WorldWideScience

Sample records for acting opioid-receptor antagonist

  1. Peripherally acting μ-opioid receptor antagonists as treatment options for constipation in noncancer pain patients on chronic opioid therapy

    Science.gov (United States)

    Pergolizzi, Joseph V; Raffa, Robert B; Pappagallo, Marco; Fleischer, Charles; Pergolizzi, Joseph; Zampogna, Gianpietro; Duval, Elizabeth; Hishmeh, Janan; LeQuang, Jo Ann; Taylor, Robert

    2017-01-01

    Opioid-induced constipation (OIC), a prevalent and distressing side effect of opioid therapy, does not reliably respond to treatment with conventional laxatives. OIC can be a treatment-limiting adverse event. Recent advances in medications with peripherally acting μ-opioid receptor antagonists, such as methylnaltrexone, naloxegol, and alvimopan, hold promise for treating OIC and thus extending the benefits of opioid analgesia to more chronic pain patients. Peripherally acting μ-opioid receptor antagonists have been clinically tested to improve bowel symptoms without compromise to pain relief, although there are associated side effects, including abdominal pain. Other treatment options include fixed-dose combination products of oxycodone analgesic together with naloxone. PMID:28176913

  2. AM-251 and rimonabant act as direct antagonists at mu-opioid receptors: implications for opioid/cannabinoid interaction studies.

    Science.gov (United States)

    Seely, Kathryn A; Brents, Lisa K; Franks, Lirit N; Rajasekaran, Maheswari; Zimmerman, Sarah M; Fantegrossi, William E; Prather, Paul L

    2012-10-01

    Mu-opioid and CB1-cannabinoid agonists produce analgesia; however, adverse effects limit use of drugs in both classes. Additive or synergistic effects resulting from concurrent administration of low doses of mu- and CB1-agonists may produce analgesia with fewer side effects. Synergism potentially results from interaction between mu-opioid receptors (MORs) and CB1 receptors (CB1Rs). AM-251 and rimonabant are CB1R antagonist/inverse agonists employed to validate opioid-cannabinoid interactions, presumed to act selectively at CB1Rs. Therefore, the potential for direct action of these antagonists at MORs is rarely considered. This study determined if AM-251 and/or rimonabant directly bind and modulate the function of MORs. Surprisingly, AM-251 and rimonabant, but not a third CB1R inverse agonist AM-281, bind with mid-nanomolar affinity to human MORs with a rank order of affinity (K(i)) of AM-251 (251 nM) > rimonabant (652 nM) > AM281 (2135 nM). AM-251 and rimonabant, but not AM-281, also competitively antagonize morphine induced G-protein activation in CHO-hMOR cell homogenates (K(b) = 719 or 1310 nM, respectively). AM-251 and rimonabant block morphine inhibition of cAMP production, while only AM-251 elicits cAMP rebound in CHO-hMOR cells chronically exposed to morphine. AM-251 and rimonabant (10 mg/kg) attenuate morphine analgesia, whereas the same dose of AM-281 produces little effect. Therefore, in addition to high CB1R affinity, AM-251 and rimonabant bind to MORs with mid-nanomolar affinity and at higher doses may affect morphine analgesia via direct antagonism at MORs. Such CB1-independent of these antagonists effects may contribute to reported inconsistencies when CB1/MOR interactions are examined via pharmacological methods in CB1-knockout versus wild-type mice.

  3. Two short-acting kappa opioid receptor antagonists (zyklophin and LY2444296) exhibited different behavioral effects from the long-acting antagonist norbinaltorphimine in mouse anxiety tests.

    Science.gov (United States)

    Huang, Peng; Yakovleva, Tatyana; Aldrich, Jane V; Tunis, Julia; Parry, Christopher; Liu-Chen, Lee-Yuan

    2016-02-26

    Prototypical long-acting kappa opioid receptor (KOPR) antagonists [e.g., norbinaltorphimine (norBNI)] have been reported to exert anxiolytic-like effects in several commonly used anxiety tests in rodents including the novelty-induced hypophagia (NIH) and elevated plus maze (EPM) tests. It remains unknown if the short-acting KOPR antagonists (e.g., zyklophin and LY2444296) have similar effects. In this study effects of zyklophin and LY2444296 (s.c.) were investigated in the NIH and EPM tests in mice 1h post-injection and compared with norBNI (i.p.) 48h post-administration. In the NIH test, zyklophin at 3 and 1mg/kg, but not 0.3mg/kg, or LY2444296 at 30mg/kg decreased the latency of palatable food consumption in novel cages, but had no effect in training cages, similar to norBNI (10mg/kg). Zyklophin at 3 or 1mg/kg increased or had a trend of increasing the amount of palatable food consumption in novel cages, with no effects in training cages, further indicating its anxiolytic-like effect, but norBNI (10mg/kg) and LY2444296 (30mg/kg) did not. In the EPM test, norBNI (10mg/kg) increased open arm time and % open arm entries or time, but zyklophin at all three doses and LY2444296 (30mg/kg) had no effects. In addition, zyklophin at 3mg/kg increased numbers of close and total arm entries on EPM, suggesting increased activity; however, norBNI and LY2444296 had no effects on close and total arm entries. Thus, all three KOPR antagonists had anxiolytic-like effects in the NIH test. However, only the long-acting one (norBNI), but not the short-acting ones (zyklophin and LY2444296), demonstrated anti-anxiety like effects in the EPM test. It remains to be investigated if the differences are due to the differences in their durations of action and/or pharmacodynamic properties.

  4. Antagonists of the kappa opioid receptor.

    Science.gov (United States)

    Urbano, Mariangela; Guerrero, Miguel; Rosen, Hugh; Roberts, Edward

    2014-05-01

    The research community has increasingly focused on the development of OPRK antagonists as pharmacotherapies for the treatment of depression, anxiety, addictive disorders and other psychiatric conditions produced or exacerbated by stress. Short-acting OPRK antagonists have been recently developed as a potential improvement over long-acting prototypic ligands including nor-BNI and JDTic. Remarkably the short-acting LY2456302 is undergoing phase II clinical trials for the augmentation of the antidepressant therapy in treatment-resistant depression. This Letter reviews relevant chemical and pharmacological advances in the identification and development of OPRK antagonists.

  5. μ Opioid receptor: novel antagonists and structural modeling

    Science.gov (United States)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  6. Species differences in the effects of the κ-opioid receptor antagonist zyklophin.

    Science.gov (United States)

    Sirohi, Sunil; Aldrich, Jane V; Walker, Brendan M

    2016-03-01

    We have shown that dysregulation of the dynorphin/kappa-opioid receptor (DYN/KOR) system contributes to escalated alcohol self-administration in alcohol dependence and that KOR antagonists with extended durations of action selectively reduce escalated alcohol consumption in alcohol-dependent animals. As KOR antagonism has gained widespread attention as a potential therapeutic target to treat alcoholism and multiple neuropsychiatric disorders, we tested the effect of zyklophin (a short-acting KOR antagonist) on escalated alcohol self-administration in rats made alcohol-dependent using intermittent alcohol vapor exposure. Following dependence induction, zyklophin was infused centrally prior to alcohol self-administration sessions and locomotor activity tests during acute withdrawal. Zyklophin did not impact alcohol self-administration or locomotor activity in either exposure condition. To investigate the neurobiological basis of this atypical effect for a KOR antagonist, we utilized a κ-, μ-, and δ-opioid receptor agonist-stimulated GTPyS coupling assay to examine the opioid receptor specificity of zyklophin in the rat brain and mouse brain. In rats, zyklophin did not affect U50488-, DAMGO-, or DADLE-stimulated GTPyS coupling, whereas the prototypical KOR antagonist nor-binaltorphimine (norBNI) attenuated U50488-induced stimulation in the rat brain tissue at concentrations that did not impact μ- and δ-receptor function. To reconcile the discrepancy between the present rat data and published mouse data, comparable GTPyS assays were conducted using mouse brain tissue; zyklophin effects were consistent with KOR antagonism in mice. Moreover, at higher concentrations, zyklophin exhibited agonist properties in rat and mouse brains. These results identify species differences in zyklophin efficacy that, given the rising interest in the development of short-duration KOR antagonists, should provide valuable information for therapeutic development efforts.

  7. [N-allyl-Dmt1]-endomorphins are micro-opioid receptor antagonists lacking inverse agonist properties.

    Science.gov (United States)

    Marczak, Ewa D; Jinsmaa, Yunden; Li, Tingyou; Bryant, Sharon D; Tsuda, Yuko; Okada, Yoshio; Lazarus, Lawrence H

    2007-10-01

    [N-allyl-Dmt1]-endomorphin-1 and -2 ([N-allyl-Dmt1]-EM-1 and -2) are new selective micro-opioid receptor antagonists obtained by N-alkylation with an allyl group on the amino terminus of 2',6'-dimethyl-L-tyrosine (Dmt) derivatives. To further characterize properties of these compounds, their intrinsic activities were assessed by functional guanosine 5'-O-(3-[35S]thiotriphosphate) binding assays and forskolin-stimulated cyclic AMP accumulation in cell membranes obtained from vehicle, morphine, and ethanol-treated SK-N-SH cells and brain membranes isolated from naive and morphine-dependent mice; their mode of action was compared with naloxone or naltrexone, which both are standard nonspecific opioid-receptor antagonists. [N-allyl-Dmt1]-EM-1 and -2 were neutral antagonists under all of the experimental conditions examined, in contrast to naloxone and naltrexone, which behave as neutral antagonists only in membranes from vehicle-treated cells and mice but act as inverse agonists in membranes from morphine- and ethanol-treated cells as well as morphine-treated mice. Both endomorphin analogs inhibited the naloxone- and naltrexone-elicited withdrawal syndromes from acute morphine dependence in mice. This suggests their potential therapeutic application in the treatment of drug addiction and alcohol abuse without the adverse effects observed with inverse agonist alkaloid-derived compounds that produce severe withdrawal symptoms.

  8. Prevention of Stimulant Induced Euphoria with an Opioid Receptor Antagonist

    Science.gov (United States)

    2015-10-01

    military at large. Section VI: References 1. Weiss, G. and L. Hechtman, Hyperactive children grown up, in ADHD in children, adolescents , and adults...Young Adults With ADHD. J Am Acad Child Adolesc Psychiatry. 50(6): p. 543- 53. 12. Zhu, J., et al., Methylphenidate and mu opioid receptor interactions...1770401 7/29/13 Seasonal Allergies Internal Mild Expected Unrelated Pharmacologic N/A 1770901 7/29/13 Headache Internal Mild Expected Unrelated

  9. Opioid receptor antagonists increase [Ca2+]i in rat arterial smooth muscle cells in hemorrhagic shock

    Institute of Scientific and Technical Information of China (English)

    Li KAI; Zhong-feng WANG; Yu-liang SHI; Liang-ming LIU; De-yao HU

    2004-01-01

    AIM: To examine the effects of opioid receptor antagonists and norepinephrine on intracellular free Ca2+ concentration ([Ca2+]i) in mesenteric arterial (MA) smooth muscle cells (SMC) isolated from normal and hemorrhagic shocked rats in the vascular hyporesponse stage. METHODS: The rat model of hemorrhagic shock was made by withdrawing blood to decrease the artery mean blood pressure to 3.73-4.26 kPa and keeping at the level for 3 h.[Ca2+]i of vascular smooth muscle cells (VSMC) were detected by the laser scan confocal microscopy. RESULTS:In the hyporesponse VMSC of rats in hemorrhagic shock, selective δ-, κ-, and μ-opioid receptor antagonists (naltrindole, nor-binaltorphimine, and β-funaltrexamine, 100 nmol/L) as well as norepinephrine 5 μmol/L significantly increased [Ca2+]i by 47 %±13 %, 37 %±14 %, 33 %±10 %, and 54 %±17 %, respectively, although their effects were lower than those in the normal rat cells (the increased values were 148 %±54 %, 130 %±44 %, 63 %±17 %and 110 %±38 %, respectively); and the norepinephrine-induced increase in [Ca2+]i was further augmented by three δ-, κ-, and μ-opioid receptor antagonists (50 nmol/L, respectively) application (from 52 %± 16 % to 99 %±29 %,146 %±54 % and 137 %±47 %, respectively). CONCLUSION: The disorder of [Ca2+]i regulation induced by hemorrhagic shock was mediated by opioid receptor and α-adrenoceptor, which may be partly responsible for the vascular hyporesponse, and the opioid receptor antagonists improved the response of resistance arteries to vascular stimulants in decompensatory stage of hemorrhagic shock.

  10. Crystal structure of the[mu]-opioid receptor bound to a morphinan antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Mathiesen, Jesper M.; Sunahara, Roger K.; Pardo, Leonardo; Weis, William I.; Kobilka, Brian K.; Granier, Sébastien (Michigan-Med); (Stanford-MED); (UAB, Spain)

    2012-06-27

    Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled {mu}-opioid receptor ({mu}-OR) in the central nervous system. Here we describe the 2.8 {angstrom} crystal structure of the mouse {mu}-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the {mu}-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.

  11. Effect of GNTI,a kappa opioid receptor antagonist, on MK-801-induced hyperlocomotion and stereotypy in mice

    Institute of Scientific and Technical Information of China (English)

    Chun-ting QI; Hong ZOU; Chen-hao ZHANG; Qing-lian XIE; Mei-lei JIN; Lei YU

    2006-01-01

    Aim:To examine the effect of GNTI[5'-guanidinyl-17-(cyclopropylmethyl)-6,7-dehydro-4,-5α-epoxy-3-14-dihydroxy-6,7-2',3'-indolomorphinan],a selective antagonist for the kappa opioid receptor,in the MK-801 (dizocilpine maleate)-induced behavioral model of psychosis in schizophrenia as a way to explore the involvement of the kappa opioid receptor in modulating psychotic symptoms of schizophrenia.Methods:Two doses 0f MK-801 (0.3 mg/kg and 0.6 mg/kg) were administered by systemic injection in mice to induce psychosis-like behavior as a rodent schizophrenia model, preceded by an injection of different doses of GNTI. Both locomotion and stereotypy were measured as the behavioral endpoints for quantitative analysis.Results:GNTI inhibited MK-801-induced hyperlocomotion and stereotypy.In particular,GNTI showed differential modulation of stereotypy induced by 0.3 mg/kg VS 0.6 mg/kg MK-801.Conclusion:Antagonism of kappa opioid receptors attenuates MK-801-induced behavior,suggesting a potential involvement of the kappa opioid receptor in psychosis-like symptoms of schizophrenia.GNTI aDpears to be a useful pharmacological tool to explore the kappa opioid receptor function in vivo.

  12. The crystal structure of a bimorphinan with highly selective kappa opioid receptor antagonist activity

    Science.gov (United States)

    Urbańczyk-Lipkowska, Zofia; Etter, Margaret C.; Lipkowski, Andrzej W.; Portoghese, Philip S.

    1987-07-01

    The crystal structure of the dihydrobromide heptahydrate of nor-binaltorphimine (17, 17'-bis(cyclopropylmethyl)-6,6',7,7'-tetrahydro-4,5α: 4',5'α-diepoxy-6,6'-imino[7,7' bimorphinan]-3,3',14,14'-tetraol)is presented. This structure is the first reported structure of a rigid bivalent opioid ligand. Two morphinan pharmacophores are connected by a rigid spacer, the pyrrole ring. The nor-binaltorphimine structure itself shows unique, high selectivity as a kappa opioid receptor antagonist. Crystal data: P3 2, Z = 3, a = b = 20.223 (4), c = 9.541(7) Å, α = β = 90°, γ = 120°; R = 0.079 (1765 reflections, Fobs > 1σ( F)).

  13. Differential involvement of the opioid receptor antagonist naloxone in motivational and hedonic aspects of reward.

    Science.gov (United States)

    Schneider, Miriam; Heise, Verena; Spanagel, Rainer

    2010-04-02

    In the present study dose-dependent effects of the opioid receptor antagonist naloxone were investigated on the rewarding effects of sweetened condensed milk (SCM) in four behavioral paradigms addressing hedonic, consummatory as well as motivational aspects of a reward: odour-conditioned pleasure attenuation of the acoustic startle response (PAS), conditioned place preference (CPP), voluntary consumption in a limited access paradigm, as well as break point determination in a progressive ratio (PR) task. A dose-dependent reduction in reward-related behavior was observed in all paradigms, with exception of the break point in the PR task, which was not affected by naloxone at all. CPP for SCM was only affected by the highest dose of naloxone. The present results indicate that naloxone is more effective in suppressing the hedonic than motivational aspects of reward, further supporting the involvement of the endogenous opioid system in the mediation of hedonic properties of food reward.

  14. Potent Dmt-Tic pharmacophoric delta- and mu-opioid receptor antagonists.

    Science.gov (United States)

    Li, Tingyou; Fujita, Yoshio; Shiotani, Kimitaka; Miyazaki, Anna; Tsuda, Yuko; Ambo, Akihiro; Sasaki, Yusuke; Jinsmaa, Yunden; Marczak, Ewa; Bryant, Sharon D; Salvadori, Severo; Lazarus, Lawrence H; Okada, Yoshio

    2005-12-15

    A series of dimeric Dmt-Tic (2',6'-dimethyl-L-tyrosyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) analogues (8-14, 18-22) were covalently linked through diaminoalkane and symmetric or asymmetric 3,6-diaminoalkyl-2(1H)-pyrazinone moieties. All the compounds exhibited high affinity for both delta-opioid receptors [Ki(delta) = 0.06-1.53 nM] and mu-opioid receptors [Ki(mu) = 1.37-5.72 nM], resulting in moderate delta-receptor selectivity [Ki(mu)/Ki(delta) = 3-46]. Regardless of the type of linker between the Dmt-Tic pharmacophores, delta-opioid-mediated antagonism was extraordinarily high in all analogues (pA2 = 10.42-11.28), while in vitro agonism (MVD and GPI bioassays) was essentially absent (ca. 3 to >10 microM). While an unmodified N-terminus (9, 13, 18) revealed weak mu-opioid antagonism (pA2 = 6.78-6.99), N,N'-dimethylation (21, 22), which negatively impacts on mu-opioid-associated agonism (Balboni et al., Bioorg. Med. Chem. 2003, 11, 5435-5441), markedly enhanced mu-opioid antagonism (pA2 = 8.34 and 7.71 for 21 and 22, respectively) without affecting delta-opioid activity. These data are the first evidence that a single dimeric opioid ligand containing the Dmt-Tic pharmacophore exhibits highly potent delta- and mu-opioid antagonist activities.

  15. Kappa opioid receptor antagonist and N-methyl-D- aspartate receptor antagonist affect dynorphin- induced spinal cord electrophysiologic impairment

    Institute of Scientific and Technical Information of China (English)

    Yu Chen; Liangbi Xiang; Jun Liu; Dapeng Zhou; Hailong Yu; Qi Wang; Wenfeng Han; Weijian Ren

    2012-01-01

    The latencies of motor- and somatosensory-evoked potentials were prolonged to different degrees, and wave amplitude was obviously decreased, after injection of dynorphin into the rat subarachnoid cavity.The wave amplitude and latencies of motor- and somatosensory-evoked potentials were significantly recovered at 7 and 14 days after combined injection of dynorphin and either the kappa opioid receptor antagonist nor-binaltorphimine or the N-methyl-D-aspartate receptor antagonist MK-801.The wave amplitude and latency were similar in rats after combined injection of dynorphin and nor-binaltorphimine or MK-801.These results suggest that intrathecal injection of dynorphin causes damage to spinal cord function.Prevention of N-methyl-D-aspartate receptor or kappa receptor activation lessened the injury to spinal cord function induced by dynorphin.

  16. Synthesis of [{sup 3}]DIPPA: a potent irreversible antagonist selective for the {kappa} opioid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Anchih; Portoghese, P.S. [Minnesota Univ., Minneapolis, MN (United States). College of Pharmacy; Trometer, J.D. [E.I. Du Pont de Nemours and Co., Inc., Boston, MA (United States)

    1995-06-01

    2-(3,4-Dichlorophenyl)-N-methyl-N-[(1S)-1-(3-isothiocyanatophe nyl)-2-(1-pyrrolidinyl)ethyl]acetamide (1,DIPPA) has been previously reported to be an opioid receptor affinity label that produces selective and long-lasting {kappa} opioid receptor antagonism in mice. High specific activity [{sup 3}H]DIPPA (39.7 Ci/mmol) was prepared by bromination and catalytic tritiation of the amino precursor of DIPPA followed by conversion to the isothiocyanate with thiophosgene. (Author).

  17. Opioid Receptors.

    Science.gov (United States)

    Stein, Christoph

    2016-01-01

    Opioids are the oldest and most potent drugs for the treatment of severe pain. Their clinical application is undisputed in acute (e.g., postoperative) and cancer pain, but their long-term use in chronic pain has met increasing scrutiny. This article reviews mechanisms underlying opioid analgesia and other opioid actions. It discusses the structure, function, and plasticity of opioid receptors; the central and peripheral sites of analgesic actions and side effects; endogenous and exogenous opioid receptor ligands; and conventional and novel opioid compounds. Challenging clinical situations, such as the tension between chronic pain and addiction, are also illustrated.

  18. From the potent and selective mu opioid receptor agonist H-Dmt-d-Arg-Phe-Lys-NH(2) to the potent delta antagonist H-Dmt-Tic-Phe-Lys(Z)-OH.

    Science.gov (United States)

    Balboni, Gianfranco; Cocco, Maria Teresa; Salvadori, Severo; Romagnoli, Romeo; Sasaki, Yusuke; Okada, Yoshio; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H

    2005-08-25

    H-Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1)]DALDA) binds with high affinity and selectivity to the mu opioid receptor and is a potent and long-acting analgesic. Substitution of d-Arg in position 2 with Tic and masking of the lysine amine side chain by Z protection and of the C-terminal carboxylic function instead of the amide function transform a potent and selective mu agonist into a potent and selective delta antagonist H-Dmt-Tic-Phe-Lys(Z)-OH. Such a delta antagonist could be used as a pharmacological tool.

  19. Synthesis of a potent and selective (18)F-labeled delta-opioid receptor antagonist derived from the Dmt-Tic pharmacophore for positron emission tomography imaging.

    Science.gov (United States)

    Ryu, Eun Kyoung; Wu, Zhanhong; Chen, Kai; Lazarus, Lawrence H; Marczak, Ewa D; Sasaki, Yusuke; Ambo, Akihiro; Salvadori, Severo; Ren, Chuancheng; Zhao, Heng; Balboni, Gianfranco; Chen, Xiaoyuan

    2008-03-27

    Identification and pharmacological characterization of two new selective delta-opioid receptor antagonists, derived from the Dmt-Tic pharmacophore, of potential utility in positron emission tomography (PET) imaging are described. On the basis of its high delta selectivity, H-Dmt-Tic--Lys(Z)-OH (reference compound 1) is a useful starting point for the synthesis of (18)F-labeled compounds prepared by the coupling of N-succinimidyl 4-[ (18)F]fluorobenzoate ([(18)F]SFB) with Boc-Dmt-Tic--Lys(Z)-OH under slightly basic conditions at 37 degrees C for 15 min, deprotection with TFA, and HPLC purification. The total synthesis time was 120 min, and the decay-corrected radiochemical yield of [(18)F]- 1 was about 25-30% ( n = 5) starting from [(18)F]SFB ( n = 5) with an effective specific activity about 46 GBq/micromol. In vitro autoradiography studies showed prominent uptake of [ (18)F]- 1 in the striatum and cortex with significant blocking by 1 and UFP-501 (selective delta-opioid receptor antagonist), suggesting high specific binding of [(18)F]- 1 to delta-opioid receptors. Noninvasive microPET imaging studies revealed the absence of [(18)F]- 1 in rat brain, since it fails to cross the blood-brain barrier. This study demonstrates the suitability of [ (18)F]- 1 for imaging peripheral delta-opioid receptors.

  20. Selective κ opioid antagonists nor-BNI, GNTI and JDTic have low affinities for non-opioid receptors and transporters.

    Directory of Open Access Journals (Sweden)

    Thomas A Munro

    Full Text Available BACKGROUND: Nor-BNI, GNTI and JDTic induce selective κ opioid antagonism that is delayed and extremely prolonged, but some other effects are of rapid onset and brief duration. The transient effects of these compounds differ, suggesting that some of them may be mediated by other targets. RESULTS: In binding assays, the three antagonists showed no detectable affinity (K(i≥10 µM for most non-opioid receptors and transporters (26 of 43 tested. There was no non-opioid target for which all three compounds shared detectable affinity, or for which any two shared sub-micromolar affinity. All three compounds showed low nanomolar affinity for κ opioid receptors, with moderate selectivity over μ and δ (3 to 44-fold. Nor-BNI bound weakly to the α(2C-adrenoceptor (K(i = 630 nM. GNTI enhanced calcium mobilization by noradrenaline at the α(1A-adrenoceptor (EC₅₀ = 41 nM, but did not activate the receptor, displace radioligands, or enhance PI hydrolysis. This suggests that it is a functionally-selective allosteric enhancer. GNTI was also a weak M₁ receptor antagonist (K(B = 3.7 µM. JDTic bound to the noradrenaline transporter (K(i = 54 nM, but only weakly inhibited transport (IC₅₀ = 1.1 µM. JDTic also bound to the opioid-like receptor NOP (K(i = 12 nM, but gave little antagonism even at 30 µM. All three compounds exhibited rapid permeation and active efflux across Caco-2 cell monolayers. CONCLUSIONS: Across 43 non-opioid CNS targets, only GNTI exhibited a potent functional effect (allosteric enhancement of α(1A-adrenoceptors. This may contribute to GNTI's severe transient effects. Plasma concentrations of nor-BNI and GNTI may be high enough to affect some peripheral non-opioid targets. Nonetheless, κ opioid antagonism persists for weeks or months after these transient effects dissipate. With an adequate pre-administration interval, our results therefore strengthen the evidence that nor-BNI, GNTI and JDTic are highly

  1. Racemic Salsolinol and its Enantiomers Act as Agonists of the μ-Opioid Receptor by Activating the Gi Protein-Adenylate Cyclase Pathway

    Science.gov (United States)

    Berríos-Cárcamo, Pablo; Quintanilla, María E.; Herrera-Marschitz, Mario; Vasiliou, Vasilis; Zapata-Torres, Gerald; Rivera-Meza, Mario

    2017-01-01

    Background: Several studies have shown that the ethanol-derived metabolite salsolinol (SAL) can activate the mesolimbic system, suggesting that SAL is the active molecule mediating the rewarding effects of ethanol. In vitro and in vivo studies suggest that SAL exerts its action on neuron excitability through a mechanism involving opioid neurotransmission. However, there is no direct pharmacologic evidence showing that SAL activates opioid receptors. Methods: The ability of racemic (R/S)-SAL, and its stereoisomers (R)-SAL and (S)-SAL, to activate the μ-opioid receptor was tested in cell-based (light-emitting) receptor assays. To further characterizing the interaction of SAL stereoisomers with the μ-opioid receptor, a molecular docking study was performed using the crystal structure of the μ-opioid receptor. Results: This study shows that SAL activates the μ-opioid receptor by the classical G protein-adenylate cyclase pathway with an half-maximal effective concentration (EC50) of 2 × 10−5 M. The agonist action of SAL was fully blocked by the μ-opioid antagonist naltrexone. The EC50 for the purified stereoisomers (R)-SAL and (S)-SAL were 6 × 10−4 M and 9 × 10−6 M respectively. It was found that the action of racemic SAL on the μ-opioid receptor did not promote the recruitment of β-arrestin. Molecular docking studies showed that the interaction of (R)- and (S)-SAL with the μ-opioid receptor is similar to that predicted for the agonist morphine. Conclusions: It is shown that (R)-SAL and (S)-SAL are agonists of the μ-opioid receptor. (S)-SAL is a more potent agonist than the (R)-SAL stereoisomer. In silico analysis predicts a morphine-like interaction between (R)- and (S)-SAL with the μ-opioid receptor. These results suggest that an opioid action of SAL or its enantiomers is involved in the rewarding effects of ethanol. PMID:28167903

  2. Kinetic modeling of 11C-LY2795050, a novel antagonist radiotracer for PET imaging of the kappa opioid receptor in humans

    OpenAIRE

    Naganawa, Mika; Zheng, Ming-Qiang; Nabulsi, Nabeel; Tomasi, Giampaolo; Henry, Shannan; Lin, Shu-Fei; Ropchan, Jim; Labaree, David; Tauscher, Johannes; Neumeister, Alexander; Carson, Richard E.; Huang, Yiyun

    2014-01-01

    11C-LY2795050 is a novel kappa opioid receptor (KOR) antagonist tracer for positron emission tomography (PET) imaging. The purpose of this first-in-human study was to determine the optimal kinetic model for analysis of 11C-LY2795050 imaging data. Sixteen subjects underwent baseline scans and blocking scans after oral naltrexone. Compartmental modeling and multilinear analysis-1 (MA1) were applied using the arterial input functions. Two-tissue compartment model and MA1 were found to be the bes...

  3. The automated radiosynthesis and purification of the opioid receptor antagonist, [6-O-methyl-11C]diprenorphine on the GE TRACERlab FXFE radiochemistry module.

    Science.gov (United States)

    Fairclough, Michael; Prenant, Christian; Brown, Gavin; McMahon, Adam; Lowe, Jonathan; Jones, Anthony

    2014-05-15

    [6-O-Methyl-(11)C]diprenorphine ([(11)C]diprenorphine) is a positron emission tomography ligand used to probe the endogenous opioid system in vivo. Diprenorphine acts as an antagonist at all of the opioid receptor subtypes, that is, μ (mu), κ (kappa) and δ (delta). The radiosynthesis of [(11)C]diprenorphine using [(11)C]methyl iodide produced via the 'wet' method on a home-built automated radiosynthesis set-up has been described previously. Here, we describe a modified synthetic method to [(11)C]diprenorphine performed using [(11)C]methyl iodide produced via the gas phase method on a GE TRACERlab FXFE radiochemistry module. Also described is the use of [(11)C]methyl triflate as the carbon-11 methylating agent for the [(11)C]diprenorphine syntheses. [(11)C]Diprenorphine was produced to good manufacturing practice standards for use in a clinical setting. In comparison to previously reported [(11)C]diprenorphine radiosyntheisis, the method described herein gives a higher specific activity product which is advantageous for receptor occupancy studies. The radiochemical purity of [(11)C]diprenorphine is similar to what has been reported previously, although the radiochemical yield produced in the method described herein is reduced, an issue that is inherent in the gas phase radiosynthesis of [(11)C]methyl iodide. The yields of [(11)C]diprenorphine are nonetheless sufficient for clinical research applications. Other advantages of the method described herein are an improvement to both reproducibility and reliability of the production as well as simplification of the purification and formulation steps. We suggest that our automated radiochemistry route to [(11)C]diprenorphine should be the method of choice for routine [(11)C]diprenorphine productions for positron emission tomography studies, and the production process could easily be transferred to other radiochemistry modules such as the TRACERlab FX C pro.

  4. Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans

    Science.gov (United States)

    Weber, S C; Beck-Schimmer, B; Kajdi, M-E; Müller, D; Tobler, P N; Quednow, B B

    2016-01-01

    Increased responding to drug-associated stimuli (cue reactivity) and an inability to tolerate delayed gratification (reward impulsivity) have been implicated in the development and maintenance of drug addiction. Whereas data from animal studies suggest that both the dopamine and opioid system are involved in these two reward-related processes, their role in humans is less clear. Moreover, dopaminergic and opioidergic drugs have not been directly compared with regard to these functions, even though a deeper understanding of the underlying mechanisms might inform the development of specific treatments for elevated cue reactivity and reward impulsivity. In a randomized, double-blind, between-subject design we administered the selective dopamine D2/D3 receptor antagonist amisulpride (400 mg, n=41), the unspecific opioid receptor antagonist naltrexone (50 mg, n=40) or placebo (n=40) to healthy humans and measured cue-induced responding with a Pavlovian-instrumental transfer task and reward impulsivity with a delay discounting task. Mood was assessed using a visual analogue scale. Compared with placebo, amisulpride significantly suppressed cue-induced responding and reward impulsivity. The effects of naltrexone were similar, although less pronounced. Both amisulpride and naltrexone decreased average mood ratings compared with placebo. Our results demonstrate that a selective blockade of dopamine D2/D3 receptors reduces cue-induced responding and reward impulsivity in healthy humans. Antagonizing μ-opioid receptors has similar effects for cue-induced responding and to a lesser extent for reward impulsivity. PMID:27378550

  5. Discovery of the first small-molecule opioid pan antagonist with nanomolar affinity at mu, delta, kappa, and nociceptin opioid receptors.

    Science.gov (United States)

    Zaveri, Nurulain T; Journigan, V Blair; Polgar, Willma E

    2015-04-15

    The trans-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine scaffold is a known pharmacophore for mu opioid (MOP), kappa opioid (KOP), and delta opioid (DOP) receptor antagonists; however, it has not been explored in nociceptin opioid (NOP/ORL-1) receptor ligands. We recently found that the selective KOP antagonist JDTic, (3R)-7-hydroxy-N-((1S)-1-{[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-2-methylpropyl)-1,2,3,4-tetrahydro-3-isoquinolinecarboxamide, containing this opioid antagonist pharmacophore, has significant binding affinity at the NOP receptor (Ki 16.67 ± 0.76 nM), with no intrinsic activity in the [(35)S]GTPγS functional assay. Since this is the first ligand containing the trans-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine opioid antagonist pharmacophore to have affinity for the NOP receptor, we explored the structural determinants of its NOP binding affinity. When rational chemical modifications of JDTic were carried out, based on our previously established NOP pharmacophoric structure-activity relationship (SAR) model, most modifications led to a significant decrease in NOP and opioid binding affinity compared to JDTic. Interestingly, however, removal of the 3,4-dimethyl groups of the trans-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine antagonist scaffold of JDTic increased the binding affinity at NOP by 10-fold (Ki 1.75 ± 0.74 nM) while maintaining comparable affinity for KOP, MOP, and DOP receptors (Ki 1.14 ± 0.63, 1.67 ± 0.6, and 19.6 ± 1.3 nM, respectively). In vitro functional efficacy studies using the [(35)S]GTPγS assay showed that this compound AT-076 functions as an antagonist at all four opioid receptors. Detailed characterization of the antagonist activity of AT-076 shows that it has a noncompetitive antagonist profile at the NOP and KOP receptors (insurmountable antagonism), but is a potent competitive antagonist at the MOP and DOP receptors, with Ke values 3-6-fold more potent than those of JDTic. AT-076 is the

  6. Evaluation of the Dmt-Tic pharmacophore: conversion of a potent delta-opioid receptor antagonist into a potent delta agonist and ligands with mixed properties.

    Science.gov (United States)

    Balboni, Gianfranco; Guerrini, Remo; Salvadori, Severo; Bianchi, Clementina; Rizzi, Daniela; Bryant, Sharon D; Lazarus, Lawrence H

    2002-01-31

    Analogues of the 2',6'-dimethyl-L-tyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) pharmacophore were prepared to test the hypothesis that a "spacer" and a third aromatic center in opioid peptides are required to convert a delta-antagonist into ligands with delta-agonist or with mixed delta-antagonist/mu-agonist properties. Potent delta-agonists and bifunctional compounds with high delta- and mu-opioid receptor affinities were obtained by varying the spacer length [none, NH-CH(2), NH-CH(2)-CH(2), Gly-NH-CH(2)] and C-terminal aromatic nucleus [1H-benzimidazole-2-yl, phenyl (Ph) and benzyl groups]. C-terminal modification primarily affected mu-opioid receptor affinities, which increased maximally 1700-fold relative to the prototype delta-antagonist H-Dmt-Tic-NH(2) and differentially modified bioactivity. In the absence of a spacer (1), the analogue exhibited dual delta-agonism (pEC(50), 7.28) and delta-antagonism (pA(2), 7.90). H-Dmt-Tic-NH-CH(2)-1H-benzimidazole-2-yl (Bid) (2) became a highly potent delta-agonist (pEC(50), 9.90), slightly greater than deltorphin C (pEC(50), 9.56), with mu-agonism (pE(50), 7.57), while H-Dmt-Tic-Gly-NH-CH(2)-Bid (4) retained potent delta-antagonism (pA(2), 9.0) but with an order of magnitude less mu-agonism. Similarly, H-Dmt-Tic-Gly-NH-Ph (5) had nearly equivalent high delta-agonism (pEC(50), 8.52) and mu-agonism (pEC(50), 8.59), while H-Dmt-Tic-Gly-NH-CH(2)-Ph (6) whose spacer was longer by a single methylene group exhibited potent delta-antagonism (pA(2), 9.25) and very high mu-agonism (pEC(50), 8.57). These data confirm that the distance between the Dmt-Tic pharmacophore and a third aromatic nucleus is an important criterion in converting Dmt-Tic from a highly potent delta-antagonist into a potent delta-agonist or into ligands with mixed delta- and mu-opioid properties.

  7. Orally administered H-Dmt-Tic-Lys-NH-CH2-Ph (MZ-2), a potent mu/delta-opioid receptor antagonist, regulates obese-related factors in mice.

    Science.gov (United States)

    Marczak, Ewa D; Jinsmaa, Yunden; Myers, Page H; Blankenship, Terry; Wilson, Ralph; Balboni, Gianfranco; Salvadori, Severo; Lazarus, Lawrence H

    2009-08-15

    Orally active dual mu-/delta-opioid receptor antagonist, H-Dmt-Tic-Lys-NH-CH(2)-Ph (MZ-2) was applied to study body weight gain, fat content, bone mineral density, serum insulin, cholesterol and glucose levels in female ob/ob (B6.V-Lep/J homozygous) and lean wild mice with or without voluntary exercise on wheels for three weeks, and during a two week post-treatment period under the same conditions. MZ-2 (10mg/kg/day, p.o.) exhibited the following actions: (1) reduced body weight gain in sedentary obese mice that persisted beyond the treatment period without effect on lean mice; (2) stimulated voluntary running on exercise wheels of both groups of mice; (3) decreased fat content, enhanced bone mineral density (BMD), and decreased serum insulin and glucose levels in obese mice; and (4) MZ-2 (30 microM) increased BMD in human osteoblast cells (MG-63) comparable to naltrexone, while morphine inhibited mineral nodule formation. Thus, MZ-2 has potential application in the clinical management of obesity, insulin and glucose levels, and the amelioration of osteoporosis.

  8. Kinetic modeling of (11)C-LY2795050, a novel antagonist radiotracer for PET imaging of the kappa opioid receptor in humans.

    Science.gov (United States)

    Naganawa, Mika; Zheng, Ming-Qiang; Nabulsi, Nabeel; Tomasi, Giampaolo; Henry, Shannan; Lin, Shu-Fei; Ropchan, Jim; Labaree, David; Tauscher, Johannes; Neumeister, Alexander; Carson, Richard E; Huang, Yiyun

    2014-11-01

    (11)C-LY2795050 is a novel kappa opioid receptor (KOR) antagonist tracer for positron emission tomography (PET) imaging. The purpose of this first-in-human study was to determine the optimal kinetic model for analysis of (11)C-LY2795050 imaging data. Sixteen subjects underwent baseline scans and blocking scans after oral naltrexone. Compartmental modeling and multilinear analysis-1 (MA1) were applied using the arterial input functions. Two-tissue compartment model and MA1 were found to be the best models to provide reliable measures of binding parameters. The rank order of (11)C-LY2795050 distribution volume (VT) matched the known regional KOR densities in the human brain. Blocking scans with naltrexone indicated no ideal reference region for (11)C-LY2795050. Three methods for calculation of the nondisplaceable distribution volume (VND) were assessed: (1) individual VND estimated from naltrexone occupancy plots, (2) mean VND across subjects, and (3) a fixed fraction of cerebellum VT. Approach (3) produced the lowest intersubject variability in the calculation of binding potentials (BPND, BPF, and BPP). Therefore, binding potentials of (11)C-LY2795050 can be determined if the specific binding fraction in the cerebellum is presumed to be unchanged by diseases and experimental conditions. In conclusion, results from the present study show the suitability of (11)C-LY2795050 to image and quantify KOR in humans.

  9. Kinetic modeling of 11C-LY2795050, a novel antagonist radiotracer for PET imaging of the kappa opioid receptor in humans

    Science.gov (United States)

    Naganawa, Mika; Zheng, Ming-Qiang; Nabulsi, Nabeel; Tomasi, Giampaolo; Henry, Shannan; Lin, Shu-Fei; Ropchan, Jim; Labaree, David; Tauscher, Johannes; Neumeister, Alexander; Carson, Richard E; Huang, Yiyun

    2014-01-01

    11C-LY2795050 is a novel kappa opioid receptor (KOR) antagonist tracer for positron emission tomography (PET) imaging. The purpose of this first-in-human study was to determine the optimal kinetic model for analysis of 11C-LY2795050 imaging data. Sixteen subjects underwent baseline scans and blocking scans after oral naltrexone. Compartmental modeling and multilinear analysis-1 (MA1) were applied using the arterial input functions. Two-tissue compartment model and MA1 were found to be the best models to provide reliable measures of binding parameters. The rank order of 11C-LY2795050 distribution volume (VT) matched the known regional KOR densities in the human brain. Blocking scans with naltrexone indicated no ideal reference region for 11C-LY2795050. Three methods for calculation of the nondisplaceable distribution volume (VND) were assessed: (1) individual VND estimated from naltrexone occupancy plots, (2) mean VND across subjects, and (3) a fixed fraction of cerebellum VT. Approach (3) produced the lowest intersubject variability in the calculation of binding potentials (BPND, BPF, and BPP). Therefore, binding potentials of 11C-LY2795050 can be determined if the specific binding fraction in the cerebellum is presumed to be unchanged by diseases and experimental conditions. In conclusion, results from the present study show the suitability of 11C-LY2795050 to image and quantify KOR in humans. PMID:25182664

  10. Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans.

