rays spectroscopy). At last, a model of the behaviour of the strontium titanate in the case of an actinide conditioning is proposed and the evolving of the strontium titanate disorder during the storage is discussed. (O.M.)

  14. Molecular and electronic structure of actinide hexa-cyanoferrates; Structure moleculaire et electronique des hexacyanoferrates d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Bonhoure, I

    2001-07-01

    The goal of this work is to improve our knowledge on the actinide-ligand bond properties. To this end, the hexacyanoferrate entities have been used as pre-organized ligand. We have synthesized, using mild chemistry, the following series of complexes: An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Th, U, Np, Pu); Am{sup III}[Fe{sup III}(CN){sub 6}].xH{sub 2}O; Pu {sup III}[Co{sup III}(CN){sub 6}].xH{sub 2}O and K(H?)An{sup III}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Pu, Am). The metal oxidation states have been obtained thanks to the {nu}{sub CN}, stretching vibration and to the actinide L{sub III} absorption edge studies. As Prussian Blue, the An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Np, Pu) are class II of Robin and Day compounds. X-ray Diffraction has shown besides that these complexes crystallize in the P6{sub 3}/m space group, as the isomorphic LaKFe(CN){sub 6}.4H{sub 2}O complex used as structural model. The EXAFS oscillations at the iron K edge and at the An L{sub III} edge allowed to determine the An-N, An-O, Fe-C and Fe-N distances. The display of the multiple scattering paths for both edges explains the actinide contribution absence at the iron edge, whereas the iron signature is present at the actinide edge. We have shown that the actinide coordination sphere in actinides hexa-cyanoferrates is comparable to the one of lanthanides. However, the actinides typical behavior towards the lanthanides is brought to the fore by the An{sup IV} versus Ln{sup III} ions presence in this family of complexes. Contrarily to the 4f electrons, the 5f electrons influence the electronic properties of the compounds of this family. However, the gap between the An-N and Ln-N distances towards the corresponding metals ionic radii do not show any covalence bond evolution between the actinide and lanthanide series. (author)

  15. Partial Burn Laws in Propellant Erosive Burning

    Directory of Open Access Journals (Sweden)

    S.V. Finjakov

    1999-04-01

    Full Text Available Experimental and computer methods were developed for investigating the combustion phenomena in the propellants which burn in streams of hot gas flowing along the burn surfaces of the propellants. The experimental investigations allowed establishment of different dependencies for erosive burning. Computer solutions of the problem for double-base (DB propellants showed a good agreement with the experimental results. The suggested variant of modified theory considers the change of heat release in solids, the real burn surface roughness, the nonisothermality of boundary layer and the effect of gas mass blow from the propellant burn surface into the gas stream. This modified theory was used for studying burn laws at 30-1000 atm and up to gas stream sound velocities for different DB propellants. It was found that gas stream leads to splitting of the propellant burn laws, m = bp/sup v/. Pressure power (v, in this case depends on gas stream velocity (W, diameter of the propellant tube canal (d and gas stream temperature (T/sub w/. It is because of this that these burn laws were named partial burn laws. They have the form (m = bp/sup w(omega/ w,d,T/sub w/ -const. The dependencies w(omega = f(w,d,T/sub w/ were obtained by the modified theory. It was found that omega values mainly decrease when pressure increases beginning from ~200 to 400 atm and they can decrease up to w(omega = 0,1- 0,3. Similar results can be obtained for composite propellants.

  16. Long hair, smoking, and deep facial burns.

    Science.gov (United States)

    Koljonen, Virve

    2008-01-01

    The purpose of this article is to describe deep facial burn injuries by cigarette lighters in longhaired adults and to report our experience in their treatment. Eight consecutive cigarette lighter burn victims are treated in the Helsinki Burn Center in the year 2006. Seven of the patients were women; their mean age was 50 years. All were under the influence of alcohol at the time of injury. The mean burnt area was 3.5% TBSA. The burnt areas were primarily forehead, cheek, and ipsilateral ear. After a conservative treatment, all the patients underwent an operation, whereby the nonhealing burns were excised and covered with autologous split thickness skin grafts. Postoperative period was uneventful in all the patients. Besides having severe detrimental effects on general health status and wound healing, smoking is the leading cause of residential and total fire deaths worldwide. The patients in this article suffered deep facial burns because of cigarette lighters.

  17. Psychosocial care of persons with severe burns.

    Science.gov (United States)

    Blakeney, Patricia E; Rosenberg, Laura; Rosenberg, Marta; Faber, A W

    2008-06-01

    Treatment of people with burn injuries includes recovery of optimal function for survivors to fully participate in society, psychologically and physically. Increased likelihood of physical survival has led to greater concern for potential psychological morbidity for the burn survivor. Based on research and on many years of clinical experience in providing psychosocial care to burned children and adults, the authors outline their approach to assisting burn survivors and their families through the arduous process of recovery from admission through critical care, inpatient recuperation and reintegration upon hospital discharge. A philosophy of rehabilitation, a process that may occur for many months or years after patients' discharge from their acute hospitalization, is presented in the form of seven guidelines for working with burn survivors.

  18. The 'granite encapsulation' route to the safe disposal of Pu and other actinides

    Energy Technology Data Exchange (ETDEWEB)

    Gibb, F.G.F. [Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom)], E-mail: f.gibb@sheffield.ac.uk; Taylor, K.J. [Department of Geography, University of Sheffield, Sheffield S10 2TN (United Kingdom); Burakov, B.E. [Laboratory of Applied Mineralogy and Radiogeochemistry, V.G. Khlopin Radium Institute, St. Petersburg 194021 (Russian Federation)

    2008-03-15

    Waste actinides, including plutonium, present a long-term management problem and a serious security issue. Immobilisation in mineral or ceramic waste forms for interim storage is a widely proposed first step. The safest, most secure geological disposal for Pu is in very deep boreholes and we propose that the key step to combination of these immobilisation and disposal concepts is encapsulation of the waste form in cylinders of recrystallized granite. We discuss the underpinning science, focusing on experimental work, and consider implementation. Finally, we present and discuss analyses of zircon, UO{sub 2} and Ce-doped cubic zirconia from high pressure and temperature experiments in granitic melts that demonstrate the viability of this solution and that actinides can be isolated from the environment for millions, maybe hundreds of millions, of years.

  19. Surface energy and work function of the light actinides

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and work function of the light actinides Fr, Ra, Ac, Th, Pa, U, Np, and Pu by means of a Green's-function technique based on the linear-muffin-tin-orbitals method within the tight-binding representation. In these calculations we apply an energy functional which...

  20. Functionalized pyrazines as ligands for minor actinide extraction and catalysis

    NARCIS (Netherlands)

    Nikishkin, N.

    2013-01-01

    The research presented in this thesis concerns the design of ligands for a wide range of applications, from nuclear waste treatment to catalysis. The strategies employed to design actinide-selective extractants, for instance, comprise the fine tuning of the ligand electronic properties as well as

  1. Nuclear fuel cycle-oriented actinides separation in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; He, Xihong; Wang, Jianchen [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    In the last decades, the separation of actinides was widely and continuously studied in China. A few kinds of salt-free reductants to adjust Pu and Np valences have been investigated. N,N-dimethylhydroxylamine is a good reductant with high reduction rate constants for the co-reduction of Pu(IV) and Np(VI), and monomethylhydrazine is a simple compound for the individual reduction of Np(VI). Advanced PUREX based on Organic Reductants (APOR) was proposed. Trialkylphosphine oxide (TRPO) with a single functional group was found to possess strong affinity to tri-, tetra- and hexa-valent actinides. TRPO process has been first explored in China for actinides partitioning from high level waste and the good partitioning performance was demonstrated by the hot test. High extraction selectivity for trivalent actinides over lanthanides by dialkyldithiophosphinic acids was originally found in China. A separation process based on purified Cyanex 301 for the separation of Am from lanthanides was presented and successfully tested in a battery of miniature centrifugal contactors. (orig.)

  2. RAPID SEPARATION OF ACTINIDES AND RADIOSTRONTIUM IN VEGETATION SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.

    2010-06-01

    A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and {sup 90}Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.

  3. Functionalized pyrazines as ligands for minor actinide extraction and catalysis

    NARCIS (Netherlands)

    Nikishkin, N.

    2013-01-01

    The research presented in this thesis concerns the design of ligands for a wide range of applications, from nuclear waste treatment to catalysis. The strategies employed to design actinide-selective extractants, for instance, comprise the fine tuning of the ligand electronic properties as well as us

  4. Preparation of actinide targets and sources using nonaqueous electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.M.; Gursky, J.C.; Wilhelmy, J.B. (Los Alamos National Lab., NM (USA))

    1991-05-15

    Application of the method of 'molecular plating' to prepare actinide targets suitable for accelerator bombardment is presented. Two example applications involving {sup 229}Th and {sup 254}Es are discussed along with the merits and liabilities of the method. (orig.).

  5. Actinide biocolloid formation in brine by halophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J. [Brookhaven National Lab., Upton, NY (United States); Harris, R.; Beveridge, T.J. [Univ. of Guelph, Ontario (Canada); Brady, P.V.; Papenguth, H.W. [Sandia National Labs., Albuquerque, NM (United States)

    1998-12-31

    The authors examined the ability of a halophilic bacterium (WIPP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited solubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellularly as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  6. ACTINIDE BIOCOLLOID FORMATION IN BRINE BY HALOPHILIC BACTERIA

    Energy Technology Data Exchange (ETDEWEB)

    GILLOW,J.B.; FRANCIS,A.J.; DODGE,C.J.; HARRIS,R.; BEVERIDGE,T.J.; BRADY,P.B.; PAPENGUTH,H.W.

    1998-11-09

    The authors examined the ability of a halophilic bacterium (WIPP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited solubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellularly as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  7. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-07-28

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  8. Actinides How well do we know their stellar production?

    CERN Document Server

    Goriely, S

    2001-01-01

    The reliable evaluation of the r-process production of the actinides and careful estimates of the uncertainties affecting these predictions are key ingredients especially in nucleo-cosmochronology studies based on the analysis of very metal-poor stars or on the composition of meteorites. This type of information is also required in order to make the best possible use of future high precision data on the actinide composition of galactic cosmic rays, of the local interstellar medium, or of meteoritic grains of presumed circumstellar origin. This paper provides the practitioners in these various fields with the most detailed and careful analysis of the r-process actinide production available to-date. In total, thirty-two different multi-event canonical calculations using different nuclear ingredients or astrophysics conditions are presented, and are considered to give a fair picture of the level of reliability of the predictions of the actinide production, at least in the framework of a simple r-process model. T...

  9. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Sypula, Michal

    2013-07-01

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SF{sub Ln/Am} obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as

  10. Managing Zirconium Chemistry and Phase Compatibility in Combined Process Separations for Minor Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Nathalie [Washington State Univ., Pullman, WA (United States); Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Washington State Univ., Pullman, WA (United States)

    2017-03-17

    In response to the NEUP Program Supporting Fuel Cycle R&D Separations and Waste Forms call DEFOA- 0000799, this report describes the results of an R&D project focusing on streamlining separation processes for advanced fuel cycles. An example of such a process relevant to the U.S. DOE FCR&D program would be one combining the functions of the TRUEX process for partitioning of lanthanides and minor actinides from PUREX(UREX) raffinates with that of the TALSPEAK process for separating transplutonium actinides from fission product lanthanides. A fully-developed PUREX(UREX)/TRUEX/TALSPEAK suite would generate actinides as product(s) for reuse (or transmutation) and fission products as waste. As standalone, consecutive unit-operations, TRUEX and TALSPEAK employ different extractant solutions (solvating (CMPO, octyl(phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide) vs. cation exchanging (HDEHP, di-2(ethyl)hexylphosphoric acid) extractants), and distinct aqueous phases (2-4 M HNO3 vs. concentrated pH 3.5 carboxylic acid buffers containing actinide selective chelating agents). The separate processes may also operate with different phase transfer kinetic constraints. Experience teaches (and it has been demonstrated at the lab scale) that, with proper control, multiple process separation systems can operate successfully. However, it is also recognized that considerable economies of scale could be achieved if multiple operations could be merged into a single process based on a combined extractant solvent. The task of accountability of nuclear materials through the process(es) also becomes more robust with fewer steps, providing that the processes can be accurately modeled. Work is underway in the U.S. and Europe on developing several new options for combined processes (TRUSPEAK, ALSEP, SANEX, GANEX, ExAm are examples). There are unique challenges associated with the operation of such processes, some relating to organic phase chemistry, others arising from the

  11. 大面积烧伤患者预防中心静脉置管感染的护理体会%Nursing Experience of Central Venous Catheter Infection Prevention of Severe Burn Patients

    Institute of Scientific and Technical Information of China (English)

    罗红

    2013-01-01

    目的:总结大面积烧伤患者预防中心静脉置管感染的护理体会。方法对138例大面积烧伤患者中心静脉置管的预防感染护理进行总结、分析。结果82例置管患者其中4例发生脓毒血症,2例置管尖端培养细菌阳性,经抗感染治疗均痊愈出院。结论中心静脉置管护理是预防大面积烧伤患者导管相关性感染的重要环节。%Objective: To summarize the experience in nursing of patients with burn prevention of central venous catheter infection in large area. Method: 138 cases of large area burn patients center vein catheter infection prevention nursing summary, analysis. Results: 82 cases of patients with sepsis occurred in 4 cases, 2 cases of catheter tip culture positive for the bacteria, the anti infection treatment were cured. Conclusion: the central venous catheter care is an important part of catheter-related infection in burn patients with large area prevention.

  12. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    Energy Technology Data Exchange (ETDEWEB)

    Finkeldei, Sarah Charlotte

    2015-07-01

    Radioactive waste is generated by many different technical and scientific applications. For the past decades, different waste disposal strategies have been considered. Several questions on the waste disposal strategy remain unanswered, particularly regarding the long-term radiotoxicity of minor actinides (Am, Cm, Np), plutonium and uranium. These radionuclides mainly arise from high level nuclear waste (HLW), specific waste streams or dismantled nuclear weapons. Although many countries have opted for the direct disposal of spent fuel, from a scientific and technical point of view it is imperative to pursue alternative waste management strategies. Apart from the vitrification, especially for trivalent actinides and Pu, crystalline ceramic waste forms are considered. In contrast to glasses, crystalline waste forms, which are chemically and physically highly stable, allow the retention of radionuclides on well-defined lattice positions within the crystal structure. Besides polyphase ceramics such as SYNROC, single phase ceramics are considered as tailor made host phases to embed a specific radionuclide or a specific group. Among oxidic single phase ceramics pyrochlores are known to have a high potential for this application. This work examines ZrO{sub 2} based pyrochlores as potential nuclear waste forms, which are known to show a high aqueous stability and a high tolerance towards radiation damage. This work contributes to (1) understand the phase stability field of pyrochlore and consequences of non-stoichiometry which leads to pyrochlores with mixed cationic sites. Mixed cationic occupancies are likely to occur in actinide-bearing pyrochlores. (2) The structural uptake of radionuclides themselves was studied. (3) The chemical stability and the effect of phase transition from pyrochlore to defect fluorite were probed. This phase transition is important, as it is the result of radiation damage in ZrO{sub 2} based pyrochlores. ZrO{sub 2} - Nd{sub 2}O{sub 3} pellets

  13. Sequestering agents for the removal of actinides from waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R. [Univ. of California, Berkeley, CA (United States)

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  14. Actinide partitioning-transmutation program final report. I. Overall assessment

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Blomeke, J.O.; Finney, B.C.