    Science.gov (United States)

    Rabiner, E A; Beaver, J; Makwana, A; Searle, G; Long, C; Nathan, P J; Newbould, R D; Howard, J; Miller, S R; Bush, M A; Hill, S; Reiley, R; Passchier, J; Gunn, R N; Matthews, P M; Bullmore, E T

    2011-08-01

    Opioid neurotransmission has a key role in mediating reward-related behaviours. Opioid receptor (OR) antagonists, such as naltrexone (NTX), can attenuate the behaviour-reinforcing effects of primary (food) and secondary rewards. GSK1521498 is a novel OR ligand, which behaves as an inverse agonist at the μ-OR sub-type. In a sample of healthy volunteers, we used [(11)C]-carfentanil positron emission tomography to measure the OR occupancy and functional magnetic resonance imaging (fMRI) to measure activation of brain reward centres by palatable food stimuli before and after single oral doses of GSK1521498 (range, 0.4-100 mg) or NTX (range, 2-50 mg). GSK1521498 had high affinity for human brain ORs (GSK1521498 effective concentration 50 = 7.10 ng ml(-1)) and there was a direct relationship between receptor occupancy (RO) and plasma concentrations of GSK1521498. However, for both NTX and its principal active metabolite in humans, 6-β-NTX, this relationship was indirect. GSK1521498, but not NTX, significantly attenuated the fMRI activation of the amygdala by a palatable food stimulus. We thus have shown how the pharmacological properties of OR antagonists can be characterised directly in humans by a novel integration of molecular and functional neuroimaging techniques. GSK1521498 was differentiated from NTX in terms of its pharmacokinetics, target affinity, plasma concentration-RO relationships and pharmacodynamic effects on food reward processing in the brain. Pharmacological differentiation of these molecules suggests that they may have different therapeutic profiles for treatment of overeating and other disorders of compulsive consumption.

  11. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    Science.gov (United States)

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen

  12. Tumor Targeting and Pharmacokinetics of a Near-Infrared Fluorescent-Labeled δ-Opioid Receptor Antagonist Agent, Dmt-Tic-Cy5.

    Science.gov (United States)

    Huynh, Amanda Shanks; Estrella, Veronica; Stark, Valerie E; Cohen, Allison S; Chen, Tingan; Casagni, Todd J; Josan, Jatinder S; Lloyd, Mark C; Johnson, Joseph; Kim, Jongphil; Hruby, Victor J; Vagner, Josef; Morse, David L

    2016-02-01

    Fluorescence molecular imaging can be employed for the development of novel cancer targeting agents. Herein, we investigated the pharmacokinetics (PK) and cellular uptake of Dmt-Tic-Cy5, a delta-opioid receptor (δOR) antagonist-fluorescent dye conjugate, as a tumor-targeting molecular imaging agent. δOR expression is observed normally in the CNS, and pathologically in some tumors, including lung liver and breast cancers. In vitro, in vivo, and ex vivo experiments were conducted to image and quantify the fluorescence signal associated with Dmt-Tic-Cy5 over time using in vitro and intravital fluorescence microscopy and small animal fluorescence imaging of tumor-bearing mice. We observed specific retention of Dmt-Tic-Cy5 in tumors with maximum uptake in δOR-expressing positive tumors at 3 h and observable persistence for >96 h; clearance from δOR nonexpressing negative tumors by 6 h; and systemic clearance from normal organs by 24 h. Live-cell and intravital fluorescence microscopy demonstrated that Dmt-Tic-Cy5 had sustained cell-surface binding lasting at least 24 h with gradual internalization over the initial 6 h following administration. Dmt-Tic-Cy5 is a δOR-targeted agent that exhibits long-lasting and specific signal in δOR-expressing tumors, is rapidly cleared from systemic circulation, and is not retained in non-δOR-expressing tissues. Hence, Dmt-Tic-Cy5 has potential as a fluorescent tumor imaging agent.

  13. Synthesis and characterization of potent and selective mu-opioid receptor antagonists, [Dmt(1), D-2-Nal(4)]endomorphin-1 (Antanal-1) and [Dmt(1), D-2-Nal(4)]endomorphin-2 (Antanal-2).

    Science.gov (United States)

    Fichna, Jakub; do-Rego, Jean-Claude; Chung, Nga N; Lemieux, Carole; Schiller, Peter W; Poels, Jeroen; Broeck, Jozef Vanden; Costentin, Jean; Janecka, Anna

    2007-02-01

    To synthesize potent antagonists of the mu-opioid receptor, we prepared a series of endomorphin-1 and endomorphin-2 analogues with 3-(1-naphthyl)-d-alanine (d-1-Nal) or 3-(2-naphthyl)-d-alanine (d-2-Nal) in position 4. Some of these analogues displayed weak antagonist properties. We tried to strengthen these properties by introducing the structurally modified tyrosine residue 2,6-dimethyltyrosine (Dmt) in place of Tyr1. Among the synthesized compounds, [Dmt1, d-2-Nal4]endomorphin-1, designated antanal-1, and [Dmt1, d-2-Nal4]endomorphin-2, designated antanal-2, turned out to be highly potent and selective mu-opioid receptor antagonists, as judged on the basis of two functional assays, the receptor binding assay and the hot plate test of analgesia. Interestingly, another analogue of this series, [Dmt1, d-1-Nal4]endomorphin-1, turned out to be a moderately potent mixed mu-agonist/delta-antagonist.

  14. Tritiation of delta opioid-receptor selective antagonist dipeptide ligands with extraordinary affinity containing 2', 6'dimethyltyrosine

    Science.gov (United States)

    Kertész, I.; Tóth, G.; Balboni, G.; Guerrini, R.; Salvadori, S.

    1999-01-01

    Recently a new class of δ opioid antagonists has been discovered by using Tyr-Tic sequence. The substitution of Tyr1 by Dmt resulted in a new analogue (H-Dmt-Tic-OH) with enhanced affinity and selectivity. Because of its excellent property we chose it for labelling with tritium. At the same time peptides containing Tic at position 2 undergo spontaneous diketopiperazine formation in some solvents, and they lose some of their binding ability. To avoid this unwanted side-reaction we synthetized the N-methylated analogue (N,N(Me)2-Dmt-Tic-OH), and it was more stable under storage condition, but δ affinity declined moderately. On the basis of this information we prepared diiodinated analogues of these dipeptides. Catalytic dehalotritiation of precursors resulted in tritiated peptides. High specific radioactivity, 44.67 Ci/mmol with [3H]Dmt-Tic-OH and 59.88 Ci/mmol with N,N(Me)2-[3H]Dmt-Tic-OH were achieved.

  15. Tritiation of delta opioid-receptor selective antagonist dipeptide ligands with extraordinary affinity containing 2‧, 6‧dimethyltyrosine

    Science.gov (United States)

    Kertész, I.; Tóth, G.; Balboni, G.; Guerrini, R.; Salvadori, S.

    1999-01-01

    Recently a new class of δ opioid antagonists has been discovered by using Tyr-Tic sequence. The substitution of Tyr1 by Dmt resulted in a new analogue (H-Dmt-Tic-OH) with enhanced affinity and selectivity. Because of its excellent property we chose it for labelling with tritium. At the same time peptides containing Tic at position 2 undergo spontaneous diketopiperazine formation in some solvents, and they lose some of their binding ability. To avoid this unwanted side-reaction we synthetized the N-methylated analogue (N,N(Me)2-Dmt-Tic-OH), and it was more stable under storage condition, but δ affinity declined moderately. On the basis of this information we prepared diiodinated analogues of these dipeptides. Catalytic dehalotritiation of precursors resulted in tritiated peptides. High specific radioactivity, 44.67 Ci/mmol with [3H]Dmt-Tic-OH and 59.88 Ci/mmol with N,N(Me)2-[3H]Dmt-Tic-OH were achieved.

  16. Antitussive activity of Withania somnifera and opioid receptors.

    Science.gov (United States)

    Nosálová, Gabriela; Sivová, Veronika; Ray, Bimalendu; Fraňová, Soňa; Ondrejka, Igor; Flešková, Dana

    2015-01-01

    Arabinogalactan is a polysaccharide isolated from the roots of the medicinal plant Withania somnifera L. It contains 65% arabinose and 18% galactose. The aim of the present study was to evaluate the antitussive activity of arabinogalactan in conscious, healthy adult guinea pigs and the role of the opioid pathway in the antitussive action. A polysaccharide extract was given orally in a dose of 50 mg/kg. Cough was induced by an aerosol of citric acid in a concentration 0.3 mol/L, generated by a jet nebulizer into a plethysmographic chamber. The intensity of cough response was defined as the number of cough efforts counted during a 3-min exposure to the aerosol. The major finding was that arabinogalactan clearly suppressed the cough reflex; the suppression was comparable with that of codeine that was taken as a reference drug. The involvement of the opioid system was tested with the use of a blood-brain barrier penetrable, naloxone hydrochloride, and non-penetrable, naloxone methiodide, to distinguish between the central and peripheral mu-opioid receptor pathways. Both opioid antagonists acted to reverse the arabinogalactan-induced cough suppression; the reversion was total over time with the latter antagonist. We failed to confirm the presence of a bronchodilating effect of the polysaccharide, which could be involved in its antitussive action. We conclude that the polysaccharide arabinogalactan from Withania somnifera has a distinct antitussive activity consisting of cough suppression and that this action involves the mu-opioid receptor pathways.

  17. Molecular Simulation of κ Opioid Receptor and Antagonist Interaction Mechanism%κ阿片受体与拮抗剂作用机制的计算机模拟研究

    Institute of Scientific and Technical Information of China (English)

    丁俊杰; 丁晓琴

    2011-01-01

    OBJECTIVE To build the three-dimensional model of human κ opioid receptor and study its interaction mechanism with antagonist. METHODS The three-dimensional model of κ opioid receptor was built through homology modeling, while the reliability of the model was assessed by Profile-3D analysis and Ramachandran plot. The active site of human κ opioid receptor was searched by DS/Define and Edit Binding Site, and the reasonable active cavity was gained. Then the selective antagonist 5'-GNTI was docked into κ opioid receptor model using CDOCKER. A series of molecular mechanics and dynamics operations were performed to find the most stable binding interaction between 5'-GNTI and the receptor. The "antagonist-bound" receptor model was built and test set antagonists were docked using AutoDock program. RESULTS There was a good linear relationship between △G and the experimental affinity lgKi (correlation r =0. 779). The ionic interaction was formed between the Asp138 residue at TMⅢ and the protonated amine of different antagonist classes, while the Tyr 139 at TMⅢ, Phe231 and Phe235 at TMV, and Trp287 and His291 at TMVI interacted with the hydrophobic groups or aromatic groups of antagonists with hydrophobic or π-π interaction. CONCLUSION The built receptor model is reasonable and may be used in designing new more active and selective antagoasits. The present study provides a consistent framework for further investigation of the opioid receptor-ligand interaction mechanisms.%目的 构建人κ阿片受体三维结构模型,探讨拮抗剂与受体作用机制.方法 应用同源模建方法构建人κ阿片受体三维结构模型,采用Profile-3D和Ramachaadran图验证模型的可靠性.将选择性κ阿片受体拮抗剂5'-GNTI与受体进行分子对接和分子动力学优化,得到拮抗状态κ阿片受体模型.采用AutoDock对接软件将受体与测试集拮抗剂进行分子对接研究.结果 搜寻和分析受体的活性位点,确定合理的κ阿

  18. Activation profiles of opioid ligands in HEK cells expressing δ opioid receptors

    OpenAIRE

    Clark J; Demirci Hasan; Gharagozlou Parham; Lameh Jelveh

    2002-01-01

    Abstract Background The aim of the present study was to characterize the activation profiles of 15 opioid ligands in transfected human embryonic kidney cells expressing only δ opioid receptors. Activation profiles of most of these ligands at δ opioid receptors had not been previously characterized in vitro. Receptor activation was assessed by measuring the inhibition of forskolin-stimulated cAMP production. Results Naltrexone and nalorphine were classified as antagonists at δ opioid receptor....

  19. A comprehensive study on the putative δ-opioid receptor (sub)types using the highly selective δ-antagonist, Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH.

    Science.gov (United States)

    Birkas, Erika; Bakota, Lidia; Gulya, Karoly; Wen, Ting; Pintar, John; Tóth, Geza; Szucs, Maria

    2011-08-01

    The goal of our work was a throughout characterization of the pharmacology of the TIPP-analog, Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH and see if putative δ-opioid receptor subtypes can be distinguished. Analgesic latencies were assessed in mouse tail-flick assays after intrathecal administration. In vitro receptor autoradiography, binding and ligand-stimulated [(35)S]GTPγS functional assays were performed in the presence of putative δ(1)-(DPDPE: agonist, BNTX: antagonist), δ(2)-(agonist: deltorphin II, Ile(5,6)-deltorphin II, antagonist: naltriben) and μ-(DAMGO: agonist) opioid ligands. The examined antagonist inhibited the effect of DPDPE by 60%, but did not antagonize δ(2)- and μ-agonist induced analgesia. The radiolabeled form identified binding sites with K(D)=0.18 nM and receptor densities of 102.7 fmol/mg protein in mouse brain membranes. The binding site distribution of the [(3)H]Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH agreed well with that of [(3)H]Ile(5,6)-deltorphin II as revealed by receptor autoradiography. Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH displayed 2.49±0.06 and 0.30±0.01 nM potency against DPDPE and deltorphin II in the [(35)S]GTPγS functional assay, respectively. The rank order of potency of putative δ(1)- and δ(2)-antagonists against DPDPE and deltorphin was similar in brain and CHO cells expressing human δ-opioid receptors. Deletion of the DOR-1 gene resulted in no residual binding of the radioligand and no significant DPDPE effect on G-protein activation. Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH is a highly potent and δ-opioid specific antagonist both in vivo and in vitro. However, the putative δ(1)- and δ(2)-opioid receptors could not be unequivocally distinguished in vitro.

  20. [Opioid receptors of the CNS: function, structure and distribution].

    Science.gov (United States)

    Slamberová, R

    2004-01-01

    Even though the alkaloids of opium, such as morphine and codeine, were isolated at the beginning of 19th century, the opioid receptors were not determined until 1970's. The discovery of endogenous opioid peptides, such as endorphins, enkephalins and dynorphins, has helped to differentiate between the specific opioid receptor subtypes, mu, delta and kappa, that are used up to now. Opioid receptors are distributed in the central nervous system unevenly. Each receptor subtype has its own specific and nonspecific agonists and antagonists. Opioides, as exogenous opioid receptor agonists, are drugs that are often used in medicine for their analgesic effects, but they are also some of the most heavily abused drugs in the world. Opioides may also induce long-term changes in the numbers and binding activities of opioid receptors. Some of our studies in fact demonstrate that prenatal morphine exposure can alter opioid receptors of adult rats. This may begin to provide insight into the sources of some of the morphological and behavioral changes in the progeny of mothers that received or abused opioides during pregnancy.

  1. Redoubling the ring size of an endomorphin-2 analog transforms a centrally acting mu-opioid receptor agonist into a pure peripheral analgesic.

    Science.gov (United States)

    Piekielna, Justyna; De Marco, Rossella; Gentilucci, Luca; Cerlesi, Maria Camilla; Calo', Girolamo; Tömböly, Csaba; Artali, Roberto; Janecka, Anna

    2016-05-01

    The study reports the synthesis and biological evaluation of two opioid analogs, a monomer and a dimer, obtained as products of the solid-phase, side-chain to side-chain cyclization of the pentapeptide Tyr-d-Lys-Phe-Phe-AspNH2 . The binding affinities to the mu, delta, and kappa opioid receptors, as well as results obtained in a calcium mobilization functional assay are reported. Tyr-[d-Lys-Phe-Phe-Asp]2 -NH2 1 was a potent and selective full agonist of mu with sub-nanomolar affinity, while the dimer (Tyr-[d-Lys-Phe-Phe-Asp]2 -NH2 )2 2 showed a significant mixed mu/kappa affinity, acting as an agonist at the mu. Molecular docking computations were utilized to explain the ability of the dimeric cyclopeptide 2 to interact with the receptor. Interestingly, in spite of the increased ring size, the higher flexibility allowed 2 to fold and fit into the mu receptor binding pocket. Both cyclopeptides were shown to elicit strong antinociceptive activity after intraventricular injection but only cyclomonomer 1 was able to cross the blood-brain barrier. However, the cyclodimer 2 displayed a potent peripheral antinociceptive activity in a mouse model of visceral inflammatory pain. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 309-317, 2016.

  2. Endomorphins fully activate a cloned human mu opioid receptor.

    Science.gov (United States)

    Gong, J; Strong, J A; Zhang, S; Yue, X; DeHaven, R N; Daubert, J D; Cassel, J A; Yu, G; Mansson, E; Yu, L

    1998-11-13

    Endomorphins were recently identified as endogenous ligands with high selectivity for mu opioid receptors. We have characterized the ability of endomorphins to bind to and functionally activate the cloned human mu opioid receptor. Both endomorphin-1 and endomorphin-2 exhibited binding selectivity for the mu opioid receptor over the delta and kappa opioid receptors. Both agonists inhibited forskolin-stimulated increase of cAMP in a dose-dependent fashion. When the mu opioid receptor was coexpressed in Xenopus oocytes with G protein-activated K+ channels, application of either endomorphin activated an inward K+ current. This activation was dose-dependent and blocked by naloxone. Both endomorphins acted as full agonists with efficacy similar to that of [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO). These data indicate that endomorphins act as full agonists at the human mu opioid receptor, capable of stimulating the receptor to inhibit the cAMP/adenylyl cyclase pathway and activate G-protein-activated inwardly rectifying potassium (GIRK) channels.

  3. The evolution of vertebrate opioid receptors

    OpenAIRE

    Stevens, Craig W.

    2009-01-01

    The proteins that mediate the analgesic and other effects of opioid drugs and endogenous opioid peptides are known as opioid receptors. Opioid receptors consist of a family of four closely-related proteins belonging to the large superfamily of G-protein coupled receptors. The three types of opioid receptors shown unequivocally to mediate analgesia in animal models are the mu (MOR), delta (DOR), and kappa (KOR) opioid receptor proteins. The role of the fourth member of the opioid receptor fami...

  4. Enkephalins modulate inhibitory neuromuscular transmission in circular muscle of human colon via delta-opioid receptors.

    Science.gov (United States)

    Hoyle, C H; Kamm, M A; Burnstock, G; Lennard-Jones, J E

    1990-01-01

    1. A sucrose-gap technique was used to investigate the neuromodulatory actions of enkephalins on non-adrenergic, non-cholinergic inhibitory junction potentials (IJPs) in the circular muscle of the human large intestine. 2. The native enkephalins, [Leu5]enkephalin (LENK) and [Met5]enkephalin (MENK) caused a concentration-dependent reduction in amplitude of IJPs without a significant effect on the smooth muscle membrane. 3. The actions of LENK and MENK were mimicked by the delta-selective opioid receptor agonists [D-Pen2, D-Pen5]enkephalin (DPDPE) and [D-Ala2, D-Leu5]enkephalin (DADLE). 4. The actions of LENK, MENK and DPDPE were antagonized to similar extents by the delta-selective opioid receptor antagonist ICI 174,864. 5. The mu-selective opioid receptor agonist [D-Ala2, Me Phe, Gly-ol5]enkephalin was approximately 100-fold less potent than any of the native or synthetic enkephalins at reducing the amplitude of the IJP. Dynorphin A and beta-endorphin both had very weak activity. 6. Responses to all of the agonists were inhibited by naloxone. The degree of antagonism of DPDPE or DADLE by naloxone (1 microM) was the same as that of LENK or MENK. 7. Neither MENK nor LENK affected hyperpolarization of the smooth muscle membrane induced by ATP or 5-hydroxytryptamine. Vasoactive intestinal polypeptide (1 pM-1 microM) did not produce any observable responses and this lack of reactivity was not affected by the enkephalins. 8. It is concluded that in the circular muscle of the human colon, LENK and MENK can act on prejunctional delta-opioid receptors to produce inhibition of non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. Possible physiological significance of this prejunctional receptor is discussed. PMID:1966052

  5. Structure of the [delta]-opioid receptor bound to naltrindole

    Energy Technology Data Exchange (ETDEWEB)

    Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Weis, William I.; Kobilka, Brian K. (Stanford-MED)

    2012-07-11

    The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structures of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.

  6. Receptor-selective changes in mu-, delta- and kappa-opioid receptors after chronic naltrexone treatment in mice

    NARCIS (Netherlands)

    Lesscher, HMB; Bailey, Alexis; Burbach, JPH; van Ree, JM; Kitchen, [No Value; Gerrits, MAFM

    2003-01-01

    Chronic treatment with the opioid antagonist naltrexone induces functional supersensitivity to opioid agonists, which may be explained by receptor up-regulation induced by opioid receptor blockade. In the present study, the levels of opioid receptor subtypes through the brain of mice were determined

  7. Nucleus accumbens μ-opioid receptors mediate social reward.

    Science.gov (United States)

    Trezza, Viviana; Damsteegt, Ruth; Achterberg, E J Marijke; Vanderschuren, Louk J M J

    2011-04-27

    Positive social interactions are essential for emotional well-being and proper behavioral development of young individuals. Here, we studied the neural underpinnings of social reward by investigating the involvement of opioid neurotransmission in the nucleus accumbens (NAc) in social play behavior, a highly rewarding social interaction in adolescent rats. Intra-NAc infusion of morphine (0.05-0.1 μg) increased pinning and pouncing, characteristic elements of social play behavior in rats, and blockade of NAc opioid receptors with naloxone (0.5 μg) prevented the play-enhancing effects of systemic morphine (1 mg/kg, s.c.) administration. Thus, stimulation of opioid receptors in the NAc was necessary and sufficient for morphine to increase social play. Intra-NAc treatment with the selective μ-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly(5)-ol]enkephalin (DAMGO) (0.1-10 ng) and the μ-opioid receptor antagonist Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) (0.3-3 μg) increased and decreased social play, respectively. The δ-opioid receptor agonist DPDPE ([D-Pen(2),D-Pen(5)]-enkephalin) (0.3-3 μg) had no effects, whereas the κ-opioid receptor agonist U69593 (N-methyl-2-phenyl-N-[(5R,7S,8S)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]dec-8-yl]acetamide) (0.01-1 μg) decreased social play. Intra-NAc treatment with β-endorphin (0.01-1 μg) increased social play, but met-enkephalin (0.1-5 μg) and the enkephalinase inhibitor thiorphan (0.1-1 μg) were ineffective. DAMGO (0.1-10 ng) increased social play after infusion into both the shell and core subregions of the NAc. Last, intra-NAc infusion of CTAP (3 μg) prevented the development of social play-induced conditioned place preference. These findings identify NAc μ-opioid receptor stimulation as an important neural mechanism for the attribution of positive value to social interactions in adolescent rats. Altered NAc μ-opioid receptor function may underlie social impairments in psychiatric disorders such as autism

  8. Delta opioid receptor on equine sperm cells: subcellular localization and involvement in sperm motility analyzed by computer assisted sperm analyzer (CASA

    Directory of Open Access Journals (Sweden)

    Lacalandra Giovanni M

    2010-06-01

    Full Text Available Abstract Background Opioid receptors and endogenous opioid peptides act not only in the control of nociceptive pathways, indeed several reports demonstrate the effects of opiates on sperm cell motility and morphology suggesting the importance of these receptors in the modulation of reproduction in mammals. In this study we investigated the expression of delta opioid receptors on equine spermatozoa by western blot/indirect immunofluorescence and its relationship with sperm cell physiology. Methods We analyzed viability, motility, capacitation, acrosome reaction and mitochondrial activity in the presence of naltrindole and DPDPE by means of a computer assisted sperm analyzer and a fluorescent confocal microscope. The evaluation of viability, capacitation and acrosome reaction was carried out by the double CTC/Hoechst staining, whereas mitochondrial activity was assessed by means of MitoTracker Orange dye. Results We showed that in equine sperm cells, delta opioid receptor is expressed as a doublet of 65 and 50 kDa molecular mass and is localized in the mid piece of tail; we also demonstrated that naltrindole, a delta opioid receptor antagonist, could be utilized in modulating several physiological parameters of the equine spermatozoon in a dose-dependent way. We also found that low concentrations of the antagonist increase sperm motility whereas high concentrations show the opposite effect. Moreover low concentrations hamper capacitation, acrosome reaction and viability even if the percentage of cells with active mitochondria seems to be increased; the opposite effect is exerted at high concentrations. We have also observed that the delta opioid receptor agonist DPDPE is scarcely involved in affecting the same parameters at the employed concentrations. Conclusions The results described in this paper add new important details in the comprehension of the mammalian sperm physiology and suggest new insights for improving reproduction and for

  9. Opioid receptor types involved in the development of nicotine physical dependence in an invertebrate (Planaria) model.

    Science.gov (United States)

    Raffa, Robert B; Baron, Steve; Bhandal, Jaspreet S; Brown, Tevin; Song, Kevin; Tallarida, Christopher S; Rawls, Scott M

    2013-11-01

    Recent data suggest that opioid receptors are involved in the development of nicotine physical dependence in mammals. Evidence in support of a similar involvement in an invertebrate (Planaria) is presented using the selective opioid receptor antagonist naloxone, and the more receptor subtype-selective antagonists CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) (μ, MOR), naltrindole (δ, DOR), and nor-BNI (norbinaltorphimine) (κ, KOR). Induction of physical dependence was achieved by 60-min pre-exposure of planarians to nicotine and was quantified by abstinence-induced withdrawal (reduction in spontaneous locomotor activity). Known MOR and DOR subtype-selective opioid receptor antagonists attenuated the withdrawal, as did the non-selective antagonist naloxone, but a KOR subtype-selective antagonist did not. An involvement of MOR and DOR, but not KOR, in the development of nicotine physical dependence or in abstinence-induced withdrawal was thus demonstrated in a sensitive and facile invertebrate model.

  10. Antinociceptive Action of Isolated Mitragynine from Mitragyna Speciosa through Activation of Opioid Receptor System

    Directory of Open Access Journals (Sweden)

    Mohamad Aris Mohd Moklas

    2012-09-01

    Full Text Available Cannabinoids and opioids systems share numerous pharmacological properties and antinociception is one of them. Previous findings have shown that mitragynine (MG, a major indole alkaloid found in Mitragyna speciosa (MS can exert its antinociceptive effects through the opioids system. In the present study, the action of MG was investigated as the antinociceptive agent acting on Cannabinoid receptor type 1 (CB1 and effects on the opioids receptor. The latency time was recorded until the mice showed pain responses such as shaking, licking or jumping and the duration of latency was measured for 2 h at every 15 min interval by hot plate analysis. To investigate the beneficial effects of MG as antinociceptive agent, it was administered intraperitoneally 15 min prior to pain induction with a single dosage (3, 10, 15, 30, and 35 mg/kg b.wt. In this investigation, 35 mg/kg of MG showed significant increase in the latency time and this dosage was used in the antagonist receptor study. The treated groups were administered with AM251 (cannabinoid receptor-1 antagonist, naloxone (non-selective opioid antagonist, naltrindole (δ-opioid antagonist naloxonazine (µ1-receptor antagonist and norbinaltorpimine (κ-opioid antagonist respectively, prior to administration of MG (35 mg/kg. The results showed that the antinociceptive effect of MG was not antagonized by AM251; naloxone and naltrindole were effectively blocked; and norbinaltorpimine partially blocked the antinociceptive effect of MG. Naloxonazine did inhibit the effect of MG, but it was not statistically significant. These results demonstrate that CB1 does not directly have a role in the antinociceptive action of MG where the effect was observed with the activation of opioid receptor.

  11. Delayed cardioprotection is mediated via a non-peptide delta opioid agonist, SNC-121, independent of opioid receptor stimulation.

    Science.gov (United States)

    Patel, Hemal H; Hsu, Anna; Gross, Garrett J

    2004-01-01

    Acute cardioprotection is mediated primarily through delta opioid receptor stimulation independent of micro or kappa opioid receptor stimulation. Delayed cardioprotection is mediated by delta opioid receptor agonists but ambiguity remains about direct receptor involvement. Therefore, we investigated the potential of SNC-121, a non-peptide delta opioid agonist, to produce delayed cardioprotection and characterized the role of opioid receptors in this delayed response. All rats underwent 30 minutes of ischemia followed by 2 hours of reperfusion. SNC-121 induced a significant delayed cardioprotective effect. To determine the nature of this SNC-121-induced delayed cardioprotection, rats were treated with specific opioids receptor antagonists and underwent pertussis toxin (PT) treatment prior to opioid agonist stimulation. Control rats were injected with saline and allowed to recover for 24 hours. Pretreatment and early treatment with opioid receptor antagonists failed to inhibit the delayed protective effects of SNC-121, as did pretreatment with PT. Treatment with a free radical scavenger, 2-mercaptopropionyl glycine, at the time of opioid stimulation attenuated the delayed cardioprotective effects of SNC-121. These data suggest that delayed cardioprotection is stimulated via non-peptide delta opioid agonists by a mechanism unrelated to opioid receptor activation. The mechanism appears to be a non-opioid receptor mediated production of reactive oxygen species that triggers the signaling cascade leading to delayed cardioprotection.

  12. Discovery of Potent and Selective Agonists of δ Opioid Receptor by Revisiting the "Message-Address" Concept.

    Science.gov (United States)

    Shen, Qing; Qian, Yuanyuan; Huang, Xiaoqin; Xu, Xuejun; Li, Wei; Liu, Jinggen; Fu, Wei

    2016-04-14

    The classic "message-address" concept was proposed to address the binding of endogenous peptides to the opioid receptors and was later successfully applied in the discovery of the first nonpeptide δ opioid receptor (DOR) antagonist naltrindole. By revisiting this concept, and based on the structure of tramadol, we designed a series of novel compounds that act as highly potent and selective agonists of DOR among which (-)-6j showed the highest affinity (K i = 2.7 nM), best agonistic activity (EC50 = 2.6 nM), and DOR selectivity (more than 1000-fold over the other two subtype opioid receptors). Molecular docking studies suggest that the "message" part of (-)-6j interacts with residue Asp128(3.32) and a neighboring water molecule, and the "address" part of (-)-6j packs with hydrophobic residues Leu300(7.35), Val281(6.55), and Trp284(6.58), rendering DOR selectivity. The discovery of novel compound (-)-6j, and the obtained insights into DOR-agonist binding will help us design more potent and selective DOR agonists.

  13. The effects of alcohol on the pharmacokinetics and pharmacodynamics of the selective mu-opioid receptor antagonist GSK1521498 in healthy subjects.

    Science.gov (United States)

    Ziauddeen, Hisham; Nathan, Pradeep J; Dodds, Chris; Maltby, Kay; Miller, Sam R; Waterworth, Dawn; Song, Kijoung; Warren, Liling; Hosking, Louise; Zucchetto, Mauro; Bush, Mark; Johnson, Lakshmi Vasist; Sarai, Bhopinder; Mogg, Karin; Bradley, Brendan P; Richards, Duncan B; Fletcher, Paul C; Bullmore, Edward T

    2013-10-01

    The mu-opioid system has a key role in hedonic and motivational processes critical to substance addiction. However, existing mu-opioid antagonists have had limited success as anti-addiction treatments. GSK1521498 is a selective and potent mu-opioid antagonist being developed for the treatment of overeating and substance addictions. In this study, 28 healthy participants were administered single doses of GSK1521498 20 mg, ethanol 0.5 g/kg body weight, or both in combination, in a double blind placebo controlled four-way crossover design. The primary objective was to determine the risk of significant adverse pharmacodynamic and pharmacokinetic (PK) interactions. The effects of GSK1521498 on hedonic and consummatory responses to alcohol and the attentional processing of alcohol-related stimuli, and their modulation by the OPRM1 A118G polymorphism were also explored. GSK1521498 20 mg was well tolerated alone and in combination with ethanol. There were mild transient effects of GSK1521498 on alertness and mood that were greater when it was combined with ethanol. These effects were not of clinical significance. There were no effects of GSK1521498 on reaction time, hedonic or consummatory responses. These findings provide encouraging safety and PK data to support continued development of GSK1521498 for the treatment of alcohol addiction.

  14. Activation of μ opioid receptors in the LPBN facilitates sodium intake in rats.

    Science.gov (United States)

    Pavan, Carolina G; Roncari, Camila F; Barbosa, Silas P; De Paula, Patrícia M; Colombari, Débora S A; De Luca, Laurival A; Colombari, Eduardo; Menani, José V

    2015-07-15

    Important inhibitory mechanisms for the control of water and sodium intake are present in the lateral parabrachial nucleus (LPBN). Opioid receptors are expressed by LPBN neurons and injections of β-endorphin (nonspecific opioid receptor agonist) in this area induce 0.3M NaCl and water intake in satiated rats. In the present study, we investigated the effects of the injections of endomorphin-1 (μ opioid receptor agonist) alone or combined with the blockade of μ, κ or δ opioid receptors into the LPBN on 0.3M NaCl and water intake induced by subcutaneous injections of the diuretic furosemide (FURO) combined with low dose of the angiotensin converting enzyme inhibitor captopril (CAP). Male Holtzman rats with stainless steel cannulas implanted bilaterally in the LPBN were used. Bilateral injections of endomorphin-1 (0.1, 0.25, 0.5, 1.0, 2.0 and 4.0nmol/0.2μl) into the LPBN increased 0.3M NaCl and water intake induced by FURO+CAP. The previous blockade of μ opioid receptor with CTAP (1.0nmol/0.2μl) into the LPBN reduced the effect of endomorphin-1 on FURO+CAP-induced 0.3M NaCl. GNTI (κ opioid receptor antagonist; 2.0nmol/0.2μl) and naltrindole (δ opioid receptor antagonist; 2.0nmol/0.2μl) injected into the LPBN did not change the effects of endomorphin-1 on FURO+CAP-induced 0.3M NaCl. The results suggest that μ opioid receptors in the LPBN are involved in the control of sodium intake.

  15. Quantitative immunolocalization of {mu} opioid receptors: regulation by naltrexone

    Energy Technology Data Exchange (ETDEWEB)

    Evans, C.J.; Lam, H.; To, T.; Anton, B. [Department of Psychiatry and Biobehavioral Sciences, Neuropsychiatric Institute, University of California, Los Angeles, CA (United States); Unterwald, E.M. [Department of Psychiatry, New York University Medical Center, New York, NY (United States)

    1998-04-24

    The present study utilized a newly developed quantitative immunohistochemical assay to measure changes in {mu} opioid receptor abundance following chronic administration of the opioid receptor antagonist naltrexone. These data were compared with those obtained from {mu} receptor radioligand binding on adjacent tissue sections, in order to determine whether the characteristic antagonist-induced increase in radioligand binding is due to an increase in the total number of {mu} receptors and/or to an increase in the proportion of receptors that are in an active binding conformation in the absence of a change in the total number of receptors. Adult male Sprague-Dawley rats were administered naltrexone, 7-8 mg/kg per day, or saline continuously for seven days by osmotic minipumps, after which time their brains were processed for immunohistochemistry and receptor autoradiography on adjacent fresh frozen tissue sections. Semiquantitative immunohistochemistry was performed using a radiolabelled secondary antibody for autoradiographic determination and a set of radioactive standards. Results demonstrate an overall concordance between the distribution of {mu} opioid receptors as measured by the two different methods with a few exceptions. Following naltrexone administration, {mu} receptor immunoreactivity was significantly higher in the amygdala, thalamus, hippocampus, and interpeduncular nucleus as compared with the saline-treated control animals. [{sup 3}H]D-Ala{sup 2},N-Me-Phe{sup 4},Gly-ol{sup 5}-enkephalin binding to {mu} opioid receptors was significantly higher in the globus pallidus, amygdala, thalamus, hypothalamus, hippocampus, substantia nigra, ventral tegmental area, central gray, and interpeduncular nucleus of the naltrexone-treated rats.These findings indicate that in some brain regions chronic naltrexone exposure increases the total number of {mu} opioid receptors, while in other regions there is an increase in the percent of active receptors without an

  16. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    Science.gov (United States)

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  17. The delta opioid receptor tool box.

    Science.gov (United States)

    Vicente-Sanchez, Ana; Segura, Laura; Pradhan, Amynah A

    2016-12-03

    In recent years, the delta opioid receptor has attracted increasing interest as a target for the treatment of chronic pain and emotional disorders. Due to their therapeutic potential, numerous tools have been developed to study the delta opioid receptor from both a molecular and a functional perspective. This review summarizes the most commonly available tools, with an emphasis on their use and limitations. Here, we describe (1) the cell-based assays used to study the delta opioid receptor. (2) The features of several delta opioid receptor ligands, including peptide and non-peptide drugs. (3) The existing approaches to detect delta opioid receptors in fixed tissue, and debates that surround these techniques. (4) Behavioral assays used to study the in vivo effects of delta opioid receptor agonists; including locomotor stimulation and convulsions that are induced by some ligands, but not others. (5) The characterization of genetically modified mice used specifically to study the delta opioid receptor. Overall, this review aims to provide a guideline for the use of these tools with the final goal of increasing our understanding of delta opioid receptor physiology.

  18. Dopamine D1 and opioid receptor antagonists differentially reduce the acquisition and expression of fructose-conditioned flavor preferences in BALB/c and SWR mice.

    Science.gov (United States)

    Kraft, Tamar T; Yakubov, Yakov; Huang, Donald; Fitzgerald, Gregory; Natanova, Elona; Sclafani, Anthony; Bodnar, Richard J

    2015-11-01

    Sugar appetite is influenced by unlearned and learned preferences in rodents. The present study examined whether dopamine (DA) D1 (SCH23390: SCH) and opioid (naltrexone: NTX) receptor antagonists differentially altered the expression and acquisition of fructose-conditioned flavor preferences (CFPs) in BALB/c and SWR mice. In expression experiments, food-restricted mice alternately (10 sessions, 1h) consumed a flavored (e.g., cherry) 8% fructose+0.2% saccharin solution (CS+) and a differently-flavored (e.g., grape) 0.2% saccharin solution (CS-). Two-bottle CS choice tests (1h) occurred 0.5h following vehicle: SCH (200 or 800 nmol/kg) or NTX (1 or 5mg/kg). SCH, but not NTX significantly reduced CS+ preference in both strains. In acquisition experiments, 0.5h prior to 10 acquisition training sessions, vehicle, SCH (50 nmol/kg), NTX (1 mg/kg) or Limited Control vehicle treatments were administered, followed by two-bottle CS choice tests without injections. SCH and NTX reduced training intakes in both strains. BALB/c mice displayed hastened extinction of the fructose-CFP following training with SCH, but not NTX. SCH eliminated fructose-CFP acquisition in SWR mice, whereas NTX hastened extinction of the CFP. These results are compared to previous drug findings obtained with sucrose-CFPs in SWR and BALB/c mice, and are discussed in terms of differential effects of these sugars on oral and post-oral conditioning.

  19. Involvement of peripheral mu opioid receptors in scratching behavior in mice.

    Science.gov (United States)

    Yamamoto, Atsuki; Sugimoto, Yukio

    2010-12-15

    Pruritus is a common adverse effect of opioid treatment. However, the mechanism by which pruritus is induced by opioid administration is unclear. In this study, we examined the effects of the intradermal injection of loperamide, a peripherally restricted opioid receptor agonist, on the itch sensation. When injected intradermally into the rostral part of the back in mice, loperamide elicited scratching behavior. We also examined the effects of the selective mu opioid receptor agonist [d-Ala², N-Me-Phe⁴, Gly⁵-ol]-enkephalin acetate (DAMGO), the selective delta opioid receptor agonist [d-Pen(2,5)]-enkephalin (DPDPE), and the selective kappa opioid receptor agonist U-50488H on scratching behavior in mice in order to determine which subtype is involved in opioid-induced pruritus. Following intradermal injection into the rostral part of the back in mice, DAMGO elicited scratching behavior, while DPDPE and U-50488H did not. This suggests that peripheral mu opioid activation elicits the itch sensation. Next, we focused on the treatment of opioid-induced itch sensation without central adverse effects. Naloxone methiodide is a peripherally restricted opioid receptor antagonist. In the present study, naloxone methiodide significantly suppressed scratching behavior induced by loperamide and DAMGO. These findings suggest that mu opioid receptors play a primary role in peripheral pruritus and that naloxone methiodide may represent a possible remedy for opioid-induced itching.

  20. Opioid receptors in the midbrain periaqueductal gray regulate extinction of pavlovian fear conditioning.

    Science.gov (United States)

    McNally, Gavan P; Pigg, Michael; Weidemann, Gabrielle

    2004-08-01

    Four experiments studied the role of opioid receptors in the midbrain periaqueductal gray matter (PAG), an important structure eliciting conditioned fear responses, in the extinction of Pavlovian fear. Rats received pairings of an auditory conditioned stimulus (CS) with a foot shock unconditioned stimulus (US). The freezing conditioned response (CR) elicited by the CS was then extinguished via nonreinforced presentations of the CS. Microinjection of the opioid receptor antagonist naloxone into the ventrolateral PAG (vlPAG) before nonrein-forced CS presentations impaired development of extinction, but such microinjections at the end of extinction did not reinstate an already extinguished freezing CR. This role for opioid receptors in fear extinction was specific to the vlPAG because infusions of naloxone into the dorsal PAG did not impair fear extinction. Finally, the impairment of fear extinction produced by vlPAG infusions of naloxone was dose-dependent. These results show for the first time that the midbrain PAG contributes to fear extinction and specifically identify a role for vlPAG opioid receptors in the acquisition but not the expression of such extinction. Taken together with our previous findings, we suggest that, during fear conditioning, activation of vlPAG opioid receptors contributes to detection of the discrepancy between the actual and expected outcome of the conditioning trial. vlPAG opioid receptors regulate the learning that accrues to the CS and other stimuli present on a trial because they instantiate an associative error correction process influencing US information reaching the site of CS-US convergence in the amygdala. During nonreinforcement, this vlPAG opioid receptor contribution signals extinction.

  1. Pharmacological evidence for the mediation of the panicolytic effect of fluoxetine by dorsal periaqueductal gray matter μ-opioid receptors.

    Science.gov (United States)

    Roncon, Camila Marroni; Almada, Rafael Carvalho; Maraschin, Jhonatan Christian; Audi, Elisabeth Aparecida; Zangrossi, Hélio; Graeff, Frederico Guilherme; Coimbra, Norberto Cysne

    2015-12-01

    Previously reported results have shown that the inhibitory effect of fluoxetine on escape behavior, interpreted as a panicolytic-like effect, is blocked by pretreatment with either the opioid receptor antagonist naloxone or the 5-HT1A receptor (5-HT1A-R) antagonist WAY100635 via injection into the dorsal periaqueductal gray matter (dPAG). Additionally, reported evidence indicates that the μ-opioid receptor (MOR) interacts with the 5-HT1A-R in the dPAG. In the present work, pretreatment of the dPAG with the selective MOR blocker CTOP antagonized the anti-escape effect of chronic fluoxetine (10 mg/kg, i.p., daily, for 21 days), as measured in the elevated T-maze (ETM) test, indicating mediation of this effect by the MOR. In addition, the combined administration of sub-effective doses of the selective MOR agonist DAMGO (intra-dPAG) and sub-effective doses of chronic as well as subchronic (7 days) fluoxetine increased avoidance and escape latencies, suggesting that the activation of MORs may facilitate and accelerate the effects of fluoxetine. The current observation that MORs located in the dPAG mediate the anti-escape effect of fluoxetine may open new perspectives for the development of more efficient and fast-acting panic-alleviating drugs.

  2. The dynamic relationship between mu and kappa opioid receptors in body temperature regulation.

    Science.gov (United States)

    Chen, Xiaohong; McClatchy, Daniel B; Geller, Ellen B; Tallarida, Ronald J; Adler, Martin W

    2005-12-12

    Previous studies demonstrated that intracerebroventricular (icv) injection of a kappa opioid receptor agonist decreased, and a mu agonist increased, body temperature (Tb) in rats. A dose-response study with the selective kappa antagonist nor-binaltorphimine (nor-BNI) showed that a low dose (1.25 nmol, icv) alone had no effect, although a high dose (25 nmol, icv) increased Tb. It was hypothesized that the hyperthermia induced by nor-BNI was the result of the antagonist blocking the kappa opioid receptor and releasing its inhibition of mu opioid receptor activity. To determine whether the Tb increase caused by nor-BNI was a mu receptor-mediated effect, we administered the selective mu antagonist CTAP (1.25 nmol, icv) 15 min after nor-BNI (25 nmol, icv) and measured rectal Tb in unrestrained rats. CTAP significantly antagonized the Tb increase induced by icv injection of nor-BNI. Injection of 5 or 10 nmol of CTAP alone significantly decreased the Tb, and 1.25 nmol of nor-BNI blocked that effect, indicating that the CTAP-induced hypothermia was kappa-mediated. The findings strongly suggest that mu antagonists, in blocking the basal hyperthermia mediated by mu receptors, can unmask the endogenous kappa receptor-mediated hypothermia, and that there is a tonic balance between mu and kappa opioid receptors that serves as a homeostatic mechanism for maintaining Tb.

  3. In vivo opioid receptor heteromerization: where do we stand?

    OpenAIRE

    Massotte, D

    2014-01-01

    Opioid receptors are highly homologous GPCRs that modulate brain function at all levels of neural integration, including autonomous, sensory, emotional and cognitive processing. Opioid receptors functionally interact in vivo, but the underlying mechanisms involving direct receptor–receptor interactions, affecting signalling pathways or engaging different neuronal circuits, remain unsolved. Heteromer formation through direct physical interaction between two opioid receptors or between an opioi...

  4. Combined blockade of both mu- and kappa-opioid receptors prevents the acute orexigenic action of agouti-related protein

    NARCIS (Netherlands)

    Brugman, S; Clegg, DJ; Woods, SC; Seeley, RJ

    2002-01-01

    Agouti-related protein (AgRP) is an endogenous antagonist at the melanocortin 3 and 4 receptor in the hypothalamus. Central administration of AgRP produces a robust increase in food intake, and this effect can be blocked by administration of nonspecific opioid receptor antagonist. Such results impli

  5. Differences in the morphine-induced inhibition of small and large intestinal transit: Involvement of central and peripheral μ-opioid receptors in mice.

    Science.gov (United States)

    Matsumoto, Kenjiro; Umemoto, Hiroyuki; Mori, Tomohisa; Akatsu, Ryuya; Saito, Shinichiro; Tashima, Kimihito; Shibasaki, Masahiro; Kato, Shinichi; Suzuki, Tsutomu; Horie, Syunji

    2016-01-15

    Constipation is the most common side effect of morphine. Morphine acts centrally and on peripheral sites within the enteric nervous system. There are a few comprehensive studies on morphine-induced constipation in the small and large intestine by the activation of central and peripheral μ-opioid receptors. We investigated the differences in the inhibition of the small and large intestinal transit in normal and morphine-tolerant mice. Morphine reduced the geometric center in the fluorescein isothiocyanate-dextran assay and prolonged the bead expulsion time in a dose-dependent manner. The inhibitory effects of morphine were blocked by μ-opioid antagonist β-funaltrexamine, but not by δ- and κ-opioid antagonists. The peripheral opioid receptor antagonist, naloxone methiodide, partially blocked morphine's effect in the small intestine and completely blocked its effect in the large intestine. The intracerebroventricular administration of naloxone significantly reversed the delay of small intestinal transit but did not affect morphine-induced inhibition of large intestinal transit. Naloxone methiodide completely reversed the inhibition of large intestinal transit in normal and morphine-tolerant mice. Naloxone methiodide partially reversed the morphine-induced inhibition of small intestinal transit in normal mice but completely reversed the effects of morphine in tolerant mice. Chronic treatment with morphine results in tolerance to its inhibitory effect on field-stimulated contraction in the isolated small intestine but not in the large intestine. These results suggest that peripheral and central opioid receptors are involved in morphine-induced constipation in the small and large intestine during the early stage of treatment, but the peripheral receptors mainly regulate constipation during long-term morphine treatment.

  6. Long-acting muscarinic antagonists

    DEFF Research Database (Denmark)

    Busse, William W; Dahl, Ronald; Jenkins, Christine;

    2016-01-01

    -acting anticholinergics as bronchodilators in the treatment of asthma, with results published from clinical trials of glycopyrrolate, umeclidinium and tiotropium. The tiotropium clinical trial programme is the most advanced, with data available from a number of phase II and III studies of tiotropium as an add...... and children with asthma. Tiotropium Respimat has recently been incorporated into the Global Initiative for Asthma 2015 treatment strategy as a recommended alternative therapy at steps 4 and 5 in adult patients with a history of exacerbations. The increasing availability of evidence from ongoing and future...

  7. Asymmetric synthesis and in vitro and in vivo activity of tetrahydroquinolines featuring a diverse set of polar substitutions at the 6 position as mixed-efficacy μ opioid receptoropioid receptor ligands.

    Science.gov (United States)

    Bender, Aaron M; Griggs, Nicholas W; Anand, Jessica P; Traynor, John R; Jutkiewicz, Emily M; Mosberg, Henry I

    2015-08-19

    We previously reported a small series of mixed-efficacy μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist peptidomimetics featuring a tetrahydroquinoline scaffold and showed the promise of this series as effective analgesics after intraperitoneal administration in mice. We report here an expanded structure-activity relationship study of the pendant region of these compounds and focus in particular on the incorporation of heteroatoms into this side chain. These analogues provide new insight into the binding requirements for this scaffold at MOR, DOR, and the κ opioid receptor (KOR), and several of them (10j, 10k, 10m, and 10n) significantly improve upon the overall MOR agonist/DOR antagonist profile of our previous compounds. In vivo data for 10j, 10k, 10m, and 10n are also reported and show the antinociceptive potency and duration of action of compounds 10j and 10m to be comparable to those of morphine.

  8. Opioid receptor agonists may favorably affect bone mechanical properties in rats with estrogen deficiency-induced osteoporosis.

    Science.gov (United States)

    Janas, Aleksandra; Folwarczna, Joanna

    2017-02-01

    The results of epidemiological, clinical, and in vivo and in vitro experimental studies on the effect of opioid analgesics on bone are inconsistent. The aim of the present study was to investigate the effect of morphine (an agonist of opioid receptors), buprenorphine (a partial μ opioid receptor agonist and κ opioid receptor antagonist), and naloxone (an antagonist of opioid receptors) on the skeletal system of female rats in vivo. The experiments were carried out on 3-month-old Wistar rats, divided into two groups: nonovariectomized (intact; NOVX) rats and ovariectomized (OVX) rats. The bilateral ovariectomy was performed 7 days before the start of drug administration. Morphine hydrochloride (20 mg/kg/day s.c.), buprenorphine (0.05 mg/kg/day s.c.), or naloxone hydrochloride dihydrate (2 mg/kg/day s.c.) were administered for 4 weeks to NOVX and OVX rats. In OVX rats, the use of morphine and buprenorphine counteracted the development of osteoporotic changes in the skeletal system induced by estrogen deficiency. Morphine and buprenorphine beneficially affected also the skeletal system of NOVX rats, but the effects were much weaker than those in OVX rats. Naloxone generally did not affect the rat skeletal system. The results confirmed the role of opioid receptors in the regulation of bone remodeling processes and demonstrated, in experimental conditions, that the use of opioid analgesics at moderate doses may exert beneficial effects on the skeletal system, especially in estrogen deficiency.

  9. Clinically employed opioid analgesics produce antinociception via μ-δ opioid receptor heteromers in Rhesus monkeys.

    Science.gov (United States)

    Yekkirala, Ajay S; Banks, Matthew L; Lunzer, Mary M; Negus, Stevens S; Rice, Kenner C; Portoghese, Philip S

    2012-09-19

    Morphine and related drugs are widely employed as analgesics despite the side effects associated with their use. Although morphine is thought to mediate analgesia through mu opioid receptors, delta opioid receptors have been implicated in mediating some side effects such as tolerance and dependence. Here we present evidence in rhesus monkeys that morphine, fentanyl, and possibly methadone selectively activate mu-delta heteromers to produce antinociception that is potently antagonized by the delta opioid receptor antagonist, naltrindole (NTI). Studies with HEK293 cells expressing mu-delta heteromeric opioid receptors exhibit a similar antagonism profile of receptor activation in the presence of NTI. In mice, morphine was potently inhibited by naltrindole when administered intrathecally, but not intracerebroventricularly, suggesting the possible involvement of mu-delta heteromers in the spinal cord of rodents. Taken together, these results strongly suggest that, in primates, mu-delta heteromers are allosterically coupled and mediate the antinociceptive effects of three clinically employed opioid analgesics that have been traditionally viewed as mu-selective. Given the known involvement of delta receptors in morphine tolerance and dependence, our results implicate mu-delta heteromers in mediating both antinociception and these side effects in primates. These results open the door for further investigation in humans.

  10. Maturational alterations in constitutive activity of medial prefrontal cortex kappa-opioid receptors in Wistar rats.

    Science.gov (United States)

    Sirohi, Sunil; Walker, Brendan M

    2015-11-01

    Opioid receptors can display spontaneous agonist-independent G-protein signaling (basal signaling/constitutive activity). While constitutive κ-opioid receptor (KOR) activity has been documented in vitro, it remains unknown if KORs are constitutively active in native systems. Using [(35) S] guanosine 5'-O-[gamma-thio] triphosphate coupling assay that measures receptor functional state, we identified the presence of medial prefrontal cortex KOR constitutive activity in young rats that declined with age. Furthermore, basal signaling showed an age-related decline and was insensitive to neutral opioid antagonist challenge. Collectively, the present data are first to demonstrate age-dependent alterations in the medial prefrontal cortex KOR constitutive activity in rats and changes in the constitutive activity of KORs can differentially impact KOR ligand efficacy. These data provide novel insights into the functional properties of the KOR system and warrant further consideration of KOR constitutive activity in normal and pathophysiological behavior. Opioid receptors exhibit agonist-independent constitutive activity; however, kappa-opioid receptor (KOR) constitutive activity has not been demonstrated in native systems. Our results confirm KOR constitutive activity in the medial prefrontal cortex (mPFC) that declines with age. With the ability to presynaptically inhibit multiple neurotransmitter systems in the mPFC, maturational or patho-logical alterations in constitutive activity could disrupt corticofugal glutamatergic pyramidal projection neurons mediating executive function. Regulation of KOR constitutive activity could serve as a therapeutic target to treat compromised executive function.

  11. Computer Modeling of Human Delta Opioid Receptor

    Directory of Open Access Journals (Sweden)

    Tatyana Dzimbova

    2013-04-01

    Full Text Available The development of selective agonists of δ-opioid receptor as well as the model of interaction of ligands with this receptor is the subjects of increased interest. In the absence of crystal structures of opioid receptors, 3D homology models with different templates have been reported in the literature. The problem is that these models are not available for widespread use. The aims of our study are: (1 to choose within recently published crystallographic structures templates for homology modeling of the human δ-opioid receptor (DOR; (2 to evaluate the models with different computational tools; and (3 to precise the most reliable model basing on correlation between docking data and in vitro bioassay results. The enkephalin analogues, as ligands used in this study, were previously synthesized by our group and their biological activity was evaluated. Several models of DOR were generated using different templates. All these models were evaluated by PROCHECK and MolProbity and relationship between docking data and in vitro results was determined. The best correlations received for the tested models of DOR were found between efficacy (erel of the compounds, calculated from in vitro experiments and Fitness scoring function from docking studies. New model of DOR was generated and evaluated by different approaches. This model has good GA341 value (0.99 from MODELLER, good values from PROCHECK (92.6% of most favored regions and MolProbity (99.5% of favored regions. Scoring function correlates (Pearson r = -0.7368, p-value = 0.0097 with erel of a series of enkephalin analogues, calculated from in vitro experiments. So, this investigation allows suggesting a reliable model of DOR. Newly generated model of DOR receptor could be used further for in silico experiments and it will give possibility for faster and more correct design of selective and effective ligands for δ-opioid receptor.

  12. Synthetic studies of neoclerodane diterpenes from Salvia divinorum: preparation and opioid receptor activity of salvinicin analogues.

    Science.gov (United States)

    Simpson, Denise S; Katavic, Peter L; Lozama, Anthony; Harding, Wayne W; Parrish, Damon; Deschamps, Jeffrey R; Dersch, Christina M; Partilla, John S; Rothman, Richard B; Navarro, Hernan; Prisinzano, Thomas E

    2007-07-26

    Further modification of salvinorin A (1a), the major active component of Salvia divinorum, has resulted in the synthesis of novel neoclerodane diterpenes with opioid receptor affinity and activity. We report in this study that oxadiazole 11a and salvidivin A (12a), a photooxygenation product of 1a, have been identified as the first neoclerodane diterpenes with kappa antagonist activity. This indicates that additional structural modifications of 1a may lead to analogues with higher potency and utility as drug abuse medications.

  13. Synthetic and Receptor Signaling Explorations of the Mitragyna Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators.

    Science.gov (United States)

    Kruegel, Andrew C; Gassaway, Madalee M; Kapoor, Abhijeet; Váradi, András; Majumdar, Susruta; Filizola, Marta; Javitch, Jonathan A; Sames, Dalibor

    2016-06-01

    Mu-opioid receptor agonists represent mainstays of pain management. However, the therapeutic use of these agents is associated with serious side effects, including potentially lethal respiratory depression. Accordingly, there is a longstanding interest in the development of new opioid analgesics with improved therapeutic profiles. The alkaloids of the Southeast Asian plant Mitragyna speciosa, represented by the prototypical member mitragynine, are an unusual class of opioid receptor modulators with distinct pharmacological properties. Here we describe the first receptor-level functional characterization of mitragynine and related natural alkaloids at the human mu-, kappa-, and delta-opioid receptors. These results show that mitragynine and the oxidized analogue 7-hydroxymitragynine, are partial agonists of the human mu-opioid receptor and competitive antagonists at the kappa- and delta-opioid receptors. We also show that mitragynine and 7-hydroxymitragynine are G-protein-biased agonists of the mu-opioid receptor, which do not recruit β-arrestin following receptor activation. Therefore, the Mitragyna alkaloid scaffold represents a novel framework for the development of functionally biased opioid modulators, which may exhibit improved therapeutic profiles. Also presented is an enantioselective total synthesis of both (-)-mitragynine and its unnatural enantiomer, (+)-mitragynine, employing a proline-catalyzed Mannich-Michael reaction sequence as the key transformation. Pharmacological evaluation of (+)-mitragynine revealed its much weaker opioid activity. Likewise, the intermediates and chemical transformations developed in the total synthesis allowed the elucidation of previously unexplored structure-activity relationships (SAR) within the Mitragyna scaffold. Molecular docking studies, in combination with the observed chemical SAR, suggest that Mitragyna alkaloids adopt a binding pose at the mu-opioid receptor that is distinct from that of classical opioids.

  14. Evaluation of 7 {alpha}-O-IADPN as a new potential SPECT opioid receptor imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.F.; Mao, S.Y. [Fujian Medical College, Fuzhou (China). Dept. of Nuclear Medicine; Tafani, J.A.M.; Coulais, Y.; Guiraud, R. [Hospital Purpan, Toulouse (France). Service Central de medicine Nucleaire; Zajac, J.M. [LPTF-CNRS, Toulouse (France)

    1998-03-01

    Full text: A new iodinated diprenorphine antagonist analogue, [{sup 123}I]7 {alpha}.-O-IADPN, [E] - 17-(cyclopropylmethyl) -4,5 (x-epoxy- 18,19-dihydro-3-hydroxy-6-methoxy-7 {alpha}-[1-(3-iodoallyl)oxy-1-methylethyl]-6,14-endo-ethenomorphinan for in vivo and in vitro studies as a potential central nervous system (CNS) opioid receptor imaging agent was developed. In vivo biodistribution and metabolism of 7 {alpha}-O-lADPN in rat demonstrated that 0.16% of the iodinated compound was presented in mouse brain with a degradation-resistant at the first 60 min, and that 36% of the total cerebral radioactivity and 63% of its specific binding to opioid receptors were observed 20 min after i.v. injection. The cerebral radioactivity in mouse brain concentrated in the basal ganglion and cortex, and displayed a remarkably high target-to-non-target ratio (cortex/cerebellum = 60 min post-injection). The in vitro binding studies showed that [{sup 123}I]7 {alpha}-O-IADPN binds non selectively to multiple opioid receptors {mu} = 8 K) with a very high affinity (Ki = 0.4 + 0.2 nM). Ex vivo autoradiography results in mouse further confirmed the high uptake and retention of this agent in basal ganglion region and cortex. The planar imaging of monkey brains after i.v. injection of [{sup 123}I]7 {alpha}-O-IADPN clearly displayed that multiple opioid receptors can be visualized. With the excellent in vitro affinity and in vivo stability to deiodination and high target-to-nontarget ratio, [{sup 123}I]7 {alpha}- O-IADPN appears to be useful as a CNS opioid receptor imaging probe for SPECT in primate and non-primate.

  15. Evaluation of [{sup 125}I]7{alpha}-O-iodoally diprenophine as a new potential SPECT opioid receptor imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.F.; Tafani, J.A.M.; Frances, B.; Bergon, M.; Coulais, Y.; Zajac, J. M.; Guiraud, R

    1997-08-01

    A new iodinated diprenorphine analog, [{sup 125}I]7{alpha}-O-iodoallyl diprenorphine ([{sup 125}I]7{alpha}-O-IA-DPN), was prepared by iododestannylation and characterized. As an opioid antagonist, this agent showed very high affinity (K{sub i} = 0.4 {+-} 0.2 nM) and 63% of specific binding by in vitro and in vivo binding studies. Inhibition curves indicated that this tracer labeled with the same affinities to three opioid receptors ({mu} = {delta} = {kappa}). The findings demonstrate that this proposed compound appears to be a potential radioprobe for future study of opioid receptors by in vivo SPECT.

  16. A structural feature of the non-peptide ligand interactions with mice mu-opioid receptors.

    Science.gov (United States)

    Noori, Hamid R; Mucksch, Christian; Urbassek, Herbert M

    2014-01-01

    By binding to and activating the G-protein coupled μ-, κ- and δ-opioid receptors in the central nervous system, opiates are known to induce analgesic and sedative effects. In particular, non-peptide opioid ligands are often used in clinical applications to induce these therapeutically beneficial effects, due to their superior pharmacokinetics and bioavailability in comparison to endogenous neuropeptides. However, since opioid alkaloids are highly addictive substances, it is necessary to understand the exact mechanisms of their actions, specifically the ligand-binding properties of the target receptors, in order to safely apply opiates for therapeutic purposes. Using an in silico molecular docking approach (AutoDock Vina) combined with two-step cluster analysis, we have computationally obtained the docking scores and the ligand-binding pockets of twelve representative non-peptide nonendogenous agonists and antagonists at the crystallographically identified μ-opioid receptor. Our study predicts the existence of two main binding sites that are congruently present in all opioid receptor types. Interestingly, in terms of the agonist or antagonist properties of the substances on the receptors, the clustering analysis suggests a relationship with the position of the ligand-binding pockets, particularly its depth within the receptor structure. Furthermore, the binding affinity of the substances is directly correlated to the proximity of the binding pockets to the extracellular space. In conclusion, the results provide further insights into the structural features of the functional pharmacology of opioid receptors, suggesting the importance of the binding position of non-peptide agonists and antagonists- specifically the distance and the level of exposure to the extracellular space- to their dissociation kinetics and subsequent potency.

  17. [{sup 11}C]-MeJDTic: a novel radioligand for {kappa}-opioid receptor positron emission tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Poisnel, Geraldine; Oueslati, Farhana; Dhilly, Martine; Delamare, Jerome [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France); Perrio, Cecile [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France)], E-mail: perrio@cyceron.fr; Debruyne, Daniele [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France)], E-mail: debruyne@cyceron.fr; Barre, Louisa [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France)

    2008-07-15

    Introduction: Radiopharmaceuticals that can bind selectively the {kappa}-opioid receptor may present opportunities for staging clinical brain disorders and evaluating the efficiency of new therapies related to stroke, neurodegenerative diseases or opiate addiction. The N-methylated derivative of JDTic (named MeJDTic), which has been recently described as a potent and selective antagonist of {kappa}-opioid receptor in vitro, was labeled with carbon-11 and evaluated for in vivo imaging the {kappa}-opioid receptor in mice. Methods: [{sup 11}C]-MeJDTic was prepared by methylation of JDTic with [{sup 11}C]-methyl triflate. The binding of [{sup 11}C]-MeJDTic to {kappa}-opioid receptor was investigated ex vivo by biodistribution and competition studies using nonfasted male CD1 mice. Results: [{sup 11}C]-MeJDTic exhibited a high and rapid distribution in peripheral organs. The uptake was maximal in lung where the {kappa} receptor is largely expressed. [{sup 11}C]-MeJDTic rapidly crossed the blood-brain barrier and accumulated in the brain regions of interest (hypothalamus). The parent ligand remained the major radioactive compound in brain during the experiment. Chase studies with U50,488 (a {kappa} referring agonist), morphine (a {mu} agonist) and naltrindole (a {delta} antagonist) demonstrated that this uptake was the result of specific binding to the {kappa}-opioid receptor. Conclusion: These findings suggested that [{sup 11}C]-MeJDTic appeared to be a promising selective 'lead' radioligand for {kappa}-opioid receptor PET imaging.

  18. Antinociceptive and hypothermic effects of Salvinorin A are abolished in a novel strain of kappa-opioid receptor-1 knockout mice.

    Science.gov (United States)

    Ansonoff, Michael A; Zhang, Jiwen; Czyzyk, Traci; Rothman, Richard B; Stewart, Jeremy; Xu, Heng; Zjwiony, Jordan; Siebert, Daniel J; Yang, Feng; Roth, Bryan L; Pintar, John E

    2006-08-01

    Salvia divinorum is a natural occurring hallucinogen that is traditionally used by the Mazatec Indians of central Mexico. The diterpene salvinorin A was identified as an active component of S. divinorum over 20 years ago, but only recently has biochemical screening indicated that a molecular target of salvinorin A in vitro is the kappa-opioid receptor. We have examined whether salvinorin A, the C2-substituted derivative salvinorinyl-2-propionate, and salvinorin B can act as kappa-opioid receptor agonists in vivo. We found that following intracerebroventricular injection over a dose range of 1 to 30 microg of both salvinorin A and salvinorinyl-2-propionate produces antinociception in wild-type mice but not in a novel strain of kappa-opioid receptor knockout mice. Moreover, both salvinorin A and salvinorinyl-2-propionate reduce rectal body temperature, similar to conventional kappa-opioid receptor agonists, in a genotype-dependent manner. In addition, we determined that salvinorin A has high affinity for kappa 1- but not kappa 2-opioid receptors, demonstrating selectivity for this receptor subclass. Finally, treatment over the same dose range with salvinorin B, which is inactive in vitro, produced neither antinociceptive nor hypothermic effects in wild-type mice. These data demonstrate that salvinorin A is the active component of S. divinorum, selective for kappa(1)-opioid receptors, and that salvinorin A and specific structurally related analogs produce behavioral effects that require the kappa-opioid receptor.

  19. Mu Opioid Receptor Actions in the Lateral Habenula.

    Directory of Open Access Journals (Sweden)

    Elyssa B Margolis

    Full Text Available Increased activity of lateral habenula (LHb neurons is correlated with aversive states including pain, opioid abstinence, rodent models of depression, and failure to receive a predicted reward. Agonists at the mu opioid receptor (MOR are among the most powerful rewarding and pain relieving drugs. Injection of the MOR agonist morphine directly into the habenula produces analgesia, raising the possibility that MOR acts locally within the LHb. Consequently, we examined the synaptic actions of MOR agonists in the LHb using whole cell patch clamp recording. We found that the MOR selective agonist DAMGO inhibits a subset of LHb neurons both directly and by inhibiting glutamate release onto these cells. Paradoxically, DAMGO also presynaptically inhibited GABA release onto most LHb neurons. The behavioral effect of MOR activation will thus depend upon both the level of intrinsic neuronal activity in the LHb and the balance of activity in glutamate and GABA inputs to different LHb neuronal populations.

  20. Salvinorin A: allosteric interactions at the mu-opioid receptor.

    Science.gov (United States)

    Rothman, Richard B; Murphy, Daniel L; Xu, Heng; Godin, Jonathan A; Dersch, Christina M; Partilla, John S; Tidgewell, Kevin; Schmidt, Matthew; Prisinzano, Thomas E

    2007-02-01

    Salvinorin A [(2S,4aR,6aR,7R,9S,10aS,10bR)-9-(acetyloxy)-2-(3-furanyl)-dodecahydro-6a,10b-dimethyl-4,10-dioxo-2h-naphtho[2,1-c]pyran-7-carboxylic acid methyl ester] is a hallucinogenic kappa-opioid receptor agonist that lacks the usual basic nitrogen atom present in other known opioid ligands. Our first published studies indicated that Salvinorin A weakly inhibited mu-receptor binding, and subsequent experiments revealed that Salvinorin A partially inhibited mu-receptor binding. Therefore, we hypothesized that Salvinorin A allosterically modulates mu-receptor binding. To test this hypothesis, we used Chinese hamster ovary cells expressing the cloned human opioid receptor. Salvinorin A partially inhibited [(3)H]Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO) (0.5, 2.0, and 8.0 nM) binding with E(MAX) values of 78.6, 72.1, and 45.7%, respectively, and EC(50) values of 955, 1124, and 4527 nM, respectively. Salvinorin A also partially inhibited [(3)H]diprenorphine (0.02, 0.1, and 0.5 nM) binding with E(MAX) values of 86.2, 64, and 33.6%, respectively, and EC(50) values of 1231, 866, and 3078 nM, respectively. Saturation binding studies with [(3)H]DAMGO showed that Salvinorin A (10 and 30 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Saturation binding studies with [(3)H]diprenorphine showed that Salvinorin A (10 and 40 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Similar findings were observed in rat brain with [(3)H]DAMGO. Kinetic experiments demonstrated that Salvinorin A altered the dissociation kinetics of both [(3)H]DAMGO and [(3)H]diprenorphine binding to mu receptors. Furthermore, Salvinorin A acted as an uncompetitive inhibitor of DAMGO-stimulated guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding. Viewed collectively, these data support the hypothesis that Salvinorin A allosterically modulates the mu-opioid receptor.

  1. Recent developments in the study of opioid receptors.

    Science.gov (United States)

    Cox, Brian M

    2013-04-01

    It is now about 40 years since Avram Goldstein proposed the use of the stereoselectivity of opioid receptors to identify these receptors in neural membranes. In 2012, the crystal structures of the four members of the opioid receptor family were reported, providing a structural basis for understanding of critical features affecting the actions of opiate drugs. This minireview summarizes these recent developments in our understanding of opiate receptors. Receptor function is also influenced by amino acid substitutions in the protein sequence. Among opioid receptor genes, one polymorphism is much more frequent in human populations than the many others that have been found, but the functional significance of this single nucleotide polymorphism (SNP) has been unclear. Recent studies have shed new light on how this SNP might influence opioid receptor function. In this minireview, the functional significance of the most prevalent genetic polymorphism among the opioid receptor genes is also considered.

  2. Mu and delta opioid receptors oppositely regulate motor impulsivity in the signaled nose poke task.

    Directory of Open Access Journals (Sweden)

    Mary C Olmstead

    Full Text Available Impulsivity is a primary feature of many psychiatric disorders, most notably attention deficit hyperactivity disorder and drug addiction. Impulsivity includes a number of processes such as the inability to delay gratification, the inability to withhold a motor response, or acting before all of the relevant information is available. These processes are mediated by neural systems that include dopamine, serotonin, norepinephrine, glutamate and cannabinoids. We examine, for the first time, the role of opioid systems in impulsivity by testing whether inactivation of the mu- (Oprm1 or delta- (Oprd1 opioid receptor gene alters motor impulsivity in mice. Wild-type and knockout mice were examined on either a pure C57BL6/J (BL6 or a hybrid 50% C57Bl/6J-50% 129Sv/pas (HYB background. Mice were trained to respond for sucrose in a signaled nose poke task that provides independent measures of associative learning (responses to the reward-paired cue and motor impulsivity (premature responses. Oprm1 knockout mice displayed a remarkable decrease in motor impulsivity. This was observed on the two genetic backgrounds and did not result from impaired associative learning, as responses to the cue signaling reward did not differ across genotypes. Furthermore, mutant mice were insensitive to the effects of ethanol, which increased disinhibition and decreased conditioned responding in wild-type mice. In sharp contrast, mice lacking the Oprd1 gene were more impulsive than controls. Again, mutant animals showed no deficit in associative learning. Ethanol completely disrupted performance in these animals. Together, our results suggest that mu-opioid receptors enhance, whereas delta-opioid receptors inhibit, motor impulsivity. This reveals an unanticipated contribution of endogenous opioid receptor activity to disinhibition. In a broader context, these data suggest that alterations in mu- or delta-opioid receptor function may contribute to impulse control disorders.

  3. Studies on mu and delta opioid receptor selectivity utilizing chimeric and site-mutagenized receptors.

    Science.gov (United States)

    Wang, W W; Shahrestanifar, M; Jin, J; Howells, R D

    1995-01-01

    Opioid receptors are members of the guanine nucleotide binding protein (G protein)-coupled receptor family. Three types of opioid receptors have been cloned and characterized and are referred to as the delta, kappa and mu types. Analysis of receptor chimeras and site-directed mutant receptors has provided a great deal of information about functionally important amino acid side chains that constitute the ligand-binding domains and G-protein-coupling domains of G-protein-coupled receptors. We have constructed delta/mu opioid receptor chimeras that were express in human embryonic kidney 293 cells in order to define receptor domains that are responsible for receptor type selectivity. All chimeric receptors and wild-type delta and mu opioid receptors displayed high-affinity binding of etorphine (an agonist), naloxone (an antagonist), and bremazocine (a mixed agonist/antagonist). In contrast, chimeras that lacked the putative first extracellular loop of the mu receptor did not bind the mu-selective peptide [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO). Chimeras that lacked the putative third extracellular loop of the delta receptor did not bind the delta-selective peptide, [D-Ser2,D-Leu5]enkephalin-Thr (DSLET). Point mutations in the putative third extracellular loop of the wild-type delta receptor that converted vicinal arginine residues to glutamine abolished DSLET binding while not affecting bremazocine, etorphine, and naltrindole binding. We conclude that amino acids in the putative first extracellular loop of the mu receptor are critical for high-affinity DAMGO binding and that arginine residues in the putative third extracellular loop of the delta receptor are important for high-affinity DSLET binding. Images Fig. 3 PMID:8618916

  4. Prefrontal Cortical Kappa Opioid Receptors Attenuate Responses to Amygdala Inputs.

    Science.gov (United States)

    Tejeda, Hugo A; Hanks, Ashley N; Scott, Liam; Mejias-Aponte, Carlos; Hughes, Zoë A; O'Donnell, Patricio

    2015-12-01

    Kappa opioid receptors (KORs) have been implicated in anxiety and stress, conditions that involve activation of projections from the basolateral amygdala (BLA) to the medial prefrontal cortex (mPFC). Although KORs have been studied in several brain regions, their role on mPFC physiology and on BLA projections to the mPFC remains unclear. Here, we explored whether KORs modify synaptic inputs from the BLA to the mPFC using in vivo electrophysiological recordings with electrical and optogenetic stimulation. Systemic administration of the KOR agonist U69,593 inhibited BLA-evoked synaptic responses in the mPFC without altering hippocampus-evoked responses. Intra-mPFC U69,593 inhibited electrical and optogenetic BLA-evoked synaptic responses, an effect blocked by the KOR antagonist nor-BNI. Bilateral intra-mPFC injection of the KOR antagonist nor-BNI increased center time in the open field test, suggesting an anxiolytic effect. The data demonstrate that mPFC KORs negatively regulate glutamatergic synaptic transmission in the BLA-mPFC pathway and anxiety-like behavior. These findings provide a framework whereby KOR signaling during stress and anxiety can regulate the flow of emotional state information from the BLA to the mPFC.

  5. Pharmacological studies on the NOP and opioid receptor agonist PWT2-[Dmt(1)]N/OFQ(1-13).

    Science.gov (United States)

    Cerlesi, Maria Camilla; Ding, Huiping; Bird, Mark F; Kiguchi, Norikazu; Ferrari, Federica; Malfacini, Davide; Rizzi, Anna; Ruzza, Chiara; Lambert, David G; Ko, Mei-Chuan; Calo, Girolamo; Guerrini, Remo

    2017-01-05

    An innovative chemical strategy named peptide welding technology (PWT) has been developed for the facile synthesis of tetrabranched peptides. [Dmt(1)]N/OFQ(1-13)-NH2 acts as a universal agonist for nociceptin/orphanin FQ (N/OFQ) and classical opioid receptors. The present study investigated the pharmacological profile of the PWT derivative of [Dmt(1)]N/OFQ(1-13)NH2 (PWT2-[Dmt(1)]) in several assays in vitro and in vivo after spinal administration in monkeys subjected to the tail withdrawal assay. PWT2-[Dmt(1)] mimicked the effects of [Dmt(1)]N/OFQ(1-13)-NH2 displaying full agonist activity, similar affinity/potency and selectivity at human recombinant N/OFQ (NOP) and opioid receptors in receptor binding, stimulation of [(35)S]GTPγS binding, calcium mobilization in cells expressing chimeric G proteins, and BRET studies for measuring receptor/G-protein and receptor/β-arrestin 2 interaction. In vivo in monkeys PWT2-[Dmt(1)] elicited dose-dependent and robust antinociceptive effects being more potent and longer lasting than [Dmt(1)]N/OFQ(1-13)-NH2. The analgesic action of PWT2-[Dmt(1)] was sensitive to the NOP receptor antagonist J-113397, but not naltrexone. Thus, the present study demonstrated that the tetrabranched derivative of [Dmt(1)]N/OFQ(1-13)-NH2 obtained with the PWT technology maintains the in vitro pharmacological profile of the parent peptide but displays higher potency and longer lasting action in vivo.

  6. PET imaging of human cardiac opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Villemagne, Patricia S.R.; Dannals, Robert F. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Ravert, Hayden T. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Frost, James J. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2002-10-01

    The presence of opioid peptides and receptors and their role in the regulation of cardiovascular function has been previously demonstrated in the mammalian heart. The aim of this study was to image {mu} and {delta} opioid receptors in the human heart using positron emission tomography (PET). Five subjects (three females, two males, 65{+-}8 years old) underwent PET scanning of the chest with [{sup 11}C]carfentanil ([{sup 11}C]CFN) and [{sup 11}C]-N-methyl-naltrindole ([{sup 11}C]MeNTI) and the images were analyzed for evidence of opioid receptor binding in the heart. Either [{sup 11}C]CFN or [{sup 11}C]MeNTI (20 mCi) was injected i.v. with subsequent dynamic acquisitions over 90 min. For the blocking studies, either 0.2 mg/kg or 1 mg/kg of naloxone was injected i.v. 5 min prior to the injection of [{sup 11}C]CFN and [{sup 11}C]MeNTI, respectively. Regions of interest were placed over the left ventricle, left ventricular chamber, lung and skeletal muscle. Graphical analysis demonstrated average baseline myocardial binding potentials (BP) of 4.37{+-}0.91 with [{sup 11}C]CFN and 3.86{+-}0.60 with [{sup 11}C]MeNTI. Administration of 0.2 mg/kg naloxone prior to [{sup 11}C]CFN produced a 25% reduction in BP in one subject in comparison with baseline values, and a 19% decrease in myocardial distribution volume (DV). Administration of 1 mg/kg of naloxone before [{sup 11}C]MeNTI in another subject produced a 14% decrease in BP and a 21% decrease in the myocardial DV. These results demonstrate the ability to image these receptors in vivo by PET. PET imaging of cardiac opioid receptors may help to better understand their role in cardiovascular pathophysiology and the effect of abuse of opioids and drugs on heart function. (orig.)

  7. [Nociceptin and the ORL1 receptor: pharmacology of a new opioid receptor].

    Science.gov (United States)

    Grond, S; Meuser, T; Pietruck, C; Sablotzki, A

    2002-12-01

    Molecular biological investigations led to the discovery of the ORL1 receptor ( opioid receptor like-1 receptor) and its endogenous ligand nociceptin. Although its sequence and structure are closely related to traditional opioid receptors, the ORL1 receptor shows low binding affinities for selective opioid agonists and antagonists. On the other hand, the ORL1 ligand nociceptin does not bind to the three traditional opioid receptors. The activation of the G protein-coupled ORL1 receptor inhibits adenlylate cyclase activity, reduces the intracellular concentration of the second messenger cAMP and regulates ion channels. The supraspinal administration of nociceptin produces hyperalgesia. unlike opioids. Spinal intrathecal and peripheral administration of nociceptin causes hyperalgesia in low doses and analgesia in high doses. The physiological role and detailed mechanisms of these dose-dependent nociceptin effects in opposite directions are not yet known. In addition, nociceptin modulates other biological phenomena such as feeding, locomotion, gastrointestinal function,memory, cardiovascular function,immunity, renal function, anxiety,dependence and tolerance.Future research on the physiological and pathophysiological importance of the nociceptin/ORL1 receptor systems may provide a target for novel therapeutics.

  8. Investigation of in vitro Opioid Receptor Binding Activities of Some Turkish Salvia species

    Directory of Open Access Journals (Sweden)

    Özge Gündüz Çınar

    2011-01-01

    Full Text Available Kappa Opioid Peptide Receptor (KOPr activation produces analgesic, psychotomimetic, diuretic and antipruritic effects. KOPr ligands are investigated for their potential roles in the treatment of addiction, depression, feeding behavior, psychosis and schizophrenia. In this study the methanolic extracts of a number of Salvia species which are native to Turkey (S. tomentosa, S. tchihatcheffii , S. rosifolia, S. dichroantha and S. sclarea were tested for their potential binding to opioid receptors in rat brain membranes and Chinese Hamster Ovary Cells expressing human KOPr (CHO-KOPh. [ 3H]Diprenorphine, an unselective opioid antagonist, was utilized in the radioligand receptor binding assays. All extracts (0.11 mg/ml inhibited the [ 3H]Diprenorphine binding with ranging KOPr binding affinities. More than 50% inhibition of diprenorphine binding was shown only with Salvia dichroantha and Salvia sclarea both in rat brain membranes and CHO-KOPh membranes.Among them Salvia sclarea deserves further investigation for its active component(s and its pharmacological characterization. This study clearly demonstrates the potential opioid receptor binding activities of several Turkish Salvia species. This work constitutes the first study on in vitro opioid receptor binding activities of Salvia species from the Turkish flora.

  9. Cell death sensitization of leukemia cells by opioid receptor activation

    Science.gov (United States)

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  10. Evidence of Endogenous Mu Opioid Receptor Regulation by Epigenetic Control of the Promoters▿

    OpenAIRE

    Hwang, Cheol Kyu; Song, Kyu Young; Kim, Chun Sung; Choi, Hack Sun; Guo, Xiao-Hong; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2007-01-01

    The pharmacological effect of morphine as a painkiller is mediated mainly via the mu opioid receptor (MOR) and is dependent on the number of MORs in the cell surface membrane. While several studies have reported that the MOR gene is regulated by various cis- and trans-acting factors, many questions remain unanswered regarding in vivo regulation. The present study shows that epigenetic silencing and activation of the MOR gene are achieved through coordinated regulation at both the histone and ...

  11. Effects of kappa opioid receptor-selective agonists on responses of pelvic nerve afferents to noxious colorectal distension.

    Science.gov (United States)

    Su, X; Sengupta, J N; Gebhart, G F

    1997-08-01

    The aim of this study was to examine the effects of kappa-opioid receptor selective agonists on responses of mechanosensitive afferent fibers in the pelvic nerve. Single-fiber recordings were made from pelvic nerve afferents in the decentralized S1 dorsal root of the rat. A total of 572 afferent fibers in the S1 dorsal root were identified by electrical stimulation of the pelvic nerve; 252 (44%) responded to noxious colorectal distension (CRD; 80 mmHg). Of these 252 fibers that responded to CRD, 100 were studied further. All 100 fibers gave monotonic increases in firing to increasing pressures of CRD. Eighty-eight fibers had low thresholds for response (mean: 3 mmHg) and 12 fibers had high-thresholds for response (mean: 28 mmHg). Responses of 17 fibers also were tested after instillation of 5% mustard oil (MO) into the colon. The resting activity of 16/17 fibers significantly increased after MO instillation; 13 (77%) also exhibited sensitization of responses to graded CRD when tested 30 min after intracolonic MO instillation. The effects of kappa1-opioid receptor preferring agonists (U50,488H, U69,593 and U62,066), the kappa2-opioid receptor preferring agonist bremazocine, and the kappa3-opioid receptor preferring agonist naloxone benzoylhydrazone (nalBzoH) were tested on responses of 64 mechanosensitive afferent fibers to noxious CRD. All five agonists dose-dependently inhibited afferent fiber responses to noxious CRD. Doses producing inhibition to 50% of the control response to CRD did not differ among the five agonists, ranging from approximately 4 to 15 mg/kg. The effects of kappa1, kappa2, and kappa3 receptor agonists were attenuated by naloxone; two kappa-opioid receptor-selective antagonists were ineffective. There were no differences in the dose-response relationships of these drugs for fibers recorded from untreated and irritant-treated colons. Conduction velocities of the fibers remained unaffected after high doses of all tested agonists. In an in vitro

  12. Hyaluronic acid induces activation of the κ-opioid receptor.

    Directory of Open Access Journals (Sweden)

    Barbara Zavan

    Full Text Available INTRODUCTION: Nociceptive pain is one of the most common types of pain that originates from an injury involving nociceptors. Approximately 60% of the knee joint innervations are classified as nociceptive. The specific biological mechanism underlying the regulation of nociceptors is relevant for the treatment of symptoms affecting the knee joint. Intra-articular administration of exogenous hyaluronic acid (HA in patients with osteoarthritis (OA appears to be particularly effective in reducing pain and improving patient function. METHODS: We performed an in vitro study conducted in CHO cells that expressed a panel of opioid receptors and in primary rat dorsal root ganglion (DRG neurons to determine if HA induces the activation of opioid peptide receptors (OPr using both aequorin and the fluorescent dye Fura-2/AM. RESULTS: Selective agonists and antagonists for each OPr expressed on CHO cells were used to test the efficacy of our in vitro model followed by stimulation with HA. The results showed that HA induces stimulatory effects on the κ receptor (KOP. These effects of HA were also confirmed in rat DRG neurons, which express endogenously the OPr. CONCLUSIONS: HA activates the KOP receptor in a concentration dependent manner, with a pEC(50 value of 7.57.