    1980-06-01

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of /sup 99/Tc and /sup 129/I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted.

  15. Scaling of the burning efficiency for multicomponent fuel pool fires

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Farahani, Hamed Farmahini; Rangwala, Ali S.;

    In order to improve the validity of small scale crude oil burning experiments, which seem to underestimate the burning efficiency obtained in larger scales, the gasification mechanism of crude oil was studied. Gasification models obtained from literature were used to make a set of predictions...... for relevant burning related parameters which were then compared to experimental results. These parameters, the surface temperature, mass loss rate, flame height and residue composition, were studied for three hydrocarbon liquids (n-octane, dodecane and hexadecane) and two crude oils (DUC and REBCO). Based...... on the models-experiments comparison, it was suggested that crude oil burns according to a distillation-like mechanism, with the light components burning off first, followed by increasingly heavier components as the burning progresses. Thus, in order for the crude oil to burn near 100%, the surface temperature...

  16. 76例头面部烧伤的护理体会%Nursing Experience of 76 Cases of Patients with Facial Burns

    Institute of Scientific and Technical Information of China (English)

    易蔓

    2015-01-01

    Objective To study the rehabilitation nursing plan to stimulate the head facial burn patients as soon as possible. Methods From May 2013 to May 2014, treated 76 cases of facial burn patients head to give cor esponding nursing plan according to the dif erent period and giving psychological nursing and rehabilitation nursing. Results In 76 cases of facial burn patients, 71 cases of patients with primary healing, the second phase of healing after skin graft, 5 patients without complications, patients with rehabilitation hospital discharge. Conclusion The cor ect nursing plan, can promote the healing of head facial burns, and reduce the occur ence of sequelae.%目的:探讨促进头面部烧伤患者尽快康复的护理方案。方法对我院2013年5月~2014年5月收治的76例头面部烧伤患者根据不同的时期给予针对性的护理方案并给予心理护理与康复护理。结果在76例头面部烧伤的患者中,有71例患者一期愈合,5例患者植皮后二期愈合,无患者出现并发症,均康复出院。结论正确的护理方案,能够促进头面部烧伤的愈合,并减少后遗症的发生。

  17. Using online blogs to explore positive outcomes after burn injuries.

    Science.gov (United States)

    Garbett, Kirsty; Harcourt, Diana; Buchanan, Heather

    2016-03-27

    This study uses blog analysis, a new and novel technique, to explore the positive outcomes experienced by burn survivors. This study examined 10 burn survivor blogs to offer a unique, longitudinal insight into burn survivor recovery. Using thematic analysis, three themes emerged: shift in self-perception, enhanced relationships and a change in life outlook. Many of these themes contained stories and experiences unique to a traumatic burn injury, suggesting that standardised trauma scales are not effectively measuring the impact of a burn in this population. Reflections on blog analysis are discussed, along with a recommendation that health researchers utilise the vast amount of data available from online blogs.

  18. First experience using cultured epidermal autografts in Taiwan for burn victims of the Formosa Fun Coast Water Park explosion, as part of Japanese medical assistance.

    Science.gov (United States)

    Matsumura, Hajime; Harunari, Nobuyuki; Ikeda, Hiroto

    2016-05-01

    On June 27, 2015, a flammable starch-based powder exploded at Formosa Fun Coast in Taipei, Taiwan, injuring 499 people, and more than 200 people were in critical condition with severe burns. Although a cultured epidermal autograft (CEA) was not approved or used in clinical practice, the Taiwan Food and Drug Administration requested a Japanese CEA manufacturer to donate CEA for the burn victims as part of international medical assistance. The authors cooperated in this project and participated in the patient selection, wound bed management for CEA, and technical assistance for CEA use. Here, we provide an overview of the project. Nine patients were enrolled, and two patients were excluded from the skin biopsy; seven skin biopsies were collected approximately 1 month after the disaster. The average TBSA% burned was 81.0%, and the mean age was 20.1 years. CEA was grafted in five patients; wound closure had been obtained in one patient, and one patient was severely ill at the time of grafting. The CEA was combined with a wide split auto mesh graft or patch graft. The mean re-epithelization rate at 4 weeks after the grafting was 84.2% by patient, and all of the patients survived. Although this project had many obstacles to overcome, CEA grafting was successful and contributed to wound closure and survival.

  19. Burn-injured adolescents report gaining multiple developmental benefits and improved life skills as a result of burn camp attendance.

    Science.gov (United States)

    Rimmer, Ruth Brubaker; Pressman, Melissa S; Takach, Oliver P; Bay, R Curtis; Croteau, Renee; Hansen, Linda D; Foster, Kevin N; Caruso, Daniel M

    2012-01-01

    Anecdotally, burn camp has been reported to be a positive developmental and rehabilitative experience for attendees; there is little empirical data to support this belief. This study sought to explore whether burn camp either directly or indirectly elicits positive development outcomes in pediatric burn survivors or increases their psychosocial well-being and achievement. The Youth Experience Survey 2.0, a 66-item self-report inventory designed to measure developmental experiences in an organized youth activity, was administered to children aged 11 to 18 years attending summer burn camp. One hundred and ten burn-injured youth, 58 male and 52 female, reported that burn camp had positively impacted their lives through improved identity exploration, goal-setting and problem-solving abilities, increased physical activity, communication, emotional regulation, and time management skills (P camp for more than 5 years resulted in greater improvement. Study results support the burn camp experience as a far-reaching and positive developmental activity. Participants credited the camp experience with helping them with identity formation and reflection, improved social interactions, and increased initiative; all positive developmental outcomes for youth. Results suggest that burn camp participation not only helps burn-injured youth to deal with their burns but also assists them in the development of social and basic life skills, which will allow them to navigate the transition from youth to adulthood, more effectively and successfully.

  20. Internal contamination by actinides after wounding: a robust rodent model for assessment of local and distant actinide retention.

    Science.gov (United States)

    Griffiths, N M; Wilk, J C; Abram, M C; Renault, D; Chau, Q; Helfer, N; Guichet, C; Van der Meeren, A

    2012-08-01

    Internal contamination by actinides following wounding may occur in nuclear fuel industry workers or subsequent to terrorist activities, causing dissemination of radioactive elements. Contamination by alpha particle emitting actinides can result in pathological effects, either local or distant from the site of entry. The objective of the present study was to develop a robust experimental approach in the rat for short- and long- term actinide contamination following wounding by incision of the skin and muscles of the hind limb. Anesthetized rats were contaminated with Mixed OXide (MOX, uranium, plutonium oxides containing 7.1% plutonium) or plutonium nitrate (Pu nitrate) following wounding by deep incision of the hind leg. Actinide excretion and tissue levels were measured as well as histological changes from 2 h to 3 mo. Humid swabs were used for rapid evaluation of contamination levels and proved to be an initial guide for contamination levels. Although the activity transferred from wound to blood is higher after contamination with a moderately soluble form of plutonium (nitrate), at 7 d most of the MOX (98%) or Pu nitrate (87%) was retained at the wound site. Rapid actinide retention in liver and bone was observed within 24 h, which increased up to 3 mo. After MOX contamination, a more rapid initial urinary excretion of americium was observed compared with plutonium. At 3 mo, around 95% of activity remained at the wound site, and excretion of Pu and Am was extremely low. This experimental approach could be applied to other situations involving contamination following wounding including rupture of the dermal, vascular, and muscle barriers.

  1. 两批危重烧伤患者转入院后的早期救治体会%Treatment strategies for mass burn casualties transferred from a distance-clinical experience

    Institute of Scientific and Technical Information of China (English)

    柴家科; 盛志勇; 杨红明; 贾晓明; 李利根; 郝岱峰; 申传安; 吴焱秋; 梁黎明

    2005-01-01

    目的本文介绍2批共13例危重烧伤病人,伤后3~4天经长途转运至我科的早期救治体会.方法 2001年6月27日和2002年6月9日先后收治两批13例伤后3~4天经长途转运入院的烧伤患者,男性4例,女性9例,年龄20~43岁,平均31.1±6.2岁,烧伤总面积74.3%±24.7%,Ⅲ度面积53.7%±31.2%.其中,特重度烧伤10例,烧伤总面积86.0±11.5%,Ⅲ度面63.9±26.3%,合并有重度吸入性损伤4例,中度吸入性损伤6例;重度烧伤3例,烧伤总面积35.3%±10.0%,Ⅲ度面积15.3%±5.0%,均合并有中度吸入性损伤.13例患者都已气管切开,四肢或胸腹部切开减张.13例患者中,有的高热或体温不升;有的心率、呼吸增快;有的腹胀或肠鸣音消失;有的白细胞、血小板低下.13例患者均有不同程度的肝、肾功能、心肌酶和凝血功能异常.结果除2例伤前分别患有心肌炎、慢性肝炎的危重烧伤患者,最终因心肌炎于伤后29天,肝功能衰竭于伤后45天死亡外,其余11例患者全部救治成功.结论成批烧伤转入院后的特点是,伤情重,并发症多,救治难度大.严密组织,责任明确;救治力量前伸机场;入院过程中尽快确定伤情;尽快处理危及生命的并发症;综合治疗措施得当、及时是挽救病人生命的先决条件;重视代谢和凝血功能的调理是后续治疗的重要组成部分.%This paper is to introduce our experiences in treating 2 batches of 13 burn victims transferred from remote areas on postburn days 3 and 4. Methods Thirteen burn victims of 2 mass casualties were transferred to our burns institute from remote areas on postburn days 3 and 4 on June 27, 2001 and June 2, 2002, respectively. There were 4 males and 9 females, age ranged from 20 to 43 years, with a mean age of 31.1±6.2 years. The mean total burn area was 74.3%±24.7% TBSA (range, 25% to 97%). Among them, 10 patients suffered from serious burn with mean total burn area involving 86.0%±11.5% TBSA (range, 60% to

  2. Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization

    Science.gov (United States)

    Fellers, Deion

    2016-09-01

    The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.

  3. Studies into new solvent extraction reagents for the separation of trivalent minor actinides from trivalent lanthanides

    CERN Document Server

    Russell, M L

    2000-01-01

    Ligands, suitable for the separation of minor actinide(lll) cations from lanthanide(lll) cations from acidic aqueous media, have been synthesised. Two oligopyridine ligands, 4', 4''-(bis (4-tolyl))-2, 2': 6', 2'': 6'', 2'''-quaterpyridine and 4',4'''-(bis(4-heptyloxyphenyl))-2,2':6',2'':6'',2''':6''',2'''' -quinquepyridi= ne, have been synthesised and tested by solvent extraction experiments. The ability of the ligands to separate minor actinide from lanthanide has been attributed to the number of pyridyl rings present. A series of terpyridine analogues based on sym-triazine have been prepared, via the cyclisation of aromatic carbonitriles with guanidine. New lipophilic derivatives of 2-amino-bis(4,6(2-pyridyl))-1,3,5-triazine, 2-amino-bis(4,6(2-pyrazinyl)-1,3,5-triazine, 2-amino-bis(4,6(2-isoquinolinyl)-1,3,5-triazine, 2-amino-bis(4,6(2-(4-methyl)pyridyl)-1,3,5-triazine, 2-amino-bis(4,6(4-pyridyl)-1,3,5-triazine, 2-amino-bis(4,6(2-thiophenyl)-1,3,5-triazine and 2-amino-bis(4,6(2-quinolinyl)-1,3,5-triazine ha...

  4. Level Densities in the actinide region and indirect n,y cross section measurements using the surrogate method

    Directory of Open Access Journals (Sweden)

    Wiedeking M.

    2012-02-01

    Full Text Available Results from a program of measurements of level densities and gamma ray strength functions in the actinide region are presented. Experiments at the Oslo cyclotron involving the Cactus/Siri detectors and 232Th(d,x and 232Th(3He,x reactions were carried out to help answer the question of which level density model is the most appropriate for actinide nuclei, since it will have an impact on cross section calculations important for reactor physics simulations. A new technique for extracting level densities and gamma ray strength functions from particle-gamma coincidence data is proposed and results from the development of this technique are presented. In addition, simultaneous measurements of compound nuclear gamma decay probabilities have been performed for the key thorium cycle nuclei 233Th, 231Th and 232Pa up to around 1MeV above the neutron binding energy and have enabled extraction of indirect neutron induced capture cross sections for the 232Th, 231Pa and 230Th nuclei using the surrogate reaction method. Since the neutron capture cross section for 232Th is already well known from direct measurements a comparison provides a stringent test of the applicability of the surrogate technique in the actinide region.

  5. Actinides: How well do we know their stellar production?

    Science.gov (United States)

    Goriely, S.; Arnould, M.

    2001-12-01

    The reliable evaluation of the r-process production of the actinides and careful estimates of the uncertainties affecting these predictions are key ingredients especially in nucleo-cosmochronology studies based on the analysis of very metal-poor stars or on the composition of meteorites. This type of information is also required in order to make the best possible use of future high precision data on the actinide composition of galactic cosmic rays, of the local interstellar medium, or of meteoritic grains of presumed circumstellar origin. This paper provides the practitioners in these various fields with the most detailed and careful analysis of the r-process actinide production available to-date. This study is based on a version of the multi-event canonical model of the r-process which discards the largely used waiting point approximation. It considers also different combinations of models for the calculation of nuclear masses, beta -decay and fission rates. Two variants of the model used to predict nuclear reaction rates are adopted. In addition, the influence of the level of Pb and Bi production by the r-process on the estimated actinide production is evaluated by relying on the solar abundances of these two elements. In total, thirty-two different cases are presented, and are considered to give a fair picture of the level of reliability of the predictions of the actinide production, at least in the framework of a simple r-process model. This simplicity is imposed by our inability to identify the proper astrophysical sites for the r-process. As a guide to the practitioners, constraints on the actinide yield predictions and associated uncertainties are suggested on grounds of the measured abundances of r-nuclides, including Th and U, in the star CS 31082-001, and under the critical and questionable assumption of the ``universality'' of the r-process. We also define alternative constraints based on the nucleo-cosmochronological results derived from the present

  6. The Burning Saints

    DEFF Research Database (Denmark)

    Xygalatas, Dimitris

    . Carrying the sacred icons of the saints, participants dance over hot coals as the saint moves them. The Burning Saints presents an analysis of these rituals and the psychology behind them. Based on long-term fieldwork, The Burning Saints traces the historical development and sociocultural context......, The Burning Saints presents a highly original analysis of how mental processes can shape social and religious behaviour....