  13. A role for the mu opioid receptor in the antidepressant effects of buprenorphine.

    Science.gov (United States)

    Robinson, Shivon A; Erickson, Rebecca L; Browne, Caroline A; Lucki, Irwin

    2017-02-15

    Buprenorphine (BPN), a mixed opioid drug with high affinity for mu (MOR) and kappa (KOR) opioid receptors, has been shown to produce behavioral responses in rodents that are similar to those of antidepressant and anxiolytic drugs. Although recent studies have identified KORs as a primary mediator of BPN's effects in rodent models of depressive-like behavior, the role of MORs in BPN's behavioral effects has not been as well explored. The current studies investigated the role of MORs in mediating conditioned approach behavior in the novelty-induced hypophagia (NIH) test, a behavioral measure previously shown to be sensitive to chronic treatment with antidepressant drugs. The effects of BPN were evaluated in the NIH test 24h post-administration in mice with genetic deletion of the MOR (Oprm1(-/-)) or KOR (Oprk1(-/-)), or after pharmacological blockade with the non-selective opioid receptor antagonist naltrexone and selective MOR antagonist cyprodime. We found that behavioral responses to BPN in the NIH test were blocked in Oprm1(-/-) mice, but not in Oprk1(-/-) mice. Both cyprodime and naltrexone significantly reduced approach latency at doses experimentally proven to antagonize the MOR. In contrast the selective MOR agonist morphine and the selective KOR antagonist nor-BNI were both ineffective. Moreover, antinociceptive studies revealed persistence of the MOR antagonist properties of BPN at 24h post-administration, the period of behavioral reactivity. These data support modulation of MOR activity as a key component of BPN's antidepressant-like effects in the NIH paradigm.

  14. Positron Emission Tomography (PET) Imaging of Opioid Receptors

    NARCIS (Netherlands)

    van Waarde, Aren; Absalom, Anthony; Visser, Anniek; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; De Vries, Erik FJ; Van Waarde, Aren; Luiten, Paul GM

    2014-01-01

    The opioid system consists of opioid receptors (which mediate the actions of opium), their endogenous ligands (the enkephalins, endorphins, endomorphins, dynorphin, and nociceptin), and the proteins involved in opioid production, transport, and degradation. PET tracers for the various opioid recepto

  15. Pharmacological Profiles of Oligomerized μ-Opioid Receptors

    OpenAIRE

    Ing-Kang Ho; Cynthia Wei-Sheng Lee

    2013-01-01

    Opioids are widely prescribed pain relievers with multiple side effects and potential complications. They produce analgesia via G-protein-protein coupled receptors: μ-, δ-, κ-opioid and opioid receptor-like 1 receptors. Bivalent ligands targeted to the oligomerized opioid receptors might be the key to developing analgesics without undesired side effects and obtaining effective treatment for opioid addicts. In this review we will update the biological effects of μ-opioids on homo- or hetero-ol...

  16. Analgesia produced by exposure to 2450-MHz radiofrequency radiation (RFR) is mediated by brain mu- and kappa-opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Salomon, G.; Park, E.J.; Quock, R.M. (Univ. of Illinois, Rockford (United States))

    1992-02-26

    This study was conducted to identify the opioid receptor subtype(s) responsible for RFR-induced analgesia. Male Swiss Webster mice, 20-25 g, were exposed to 20 mW/cm{sup 2} RFR in a 2,450-MHz waveguide system for 10 min, then tested 15 min later in the abdominal constriction paradigm which detects {mu}- and {kappa}-opioid activity. Immediately following RFR exposure, different groups of mice were pretreated intracerebroventricularly with different opioid receptor blockers with selectivity for {mu}- or {kappa}-opioid receptors. Results show that RFR-induced analgesia was attenuated by higher but not lower doses of the non-selective antagonist naloxone, but the selective {mu}-opioid antagonist {beta}-funaltrexamine and by the selective {kappa}-opioid antagonist norbinaltorphimine. RFR-induced analgesia was also reduced by subcutaneous pretreatment with 5.0 mg/kg of the {mu}-/{kappa}-opioid antagonist({minus})-5,9-diethyl-{alpha}-5,9-dialkyl-2{prime}-hydroxy-6,7-benzomorphan(MR-2266). These findings suggest that RFR-induced analgesia may be mediated by both {mu}- and {kappa}-opioid mechanisms.

  17. The antinociceptive effects of ferulic acid on neuropathic pain: involvement of descending monoaminergic system and opioid receptors.

    Science.gov (United States)

    Xu, Ying; Lin, Dan; Yu, Xuefeng; Xie, Xupei; Wang, Liqun; Lian, Lejing; Fei, Ning; Chen, Jie; Zhu, Naping; Wang, Gang; Huang, Xianfeng; Pan, Jianchun

    2016-04-12

    Neuropathic pain can be considered as a form of chronic stress that may share common neuropathological mechanism between pain and stress-related depression and respond to similar treatment. Ferulic acid (FA) is a major active component of angelica sinensis and has been reported to exert antidepressant-like effects; however, it remains unknown whether FA ameliorate chronic constriction injury (CCI)-induced neuropathic pain and the involvement of descending monoaminergic system and opioid receptors. Chronic treatment with FA (20, 40 and 80 mg/kg) ameliorated mechanical allodynia and thermal hyperalgesia in von Frey hair and hot plate tasks, accompanied by increasing spinal noradrenaline (NA) and serotonin (5-HT) levels. Subsequent study suggested that treatment of CCI animals with 40 and 80 mg/kg FA also inhibited spinal MAO-A levels. FA's effects on mechanical allodynia or thermal hyperalgesiawas blocked by 6-hydroxydopamine (6-OHDA) or p-chlorophenylalanine (PCPA) via pharmacological depletion of spinal noradrenaline or serotonin. Moreover, the anti-allodynic action of FA on mechanical stimuli was prevented by pre-treatment with beta2-adrenoceptor antagonist ICI 118,551, or by the delta-opioid receptor antagonist naltrindole. While the anti-hyperalgesia on thermal stimuli induced by FA was blocked by pre-treatment with 5-HT1A receptor antagonist WAY-100635, or with the irreversible mu-opioid receptor antagonist beta-funaltrexamine. These results suggest that the effect of FA on neuropathic pain is potentially mediated via amelioration of the descending monoaminergic system that coupled with spinal beta2- and 5-HT1A receptors and the downstream delta- and mu-opioid receptors differentially.

  18. [Functional selectivity of opioid receptors ligands].

    Science.gov (United States)

    Audet, Nicolas; Archer-Lahlou, Elodie; Richard-Lalonde, Mélissa; Piñeyro-Filpo, Graciela

    2010-01-01

    Opiates are the most effective analgesics available for the treatment of severe pain. However, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence and respiratory depression. The strategy to develop new opiates with reduced side effects has mainly focused on the study and production of ligands that specifically bind to different opiate receptors subtypes. However, this strategy has not allowed the production of novel therapeutic ligands with a better side effects profile. Thus, other research strategies need to be explored. One which is receiving increasing attention is the possibility of exploiting ligand ability to stabilize different receptor conformations with distinct signalling profiles. This newly described property, termed functional selectivity, provides a potential means of directing the stimulus generated by an activated receptor towards a specific cellular response. Here we summarize evidence supporting the existence of ligand-specific active conformations for two opioid receptors subtypes (delta and mu), and analyze how functional selectivity may contribute in the production of longer lasting, better tolerated opiate analgesics. double dagger.

  19. Opioid receptors and cardioprotection - 'opioidergic conditioning' of the heart.

    Science.gov (United States)

    Headrick, John P; See Hoe, Louise E; Du Toit, Eugene F; Peart, Jason N

    2015-04-01

    Ischaemic heart disease (IHD) remains a major cause of morbidity/mortality globally, firmly established in Westernized or 'developed' countries and rising in prevalence in developing nations. Thus, cardioprotective therapies to limit myocardial damage with associated ischaemia-reperfusion (I-R), during infarction or surgical ischaemia, is a very important, although still elusive, clinical goal. The opioid receptor system, encompassing the δ (vas deferens), κ (ketocyclazocine) and μ (morphine) opioid receptors and their endogenous opioid ligands (endorphins, dynorphins, enkephalins), appears as a logical candidate for such exploitation. This regulatory system may orchestrate organism and organ responses to stress, induces mammalian hibernation and associated metabolic protection, triggers powerful adaptive stress resistance in response to ischaemia/hypoxia (preconditioning), and mediates cardiac benefit stemming from physical activity. In addition to direct myocardial actions, central opioid receptor signalling may also enhance the ability of the heart to withstand I-R injury. The δ- and κ-opioid receptors are strongly implicated in cardioprotection across models and species (including anti-infarct and anti-arrhythmic actions), with mixed evidence for μ opioid receptor-dependent protection in animal and human tissues. A small number of clinical trials have provided evidence of cardiac benefit from morphine or remifentanil in cardiopulmonary bypass or coronary angioplasty patients, although further trials of subtype-specific opioid receptor agonists are needed. The precise roles and utility of this GPCR family in healthy and diseased human myocardium, and in mediating central and peripheral survival responses, warrant further investigation, as do the putative negative influences of ageing, IHD co-morbidities, and relevant drugs on opioid receptor signalling and protective responses.

  20. Overview of genetic analysis of human opioid receptors.

    Science.gov (United States)

    Spampinato, Santi M

    2015-01-01

    The human μ-opioid receptor gene (OPRM1), due to its genetic and structural variation, has been a target of interest in several pharmacogenetic studies. The μ-opioid receptor (MOR), encoded by OPRM1, contributes to regulate the analgesic response to pain and also controls the rewarding effects of many drugs of abuse, including opioids, nicotine, and alcohol. Genetic polymorphisms of opioid receptors are candidates for the variability of clinical opioid effects. The non-synonymous polymorphism A118G of the OPRM1 has been repeatedly associated with the efficacy of opioid treatments for pain and various types of dependence. Genetic analysis of human opioid receptors has evidenced the presence of numerous polymorphisms either in exonic or in intronic sequences as well as the presence of synonymous coding variants that may have important effects on transcription, mRNA stability, and splicing, thus affecting gene function despite not directly disrupting any specific residue. Genotyping of opioid receptors is still in its infancy and a relevant progress in this field can be achieved by using advanced gene sequencing techniques described in this review that allow the researchers to obtain vast quantities of data on human genomes and transcriptomes in a brief period of time and with affordable costs.

  1. The effect of opioid receptor blockade on the neural processing of thermal stimuli.

    Directory of Open Access Journals (Sweden)

    Eszter D Schoell

    Full Text Available The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone.

  2. Structure of the human [kappa]-opioid receptor in complex with JDTic

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huixian; Wacker, Daniel; Mileni, Mauro; Katritch, Vsevolod; Han, Gye Won; Vardy, Eyal; Liu, Wei; Thompson, Aaron A.; Huang, Xi-Ping; Carroll, F. Ivy; Mascarella, S. Wayne; Westkaemper, Richard B.; Mosier, Philip D.; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C. (VCU); (Scripps); (UNC); (Res. Tri. Inst.)

    2013-04-25

    Opioid receptors mediate the actions of endogenous and exogenous opioids on many physiological processes, including the regulation of pain, respiratory drive, mood, and - in the case of {kappa}-opioid receptor ({kappa}-OR) - dysphoria and psychotomimesis. Here we report the crystal structure of the human {kappa}-OR in complex with the selective antagonist JDTic, arranged in parallel dimers, at 2.9 {angstrom} resolution. The structure reveals important features of the ligand-binding pocket that contribute to the high affinity and subtype selectivity of JDTic for the human {kappa}-OR. Modelling of other important {kappa}-OR-selective ligands, including the morphinan-derived antagonists norbinaltorphimine and 5'-guanidinonaltrindole, and the diterpene agonist salvinorin A analogue RB-64, reveals both common and distinct features for binding these diverse chemotypes. Analysis of site-directed mutagenesis and ligand structure-activity relationships confirms the interactions observed in the crystal structure, thereby providing a molecular explanation for {kappa}-OR subtype selectivity, and essential insights for the design of compounds with new pharmacological properties targeting the human {kappa}-OR.

  3. YFa and analogs: Investigation of opioid receptors in smooth muscle contraction

    Institute of Scientific and Technical Information of China (English)

    Krishan Kumar; Ritika Goyal; Annu Mudgal; Anita Mohan; Santosh Pasha

    2011-01-01

    AIM: To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity. METHODS: The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe- YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI. RESULTS: YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly d receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays. CONCLUSION: YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction.

  4. Opioid receptors regulate the extinction of Pavlovian fear conditioning.

    Science.gov (United States)

    McNally, Gavan P; Westbrook, R Frederick

    2003-12-01

    Rats received a single pairing of an auditory conditioned stimulus (CS) with a footshock unconditioned stimulus (US). The fear (freezing) that had accrued to the CS was then extinguished. Injection of naloxone prior to this extinction significantly impaired the development of extinction. This impairment was mediated by opioid receptors in the brain and was not observed when naloxone was injected after extinction training. Finally, an injection of naloxone on test failed to reinstate extinguished responding that had already accrued to the CS. These experiments show that opioid receptors regulate the development, but not the expression, of fear extinction and are discussed with reference to the roles of opioid receptors in US processing, memory, and appetitive motivation.

  5. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.

    Science.gov (United States)

    Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna

    2014-01-01

    The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory.

  6. Opioid receptors and legal highs: Salvia divinorum and Kratom.

    Science.gov (United States)

    Babu, Kavita M; McCurdy, Christopher R; Boyer, Edward W

    2008-02-01

    Salvia divinorum and Mitragyna speciosa ("Kratom"), two unscheduled dietary supplements whose active agents are opioid receptor agonists, have discrete psychoactive effects that have contributed to their increasing popularity. Salvia divinorum contains the highly selective kappa- opioid receptor agonist salvinorin A; this compound produces visual hallucinations and synesthesia. Mitragynine, the major alkaloid identified from Kratom, has been reported as a partial opioid agonist producing similar effects to morphine. An interesting minor alkaloid of Kratom, 7-hydroxymitragynine, has been reported to be more potent than morphine. Both Kratom alkaloids are reported to activate supraspinal mu- and delta- opioid receptors, explaining their use by chronic narcotics users to ameliorate opioid withdrawal symptoms. Despite their widespread Internet availability, use of Salvia divinorum and Kratom represents an emerging trend that escapes traditional methods of toxicologic monitoring. The purpose of this article is to familiarize toxicologists and poison control specialists with these emerging psychoactive dietary supplements.

  7. Involvement of mu opioid receptors of periaqueductal gary (PAG) in acupuncture inhibition of noxious blood pressure response in rabbits.

    Science.gov (United States)

    Gao, M; Xu, W; Chen, W; He, L

    1994-01-01

    Strong electric shock stimulation of the rabbit front paw elicited a pressor blood pressure response regarded as noxious response. Ligands of mu opioid receptors were microinjected into the PAG to observe their effects on acupunture inhibition of the pressor response. (1) Ohmefentanyl (OMF), a mu agonist, significantly attenuated the pressor response. Mu antagonist TCTAP greatly enhanced the pressor response. (2) Electroacupuncture (EA) significantly inhibited the pressor response, the inhibition being readily reversed by TCTAP. The response after TCTAP was significantly greater than that of the control before EA. The results suggest that noxious stimulation is able to activate the mu opioid receptor of the PAG to modulate the noxious response and EA is able to enhance the activation.

  8. Molecular modeling study of the differential ligand-receptor interaction at the μ, δ and κ opioid receptors

    Science.gov (United States)

    Filizola, Marta; Carteni-Farina, Maria; Perez, Juan J.

    1999-07-01

    3D models of the opioid receptors μ, δ and κ were constructed using BUNDLE, an in-house program to build de novo models of G-protein coupled receptors at the atomic level. Once the three opioid receptors were constructed and before any energy refinement, models were assessed for their compatibility with the results available from point-site mutations carried out on these receptors. In a subsequent step, three selective antagonists to each of three receptors (naltrindole, naltrexone and nor-binaltorphamine) were docked onto each of the three receptors and subsequently energy minimized. The nine resulting complexes were checked for their ability to explain known results of structure-activity studies. Once the models were validated, analysis of the distances between different residues of the receptors and the ligands were computed. This analysis permitted us to identify key residues tentatively involved in direct interaction with the ligand.

  9. The endogenous mu-opioid receptor agonists endomorphins 1 and 2 have novel hypotensive activity in the rabbit.

    Science.gov (United States)

    Champion, H C; Zadina, J E; Kastin, A J; Hackler, L; Ge, L J; Kadowitz, P J

    1997-06-27

    The endogenous peptides endomorphins 1 and 2 are newly isolated, potent, and selective mu-opioid receptor agonists. In the present study, responses to the endomorphin peptides were investigated in the systemic vascular bed of the rabbit. Endomorphins 1 and 2 induced dose-related decreases in systemic arterial pressure when injected in doses of 1-30 nmol/kg i.v. In terms of relative vasodepressor activity, endomorphins 1 and 2 were similar to the ORL1 receptor ligand, nociceptin (Orphanin FQ), and met-enkephalin in decreasing systemic arterial pressure. Vasodepressor responses to endomorphins 1 and 2 were inhibited by the opioid receptor antagonist, naloxone, in a dose of 2 mg/kg i.v. These results demonstrate that endomorphins 1 and 2 have significant naloxone-sensitive, vasodepressor activity in the rabbit.

  10. Interaction of trimebutine and Jo-1196 (fedotozine) with opioid receptors in the canine ileum

    Energy Technology Data Exchange (ETDEWEB)

    Allescher, H.D.; Ahmad, S.; Classen, M.; Daniel, E.E. (Technical Univ., Munich, (West Germany))

    1991-05-01

    Receptor binding of the opioid receptor antagonist, ({sup 3}H)diprenorphine, which has a similar affinity to the various opioid receptor subtypes, was characterized in subcellular fractions derived from either longitudinal or circular smooth muscle of the canine small intestine with their plexuses (myenteric plexus and deep muscular plexus, respectively) attached. The distribution of opioid binding activity showed a good correlation in the different fractions with the binding of the neuronal marker ({sup 3}H)saxitoxin but no correlation to the smooth muscle plasma membrane marker 5'-nucleotidase. The saturation data (Kd = 0.12 +/- 0.04 nM and maximum binding = 400 +/- 20 fmol/mg) and the data from kinetic experiments (Kd = 0.08 nmol) in the myenteric plexus were in good agreement with results obtained previously from the circular muscle/deep muscular plexus preparation. Competition experiments using selective drugs for mu (morphiceptin-analog (N-MePhe3-D-Pro4)-morphiceptin), delta (D-Pen2,5-enkephalin) and kappa (dynorphin 1-13, U50488-H) ligands showed the existence of all three receptor subtypes. The existence of kappa receptors was confirmed in saturation experiments using ({sup 3}H) ethylketocycloazocine as labeled ligand. Two putative opioid agonists, with effects on gastrointestinal motility, trimebutine and JO-1196 (fedotozin), were also examined. Trimebutine (Ki = 0.18 microM), Des-Met-trimebutine (Ki = 0.72 microM) and Jo-1196 (Ki = 0.19 microM) displaced specific opiate binding. The relative affinity for the opioid receptor subtypes was mu = 0.44, delta = 0.30 and kappa = 0.26 for trimebutine and mu = 0.25, delta = 0.22 and kappa = 0.52 for Jo-1196.

  11. Morphine protects against methylmercury intoxication: a role for opioid receptors in oxidative stress?

    Directory of Open Access Journals (Sweden)

    Allan Costa-Malaquias

    Full Text Available Mercury is an extremely dangerous environmental contaminant responsible for episodes of human intoxication throughout the world. Methylmercury, the most toxic compound of this metal, mainly targets the central nervous system, accumulating preferentially in cells of glial origin and causing oxidative stress. Despite studies demonstrating the current exposure of human populations, the consequences of mercury intoxication and concomitant use of drugs targeting the central nervous system (especially drugs used in long-term treatments, such as analgesics are completely unknown. Morphine is a major option for pain management; its global consumption more than quadrupled in the last decade. Controversially, morphine has been proposed to function in oxidative stress independent of the activation of the opioid receptors. In this work, a therapeutic concentration of morphine partially protected the cellular viability of cells from a C6 glioma cell line exposed to methylmercury. Morphine treatment also reduced lipid peroxidation and totally prevented increases in nitrite levels in those cells. A mechanistic study revealed no alteration in sulfhydryl groups or direct scavenging at this opioid concentration. Interestingly, the opioid antagonist naloxone completely eliminated the protective effect of morphine against methylmercury intoxication, pointing to opioid receptors as the major contributor to this action. Taken together, the experiments in the current study provide the first demonstration that a therapeutic concentration of morphine is able to reduce methylmercury-induced oxidative damage and cell death by activating the opioid receptors. Thus, these receptors may be a promising pharmacological target for modulating the deleterious effects of mercury intoxication. Although additional studies are necessary, our results support the clinical safety of using this opioid in methylmercury-intoxicated patients, suggesting that normal analgesic doses could

  12. A novel, potent, oral active and safe antinociceptive pyrazole targeting kappa opioid receptors.

    Science.gov (United States)

    Trevisan, Gabriela; Rossato, Mateus F; Walker, Cristiani I B; Oliveira, Sara M; Rosa, Fernanda; Tonello, Raquel; Silva, Cássia R; Machado, Pablo; Boligon, Aline A; Martins, Marcos A P; Zanatta, Nilo; Bonacorso, Hélio G; Athayde, Margareth L; Rubin, Maribel A; Calixto, João B; Ferreira, Juliano

    2013-10-01

    Pyrazole compounds are an intriguing class of compounds with potential analgesic activity; however, their mechanism of action remains unknown. Thus, the goal of this study was to explore the antinociceptive potential, safety and mechanism of action of novel 1-pyrazole methyl ester derivatives, which were designed by molecular simplification, using in vivo and in vitro methods in mice. First, tree 1-pyrazole methyl ester derivatives (DMPE, MPFE, and MPCIE) were tested in the capsaicin test and all presented antinociceptive effect; however the MPClE (methyl 5-trichloromethyl-3-methyl-1H-pyrazole-1-carboxylate) was the most effective. Thus, we selected this compound to assess the effects and mechanisms in subsequent pain models. MPCIE produced antinociception when administered by oral, intraperitoneal, intrathecal and intraplantar routes and was effective in the capsaicin and the acetic acid-induced nociception tests. Moreover, this compound reduced the hyperalgesia in diverse clinically-relevant pain models, including postoperative, inflammatory, and neuropathic nociception in mice. The antinociception produced by orally administered MPClE was mediated by κ-opioid receptors, since these effects were prevented by systemically pre-treatment with naloxone and the κ-opioid receptor antagonist nor-binaltorphimine. Moreover, MPCIE prevented binding of the κ-opioid ligand [(3)H]-CI-977 in vitro (IC₅₀ of 0.68 (0.32-1.4) μM), but not the TRPV1 ([(3)H]-resiniferatoxin) or the α₂-adrenoreceptor ([(3)H]-idazoxan) binding. Regarding the drug-induced side effects, oral administration of MPClE did not produce sedation, constipation or motor impairment at its active dose. In addition, MPCIE was readily absorbed after oral administration. Taken together, these results demonstrate that MPClE is a novel, potent, orally active and safe analgesic drug that targets κ-opioid receptors.

  13. Opioid Receptor Antagonists in the Treatment of Alcoholism.

    Science.gov (United States)

    Serecigni, Josep Guardia

    2015-09-29

    Objetivos: A partir de los recientes progresos en la farmacoterapia del alcoholismo, hemos efectuado una revisión sobre los fármacos antagonistas de los receptores opioides, que tienen aprobada la indicación para el tratamiento del alcoholismo, como son naltrexona y nalmefeno. Metodología: Hemos revisado más de 100 publicaciones sobre péptidos y receptores opioides, el efecto de los fármacos antagonistas de los receptores opioides sobre el consumo de alcohol, tanto en animales como en humanos, tanto en el laboratorio como para el tratamiento del alcoholismo. También se describen las características farmacológicas de naltrexona y de nalmefeno y su utilidad en la práctica clínica. Resultados: Múltiples evidencias han demostrado la eficacia de naltrexona y nalmefeno para reducir el consumo de alcohol, tanto en animales de laboratorio como también en personas estudiadas en situación de bar experimental, aunque debido al diferente perfil receptorial, nalmefeno ha sido relacionado con una mayor eficacia para la reducción del consumo de alcohol, en ratas que presentan dependencia del alcohol. Además, un gran número de ensayos clínicos controlados han demostrado la eficacia de naltrexona para la prevención de recaídas, en personas que presentan un trastorno por dependencia del alcohol. Ensayos clínicos controlados recientes han demostrado la eficacia de nalmefeno “a demanda” para reducir el consumo de alcohol, en personas que presentan un trastorno por dependencia del alcohol de baja gravedad. Conclusiones: Tanto naltrexona como nalmefeno han demostrado ser fármacos seguros, bien tolerados, de manejo sencillo, y eficaces para el tratamiento del trastorno por dependencia del alcohol, (actualmente llamado trastorno por consumo de alcohol). A partir de recientes ensayos clínicos controlados se ha comprobado que nalmefeno produce una reducción significativa del consumo de alcohol, lo cual supone un nuevo objetivo que amplía las posibilidades de tratamiento para los pacientes que no desean la abstención continuada, sino una reducción de su consumo de alcohol.

  14. Opioid Receptors: Toward Separation of Analgesic from Undesirable Effects

    Science.gov (United States)

    Law, P.Y.; Reggio, Patricia H.; Loh, H.H.

    2013-01-01

    The use of opioid analgesics for pain has always been hampered by their many side effects; in particular, the addictive liability associated with chronic use. Recently, attempts to develop analgesic agents with reduced side effects have targeted either the putative opioid receptor splice variants or the receptor heterooligomers. This review discusses the potential for receptor splice variant- and the hetero-oligomer-based discovery of new opioid analgesics. We also examine an alternative approach of using receptor mutants for pain management. Finally, we discuss the role of the biased agonism observed and the recently reported opioid receptor crystal structures in guiding the future development of opioid analgesics PMID:23598157

  15. Opioid receptors: toward separation of analgesic from undesirable effects.

    Science.gov (United States)

    Law, Ping-Yee; Reggio, Patricia H; Loh, Horace H

    2013-06-01

    The use of opioid analgesics for pain has always been hampered by their many side effects; in particular, the addictive liability associated with chronic use. Recently, attempts to develop analgesic agents with reduced side effects have targeted either the putative opioid receptor splice variants or the receptor hetero-oligomers. This review discusses the potential for receptor splice variant- and the hetero-oligomer-based discovery of new opioid analgesics. We also examine an alternative approach of using receptor mutants for pain management. Finally, we discuss the role of the biased agonism observed and the recently reported opioid receptor crystal structures in guiding the future development of opioid analgesics.

  16. Using opioid receptors to expand the chemogenetic and optogenetic toolbox.

    Science.gov (United States)

    Damez-Werno, Diane M; Kenny, Paul J

    2015-05-20

    In this issue of Neuron, innovative new modifications to opioid receptors are used to expand the tools available to modulate neuronal activity. Vardy et al. (2015) describe a new "DREADD" chemogenetic tool based on the inhibitory κ opioid receptor (KORD) that can be used in conjunction with already-available DREADDs. Siuda et al. (2015) report the development of "opto-MOR," a light-activatable μ opioid receptor (MOR) chimera that can be used to better understand the complexities of MOR signaling.

  17. Opioid receptor desensitization: mechanisms and its link to tolerance

    Directory of Open Access Journals (Sweden)

    Stéphane eAllouche

    2014-12-01

    Full Text Available Opioid receptors are part of the class A of G-protein coupled receptors and the target of the opiates, the most powerful analgesic molecules used in clinic. During a protracted use, a tolerance to analgesic effect develops resulting in a reduction of the effectiveness. So understanding mechanisms of tolerance is a great challenge and may help to find new strategies to tackle this side effect. This review will summarize receptor-related mechanisms that could underlie tolerance especially receptor desensitization. We will focus on the latest data obtained on molecular mechanisms involved in opioid receptor desensitization: phosphorylation, receptor uncoupling, internalization and post-endocytic fate of the receptor.

  18. Role of the thalamic submedius nucleus histamine H1 and H 2 and opioid receptors in modulation of formalin-induced orofacial pain in rats.

    Science.gov (United States)

    Erfanparast, Amir; Tamaddonfard, Esmaeal; Taati, Mina; Dabaghi, Milad

    2015-10-01

    Histamine and opioid systems are involved in supraspinal modulation of pain. In this study, we investigated the effects of separate and combined microinjections of agonists and antagonists of histamine H1 and H2 and opioid receptors into the thalamic submedius (Sm) nucleus on the formalin-induced orofacial pain. Two guide cannulas were implanted into the right and left sides of the Sm in ketamine- and xylazine-anesthetized rats. Orofacial formalin pain was induced by subcutaneous injection of a diluted formalin solution (50 μl, 1.5%) into the vibrissa pad. Face rubbing durations were recorded at 3-min blocks for 45 min. Formalin produced a biphasic pain response (first phase: 0-3 min and second phase: 15-33 min). Separate and combined microinjections of histamine H1 and H2 receptor agonists, 2-pyridylethylamine (2-PEA) and dimaprit, respectively, and opioid receptor agonist, morphine, attenuated the second phase of pain. The analgesic effects induced by 2-PEA, dimaprit, and morphine were blocked by prior microinjections of fexofenadine (a histamine H1 receptor antagonist), famotidine (a histamine H2 receptor antagonist), and naloxone (an opioid receptor antagonist), respectively. Naloxone also prevented 2-PEA- and dimaprit-induced antinociception, and the analgesic effect induced by morphine was inhibited by fexofenadine and famotidine. These results showed the involvement of histamine H1 and H2 and opioid receptors in the Sm modulation of orofacial pain. Opioid receptor might be involved in analgesia induced by activation of histamine H1 and H2 receptors and vice versa.

  19. Influence of intramuscular heat stimulation on modulation of nociception: complex role of central opioid receptors in descending facilitation and inhibition.

    Science.gov (United States)

    You, Hao-Jun; Lei, Jing; Ye, Gang; Fan, Xiao-Li; Li, Qiang

    2014-10-01

    It has been reported that the threshold to activate 'silent' or inactive descending facilitation of nociception is lower than that of descending inhibition. Thus, the development of pain therapy to effectively drive descending inhibition alone, without the confounding influences of facilitation is a challenge. To address this issue we investigated the effects of intramuscular stimulation with a heating-needle on spinal nociception, assessed by measuring nociceptive paw withdrawal reflex in rats. Additionally, involvement of the thalamic 'nociceptive discriminators' (thalamic mediodorsal (MD) and ventromedial (VM) nuclei), and opioid-mediated mechanisms were further explored. Descending facilitation and inhibition were elicited by 46°C noxious heating-needle stimulation, and were regulated by thalamic MD and VM nuclei, respectively. In contrast, innocuous heating-needle stimulation at a temperature of 43°C elicited descending inhibition modulated by the thalamic VM nucleus alone. Microinjection of μ/δ/κ-opioid receptor antagonists β-funaltrexamine hydrochloride/naltrindole/nor-binaltorphimine, into the VM nucleus attenuated the 46°C intramuscular heating-needle stimulation-evoked descending inhibition, whereas treatment of the MD nucleus with β-funaltrexamine hydrochloride significantly decreased the descending facilitation. By contrast, descending inhibition evoked by 43°C heating-needle stimulation was only depressed by naltrindole, as opposed to μ- and κ-opioid receptor antagonists, which failed to influence descending inhibition. The present study reveals distinct roles of μ-opioid receptors in the function of thalamic MD and VM nuclei,which exert facilitatory and inhibitory actions on nociception. Furthermore, innocuous, but not noxious, intramuscular heating-needle stimulation targeting δ-opioid receptors is suggested to be a promising avenue for the effective inhibition of pain.

  20. The stereoisomer (+)-naloxone potentiates G-protein coupling and feeding associated with stimulation of mu opioid receptors in the parabrachial nucleus.

    Science.gov (United States)

    Chaijale, Nayla N; Aloyo, Vincent J; Simansky, Kenny J

    2013-03-01

    Classically, opioids produce their effects by activating Gi-proteins that inhibit adenylate cyclase activity. Previous studies proposed that mu-opioid receptors can also stimulate adenylate cyclase due to an initial transient coupling to Gs-proteins. Treatment with ultra-low doses of the nonselective opioid antagonist (-)-naloxone or its inactive enantiomer (+)-naloxone blocks this excitatory effect and enhances Gi-coupling. Previously we reported that infusion of the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Glycinol5]-Enkephalin (DAMGO) into the mu-opioid receptor expressing lateral parabrachial nucleus increases feeding. Pretreatment with (-)-naloxone blocks this effect. We used this parabrachial circuit as a model to assess cellular actions of ultra-low doses of (-)-naloxone and (+)-naloxone in modifying the effects of DAMGO. Our results showed that an ultra-low concentration of (-)-naloxone (0.001 nM) and several concentrations of (+)-naloxone (0.01-10 nM) enhanced DAMGO-stimulated guanosine-5'-0-(γ-thio)-triphosphate incorporation in parabrachial sections in vitro. Further, we analyzed the relevance of these effects in vivo. In the present study, we show that (+)-naloxone can potentiate DAMGO-induced feeding at doses at which (-)-naloxone was an antagonist. These results implicated (+)-naloxone as a novel tool for studying mu-opioid receptor functions and suggest that (+)-naloxone may have therapeutic value to enhance clinical actions of opiate drugs.

  1. The kappa-opioid receptor is involved in the stimulating effect of nicotine on adrenocortical activity but not in nicotine induced anxiety.

    Science.gov (United States)

    Marco, Eva Maria; Llorente, Ricardo; Pérez-Alvarez, Laura; Moreno, Enrique; Guaza, Carmen; Viveros, Maria Paz

    2005-09-01

    The kappa (kappa) opioid system appears to interact with nicotine in the modulation of locomotion and addiction related processes. In this study we have investigated the possible implication of the kappa-opioid system in the effects of nicotine on anxiety and adrenocortical activity. In two different experiments, we analysed the possible interaction between nicotine (0.5 mg/kg i.p.) and either the kappa-opioid receptor antagonist nor-binaltorphimine (5 mg/kg i.p.) or the kappa-opioid receptor agonist U50,488H (1 mg/kg s.c.). Behavioural and endocrine experiments were performed in different groups of animals. Animals were exposed to the holeboard immediately followed by the plus-maze. Serum corticosterone levels were determined by radioimmunoassay. Nicotine induced an anxiogenic-like effect in the plus-maze and a significant decrease of holeboard activity. The anxiogenic-like effect in the plus-maze was not modified by any of the kappa-opioid receptor ligands. Nicotine also induced a significant increase in the corticosterone levels, and the kappa antagonist, which did not exert any effect per se, antagonised this effect. The kappa-agonist U50,488H induced a significant increase in corticosterone concentration when administered alone. We provide the first evidence for the involvement of the kappa-opioid receptor in the stimulatory effect of nicotine on adrenocortical activity.

  2. δ-OPIOID RECEPTOR ADAPTATION IN NEUROBLASTOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    D-M,Chuang; M.Belchers; J.Barg; J.Rowinski; G.Clark; C.A.Gloeckner; A.Ho; X-M.Gao; C.J.Coscia

    1993-01-01

    The mechanisms underlying tolerance and dependence arising from chronic opioid exposure are poorly understood. However, the development of neuroblastoma and neurohybrid cell culturea, has provided a simplified model for the atudy of opioid receptor adaptation. Using neuroblastoma NG108-15 cells,

  3. Central delta-opioid receptor interactions and the inhibition of reflex urinary bladder contractions in the rat.

    Science.gov (United States)

    Dray, A.; Nunan, L.; Wire, W.

    1985-01-01

    The in vivo effects of a number of opioid agonists and antagonists were studied on the spontaneous reflex contractions of the urinary bladder recorded isometrically in the rat anesthetized with urethane. All substances were administered into the central nervous system by the intracereboventricular (i.c.v.) or spinal intrathecal (i.t.) route. The conformationally restricted enkephalin analogues [2-D-penicillamine, 5-L-cysteine] enkephalin (DPLCE), [2-D-penicillamine, 5-L-penicillamine] enkephalin (DPLPE) and [2-D-penicillamine, 5-D-penicillamine] enkephalin (DPDPE) produced dose-related inhibition of reflex bladder contractions when administered by the i.c.v. or i.t. route. Both the novel delta-opioid receptor antagonist ICI 154,129 (200-600 micrograms) [N,N-bisallyl-Tyr-Gly-Gly-Psi-(CH2S)-Phe-Leu-OH) and ICI 174,864 (1-3 micrograms) [N,N-dially-Tyr-Aib-Aib-Phe-Leu-OH: Aib = alpha-aminoisobutyric acid] attenuated or abolished the effects of DPLCE, DPLPE and DPDPE when administered by the i.c.v. or i.t. route. The antagonism observed was selective since the equipotent inhibition produced by the mu-opioid receptor agonist [D-Ala2, Me-Phe4, Gly(ol)5] enkephalin (DAGO) was unaffected. Overall, ICI 154,129 was considerably weaker than ICI 174,864 and both antagonists inhibited bladder activity at doses higher than those required to demonstrate delta-receptor antagonism. Further studies of the agonistic effect of ICI 174,864 showed that it was insensitive to low doses of naloxone (2 micrograms, i.c.v. or i.t.) but could be abolished by higher (10-15 micrograms) doses of naloxone. These observations suggested that the agonistic effect of ICI 174,864 was not mediated by mu-opioid receptor. beta-Endorphin (0.2-1.0 micrograms, i.c.v.) inhibited bladder contractions but following recovery from this effect, appeared to prevent the expression of delta-receptor antagonism by ICI 174,864. In addition a previously subthreshold dose of ICI 174,864 now exhibited marked agonistic

  4. Methylphenidate and μ opioid receptor interactions: a pharmacological target for prevention of stimulant abuse.

    Science.gov (United States)

    Zhu, Jinmin; Spencer, Thomas J; Liu-Chen, Lee-Yuan; Biederman, Joseph; Bhide, Pradeep G

    2011-01-01

    Methylphenidate (MPH) is one of the most commonly used and highly effective treatments for attention deficit hyperactivity disorder (ADHD) in children and adults. As the therapeutic use of MPH has increased, so has its abuse and illicit street-use. Yet, the mechanisms associated with development of MPH-associated abuse and dependence are not well understood making it difficult to develop methods to help its mitigation. As a result, many ADHD patients especially children and youth, that could benefit from MPH treatment do not receive it and risk lifelong disabilities associated with untreated ADHD. Therefore, understanding the mechanisms associated with development of MPH addiction and designing methods to prevent it assume high public health significance. Using a mouse model we show that supra-therapeutic doses of MPH produce rewarding effects (surrogate measure for addiction in humans) in a conditioned place preference paradigm and upregulate μ opioid receptor (MOPR) activity in the striatum and nucleus accumbens, brain regions associated with reward circuitry. Co-administration of naltrexone, a non-selective opioid receptor antagonist, prevents MPH-induced MOPR activation and the rewarding effects. The MPH-induced MOPR activation and rewarding effect require activation of the dopamine D1 but not the D2-receptor. These findings identify the MOPR as a potential target for attenuating rewarding effects of MPH and suggest that a formulation that combines naltrexone with MPH could be a useful pharmaceutical approach to alleviate abuse potential of MPH and other stimulants.

  5. Sucrose-induced analgesia in mice: Role of nitric oxide and opioid receptor-mediated system

    Directory of Open Access Journals (Sweden)

    Abtin Shahlaee

    2013-01-01

    Full Text Available Background: The mechanism of action of sweet substance-induced analgesia is thought to involve activation of the endogenous opioid system. The nitric oxide (NO pathway has a pivotal role in pain modulation of analgesic compounds such as opioids. Objectives: We investigated the role of NO and the opioid receptor-mediated system in the analgesic effect of sucrose ingestion in mice. Materials and Methods: We evaluated the effect of intraperitoneal administration of 10 mg/kg of NO synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME and 20 mg/kg of opioid receptor antagonist, naltrexone on the tail flick response in sucrose ingesting mice. Results: Sucrose ingestion for 12 days induced a statistically significant increase in the latency of tail flick response which was unmodified by L-NAME, but partially inhibited by naltrexone administration. Conclusions: Sucrose-induced nociception may be explained by facilitating the release of endogenous opioid peptides. Contrary to some previously studied pain models, the NO/cyclic guanosine monophosphate (cGMP pathway had no role in thermal hyperalgesia in our study. We recommend further studies on the involvement of NO in other animals and pain models.

  6. The μ-opioid receptor gene and smoking initiation and nicotine dependence

    Directory of Open Access Journals (Sweden)

    Kendler Kenneth S

    2006-08-01

    Full Text Available Abstract The gene encoding the mu-opioid receptor (OPRM1 is reported to be associated with a range of substance dependence. Experiments in knockout mice indicate that the mu-opioid receptor may mediate reinforcing effects of nicotine. In humans, opioid antagonist naltrexone may reduce the reinforcing effects of tobacco smoking. Additionally, the OPRM1 gene is located in a region showing linkage to nicotine dependence. The OPRM1 is thus a plausible candidate gene for smoking behavior. To investigate whether OPRM1 contributes to the susceptibility of smoking initiation and nicotine dependence, we genotyped 11 SNPs in the gene for 688 Caucasian subjects of lifetime smokers and nonsmokers. Three SNPs showed nominal significance for smoking initiation and one reached significance for nicotine dependence. The global test for three-marker (rs9479757-rs2075572-rs10485057 haplotypes was significant for smoking initiation (p = 0.0022. The same three-marker haplotype test was marginal (p = 0.0514 for nicotine dependence. These results suggest that OPRM1 may be involved in smoking initiation and nicotine dependence.