  7. Management of Hand Burns

    Directory of Open Access Journals (Sweden)

    Fatih Irmak

    2017-09-01

    Full Text Available Objective: The hand is one of the most frequently affected body parts by burn injuries with a rate of 80% among all burn wounds. Early and effective treatment ensures the best chance of survival as well as a good functional prognosis. The aim of this study was to determine the epidemiology, variation, relationship between etiology and hospital stay, clinical features, and management of hand burns. Material and Methods: This retrospective study was conducted the University of Health Sciences; Şişli Hamidiye Etfal Application and Research Center, Departmant of Plastic, Reconstructive and Aesthetic Surgery and the Intensive Burn Care Unit between April 2009 and April 2014. Burns were assessed based on etiology, anatomical location, percentage of total body surface area affected, and depth of injury. Treatment was categorized as conservative, elective operative, or urgent operative. Results: In the study period, 788 patients were admitted to our Burn Unit. Of these, 240 were females (30.5% and 548 were males (69.5%. The most common type of burn injury in this study was thermal injury (695 cases; 88.2%, followed by electrical injury (67 cases; 8.5%, and chemical, frictional or unknown injuries (26 cases; 3.3%. Majority (more than 85% of the patients had second-degree burns, and some had third-degree burns. Conclusions: Burns commonly affect the hands, and many functional problems may develop if appropriate basic treatments are neglected. The best treatment for burns is prevention. Appropriate indoor arrangement and simple but effective measures that can be taken at home can significantly reduce burn trauma exposure.

  8. Management of Outpatient Burns

    OpenAIRE

    Waslen, G. D.

    1986-01-01

    The severity of burns depends on the depth and extent of body surface involved. The total body surface area (TBSA) involved can be estimated by the ‘rule of nines’; body locations are 9% of body surface or multiples of nine. Depth and TBSA can be used to classify burns as minor, moderate, or critical. Diagnosis depends on history and physical examination. Most burns can be treated in an outpatient setting. Treatment should include debriding necrotic tissue, preventing infection and encouragin...

  9. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  10. Solubility of actinides and surrogates in nuclear glasses; Solubilite des actinides et de leurs simulants dans les verres nucleaires. Limites d'incorporation et comprehension des mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Ch

    2003-07-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO{sub 2} at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  11. Burns in pregnancy.

    Science.gov (United States)

    Maghsoudi, Hemmat; Samnia, Roya; Garadaghi, Abasad; Kianvar, Hadi

    2006-03-01

    A 9-year prospective study of burns in pregnant women hospitalized at the Sina hospital burn center was conducted to determine the etiology and outcome of pregnant patients. Fifty-one patients (27.45% self-inflicted, 72.55% unintentional) were identified and stratified by age, burn size, presence or absence of inhalation injury, trimester of pregnancy, maternal and fetal mortality, and cause of burn. The mean patient age was 24.2 years. There were 20 maternal deaths and 23 fetal deaths. The majority of which (maternal: 13 and fetal: 13) were among self-inflicted burned pregnant women. The mean burn size was 37.7%, and was significantly larger for nonsurvivors of mother than survivors (68.8% versus 17.6%; pburned body surface area exceeds 40%, both maternal and fetal mortality reaches 100%. Inhalation injuries were strongly associated with large burns, and were presents in all suicide patients. Kerosene ignition (68.6% of all patients, 100% of self-inflicted patients) was the most common type of burn. Large burn size was the strongest predictor of mortality of mother and fetus followed by the presence of inhalation injury.

  12. Theory of the crystal structures of the actinide metals; Theorie des structures cristallines des metaux actinides

    Energy Technology Data Exchange (ETDEWEB)

    Penicaud, M. [CEA Bruyeres-le-Chatel, 91 (France)

    2005-07-01

    We describe, by bands calculation methods, the delocalized-localized transition of 5f electrons in the series of actinide metals, at ambient conditions, which happens between {alpha}-Pu and Am, and which is characterized by the change from the open and complex monoclinic crystal structure to the double hexagonal close-packed structure, and by the density collapse from 19.86 g.cm{sup -3} to 13.67 g.cm{sup -3}. The case of the alloy stabilized Pu in the high temperature {delta} phase (face centered cubic) is treated. Its ambient experimental density (15.92 g.cm{sup -3}) is obtained with a localization of the only 5f5/2 electrons. We find a 5f5/2 density of states peak pinned at the Fermi level, in agreement with photoelectron spectroscopy, and the high value of the electronic specific heat coefficient. The crystalline stability under pressure of U, Np, Pu and Am is examined. We find theoretically, at high pressure in Am, the stability of the recently discovered experimentally Am IV structure which is primitive-orthorhombic with four atoms in the unit cell. We calculate this structure also stable for Pu, for which it is proposed that the sequence is: {alpha}-Pu {yields} Am IV {yields} body-centered cubic. (author)

  13. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    Science.gov (United States)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  14. Instrumented tube burns: theoretical and experimental observations

    Energy Technology Data Exchange (ETDEWEB)

    Yarrington, Cole Davis [Los Alamos National Laboratory; Obrey, Stephen J [Los Alamos National Laboratory; Foley, Timothy J [Los Alamos National Laboratory; Son, Steven F [Los Alamos National Laboratory

    2009-01-01

    The advent of widely available nanoscale energetic composites has resulted in a flurry of novel applications. One of these applications is the use of nanomaterials in energetic compositions. In compositions that exhibit high sensitivity to stimulus, these materials are often termed metastable intermolecular composites (MIC). More generally, these compositions are simply called nanoenergetics. Researchers have used many different experimental techniques to analyze the various properties of nanoenergetic systems. Among these various techniques, the confined tube burn is a simple experiment that is capable of obtaining much data related to the combustion of these materials. The purpose of this report is to review the current state of the confined tube burn experiment, including the drawbacks of the technique and possible remedies. As this report is intended to focus on the specific experimental technique, data from many different energetic materials, and experimental configurations will be presented. The qualitative and quantitative data that can be gathered using confined tube burn experiments include burning rates, total impulse, pressure rise rate, and burning rate differences between different detector types. All of these measurements lend insight into the combustion properties and mechanisms of specific nanoenergetics. Finally, certain data indicates a more complicated flow scenario which may need to be considered when developing burn tube models.

  15. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Science.gov (United States)

    Rose, S. J.; Wilson, J. N.; Capellan, N.; David, S.; Guillemin, P.; Ivanov, E.; Méplan, O.; Nuttin, A.; Siem, S.

    2012-02-01

    The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR) has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U) is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX) and uranium/plutonium mixed oxide (MOX) fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  16. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Directory of Open Access Journals (Sweden)

    Nuttin A.

    2012-02-01

    Full Text Available The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX and uranium/plutonium mixed oxide (MOX fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  17. Developing laser ablation in an electron cyclotron resonance ion source for actinide detection with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Bauder, W. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Pardo, R.C.; Kondev, F.G.; Kondrashev, S.; Nair, C.; Nusair, O. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Palchan, T. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel); Scott, R.; Seweryniak, D.; Vondrasek, R. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Collon, P. [University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Paul, M. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel)

    2015-10-15

    A laser ablation material injection system has been developed at the ATLAS electron cyclotron resonance (ECR) ion source for use in accelerator mass spectrometry experiments. Beam production with laser ablation initially suffered from instabilities due to fluctuations in laser energy and cratering on the sample surface by the laser. However, these instabilities were rectified by applying feedback correction for the laser energy and rastering the laser across the sample surface. An initial experiment successfully produced and accelerated low intensity actinide beams with up to 1000 counts per second. With continued development, laser ablation shows promise as an alternative material injection scheme for ECR ion sources and may help substantially reduce cross talk in the source.

  18. Burns and military clothing.

    Science.gov (United States)

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under

  19. Management of Pain in Children with Burns

    Directory of Open Access Journals (Sweden)

    M. Gandhi

    2010-01-01

    Full Text Available Burn injuries are common in children under 10 years of age. Thermal injury is the most common mechanism of injury and scalds account for >60% of such injuries. All children with burns will experience pain, regardless of the cause, size, or burn depth. Undertreated pain can result in noncompliance with treatment and, consequently, prolonged healing. It is acknowledged that the monitoring and reporting of pain in children with burns has generally been poor. Due to the adverse physiological and emotional effects secondary to pain, adequate pain control is an integral and requisite component in the management of children with burns. A multidisciplinary approach is frequently necessary to achieve a robust pain relief. Key to successful treatment is the continuous and accurate assessment of pain and the response to therapy. This clinical review article discusses the essential aspects of the pathophysiology of burns in children provides an overview of pain assessment, the salient principles in managing pain, and the essential pharmacodynamics of commonly used drugs in children with burn injuries. Both pharmacological and nonpharmacological treatment options are discussed, although a detailed review of the latter is beyond the scope and remit of this article.

  20. Nursing Experience of Burn Patients Developed Wound Infection%烧伤患者并发创面感染的护理体会

    Institute of Scientific and Technical Information of China (English)

    黄留华; 黄颖

    2012-01-01

    Objective; To explore burn patients wound infection prevention and nursing intervention. Methods: 90 cases of burn patients were randomly divided into two groups,45 patients in each group. In the control group was given common nursing care; in the observation group, besides conventional care, the nursing of wound infection was added. Results: The observation group of wound infection rate was 8.89% and 28.89% in control group. Two groups of wound infection rates comparative differences have statistically significant ( P<0.05 ). And the observation group wound healing time was significantly lower than than in the control group ( P<0.05 ). Conclusion: Strengthening the burn wound care can effectively control the occurrence of wound infection.%目的:探讨烧伤患者防治创面感染的护理措施.方法:将烧伤病人90例随机分为两组各45例,对照组采取常规护理,观察组在常规护理基础上重点加强创面的感染护理.结果:观察组的创面感染率为8.89%,对照组为28.89%,两组创面感染率比较差异有统计学意义(P<0.05),且观察组创面愈合时间明显低于对照组(P<0.05).结论:通过加强烧伤病人的创面护理,可有效控制创面感染的发生.

  1. The Research on Transient Burning Rate of Solid Propellant by Digital Image Processing

    Directory of Open Access Journals (Sweden)

    Xin Peng

    2016-01-01

    Full Text Available In order to obtain the burn rate of the solid propellant that is the important parameter of transient burning, the new method named digital image processing is presented. In the article , the principle of digital image processing is analysed; The burning face of the sample in the each time is located according the image and the coordinates of the burning face is obtained. In experiment the transient burn rate is measured by digital image processing and the accuracy is acceptable.

  2. Reactive burn models and ignition & growth concept

    Directory of Open Access Journals (Sweden)

    Shaw M.S.

    2011-01-01

    Full Text Available Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature. This leads to the Ignition & Growth concept, introduced by LeeTarver in 1980, as the basis for reactive burn models. A homo- genized burn rate needs to account for three meso-scale physical effects: (i the density of active hot spots or burn centers; (ii the growth of the burn fronts triggered by the burn centers; (iii a geometric factor that accounts for the overlap of deflagration wavelets from adjacent burn centers. These effects can be combined and the burn model defined by specifying the reaction progress variable λ = g(s as a function of a dimensionless reaction length s(t = rbc/ℓbc, rather than by specifying an explicit burn rate. The length scale ℓbc(Ps = [Nbc(Ps]−1/3 is the average distance between burn centers, where Nbc is the number density of burn centers activated by the lead shock. The reaction length rbc(t = ∫t0 D(P(t′dt′ is the distance the burn front propagates from a single burn center, where D(P is the deflagration speed as a function of the local pressure and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. We have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  3. Critical issues in burn care.

    Science.gov (United States)

    Holmes, James H

    2008-01-01

    Burn care, especially for serious burn injuries, represents a considerable challenge for the healthcare system. The American Burn Association has established a number of strategies for the management of burn patients and dedicates its efforts and resources to promoting and supporting burn-related research, education, care, rehabilitation, and prevention, often in collaboration with other organizations. The American Burn Association has recommended that patients with serious burns be referred to a designated burn center, ie, a hospital outfitted with specialized personnel and equipment dedicated to burn care. Burn centers have been operational for over 50 years, but the complexity and costs of providing specialized burn care have given rise to a number of critical administrative and political issues. These include logistical limitations imposed by the uneven national distribution of burn centers and a potential shortage of burn beds, both during everyday conditions and in the event of a mass disaster. Burn surgeon shortages have also been identified, stemming, in part, from a lack of specialized burn care training opportunities. There is currently a lack of quality outcome data to support evidence-based recommendations for burn care, and burn care centers are compromised by problems obtaining reimbursement for the care of uninsured and publicly insured out-of-state burn patients. Initiatives are underway to maintain efficient burn care facilities that are fully funded, easily accessible, and most importantly, provide optimal, evidence-based care on a daily basis, and are well-equipped to handle a surge of patients during a disaster situation.

  4. Accuracy Improvement of Neutron Nuclear Data on Minor Actinides

    Directory of Open Access Journals (Sweden)

    Harada Hideo

    2015-01-01

    Full Text Available Improvement of accuracy of neutron nuclear data for minor actinides (MAs and long-lived fission products (LLFPs is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as “Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC” has been started as one of the “Innovative Nuclear Research and Development Program” in Japan at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background and research plan of the AIMAC project are presented.

  5. Superabsorbing gel for actinide, lanthanide, and fission product decontamination

    Science.gov (United States)

    Kaminski, Michael D.; Mertz, Carol J.

    2016-06-07

    The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M) carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.

  6. Radioanalytical determination of actinides and fission products in Belarus soils.

    Science.gov (United States)

    Michel, H; Gasparro, J; Barci-Funel, G; Dalmasso, J; Ardisson, G; Sharovarov, G

    1999-04-01

    Alpha emitting actinides such as plutonium, americium or curium were measured by alpha-spectrometry after radiochemical separation. The short range of alpha-particles within matter requires, after a pre-concentration process, a succession of isolation and purification steps based on the valence states modification of the researched elements. For counting, actinides were electrodeposited in view to obtain the mass-less source necessary to avoid self-absorption of the emitted radiations. Activity concentrations of gamma-emitting fission products were calculated after measurement with high purity germanium detectors (HPGe). These different methods were used to analyse soils sampled in the Republic of Belarus, not far from the Chernobyl nuclear plant.

  7. Recovery of minor actinides from irradiated superfact fuels

    Energy Technology Data Exchange (ETDEWEB)

    Apoltolidis, C.; Glatz, J.P.; Molinet, R.; Nicholl, A.; Pagliosa, G.; Romer, K.; Bokelund, H.; Koch, L. [European Commission, JRC, Institute fuer Transuranium Elements, Karlsruhe (Germany)

    1995-12-31

    It could be demonstrated that the reprocessing of fast reactor oxide fuels containing up to 45 % MA (Np and Am), irradiated in the PHENIX reactor in the frame of a transmutation study, is possible. The fuels were dissolved under PUREX type conditions in order to determine their behaviour in the head-end step of the reprocessing process. For one of the fuels containing 20 % Am and 20 % Np before irradiation, an almost complete partitioning of actinides from the dissolver solution could be achieved. Chromatographic extraction was used for the separation of the main bulk elements U, Pu and Np, whereas centrifugal extractors were used to separate the minor actinides from the remaining high level liquid wastes (HLLW). For the relevant radio-toxic isotopes a high recovery rate from the irradiation targets was reached. Those elements are thus available for new fuel fabrication. (authors) 12 refs.

  8. Actinide-specific sequestering agents and decontamination applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, William L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Raymond, Kenneth N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1981-04-07

    With the commercial development of nuclear reactors, the actinides have become very important industrial elements. A major concern of the nuclear industry is the biological hazard associated with nuclear fuels and their wastes. The acute chemical toxicity of tetravalent actinides, as exemplified by Th(IV), is similar to Cr(III) or Al(III). However, the acute toxicity of 239Pu(IV) is similar to strychnine, which is much more toxic than any of the non-radioactive metals such as mercury. Although the more radioactive isotopes of the transuranium elements are more acutely toxic by weight than plutonium, the acute toxicities of 239Pu, 241Am, and 244Cm are nearly identical in radiation dose, ~100 μCi/kg in rodents. Finally and thus, the extreme acute toxicity of 239Pu is attributed to its high specific activity of alpha emission.

  9. Pain in burn patients.

    Science.gov (United States)

    Latarjet, J; Choinère, M

    1995-08-01

    While severe pain is a constant component of the burn injury, inadequate pain management has been shown to be detrimental to burn patients. Pain-generating mechanisms in burns include nociception, primary and secondary hyperalgesia and neuropathy. The clinical studies of burn pain characteristics reveal very clear-cut differences between continuous pain and pain due to therapeutic procedures which have to be treated separately. Some of the main features of burn pain are: (1) its long-lasting course, often exceeding healing time, (2) the repetition of highly nociceptive procedures which can lead to severe psychological disturbances if pain control is inappropriate. Pharmaco-therapy with opioids is the mainstay for analgesia in burned patients, but non-pharmacological techniques may be useful adjuncts. Routine pain evaluation is mandatory for efficient and safe analgesia. Special attention must be given to pain in burned children which remains too often underestimated and undertreated. More educational efforts from physicians and nursing staff are necessary to improve pain management in burned patients.

  10. Nutrition of burned patients.

    Science.gov (United States)

    Gudaviciene, Daiva; Rimdeika, Rytis; Adamonis, Kestutis

    2004-01-01

    Burns form 5-12% of all traumas. About 2,200 of patients are annually hospitalized in Lithuania. In most cases people of the employable age get burned. The treatment is often long-lasting, and afterwards recovered patients often have invalidity from burn sequels. The mortality of hospitalized burned patients is about 10%. The most common causes of death are pulmonary edema, pneumonia, sepsis and multiorgan failure. All these complications are related with insufficient nutrition. These complications are extremely frequent and dangerous for patients with more than 20% of body burned. The nutritional support of burned patient gives a possibility to increase the survival probability, to decrease complication rate and hospitalization time. Currently in Lithuania there are no standards for burned patient nutrition. More attention is given to strategy of surgical strategy and techniques, as well as antibiotic therapy. This article is the review of the different aspects of artificial nutrition of burned patient: indications, modes of nutrition, mixtures and terms of nutritional support.

  11. Design of unique pins for irradiation of higher actinides in a fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Basmajian, J.A.; Birney, K.R.; Weber, E.T.; Adair, H.L.; Quinby, T.C.; Raman, S.; Butler, J.K.; Bateman, B.C.; Swanson, K.M.

    1982-03-01

    The actinides produced by transmutation reactions in nuclear reactor fuels are a significant factor in nuclear fuel burnup, transportation and reprocessing. Irradiation testing is a primary source of data of this type. A segmented pin design was developed which provides for incorporation of multiple specimens of actinide oxides for irradiation in the UK's Prototype Fast Reactor (PFR) at Dounreay Scotland. Results from irradiation of these pins will extend the basic neutronic and material irradiation behavior data for key actinide isotopes.

  12. Instant release fraction and matrix release of high burn-up UO2 spent nuclear fuel: Effect of high burn-up structure and leaching solution composition

    Science.gov (United States)

    Serrano-Purroy, D.; Clarens, F.; González-Robles, E.; Glatz, J. P.; Wegen, D. H.; de Pablo, J.; Casas, I.; Giménez, J.; Martínez-Esparza, A.

    2012-08-01

    Two weak points in Performance Assessment (PA) exercises regarding the alteration of Spent Nuclear Fuel (SNF) are the contribution of the so-called Instant Release Fraction (IRF) and the effect of High Burn-Up Structure (HBS). This manuscript focuses on the effect of HBS in matrix (long term) and instant release of a Pressurised Water Reactor (PWR) SNF irradiated in a commercial reactor with a mean Burn-Up (BU) of 60 GWd/tU. In order to study the HBS contribution, two samples from different radial positions have been prepared. One from the centre of the SNF, labelled CORE, and one from the periphery, enriched with HBS and labelled OUT. Static leaching experiments have been carried out with two synthetic leaching solutions: bicarbonate (BIC) and Bentonitic Granitic Groundwater (BGW), and in all cases under oxidising conditions. IRF values have been calculated from the determined Fraction of Inventory in Aqueous Phase (FIAP). In all studied cases, some radionuclides (RN): Rb, Sr and Cs, have shown higher release rates than uranium, especially at the beginning of the experiment, and have been considered as IRF. Redox sensitive RN like Mo and Tc have been found to dissolve slightly faster than uranium and further studies might be needed to confirm if they can also be considered part of the IRF. Most of the remaining studied RN, mainly actinides and lanthanides, have been found to dissolve congruently with the uranium matrix. Finally, Zr, Ru and Rh presented lower release rates than the matrix. Higher matrix release has been determined for CORE than for OUT samples showing that the formation of HBS might have a protective effect against the oxidative corrosion of the SNF. On the contrary, no significant differences have been observed between the two studied leaching solutions (BIC and BGW). Two different IRF contributions have been determined. One corresponding to the fraction of inventory segregated in the external open grain boundaries, directly available to water and

  13. Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

    2010-02-24

    A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

  14. Validation of minor actinides fission neutron cross-sections

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2015-01-01

    Full Text Available Verification of neutron fission cross-sections of minor actinides from some recently available evaluated nuclear data libraries was carried out by comparison of the reaction rates calculated by the MCNP6.1 computer code to the experimental values. The experimental samples, containing thin layers of 235U, 237Np, 238,239,240,241Pu, 242mAm, 243Cm, 245Cm, and 247Cm, deposited on metal support and foils of 235U (pseudo-alloy 27Al + 235U, 238U, natIn, 64Zn, 27Al, and multi-component sample alloy 27Al + 55Mn + natCu + natLu + 197Au, were irradiated in the channels of the tank containing fluorine salts 0.52NaF + 0.48ZrF4, labelled as the Micromodel Salt Blanket, inserted in the lattice centre of the MAKET heavy water critical assembly at the Institute for Theoretical and Experimental Physics, Moscow. This paper is a continuation of earlier initiated scientific-research activities carried out for validation of the evaluated fission cross-sections of actinides that were supposed to be used for the quality examination of the fuel design of the accelerator driven systems or fast reactors, and consequently, determination of transmutation rates of actinides, and therefore, determination of operation parameters of these reactor facilities. These scientific-research activities were carried out within a frame of scientific projects supported by the International Science and Technology Center and the International Atomic Energy Agency co-ordinated research activities, from 1999 to 2010. Obtained results confirm that further research is needed in evaluations in order to establish better neutron cross-section data for the minor actinides and selected nuclides which could be used in the accelerator driven systems or fast reactors.

  15. Future nuclear fuel cycles: Prospect and challenges for actinide recycling

    Science.gov (United States)

    Warin, Dominique

    2010-03-01

    The global energy context pleads in favour of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel. In this context, nuclear power has the worldwide potential to curtail the dependence on fossil fuels and thereby to reduce the amount of greenhouse gas emissions while promoting energy independence. How we deal with nuclear radioactive waste is crucial in this context. In France, the public's concern regarding the long-term waste management made the French Governments to prepare and pass the 1991 and 2006 Acts, requesting in particular the study of applicable solutions for still minimizing the quantity and the hazardousness of final waste. This necessitates High Active Long Life element (such as the Minor Actinides MA) recycling, since the results of fuel cycle R&D could significantly change the challenges for the storage of nuclear waste. HALL recycling can reduce the heat load and the half-life of most of the waste to be buried to a couple of hundred years, overcoming the concerns of the public related to the long-life of the waste and thus aiding the "burying approach" in securing a "broadly agreed political consensus" of waste disposal in a geological repository. This paper presents an overview of the recent R and D results obtained at the CEA Atalante facility on innovative actinide partitioning hydrometallurgical processes. For americium and curium partitioning, these results concern improvements and possible simplifications of the Diamex-Sanex process, whose technical feasibility was already demonstrated in 2005. Results on the first tests of the Ganex process (grouped actinide separation for homogeneous recycling) are also discussed. In the coming years, next steps will involve both better in-depth understanding of the basis of these actinide partitioning processes and, for the new promising

  16. Chemical and Ceramic Methods Toward Safe Storage of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    P.E.D. Morgan; R.M. Housley; J.B. Davis; M.L. DeHaan

    2005-08-19

    A very import, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. THe use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements )e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations.

  17. EXAFS studies of actinide ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Karim, D P; Georgopoulos, P; Knapp, G S

    1979-01-01

    The applicability of the EXAFS technique in the study of actinide systems is discussed. Uranium L/sub III/-edge spectra obtained on an in-lab rotating anode EXAFS facility are presented and analyzed for crystalline UO/sub 2/F/sub 2/ and aqueous solutions containing hexavalent uranium ions. Methods for the extension of the technique to more dilute systems are discussed.

  18. Chemical properties of the heavier actinides and transactinides

    Energy Technology Data Exchange (ETDEWEB)

    Hulet, E.K.

    1981-01-01

    The chemical properties of each of the elements 99 (Es) through 105 are reviewed and their properties correlated with the electronic structure expected for 5f and 6d elements. A major feature of the heavier actinides, which differentiates them from the comparable lanthanides, is the increasing stability of the divalent oxidation state with increasing atomic number. The divalent oxidation state first becomes observable in the anhydrous halides of californium and increases in stability through the series to nobelium, where this valency becomes predominant in aqueous solution. In comparison with the analogous 4f electrons, the 5f electrons in the latter part of the series are more tightly bound. Thus, there is a lowering of the 5f energy levels with respect to the Fermi level as the atomic number increases. The metallic state of the heavier actinides has not been investigated except from the viewpoint of the relative volatility among members of the series. In aqueous solutions, ions of these elements behave as a normal trivalent actinides and lanthanides (except for nobelium). Their ionic radii decrease with increasing nuclear charge which is moderated because of increased screening of the outer 6p electrons by the 5f electrons. The actinide series of elements is completed with the element lawrencium (Lr) in which the electronic configuration is 5f/sup 14/7s/sup 2/7p. From Mendeleev's periodicity and Dirac-Fock calculations, the next group of elements is expected to be a d-transition series corresponding to the elements Hf through Hg. The chemical properties of elements 104 and 105 only have been studied and they indeed appear to show the properties expected of eka-Hf and eka-Ta. However, their nuclear lifetimes are so short and so few atoms can be produced that a rich variety of chemical information is probably unobtainable.

  19. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    K A Kamala

    2016-01-01

    Full Text Available Burning mouth syndrome (BMS is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS.

  20. Hand chemical burns.

    Science.gov (United States)

    Robinson, Elliot P; Chhabra, A Bobby

    2015-03-01

    There is a vast and ever-expanding variety of potentially harmful chemicals in the military, industrial, and domestic landscape. Chemical burns make up a small proportion of all skin burns, yet they can cause substantial morbidity and mortality. Additionally, the hand and upper extremity are the most frequently involved parts of the body in chemical burns, and therefore these injuries may lead to severe temporary or permanent loss of function. Despite this fact, discussion of the care of these injuries is sparse in the hand surgery literature. Although most chemical burns require only first response and wound care, some require the attention of a specialist for surgical debridement and, occasionally, skin coverage and reconstruction. Exposure to certain chemicals carries the risk of substantial systemic toxicity and even mortality. Understanding the difference between thermal and chemical burns, as well as special considerations for specific compounds, will improve patient treatment outcomes.

  1. [Chickenpox, burns and grafts].

    Science.gov (United States)

    Rojas Zegers, J; Fidel Avendaño, L

    1979-01-01

    An outbreak of chickenpox that occurred at the Burns Repair Surgery Unit, Department of Children's Surgery, Hospital R. del Río, between June and November, 1975, is reported. 27 cases of burned children were studied, including analysis of correlations of the stages and outcome of the disease (varicela), the trauma (burns) and the graft (repair surgery). As a result, the authors emphasize the following findings: 1. Burns and their repair are not aggravating factors for varicella. In a small number of cases the exanthema looked more confluent in the graft surgical areas and in the first degree burns healing spontaneously. 2. Usually there was an uneventful outcome of graft repair surgery on a varicella patient, either during the incubation period, the acme or the convalescence. 3. The fact that the outmost intensity of secondary viremia of varicella occurs before the onset of exanthemia, that is, during the late incubation period, is confirmed.

  2. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, Linus Mattias Valdemar; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... to the predictions of four conceptual models that describe the burning mechanism of multicomponent fuels. Based on the comparisons, hydrocarbon liquids were found to be best described by the Equilibrium Flash Vaporization model, showing a constant gas composition and gasification rate. The multicomponent fuels...

  3. The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning

    Directory of Open Access Journals (Sweden)

    T. G. Karl

    2007-11-01

    Full Text Available Volatile Organic Compound (VOC emissions from fires in tropical forest fuels were quantified using Proton-Transfer-Reaction Mass Spectrometry (PTRMS, Fourier Transform Infrared Spectroscopy (FTIR and gas chromatography (GC coupled to PTRMS (GC-PTR-MS. We investigated VOC emissions from 19 controlled laboratory fires at the USFS (United States Forest Service Fire Sciences Laboratory and 16 fires during an intensive airborne field campaign during the peak of the burning season in Brazil in 2004. The VOC emissions were dominated by oxygenated VOCs (OVOC (OVOC/NMHC ~4:1, NMHC: non-methane hydrocarbons The specificity of the PTR-MS instrument, which measures the mass to charge ratio of VOCs ionized by H3O+ ions, was validated by gas chromatography and by intercomparing in-situ measurements with those obtained from an open path FTIR instrument. Emission ratios for methyl vinyl ketone, methacrolein, crotonaldehyde, acrylonitrile and pyrrole were measured in the field for the first time. Our measurements show a higher contribution of OVOCs than previously assumed for modeling purposes. Comparison of fresh (<15 min and aged (>1 h–1 d smoke suggests altered emission ratios due to gas phase chemistry for acetone but not for acetaldehyde and methanol. Emission ratios for numerous, important, reactive VOCs with respect to acetonitrile (a biomass burning tracer are presented.