  7. Peripheral δ-opioid receptors attenuate the exercise pressor reflex.

    Science.gov (United States)

    Leal, Anna K; Yamauchi, Katsuya; Kim, Joyce; Ruiz-Velasco, Victor; Kaufman, Marc P

    2013-10-15

    In rats with ligated femoral arteries, the exercise pressor reflex is exaggerated, an effect that is attenuated by stimulation of peripheral μ-opioid receptors on group IV metabosensitive afferents. In contrast, δ-opioid receptors are expressed mostly on group III mechanosensitive afferents, a finding that prompted us to determine whether stimulation of these opioid receptors could also attenuate the exaggerated exercise pressor reflex in "ligated" rats. We found femoral arterial injection of [D-Pen2,D-Pen5]enkephalin (DPDPE; 1.0 μg), a δ-opioid agonist, significantly attenuated the pressor and cardioaccelerator components of the exercise pressor reflex evoked by hindlimb muscle contraction in both rats with ligated and patent femoral arteries. DPDPE significantly decreased the pressor responses to muscle mechanoreflex activation, evoked by tendon stretch, in ligated rats only. DPDPE (1.0 μg) had no effect in either group on the pressor and cardioaccelerator responses to capsaicin (0.2 μg), which primarily stimulates group IV afferents. DPDPE (1.0 μg) had no effect on the pressor and cardioaccelerator responses to lactic acid (24 mM), which stimulates group III and IV afferents, in rats with patent femoral arteries but significantly decreased the pressor response in ligated rats. Western blots revealed the amount of protein comprising the δ-opioid receptor was greater in dorsal root ganglia innervating hindlimbs with ligated femoral arteries than in dorsal root ganglia innervating hindlimbs with patent femoral arteries. Our findings support the hypothesis that stimulation of δ-opioid receptors on group III afferents attenuated the exercise pressor reflex.

  8. ZFOR2, a new opioid receptor-like gene from the teleost zebrafish (Danio rerio).

    Science.gov (United States)

    Barrallo, A; González-Sarmiento, R; Alvar, F; Rodríguez, R E

    2000-12-08

    A new opioid receptor-like (ZFOR2) has been cloned and characterized in an anamniote vertebrate, the teleost zebrafish (Danio rerio). ZFOR2 encodes a 384-amino-acid protein with seven potential transmembrane domains, and its predicted amino acid sequence presents an overall 74% degree of identity to mammalian mu opioid receptors. Its inclusion in a dendrogram generated from the alignment of the opioid receptor's protein sequences, confirms its classification as a mu opioid receptor. Divergences in sequence are greater in the regions corresponding to extracellular loops, suggesting possible differences in ligand selectivity with respect to the classical mu opioid receptors. The genomic structure of ZFOR2 is also highly conserved throughout the phylogenetic scale, supporting the origin of opioid receptors early in evolution. Nevertheless, ZFOR2 lacks the fourth exon found in human and rodent mu opioid receptors, that is known to be involved in desensibilization and internalization processes.

  9. Striatal μ-opioid receptor availability predicts cold pressor pain threshold in healthy human subjects

    DEFF Research Database (Denmark)

    Hagelberg, Nora; Aalto, Sargo; Tuominen, Lauri;

    2012-01-01

    Previous PET studies in healthy humans have shown that brain μ-opioid receptor activation during experimental pain is associated with reductions in the sensory and affective ratings of the individual pain experience. The aim of this study was to find out whether brain μ-opioid receptor binding...... at the resting state, in absence of painful stimulation, can be a long-term predictor of experimental pain sensitivity. We measured μ-opioid receptor binding potential (BP(ND)) with μ-opioid receptor selective radiotracer [(11)C]carfentanil and positron emission tomography (PET) in 12 healthy male subjects...... the potential associations between μ-opioid receptor BP(ND) and psychophysical measures. The results show that striatal μ-opioid receptor BP(ND) predicts cold pressor pain threshold, but not cold pressor pain tolerance or tactile sensitivity. This finding suggests that striatal μ-opioid receptor density...

  10. The Differential Effects of a Selective Kappa-Opioid Receptor Agonist, U50488, in Guinea Pig Heart Tissues

    Directory of Open Access Journals (Sweden)

    Chi-Feng Hung

    2015-01-01

    Full Text Available The differential effects of a selective kappa- (κ- opioid receptor agonist, U50488, were elucidated by monitoring the contraction of isolated guinea pig atrial and ventricular muscles. In electrically driven left atria, U50488 in nanomolar concentration range decreased the contractile force. Norbinaltorphimine (norBNI, a selective κ-receptor antagonist, and pertussis toxin (PTX abolished the negative inotropic effect of U50488. In contrast, the inhibitory effect was not affected by the pretreatment of atropine or propranolol. Even though U50488 exerted a negative inotropic effect in the left atrium, it did not affect the contractile force of the right atrium and ventricles paced at 2 Hz. Similarly, the beating rate of the spontaneously beating right atrium was also unaffected by U50488. These results indicate that the activation of κ-opioid receptors can only produce negative inotropic effect in left atria via activation of PTX-sensitive G protein in guinea pigs. The absence of negative inotropic effects in right atria and ventricles suggests that there may be a greater distribution of functional κ-opioid receptors in guinea pig left atria than in right atria and ventricles, and the distribution of the receptors may be species-specific.

  11. Lithium attenuated the behavioral despair induced by acute neurogenic stress through blockade of opioid receptors in mice.

    Science.gov (United States)

    Khaloo, Pegah; Sadeghi, Banafshe; Ostadhadi, Sattar; Norouzi-Javidan, Abbas; Haj-Mirzaian, Arya; Zolfagharie, Samira; Dehpour, Ahmad-Reza

    2016-10-01

    Major depressive disorder is disease with high rate of morbidity and mortality. Stressful events lead to depression and they can be used as a model of depression in rodents. In this study we aimed to investigate whether lithium modifies the stressed-induced depression through blockade of opioid receptors in mice. We used foot shock stress as stressor and forced swimming test (FST), tail suspension test (TST) and open field test (OFT) to evaluation the behavioral responses in mice. We also used naltrexone hydrochloride (as opioid receptor antagonist), and morphine (as opioid receptor agonist). Our results displayed that foot-shock stress significantly increased the immobility time in TST and FST but it could not change the locomotor behavior in OFT. When we combined the low concentrations of lithium and naltrexone a significant reduction in immobility time was seen in the FST and TST in comparison with control foot-shock stressed group administered saline only. Despite the fact that our data showed low concentrations of lithium, when administered independently did not significantly affect the immobility time. Also our data indicated that concurrent administration of lithium and naltrexone had no effect on open field test. Further we demonstrated that simultaneous administration of morphine and lithium reverses the antidepressant like effect of active doses of lithium. Our data acclaimed that we lithium can augment stressed-induced depression and opioid pathways are involved in this action.

  12. Layer selective presynaptic modulation of excitatory inputs to hippocampal CA1 by μ-opioid receptor activation

    OpenAIRE

    McQuiston, A. Rory

    2007-01-01

    Chronic and acute activation of μ-opioid receptors (MOR) in hippocampal CA1 disrupts rhythmic activity, alters activity-dependent synaptic plasticity and impairs spatial memory formation. In CA1, MORs act by hyperpolarizing inhibitory interneurons and suppressing inhibitory synaptic transmission. MOR modulation of inhibitory synaptic function translates into an increase in excitatory activity in all layers of CA1. However, the exact anatomical sites for MOR actions are not completely known. T...

  13. Nitric oxide and zinc-mediated protein assemblies involved in mu opioid receptor signaling.

    Science.gov (United States)

    Rodríguez-Muñoz, María; Garzón, Javier

    2013-12-01

    Opioids are among the most effective analgesics in controlling the perception of intense pain, although their continuous use decreases their potency due to the development of tolerance. The glutamate N-methyl-D-aspartate (NMDA) receptor system is currently considered to be the most relevant functional antagonist of morphine analgesia. In the postsynapse of different brain regions the C terminus of the mu-opioid receptor (MOR) associates with NR1 subunits of NMDARs, as well as with a series of signaling proteins, such as neural nitric oxide synthase (nNOS)/nitric oxide (NO), protein kinase C (PKC), calcium and calmodulin-dependent kinase II (CaMKII) and the mitogen-activated protein kinases (MAPKs). NO is implicated in redox signaling and PKC falls under the regulation of zinc metabolism, suggesting that these signaling elements might participate in the regulation of MOR activity by the NMDAR. In this review, we discuss the influence of redox signaling in the mechanisms whose plasticity triggers opioid tolerance. Thus, the MOR C terminus assembles a series of signaling proteins around the homodimeric histidine triad nucleotide-binding protein 1 (HINT1). The NMDAR NR1 subunit and the regulator of G protein signaling RGSZ2 bind HINT1 in a zinc-independent manner, with RGSZ2 associating with nNOS and regulating MOR-induced production of NO. This NO acts on the RGSZ2 zinc finger, providing the zinc ions that are required for PKC/Raf-1 cysteine-rich domains to simultaneously bind to the histidines present in the HINT1 homodimer. The MOR-induced activation of phospholipase β (PLCβ) regulates PKC, which increases the reactive oxygen species (ROS) by acting on NOX/NADPH, consolidating the long-term PKC activation required to regulate the Raf-1/MAPK cascade and enhancing NMDAR function. Thus, RGSZ2 serves as a Redox Zinc Switch that converts NO signals into Zinc signals, thereby modulating Redox Sensor Proteins like PKCγ and Raf-1. Accordingly, redox-dependent and

  14. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play.

    Science.gov (United States)

    Manduca, Antonia; Lassalle, Olivier; Sepers, Marja; Campolongo, Patrizia; Cuomo, Vincenzo; Marsicano, Giovanni; Kieffer, Brigitte; Vanderschuren, Louk J M J; Trezza, Viviana; Manzoni, Olivier J J

    2016-01-01

    Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  15. Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play

    Directory of Open Access Journals (Sweden)

    Antonia Manduca

    2016-11-01

    Full Text Available Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R or mu-opioid receptor (MOR antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC. Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of mediates social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  16. β-adrenergic response modulated by κ-opioid receptor stimulation is attenuated in the cardiomyocytes of rats following chronic hypoxia

    Institute of Scientific and Technical Information of China (English)

    裴建明; 毕辉; 王跃民; 朱妙章; 周京军; 朱运龙

    2003-01-01

    Objective: To study cross-talk between β-opioid receptor and β-adrenoceptor through determination of the intracellular calcium ([Ca2+]i) and cAMP responses in ventricular myocytes of rats subjected to chronic hypoxia for 4 weeks.Methods: Electrically-induced [Ca2+]i transient was measured in single right ventricular myocytes isolated from hearts of chronically hypoxic rats and the age-matched normoxic rats, by using a spectrofluorometric method.Results: β-adrenoceptor stimulation with isoproterenol increased the electrically-induced [Ca2+]i transient and cAMP in myocytes of normoxic rats.U50,488H, a selective β-opioid receptor agonist, at dose (1 μmol/L) which itself had no effect on the [Ca2+]i transient and cAMP, significantly inhibited the effect of isoproterenol.This inhibition was completely abolished in the presence of nor-BNI, a selective κ-opioid receptor antagonist.In the ventricular myocytes of chronically hypoxic rats, the inhibition of U50,488H on the increased [Ca2+]i transient and cAMP with isoproterenol was blunted.Conclusion: Results indicate that the cross-talk between the κ-opioid receptor and β-adrenoceptor is attenuated in the right ventricular myocytes of chronically hypoxic rat.This may be a self-protective mechanism of the heart following chronic hypoxia, which prevents the further decrease of the cardiac function.

  17. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens.

    NARCIS (Netherlands)

    Hirose, N.; Murakawa, K.; Takada, K.; Oi, Y.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2005-01-01

    The effect of interactions among mu- and delta-opioid receptors, especially the putative delta(1)- and delta(2)-opioid receptors, in the nucleus accumbens on accumbal dopamine release was investigated in awake rats by in vivo brain microdialysis. In agreement with previous studies, perfusion of the

  18. [Endomorphins--endogenous ligands of the mu-opioid receptor].

    Science.gov (United States)

    Perlikowska, Renata; Fichna, Jakub; Janecka, Anna

    2009-01-01

    Two endogenous opioid peptides with extremely high mu-opioid receptor affinity and selectivity, endomorphin-1 and endomorphin-2, were: discovered and isolated from the mammalian brain in 1997. Endomorphins are amidated tetrapeptides, structurally different from so called typical opioids: enkephalins, dynorphins and endorphins. A protein precursor of endomorphins and a gene encoding their sequence remain unknown. Endomorphins are unable to cross the blood-brain barrier because of their low hydrophobicity. In animal models, these peptides turned out to be very potent in relieving neuropathic and inflammatory pain. In comparison with morphine, a prototype opioid receptor ligand, endomorphins produces less undesired side effects. In this article we describe the discovery of endomorphins, their cellular localization and functions in the organism, as well as their structure-activity relationships and biodegradation pathways.

  19. Desensitization of functional µ-opioid receptors increases agonist off-rate.

    Science.gov (United States)

    Williams, John T

    2014-07-01

    Desensitization of µ-opioid receptors (MORs) develops over 5-15 minutes after the application of some, but not all, opioid agonists and lasts for tens of minutes after agonist removal. The decrease in function is receptor selective (homologous) and could result from 1) a reduction in receptor number or 2) a decrease in receptor coupling. The present investigation used photolysis of two caged opioid ligands to examine the kinetics of MOR-induced potassium conductance before and after MOR desensitization. Photolysis of a caged antagonist, carboxynitroveratryl-naloxone (caged naloxone), blocked the current induced by a series of agonists, and the time constant of decline was significantly decreased after desensitization. The increase in the rate of current decay was not observed after partial blockade of receptors with the irreversible antagonist, β-chlornaltrexamine (β-CNA). The time constant of current decay after desensitization was never more rapid than 1 second, suggesting an increased agonist off-rate rather than an increase in the rate of channel closure downstream of the receptor. The rate of G protein-coupled K(+) channel (GIRK) current activation was examined using photolysis of a caged agonist, carboxynitrobenzyl-tyrosine-[Leu(5)]-enkephalin. After acute desensitization or partial irreversible block of MORs with β-CNA, there was an increase in the time it took to reach a peak current. The decrease in the rate of agonist-induced GIRK conductance was receptor selective and dependent on receptor number. The results indicate that opioid receptor desensitization reduced the number of functional receptor and that the remaining active receptors have a reduced agonist affinity.

  20. Noribogaine is a G-protein biased κ-opioid receptor agonist.

    Science.gov (United States)

    Maillet, Emeline L; Milon, Nicolas; Heghinian, Mari D; Fishback, James; Schürer, Stephan C; Garamszegi, Nandor; Mash, Deborah C

    2015-12-01

    Noribogaine is the long-lived human metabolite of the anti-addictive substance ibogaine. Noribogaine efficaciously reaches the brain with concentrations up to 20 μM after acute therapeutic dose of 40 mg/kg ibogaine in animals. Noribogaine displays atypical opioid-like components in vivo, anti-addictive effects and potent modulatory properties of the tolerance to opiates for which the mode of action remained uncharacterized thus far. Our binding experiments and computational simulations indicate that noribogaine may bind to the orthosteric morphinan binding site of the opioid receptors. Functional activities of noribogaine at G-protein and non G-protein pathways of the mu and kappa opioid receptors were characterized. Noribogaine was a weak mu antagonist with a functional inhibition constants (Ke) of 20 μM at the G-protein and β-arrestin signaling pathways. Conversely, noribogaine was a G-protein biased kappa agonist 75% as efficacious as dynorphin A at stimulating GDP-GTP exchange (EC50=9 μM) but only 12% as efficacious at recruiting β-arrestin, which could contribute to the lack of dysphoric effects of noribogaine. In turn, noribogaine functionally inhibited dynorphin-induced kappa β-arrestin recruitment and was more potent than its G-protein agonistic activity with an IC50 of 1 μM. This biased agonist/antagonist pharmacology is unique to noribogaine in comparison to various other ligands including ibogaine, 18-MC, nalmefene, and 6'-GNTI. We predict noribogaine to promote certain analgesic effects as well as anti-addictive effects at effective concentrations>1 μM in the brain. Because elevated levels of dynorphins are commonly observed and correlated with anxiety, dysphoric effects, and decreased dopaminergic tone, a therapeutically relevant functional inhibition bias to endogenously released dynorphins by noribogaine might be worthy of consideration for treating anxiety and substance related disorders.

  1. Broad spectrum analgesic efficacy of IBNtxA is mediated by exon 11-associated splice variants of the mu-opioid receptor gene

    Science.gov (United States)

    Wieskopf, Jeffrey S.; Pan, Ying-Xian; Marcovitz, Jaclyn; Tuttle, Alexander H.; Majumdar, Susruta; Pidakala, John

    2014-01-01

    Mu-opioids remain vastly important for the treatment of pain, and would represent ideal analgesics if their analgesic effects could be separated from their many side effects. A recently synthesized compound, iodobenzoylnaltrexamide (IBNtxA), acting at 6-transmembrane (6-TM) splice variants of the mu-opioid receptor gene, was shown to have potent analgesic actions against acute, thermal pain accompanied by a vastly improved side-effect profile compared to 7-TM-acting drugs such as morphine. Whether such analgesia can be seen in longer-lasting and non-thermal algesiometric assays is not known. The current study demonstrates potent and efficacious IBNtxA inhibition of a wide variety of assays, including inflammatory and neuropathic hypersensitivity and spontaneous pain. We further demonstrate the dependence of such analgesia on 6-TM mu-opioid receptor variants using isobolographic analysis and the testing of Oprm1 (the mu-opioid receptor gene) exon 11 null mutant mice. Finally, the effect of nerve damage (spared nerve injury) and inflammatory injury (complete Freund’s adjuvant) on expression of mu-opioid receptor variant genes in pain-relevant central nervous system loci was examined, revealing a downregulation of the mMOR-1D splice variant in the dorsal root ganglion after spared nerve injury. These findings are supportive of the potential value of 6-TM-acting drugs as novel analgesics. PMID:25093831

  2. Mu Opioid Receptor Gene: New Point Mutations in Opioid Addicts

    OpenAIRE

    Dinarvand, Amin; Goodarzi, Ali; Vousooghi, Nasim; Hashemi, Mehrdad; Dinarvand, Rasoul; Ostadzadeh, Fahimeh; Khoshzaban, Ahad; Zarrindast, Mohammad-Reza

    2014-01-01

    Introduction Association between single-nucleotide polymorphisms (SNPs) in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction. Methods 79 opioid-dependent subjects (55 males, 24 females) and 134 non-addict or control individuals (74 males, 60 females) participated in the study. Geno...

  3. Effect of prenatal methadone and ethanol on opioid receptor development in rats

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M.A.; Braun, R.L. (Loma Linda Univ., CA (United States))

    1991-03-11

    The current literature shows that the offspring of female rats exposed to methadone or ethanol display similar neurochemical and neurobehavioral alterations, and suggests that these drugs may be operating through a common mechanism. If this hypothesis is true, their effect on the endogenous opioid systems should be qualitatively similar. In this study virgin females were treated with methadone or 10% ethanol oral solution starting prior to conception and continued throughout gestation. When the offspring had reached 15 or 30 days of age they were sacrificed, the brain was removed and prepared for opioid receptor binding studies. ({sup 3}H)DAGO and ({sup 3}H)DADLE were used as ligands for the mu and delta receptors, respectively. These studies show significant treatment-related differences in both the number of mu and delta binding sites as well as in apparent receptor affinity. Significant sex- and age-related differences between treatments were also observed. These data show that methadone and ethanol, while manifesting some similar neurochemical and behavioral effects, have unique effects on opioid receptor binding, suggesting that they may be acting by different mechanisms.

  4. Ligand requirements for involvement of PKCε in synergistic analgesic interactions between spinal μ and δ opioid receptors

    Science.gov (United States)

    Schuster, D J; Metcalf, M D; Kitto, K F; Messing, R O; Fairbanks, C A; Wilcox, G L

    2015-01-01

    BACKGROUND AND PURPOSE We recently found that PKCε was required for spinal analgesic synergy between two GPCRs, δ opioid receptors and α2A adrenoceptors, co-located in the same cellular subpopulation. We sought to determine if co-delivery of μ and δ opioid receptor agonists would similarly result in synergy requiring PKCε. EXPERIMENTAL APPROACH Combinations of μ and δ opioid receptor agonists were co-administered intrathecally by direct lumbar puncture to PKCε-wild-type (PKCε-WT) and -knockout (PKCε-KO) mice. Antinociception was assessed using the hot-water tail-flick assay. Drug interactions were evaluated by isobolographic analysis. KEY RESULTS All agonists produced comparable antinociception in both PKCε-WT and PKCε-KO mice. Of 19 agonist combinations that produced analgesic synergy, only 3 required PKCε for a synergistic interaction. In these three combinations, one of the agonists was morphine, although not all combinations involving morphine required PKCε. Morphine + deltorphin II and morphine + deltorphin I required PKCε for synergy, whereas a similar combination, morphine + deltorphin, did not. Additionally, morphine + oxymorphindole required PKCε for synergy, whereas a similar combination, morphine + oxycodindole, did not. CONCLUSIONS AND IMPLICATIONS We discovered biased agonism for a specific signalling pathway at the level of spinally co-delivered opioid agonists. As the bias is only revealed by an appropriate ligand combination and cannot be accounted for by a single drug, it is likely that the receptors these agonists act on are interacting with each other. Our results support the existence of μ and δ opioid receptor heteromers at the spinal level in vivo. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24827408

  5. Synthesis and characterization of a dual kappa-delta opioid receptor agonist analgesic blocking cocaine reward behavior.

    Science.gov (United States)

    Váradi, András; Marrone, Gina F; Eans, Shainnel O; Ganno, Michelle L; Subrath, Joan J; Le Rouzic, Valerie; Hunkele, Amanda; Pasternak, Gavril W; McLaughlin, Jay P; Majumdar, Susruta

    2015-11-18

    3-Iodobenzoyl naltrexamine (IBNtxA) is a potent analgesic belonging to the pharmacologically diverse 6β-amidoepoxymorphinan group of opioids. We present the synthesis and pharmacological evaluation of five analogs of IBNtxA. The scaffold of IBNtxA was modified by removing the 14-hydroxy group, incorporating a 7,8 double bond and various N-17 alkyl substituents. The structural modifications resulted in analogs with picomolar affinities for opioid receptors. The lead compound (MP1104) was found to exhibit approximately 15-fold greater antinociceptive potency (ED50 = 0.33 mg/kg) compared with morphine, mediated through the activation of kappa- and delta-opioid receptors. Despite its kappa agonism, this lead derivative did not cause place aversion or preference in mice in a place-conditioning assay, even at doses 3 times the analgesic ED50. However, pretreatment with the lead compound prevented the reward behavior associated with cocaine in a conditioned place preference assay. Together, these results suggest the promise of dual acting kappa- and delta-opioid receptor agonists as analgesics and treatments for cocaine addiction.

  6. Local analgesic effect of tramadol is not mediated by opioid receptors in early postoperative pain in rats

    Directory of Open Access Journals (Sweden)

    Angela Maria Sousa

    2015-06-01

    Full Text Available BACKGROUND AND OBJECTIVES: Tramadol is known as a central acting analgesic drug, used for the treatment of moderate to severe pain. Local analgesic effect has been demonstrated, in part due to local anesthetic-like effect, but other mechanisms remain unclear. The role of peripheral opioid receptors in the local analgesic effect is not known. In this study, we examined role of peripheral opioid receptors in the local analgesic effect of tramadol in the plantar incision model. METHODS: Young male Wistar rats were divided into seven groups: control, intraplantar tramadol, intravenous tramadol, intravenous naloxone-intraplantar tramadol, intraplantar naloxone-intraplantar tramadol, intravenous naloxone-intravenous tramadol, and intravenous naloxone. After receiving the assigned drugs (tramadol 5 mg, naloxone 200 µg or 0.9% NaCl, rats were submitted to plantar incision, and withdrawal thresholds after mechanical stimuli with von Frey filaments were assessed at baseline, 10, 15, 30, 45 and 60 min after incision. RESULTS: Plantar incision led to marked mechanical hyperalgesia during the whole period of observation in the control group, no mechanical hyperalgesia were observed in intraplantar tramadol group, intraplantar naloxone-intraplantar tramadol group and intravenous naloxone-intraplantar tramadol. In the intravenous tramadol group a late increase in withdrawal thresholds (after 45 min was observed, the intravenous naloxone-intravenous tramadol group and intravenous naloxone remained hyperalgesic during the whole period. CONCLUSIONS: Tramadol presented an early local analgesic effect decreasing mechanical hyperalgesia induced by plantar incision. This analgesic effect was not mediated by peripheral opioid receptors.

  7. Central effect of SNC 80, a selective and systemically active delta-opioid receptor agonist, on gastrointestinal propulsion in the mouse.

    Science.gov (United States)

    Broccardo, M; Improta, G; Tabacco, A

    1998-01-26

    We investigated the effects of SNC 80 ((+)-4-[alphaR)-alpha-((2S,5R)-4-ally1-2,5-dimethyl-1-pipera zinyl)-3-methoxybenzyl]-N,N-diethylbenzamide), a new highly selective, non-peptidic and systemically active delta-opioid receptor agonist, on gastrointestinal and colonic propulsion in mice. Intraperitoneally (i.p.) SNC 80 (1, 10 and 30 mg/kg) significantly decreased gastrointestinal propulsion measured as transit of an orally administered charcoal meal. Pretreatment with the delta-opioid receptor antagonist, naltrindole (1 mg/kg) subcutaneously (s.c.), with the non-selective opioid antagonist, naloxone (5 mg/kg, s.c.) or the mu1-opioid receptor antagonist, naloxonazine (10 mg/kg, i.p.), significantly decreased the antitransit effect of SNC 80 but pretreatment with the non-selective opioid antagonist, naloxone methiodide (5 mg/kg, s.c.), a quaternary salt of naloxone that does not cross the blood-brain barrier, did not. SNC 80 (1, 5 and 10 mg/kg, i.p.), produced dose-related inhibition of colonic propulsion measured as the increase in mean expulsion time of a 3 mm glass bead placed in the distal colon. Naloxone (5 mg/kg, s.c.) and naltrindole (1 mg/kg, s.c.), completely antagonized the colonic antipropulsive effect of SNC 80. In contrast, naloxone methiodide (5 mg/kg, s.c.), left the inhibitory effect of i.p. SNC 80 on colonic function unchanged. These results suggest that peripherally injected SNC 80 inhibits gastrointestinal transit and colonic propulsion. It does so mainly through a central mechanism. Although the gastrointestinal antitransit effect of SNC 80 is naltrindole- and naloxonazine-sensitive, we cannot exclude an opioid-independent mechanism. The colonic antipropulsive effect of SNC 80 confirms the inhibitory role of the central delta-opioid receptor system on colonic motility.

  8. Differential effects of exercise on brain opioid receptor binding and activation in rats.

    Science.gov (United States)

    Arida, Ricardo Mario; Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Cavalheiro, Esper Abrão; Zavala-Tecuapetla, Cecilia; Brand, Serge; Rocha, Luisa

    2015-01-01

    Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short- (acute) or long-term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute-exercise animals and the opposite was found in the chronic-exercise animals. The binding of [(35) S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli. We characterized the binding and G protein activation of mu, kappa, and delta opioid receptors in several brain regions following acute (7 days) and chronic (30 days) exercise. Higher opioid receptor binding was observed in the acute exercise animal group and opposite findings in the chronic exercise group. Higher G protein activation under basal conditions was noted in rats submitted to chronic exercise, as visible in the depicted pseudo-color autoradiograms.

  9. Studies Toward the Pharmacophore of Salvinorin A, a Potent Kappa Opioid Receptor Agonist

    OpenAIRE

    Munro, Thomas A.; Mark A. Rizzacasa; Roth, Bryan L.; Toth, Beth A.; Yan, Feng

    2005-01-01

    Salvinorin A (1), from the sage Salvia divinorum, is a potent and selective kappa opioid receptor (KOR) agonist. We screened other salvinorins and derivatives for binding affinity and functional activity at opioid receptors. Our results suggest that the methyl ester and furan ring are required for activity, but that the lactone and ketone functionalities are not. Other salvinorins showed negligible binding affinity at the KOR. None of the compounds bound to mu or delta opioid receptors.

  10. Studies toward the pharmacophore of salvinorin A, a potent kappa opioid receptor agonist.

    Science.gov (United States)

    Munro, Thomas A; Rizzacasa, Mark A; Roth, Bryan L; Toth, Beth A; Yan, Feng

    2005-01-27

    Salvinorin A (1), from the sage Salvia divinorum, is a potent and selective kappa opioid receptor (KOR) agonist. We screened other salvinorins and derivatives for binding affinity and functional activity at opioid receptors. Our results suggest that the methyl ester and furan ring are required for activity but that the lactone and ketone functionalities are not. Other salvinorins showed negligible binding affinity at the KOR. None of the compounds bound to mu or delta opioid receptors.

  11. Fluoxetine alters mu opioid receptor expression in obese Zucker rat extrahypothalamic regions.

    Science.gov (United States)

    Churruca, Itziar; Portillo, María P; Zumalabe, José María; Macarulla, María T; Sáenz Del Burgo, Laura; Zarate, Jon; Echevarría, Enrique

    2006-03-01

    The aim of this article was to describe the effects of chronic fluoxetine on mu opioid receptor expression in obese Zucker rat extrahypothalamic regions. Male obese Zucker (fa/fa) rats were administered with fluoxetine (10 mg/kg; i.p.) daily for two weeks. Brain regional immunostaining for mu opioid receptor was carried out. An increase in the numbers of neural cells immunostained for mu opioid receptor in caudatus-putamen, dentate gyrus, lateral septum, amygdala, and frontal, parietal, and piriform cortices was observed. Increased mu opioid receptor expression in the central amygdaloid nuclei suggests a decreased opioidergic tone at this level that could be involved in fluoxetine anorectic action.

  12. δ-Opioid receptor activation stimulates normal diet intake but conversely suppresses high-fat diet intake in mice.

    Science.gov (United States)

    Kaneko, Kentaro; Mizushige, Takafumi; Miyazaki, Yuri; Lazarus, Michael; Urade, Yoshihiro; Yoshikawa, Masaaki; Kanamoto, Ryuhei; Ohinata, Kousaku

    2014-02-15

    The central opioid system is involved in a broadly distributed neural network that regulates food intake. Here, we show that activation of central δ-opioid receptor not only stimulated normal diet intake but conversely suppressed high-fat diet intake as well. [D-Pen(2,5)]-enkephalin (DPDPE), an agonist selective for the δ-receptor, increased normal diet intake after central administration to nonfasted male mice. The orexigenic activity of DPDPE was inhibited by blockade of cyclooxygenase (COX)-2, lipocalin-type prostaglandin D synthase (L-PGDS), D-type prostanoid receptor 1 (DP(1)), and neuropeptide Y (NPY) receptor type 1 (Y1) for PGD(2) and NPY, respectively, suggesting that this was mediated by the PGD(2)-NPY system. In contrast, DPDPE decreased high-fat diet intake in mice fed a high-fat diet. DPDPE-induced suppression of high-fat diet intake was blocked by antagonists of melanocortin 4 (MC(4)) and corticotropin-releasing factor (CRF) receptors but not by knockout of the L-PGDS gene. These results suggest that central δ-opioid receptor activation suppresses high-fat diet intake via the MC-CRF system, independent of the orexigenic PGD(2) system. Furthermore, orally administered rubiscolin-6, an opioid peptide derived from spinach Rubisco, suppressed high-fat diet intake. This suppression was also blocked by centrally administered naltrindole, an antagonist for the δ-receptor, suggesting that rubiscolin-6 suppressed high-fat diet intake via activation of central δ-opioid receptor.

  13. Kappa-opioid receptor-mediated effects of the plant-derived hallucinogen, salvinorin A, on inverted screen performance in the mouse.

    Science.gov (United States)

    Fantegrossi, William E; Kugle, Kelly M; Valdes, Leander J; Koreeda, Masato; Woods, James H

    2005-12-01

    Salvinorin A is a pharmacologically active diterpene that occurs naturally in the Mexican mint Ska Maria Pastora (Salvia divinorum) and represents the first naturally occurring kappa-opioid receptor agonist. The chemical structure of salvinorin A is novel among the opioids, and thus defines a new structural class of kappa-opioid-receptor selective drugs. Few studies have examined the effects of salvinorin A in vivo, and fewer still have attempted to assess the agonist actions of this compound at mu-opioid, delta-opioid, and kappa-opioid receptors using selective antagonists. In the mouse, salvinorin A disrupted climbing behavior on an inverted screen task, indicating a rapid, but short-lived induction of sedation/motor incoordination. Similar effects were observed with the mu-agonist remifentanil and the synthetic kappa-agonist U69,593. When behaviorally equivalent doses of all three opioids were challenged with antagonists at doses selective for mu-opioid, delta-opioid, or kappa-opioid receptors, results suggested that the motoric effects of remifentanil were mediated by mu-receptors, whereas those of salvinorin A and U69,593 were mediated via kappa-receptors. Despite similar potencies and degrees of effectiveness, salvinorin A and U69,593 differed with regard to their susceptibility to antagonism by the kappa-antagonist nor-binaltorphamine. This later finding, coupled with the novel chemical structure of the compound, is consistent with recent findings that the diterpene salvinorin A may bind to the kappa-receptor in a manner that is qualitatively different from that of more traditional kappa-agonists such as the benzeneacetamide U69,593. Such pharmacological differences among these kappa-opioids raise the possibility that the development of other diterpene-based opioids may yield important therapeutic compounds.

  14. Association of mu-opioid receptor expression with lymph node metastasis in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Y-F; Xu, Q-X; Liao, L-D; Xu, X-E; Wu, J-Y; Wu, Z-Y; Shen, J-H; Li, E-M; Xu, L-Y

    2015-01-01

    The mu-opioid receptor (MOR), a membrane-bound G protein-coupled receptor, is the main target for opioids in the nervous system. MOR1 has been found in several types of cancer cells and reported to be involved in tumor progression and metastasis. However, the expression and clinical significance of MOR1 in esophageal squamous cell carcinoma (ESCC) remain unclear. In our study, the expression of MOR1 was confirmed in ESCC cell lines (KYSE180, KYSE150, and EC109) by Western blot. MOR1 was also detected on tissue microarrays of ESCC samples in 239 cases using immunohistochemical staining. We found that MOR1 was mainly located in the cytoplasm and occasionally occurred in the membrane or nucleus of ESCC cells. Moreover, results indicated that MOR1 expression in the cytoplasm was associated with lymph node metastasis (R = 0.164, P = 0.008, Kendall's tau-b-test). No more associations were found between MOR1 expression status and other clinical parameters. However, no statistical significant differences were found between MOR1 expression in the cytoplasm, nucleus/membrane, and the overall survival of ESCC patients (P = 0.848; P = 0.167; P = 0.428, respectively, log-rank test). Our results suggest that the cytoplasmic MOR1 may be a high-risk factor for lymph node metastasis of ESCC patients. We also hypothesize that MOR1 agonists used in ESCC patients should be prudent, and opioid receptor antagonists may be novel therapeutic drugs for ESCC patients.

  15. Role of Opioid Receptors Signaling in Remote Electrostimulation--Induced Protection against Ischemia/Reperfusion Injury in Rat Hearts.

    Directory of Open Access Journals (Sweden)

    Hsin-Ju Tsai

    Full Text Available Our previous studies demonstrated that remote electro-stimulation (RES increased myocardial GSK3 phosphorylation and attenuated ischemia/ reperfusion (I/R injury in rat hearts. However, the role of various opioid receptors (OR subtypes in preconditioned RES-induced myocardial protection remains unknown. We investigated the role of OR subtype signaling in RES-induced cardioprotection against I/R injury of the rat heart.Male Spraque-Dawley rats were used. RES was performed on median nerves area with/without pretreatment with various receptors antagonists such as opioid receptor (OR subtype receptors (KOR, DOR, and MOR. The expressions of Akt, GSK3, and PKCε expression were analyzed by Western blotting. When RES was preconditioned before the I/R model, the rat's hemodynamic index, infarction size, mortality and serum CK-MB were evaluated. Our results showed that Akt, GSK3 and PKCε expression levels were significantly increased in the RES group compared to the sham group, which were blocked by pretreatment with specific antagonists targeting KOR and DOR, but not MOR subtype. Using the I/R model, the duration of arrhythmia and infarct size were both significantly attenuated in RES group. The mortality rates of the sham RES group, the RES group, RES group + KOR antagonist, RES group + DOR/MOR antagonists (KOR left, RES group + DOR antagonist, and RES group + KOR/MOR antagonists (DOR left were 50%, 20%, 67%, 13%, 50% and 55%, respectively.The mechanism of RES-induced myocardial protection against I/R injury seems to involve multiple target pathways such as Akt, KOR and/or DOR signaling.

  16. Brain delta2 opioid receptors mediate SNC-80-evoked hypothermia in rats.

    Science.gov (United States)

    Rawls, Scott Manning; Hewson, Jennifer Marie; Inan, Saadet; Cowan, Alan

    2005-07-05

    Despite insights into an increasingly significant role for delta opioid receptors in thermoregulation, it is unclear whether delta receptors located in the brain or periphery play the more critical role in body temperature regulation. Moreover, it is not entirely clear which delta receptor phenotype, delta1 or delta2, mediates the hypothermic actions of delta agonists. Because SNC-80 distributes into central and peripheral compartments and produces rapid hypothermia following systemic injection, the nonpeptide delta agonist is particularly useful in discriminating the site of action of delta receptor-mediated hypothermia. To determine the locus and phenotype of delta receptor which mediates SNC-80-induced hypothermia, we injected SNC-80 and phenotype selective delta antagonists to male Sprague-Dawley rats. SNC-80 (10-50 mg/kg, im) evoked hypothermia that peaked 30 min post-injection. Naltrexone (5 mg/kg, sc), an opioid antagonist, or naltrindole (5 mg/kg, sc), a delta antagonist, blocked the hypothermic response to SNC-80 (35 mg/kg, im). The hypothermia caused by SNC-80 (35 mg/kg, im) was blocked by a delta2 antagonist, naltriben (2.5 mg/kg, sc), but was not affected by BNTX (5 and 10 mg/kg, sc), a delta1 antagonist. The administration of naltriben (10 microg/rat, icv) 30 min before SNC-80 (35 mg/kg, im) prevented SNC-80-evoked hypothermia. In contrast, methylnaltrexone (5 mg/kg, sc), a peripherally restricted opioid antagonist, did not affect the hypothermia caused by SNC-80. The present data demonstrate that selective activation of brain delta2 receptors is a major mechanism of SNC-80-evoked hypothermia in rats.

  17. Involvement of mu(1)-opioid receptors and cholinergic neurotransmission in the endomorphins-induced impairment of passive avoidance learning in mice.

    Science.gov (United States)

    Ukai, Makoto; Lin, Hui Ping

    2002-02-01

    The effects of naloxonazine, a mu(1)-opioid receptor antagonist, and physostigmine, a cholinesterase inhibitor, on the endomorphins-induced impairment of passive avoidance learning were investigated in mice. Endomorphin-1 (10 microg) and endomorphin-2 (10 microg) significantly impaired passive avoidance learning, while naloxonazine (35 mg/kg, s.c.), a mu(1)-opioid receptor antagonist, which alone failed to influence passive avoidance learning significantly inhibited the endomorphin-1 (10 microg)- but not endomorphin-2 (10 microg)-induced disturbance of such learning. A rather nonselective higher dose (50 mg/kg, s.c.) of naloxonazine almost completely antagonized the endomorphin-1 (10 microg)- and endomorphin-2 (10 microg)-induced impairment of passive avoidance learning. In contrast, physostigmine (0.025 and 0.05 mg/kg, i.p.) significantly reversed the endomorphin-1 (10 microg)- and endomorphin-2 (10 microg)-induced disturbance of passive avoidance learning, whereas physostigmine (0.025 and 0.05 mg/kg, i.p.) alone did not influence such learning. These results suggest that endomorphin-1 but not endomorphin-2 impairs learning and memory resulting from cholinergic dysfunction, and from activation of mu(1)-opioid receptors.

  18. Mu-opioid receptor knockout mice show diminished food-anticipatory activity

    NARCIS (Netherlands)

    Kas, Martien J H; van den Bos, Ruud; Baars, Annemarie M; Lubbers, Marianne; Lesscher, Heidi M B; Hillebrand, Jacquelien J G; Schuller, Alwin G; Pintar, John E; Spruijt, Berry M

    2004-01-01

    We have previously suggested that during or prior to activation of anticipatory behaviour to a coming reward, mu-opioid receptors are activated. To test this hypothesis schedule induced food-anticipatory activity in mu-opioid receptor knockout mice was measured using running wheels. We hypothesized

  19. Opioid Receptors Mediate Direct Predictive Fear Learning: Evidence from One-Trial Blocking

    Science.gov (United States)

    Cole, Sindy; McNally, Gavan P.

    2007-01-01

    Pavlovian fear learning depends on predictive error, so that fear learning occurs when the actual outcome of a conditioning trial exceeds the expected outcome. Previous research has shown that opioid receptors, including [mu]-opioid receptors in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG), mediate such predictive fear…

  20. Optimisation of in silico derived 2-aminobenzimidazole hits as unprecedented selective kappa opioid receptor agonists

    DEFF Research Database (Denmark)

    Sasmal, Pradip K; Krishna, C Vamsee; Sudheerkumar Adabala, S

    2015-01-01

    Kappa opioid receptor (KOR) is an important mediator of pain signaling and it is targeted for the treatment of various pains. Pharmacophore based mining of databases led to the identification of 2-aminobenzimidazole derivative as KOR agonists with selectivity over the other opioid receptors DOR...