  4. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually...... increasing degree of f electron localization from U to Cm, with the tendency toward localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band picture is found to be adequate for UC and acceptable for UN, while a more complex manifold...... of competing localized and delocalized f-electron configurations underlies the ground states of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f7), CmN (f7), and AmN (f6). The observed sudden increase in lattice parameter from PuN to AmN is found to be related...

  5. Rapid separation method for actinides in emergency air filter samples.

    Science.gov (United States)

    Maxwell, Sherrod L; Culligan, Brian K; Noyes, Gary W

    2010-12-01

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified (90)Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and (90)Sr in air filter results were reported in less than 4 h with excellent quality. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Crystalline matrices for the immobilization of plutonium and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.; Starchenko, V.A.; Vasiliev, V.G. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    1996-05-01

    The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressing method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.

  7. Investigation of the complexation and the migration of actinides and non-radioactive substances with humic acids under geogenic conditions. Complexation of humic acids with actinides in the ocidation state IV Th, U, Np

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, S.; Schmeide, K.; Brendler, V.; Krepelova, A.; Mibus, J.; Geipel, G.; Heise, K.H.; Bernhard, G.

    2004-03-01

    Objective of this project was the study of basic interaction and migration processes of actinides in the environment in presence of humic acids (HA). To obtain more basic knowledge on these interaction processes synthetic HA with specific functional properties as well as {sup 14}C-labeled HA were synthesized and applied in comparison to the natural HA Aldrich. One focus of the work was on the synthesis of HA with distinct redox functionalities. The obtained synthetic products that are characterized by significantly higher Fe(III) redox capacities than Aldrich HA were applied to study the redox properties of HA and the redox stability of U(VI) humate complexes. It was confirmed that phenolic OH groups play an important role for the redox properties of HA. However, the results indicate that there are also other processes than the single oxidation of phenolic OH groups and/or other functional groups contributing to the redox behavior of HA. A first direct-spectroscopic proof for the reduction of U(VI) by synthetic HA with distinct redox functionality was obtained. The complexation behavior of synthetic and natural HA with actinides (Th, Np, Pu) was studied. Structural parameters of Pu(III), Th(IV), Np(IV) and Np(V) humates were determined by X-ray absorption spectroscopy (XAS). The results show that carboxylate groups dominate the interaction between HA and actinide ions. These are predominant monodentately bound. The influence of phenolic OH groups on the Np(V) complexation by HA was studied with modified HA (blocked phenolic OH groups). The blocking of phenolic OH groups induces a decrease of the number of maximal available complexing sites of HA, whereas complex stability constant and Np(V) near-neighbor surrounding are not affected. The effects of HA on the sorption and migration behavior of actinides was studied in batch and column experiments. Th(IV) sorption onto quartz and Np(V) sorption onto granite and its mineral constituents are affected by the pH value

  8. Utilization of Minor Actinides (Np, Am, Cm) in Nuclear Power Reactor

    Science.gov (United States)

    Gerasimov, A.; Bergelson, B.; Tikhomirov, G.

    2014-06-01

    Calculation research of the utilization process of minor actinides (transmutation with use of power released) is performed for specialized power reactor of the VVER type operating on the level of electric power of 1000 MW. Five subsequent cycles are considered for the reactor with fuel elements containing minor actinides along with enriched uranium. It was shown that one specialized reactor for the one cycle (900 days) can utilize minor actinides from several VVER-1000 reactors without any technological and structural modifications. Power released because of minor actinide fission is about 4% with respect to the total power

  9. Erosive Burning Study Utilizing Ultrasonic Measurement Techniques

    Science.gov (United States)

    Furfaro, James A.

    2003-01-01

    A 6-segment subscale motor was developed to generate a range of internal environments from which multiple propellants could be characterized for erosive burning. The motor test bed was designed to provide a high Mach number, high mass flux environment. Propellant regression rates were monitored for each segment utilizing ultrasonic measurement techniques. These data were obtained for three propellants RSRM, ETM- 03, and Castor@ IVA, which span two propellant types, PBAN (polybutadiene acrylonitrile) and HTPB (hydroxyl terminated polybutadiene). The characterization of these propellants indicates a remarkably similar erosive burning response to the induced flow environment. Propellant burnrates for each type had a conventional response with respect to pressure up to a bulk flow velocity threshold. Each propellant, however, had a unique threshold at which it would experience an increase in observed propellant burn rate. Above the observed threshold each propellant again demonstrated a similar enhanced burn rate response corresponding to the local flow environment.

  10. MHD control in burning plasmas MHD control in burning plasmas

    Science.gov (United States)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    in the field of burn control is to find the proper balance between desired and detrimental effects of the various MHD modes and to develop the methods and tools for active feedback control of MHD modes in burning plasmas. Therefore, it is necessary to understand the dynamics of the system, in this case the mutual interactions between the fast alpha particles and the MHD instabilities. Since burning plasmas do not yet exist, the relevant experimental work until ITER comes into full operation needs to be largely based on alpha-particle simulation experiments in which the alpha particles are accelerated to high energies by means of special heating techniques. The precise conditions of a burning plasma can be only partly mimicked in present tokamaks. Hence, also a detailed computational modelling effort is needed, in order to understand the impact of findings in present machines for those of the future. In 2011 two dedicated workshops were devoted to MHD control. Firstly, there was a workshop on Control of Burning Plasmas that took place from 21-25 March 2011 at the Lorentz Centre in Leiden, The Netherlands. Secondly, the 480th Wilhelm and Else Heraeus Seminar that took place from 16-18 June in Bad Honnef, Germany was devoted to Active Control of Instabilities in Hot Plasmas. This special issue presents a collection of papers that have been presented at the two workshops, along with a few papers that are the result of an open call to contribute to this special issue.

  11. Fission fragment angular distributions in pre-actinide nuclei

    Science.gov (United States)

    Banerjee, Tathagata; Nath, S.; Jhingan, A.; Kaur, Gurpreet; Dubey, R.; Yadav, Abhishek; Laveen, P. V.; Shamlath, A.; Shareef, M.; Gehlot, J.; Saneesh, N.; Prasad, E.; Sugathan, P.; Pal, Santanu

    2016-10-01

    Background: Complete fusion of two nuclei leading to formation of a heavy compound nucleus (CN) is known to be hindered by various fission-like processes, in which the composite system reseparates after capture of the target and the projectile inside the potential barrier. As a consequence of these non-CN fission (NCNF) processes, fusion probability (PCN) starts deviating from unity. Despite substantial progress in understanding, the onset and the experimental signatures of NCNF and the degree of its influence on fusion have not yet been unambiguously identified. Purpose: This work aims to investigate the presence of NCNF, if any, in pre-actinide nuclei by systematic study of fission angular anisotropies and fission cross sections (σfis) in a number of nuclear reactions carried out at and above the Coulomb barrier (VB) . Method: Fission fragment angular distributions were measured for six 28Si-induced reactions involving isotopically enriched targets of 169Tm,176Yb,175Lu,180Hf,181Ta, and 182W leading to probable formation of CN in the pre-actinide region, at a laboratory energy (Elab) range of 129-146 MeV. Measurements were performed with large angular coverage (θlab=41∘ -170∘) in which fission fragments (FFs) were detected by nine hybrid telescope (E -Δ E ) detectors. Extracted fission angular anisotropies and σfis were compared with statistical model (SM) predictions. Results: Barring two reactions involving targets with large non-zero ground state spin (J ) , viz., 175Lu(7/2+) and 181Ta(7/2+) , experimental fission angular anisotropies were found to be higher in comparison with predictions of the statistical saddle point model (SSPM), at Ec .m . near VB. Comparison of present results with those from neighboring systems revealed that experimental anisotropies increasingly deviated from SSPM predictions as one moved from pre-actinide to actinide nuclei. For reactions involving targets with large nonzero J , this deviation was subdued. Comparison between

  12. Treatment of acute burn blisters in unscheduled care settings.

    Science.gov (United States)

    Payne, Sarah; Cole, Elaine

    2012-09-01

    Many patients with minor burns present at emergency departments and urgent care centres, where their management is often undertaken by experienced nurses rather than experts in treating burns. This article describes a small study of the clinical decision making that underpins nurses' management of minor burns in these non-specialist settings. The results suggest that, due to a lack of relevant research, nurses base their decisions on previous experience or expert colleagues' opinions and advice rather than on the evidence.

  13. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Science.gov (United States)

    Stockwell, Chelsea E.; Christian, Ted J.; Goetz, J. Douglas; Jayarathne, Thilina; Bhave, Prakash V.; Praveen, Puppala S.; Adhikari, Sagar; Maharjan, Rashmi; DeCarlo, Peter F.; Stone, Elizabeth A.; Saikawa, Eri; Blake, Donald R.; Simpson, Isobel J.; Yokelson, Robert J.; Panday, Arnico K.

    2016-09-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870 nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (g kg-1 fuel burned). The trace gas measurements provide EFs (g kg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ˜ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68) was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg-1), organic acids (7.66 ± 6.90 g kg-1), and HCN (2.01 ± 1.25 g kg-1), where the latter could

  14. Prescribed burning plan : Stillwater NWR : de Braga Burn Unit 67

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This 1991 Annual Prescribed Burning Plan for Stillwater NWR calls for all 67 acres of the de Braga burn unit to be burned. The objective of this burn is to remove...

  15. 烧伤患者康复期消极情绪体验及其原因分析%The negative emotional experiences and relative causes of burn patients during rehabilitative period

    Institute of Scientific and Technical Information of China (English)

    周学萍; 刘均娥; 王杨

    2013-01-01

    目的 探讨康复期可视伤残烧伤患者消极情绪体验及其原因.方法 采用定性研究方法,对8例康复期具有可视伤残或功能残障的烧伤患者进行深入访谈,并运用扎根理论的编码和分析方法进行资料分析.结果 烧伤患者康复期主要的消极情绪体验包括羞耻感、自卑感、失望和愤怒;低自尊是消极情绪的根本原因.结论 针对烧伤患者康复期的消极情绪体验,护理人员通过提高患者的自尊,来建立自我安全感和提高患者自信心,从而提高其生存质量.%Objective To explore the negative emotional experiences and relative causes of burn patients with visible disability during rehabilitative period. Methods The qualitative research was adopted. Relevant data were collected through individual interviews with visible disability or functional disability of 8 patients and then analyzed by applying the code and continuous comparative analysis method of grounded theory. Results The burn patients mainly had negative emotional experiences during rehabilitative period, including sense of shame, inferiority complex, disappointment, and anger. Low self - esteem was the major cause of such negative emotions. Conclusion The nursing personnel should strive to improve patients'self - esteem against the negative emotional experience so as to help the patients establish sense of security and improve their confidence so as to improve patients'quality of life.

  16. PBXN-110 Burn Rate Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E

    2008-08-11

    It is estimated that PBXN-110 will burn laminarly with a burn function of B = (0.6-1.3)*P{sup 1.0} (B is the burn rate in mm/s and P is pressure in MPa). This paper provides a brief discussion of how this burn behavior was estimated.

  17. Management of burn wounds.

    Science.gov (United States)

    Schiestl, Clemens; Meuli, Martin; Trop, Marija; Neuhaus, Kathrin

    2013-10-01

    Small and moderate scalds in toddlers are still the most frequent thermal injuries the pediatric surgeons have to face today. Over the last years, surgical treatment of these patients has changed in many aspects. Due to new dressing materials and new surgical treatment strategies that are particularly suitable for children, today, far better functional and aesthetic long-term results are possible. While small and moderate thermal injuries can be treated in most European pediatric surgical departments, the severely burned child must be transferred to a specialized, ideally pediatric, burn center, where a well-trained multidisciplinary team under the leadership of a (ideally pediatric) burn surgeon cares for these highly demanding patients. In future, tissue engineered full thickness skin analogues will most likely play an important role, in pediatric burn as well as postburn reconstructive surgery.

  18. Burn Wise Awareness Kit

    Science.gov (United States)

    Health and safety outreach materials in the form of an awareness kit. Designed specifically for state, local, and tribal air agencies working to reduce wood smoke pollution, it includes best burn tips, social media m

  19. Molten Metal Burns

    OpenAIRE

    Kahn, Arthur M.; McCrady-Kahn, Virginia L.

    1981-01-01

    Molten metal burns are a frequent industrial injury among workers in foundries. The injury is typically small but very deep. Usually the depth and seriousness of these injuries is not recognized immediately by emergency department or industrial clinic physicians.

  20. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth L. Nash

    2009-09-22

    Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am and Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their

  1. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth L. Nash

    2009-09-22

    Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am and Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their

  2. Core Optimization of a Deep-Burn Pebble Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Brian Boer; Abderrafi M. Ougouag

    2010-06-01

    Achieving a high fuel burnup in the Deep-Burn (DB) pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum as compared to a ’standard’ UO2 fueled core. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. The DB concept focuses on the destruction of spent fuel transuranics in TRISO coated particle fueled gas-cooled reactors with the aim of a fractional fuel burnup of 60-70% in fissions per initial metal atom (FIMA), using a single-pass, multi in-core fuel (re)cycling scheme. In principle, the DB pebble bed concept employs the same reactor designs as the present low enriched uranium core designs, i.e. the 400 MWth Pebble Bed Modular Reactor (PBMR-400). A Pu and Minor Actinide fueled PBMR-400 design serves as the starting point for a core optimization study. The fuel temperature, power peak, temperature reactivity coefficients, and burnup capabilities of the modified designs are analyzed with the PEBBED code. A code-to-code coupling with the PASTA code allows for the analysis of the TRISO fuel performance for both normal and Loss Of Forced Cooling conditions. An improved core design is sought, maximizing the fuel discharge burnup, while retaining negative temperature reactivity feedback coefficients for the entire temperature range and avoiding high fuel temperatures (fuel failure probabilities).

  3. Accidental burns during surgery.

    Science.gov (United States)

    Demir, Erhan; O'Dey, Dan Mon; Pallua, Norbert

    2006-01-01

    The purpose of this report is to increase awareness of intraoperative burns during standard procedures, to discuss their possible causes and warning signs and to provide recommendations for prevention and procedures to follow after their occurrence. A total of 19 patients associated with intraoperative burn accidents were treated surgically and analyzed after a mean follow-up of 5 +/- 3.5 months. Review included retrospective patient chart analysis, clinical examination, and technical device and equipment testing. A total of 15 patients recently underwent cardiac surgery, and 4 pediatric patients recovered after standard surgical procedures. A total of 15 patients had superficial and 4 presented with deep dermal or full-thickness burns. The average injured TBSA was 2.1 +/- 1% (range, 0.5-4%). Delay between primary surgery and consultation of plastic surgeons was 4.5 +/- 3.4 days. A total of 44% required surgery, including débridment, skin grafting or musculocutaneous gluteus maximus flaps, and the remaining patients were treated conservatively. Successful durable soft-tissue coverage of the burn region was achieved in 18 patients, and 1 patient died after a course of pneumonia. Technical analysis demonstrated one malfunctioning electrosurgical device, one incorrect positioned neutral electrode, three incidents occurred after moisture under the negative electrode, eight burns occurred during surgery while fluid or blood created alternate current pathways, five accidents were chemical burns after skin preparation with Betadine solution, and in one case, the cause was not clear. The surgical team should pay more attention to the probability of burns during surgery. Early patient examination and immediate involvement of plastic and burn surgeons may prevent further complications or ease handling after the occurrence.