  1. Cutaneous nociceptors lack sensitisation, but reveal μ-opioid receptor-mediated reduction in excitability to mechanical stimulation in neuropathy

    Directory of Open Access Journals (Sweden)

    Schmidt Yvonne

    2012-11-01

    Full Text Available Abstract Background Peripheral nerve injuries often trigger a hypersensitivity to tactile stimulation. Behavioural studies demonstrated efficient and side effect-free analgesia mediated by opioid receptors on peripheral sensory neurons. However, mechanistic approaches addressing such opioid properties in painful neuropathies are lacking. Here we investigated whether opioids can directly inhibit primary afferent neuron transmission of mechanical stimuli in neuropathy. We analysed the mechanical thresholds, the firing rates and response latencies of sensory fibres to mechanical stimulation of their cutaneous receptive fields. Results Two weeks following a chronic constriction injury of the saphenous nerve, mice developed a profound mechanical hypersensitivity in the paw innervated by the damaged nerve. Using an in vitro skin-nerve preparation we found no changes in the mechanical thresholds and latencies of sensory fibres from injured nerves. The firing rates to mechanical stimulation were unchanged or reduced following injury. Importantly, μ-opioid receptor agonist [D-Ala2,N-Me-Phe4,Gly5]-ol-enkephalin (DAMGO significantly elevated the mechanical thresholds of nociceptive Aδ and C fibres. Furthermore, DAMGO substantially diminished the mechanically evoked discharges of C nociceptors in injured nerves. These effects were blocked by DAMGO washout and pre-treatment with the selective μ-opioid receptor antagonist Cys2-Tyr3-Orn5-Pen7-amide. DAMGO did not alter the responses of sensory fibres in uninjured nerves. Conclusions Our findings suggest that behaviourally manifested neuropathy-induced mechanosensitivity does not require a sensitised state of cutaneous nociceptors in damaged nerves. Yet, nerve injury renders nociceptors sensitive to opioids. Prevention of action potential generation or propagation in nociceptors might represent a cellular mechanism underlying peripheral opioid-mediated alleviation of mechanical hypersensitivity in neuropathy.

  2. Addictive evaluation of cholic acid-verticinone ester, a potential cough therapeutic agent with agonist action of opioid receptor

    Institute of Scientific and Technical Information of China (English)

    Jiu-liang ZHANG; Hui WANG; Chang CHEN; Hui-fang PI; Han-li RUAN; Peng ZHANG; Ji-zhou WU

    2009-01-01

    Aim: The purpose of this work was to search for potential drugs with potent antitussive and expectorant activities as well as a low toxicity, but without addictive properties. Cholic acid-verticinone ester (CA-Ver) was synthesized based on the clearly elucidated antitussive and expectorant activities of verticinone in bulbs of Fritillaria and different bile acids in Snake Bile. In our previous study, CA-Vet showed a much more potent activity than codeine phosphate. This study was carried out to investigate the central antitussive mechanism and the addictive evaluation of CA-Ver.Methods: Testing on a capsaicin-induced cough model of mice pretreated with naloxone, a non-selective opioid receptor antagonist, was performed for the observation of CA-Ver's central antitussive mechanism. We then took naloxone-induced withdrawal tests of mice for the judgment of CA-Ver's addiction. Lastly, we determined the opioid dependence of CA-Ver in the guinea pig ileum. Results: The test on the capsaicin-induced cough model showed that naloxone could block the antitussive effect of CA-Ver,suggesting the antitussive mechanism of CA-Ver was related to the central opioid receptors. The naloxone-urged withdrawal tests of the mice showed that CA-Ver was not addictive, and the test of the opioid dependence in the guinea pig ileum showed that CA-Ver had no withdrawal response.Conclusion: These findings suggested that CA-Ver deserved attention for its potent antitussive effects related to the central opioid receptors, but without addiction, and had a good development perspective.

  3. Involvement of μ- and δ-opioid receptor function in the rewarding effect of (±)-pentazocine.

    Science.gov (United States)

    Mori, Tomohisa; Itoh, Toshimasa; Yoshizawa, Kazumi; Ise, Yuya; Mizuo, Keisuke; Saeki, Tomoya; Komiya, Sachiko; Masukawa, Daiki; Shibasaki, Masahiro; Suzuki, Tsutomu

    2015-07-01

    Most opioid receptor agonists have abuse potential, and the rewarding effects of opioids can be reduced in the presence of pain. While each of the enantiomers of pentazocine has a differential pharmacologic profile, (±)-pentazocine has been used clinically for the treatment of pain. However, little information is available regarding which components of pentazocine are associated with its rewarding effects, and whether the (±)-pentazocine-induced rewarding effects can be suppressed under pain. Therefore, the present study was performed to investigate the effects of pain on the acquisition of the rewarding effects of (±)-pentazocine, and to examine the mechanism of the rewarding effects of (±)-pentazocine using the conditioned place preference paradigm. (±)-Pentazocine and (-)-pentazocine, but not (+)-pentazocine, produced significant rewarding effects. Even though the rewarding effects induced by (±)-pentazocine were significantly suppressed under pain induced by formalin, accompanied by increase of preprodynorphin mRNA levels in the nucleus accumbens, a high dose of (±)-pentazocine produced significant rewarding effects under pain. In the normal condition, (±)-pentazocine-induced rewarding effects were blocked by a low dose of naloxone, whereas the rewarding effects induced by high doses of pentazocine under pain were suppressed by naltrindole (a δ-opioid receptor antagonist). Interestingly, (±)-pentazocine did not significantly affect dopamine levels in the nucleus accumbens. These findings suggest that the rewarding effects of (-)-pentazocine may contribute to the abuse potential of (±)-pentazocine through μ- as well as δ-opioid receptors, without robust activation of the mesolimbic dopaminergic system. We also found that neural adaptations can reduce the abuse potential of (±)-pentazocine under pain.

  4. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice.

    Directory of Open Access Journals (Sweden)

    Raphaël Weibel

    Full Text Available Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund's Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain.

  5. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice.

    Science.gov (United States)

    Weibel, Raphaël; Reiss, David; Karchewski, Laurie; Gardon, Olivier; Matifas, Audrey; Filliol, Dominique; Becker, Jérôme A J; Wood, John N; Kieffer, Brigitte L; Gaveriaux-Ruff, Claire

    2013-01-01

    Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund's Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain.

  6. Does the kappa opioid receptor system contribute to pain aversion?

    Directory of Open Access Journals (Sweden)

    Catherine M Cahill

    2014-11-01

    Full Text Available The kappa opioid receptor (KOR and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain.

  7. Synaptic localization of. kappa. opioid receptors in guinea pig neostriatum

    Energy Technology Data Exchange (ETDEWEB)

    Jomary, C.; Beaudet, A. (McGill Univ., Montreal, Quebec (Canada)); Gairin, J.E. (Centre National de la Recherche Scientifique, Toulouse (France))

    1992-01-15

    Distribution of {kappa} opioid receptors was examined by EM radioautography in sections of guinea pig neostriatum with the selective {sup 125}I-labeled dynorphin analog (D-Pro{sup 10})dynorphin-(1-11). Most specifically labeled binding sites were found by probability circle analysis to be associated with neuronal membrane appositions. Because of limitations in resolution of the method, the radioactive sources could not be ascribed directly to either one of the apposed plasma membranes. Nevertheless, three lines of evidence favored a predominant association of ligand with dendrites of intrinsic striatal neurons: (1) the high frequency with which labeled interfaces implicated a dendrite, (2) the enrichment of dendrodendritic interfaces, and (3) the occurrence of dendritic profiles labeled at several contact points along their plasma membranes. A small proportion of labeled sites was associated with axo-axonic interfaces, which may subserve the {kappa} opioid-induced regulation of presynaptic dopamine and acetylcholine release documented in guinea pig neostriatum. These results support the hypothesis that in mammalian brain {kappa} opioid receptors are conformationally and functionally distinct from {mu} and {delta} types.

  8. Antinociceptive profile of salvinorin A, a structurally unique kappa opioid receptor agonist.

    Science.gov (United States)

    McCurdy, Christopher R; Sufka, Kenneth J; Smith, Grant H; Warnick, Jason E; Nieto, Marcelo J

    2006-01-01

    Salvinorin A, is a structurally unique, non-nitrogenous, kappa opioid receptor (KOP) agonist. Given the role of KOPs in analgesic processes, we set out to determine whether salvinorin A has antinociceptive activity in thermal and chemo-nociceptive assays. The tail-flick assay was employed to investigate 1) salvinorin A's (0.5, 1.0, 2.0, and 4.0 mg/kg) dose-response and time-course (10, 20, and 30 min) effects in a thermal nociceptive assay, and 2) the ability for the KOP antagonist norBNI (10.0 mg/kg) to prevent salvinorin A antinociception. The hotplate assay was utilized as a second thermal nociceptive measure to test salvinorin A's dose-response effects. The acetic acid abdominal constriction assay was used to study salvinorin A's dose-response and time-course (over 30 min) effects in a chemo-nociceptive assay. Together, these studies revealed that salvinorin A produces a dose-dependent antinociception that peaked at 10 min post-injection but rapidly returned to baseline. Additionally, pretreatment with the KOP antagonist norbinaltorphimine (norBNI) reversed salvinorin A-induced antinociception. These findings demonstrate that salvinorin A produces a KOP mediated antinociceptive effect with a short duration of action.

  9. Collybolide is a novel biased agonist of κ-opioid receptors with potent antipruritic activity

    Science.gov (United States)

    Gupta, Achla; Gomes, Ivone; Bobeck, Erin N.; Fakira, Amanda K.; Massaro, Nicholas P.; Sharma, Indrajeet; Cavé, Adrien; Hamm, Heidi E.; Parello, Joseph

    2016-01-01

    Among the opioid receptors, the κ-opioid receptor (κOR) has been gaining considerable attention as a potential therapeutic target for the treatment of complex CNS disorders including depression, visceral pain, and cocaine addiction. With an interest in discovering novel ligands targeting κOR, we searched natural products for unusual scaffolds and identified collybolide (Colly), a nonnitrogenous sesquiterpene from the mushroom Collybia maculata. This compound has a furyl-δ-lactone core similar to that of Salvinorin A (Sal A), another natural product from the plant Salvia divinorum. Characterization of the molecular pharmacological properties reveals that Colly, like Sal A, is a highly potent and selective κOR agonist. However, the two compounds differ in certain signaling and behavioral properties. Colly exhibits 10- to 50-fold higher potency in activating the mitogen-activated protein kinase pathway compared with Sal A. Taken with the fact that the two compounds are equipotent for inhibiting adenylyl cyclase activity, these results suggest that Colly behaves as a biased agonist of κOR. Behavioral studies also support the biased agonistic activity of Colly in that it exhibits ∼10-fold higher potency in blocking non–histamine-mediated itch compared with Sal A, and this difference is not seen in pain attenuation by these two compounds. These results represent a rare example of functional selectivity by two natural products that act on the same receptor. The biased agonistic activity, along with an easily modifiable structure compared with Sal A, makes Colly an ideal candidate for the development of novel therapeutics targeting κOR with reduced side effects. PMID:27162327

  10. Molecular mechanism for opioid dichotomy: bidirectional effect of μ-opioid receptors on P2X₃ receptor currents in rat sensory neurones.

    Science.gov (United States)

    Chizhmakov, Igor; Kulyk, Vyacheslav; Khasabova, Iryna; Khasabov, Sergey; Simone, Donald; Bakalkin, Georgy; Gordienko, Dmitri; Verkhratsky, Alexei; Krishtal, Oleg

    2015-06-01

    Here, we describe a molecular switch associated with opioid receptors-linked signalling cascades that provides a dual opioid control over P2X3 purinoceptor in sensory neurones. Leu-enkephalin inhibited P2X3-mediated currents with IC50 ~10 nM in ~25% of small nociceptive rat dorsal root ganglion (DRG) neurones. In contrast, in neurones pretreated with pertussis toxin leu-enkephalin produced stable and significant increase of P2X3 currents. All effects of opioid were abolished by selective μ-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), nonselective inhibitor naloxone, and by PLC inhibitor U73122. Thus, we discovered a dual link between purinoceptors and μ-opioid receptors: the latter exert both inhibitory (pertussis toxin-sensitive) and stimulatory (pertussis toxin-insensitive) actions on P2X3 receptors through phospholipase C (PLC)-dependent pathways. This dual opioid control of P2X3 receptors may provide a molecular explanation for dichotomy of opioid therapy. Pharmacological control of this newly identified facilitation/inhibition switch may open new perspectives for the adequate medical use of opioids, the most powerful pain-killing agents known today.

  11. N1'-fluoroethyl-naltrindole (BU97001) and N1'-fluoroethyl-(14-formylamino)-naltrindole (BU97018) potential {delta}-opioid receptor PET ligands

    Energy Technology Data Exchange (ETDEWEB)

    Tyacke, Robin J.; Robinson, Emma S.J.; Schnabel, Rebecca; Lewis, John W.; Husbands, Stephen M.; Nutt, David J.; Hudson, Alan L. E-mail: a.l.hudson@bristol.ac.uk

    2002-05-01

    The properties of two prospective positron emission tomography (PET) ligands for the {delta}-opioid receptor, N1'-fluoroethyl-naltrindole (BU97001) and N1'-fluoroethyl-(14-formylamino)-naltrindole (BU97018) were investigated. Both were antagonists in the mouse vas deferens, and showed high affinity and selectivity, 1.81 nM and 3.09 nM respectively. [{sup 3}H]BU97001 binding to rat whole brain was also of high affinity, K{sub D} of 0.42 nM of and B{sub MAX} of 59.95 fmol mg of protein{sup -1}. In autoradiographic studies, it was found to bind to brain areas previously shown to be associated with the {delta}-opioid receptor and good correlations were found to exist with naltrindole and DPDPE. BU97018 and especially BU97001 appear to show good potential as {delta}-opioid receptor PET ligands with the incorporation of {sup 18}F.

  12. Development of concepts on the interaction of drugs with opioid receptors

    Science.gov (United States)

    Kuzmina, N. E.; Kuzmin, V. S.

    2011-02-01

    The development of concepts on the molecular mechanisms of the action of medicinal drugs on the opioid receptors is briefly surveyed. The modern point of view on the mechanism of activation of opioid receptors is given based on the data from chimeric and site-directed mutagenesis of the cloned opioid receptors and the computer-aided simulations of the reception zone and ligand-receptor complexes. Three-dimensional models of the opioid pharmacophore derived by both conventional methods and a comparative analysis of molecular fields are described in detail.

  13. Development of concepts on the interaction of drugs with opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmina, N E; Kuzmin, V S

    2011-02-28

    The development of concepts on the molecular mechanisms of the action of medicinal drugs on the opioid receptors is briefly surveyed. The modern point of view on the mechanism of activation of opioid receptors is given based on the data from chimeric and site-directed mutagenesis of the cloned opioid receptors and the computer-aided simulations of the reception zone and ligand-receptor complexes. Three-dimensional models of the opioid pharmacophore derived by both conventional methods and a comparative analysis of molecular fields are described in detail.

  14. Kappa-opioid receptor-selective dicarboxylic ester-derived salvinorin A ligands.

    Science.gov (United States)

    Polepally, Prabhakar R; White, Kate; Vardy, Eyal; Roth, Bryan L; Ferreira, Daneel; Zjawiony, Jordan K

    2013-05-15

    Salvinorin A, the active ingredient of the hallucinogenic plant Salvia divinorum is the most potent known naturally occurring hallucinogen and is a selective κ-opioid receptor agonist. To better understand the ligand-receptor interactions, a series of dicarboxylic ester-type of salvinorin A derivatives were synthesized and evaluated for their binding affinity at κ-, δ- and μ-opioid receptors. Most of the analogues show high affinity to the κ-opioid receptor. Methyl malonyl derivative 4 shows the highest binding affinity (Ki=2nM), analogues 5, 7, and 14 exhibit significant affinity for the κ-receptor (Ki=21, 36 and 39nM).

  15. Analgesic tone conferred by constitutively active mu opioid receptors in mice lacking β-arrestin 2

    Directory of Open Access Journals (Sweden)

    Hales Tim G

    2011-04-01

    Full Text Available Abstract Hedonic reward, dependence and addiction are unwanted effects of opioid analgesics, linked to the phasic cycle of μ opioid receptor activation, tolerance and withdrawal. In vitro studies of recombinant G protein coupled receptors (GPCRs over expressed in cell lines reveal an alternative tonic signaling mechanism that is independent of agonist. Such studies demonstrate that constitutive GPCR signaling can be inhibited by inverse agonists but not by neutral antagonists. However, ligand-independent activity has been difficult to examine in vivo, at the systems level, due to relatively low levels of constitutive activity of most GPCRs including μ receptors, often necessitating mutagenesis or pharmacological manipulation to enhance basal signaling. We previously demonstrated that the absence of β-arrestin 2 (β-arr2 augments the constitutive coupling of μ receptors to voltage-activated Ca2+ channels in primary afferent dorsal root ganglion neurons from β-arr2-/- mice. We used this in vitro approach to characterize neutral competitive antagonists and inverse agonists of the constitutively active wild type μ receptors in neurons. We administered these agents to β-arr2-/- mice to explore the role of constitutive μ receptor activity in nociception and hedonic tone. This study demonstrates that the induction of constitutive μ receptor activity in vivo in β-arr2-/- mice prolongs tail withdrawal from noxious heat, a phenomenon that was reversed by inverse agonists, but not by antagonists that lack negative efficacy. By contrast, the aversive effects of inverse agonists were similar in β-arr2-/- and β-arr2+/+ mice, suggesting that hedonic tone was unaffected.

  16. Potent delta-opioid receptor agonists containing the Dmt-Tic pharmacophore.

    Science.gov (United States)

    Balboni, Gianfranco; Salvadori, Severo; Guerrini, Remo; Negri, Lucia; Giannini, Elisa; Jinsmaa, Yunden; Bryant, Sharon D; Lazarus, Lawrence H

    2002-12-01

    Conversion of delta-opioid receptor antagonists containing the 2',6'-dimethyl-L-tyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) pharmacophore into potent delta-agonists required a third heteroaromatic nucleus, such as 1H-benzimidazole-2-yl (Bid) and a linker of specified length both located C-terminally to Tic in the general formula H-Dmt-Tic-NH-CH(R)-R'. The distance between Tic and Bid is a determining factor responsible for the acquisition of delta agonism (2, 2', 3, 4, 6) or delta antagonism (8). Compounds containing a C-terminal Ala (1, 1'), Asp (5), or Asn (7) with an amide (1, 1', 5) or free acid group (7) served as delta-antagonist controls lacking the third heteroaromatic ring. A change in chirality of the spacer (2, 2') or inclusion of a negative charge via derivatives of Asp (4, 6) resulted in potent delta agonism and moderate mu agonism, although delta-receptor affinity decreased about 10-fold for 4 while mu affinity fell by over 2 orders of magnitude. Repositioning of the negative charge in the linker altered activity: H-Dmt-Tic-NH-CH(CH(2)-Bid)COOH (6) maintained high delta affinity (K(i) = 0.042 nM) and delta agonism (IC(50) = 0.015 nM), but attachment of the free acid group to Bid [H-Dmt-Tic-NH-CH(2)-Bid(CH(2)-COOH) (9)] reconstituted delta antagonism (K(e) = 0.27 nM). The data demonstrate that a linker separating the Dmt-Tic pharmacophore and Bid, regardless of the presence of a negative charge, is important in the acquisition of opioids exhibiting potent delta agonism and weak mu agonism from a parent delta antagonist.

  17. Structural Determinants for the Binding of Morphinan Agonists to the μ-Opioid Receptor.

    Directory of Open Access Journals (Sweden)

    Xiaojing Cong

    Full Text Available Atomistic descriptions of the μ-opioid receptor (μOR noncovalently binding with two of its prototypical morphinan agonists, morphine (MOP and hydromorphone (HMP, are investigated using molecular dynamics (MD simulations. Subtle differences between the binding modes and hydration properties of MOP and HMP emerge from the calculations. Alchemical free energy perturbation calculations show qualitative agreement with in vitro experiments performed in this work: indeed, the binding free energy difference between MOP and HMP computed by forward and backward alchemical transformation is 1.2±1.1 and 0.8±0.8 kcal/mol, respectively, to be compared with 0.4±0.3 kcal/mol from experiment. Comparison with an MD simulation of μOR covalently bound with the antagonist β-funaltrexamine hints to agonist-induced conformational changes associated with an early event of the receptor's activation: a shift of the transmembrane helix 6 relative to the transmembrane helix 3 and a consequent loss of the key R165-T279 interhelical hydrogen bond. This finding is consistent with a previous proposal suggesting that the R165-T279 hydrogen bond between these two helices indicates an inactive receptor conformation.

  18. Animal models of motivation for drinking in rodents with a focus on opioid receptor neuropharmacology.

    Science.gov (United States)

    Koob, George F; Roberts, Amanda J; Kieffer, Brigitte L; Heyser, Charles J; Katner, Simon N; Ciccocioppo, Roberto; Weiss, Friedbert

    2003-01-01

    Ethanol, like other drugs of abuse, has motivating properties that can be developed as animal models of self-administration. A major strength of the operant approach where an animal must work to obtain ethanol is that it reduces confounds due to palatability and controls for nonspecific malaise-inducing effects. In the domain of opioid peptide systems, limited access paradigms have good predictive validity. In addition, animal models of excessive drinking-either environmentally or genetically induced-also appear sensitive to blockade or inactivation of opioid peptide receptors. Ethanol availability can be predicted by cues associated with positive reinforcement, and these models are sensitive to the administration of opioid antagonists. Perhaps most exciting are the recent results suggesting that the key element in opioid peptide systems that is important for the positive reinforcing effects of ethanol is the mu-opioid receptor. How exactly ethanol modulates mu-receptor function will be a major challenge of future research. Nevertheless, the apparently critical role of the mu receptor in ethanol reinforcement refocuses the neuropharmacology of ethanol reinforcement in the opioid peptide domain and opens a novel avenue for exploring medications for treating alcoholism.

  19. Error correction in latent inhibition and its disruption by opioid receptor blockade with naloxone.

    Science.gov (United States)

    Leung, Hiu T; Killcross, A S; Westbrook, R Frederick

    2013-11-01

    Latent inhibition refers to the retardation in the development of conditioned responding when a pre-exposed stimulus is used to signal an unconditioned stimulus. This effect is described by error-correction models as an attentional deficit and is commonly used as an animal model of schizophrenia. A series of experiments studied the role of error-correction mechanism in latent inhibition and its interaction with the endogenous opioid system. Systemic administration of the competitive opioid receptor antagonist naloxone before rats were pre-exposed to a target stimulus prevented latent inhibition of its subsequent fear conditioning; it was without effect on a non-pre-exposed stimulus and did not produce state-dependent learning (Experiments 1a and 1b). Naloxone did not reverse the latent inhibitory effect already accrued to a pre-exposed target. However, it did prevent the enhancement of latent inhibition by a long retention interval interpolated between its initial exposure and re-exposure (Experiment 2) or by a novel stimulus compounded with the pre-exposed target during re-exposure (Experiment 3). These results provide evidence that attentional loss in latent inhibition is instructed by an opioid-mediated error signal which diminishes with repeated stimulus exposures but recovers with the passage of time or reintroduction of novelty.

  20. [Dmt(1)]DALDA is highly selective and potent at mu opioid receptors, but is not cross-tolerant with systemic morphine.

    Science.gov (United States)

    Riba, Pal; Ben, Yong; Nguyen, Thi M-D; Furst, Susanna; Schiller, Peter W; Lee, Nancy M

    2002-01-01

    The clinical effectiveness of morphine is limited by several side effects, including the development of tolerance and dependence. Most of these side effects are believed to be mediated by central opioid receptors; therefore, hydrophilic opioids, which don't cross the blood-brain barrier, may have advantages over morphine in some clinical applications. We recently synthesized several analogues of DALDA (Tyr-D-Arg-Phe-Lys-NH2), a highly hydrophilic peptide derived from the endogenous opioid peptide dermorphin; all of them, particularly [Dmt(1)] DALDA (Dmt - 2',6'-dimethyl tyrosine), had high potency and selectivity at mu receptors, the target of morphine, in activity assays. Here we report the pharmacological characterization of [Dmt(1)] DALDA in the whole animal. [Dmt(1)]DALDA was 40 times more potent than morphine in inducing antinociception in mice when both drugs were given s.c., and 6-14 times more potent than DAMGO, a selective m agonist, when both drugs were given it. However, [Dmt(1)]DALDA showed poor cross-tolerance to morphine; thus chronic morphine treatment of animals increased the antinociceptive AD(50) of systemic [Dmt(1)]DALDA two fold or less, as compared to an 8-9-fold increase for morphine and a 4-5-fold increase for DAMGO. The antinociceptive activity of [Dmt(1)]DALDA (i.t) was blocked by CTAP, a selective mu antagonist, but not by TIPP psi, a selective delta antagonist, nor by nor-BNI, a selective kappa antagonist. [Dmt(1)]DALDA-induced antinociception was also blocked by naloxone methiodide, an antagonist that does not cross the blood-brain barrier, when agonist and antagonist were given i.t. or i.c.v., but not when they were given s.c. We conclude that [Dmt(1)] DALDA is a highly potent analgesic acting at mu receptors. Though it appears to penetrate the blood-brain barrier, it exhibits low cross-tolerance to morphine, suggesting that it may have advantages over the latter in certain clinical applications.

  1. Differential regulation of δ-opioid receptor trafficking after internalization by TIPP and DPDPE

    Institute of Scientific and Technical Information of China (English)

    Min-huaHONG; Yi-minTAO; Xue-junXU; Zhi-qiangCHI; Jing-genLIU

    2004-01-01

    AIM: To explore the mechanisms underlying the difference between TIPP and DPDPE in desensitization of the δ-opioidreceptors. METHODS: GH3 cells stably expressing HA-tagged δ-opioid receptors were treated with TIPP, DPDPE (1 μmol/L)or morphine (10 μmol/L) for different periods of time in the presence or absence of 50 μmol/L monensin or 10 nmol/L OA.Internalization of δ-opioid receptor was assessed using confocal

  2. Reduced emotional and corticosterone responses to stress in μ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Sora,Ichiro; Ikeda, Kazutaka; Minami, Masabumi; Uhl, George R.; Ishihara, Kumatoshi

    2009-01-01

    The detailed mechanisms of emotional modulation in the nervous system by opioids remain to be elucidated, although the opioid system is well known to play important roles in the mechanisms of analgesia and drug dependence. In the present study, we conducted behavioral tests of anxiety and depression and measured corticosterone concentrations in both male and female μ-opioid receptor knockout (MOP-KO) mice to reveal the involvement of μ-opioid receptors in stress-induced emotional responses. M...

  3. Peripheral Sensitization Increases Opioid Receptor Expression and Activation by Crotalphine in Rats

    Science.gov (United States)

    Zambelli, Vanessa Olzon; Fernandes, Ana Carolina de Oliveira; Gutierrez, Vanessa Pacciari; Ferreira, Julio Cesar Batista; Parada, Carlos Amilcar; Mochly-Rosen, Daria; Cury, Yara

    2014-01-01

    Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids. PMID:24594607

  4. In vitro binding affinities of a series of flavonoids for μ-opioid receptors. Antinociceptive effect of the synthetic flavonoid 3,3-dibromoflavanone in mice.

    Science.gov (United States)

    Higgs, Josefina; Wasowski, Cristina; Loscalzo, Leonardo M; Marder, Mariel

    2013-09-01

    The pharmacotherapy for the treatment of pain is an active area of investigation. There are effective drugs to treat this problem, but there is also a need to find alternative treatments free of undesirable side effects. In the present work the capacity of a series of flavonoids to bind to the μ opioid receptor was evaluated. The most active compound, 3,3-dibromoflavanone (31), a synthetic flavonoid, presented a significant inhibition of the binding of the selective μ opioid ligand [(3)H]DAMGO, with a Ki of 0.846 ± 0.263 μM. Flavanone 31 was further synthesized using a simple and cheap procedure with good yield. Its in vivo effects in mice, after acute treatments, were studied using antinociceptive and behavioral assays. It showed no sedative, anxiolytic, motor incoordination effects or inhibition of the gastrointestinal transit in mice at the doses tested. It evidenced antinociceptive activity on the acetic acid-induced nociception, hot plate and formalin tests (at 10 mg/kg and 30 mg/kg). The results showed that the 5-HT2 receptor and the adrenoceptors seem unlikely to be involved in its antinociceptive effects. Naltrexone, a nonselective opioid receptors antagonist, totally blocked compound 31 antinociceptive effects on the hot plate test, but naltrindole (δ opioid antagonist) and nor-binaltorphimine (κ opioid antagonist) did not. These findings demonstrated that 3,3-dibromoflavanone (31), at doses that did not interfere with the motor performance, exerted clear dose dependent antinociception when assessed in the chemical and thermal models of nociception in mice and it seems that its action is related to the activation of the μ opioid receptor.

  5. Changes of mu and kappa opioid receptors in cathartic colon of rat

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-hua; MO Ping; JIA Hou-jun; LI Chun-xue; ZHANG Sheng-ben

    2004-01-01

    Objective: To oberve the changes of mu and kappa opioid receptors in the cathartic colon of rat, and to clarify that whether opioid receptors accounts for the occurrence of slow trait constipation (STC). Methods: The cathartiic colon model of rat was made by feeding with laxatives. The activity of mu and kappa opioid receptors in the cathartic colon of rat was measured by radio-ligand binding assay. Results: Compared with the control group, the maximal binding capacity (Bmax) and affinity(Kd) of mu opioid receptor in cathartic colon group were significantly increased (207. 00 ± 22. 90 fmol/mg·p vs 82. 00 ± 14.23 fmol/mg· p, P < 0.01 ;3.30 ± 0.45 mmol/L vs 2.40 ± 0.57 mmol/L, P < 0.05). The maximal binding capacity of kappa opioid receptor also showed a great increase (957. 00 ± 102. 41 fmol/mg· p vs 459.00 ± 52.41 fmol/mg·p, P < 0.01 ), but no significant difference of affinity was found between the two groups. Conclsion: The mu and kappa opioid receptors may be involved in the functional disorders of cathartic colon.

  6. Quantitative encoding of a partial agonist effect on individual opioid receptors by multi-site phosphorylation and threshold detection

    Science.gov (United States)

    Lau, Elaine K.; Trester-Zedlitz, Michelle; Trinidad, Jonathan C.; Kotowski, Sarah J.; Krutchinsky, Andrew N.; Burlingame, Alma L.; von Zastrow, Mark

    2013-01-01

    Many drugs act as partial agonists of seven-transmembrane signaling receptors when compared to endogenous ligands. Partial agonism is well described as a 'macroscopic' property manifest at the level of physiological systems or cell populations, but it is not known whether partial agonists encode discrete regulatory information at the 'microscopic' level of individual receptors. We addressed this question by focusing on morphine, a partial agonist drug for µ-type opioid peptide receptors, and combining quantitative mass spectrometry with cell biological analysis to investigate morphine's reduced efficacy for promoting receptor endocytosis when compared to a peptide full agonist. We show that these chemically distinct ligands produce a complex, and qualitatively similar mixture of phosphorylated opioid receptor forms in intact cells. Quantitatively, however, the agonists promote markedly disproportional production of multi-site phosphorylation involving a specific Ser/Thr motif, whose modification at more than one residue is essential for efficient recruitment of the adaptor protein β-arrestin to clathrin-coated pits that mediate subsequent endocytosis of MORs. These results reveal quantitative encoding of agonist-selective endocytosis at the level of individual opioid receptors, based on the conserved biochemical principles of multi-site phosphorylation and threshold detection. PMID:21868358

  7. Ligand-directed functional selectivity at the mu opioid receptor revealed by label-free integrative pharmacology on-target.

    Directory of Open Access Journals (Sweden)

    Megan Morse

    Full Text Available Development of new opioid drugs that provide analgesia without producing dependence is important for pain treatment. Opioid agonist drugs exert their analgesia effects primarily by acting at the mu opioid receptor (MOR sites. High-resolution differentiation of opioid ligands is crucial for the development of new lead drug candidates with better tolerance profiles. Here, we use a label-free integrative pharmacology on-target (iPOT approach to characterize the functional selectivity of a library of known opioid ligands for the MOR. This approach is based on the ability to detect dynamic mass redistribution (DMR arising from the activation of the MOR in living cells. DMR assays were performed in HEK-MOR cells with and without preconditioning with probe molecules using label-free resonant waveguide grating biosensors, wherein the probe molecules were used to modify the activity of specific signaling proteins downstream the MOR. DMR signals obtained were then translated into high resolution heat maps using similarity analysis based on a numerical matrix of DMR parameters. Our data indicate that the iPOT approach clearly differentiates functional selectivity for distinct MOR signaling pathways among different opioid ligands, thus opening new avenues to discover and quantify the functional selectivity of currently used and novel opioid receptor drugs.

  8. Mu opioid receptors are in discrete hippocampal interneuron subpopulations.

    Science.gov (United States)

    Drake, Carrie T; Milner, Teresa A

    2002-01-01

    In the rat hippocampal formation, application of mu opioid receptor (MOR) agonists disinhibits principal cells, promoting excitation-dependent processes such as epileptogenesis and long-term potentiation. However, the precise location of MORs in particular inhibitory circuits, has not been determined, and the roles of MORs in endogenous functioning are unclear. To address these issues, the distribution of MOR-like immunoreactivity (-li) was examined in several populations of inhibitory hippocampal neurons in the CA1 region using light and electron microscopy. We found that MOR-li was present in many parvalbumin-containing basket cells, but absent from cholecystokinin-labeled basket cells. MOR-li was also commonly in interneurons containing somatostatin-li or neuropeptide Y-li that resembled the "oriens-lacunosum-moleculare" (O-LM) interneurons innervating pyramidal cell distal dendrites. Finally, MOR-li was in some vasoactive intestinal peptide- or calretinin-containing profiles resembling interneurons that primarily innervate other interneurons. These findings indicate that MOR-containing neurons form a neurochemically and functionally heterogeneous subset of hippocampal GABAergic neurons. MORs are most frequently on interneurons that are specialized to inhibit pyramidal cells, and are on a limited number of interneurons that target other interneurons. Moreover, the distribution of MORs to different neuronal types in several laminae, some relatively far from endogenous opioids, suggests normal functional roles that are different from the actions seen with exogenous agonists such as morphine.

  9. Heterodimerization of ORL1 and Opioid Receptors and Its Consequences for N-type Calcium Channel Regulation*

    OpenAIRE

    Evans, Rhian M; You, Haitao; Hameed, Shahid; Altier, Christophe; Mezghrani, Alexandre; Bourinet, Emmanuel; Zamponi, Gerald W.

    2009-01-01

    We have investigated the heterodimerization of ORL1 receptors and classical members of the opioid receptor family. All three classes of opioid receptors could be co-immunoprecipitated with ORL1 receptors from both transfected tsA-201 cell lysate and rat dorsal root ganglia lysate, suggesting that these receptors can form heterodimers. Consistent with this hypothesis, in cells expressing either one of the opioid receptors together with ORL1, prolonged ORL1 receptor activation via nociceptin ap...

  10. Ca2+ channel inhibition by endomorphins via the cloned mu-opioid receptor expressed in NG108-15 cells.

    Science.gov (United States)

    Mima, H; Morikawa, H; Fukuda, K; Kato, S; Shoda, T; Mori, K

    1997-12-11

    Endomorphin-1 and -2, recently isolated endogenous peptides specific for the mu-opioid receptor, inhibited Ca2+ channel currents with EC50 of 6 and 9 nM, respectively, in NG108-15 cells transformed to express the cloned rat mu-opioid receptor. On the other hand, they elicited no response in nontransfected NG108-15 cells. It is concluded that endomorphin-1 and -2 induce Ca2+ channel inhibition by selectively activating the mu-opioid receptor.

  11. ACTIVATION AND INTERNALIZATION OF THE μ-OPIOID RECEPTOR BY THE NEWLY DISCOVERED ENDOGENOUS AGONISTS, ENDOMORPHIN-1 AND ENDOMORPHIN-2

    OpenAIRE

    McConalogue, K; Grady, E. F.; MINNIS, J.; Balestra, B; Tonini, M; Brecha, N C; Bunnett, N. W.; Sternini, C.

    1999-01-01

    The multiple effects of opiate alkaloids, important therapeutic drugs used for pain control, are mediated by the neuronal μ-opioid receptor. Among the side effects of these drugs is a profound impairment of gastrointestinal transit. Endomorphins are opioid peptides recently isolated from the nervous system, which have high affinity and selectivity for μ-opioid receptors. Since the μ-opioid receptor undergoes ligand-induced receptor endocytosis in an agonist-dependent manner, we compared the a...

  12. GRK2 protein-mediated transphosphorylation contributes to loss of function of μ-opioid receptors induced by neuropeptide FF (NPFF2) receptors.

    Science.gov (United States)

    Moulédous, Lionel; Froment, Carine; Dauvillier, Stéphanie; Burlet-Schiltz, Odile; Zajac, Jean-Marie; Mollereau, Catherine

    2012-04-13

    Neuropeptide FF (NPFF) interacts with specific receptors to modulate opioid functions in the central nervous system. On dissociated neurons and neuroblastoma cells (SH-SY5Y) transfected with NPFF receptors, NPFF acts as a functional antagonist of μ-opioid (MOP) receptors by attenuating the opioid-induced inhibition of calcium conductance. In the SH-SY5Y model, MOP and NPFF(2) receptors have been shown to heteromerize. To understand the molecular mechanism involved in the anti-opioid activity of NPFF, we have investigated the phosphorylation status of the MOP receptor using phospho-specific antibody and mass spectrometry. Similarly to direct opioid receptor stimulation, activation of the NPFF(2) receptor by [D-Tyr-1-(NMe)Phe-3]NPFF (1DMe), an analog of NPFF, induced the phosphorylation of Ser-377 of the human MOP receptor. This heterologous phosphorylation was unaffected by inhibition of second messenger-dependent kinases and, contrarily to homologous phosphorylation, was prevented by inactivation of G(i/o) proteins by pertussis toxin. Using siRNA knockdown we could demonstrate that 1DMe-induced Ser-377 cross-phosphorylation and MOP receptor loss of function were mediated by the G protein receptor kinase GRK2. In addition, mass spectrometric analysis revealed that the phosphorylation pattern of MOP receptors was qualitatively similar after treatment with the MOP agonist Tyr-D-Ala-Gly (NMe)-Phe-Gly-ol (DAMGO) or after treatment with the NPFF agonist 1DMe, but the level of multiple phosphorylation was more intense after DAMGO. Finally, NPFF(2) receptor activation was sufficient to recruit β-arrestin2 to the MOP receptor but not to induce its internalization. These data show that NPFF-induced heterologous desensitization of MOP receptor signaling is mediated by GRK2 and could involve transphosphorylation within the heteromeric receptor complex.

  13. Mechanisms of the regional hemodynamic effects of a mu-opioid receptor agonist microinjected into the hypothalamic paraventricular nuclei of conscious unrestrained rats.

    Science.gov (United States)

    Bachelard, H; Pître, M; Lessard, A

    1997-01-01

    The present study was undertaken to characterize the mechanisms of the hemodynamic responses to microinjection of the selective mu-opioid receptor agonist [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO) into the paraventricular nucleus of the hypothalamus, in conscious rats chronically instrumented with pulsed Doppler flow probes. We found that i.v. pretreatment with phentolamine had no effect on the tachycardia elicited by DAMGO (1 nmol); however, the pressor response was reversed to a state of hypotension, the renal and superior mesenteric vasoconstrictions were attenuated and the hindquarter vasodilation was potentiated. In the presence of propranolol, the pressor response and renal vasoconstriction were unchanged, whereas the superior mesenteric vasoconstriction was reduced and the hindquarter vasodilation was abolished. Moreover, in those animals we observed bradycardia followed by tachycardia. Combined i.v. pretreatment with phentolamine and propranolol abolished the pressor and heart rate responses to DAMGO but had no effect on the renal and superior mesenteric vasoconstrictions, although the hindquarter vasodilation was reduced. Intravenous pretreatment with a vasopressin V1 receptor antagonist or captopril had no effect on the cardiovascular responses to DAMGO. Together, these results indicate that the hypertension observed after injection of DAMGO into the paraventricular nucleus of the hypothalamus was secondary to alpha adrenoceptor-mediated vasoconstrictions in renal and superior mesenteric vascular beds and to beta adrenoceptor-mediated vasodilation in the hindquarter vascular bed, whereas the involvement of circulating vasopressin or angiotensin seems less obvious from the present findings. However, we cannot exclude the possibility that nonadrenergic, nonvasopressinergic and nonangiotensinergic vasoconstrictor mechanisms were acting in the renal and superior mesenteric vascular beds.

  14. (--Pentazocine induces visceral chemical antinociception, but not thermal, mechanical, or somatic chemical antinociception, in μ-opioid receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Satoh Masamichi

    2011-04-01

    Full Text Available Abstract Background (--Pentazocine has been hypothesized to induce analgesia via the κ-opioid (KOP receptor, although the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study, we investigated the role of the μ-opioid (MOP receptor in thermal, mechanical, and chemical antinociception induced by (--pentazocine using MOP receptor knockout (MOP-KO mice. Results (--Pentazocine-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from the (--pentazocine-induced mechanical and somatic chemical antinociception experiments, which used the hind-paw pressure and formalin tests, were similar to the results obtained from the thermal antinociception experiments in these mice. However, (--pentazocine retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice, an effect that was completely blocked by pretreatment with nor-binaltorphimine, a KOP receptor antagonist. In vitro binding and cyclic adenosine monophosphate assays showed that (--pentazocine possessed higher affinity for KOP and MOP receptors than for δ-opioid receptors. Conclusions The present study demonstrated the abolition of the thermal, mechanical, and somatic chemical antinociceptive effects of (--pentazocine and retention of the visceral chemical antinociceptive effects of (--pentazocine in MOP-KO mice. These results suggest that the MOP receptor plays a pivotal role in thermal, mechanical, and somatic chemical antinociception induced by (--pentazocine, whereas the KOP receptor is involved in visceral chemical antinociception induced by (--pentazocine.

  15. Human μ-opioid receptor overexpressed in Sf9 insect cells functionally coupled to endogenous Gi/o proteins

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Human μ-opioid receptor (HμOR) with a tag of six consecutive histidines at its carboxyl terminus had been expressed in recombinant baculovirus infected Sf9 insect cells.The maximal binding capacity for the [3H] diprenorphine and [3H]ohmefentanyl (Ohm) were 9.1 ± 0.7 and 6.52 ±0.23 nmol/g protein, respectively. The [3H] diprenorphine or [3H] Ohm binding to the receptor expressed in Sf9 cells was strongly inhibited by μ-selective agonists [D-Ala2, N-methyl-Phe4, glyol5]enkephalin (DAGO), Ohm, and morphine, but neither by δ nor by κ selective agonist. Na+ (100 mM) and GTP (50μM) could reduce HμOR agonists etorphine and Ohm affinity binding to the overexpressed HμOR.μ-selective agonists DAGO and Ohm effectively stimulated [35S]GTPγS binding (EC50 = 2.7nM and 6.9 nM) and inhibited forskolin- stimulated cAMP accumulation (IC50 = 0.9 nM and 0.3 nM). The agonist-dependent effects could be blocked by opioid antagonist naloxone or by pretreatment of cells with pertussis toxin (PTX). These results demonstrated that HμOR overexpressed in Sf9 insect cells functionally coupled to endogenous Gi/o proteins.Key words: Human μ-opioid receptor (Hμ OR), Sf9 insect cells, pertussis toxin (PTX), endogenous Gi/o proteins.

  16. Opioid tolerance and the emergence of new opioid receptor-coupled signaling.

    Science.gov (United States)

    Gintzler, A R; Chakrabarti, S

    2000-01-01

    Multiple cellular adaptations are elicited by chronic exposure to opioids. These include diminution of spare opioid receptors, decreased opioid receptor density, and G-protein content and coupling thereof. All imply that opioid tolefance is a manifestation of a loss of opioid function, i.e., desensitization. Recent observations challenge the exclusiveness of this formulation and indicate that opioid tolerance also results from qualitative changes in opioid signaling. In this article, Gintzler and Chakrabarti discuss the evidence that suggests that opioid tolerance results not only from impaired opioid receptor functionality, but also from altered consequences of coupling. Underlying the latter are fundamental changes in the nature of effectors that are coupled to the opioid receptor/G-protein signaling pathway. These molecular changes include the upregulation of adenylyl cyclase isoforms of the type II family as well as a substantial increase in their phosphorylation state. As a result, there is a shift in opioid receptor/G-protein signaling from predominantly Gialpha inhibitory to Gbetagamma stimulatory following chronic in vivo morphine exposure. These adaptations to chronic morphine indicate the plasticity of opioid-signal transduction mechanisms and the ability of chronic morphine to augment new signaling strategies.

  17. Nicotine enhancement and reinforcer devaluation: Interaction with opioid receptors.

    Science.gov (United States)

    Kirshenbaum, Ari P; Suhaka, Jesse A; Phillips, Jessie L; Voltolini de Souza Pinto, Maiary

    In rats, nicotine enhances responding maintained by non-pharmacological reinforcers, and discontinuation of nicotine devalues those same reinforcers. The goal of this study was to assess the interaction of nicotine and opioid receptors and to evaluate the degree to which nicotine enhancement and nicotine-induced devaluation are related to opioid activation. Nicotine (0.4mg/kg), or nicotine plus naloxone (0.3 or 3.0mg/kg), was delivered to rats prior to progressive ratio (PR) schedule sessions in which sucrose was used as a reinforcer. PR-schedule responding was assessed during ten daily sessions of drug delivery, and for three post-dosing days/sessions. Control groups for this investigation included a saline-only condition, and naloxone-only (0.3 or 3.0mg/kg) conditions. When administered in conjunction with nicotine, both naloxone doses attenuated nicotine enhancement of the sucrose reinforcer, and the combination of the larger dose of naloxone (3.0mg/kg) with nicotine produced significant impairments in sucrose reinforced responding. When administered alone, neither dose of naloxone (0.3 & 3.0mg/kg) significantly altered responding in comparison to saline. Furthermore, when dosing was discontinued after ten once-daily doses, all nicotine groups (nicotine-only and nicotine+naloxone combination) demonstrated significant decreases in sucrose reinforcement compared to the saline group. Although opioid antagonism attenuated reinforcement enhancement by nicotine, it did not prevent reinforcer devaluation upon discontinuation of nicotine dosing, and the higher dose of naloxone (3.0mg/kg) produced decrements upon discontinuation on its own in the absence of nicotine.

  18. μ-Opioid receptor desensitization: homologous or heterologous?

    Science.gov (United States)

    Llorente, Javier; Lowe, Janet D; Sanderson, Helen S; Tsisanova, Elena; Kelly, Eamonn; Henderson, Graeme; Bailey, Chris P

    2012-12-01

    There is considerable controversy over whether μ-opioid receptor (MOPr) desensitization is homologous or heterologous and over the mechanisms underlying such desensitization. In different cell types MOPr desensitization has been reported to involve receptor phosphorylation by various kinases, including G-protein-coupled receptor kinases (GRKs), second messenger and other kinases as well as perturbation of the MOPr effector pathway by GRK sequestration of G protein βγ subunits or ion channel modulation. Here we report that in brainstem locus coeruleus (LC) neurons prepared from relatively mature rats (5-8 weeks old) rapid MOPr desensitization induced by the high-efficacy opioid peptides methionine enkephalin and DAMGO was homologous and not heterologous to α(2)-adrenoceptors and somatostatin SST(2) receptors. Given that these receptors all couple through G proteins to the same set of G-protein inwardly rectifying (GIRK) channels it is unlikely therefore that in mature neurons MOPr desensitization involves G protein βγ subunit sequestration or ion channel modulation. In contrast, in slices from immature animals (less than postnatal day 20), MOPr desensitization was observed to be heterologous and could be downstream of the receptor. Heterologous MOPr desensitization was not dependent on protein kinase C or c-Jun N-terminal kinase activity, but the change from heterologous to homologous desensitization with age was correlated with a decrease in the expression levels of GRK2 in the LC and other brain regions. The observation that the mechanisms underlying MOPr desensitization change with neuronal development is important when extrapolating to the mature brain results obtained from experiments on expression systems, cell lines and immature neuronal preparations.

  19. Barnidipine, a long-acting slow onset calcium antagonist.

    Science.gov (United States)

    Korstanje, C

    2000-11-01

    Barnidipine is a stereochemically pure dihydropyridine calcium antagonist with a high potency. The drug showed a slow onset and long-lasting vasorelaxating effect in vitro, and strong antihypertensive activity in hypertension models. Barnidipine was shown to have a high vasoselectivity and offered protection in cardiac and renal ischaemia models. The in vitro drug:drug interaction profile suggests a low potential for clinically relevant interactions with concomitant medication. It can be anticipated that barnidipine is an attractive calcium antagonist, offering good blood pressure control without compensatory baroreflex activity.

  20. Pharmacological and genetic manipulation of kappa opioid receptors: effects on cocaine- and pentylenetetrazol-induced convulsions and seizure kindling.

    Science.gov (United States)

    Kaminski, Rafal M; Witkin, Jeffrey M; Shippenberg, Toni S

    2007-03-01

    The present study used pharmacological and gene ablation techniques to examine the involvement of kappa opioid receptors (KOPr) in modulating the convulsant effects of two mechanistically different drugs: cocaine and pentylenetetrazol (PTZ; GABA-A receptor antagonist) in mice. Systemic administration of the selective KOPr-1 agonist, U69593 (0.16-0.6mg/kg; s.c.), failed to modify cocaine-evoked convulsions or cocaine kindling. Similarly, no alteration in responsiveness to cocaine was observed in wild-type mice that received the selective KOPr-1 antagonist, nor-binaltorphimine (nor-BNI; 5mg/kg) or in mice lacking the gene encoding KOPr-1. In contrast to cocaine, U69593 attenuated the seizures induced by acute or repeated PTZ administration. Nor-BNI decreased the threshold for PTZ-evoked seizures and increased seizure incidence during the initial induction of kindling relative to controls. Decreased thresholds for PTZ-induced seizures were also observed in KOPr-1 knock out mice. Together, these data demonstrate an involvement of endogenous KOPr systems in modulating vulnerability to the convulsant effects of PTZ but not cocaine. Furthermore, they demonstrate that KOPr-1 activation protects against acute and kindled seizures induced by this convulsant. Finally, the results of our study suggest that KOPr-1 antagonists will not have therapeutic utility against cocaine-induced seizures, while they may prove beneficial in attenuating several actions of cocaine that have been linked to its abuse.

  1. μ-Opioid Agonist Inhibition of κ-Opioid Receptor-Stimulated Extracellular Signal-Regulated Kinase Phosphorylation Is Dynamin-Dependent in C6 Glioma Cells

    OpenAIRE

    Bohn, Laura M.; Belcheva, Mariana M.; Coscia, Carmine J.

    2000-01-01

    In previous studies we found that μ-opioids, acting via μ-opioid receptors, inhibit endothelin-stimulated C6 glioma cell growth. In the preceding article we show that the κ-selective opioid agonist U69,593 acts as a mitogen with a potency similar to that of endothelin in the same astrocytic model system. Here we report that C6 cell treatment with μ-opioid agonists for 1 h results in the inhibition of κ-opioid mitogenic signaling. The μ-selective agonist endomorphin-1 attenuates κ-opioid-stimu...

  2. Part I. Naltrexone-derived conjugate addition ligands for opioid receptors. Part II. Chemical and enantioselective aspects of the metabolism of verapamil

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, L.D.

    1987-01-01

    Selective chemoaffinity ligands to aid in identification and purification of opioid receptor subtypes were prepared from 6..cap alpha..- and 6..beta..-naltrexol, obtained stereoselectively from the ..mu..-receptor antagonist naltrexone. The targets were the 6..cap alpha..- and 6..beta..-methacrylate ethers and 6..cap alpha..- and 6..beta..-methacrylate esters prepared from reaction of 6..cap alpha..- and 6..beta..-naltrexol with methyl ..cap alpha..-(bromomethyl)acrylate or methacryloyl chloride. Of three methacrylate derivatives, the 6..cap alpha..-ether was the most potent in an opioid receptor binding assay with (/sup 3/H)-naltrexone. In the presence of sodium ion, preincubation of the 6..cap alpha..-ether resulted in recovery of about 60% of original (/sup 3/H)-naltrexone binding suggesting some irreversible effects. The methacrylate esters precipitated withdrawal in morphine dependent monkeys. The enantiomers of verapamil, a calcium channel antagonist, have different pharmacological and pharmacokinetic properties. The oxidative metabolism of verapamil was studied in rat and human liver microsomes and in man after a single oral dose.

  3. Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Ostadhadi, Sattar; Amiri, Shayan; Haj-Mirzaian, Arvin; Dehpour, AhmadReza

    2016-06-01

    Opioid and N-methyl-d-aspartate (NMDA) receptors mediate different effects of fluoxetine. We investigated whether opioid and NMDA receptors are involved in the protective effect of fluoxetine against the behavioral despair induced by acute physical stress in male mice. We used the forced swimming test (FST), tail suspension test (TST), and open-field test (OFT) for behavioral evaluation. We used fluoxetine, naltrexone (opioid receptor antagonist), MK-801 (NMDA receptor antagonist), morphine (opioid receptor agonist), and NMDA (NMDA receptor agonist). Acute foot-shock stress (FSS) significantly induced behavioral despair (depressive-like) and anxiety-like behaviors in tests. Fluoxetine (5 mg/kg) reversed the depressant-like effect of FSS, but it did not alter the locomotion and anxiety-like behavior in animals. Acute administration of subeffective doses of naltrexone (0.3 mg/kg) or MK-801 (0.01 mg/kg) potentiated the antidepressant-like effect of fluoxetine, while subeffective doses of morphine (1 mg/kg) and NMDA (75 mg/kg) abolished this effect of fluoxetine. Also, co-administration of subeffective doses of naltrexone (0.05 mg/kg) and MK-801 (0.003 mg/kg) with fluoxetine (1 mg/kg) induced a significant decrease in the immobility time in FST and TST. Our results showed that opioid and NMDA receptors (alone or in combination) are involved in the antidepressant-like effect of fluoxetine against physical stress.

  4. Kappa-opioid receptor antagonism improves recovery from myocardial stunning in chronically instrumented dogs.

    Science.gov (United States)

    Grosse Hartlage, Maike A; Theisen, Marc M; Monteiro de Oliveira, Nelson P; Van Aken, Hugo; Fobker, Manfred; Weber, Thomas P

    2006-10-01

    We tested the hypothesis that the selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) improves recovery from myocardial stunning. Ten dogs were chronically instrumented for measurement of heart rate, left atrial, aortic and left ventricular pressure (LVP), and the maximum rate of LVP increase (LV dP/dt(max)) and decrease (LV dP/dt(max)), coronary blood flow velocity and myocardial wall-thickening fraction. Regional myocardial blood flow was determined with fluorescent microspheres. Catecholamine plasma levels were measured by high-performance liquid chromatography, and beta-endorphin and dynorphin plasma levels by radioimmunoassay. An occluder around the left anterior descending artery (LAD) allowed induction of a reversible LAD-ischemia. Animals underwent two experiments in a randomized crossover fashion on separate days: (a) 10 min LAD-occlusion (control experiment), (b) second ischemic episode 24 h after nor-BNI (2.5 mg/kg IV) (intervention). Dogs receiving nor-BNI showed an increase in wall-thickening fraction, LV dP/dt(max) and LV dP/dt(min) before ischemia and during the whole reperfusion (P < 0.05 versus control experiment). After nor-BNI pretreatment, dynorphin levels increased after induction of ischemia to a peak level of 15.1 +/- 3.6 pg/mL (P < 0.05 versus control experiment). The increase in plasma beta-endorphin during ischemia and early reperfusion was attenuated after nor-BNI. Compared with the control experiment, nor-BNI left global hemodynamics, regional myocardial blood flow, and catecholamine levels unchanged. In conclusion, nor-BNI improves recovery from myocardial stunning after regional myocardial ischemia in chronically instrumented dogs.

  5. Locus coeruleus kappa-opioid receptors modulate reinstatement of cocaine place preference through a noradrenergic mechanism.

    Science.gov (United States)

    Al-Hasani, Ream; McCall, Jordan G; Foshage, Audra M; Bruchas, Michael R

    2013-11-01

    Activation of kappa-opioid receptors (KORs) in monoamine circuits results in dysphoria-like behaviors and stress-induced reinstatement of drug seeking in both conditioned place preference (CPP) and self-administration models. Noradrenergic (NA) receptor systems have also been implicated in similar behaviors. Dynorphinergic projections terminate within the locus coeruleus (LC), a primary source of norepinephrine in the forebrain, suggesting a possible link between the NA and dynorphin/kappa opioid systems, yet the implications of these putative interactions have not been investigated. We isolated the necessity of KORs in the LC in kappa opioid agonist (U50,488)-induced reinstatement of cocaine CPP by blocking KORs in the LC with NorBNI (KOR antagonist). KOR-induced reinstatement was significantly attenuated in mice injected with NorBNI in the LC. To determine the sufficiency of KORs in the LC on U50,488-induced reinstatement of cocaine CPP, we virally re-expressed KORs in the LC of KOR knockout mice. We found that KORs expression in the LC alone was sufficient to partially rescue KOR-induced reinstatement. Next we assessed the role of NA signaling in KOR-induced reinstatement of cocaine CPP in the presence and absence of a α2-agonist (clonidine), β-adrenergic receptor antagonist (propranolol), and β(1)- and β(2)-antagonist (betaxolol and ICI-118,551 HCl). Both the blockade of postsynaptic β(1)-adrenergic receptors and the activation of presynaptic inhibitory adrenergic autoreceptors selectively potentiated the magnitude of KOR-induced reinstatement of cocaine CPP but not cocaine-primed CPP reinstatement. Finally, viral restoration of KORs in the LC together with β-adrenergic receptor blockade did not potentiate KOR-induced reinstatement to cocaine CPP, suggesting that adrenergic receptor interactions occur at KOR-expressing regions external to the LC. These results identify a previously unknown interaction between KORs and NA systems and suggest a NA

  6. Temperament trait Harm Avoidance associates with μ-opioid receptor availability in frontal cortex

    DEFF Research Database (Denmark)

    Tuominen, Lauri; Salo, Johanna; Hirvonen, Jussi;

    2012-01-01

    Avoidance are largely unknown. We hypothesized that variability in Harm Avoidance trait would be explained by differences in the activity of μ-opioid system as the opioid system is known to regulate affective states and stress sensitivity. Brain μ-opioid receptor availability was measured in 22 healthy...... subjects using positron emission tomography and [(11)C]carfentanil, a selective μ-opioid receptor agonist. The subjects were selected from a large Finish population-based cohort (N=2075) on the basis of their pre-existing Temperament and Character Scores. Subjects scoring consistently in the upper (10......) and lower (12) quartiles for the Harm Avoidance trait were studied. High Harm Avoidance score associated with high μ-opioid receptor availability (i.e. lower endogenous μ-opioid drive) in anterior cingulate cortex, ventromedial and dorsolateral prefrontal cortices and anterior insular cortex...

  7. Endomorphin-2 and endomorphin-1 promote the extracellular amount of accumbal dopamine via nonopioid and mu-opioid receptors, respectively.

    NARCIS (Netherlands)

    Okutsu, H.; Watanabe, S.; Takahashi, I.; Aono, Y.; Saigusa, T.; Koshikawa, N.; Cools, A.R.

    2006-01-01

    Activation of mu-opioid receptors in the nucleus accumbens (NAc) is known to increase accumbal dopamine efflux in rats. Endomorphin-2 (Tyr-Pro-Phe-Phe-NH(2); EM-2) and endomorphin-1 (Tyr-Pro-Trp-Phe-NH(2); EM-1) are suggested to be the endogenous ligands for the mu-opioid receptor. As the ability of

  8. Revolution in GPCR signalling: opioid receptor heteromers as novel therapeutic targets: IUPHAR review 10.

    Science.gov (United States)

    Fujita, Wakako; Gomes, Ivone; Devi, Lakshmi A

    2014-09-01

    GPCRs can interact with each other to form homomers or heteromers. Homomers involve interactions with the same receptor type while heteromers involve interactions between two different GPCRs. These receptor-receptor interactions modulate not only the binding but also the signalling and trafficking properties of individual receptors. Opioid receptor heteromerization has been extensively investigated with the objective of identifying novel therapeutic targets that are as potent as morphine but without the side effects associated with chronic morphine use. In this context, studies have described heteromerization between the different types of opioid receptors and between opioid receptors and a wide range of GPCRs including adrenoceptors, cannabinoid, 5-HT, metabotropic glutamate and sensory neuron-specific receptors. Recent advances in the field involving the generation of heteromer-specific reagents (antibodies or ligands) or of membrane-permeable peptides that disrupt the heteromer interaction are helping to elucidate the physiological role of opioid receptor heteromers and the contribution of the partner receptor to the side effects associated with opioid use. For example, studies using membrane-permeable peptides targeting the heteromer interface have implicated μ and δ receptor heteromers in the development of tolerance to morphine, and heteromers of μ and gastrin-releasing peptide receptors in morphine-induced itch. In addition, a number of ligands that selectively target opioid receptor heteromers exhibit potent antinociception with a decrease in the side effects commonly associated with morphine use. In this review, we summarize the latest findings regarding the biological and functional characteristics of opioid receptor heteromers both in vitro and in vivo.

  9. Anti-nociceptive role of neuropeptide Y in the nucleus accumbens in rats with inflammation, an effect modulated by mu- and kappa-opioid receptors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Recent study in our laboratory showed that neuropeptide Y (NPY) plays an antinociceptive role in the nucleus accumbens (NAc) in intact rats. The present study was performed to further investigate the effect of NPY in nociceptive modulation in the NAc of rats with inflammation, and the possible interaction between NPY and the opioid systems. Experimental inflammation was induced by subcutaneous injection of carrageenan into the left hindpaw of rats. Intra-NAc administration of NPY induced a dose-dependent increase of hindpaw withdrawal latencies (HWLs) to thermal and mechanical stimulations in rats with inflammation. The anti-nociceptive effect of NPY was significantly blocked by subsequent intra-NAc injection of the Y1 receptor antagonist NPY28-36, suggesting an involvement of Y1 receptor in the NPY-induced anti-nociception. Furthermore, intra-NAc administration of the opioid antagonist naloxone significantly antagonized the increased HWLs induced by preceding intra-NAc injection of NPY, suggesting an involvement of the endogenous opioid system in the NPY-induced anti-nociception in the NAc during inflammation. Moreover, the NPY-induced anti-nociception was attenuated by following intra-NAc injection of the μ-opioid antagonist β-funaltrexamine (β-FNA), and κ-opioid antagonist nor-binaltorphimine (norBNI), but not by δ-opioid antagonist naltrindole, indicating that μ- and κ-opioid receptors, not δ-opioid receptor, are involved in the NPY-induced anti-nociception in the NAc in rats with inflammation.

  10. Involvement of δ-and μ-opioid receptors in the delayed cerebral ischemic tolerance induced by repeated electroacupuncture preconditioning in rats

    Institute of Scientific and Technical Information of China (English)

    XIONG Li-ze; YANG Jing; WANG Qiang; LU Zhi-hong

    2007-01-01

    Background Preconditioning with repeated electroacupuncture (EA) could mimic ischemic preconditioning to induce cerebral ischemic tolerance in rats. The present study was designed to investigate whether mu(μ)-, delta(δ)- or kappa(κ)-opioid receptors are involved in the neuroprotection induced by repeated EA preconditioning.Methods The rats were pretreated with naltrindole (NTI), nor-binaltorphimine (nor-BNI) or D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), which is a highly selective δ-, κ- or μ-opioid receptor antagonist respectively, before each EA preconditioning (30 minutes per day, 5 days). Twenty-four hours after the last EA treatment, the middle cerebral artery occlusion (MCAO) was induced for 120 minutes. The brain infarct volume was determined with 2,3,5-triphenyltetrazolium chloride staining at 24 hours after MCAO and compared with that in rats which only received EA preconditioning. In another experiment, the met-enkephalin-like immunoreactivity in rat brain was investigated by immunohistochemistry in both EA preconditioning and control rats.Results The EA preconditioning reduced brain infarct volume compared with the control rats (P=0.000). Administration of both NTI and CTOP attenuated the brain infarct volume reduction induced by EA preconditioning, presenting with larger infarct volume than that in the EA preconditioning rats (P<0.001). But nor-BNI administration did not block the infarct volume reduction induced by EA preconditioning, presenting with smaller infarct volume than the control group rats(P=0.000). The number of met-enkephalin-like immunoreactivity positive neurons in the EA preconditioning rats was more than that of the control rats (P=0.000).Conclusion Repeated EA preconditioning stimulates the release of enkephalins, which may bind δ- and μ-opioid receptors to induce the tolerance against focal cerebral ischemia.

  11. Kinetic analysis of transport and opioid receptor binding of ( sup 3 H)(-)-cyclofoxy in rat brain in vivo: Implications for human studies

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Y.; Kawai, R.; McManaway, M.; Otsuki, H.; Rice, K.C.; Patlak, C.S.; Blasberg, R.G. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    (3H)Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB); estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using (18F)CF and positron emission tomography.

  12. Internalization and down-regulation of mu opioid receptors by endomorphins and morphine in SH-SY5Y human neuroblastoma cells.

    Science.gov (United States)

    Horner, Kristen A; Zadina, James E

    2004-12-03

    The human neuroblastoma cell line, SH-SY5Y, was used to examine the effects of morphine and the endogenous opioid peptides, endomorphin-1 (EM-1) and endomorphin-2 (EM-2), on mu opioid receptor (MOR) internalization and down-regulation. Treatment for 24 h with EM-1, EM-2 or morphine at 100 nM, 1 microM and 10 microM resulted in a dose-dependent down-regulation of mu receptors. Exposure of cells to 10 microM EM-1 for 2.5, 5 and 24 h resulted in a time-dependent down-regulation of mu receptors. Down-regulation of mu receptors by morphine and EM-1 was blocked by treatment with hypertonic sucrose, consistent with an endocytosis-dependent mechanism. Sensitive cell-surface binding studies with a radiolabeled mu antagonist revealed that morphine was able to induce internalization of mu receptors naturally expressed in SH-SY5Y cells. EM-1 produced a more rapid internalization of mu receptors than morphine, but hypertonic sucrose blocked the internalization induced by each of these agonists. This study demonstrates that, like morphine, the endomorphins down-regulate mu opioid receptors in a dose- and time-dependent manner. This study also demonstrates that morphine, as well as EM-1, can induce rapid, endocytosis-dependent internalization of mu opioid receptors in SH-SY5Y cells. These results may help elucidate the ability of mu agonists to regulate the number and responsiveness of their receptors.

  13. Modelling the PKPD of oxycodone in experimental pain - impact of opioid receptor polymorphisms

    DEFF Research Database (Denmark)

    Olsen, Rasmus; Foster, David J R; Upton, Richard N;

    2016-01-01

    BACKGROUND: Polymorphisms in the opioid receptor genes may affect the pharmacodynamics (PD) of oxycodone and be part of the reason behind the diversity in clinical response. The aim of the analysis was to model the exposure-response profile of oxycodone for three different pain variables and search...... in healthy volunteers. Pain tolerance data from muscle pressure (n=36), visceral pressure (n=54) and skin pinch (n=34) were included. Genetic associations with 18 opioid-receptor SNPs were explored using a stepwise covariate approach. Model simulations were performed using the estimated model parameters...

  14. Cyclic endomorphin analogs in targeting opioid receptors to achieve pain relief.

    Science.gov (United States)

    Janecka, Anna; Gentilucci, Luca

    2014-01-01

    Endomorphins, the endogenous ligands of the µ-opioid receptor, are attractive candidates for opioid-based pain-relieving agents. These tetrapeptides, with their remarkable affinity for the µ-opioid receptor, display favorable antinociceptive activity when injected directly into the brain of experimental animals. However, the application of endomorphins as clinical analgesics has been impeded by their instability in body fluids and inability to reach the brain after systemic administration. Among numerous modifications of the endomorphin structure aimed at improving their pharmacological properties, cyclization can be viewed as an interesting option. Here, we have summarized recent advances in obtaining endomorphin-based cyclic peptide analogs.

  15. Activation of μ-opioid receptor and Toll-like receptor 4 by plasma from morphine-treated mice.

    Science.gov (United States)

    Xie, Nan; Gomes, Fabio P; Deora, Vandana; Gregory, Kye; Vithanage, Tharindu; Nassar, Zeyad D; Cabot, Peter J; Sturgess, David; Shaw, Paul N; Parat, Marie-Odile

    2017-03-01

    In this study, we quantified the ability of opioids present in biological samples to activate the μ-opioid receptor and TLR4 using cell-based assays. Each assay was standardised, in the presence of plasma, using morphine, its μ receptor-active metabolite morphine-6 glucuronide (M6G) and its μ receptor-inactive, but TLR4-active metabolite morphine-3 glucuronide (M3G). Specificity was verified using antagonists. Morphine- and M6G-spiked plasma samples exhibited μ receptor activation, which M3G-spiked plasma lacked. In contrast, M3G showed moderate but consistent activation of TLR-4. Plasma samples were collected at a number of time points from mice administered morphine (1 or 10mg/kg every 12h for 3days) or saline. Morphine administration led to intermittent μ receptor activation, reversed by μ receptor antagonists, and to TRL4 activation at time points where M3G is measured in plasma. Interestingly, this protocol of morphine administration also led to TLR4-independent NF-κB activation, at time points where M3G was not detected, presumably via elevation of circulating cytokines including, but not limited to, TNFα. Circulating TNFα was increased after three days of morphine administration, and TNFα mRNA elevated in the spleen of morphine-treated mice.

  16. Inhibition of trigemino-hypoglossal reflex in rats by oxytocin is mediated by mu and kappa opioid receptors.

    Science.gov (United States)

    Zubrzycka, Maria; Fichna, Jakub; Janecka, Anna

    2005-02-21

    Recent studies showed that oxytocin plays an important role in the modulation of pain at different levels of the central nervous system. The present study was undertaken to investigate the effect of oxytocin on trigemino-hypoglossal reflex in rats. With the experimental settings used in this study, we have demonstrated that oxytocin showed significant analgesic effect after intracerebroventricular administration in rats, as assayed by the amplitude of the retractory movements of the tongue after tooth pulp stimulation. Antinociceptive effect of oxytocin was inhibited by subsequent perfusion of cerebral ventricles with oxytocin antagonist, [deamino-Cys1-D-Tyr(OEt)2-Thr4-Orn8]-oxytocin, atosiban. An involvement of opioid system in the oxytocin-induced analgesia was studied after intracerebroventricular administration of different opioid antagonists: non-selective naloxone, mu-selective beta-funaltrexamine, delta-selective naltrindole, and kappa-selective nor-binaltorphimine. It was shown that inhibition of antinociceptive effects was mediated through mu and kappa opioid receptors, indicating that there is a synergy between oxytocin and opioid systems in transmitting and modulating pain stimuli. Co-administration of oxytocin and a mu-selective endogenous opioid ligand endomorphin-2 did not significantly increase the antinociceptive activity of endomorphin-2.

  17. Structural and functional interactions between six-transmembrane μ-opioid receptors and β2-adrenoreceptors modulate opioid signaling.

    Science.gov (United States)

    Samoshkin, Alexander; Convertino, Marino; Viet, Chi T; Wieskopf, Jeffrey S; Kambur, Oleg; Marcovitz, Jaclyn; Patel, Pinkal; Stone, Laura S; Kalso, Eija; Mogil, Jeffrey S; Schmidt, Brian L; Maixner, William; Dokholyan, Nikolay V; Diatchenko, Luda

    2015-12-11

    The primary molecular target for clinically used opioids is the μ-opioid receptor (MOR). Besides the major seven-transmembrane (7TM) receptors, the MOR gene codes for alternatively spliced six-transmembrane (6TM) isoforms, the biological and clinical significance of which remains unclear. Here, we show that the otherwise exclusively intracellular localized 6TM-MOR translocates to the plasma membrane upon coexpression with β2-adrenergic receptors (β2-ARs) through an interaction with the fifth and sixth helices of β2-AR. Coexpression of the two receptors in BE(2)-C neuroblastoma cells potentiates calcium responses to a 6TM-MOR ligand, and this calcium response is completely blocked by a selective β2-antagonist in BE(2)-C cells, and in trigeminal and dorsal root ganglia. Co-administration of 6TM-MOR and β2-AR ligands leads to substantial analgesic synergy and completely reverses opioid-induced hyperalgesia in rodent behavioral models. Together, our results provide evidence that the heterodimerization of 6TM-MOR with β2-AR underlies a molecular mechanism for 6TM cellular signaling, presenting a unique functional responses to opioids. This signaling pathway may contribute to the hyperalgesic effects of opioids that can be efficiently blocked by β2-AR antagonists, providing a new avenue for opioid therapy.

  18. Structural and functional interactions between six-transmembrane μ-opioid receptors and β2-adrenoreceptors modulate opioid signaling

    Science.gov (United States)

    Samoshkin, Alexander; Convertino, Marino; Viet, Chi T.; Wieskopf, Jeffrey S.; Kambur, Oleg; Marcovitz, Jaclyn; Patel, Pinkal; Stone, Laura S.; Kalso, Eija; Mogil, Jeffrey S.; Schmidt, Brian L.; Maixner, William; Dokholyan, Nikolay V.; Diatchenko, Luda

    2015-01-01

    The primary molecular target for clinically used opioids is the μ-opioid receptor (MOR). Besides the major seven-transmembrane (7TM) receptors, the MOR gene codes for alternatively spliced six-transmembrane (6TM) isoforms, the biological and clinical significance of which remains unclear. Here, we show that the otherwise exclusively intracellular localized 6TM-MOR translocates to the plasma membrane upon coexpression with β2-adrenergic receptors (β2-ARs) through an interaction with the fifth and sixth helices of β2-AR. Coexpression of the two receptors in BE(2)-C neuroblastoma cells potentiates calcium responses to a 6TM-MOR ligand, and this calcium response is completely blocked by a selective β2-antagonist in BE(2)-C cells, and in trigeminal and dorsal root ganglia. Co-administration of 6TM-MOR and β2-AR ligands leads to substantial analgesic synergy and completely reverses opioid-induced hyperalgesia in rodent behavioral models. Together, our results provide evidence that the heterodimerization of 6TM-MOR with β2-AR underlies a molecular mechanism for 6TM cellular signaling, presenting a unique functional responses to opioids. This signaling pathway may contribute to the hyperalgesic effects of opioids that can be efficiently blocked by β2-AR antagonists, providing a new avenue for opioid therapy. PMID:26657998

  19. μ and κ opioid receptor distribution in the monogamous titi monkey (Callicebus cupreus): implications for social behavior and endocrine functioning.

    Science.gov (United States)

    Ragen, B J; Freeman, S M; Laredo, S A; Mendoza, S P; Bales, K L

    2015-04-02

    The opioid system is involved in infant-mother bonds and adult-adult bonds in many species. We have previously shown that μ opioid receptors (MORs) and κ opioid receptors (KORs) are involved in regulating the adult attachment of the monogamous titi monkey. The present study sought to determine the distribution of MOR and KOR in the titi monkey brain using receptor autoradiography. We used [(3)H][D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) to label MORs and [(3)H]U69,593 to label KORs. MOR binding was heterogeneous throughout the titi monkey brain. Specifically, MOR binding was observed in the cingulate gyrus (CG), striatum, septal regions, diagonal band, amygdala, hypothalamus, hippocampus, and thalamus. Binding was particularly dense in the septum, medial amygdala, paraventricular nucleus of the hypothalamus, mediodorsal thalamus with moderate binding in the nucleus accumbens. Consistent with other primate species, MOR were also observed in "neurochemically unique domains of the accumbens and putamen" (NUDAPs). In general KOR binding was more homogenous. KORs were primarily found in the CG, striatum, amygdala and hippocampus. Dense KOR binding was observed in the claustrum. Relative MOR and KOR binding in the titi monkey striatum was similar to other humans and primates, but was much lower compared to rodents. Relative MOR binding in the titi monkey hypothalamus was much greater than that found in rodents. This study was the first to examine MOR and KOR binding in a monogamous primate. The location of these receptors gives insight into where ligands may be acting to regulate social behavior and endocrine function.

  20. A Facile Synthesis for Novel Loperamide Analogs as Potential μ Opioid Receptor Agonists

    Directory of Open Access Journals (Sweden)

    Xiaofeng Bao

    2012-12-01

    Full Text Available A facile synthesis for novel loperamide analogs as potential μ opioid receptors is described. The synthetic procedure for compound 5, which contains two 4-phenyl piperidine scaffolds, was optimized, and this compound was synthesized in excellent yield. We also describe a mild and highly efficient protocol for the synthesis of compounds 6 and 7.

  1. Brain opioid receptor density relates to stereotypies in chronically stressed pigs

    NARCIS (Netherlands)

    Loijens, L.W.S.; Schouten, W.G.P.; Wiepkema, P.R.; Wiegant, V.M.

    1999-01-01

    Opioid receptor densities were measured in the hippocampus of chronically stressed (tethered) pigs to study the involvement of endogenous opioid systems in stereotypy performance. Three groups of animals were housed tethered for 2 (n = 12), 5.5 (n = 12) and 8-9 months (n = 8), respectively, and the

  2. Salvinorin A analogs and other κ-opioid receptor compounds as treatments for cocaine abuse.

    Science.gov (United States)

    Kivell, Bronwyn M; Ewald, Amy W M; Prisinzano, Thomas E

    2014-01-01

    Acute activation of kappa-opioid receptors produces anti-addictive effects by regulating dopamine levels in the brain. Unfortunately, classic kappa-opioid agonists have undesired side effects such as sedation, aversion, and depression, which restrict their clinical use. Salvinorin A (Sal A), a novel kappa-opioid receptor agonist extracted from the plant Salvia divinorum, has been identified as a potential therapy for drug abuse and addiction. Here, we review the preclinical effects of Sal A in comparison with traditional kappa-opioid agonists and several new analogs. Sal A retains the anti-addictive properties of traditional kappa-opioid receptor agonists with several improvements including reduced side effects. However, the rapid metabolism of Sal A makes it undesirable for clinical development. In an effort to improve the pharmacokinetics and tolerability of this compound, kappa-opioid receptor agonists based on the structure of Sal A have been synthesized. While work in this field is still in progress, several analogs with improved pharmacokinetic profiles have been shown to have anti-addictive effects. While in its infancy, it is clear that these compounds hold promise for the future development of anti-addictive therapeutics.

  3. Kappa Opioid Receptors Mediate where Fear Is Expressed Following Extinction Training

    Science.gov (United States)

    Cole, Sindy; Richardson, Rick; McNally, Gavan P.

    2011-01-01

    Six experiments used a within-subjects renewal design to examine the involvement of kappa opioid receptors (KORs) in regulating the expression and recovery of extinguished fear. Rats were trained to fear a tone conditioned stimulus (CS) via pairings with foot shock in a distinctive context (A). This was followed by extinction training of the CS in…

  4. The mu-opioid receptor gene-dose dependent reductions in G-protein activation in the pons/medulla and antinociception induced by endomorphins in mu-opioid receptor knockout mice.

    Science.gov (United States)

    Mizoguchi, H; Narita, M; Oji, D E; Suganuma, C; Nagase, H; Sora, I; Uhl, G R; Cheng, E Y; Tseng, L F

    1999-01-01

    There appear to be different relationships between mu-opioid receptor densities and the acute and neuroadaptive mu-opioid agonist-induced responses of the multiple opioid neuronal systems, including important pons/medulla circuits. The recent success in creating mu-opioid receptor knockout mice allows studies of mu-opioid agonist-induced pharmacological and physiological effects in animals that express no, one or two copies of the mu-opioid receptor gene. We now report that the binding of mu-opioid receptor ligand, [3H][D-Ala2,NHPhe4,Gly-ol]enkephalin to membrane preparations of the pons/medulla was reduced by half in heterozygous mu-opioid receptor knockout mice and eliminated in homozygous mu-opioid receptor knockout mice. The endogenous mu-opioid agonist peptides endomorphin-1 and -2 activate G-proteins in the pons/medulla from wild-type mice in a concentration-dependent fashion, as assessed using [35S]guanosine-5'-o-(3-thio)triphosphate binding. This stimulation was reduced to half of the wild-type levels in heterozygous mice and eliminated in homozygous knockout mice. The intracerebroventricular injection of either endomorphin-1 or endomorphin-2 produced marked antinociception in the hot-plate and tail-flick tests in wild-type mice. These antinociceptive actions were significantly reduced in heterozygous mu-opioid receptor knockout mice, and virtually abolished in homozygous knockout mice. The mu-opioid receptors are the principal molecular targets for endomorphin-induced G-protein activation in the pons/medulla and the antinociception caused by the intracerebroventricular administration of mu-opioid agonists. These data support the notion that there are limited physiological mu-opioid receptor reserves for inducing G-protein activation in the pons/medulla and for the nociceptive modulation induced by the central administration of endomorphin-1 and -2.

  5. The potent opioid agonist, (+)-cis-3-methylfentanyl binds pseudoirreversibly to the opioid receptor complex in vitro and in vivo: Evidence for a novel mechanism of action

    Energy Technology Data Exchange (ETDEWEB)

    Band, L.; Xu, Heng; Bykov, V.; Rothman, R.B.; Kim, Chongho; Newman, A.; Jacobson, A.E.; Rice, K.C. (NIDDK, Bethesda, MD (USA)); Greig, N. (NIA, Bethesda, MD (USA))

    1990-01-01

    The present study demonstrates that pretreatment of rat brain membranes with (+)-cis-3-methylfentanyl ((+)-cis-MF), followed by extensive washing of the membranes, produces a wash-resistant decreasing in the binding of ({sup 3}H)-(D-ala{sup 2}, D-leu{sup 5})enkephalin to the d binding site of the opioid receptor complex ({delta}{sub cx} binding site). Intravenous administration of (+)-cis-MF (50 {mu}g/kg) to rats produced a pronounced catalepsy and also produced a wash-resistant masking of {delta}{sub cx} and {mu} binding sites in membranes prepared 120 min post-injection. Administration of 1 mg/kg i.v. of the opioid antagonist, 6-desoxy-6{beta}-fluoronaltrexone (cycloFOXY), 100 min after the injection of (+)-cis-MF (20 min prior to the preparation of membranes) completely reversed the catatonia and restored masked {delta}{sub cx} binding sites to control levels. This was not observed with (+)-cycloFOXY. The implications of these and other findings for the mechanism of action of (+)-cis-MF and models of the opioid receptors are discussed.

  6. Evidence of endogenous mu opioid receptor regulation by epigenetic control of the promoters.

    Science.gov (United States)

    Hwang, Cheol Kyu; Song, Kyu Young; Kim, Chun Sung; Choi, Hack Sun; Guo, Xiao-Hong; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H

    2007-07-01

    The pharmacological effect of morphine as a painkiller is mediated mainly via the mu opioid receptor (MOR) and is dependent on the number of MORs in the cell surface membrane. While several studies have reported that the MOR gene is regulated by various cis- and trans-acting factors, many questions remain unanswered regarding in vivo regulation. The present study shows that epigenetic silencing and activation of the MOR gene are achieved through coordinated regulation at both the histone and DNA levels. In P19 mouse embryonal carcinoma cells, expression of the MOR was greatly increased after neuronal differentiation. MOR expression could also be induced by a demethylating agent (5'-aza-2'-deoxycytidine) or histone deacetylase inhibitors in the P19 cells, suggesting involvement of DNA methylation and histone deacetylation for MOR gene silencing. Analysis of CpG DNA methylation revealed that the proximal promoter region was unmethylated in differentiated cells compared to its hypermethylation in undifferentiated cells. In contrast, the methylation of other regions was not changed in either cell type. Similar methylation patterns were observed in the mouse brain. In vitro methylation of the MOR promoters suppressed promoter activity in the reporter assay. Upon differentiation, the in vivo interaction of MeCP2 was reduced in the MOR promoter region, coincident with histone modifications that are relevant to active transcription. When MeCP2 was disrupted using MeCP2 small interfering RNA, the endogenous MOR gene was increased. These data suggest that DNA methylation is closely linked to the MeCP2-mediated chromatin structure of the MOR gene. Here, we propose that an epigenetic mechanism consisting of DNA methylation and chromatin modification underlies the cell stage-specific mechanism of MOR gene expression.

  7. Berberine Improves Intestinal Motility and Visceral Pain in the Mouse Models Mimicking Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D Symptoms in an Opioid-Receptor Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Chunqiu Chen

    Full Text Available Berberine and its derivatives display potent analgesic, anti-inflammatory and anticancer activity. Here we aimed at characterizing the mechanism of action of berberine in the gastrointestinal (GI tract and cortical neurons using animal models and in vitro tests.The effect of berberine was characterized in murine models mimicking diarrhea-predominant irritable bowel syndrome (IBS-D symptoms. Then the opioid antagonists were used to identify the receptors involved. Furthermore, the effect of berberineon opioid receptors expression was established in the mouse intestine and rat fetal cortical neurons.In mouse models, berberine prolonged GI transit and time to diarrhea in a dose-dependent manner, and significantly reduced visceral pain. In physiological conditions the effects of berberine were mediated by mu- (MOR and delta- (DOR opioid receptors; hypermotility, excessive secretion and nociception were reversed by berberine through MOR and DOR-dependent action. We also found that berberine increased the expression of MOR and DOR in the mouse bowel and rat fetal cortical neurons.Berberine significantly improved IBS-D symptoms in animal models, possibly through mu- and delta- opioid receptors. Berberine may become a new drug candidate for the successful treatment of IBS-D in clinical conditions.