  4. Smartphone applications in burns.

    Science.gov (United States)

    Wurzer, Paul; Parvizi, Daryousch; Lumenta, David B; Giretzlehner, Michael; Branski, Ludwik K; Finnerty, Celeste C; Herndon, David N; Tuca, Alexandru; Rappl, Thomas; Smolle, Christian; Kamolz, Lars P

    2015-08-01

    Since the introduction of applications (apps) for smartphones, the popularity of medical apps has been rising. The aim of this review was to demonstrate the current availability of apps related to burns on Google's Android and Apple's iOS store as well as to include a review of their developers, features, and costs. A systematic online review of Google Play Store and Apple's App Store was performed by using the following search terms: "burn," "burns," "thermal," and the German word "Verbrennung." All apps that were programmed for use as medical apps for burns were included. The review was performed from 25 February until 1 March 2014. A closer look at the free and paid calculation apps including a standardized patient was performed. Four types of apps were identified: calculators, information apps, book/journal apps, and games. In Google Play Store, 31 apps were related to burns, of which 20 were calculation apps (eight for estimating the total body surface area (TBSA) and nine for total fluid requirement (TFR)). In Apple's App Store, under the category of medicine, 39 apps were related to burns, of which 21 were calculation apps (19 for estimating the TBSA and 17 for calculating the TFR). In 19 out of 32 available calculation apps, our study showed a correlation of the calculated TFR compared to our standardized patient. The review demonstrated that many apps for medical burns are available in both common app stores. Even free available calculation apps may provide a more objective and reproducible procedure compared to manual/subjective estimations, although there is still a lack of data security especially in personal data entered in calculation apps. Further clinical studies including smartphone apps for burns should be performed. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  5. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third......-degree burn injury was induced with a hot-air blower. The third-degree burn was confirmed histologically. At 48 h, a decline in the concentration of peripheral blood leucocytes was observed in the group of mice with burn wound. The reduction was ascribed to the decline in concentration of polymorphonuclear...... neutrophil leucocytes and monocytes. When infecting the skin with Pseudomonas aeruginosa, a dissemination of bacteria was observed only in the burn wound group. Histological characterization of the skin showed an increased polymorphonuclear neutrophil granulocytes dominated inflammation in the group of mice...

  6. Helium and fission gas behaviour in magnesium aluminate spinel and zirconia for actinide transmutation

    NARCIS (Netherlands)

    Damen, P.M.G.

    2003-01-01

    In order to reduce the long-term radiotoxicity of spent nuclear fuel, many studies are performed on partitioning and transmutation of actinides. In such a scenario, the long-lived radio-isotopes (mostly actinides) are partitioned from the nuclear waste, and subsequently transmuted or fissioned in a

  7. Systematic Characteristics of Fast Neutron Fission Cross Sections for Actinide Nuclei

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The neutron fission cross sections of actinide nuclei are important data for the design of nuclear reactor and nuclear engineering, and so on. So far, there has been a certain amount of experimental data for the fission cross sections of actinide nuclei. However,

  8. Helium and fission gas behaviour in magnesium aluminate spinel and zirconia for actinide transmutation

    NARCIS (Netherlands)

    Damen, P.M.G.

    2003-01-01

    In order to reduce the long-term radiotoxicity of spent nuclear fuel, many studies are performed on partitioning and transmutation of actinides. In such a scenario, the long-lived radio-isotopes (mostly actinides) are partitioned from the nuclear waste, and subsequently transmuted or fissioned in a

  9. Actinide Partitioning and Transmutation Program. Progress report, April 1--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Tedder, D. W.; Blomeke, J. O. [comps.

    1977-10-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was continued. Summaries of work are given on Purex Process modifications, actinide recovery, Am-Cm recovery, radiation effects on ion exchangers, LMFBR transmutation studies, thermal reactor transmutation studies, fuel cycle studies, and partitioning-transmutation evaluation. (JRD)

  10. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F

    2014-01-01

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  11. DISTRIBUTION OF ACTINIDES BETWEEN THE AQUEOUS AND ORGANIC PHASES IN THE TALSPEAK PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.; Kyser, E.

    2010-09-02

    -vis spectroscopy demonstrated that Np(V) and Pu(III) were the predominate valences in the lactic acid/DTPA solution for the better part of a day following solution preparation. Based on these results, we chose to initially add HAN to the actinide tracer solution prepared for the distribution coefficient measurements (to produce Pu(III)) prior to combining with lactic acid and DTPA. The distribution coefficient measurements were expected to be complete in 2-3 h; therefore, Np(V) and Pu(III) valences would predominate in the solution during this time. Prior to adding the HAN to the actinide tracers, we added sufficient Am(III) activity to allow the measurement of distribution coefficients during the extraction experiments. Protactinium (V) distribution coefficients were also measured using the activity which was in secular equilibrium with the {sup 237}Np. The actinide distribution coefficients were measured at pH 2.8 and 3.5 and covered a range of temperatures from nominally 20 to 60 C.

  12. Burns Caused by Medical Therapy

    Science.gov (United States)

    2016-06-07

    fear of litigation, patients with such injuries, even if the injuries are minor, arc often referred to a burn center for care. Burn injury...the potential burn hazards found elsewhere in the hospital. Even fewer studies have addressed the burn risks posed by medical therapy administered...35. Mills GH, Ralph S). Bums due to pulse oximetry [ letter ]. Anaesthesia 1992j47:276·7. 36. Shdlock: FG, Kana! E. Burns associated with the use of

  13. [Changes in mesenteric microcirculation in rats following repeated skin burns].

    Science.gov (United States)

    Shtykhno, Iu M

    1976-07-01

    Acute experiments were conducted on rats; repeated extensive burn of a convalescent who formerly sustained the burn disease was better tolerated, led tono fatal outcome and was accompanied by moderate microcirculatory disturbances. The smae burn was accompanied in intact rats by a severe shock followed by death, intravascular aggregation of erythrocytes and significant microcirculatory disturbances leading to disturbance of tissue nutrition. It is supposed that the results obtained could serve as an indirect proof that toxemia played an important role in the genesis of intravascular aggregation of erythrocytes in burn shock.

  14. Impurities that cause difficulty in stripping actinides from commercial tetraalkylcarbamoylmethylphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Bahner, C. T.; Shoun, R. R.; McDowell, W. J.

    1977-09-01

    Dihexyl((diethylcarbamoyl)methyl)phosphonate (DHDECMP) in diethylbenzene extracts actinides well from 6 M nitric acid solution, but commercially available DHDECMP contains impurities which interfere with stripping the actinides from the organic extract. DHDECMP purified by molecular distillation does not contain these impurities, but the pot residue contains increased concentrations of them. Heating the purified DHDECMP causes the formation of products which interfere with stripping in the same way, suggesting that high temperatures employed in the manufacture of DHDECMP may produce the offending impurities. These impurities can be separated from the heat-decomposed material or the pot residues by dilution with a large volume of hexanes (causing part of the impurities to separate as a second liquid phase) followed by equilibration of the hexane solution with dilute alkali. After the treatment with hexane and dilute alkali, the DHDECMP is readily recovered and functions well in the actinide extraction process. Dibutyl((dibutylcarbamoyl)methyl)-phosphonate (DBDBCMP) and di(2-ethylhexyl)((diethylcarbamoyl)-methyl)phosphonate (DEHDECMP) are purified less effectively by these methods. Similar separation methods using diethylbenzene or CCl/sub 4/ as solvent do not remove impurities as completely as the hexane process. Impurities can also be removed from a benzene solution of the DHDECMP pot residue by passing it through a column packed with silica gel or diethylaminoethyl cellulose. These impurities have been separated into fractions for analytical examination by use of various solvents and by column chromatography. Hexyl hydrogen ((diethylcarbamoyl)methyl)-phosphonate has been identified tentatively as a principal objectionable impurity. Dihexyl phosphoric acid and possibly dihexylphosphonate have been identified in other fractions.

  15. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a

  16. Feet sunk in molten aluminium: The burn and its prevention.

    Science.gov (United States)

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  17. Predictors of PTSD symptoms in caregivers of pediatric burn survivors

    Directory of Open Access Journals (Sweden)

    Lucía Del Carmen Quezada Berumen

    2015-11-01

    Full Text Available Facing a severe injury in the children is one of the most devastating experiences that parents may face. The aim of this study was to explore the role of resilience showed by fathers and mothers of children with burns, the TBSA burned, age at the time of the burn and time since the burn in PTSD symptoms in caregivers. It was a cross-sectional study where fathers, mothers and guardians of 51 burn patients were evaluated. Results showed that the higher strength and confidence in caregivers, less severity in PTSD symptoms. The post-burn reactions of parents and guardians can affect the responses and welfare of their children. Therefore, a better understanding of factors related to the adaptation in caregivers, better attention by health services.

  18. Fission of actinides using a table-top laser

    CERN Document Server

    Schwoerer, H; Sauerbrey, R; Galy, J; Magill, J; Rondinella, V; Schenkel, R; Butz, T

    2003-01-01

    Powerful table-top lasers are now available in the laboratory and can be used to induce nuclear reactions. We report the first demonstration of nuclear fission using a high repetition rate table-top laser with intensities of 10 sup 2 sup 0 W/cm sup 2. Actinide photo-fission has been achieved in both sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th from the high-energy Bremsstrahlung radiation produced by laser acceleration of electrons. The fission products were identified by time-resolved gamma-spectroscopy. (authors)

  19. Plant Mounds as Concentration and Stabilization Agents for Actinide Soil Contaminants in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Shafer; J. Gommes

    2009-02-03

    Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around the base of shrubs and are common features in deserts in the southwestern United States. An important factor in their formation is that shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, 241Am, and U in plant mounds at safety experiment and storage-transportation test sites of nuclear devices. Although aerial concentrations of these contaminants were highest in the intershrub or desert pavement areas, the concentration in mounds were higher than in equal volumes of intershrub or desert pavement soil. The NAEG studies found the ratio of contaminant concentration of actinides in soil to be greater (1.6 to 2.0) in shrub mounds than in the surrounding areas of desert pavement. At Project 57 on the NTTR, 17 percent of the area was covered in mounds while at Clean Slate III on the TTR, 32 percent of the area was covered in mounds. If equivalent volumes of contaminated soil were compared between mounds and desert pavement areas at these sites, then the former might contain as much as 34 and 62 percent of the contaminant inventory, respectively. Not accounting for radionuclides associated with shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. In addition, preservation of shrub mounds could be important part of long-term stewardship if these sites are closed by fencing and posting with administrative controls.

  20. Screening of TODGA/TBP/OK solvent mixtures for the grouped extraction of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jamie; Carrott, Michael J; Maher, Chris J; Mason, Chris; McLachlan, Fiona; Sarsfield, Mark J; Taylor, Robin J; Woodhead, Dave A [National Nuclear Laboratory, B170, Sellafield, Seascale, CUMBRIA, CA20 1PG (United Kingdom); Fox, O Danny, E-mail: mark.sarsfield@nnl.co.uk [Nuclear Decommissioning Authority, Herdus House, Westlakes Science and Technology Park, Moor Row, CA24 3HU (United Kingdom)

    2010-03-15

    The solvent combination N,N,N'N'- tetraoctyl diglycolamide (TODGA)/tributyl phosphate (TBP)/odourless kerosene (OK) is examined as a potential solvent system for a Grouped Actinide Extraction (GANEX) process to separate all of the actinides from fission products when reprocessing spent nuclear fuel. A series of solvent extraction batch experiments were performed with a range of TODGA/TBP/OK solvent combinations to assess the sensitivity of distribution values for a number of key elements towards [TBP] (0 - 1.1M), [TODGA] (0.1-0.4M), [HNO{sub 3}] (0.1-5M) and heavy metal loading ([U] 0-200g/l). There is little impact on D{sub Am} or D{sub Eu} across the solvent range and no influence from U loading. Excellent D{sub Np} values (> 10) are observed, increasing with increasing [TODGA], with [TBP] having little influence. Such high D{sub Np} values may obviate the need for preconditioning of dissolved fuel feeds to control Np routing. High D{sub Tc} values are found even at 5M HNO{sub 3}, therefore Tc is expected to remain in the solvent phase. Both Pu(III) and Pu(IV) are readily extracted with D{sub Pu(III)} > D{sub Pu(IV)}. Uranium is extracted by both TBP and TODGA and TBP is shown to effectively compete with TODGA for uranium coordination sites. Third phase formation occurs at high [U] loading and [HNO{sub 3}] but is suppressed by increasing [TBP].

  1. High resolution X-ray emission spectroscopy: An advanced tool for actinide research

    Energy Technology Data Exchange (ETDEWEB)

    Vitova, T; Brendebach, B; Dardenne, K; Denecke, M A; Lebid, A; Loeble, M; Rothe, J; Batuk, O N; Geckeis, H [Karlsruhe Institut fuer Technologie (KIT), Institut fuer Nukleare Entsorgung (INE), PO Box 3640, D-76021 Karlsruhe (Germany); Hormes, J; Liu, D [Physikalisches Institut, Nussallee 12, D-53115 Bonn (Germany); Breher, F, E-mail: tonya.vitova@kit.edu [Karlsruhe Institut fuer Technologie (KIT), Institut fuer Anorganische Chemie, Engesserstr. 15, D-76131 Karlsruhe (Germany)

    2010-03-15

    High resolution X-ray emission spectroscopy (HRXES) is becoming increasingly important for our understanding of electronic and coordination structures. The combination of such information with development of quantum theoretical tools will advance our capability for predicting reactivity and physical behavior especially of 5f elements. HRXES can be used to remove lifetime broadening by registering the partial fluorescence yield emitted by the sample (i.e., recording a windowed signal from the energy dispersed fluorescence emission while varying incident photon energy), thereby yielding highly resolved X-ray absorption fine structure (XAFS) spectra. Such spectra often display resonant features not observed in conventional XAFS. The spectrometer set-up can also be used for a wide range of other experiments, for example, resonant inelastic X-ray scattering (RIXS), where bulk electron configuration information in solids, liquids and gases is obtained. Valence-selective XAFS studies, where the local structure of a selected element's valence state present in a mixture of valence states can be obtained, as well as site-selective XAFS studies, where the coordination structure of a metal bound to selected elements can be differentiated from that of all the other ligating atoms. A HRXES spectrometer has been constructed and is presently being commissioned for use at the INE-Beamline for actinide research at the synchrotron source ANKA at FZK. We present the spectrometer's compact, modular design, optimized for attaining a wide range of energies, and first test measurement results. Examples from HRXES studies of lanthanides, actinides counter parts, are also shown.

  2. Actinide Foil Production for MPACT Research

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Denis

    2012-10-30

    Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systems are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U

  3. Experimental Study on the Burning Behavior of Pool Fires in Rooms with Different Wall Linings

    DEFF Research Database (Denmark)

    Poulsen, Annemarie; Jomaas, Grunde

    2011-01-01

    An experimental test series, comprising 10 experiments with varying pool sizes, lining materials and amounts of liquid burning, was conducted under free burn and room burn conditions. The thermal feedback from the enclosure (ISO 9705 Room Corner Test facility) enhanced the burning rate of the poo...... in the shortest time. Given the profound difference between the enclosure tests and the free burn tests and also between enclosure tests with different linings, it is recommended to show great caution if free burn tests are to be used in design fire scenarios....

  4. Actinide Solubility and Speciation in the WIPP [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  5. Energy-Dependent Fission Q Values Generalized for All Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2008-09-25

    We generalize Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q values on incident neutron energy, E{sub n}, for all major and minor actinides. These Q(E{sub n}) parameterizations are included in the ENDL2008 release. This paper describes calculations of energy-dependent fission Q values based on parameterizations of the prompt energy release in fission [1], developed by Madland [1] to describe the prompt energy release in neutron-induced fission of {sup 235}U, {sup 238}U, and {sup 239}Pu. The energy release is then related to the energy deposited during fission so that experimentally measurable quantities can be used to obtain the Q values. A discussion of these specific parameterizations and their implementation in the processing code for Monte Carlo neutron transport, MCFGEN, [2] is described in Ref. [3]. We extend this model to describe Q(E) for all actinides, major and minor, in the Evaluated Nuclear Data Library (ENDL) 2008 release, ENDL2008.

  6. Stabilization of actinides and lanthanides in unusually high oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Eller, P.G.; Penneman, R.A.

    1986-01-01

    Chemical environments can be chosen which stabilize actinides and lanthanides in unusually high or low oxidation states and in unusual coordination. In many cases, one can rationalize the observed species as resulting from strong charge/size influences provided by specific sites in host lattices (e.g., Tb(IV) in BaTbO/sub 3/ or Am(IV) in polytungstate anions). In other cases, the unusual species can be considered from an acid-base viewpoint (e.g., U(III) in AsF/sub 5//HF solution or Pu(VII) in Li/sub 5/PuO/sub 6/). In still other cases, an interplay of steric and redox effects can lead to interesting comparisons (e.g., instability of double fluoride salts of Pu(V) and Pu(VI) relative to U, Np, and Am analogues). Generalized ways to rationalize compounds containing actinides and lanthanides in unusual valences (particularly high valences), including the above and numerous other examples, will form the focus of this paper. Recently developed methods for synthesizing high valent f-element fluorides using superoxidizers and superacids at low temperatures will also be described. 65 refs., 8 figs., 9 tabs.

  7. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  8. Heat capacities of lanthanide and actinide monazite-type ceramics

    Science.gov (United States)

    Kowalski, Piotr M.; Beridze, George; Vinograd, Victor L.; Bosbach, Dirk

    2015-09-01

    (Ln, An)xPO4 monazite-type ceramics are considered as potential matrices for the disposal of nuclear waste. In this study we computed the heat capacities and the standard entropies of these compounds using density functional perturbation theory. The calculations of lanthanide monazites agree well with the existing experimental data and provide information on the variation of the standard heat capacities and entropies along the lanthanide series. The results for AnPO4 monazites are similar to those obtained for the isoelectronic lanthanide compounds. This suggests that the missing thermodynamic data on actinide monazites could be similarly computed or assessed based on the properties of their lanthanide analogs. However, the computed heat capacity of PuPO4 appear to be significantly lower than the measured data. We argue that this discrepancy might indicate potential problems with the existing experimental data or with their interpretation. This shows a need for further experimental studies of the heat capacities of actinide-bearing, monazite-type ceramics.

  9. Fabrication of nitride fuels for transmutation of minor actinides

    Science.gov (United States)

    Minato, Kazuo; Akabori, Mitsuo; Takano, Masahide; Arai, Yasuo; Nakajima, Kunihisa; Itoh, Akinori; Ogawa, Toru

    2003-07-01

    At the Japan Atomic Energy Research Institute, the concept of the transmutation of minor actinides (MA: Np, Am and Cm) with accelerator-driven systems is being studied. The MA nitride fuel has been chosen as a candidate because of the possible mutual solubility among the actinide mononitrides and excellent thermal properties besides supporting hard neutron spectrum. MA nitrides of NpN, (Np, Pu)N, (Np, U)N, AmN, (Am, Y)N, (Am, Zr)N and (Cm, Pu)N were prepared from the oxides by the carbothermic reduction method. The prepared MA nitrides were examined by X-ray diffraction and the contents of impurities of oxygen and carbon were measured. The fabrication conditions for MA nitrides were improved so as to reduce the impurity contents. For an irradiation test of U-free nitride fuels, pellets of (Pu, Zr)N and PuN + TiN were prepared and a He-bonded fuel pin was fabricated. The irradiation test started in May 2002 and will go on for two years in the Japan Materials Testing Reactor.

  10. Actinide production from xenon bombardments of curium-248

    Energy Technology Data Exchange (ETDEWEB)

    Welch, R.B.

    1985-01-01

    Production cross sections for many actinide nuclides formed in the reaction of /sup 129/Xe and /sup 132/Xe with /sup 248/Cm at bombarding energies slightly above the coulomb barrier were determined using radiochemical techniques to isolate these products. These results are compared with cross sections from a /sup 136/Xe + /sup 248/Cm reaction at a similar energy. When compared to the reaction with /sup 136/Xe, the maxima in the production cross section distributions from the more neutron deficient projectiles are shifted to smaller mass numbers, and the total cross section increases for the production of elements with atomic numbers greater than that of the target, and decreases for lighter elements. These results can be explained by use of a potential energy surface (PES) which illustrates the effect of the available energy on the transfer of nucleons and describes the evolution of the di-nuclear complex, an essential feature of deep-inelastic reactions (DIR), during the interaction. The other principal reaction mechanism is the quasi-elastic transfer (QE). Analysis of data from a similar set of reactions, /sup 129/Xe, /sup 132/Xe, and /sup 136/Xe with /sup 197/Au, aids in explaining the features of the Xe + Cm product distributions, which are additionally affected by the depletion of actinide product yields due to deexcitation by fission. The PES is shown to be a useful tool to predict the general features of product distributions from heavy ion reactions.

  11. Psychiatric aspects of burn

    Directory of Open Access Journals (Sweden)

    Dalal P

    2010-10-01

    Full Text Available Burn injuries and their subsequent treatment cause one of the most excruciating forms of pain imaginable. The psychological aspects of burn injury have been researched in different parts of the world, producing different outcomes. Studies have shown that greater levels of acute pain are associated with negative long-term psychological effects such as acute stress disorder, depression, suicidal ideation, and post-traumatic stress disorder for as long as 2 years after the initial burn injury. The concept of allostatic load is presented as a potential explanation for the relationship between acute pain and subsequent psychological outcomes. A biopsychosocial model is also presented as a means of obtaining better inpatient pain management and helping to mediate this relationship.

  12. Bacteriological profile of burn patients at Yekatit 12 Hospital Burn ...

    African Journals Online (AJOL)

    admin

    injuries, creating a formidable public health problem. (3). Despite major ... change with time. Thus, to have an in-depth knowledge .... Table 4: Antibiotic resistance pattern of bacterial isolates from burn wound at Yekatit 12 hospital burn center.

  13. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    Energy Technology Data Exchange (ETDEWEB)

    Cordfunke, E.H.P.; Gruppelaar, H.; Franken, W.M.P.

    1995-07-01

    This report describes the status and progress of the Dutch RAS programme on `Recycling and Transmutation of Actinides and Fission Products` over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.).

  14. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Windl, Wolfgang [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States)

    2013-01-28

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling to understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.

  15. Phytosiderophore Effects on Subsurface Actinide Contaminants: Potential for Phytostabilization and Phytoextraction

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Christy

    2005-06-01

    This project seeks to understand the influence of phytosiderophore-producing plants (grasses, including crops such as wheat and barley) on the biogeochemistry of actinide and other metal contaminants in the subsurface environment, and to determine the potential of phytosiderophore-producing plants for phytostabilization and phytoextraction of actinides and some metal soil contaminants. Phytosiderophores are secreted by graminaceous plants such as barley and wheat for the solubilization, mobilization and uptake of Fe and other essential nutrients from soils. The ability for these phytosiderophores to chelate and absorb actinides using the same uptake system as for Fe is being investigated though characterization of actinide-phytosiderophore complexes (independently of plants), and characterization of plant uptake of such complexes. We may also show possible harm caused by these plants through increased chelation of actinides that increase in actinide mobilization & migration in the subsurface environment. This information can then be directly applied by either removal of harmful plants, or can be used to develop plant-based soil stabilization/remediation technologies. Such technologies could be the low-cost, low risk solution to many DOE actinide contamination problems.

  16. CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    B. Boer; A. M. Ougouag

    2010-05-01

    Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.

  17. Dissolution of britholites and monazite / brabantite solid solutions doped with actinides; Etude de la dissolution de britholites et de solutions solides monazite / brabantite dopees avec des actinides

    Energy Technology Data Exchange (ETDEWEB)

    Du Fou De Kerdaniel, E

    2007-12-15

    In the field of the radwaste storage in underground repository, several matrices were considered as promising ceramics for the specific immobilization of actinides. Two of them, britholites and monazite/ brabantite solid solution, have been considered during this work. In order to examine the dissolution mechanisms occurring at the solid liquid interface, several leaching experiments have been conducted on (Ln{sup III}PO{sub 4} ), brabantite (Ca{sup II}An{sup IV}(PO{sub 4}){sub 2}: An = Th, U) and britholites (Ca{sub 9}Nd{sub 0.5}An{sub 0.5}{sup IV} (PO{sub 4}){sub 4.5}(SiO{sub 4}){sub 1.5}F{sub 2}: An = Th, U). Some steady experiments, performed in under saturation conditions for various pH and temperature conditions allowed to evaluate the long term behaviour of such matrices through their chemical durability. On the contrary, the thermodynamic equilibria were examined through the leaching experiments performed near the saturation conditions. By the way, various secondary phases, precipitated onto the surface of altered samples have been identified and characterized. Among them, the (Nd, Ca, Th) - rhabdophane, novelly prepared in over- saturation experiments for a thorium weight loading lower than 11 % appeared to be metastable. Indeed, it turns into TPHPH (Th{sub 2}(PO{sub 4}){sub 2}HPO{sub 4}.H{sub 2}O) and Nd - rhabdophane (NdPO{sub 4}.1/2H{sub 2}O) when increasing leaching time. (author)

  18. Pediatric facial burns: Is facial transplantation the new reconstructive psychosurgery?

    Science.gov (United States)

    Hanson, Mark D; Zuker, Ronald M; Shaul, Randi Zlotnik

    2008-01-01

    INTRODUCTION: Current pediatric burn care has resulted in survival being the expectation for most children. Composite tissue allotransplantation in the form of face or hand transplantation may present opportunities for reconstructive surgery of patients with burns. The present paper addresses the question “Could facial transplantation be of therapeutic benefit in the treatment of pediatric burns associated with facial disfigurement?” METHODS: Therapeutic benefit of facial transplantation was defined in terms of psychiatric adjustment and quality of life (QOL). To ascertain therapeutic benefit, studies of pediatric burn injury and associated psychiatric adjustment and QOL in children, adolescents and adults with pediatric burns, were reviewed. RESULTS: Pediatric burn injury is associated with anxiety disorders, including post-traumatic stress disorder and depressive disorders. Many patients with pediatric burns do not routinely access psychiatric care for these disorders, including those for psychiatric assessment of suicidal risk. A range of QOL outcomes were reported; four were predominantly satisfactory and one was predominantly unsatisfactory. DISCUSSION: Facial transplantation may reduce the risk of depressive and anxiety disorders other than post-traumatic stress disorder. Facial transplantation promises to be the new reconstructive psychosurgery, because it may be a surgical intervention with the potential to reduce the psychiatric suffering associated with pediatric burns. Furthermore, patients with pediatric burns may experience the stigma of disfigurement and psychiatric conditions. The potential for improved appearance with facial transplantation may reduce this ‘dual stigmata’. Studies combining surgical and psychiatric research are warranted. PMID:19949498

  19. Burning plasmas in ITER for energy source

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Nobuyuki [Atomic Energy Commission, Tokyo (Japan)

    2002-10-01

    Fusion research and development has two aspects. One is an academic research on science and technology, i.e., discovery and understanding of unexpected phenomena and, development of innovative technology, respectively. The other is energy source development to realize fusion as a viable energy future. Fusion research has been made remarkable progress in the past several decades, and ITER will soon realize burning plasma that is essential for both academic research and energy development. With ITER, scientific research on unknown phenomena such as self-organization of the plasma in burning state will become possible and it contributes to create a variety of academic outcome. Fusion researchers will have a responsibility to generate actual energy, and electricity generation immediately after the success of burning plasma control experiment in ITER is the next important step that has to be discussed seriously. (author)

  20. Interaction of actinides with amino acids: from peptides to proteins; Interaction des actinides avec les acides amines: du peptide a la proteine

    Energy Technology Data Exchange (ETDEWEB)

    Jeanson, A

    2008-09-15

    Structural information on complexes of actinides with molecules of biological interest is required to better understand the mechanisms of actinides transport in living organisms, and can contribute to develop new decorporation treatments. Our study is about Th(IV), Np(IV), Pu(IV) and uranyl(VI) cations, which have a high affinity for some protein domains, and Fe(III), which is the natural cation of these biological systems. In this work, chelation of actinides has been brought to light with UV-visible-Near Infra Red spectroscopy, NMR, EPR, and ultrafiltration. Determination of the structure of the complexation site has been undertaken with Exafs measurements, and of the tertiary structure of the protein with SANS measurements. The first approach was to describe the interaction modes between actinides and essential chemical functions of proteins. Thus, the Ac-AspAspProAspAsp-NH{sub 2} peptide was studied as a possible chelate of actinides. Polynuclear species with {mu}-oxo or {mu}-hydroxo bridges were identified. The iron complex is binuclear, and the actinide ones have a higher nuclearity. The second approach was to study a real case of complexation of actinide with a protein: transferrin. Results show that around physiological ph a mononuclear complex is formed with Np(IV) and Pu(IV), while transferrin does not complex Th(IV) in the same conditions. Characteristic distances of M-transferrin complexes (M = Fe, Np, Pu) were determined. Moreover, the protein seems to be in its close conformation with Pu(IV), and in its open form with Np(IV) and UO{sub 2}{sup 2+}. (author)

  1. An assessment of burn care professionals' attitudes to major burn.

    LENUS (Irish Health Repository)

    Murphy, A D

    2008-06-01

    The resuscitation of severe burn remains a controversial area within the burn care profession. There is ongoing debate as to what percentage burn is associated with a sufficient quality of life to support initial resuscitation efforts. We conducted a survey of delegates at the 39th Annual Meeting of the British Burns Association (2005), regarding attitudes towards resuscitation following major burns. Respondents were asked the maximum percentage total body surface area (TBSA) burn beyond which they would not wish to be resuscitated. They were also asked what maximum TBSA they perceived to be commensurate with an acceptable quality of life (QOL). One hundred and forty three of 300 delegates responded to the questionnaire. Thirty three percent of respondents would not wish to be resuscitated with 50-75% TBSA burns or greater. A further 35% would not wish to have life-sustaining intervention with 75-95% TBSA burns or greater. The remaining 32% indicated that they would not want resuscitation with TBSA burns>95%. Regardless of TBSA affected, 16% would not wish resuscitation if they had full thickness facial burns, a further 10% did not want resuscitation if both their hands and faces were affected. Our survey demonstrates the diversity of personal preference amongst burn care professionals. This would suggest that a unifying philosophy regarding the resuscitation of extensive burns will remain elusive.

  2. Determination of Uncertainties for +III and +IV Actinide Solubilities in the WIPP Geochemistry Model for the 2009 Compliance Recertification Application

    Science.gov (United States)

    Ismail, A. E.; Xiong, Y.; Nowak, E. J.; Brush, L. H.

    2009-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy (DOE) repository in southeast New Mexico for defense-related transuranic (TRU) waste. Every five years, the DOE is required to submit an application to the Environmental Protection Agency (EPA) demonstrating the WIPP’s continuing compliance with the applicable EPA regulations governing the repository. Part of this recertification effort involves a performance assessment—a probabilistic evaluation of the repository performance with respect to regulatory limits on the amount of releases from the repository to the accessible environment. One of the models used as part of the performance assessment process is a geochemistry model, which predicts solubilities of the radionuclides in the brines that may enter the repository in the different scenarios considered by the performance assessment. The dissolved actinide source term comprises actinide solubilities, which are input parameters for modeling the transport of radionuclides as a result of brine flow through and from the repository. During a performance assessment, the solubilities are modeled as the product of a “base” solubility determined from calculations based on the chemical conditions expected in the repository, and an uncertainty factor that describes the potential deviations of the model from expected behavior. We will focus here on a discussion of the uncertainties. To compute a cumulative distribution function (CDF) for the uncertainties, we compare published, experimentally measured solubility data to predictions made using the established WIPP geochemistry model. The differences between the solubilities observed for a given experiment and the calculated solubilities from the model are used to form the overall CDF, which is then sampled as part of the performance assessment. We will discuss the methodology used to update the CDF’s for the +III actinides, obtained from data for Nd, Am, and Cm, and the +IV actinides, obtained

  3. Advanced Extraction Methods for Actinide/Lanthanide Separations

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  4. Back Bay Wilderness burning support

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a memorandum concerning prescribed burns between members of the Bureau of Sport Fisheries and Wildlife. It states that burning should be supported...

  5. Phoenix Society for Burn Survivors

    Science.gov (United States)

    ... Medical Professionals Phoenix Society is the leader in connecting the burn recovery community and creating resources for survivors. Since 1977, we have partnered with survivors, families, health care professionals, burn centers, and the fire ...

  6. Hair bleaching and skin burning

    National Research Council Canada - National Science Library

    Forster, K; Lingitz, R; Prattes, G; Schneider, G; Sutter, S; Schintler, M; Trop, M

    2012-01-01

    .... We report a unique case of a 16-yr-old girl who suffered full-thickness chemical and thermal burns to the nape of her neck and superficial burns to the occiput after her hair had been dyed blond...

  7. Thermodynamics of actinide complexation in solution at elevated temperatures: application of variable-temperature titration calorimetry.

    Science.gov (United States)

    Rao, Linfeng

    2007-06-01

    Studies of actinide complexation in solution at elevated temperatures provide insight into the effect of solvation and the energetics of complexation, and help to predict the chemical behavior of actinides in nuclear waste processing and disposal where temperatures are high. This tutorial review summarizes the data on the complexation of actinides at elevated temperatures and describes the methodology for thermodynamic measurements, with the emphasis on variable-temperature titration calorimetry, a highly valuable technique to determine the enthalpy and, under appropriate conditions, the equilibrium constants of complexation as well.

  8. Stress disorder and PTSD after burn injuries: a prospective study of predictors of PTSD at Sina Burn Center, Iran

    Directory of Open Access Journals (Sweden)

    Sadeghi-Bazargani H

    2011-07-01

    Full Text Available Homayoun Sadeghi-Bazargani1, Hemmat Maghsoudi2, Mohsen Soudmand-Niri3, Fatemeh Ranjbar4, Hossein Mashadi-Abdollahi51Neuroscience Research Center, Statistics and Epidemiology Department, School of Health and Nutrition, 2Department of Surgery, 3School of Psychology, 4Department of Psychiatry, 5National Public Health Management Centre, Tabriz University of Medical Sciences, Tabriz, IranBackground: A burn injury can be a traumatic experience with tremendous social, physical, and psychological consequences. The aim of this study was to investigate the existence of post-traumatic stress disorder (PTSD and predictors of PTSD Checklist score initially and 3 months after injury in burns victims admitted to the Sina Burn Center in north-west Iran.Methods: This prospective study examined adult patients aged 16–65 years with unintentional burns. The PTSD Checklist was used to screen for PTSD.Results: Flame burns constituted 49.4% of all burns. Mean PTSD score was 23.8 ± 14.7 early in the hospitalization period and increased to 24.2 ± 14.3, 3 months after the burn injury. Twenty percent of victims 2 weeks into treatment had a positive PTSD screening test, and this figure increased to 31.5% after 3 months. The likelihood of developing a positive PTSD screening test increased significantly after 3 months (P < 0.01. Using multivariate regression analysis, factors independently predicting PTSD score were found to be age, gender, and percentage of total body surface area burned.Conclusion: PTSD was a problem in the population studied and should be managed appropriately after hospital admission due to burn injury. Male gender, younger age, and higher total body surface area burned may predict a higher PTSD score after burn injury. Keywords: post-traumatic stress disorder, burn injury, predictors, Iran

  9. Paediatric burns anaesthesia: the things that make a difference

    African Journals Online (AJOL)

    2014-10-21

    Oct 21, 2014 ... the presence of inhalational injury, and the rapidity of wound closure and burn ... experience. At a later stage, reconstructive and plastic surgery .... Appearance. Healing. Superficial: Epidermis. Momentary exposure. • Sunburn.

  10. The year in burns 2008.

    Science.gov (United States)

    Wolf, Steven E

    2009-12-01

    For 2008, approximately 1200 original burn research articles were published in scientific journals using the English language. This article reviews those with the most impact on burn treatment according to the Editor of one of the major journals (Burns). As in the previous year's review, articles were divided into the following topic areas: epidemiology, wound characterisation, critical care physiology, inhalation injury, infection, metabolism and nutrition, psychological considerations, pain management, rehabilitation, and burn reconstruction. Each selected article is mentioned briefly with editorial comment.

  11. TIRES, OPEN BURNING

    Science.gov (United States)

    The chapter describes available information on the health effects from open burning of rubber tires. It concentrates on the three known sources of detailed measurements: (1) a small-scale emissions characterization study performed by the U.S. EPA in a facility designed to simulat...

  12. Chemical burn or reaction

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000059.htm Chemical burn or reaction To use the sharing features on this page, please enable JavaScript. Chemicals that touch skin can lead to a reaction on the skin, throughout the body, or both. ...

  13. PLASTIC SURGERY AND BURNS

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    Objective Endotoxin as the inciting agentof cytokines and other mediators, whose highlevel expression correlates with the septicshock and MOF, has been the one of leadingcauses of death in ICU. Methods For treatingsepsis and MOF caused by endotoxin, the anti-lipid A of LPS antibody was used. 19 burned

  14. Progress Report for Activities of the U. S. Burning Plasma Organization

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, James W

    2009-04-07

    This report describes the activities of the past year of the U. S. Burning Plasma Organization (USBPO), a national organization of scientists involved in researching the properties of magnetically confined burning fusion plasmas. Its main activities are the coordination, facilitation, and promotion of research activities in the U. S. fusion energy sciences program relevant to burning plasma science and, specifically, of preparations for U. S. participation in the international ITER experiment. Specifically, the USBPO mission is to advance the scientific understanding of burning plasmas and to ensure the greatest benefit from a burning plasma experiment by coordinating relevant U. S. fusion research with broad community participation.

  15. Modern management of paediatric burns

    African Journals Online (AJOL)

    2010-03-01

    Mar 1, 2010 ... Jackson's. 3-dimensional burn wound model describes 3 zones: • a central zone ... the burn.7 Care must be taken not to induce hypothermia in larger burns – especially in .... Fluid therapy thereafter consists of 2 components ...

  16. Burn epidemiology and cost of medication in paediatric burn patients.

    Science.gov (United States)

    Koç, Zeliha; Sağlam, Zeynep

    2012-09-01

    Burns are common injuries that cause problems to societies throughout the world. In order to reduce the cost of burn treatment in children, it is extremely important to determine the burn epidemiology and the cost of medicines used in burn treatment. The present study used a retrospective design, with data collected from medical records of 140 paediatric patients admitted to a burn centre between 1 January 2009 and 31 December 2009. Medical records were examined to determine burn epidemiology, medication administered, dosage, and duration of use. Descriptive statistical analysis was completed for all variables; chi-square was used to examine the relationship between certain variables. It was found that 62.7% of paediatric burns occur in the kitchen, with 70.7% involving boiling water; 55.7% of cases resulted in third-degree burns, 19.3% required grafting, and mean duration of hospital stay was 27.5 ± 1.2 days. Medication costs varied between $1.38 US dollars (USD) and $14,159.09, total drug cost was $46,148.03 and average cost per patient was $329.63. In this study, the medication cost for burn patients was found to be relatively high, with antibiotics comprising the vast majority of medication expenditure. Most paediatric burns are preventable, so it is vital to educate families about potential household hazards that can be addressed to reduce the risk of a burn. Programmes are also recommended to reduce costs and the inappropriate prescribing of medication.

  17. First ionization potential of the heaviest actinide lawrencium, element 103

    Science.gov (United States)

    Sato, Tetsuya K.; Asai, Masato; Borschevsky, Anastasia; Stora, Thierry; Sato, Nozomi; Kaneya, Yusuke; Tsukada, Kazuaki; Düllmann, Christoph E.; Eberhardt, Klaus; Eliav, Ephraim; Ichikawa, Shinichi; Kaldor, Uzi; Kratz, Jens V.; Miyashita, Sunao; Nagame, Yuichiro; Ooe, Kazuhiro; Osa, Akihiko; Renisch, Dennis; Runke, Jörg; Schädel, Matthias; Thörle-Pospiech, Petra; Toyoshima, Atsushi; Trautmann, Norbert

    2016-12-01

    The first ionization potential (IP1) of element 103, lawrencium (Lr), has been successfully determined for the first time by using a newly developed method based on a surface ionization process. The measured IP1 value is 4.963 eV. This value is the smallest among those of actinide elements and is in excellent agreement with the value of 4.963(15) eV predicted by state-of-the-art relativistic calculations also performed in this work. Our results strongly support that the Lr atom has an electronic configuration of [Rn]7s25f147p, which is influenced by strong relativistic effects. The present work provides a reliable benchmark for theoretical calculations and also opens the way for studies on atomic properties of heavy elements with atomic number Z > 100. Moreover, the present achievement has triggered a controversy on the position of lutetium (Lu) and Lr in the Periodic Table of Elements.

  18. Chemistry of tetravalent actinides phosphates. The thorium phosphate-diphosphate as immobilisation matrix of actinides; Chimie des phosphates d'actinides tetravalents. Le phosphate-diphosphate de thorium en tant que matrice d'imobilisation des actinides

    Energy Technology Data Exchange (ETDEWEB)

    Dacheux, N

    2002-07-01

    The author presents in this document its scientific works from 1992 to 2001, in order to obtain the enabling to manage scientific and chemical researches at the university Paris Sud Orsay. The first part gives an abstract of the thesis on the characterizations, lixiviation and synthesis of uranium and thorium based phosphate matrix in the framework of the search for a ceramic material usable in the radioactive waste storage. The second part presents briefly the researches realized at the CEA, devoted to a reliable, independent and accurate measure of some isotopes activity. The last part presents the abstracts of researches activities from 1996 to 2001 on the tetravalent actinides phosphates chemistry, the sintering of PDT and solid solutions of PDTU and the kinetic and thermodynamical studies of the PDT dissolution. Many references and some publication in full text are provided. (A.L.B.)

  19. Aqueous waste management for minor actinides and lanthanides separation process

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, P.; Boyer, S.; Sans, D

    2004-07-01

    The French strategy of high level radioactive aqueous waste management is an incorporation in glassy fission products containers. Therefore, nitric acid soluble organic reagents needed for minor actinides and lanthanides selective separation from fission product solutions have to be sufficiently removed to reach carbon concentrations compatible with calcinator working. Thus, the ability of reagents to be oxidized under concentration conditions with or without denitration becomes a criteria of selection and have been studied. Further, if not working, other operations like hot hydrogen peroxide oxidation, catalyzed or not, are investigated. Reagents involved in this work are mainly complexing products (N-(2-Hydroxyethyl) Ethylene-diamine-tri-acetic Acid), pH keeping reagents (carboxylic acids like citric, glycolic, tartaric and lactic acid) and alkaline species (Tetramethylammonium hydroxide). Behaviour of acetic acid, which is often the main degradation product, has also been observed. In all cases, reaction products are characterized. (authors)

  20. Influence of FIMA burnup on actinides concentrations in PWR reactors

    Directory of Open Access Journals (Sweden)

    Oettingen Mikołaj

    2016-01-01

    Full Text Available In the paper we present the study on the dependence of actinides concentrations in the spent nuclear fuel on FIMA burnup. The concentrations of uranium, plutonium, americium and curium isotopes obtained in numerical simulation are compared with the result of the post irradiation assay of two spent fuel samples. The samples were cut from the fuel rod irradiated during two reactor cycles in the Japanese Ohi-2 Pressurized Water Reactor. The performed comparative analysis assesses the reliability of the developed numerical set-up, especially in terms of the system normalization to the measured FIMA burnup. The numerical simulations were preformed using the burnup and radiation transport mode of the Monte Carlo Continuous Energy Burnup Code – MCB, developed at the Department of Nuclear Energy, Faculty of Energy and Fuels of AGH University of Science and Technology.