  8. The non-peptidic delta opioid receptor agonist TAN-67 enhances dopamine efflux in the nucleus accumbens of freely moving rats via a mechanism that involves both glutamate and free radicals.

    NARCIS (Netherlands)

    Fusa, K.; Takahashi, I.; Watanabe, S.; Aono, Y.; Ikeda, H.; Saigusa, T.; Nagase, H.; Suzuki, T.; Koshikawa, N.; Cools, A.R.

    2005-01-01

    The activation of the delta-opioid receptors in the nucleus accumbens is known to induce a large and rapid increase of accumbal dopamine efflux. (+/-)-TAN-67 (2-methyl-4a(alpha)-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12a(alpha)-octahydro -quinolino[2,3,3,-g]isoquinoline) is a centrally acting non-peptidi

  9. Synthetic studies of neoclerodane diterpenes from Salvia divinorum: role of the furan in affinity for opioid receptors.

    Science.gov (United States)

    Simpson, Denise S; Lovell, Kimberly M; Lozama, Anthony; Han, Nina; Day, Victor W; Dersch, Christina M; Rothman, Richard B; Prisinzano, Thomas E

    2009-09-21

    Further synthetic modification of the furan ring of salvinorin A (1), the major active component of Salvia divinorum, has resulted in novel neoclerodane diterpenes with opioid receptor affinity and activity. A computational study has predicted 1 to be a reproductive toxicant in mammals and is suggestive that use of 1 may be associated with adverse effects. We report in this study that piperidine 21 and thiomorpholine 23 have been identified as selective partial agonists at kappa opioid receptors. This indicates that additional structural modifications of 1 may provide ligands with good selectivity for opioid receptors but with reduced potential for toxicity.

  10. Effect of Iboga alkaloids on µ-opioid receptor-coupled G protein activation.

    Directory of Open Access Journals (Sweden)

    Tamara Antonio

    Full Text Available OBJECTIVE: The iboga alkaloids are a class of small molecules defined structurally on the basis of a common ibogamine skeleton, some of which modify opioid withdrawal and drug self-administration in humans and preclinical models. These compounds may represent an innovative approach to neurobiological investigation and development of addiction pharmacotherapy. In particular, the use of the prototypic iboga alkaloid ibogaine for opioid detoxification in humans raises the question of whether its effect is mediated by an opioid agonist action, or if it represents alternative and possibly novel mechanism of action. The aim of this study was to independently replicate and extend evidence regarding the activation of μ-opioid receptor (MOR-related G proteins by iboga alkaloids. METHODS: Ibogaine, its major metabolite noribogaine, and 18-methoxycoronaridine (18-MC, a synthetic congener, were evaluated by agonist-stimulated guanosine-5´-O-(γ-thio-triphosphate ([(35S]GTPγS binding in cells overexpressing the recombinant MOR, in rat thalamic membranes, and autoradiography in rat brain slices. RESULTS AND SIGNIFICANCE: In rat thalamic membranes ibogaine, noribogaine and 18-MC were MOR antagonists with functional Ke values ranging from 3 uM (ibogaine to 13 uM (noribogaine and 18MC. Noribogaine and 18-MC did not stimulate [(35S]GTPγS binding in Chinese hamster ovary cells expressing human or rat MORs, and had only limited partial agonist effects in human embryonic kidney cells expressing mouse MORs. Ibogaine did not did not stimulate [(35S]GTPγS binding in any MOR expressing cells. Noribogaine did not stimulate [(35S]GTPγS binding in brain slices using autoradiography. An MOR agonist action does not appear to account for the effect of these iboga alkaloids on opioid withdrawal. Taken together with existing evidence that their mechanism of action also differs from that of other non-opioids with clinical effects on opioid tolerance and withdrawal, these

  11. Impact of efficacy at the μ-opioid receptor on antinociceptive effects of combinations of μ-opioid receptor agonists and cannabinoid receptor agonists.

    Science.gov (United States)

    Maguire, David R; France, Charles P

    2014-11-01

    Cannabinoid receptor agonists, such as Δ(9)-tetrahydrocannabinol (Δ(9)-THC), enhance the antinociceptive effects of μ-opioid receptor agonists, which suggests that combining cannabinoids with opioids would improve pain treatment. Combinations with lower efficacy agonists might be preferred and could avoid adverse effects associated with large doses; however, it is unclear whether interactions between opioids and cannabinoids vary across drugs with different efficacy. The antinociceptive effects of μ-opioid receptor agonists alone and in combination with cannabinoid receptor agonists were studied in rhesus monkeys (n = 4) using a warm water tail withdrawal procedure. Etorphine, fentanyl, morphine, buprenorphine, nalbuphine, Δ(9)-THC, and CP 55,940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol) each increased tail withdrawal latency. Pretreatment with doses of Δ(9)-THC (1.0 mg/kg) or CP 55,940 (0.032 mg/kg) that were ineffective alone shifted the fentanyl dose-effect curve leftward 20.6- and 52.9-fold, respectively, and the etorphine dose-effect curve leftward 12.4- and 19.6-fold, respectively. Δ(9)-THC and CP 55,940 shifted the morphine dose-effect curve leftward only 3.4- and 7.9-fold, respectively, and the buprenorphine curve only 5.4- and 4.1-fold, respectively. Neither Δ(9)-THC nor CP 55,940 significantly altered the effects of nalbuphine. Cannabinoid receptor agonists increase the antinociceptive potency of higher efficacy opioid receptor agonists more than lower efficacy agonists; however, because much smaller doses of each drug can be administered in combinations while achieving adequate pain relief and that other (e.g., abuse-related) effects of opioids do not appear to be enhanced by cannabinoids, these results provide additional support for combining opioids with cannabinoids to treat pain.

  12. Anti-analgesic effect of the mu/delta opioid receptor heteromer revealed by ligand-biased antagonism.

    Directory of Open Access Journals (Sweden)

    Laura Milan-Lobo

    Full Text Available Delta (DOR and mu opioid receptors (MOR can complex as heteromers, conferring functional properties in agonist binding, signaling and trafficking that can differ markedly from their homomeric counterparts. Because of these differences, DOR/MOR heteromers may be a novel therapeutic target in the treatment of pain. However, there are currently no ligands selective for DOR/MOR heteromers, and, consequently, their role in nociception remains unknown. In this study, we used a pharmacological opioid cocktail that selectively activates and stabilizes the DOR/MOR heteromer at the cell surface by blocking its endocytosis to assess its role in antinociception. We found that mice treated chronically with this drug cocktail showed a significant right shift in the ED50 for opioid-mediated analgesia, while mice treated with a drug that promotes degradation of the heteromer did not. Furthermore, promoting degradation of the DOR/MOR heteromer after the right shift in the ED50 had occurred, or blocking signal transduction from the stabilized DOR/MOR heteromer, shifted the ED50 for analgesia back to the left. Taken together, these data suggest an anti-analgesic role for the DOR/MOR heteromer in pain. In conclusion, antagonists selective for DOR/MOR heteromer could provide an avenue for alleviating reduced analgesic response during chronic pain treatment.

  13. Hemokinin-1(4-11-induced analgesia selectively up-regulates δ-opioid receptor expression in mice.

    Directory of Open Access Journals (Sweden)

    Cai-Yun Fu

    Full Text Available Our previous studies have shown that an active fragment of human tachykinins (hHK-1(4-11 produced an opioid-independent analgesia after intracerebroventricular (i.c.v. injection in mice, which has been markedly enhanced by a δ OR antagonist, naltrindole hydrochloride (NTI. In this study, we have further characterized the in vivo analgesia after i.c.v. injection of hHK-1(4-11 in mouse model. Our qRT-PCR results showed that the mRNA levels of several ligands and receptors (e.g. PPT-A, PPT-C, KOR, PDYN and PENK have not changed significantly. Furthermore, neither transcription nor expression of NK1 receptor, MOR and POMC have changed noticeably. In contrast, both mRNA and protein levels of DOR have been up-regulated significantly, indicating that the enhanced expression of δ opioid receptor negatively modulates the analgesia induced by i.c.v. injection of hHK-1(4-11. Additionally, the combinatorial data from our previous and present experiments strongly suggest that the discriminable distribution sites in the central nervous system between hHK-1(4-11 and r/mHK-1 may be attributed to their discriminable analgesic effects. Altogether, our findings will not only contribute to the understanding of the complicated mechanisms regarding the nociceptive modulation of hemokinin-1 as well as its active fragments at supraspinal level, but may also lead to novel pharmacological interventions.

  14. Cytoprotection against Hypoxic and/or MPP+ Injury: Effect of δ–Opioid Receptor Activation on Caspase 3

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2016-08-01

    Full Text Available The pathological changes of Parkinson’s disease (PD are, at least partially, associated with the dysregulation of PTEN-induced putative kinase 1 (PINK1 and caspase 3. Since hypoxic and neurotoxic insults are underlying causes of PD, and since δ-opioid receptor (DOR is neuroprotective against hypoxic/ischemic insults, we sought to determine whether DOR activation could protect the cells from damage induced by hypoxia and/or MPP+ by regulating PINK1 and caspase 3 expressions. We exposed PC12 cells to either severe hypoxia (0.5%–1% O2 for 24–48 h or to MPP+ at different concentrations (0.5, 1, 2 mM and then detected the levels of PINK1 and cleaved caspase 3. Both hypoxia and MPP+ reduced cell viability, progressively suppressed the expression of PINK1 and increased the cleaved caspase 3. DOR activation using UFP-512, effectively protected the cells from hypoxia and/or MPP+ induced injury, reversed the reduction in PINK1 protein and significantly attenuated the increase in the cleaved caspase 3. On the other hand, the application of DOR antagonist, naltrindole, greatly decreased cell viability and increased cleaved caspase 3. These findings suggest that DOR is cytoprotective against both hypoxia and MPP+ through the regulation of PINK1 and caspase 3 pathways.

  15. Human μ—opioid receptor overexpressed in Sf9 insect cells functionally coupled to endogenous Gi/0 proteins

    Institute of Scientific and Technical Information of China (English)

    WEIQIANG; QINGXIANGSHEN; 等

    2000-01-01

    Human μ-opioid receptor(HμOR) with a tag of six consecutive histidines at its carboxyl terminus has been expressed in recombinant baculovirus infected Sf9 insect cells.The maximal binding capacity for the [3H] diprenorphine and [3H] ohmefentanyl (Ohm) were 9.1±0.7 and 6.52±0.23 nmol/g protein,respectively.The [3H] diprenorphine or [3H] Ohm binding to the receptor expressed in Sf9 cells was strongly inhibited by μ-selective agonists [D-Ala2,N-methyl-Phe4,glyol5] enkephalin(DAGO),Ohm,and morphine,but neither by δ nor by κ selective agonist.Na+ (100mM) and GTP(50μM) could reduce HμOR agonists etorphine and Ohm affinity binding to the overexpressed HμOR.μ-selective agonists DAGO and Ohm effectively stimulated [35S]GTP γS binding (EC50=2.7nM and 6.9 nM)and inhibited forskolin-stimulated cAMP accumulation(IC50=0.9 nM and 0.3 nM).The agonist-dependent effects could be blocked by opioid antagonist naloxone or by pretreatment of cells with pertussis toxin (PTX).These results demonstrated that HμOR overexpressed in Sf9 insect cells functionally coupled to endogenous Ci/o proteins.

  16. Salvinorin A administration after global cerebral hypoxia/ischemia preserves cerebrovascular autoregulation via kappa opioid receptor in piglets.

    Directory of Open Access Journals (Sweden)

    Zhenhong Wang

    Full Text Available BACKGROUND: Cerebral hypoxia/ischemia (HI is not uncommon during the perinatal period. If occurring, it can result in severe neurologic disabilities that persist throughout life. Salvinorin A, a non-opioid Kappa opioid receptors (KOR selective agonist, has the potential to address this devastating situation. We have demonstrated that salvinorin A administration before HI, preserves pial artery autoregulative function through both the KOR and extracellular signal-regulated kinases (ERK pathways. In the present study, we tested the hypothesis that administration of salvinorin A after HI could preserve cerebral autoregulation via KOR and ERK pathway. METHODOLOGY/PRINCIPAL FINDINGS: The response of the pial artery to hypercapnia, hypotension and isoproterenol were monitored before and 1 hour after HI in piglets equipped with a cranial window. Four groups of drug administration were performed after HI. The control group had DMSO (1 µl/kg, i.v. administrated immediately after HI. Two salvinorin A treated groups had salvinorin A (10 µg/kg, i.v. administrated 0 and 30 min after HI, respectively. The 4(th group had salvinorin A and the KOR antagonist norbinaltorphimine (Nor-BIN, 1 µM topical co-administrated 0 min after HI (n = 5. The dilation responses of the pial artery to hypercapnia and hypotension were impaired after global HI and were preserved with salvinorin A administration immediately or 30 min after HI. The preservation of autoregulation was abolished when nor-BIN was administered. Levels of phosphor-ERK(pERK/ERK in the cerebrospinal fluid (CSF were measured before and 1 hour after HI. After HI, the pERK/ERK levels significantly increased in both DMSO control group and salvinorin A and nor-BIN co-administration group. The elevated levels of pERK/ERK were not observed with salvinorin A only groups. CONCLUSIONS: Salvinorin A administration 0 and 30 min after HI preserves autoregulation of pial artery to hypercapnia and hypotension via

  17. Critical role of NMDA but not opioid receptors in the acquisition of fat-conditioned flavor preferences in rats.

    Science.gov (United States)

    Dela Cruz, J A D; Bae, V S; Icaza-Cukali, D; Sampson, C; Bamshad, D; Samra, A; Singh, S; Khalifa, N; Touzani, K; Sclafani, A; Bodnar, R J

    2012-11-01

    critical role for NMDA, but not opioid receptor signaling in the acquisition of a fat conditioned flavor preferences, and at best limited involvement of NMDA and opioid receptors in the expression of a previously learned preference.

  18. Expression of {mu}, {kappa}, and {delta} opioid receptor messenger RNA in the human CNS: a {sup 33}P in situ hybridization study

    Energy Technology Data Exchange (ETDEWEB)

    Peckys, D.; Landwehrmeyer, G.B. [Department of Neurology, Albert-Ludwigs-University Freiburg, Neurozentrum, Breisacherstrasse 64, D-79106 Freiburg (Germany)

    1999-02-01

    The existence of at least three opioid receptor types, referred to as {mu}, {kappa}, and {delta}, is well established. Complementary DNAs corresponding to the pharmacologically defined {mu}, {kappa}, and {delta} opioid receptors have been isolated in various species including man. The expression patterns of opioid receptor transcripts in human brain has not been established with a cellular resolution, in part because of the low apparent abundance of opioid receptor messenger RNAs in human brain. To visualize opioid receptor messenger RNAs we developed a sensitive in situ hybridization histochemistry method using {sup 33}P-labelled RNA probes. In the present study we report the regional and cellular expression of {mu}, {kappa}, and {delta} opioid receptor messenger RNAs in selected areas of the human brain. Hybridization of the different opioid receptor probes resulted in distinct labelling patterns. For the {mu} and {kappa} opioid receptor probes, the most intense regional signals were observed in striatum, thalamus, hypothalamus, cerebral cortex, cerebellum and certain brainstem areas as well as the spinal cord. The most intense signals for the {delta} opioid receptor probe were found in cerebral cortex. Expression of opioid receptor transcripts was restricted to subpopulations of neurons within most regions studied demonstrating differences in the cellular expression patterns of {mu}, {kappa}, and {delta} opioid receptor messenger RNAs in numerous brain regions. The messenger RNA distribution patterns for each opioid receptor corresponded in general to the distribution of opioid receptor binding sites as visualized by receptor autoradiography. However, some mismatches, for instance between {mu} opioid receptor receptor binding and {mu} opioid receptor messenger RNA expression in the anterior striatum, were observed. A comparison of the distribution patterns of opioid receptor messenger RNAs in the human brain and that reported for the rat suggests a homologous

  19. Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress

    OpenAIRE

    Sanoara Mazid; Hall, Baila S.; Odell, Shannon C.; Khalifa Stafford; Dyer, Andreina D.; Van Kempen, Tracey A.; Jane Selegean; McEwen, Bruce S.; Elizabeth M. Waters; Milner, Teresa A.

    2016-01-01

    Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and chronic stress similarly alters the levels and trafficking of hippocampal delta opioid receptors (DORs). Immediately after acute immobili...

  20. Synthesis of N1`-([{sup 11}C]methyl)naltrindole ([{sup 11}C]MeMNTI): a radioligand for positron emission tomographic studies of delta opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lever, J.R.; Dannals, R.F. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Environmental Health Sciences]|[TRW Space Technology Labs., Redondo Beach, CA (United States); Kinter, C.M.; Mathews, W.B. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Environmental Health Sciences; Ravert, H.T.; Musachio, J.L. [TRW Space Technology Labs., Redondo Beach, CA (United States)

    1995-02-01

    A delta opioid receptor antagonist, Nl`-methylnaltrindole (MeNTI), has been labeled with carbon-11. The precursor for radiolabeling was prepared in 71% yield by benzylation of the phenolic moiety of naltrindole. Alkylation of the indole nitrogen using [{sup 11}C]iodomethane and aqueous tetra(n-butyl)ammonium hydroxide at 80{sup o}C in dimethylformamide followed by hydrogenolysis (H{sub 2}, 10% Pd-C) of the benzyl protecting group gave [{sup 11}C]MeNTI. The average (n = 10) time for radiosynthesis, HPLC purification and formulation was 24 min from end-of-bombardment. [{sup 11}C]MeNTI of high radiochemical purity was obtained at end-of-synthesis with an average specific activity of 2050 mCi/{mu}mol and radiochemical yield, based on [{sup 11}C]iodomethane, of 6%. (Author).

  1. Nucleus accumbens dopamine and mu-opioid receptors modulate the reinstatement of food-seeking behavior by food-associated cues.

    Science.gov (United States)

    Guy, Elizabeth G; Choi, Eugene; Pratt, Wayne E

    2011-06-01

    The high attrition rates for dietary interventions aimed at promoting a healthier body mass may be caused, at least in part, by constant exposure to environmental stimuli that are associated with palatable foods. In both humans and animals, conditioned stimuli (CSs) that signal reward availability reliably reinstate food- and drug-seeking behaviors. The nucleus accumbens (NAcc) is critically involved in the cue-evoked reinstatement of food-seeking, but the role of individual neurotransmitter systems within the NAcc remains to be determined. These experiments tested the effects of intra-accumbal pharmacological manipulations of dopamine (DA) D(1) and D(2) receptors, mu-opioid receptors, or serotonin (5-HT) receptors on cue-evoked relapse to food-seeking. Rats were trained to lever press for sucrose pellets and the concurrent presentation of a light-tone CS. Once training was complete, lever-pressing was extinguished in the absence of either sucrose or CS presentation. Once each rat had reached extinction criterion, they received two reinstatement sessions in which lever pressing was renewed by response-contingent presentation of the CS. Prior to each reinstatement test, rats received NAcc microinfusions of saline or the selective D(1) receptor antagonist SCH 23390, the D(2) receptor antagonist raclopride, the mu-opioid receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO), or 5-HT hydrogen maleate. Compared to saline test days, intra-accumbens infusions of SCH 23390 (1 μg/0.5 μL), raclopride (1 μg/0.5 μL), or DAMGO (0.25 μg/0.5 μL) effectively blocked the cue-evoked reinstatement of food-seeking. In contrast, stimulation of serotonin (5-HT) receptors by 5-HT hydrogen maleate (5 μg/0.5 μL) had no effect on cue-induced reinstatement. These novel data support roles for NAcc DA D(1), D(2), and mu-opioid receptors in the cue-evoked reinstatement of food seeking.

  2. Stress-induced enhancement of ethanol intake in C57BL/6J mice with a history of chronic ethanol exposure: Involvement of kappa opioid receptors

    Directory of Open Access Journals (Sweden)

    Rachel Ivy Anderson

    2016-02-01

    Full Text Available Our laboratory has previously demonstrated that daily forced swim stress (FSS prior to ethanol drinking sessions facilitates enhanced ethanol consumption in mice with a history of chronic intermittent ethanol (CIE vapor exposure without altering ethanol intake in air-exposed controls. Because both stress and chronic ethanol exposure have been shown to activate the dynorphin/kappa opioid receptor (KOR system, the present study was designed to explore a potential role for KORs in modulating stress effects on ethanol consumption in the CIE model of dependence and relapse drinking. After stable baseline ethanol intake was established in adult male C57BL/6J mice, subjects received chronic intermittent exposure (16 hr/day x 4 days/week to ethanol vapor (CIE group or air (CTL group. Weekly cycles of inhalation exposure were alternated with 5-day limited access drinking tests (1 hour access to 15% ethanol. Experiment 1 compared effects of daily FSS and KOR activation on ethanol consumption. CIE and CTL mice were either exposed to FSS (10 min, the KOR agonist U50,488 (5 mg/kg, or a vehicle injection (non-stressed condition prior to each daily drinking session during test weeks. FSS selectively increased drinking in CIE mice. U50,488 mimicked this effect in CIE mice, but also increased drinking in CTL mice. Experiment 2 assessed effects of KOR blockade on stress-induced drinking in CIE and CTL mice. Stressed and non-stressed mice were administered the short-acting KOR antagonist LY2444296 (0 or 5 mg/kg 30 min prior to each drinking session during test weeks. FSS selectively increased ethanol consumption in CIE mice, an effect that was abolished by LY2444296 pretreatment. In Experiment 3, CIE and CTL mice were administered one of four doses of U50,488 (0,1.25, 2.5, 5.0 mg/kg one hour prior to each daily drinking test (in lieu of FSS. All doses of U50,488 increased ethanol consumption in both CIE and CTL mice. The U50,488-induced increase in drinking was

  3. Interaction and regulatory functions of μ- and δ-opioid receptors in nociceptive afferent neurons

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Lan Bao

    2012-01-01

    μ-opioid receptor (MOR) agonists such as morphine are powerful analgesics used for pain therapy.However,the use of these drugs is limited by their side-effects,which include antinociceptive tolerance and dependence.Earlier studies reported that MOR analgesic tolerance is reduced by blockade of δ-opioid receptors (DORs) that interact with MORs.Recent studies show that the MOR/DOR interaction in nociceptive afferent neurons in the dorsal root ganglion may contribute to morphine analgesic tolerance.Further analysis of the mechanisms for regulating the trafficking of receptors,ion channels and signaling molecules in nociceptive afferent neurons would help to understand the nociceptive mechanisms and improve pain therapy.

  4. Analysis of potassium and calcium imaging to assay the function of opioid receptors.

    Science.gov (United States)

    Spahn, Viola; Nockemann, Dinah; Machelska, Halina

    2015-01-01

    As the activation of opioid receptors leads to the modulation of potassium and calcium channels, the ion imaging represents an attractive method to analyze the function of the receptors. Here, we describe the imaging of potassium using the FluxOR™ potassium ion channel assay, and of calcium using Fura-2 acetoxymethyl ester. Specifically, we (1) characterize the activation of the G-protein-coupled inwardly rectifying potassium 2 channel by agonists of μ- and δ-opioid receptors with the aid of the FluxOR™ assay in cultured mouse dorsal root ganglion neurons, and (2) describe calcium imaging protocols to measure capsaicin-induced transient receptor potential vanilloid 1 channel activity during opioid withdrawal in transfected human embryonic kidney 293 cells.

  5. Synthesis and κ-Opioid Receptor Activity of Furan-Substituted Salvinorin A Analogues

    Science.gov (United States)

    2015-01-01

    The neoclerodane diterpene salvinorin A, found in the leaves of Salvia divinorum, is a potent κ-opioid receptor agonist, making it an attractive scaffold for development into a treatment for substance abuse. Although several successful semisynthetic studies have been performed to elucidate structure–activity relationships, the lack of analogues with substitutions to the furan ring of salvinorin A has prevented a thorough understanding of its role in binding to the κ-opioid receptor. Herein we report the synthesis of several salvinorin A derivatives with modified furan rings. Evaluation of these compounds in a functional assay indicated that sterically less demanding substitutions are preferred, suggesting the furan ring is bound in a congested portion of the binding pocket. The most potent of the analogues successfully reduced drug-seeking behavior in an animal model of drug-relapse without producing the sedation observed with other κ-opioid agonists. PMID:25426797

  6. Synthesis and κ-opioid receptor activity of furan-substituted salvinorin A analogues.

    Science.gov (United States)

    Riley, Andrew P; Groer, Chad E; Young, David; Ewald, Amy W; Kivell, Bronwyn M; Prisinzano, Thomas E

    2014-12-26

    The neoclerodane diterpene salvinorin A, found in the leaves of Salvia divinorum, is a potent κ-opioid receptor agonist, making it an attractive scaffold for development into a treatment for substance abuse. Although several successful semisynthetic studies have been performed to elucidate structure-activity relationships, the lack of analogues with substitutions to the furan ring of salvinorin A has prevented a thorough understanding of its role in binding to the κ-opioid receptor. Herein we report the synthesis of several salvinorin A derivatives with modified furan rings. Evaluation of these compounds in a functional assay indicated that sterically less demanding substitutions are preferred, suggesting the furan ring is bound in a congested portion of the binding pocket. The most potent of the analogues successfully reduced drug-seeking behavior in an animal model of drug-relapse without producing the sedation observed with other κ-opioid agonists.

  7. Endomorphins 1 and 2, endogenous mu-opioid receptor agonists, impair passive avoidance learning in mice.

    Science.gov (United States)

    Ukai, M; Watanabe, Y; Kameyama, T

    2001-06-08

    The effects of intracerebroventricular administration of endomorphin-1 and endomorphin-2, endogenous mu-opioid receptor agonists, on passive avoidance learning associated with long-term memory were investigated in mice. Endomorphin-1 (10 and 17.5 microg) and endomorphin-2 (17.5 microg) produced a significant decrease in step-down latency in a passive avoidance learning task. beta-Funaltrexamine (5 microg) almost completely reversed the endomorphin-1 (17.5 microg)- and endomorphin-2 (17.5 microg)-induced shortening of step-down latency, although neither naltrindole (4 ng) nor nor-binaltorphimine (4 microg) produced any significant effects on the effects of endomorphins 1 and 2. These results suggest that endomorphins 1 and 2 impair long-term memory through the mediation of mu-opioid receptors in the brain.

  8. Bioorthogonal click chemistry to assay mu-opioid receptor palmitoylation using 15-hexadecynoic acid and immunoprecipitation

    OpenAIRE

    2014-01-01

    We have developed a modification of bioorthogonal click chemistry to assay the palmitoylation of cellular proteins. This assay utilizes 15-hexadecynoic acid (15-HDYA) as a chemical probe in combination with protein immunoprecipitation using magnetic beads in order to detect S-palmitoylation of proteins of interest. Here we demonstrate the utility of this approach for the mu-opioid receptor (MOR), a GPCR responsible for mediating the analgesic and addictive properties of most clinically releva...

  9. Ultrastructural relationship between the mu opioid receptor and its interacting protein, GPR177, in striatal neurons

    OpenAIRE

    Reyes, Arith-Ruth S.; Levenson, Robert; Berrettini, Wade; Van Bockstaele, Elisabeth J.

    2010-01-01

    GPR177, the mammalian ortholog of Drosophila Wntless/Evi/Sprinter, was recently identified as a novel mu-opioid receptor (MOR) interacting protein. GPR177 is a trans-membrane protein pivotal to mediating the secretion of Wnt signaling proteins. Wnt proteins, in turn, are essential in regulating neuronal development, a phenomenon inhibited upon chronic exposure to MOR agonists such as morphine and heroin. We previously showed that GPR177 and MOR are co-localized in the mouse dorsolateral stria...

  10. Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists

    OpenAIRE

    Maslov, Leonid N; Khaliulin, Igor; Oeltgen, Peter R; Naryzhnaya, Natalia V.; Pei, Jian‐Ming; Brown, Stephen A; Lishmanov, Yury B.; Downey, James M

    2016-01-01

    Abstract It has now been demonstrated that the μ, δ1, δ2, and κ1 opioid receptor (OR) agonists represent the most promising group of opioids for the creation of drugs enhancing cardiac tolerance to the detrimental effects of ischemia/reperfusion (I/R). Opioids are able to prevent necrosis and apoptosis of cardiomyocytes during I/R and improve cardiac contractility in the reperfusion period. The OR agonists exert an infarct‐reducing effect with prophylactic administration and prevent reperfusi...

  11. Peptidases prevent μ-opioid receptor internalization in dorsal horn neurons by endogenously released opioids

    OpenAIRE

    Song, Bingbing; Marvizón, Juan Carlos G.

    2003-01-01

    To evaluate the effect of peptidases on μ-opioid receptor (MOR) activation by endogenous opioids, we measured MOR-1 internalization in rat spinal cord slices. A mixture of inhibitors of aminopeptidases (amastatin), dipeptidyl carboxypeptidase (captopril), and neutral endopeptidase (phosphoramidon) dramatically increased the potencies of Leu-enkephalin and dynorphin A to produce MOR-1 internalization, and also enhanced the effects of Met-enkephalin and α-neoendorphin, but not endomorphins or β...

  12. Blockade of Ethanol Reward by the Kappa Opioid Receptor Agonist U50,488h

    OpenAIRE

    Logrip, Marian L.; Janak, Patricia H; Ron, Dorit

    2009-01-01

    Alcoholism is a pervasive social problem, and thus understanding factors which regulate alcohol (ethanol) reward is important for designing effective therapies. One putative regulatory system includes the kappa opioid receptor (KOR) and its endogenous ligand, dynorphin. Previously we demonstrated that acute ethanol increased preprodynorphin expression via brain-derived neurotrophic factor (BDNF) in striatal neurons, and that blockade of the KOR attenuated decreases in ethanol intake observed ...

  13. Endomorphin analogues with balanced affinity for both μ- and δ-opioid receptors

    Institute of Scientific and Technical Information of China (English)

    Liang Zhang; Lei Chang; Lei Lei Yu; Jin Chun Liu; Jia Jia Chen; Xiao Wen Li; Lawrence H. Lazarus; Ting You Li

    2011-01-01

    Analogues of endomorphin and tripeptides modified at positions 4 and 3, respectively, with various phenylalanine analogues were synthesized and their affinities for opioid receptors were evaluated. Most of the peptides exhibited potent μ-receptor affinity and selectivity, among them, compound 7 (Dmt-Pro-Tmp-Tmp-NH2) exhibited potent affinity for both μ- and δ-receptors (Kiμ = 0.47 nmol/L, Kiδ = 1.63 nmol/L).

  14. Functional characteristics of the naked mole rat μ-opioid receptor.

    Directory of Open Access Journals (Sweden)

    Melanie Busch-Dienstfertig

    Full Text Available While humans and most animals respond to µ-opioid receptor (MOR agonists with analgesia and decreased aggression, in the naked mole rat (NMR opioids induce hyperalgesia and severe aggression. Single nucleotide polymorphisms in the human mu-opioid receptor gene (OPRM1 can underlie altered behavioral responses to opioids. Therefore, we hypothesized that the primary structure of the NMR MOR may differ from other species. Sequencing of the NMR oprm1 revealed strong homology to other mammals, but exposed three unique amino acids that might affect receptor-ligand interactions. The NMR and rat oprm1 sequences were cloned into mammalian expression vectors and transfected into HEK293 cells. Radioligand binding and 3'-5'-cyclic adenosine monophosphate (cAMP enzyme immunoassays were used to compare opioid binding and opioid-mediated cAMP inhibition. At normalized opioid receptor protein levels we detected significantly lower [3H]DAMGO binding to NMR compared to rat MOR, but no significant difference in DAMGO-induced cAMP inhibition. Strong DAMGO-induced MOR internalization was detectable using radioligand binding and confocal imaging in HEK293 cells expressing rat or NMR receptor, while morphine showed weak or no effects. In summary, we found minor functional differences between rat and NMR MOR suggesting that other differences e.g. in anatomical distribution of MOR underlie the NMR's extreme reaction to opioids.

  15. Intracerebroventricular administration of morphine confers remote cardioprotection--role of opioid receptors and calmodulin.

    Science.gov (United States)

    Zhang, Ye; Irwin, Michael G; Lu, Yao; Mei, Bin; Zuo, You-Mei; Chen, Zhi-Wu; Wong, Tak-Ming

    2011-04-10

    The current study aimed to delineate the mechanism of remote preconditioning by intracerebroventricular morphine (RMPC) against myocardial ischemia-reperfusion injury. Male Sprague-Dawley rats were given an intracerebroventricular morphine injection before myocardial ischemia and reperfusion injury. Ischemia-reperfusion injury was achieved by 30min of left coronary artery occlusion followed by 120min of reperfusion. The effects of remote preconditioning by intracerebroventricular morphine preconditioning were also determined upon selective blockade of the δ, κ or μ-opioid receptors, or calmodulin (CaM). The infarct size, as a percentage of the area at risk, was determined by 2,3,5-triphenyltetrazolium staining. Remote preconditioning by intracerebroventricular morphine reduced infarct size in the ischemic/reperfused myocardium, and the effect was abolished by the selective blockade of any one of the three δ, κ and μ opioid receptors or CaM. Furthermore, remote preconditioning by intracerebroventricular morphine increased the expression of CaM in the hippocampus and the plasma level of calcitonin gene-related peptide (CGRP). The results of the present study provide evidence that the cardioprotection of remote preconditioning by intracerebroventricular morphine involves not only all three types of opioid receptors in the central nervous system, but also CaM, which releases CGRP, one of the mediators of remote preconditioning.

  16. Evaluation of Analgesic Activity of Papaver libanoticum Extract in Mice: Involvement of Opioids Receptors.

    Science.gov (United States)

    Hijazi, Mohamad Ali; El-Mallah, Ahmed; Aboul-Ela, Maha; Ellakany, Abdalla

    2017-01-01

    Papaver libanoticum is an endemic plant to Lebanese region (family Papaveraceae) that has not been investigated before. The present study aimed to explore the analgesic activity of dried ethanolic extract of Papaver libanoticum (PLE) using tail flick, hot plate, and acetic acid induced writhing models in mice. The involvement of opioid receptors in the analgesic mechanism was investigated using naloxone antagonism. Results demonstrated that PLE exhibited a potent dose dependent analgesic activity in all tested models for analgesia. The analgesic effect involved activation of opioid receptors in the central nervous system, where both spinal and supraspinal components might be involved. The time course for analgesia revealed maximum activity after three hours in both tail flick and hot plate methods, which was prolonged to 24 hours. Metabolites of PLE could be responsible for activation of opioid receptors. The EC50 of PLE was 79 and 50 mg/kg in tail flick and hot plate tests, respectively. The total coverage of analgesia by PLE was double that of morphine in both tests. In conclusion, PLE proved to have opioid agonistic activity with a novel feature of slow and prolonged effect. The present study could add a potential tool in the armaments of opioid drugs as a natural potent analgesic and for treatment of opioid withdrawal syndrome.

  17. Regulation of extinction-related plasticity by opioid receptors in the ventrolateral periaqueductal gray matter

    Directory of Open Access Journals (Sweden)

    Ryan Parsons

    2010-08-01

    Full Text Available Recent work has led to a better understanding of the neural mechanisms underlying the extinction of Pavlovian fear conditioning. Long-term synaptic changes in the medial prefrontal cortex (mPFC are critical for extinction learning, but very little is currently known about how the mPFC and other brain areas interact during extinction. The current study examined the effect of drugs that impair the extinction of fear conditioning on the activation of the extracellular-related kinase/mitogen-activated protein kinase (ERK/MAPK in brain regions that likely participate in the consolidation of extinction learning. Inhibitors of opioid and N-methyl-D-aspartic acid (NMDA receptors were applied to the ventrolateral periaqueductal gray matter (vlPAG and amygdala shortly before extinction training. Results from these experiments show that blocking opioid receptors in the vlPAG prevented the formation of extinction memory, whereas NMDA receptor blockade had no effect. Conversely, blocking NMDA receptors in the amygdala disrupted the formation of fear extinction memory, but opioid receptor blockade in the same brain area did not. Subsequent experiments tested the effect of these drug treatments on the activation of the ERK/MAPK signaling pathway in various brain regions following extinction training. Only opioid receptor blockade in the vlPAG disrupted ERK phosphorylation in the mPFC and amygdala. These data support the idea that opiodergic signaling derived from the vlPAG affects plasticity across the brain circuit responsible for the formation of extinction memory.

  18. Evaluation of Analgesic Activity of Papaver libanoticum Extract in Mice: Involvement of Opioids Receptors

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Hijazi

    2017-01-01

    Full Text Available Papaver libanoticum is an endemic plant to Lebanese region (family Papaveraceae that has not been investigated before. The present study aimed to explore the analgesic activity of dried ethanolic extract of Papaver libanoticum (PLE using tail flick, hot plate, and acetic acid induced writhing models in mice. The involvement of opioid receptors in the analgesic mechanism was investigated using naloxone antagonism. Results demonstrated that PLE exhibited a potent dose dependent analgesic activity in all tested models for analgesia. The analgesic effect involved activation of opioid receptors in the central nervous system, where both spinal and supraspinal components might be involved. The time course for analgesia revealed maximum activity after three hours in both tail flick and hot plate methods, which was prolonged to 24 hours. Metabolites of PLE could be responsible for activation of opioid receptors. The EC50 of PLE was 79 and 50 mg/kg in tail flick and hot plate tests, respectively. The total coverage of analgesia by PLE was double that of morphine in both tests. In conclusion, PLE proved to have opioid agonistic activity with a novel feature of slow and prolonged effect. The present study could add a potential tool in the armaments of opioid drugs as a natural potent analgesic and for treatment of opioid withdrawal syndrome.

  19. Synthesis of iboga-like isoquinuclidines: Dual opioid receptors agonists having antinociceptive properties.

    Science.gov (United States)

    Banerjee, Tuhin Suvro; Paul, Sibasish; Sinha, Surajit; Das, Sumantra

    2014-11-01

    Some novel iboga-analogues consisting of benzofuran moiety and dehydroisoquinuclidine ring connected by -CH2-, (CH2)2 and (CH2)3 linkers have been synthesized with the view to develop potential antinociceptive drugs. The compounds 14 and 21 showed binding at the μ-opioid receptor (MOR), while the compound 11a exhibited dual affinities at both MOR and κ-opioid receptor (KOR). MAP kinase activation indicated all three compounds have opioid agonistic properties. The presence of a double bond and endo-methylcarboxylate group in the dehydroisoquinuclidine ring and the benzofuran and methylene spacer appeared to be essential for opioid receptor binding. Further studies demonstrated 11a caused significant antinociception in mice in the hot-plate test which was comparable to that produced by morphine. The compound 11a was also found to be nontremorigenic unlike various iboga congeners. This study identifies a new pharmacophore which may lead to the development of suitable substitute of morphine in the treatment of pain.

  20. Evaluation of Analgesic Activity of Papaver libanoticum Extract in Mice: Involvement of Opioids Receptors

    Science.gov (United States)

    El-Mallah, Ahmed; Aboul-Ela, Maha; Ellakany, Abdalla

    2017-01-01

    Papaver libanoticum is an endemic plant to Lebanese region (family Papaveraceae) that has not been investigated before. The present study aimed to explore the analgesic activity of dried ethanolic extract of Papaver libanoticum (PLE) using tail flick, hot plate, and acetic acid induced writhing models in mice. The involvement of opioid receptors in the analgesic mechanism was investigated using naloxone antagonism. Results demonstrated that PLE exhibited a potent dose dependent analgesic activity in all tested models for analgesia. The analgesic effect involved activation of opioid receptors in the central nervous system, where both spinal and supraspinal components might be involved. The time course for analgesia revealed maximum activity after three hours in both tail flick and hot plate methods, which was prolonged to 24 hours. Metabolites of PLE could be responsible for activation of opioid receptors. The EC50 of PLE was 79 and 50 mg/kg in tail flick and hot plate tests, respectively. The total coverage of analgesia by PLE was double that of morphine in both tests. In conclusion, PLE proved to have opioid agonistic activity with a novel feature of slow and prolonged effect. The present study could add a potential tool in the armaments of opioid drugs as a natural potent analgesic and for treatment of opioid withdrawal syndrome. PMID:28280516

  1. In vivo and in vitro evaluation of novel μ-opioid receptor agonist compounds.

    Science.gov (United States)

    Nikaido, Yoshiaki; Kurosawa, Aya; Saikawa, Hitomi; Kuroiwa, Satoshi; Suzuki, Chiharu; Kuwabara, Nobuo; Hoshino, Hazime; Obata, Hideaki; Saito, Shigeru; Saito, Tamio; Osada, Hiroyuki; Kobayashi, Isao; Sezutsu, Hideki; Takeda, Shigeki

    2015-11-15

    Opioids are the most effective and widely used drugs for pain treatment. Morphine is an archetypal opioid and is an opioid receptor agonist. Unfortunately, the clinical usefulness of morphine is limited by adverse effects such as analgesic tolerance and addiction. Therefore, it is important to study the development of novel opioid agonists as part of pain control. The analgesic effects of opioids are mediated by three opioid receptors, namely opioid μ-, δ-, and κ-receptors. They belong to the G protein-coupled receptor superfamily and are coupled to Gi proteins. In the present study, we developed a ligand screening system to identify novel opioid μ-receptor agonists that measures [(35)S]GTPγS binding to cell membrane fractions prepared from the fat body of transgenic silkworms expressing μ-receptor-Gi1α fusion protein. We screened the RIKEN Natural Products Depository (NPDepo) chemical library, which contains 5848 compounds, and analogs of hit compounds. We successfully identified a novel, structurally unique compound, that we named GUM1, with agonist activity for the opioid μ-receptor (EC50 of 1.2 µM). The Plantar Test (Hargreaves' Method) demonstrated that subcutaneous injection of 3mg/kg of GUM1 into wild-type rats significantly extended latency time. This extension was also observed in a rat model of morphine tolerance and was inhibited by pre-treatment of naloxone. The unique molecular skeleton of GUM1 makes it an attractive molecule for further ligand-opioid receptor binding studies.

  2. Anatomical and functional correlation of the endomorphins with mu opioid receptor splice variants.

    Science.gov (United States)

    Abbadie, C; Rossi, G C; Orciuolo, A; Zadina, J E; Pasternak, G W

    2002-09-01

    The present study characterizes the relationship between the endogenous mu opioid peptides endomorphin-1 (EM-1) and endomorphin-2 (EM-2) and several splice variants of the cloned mu opioid receptor (MOR-1) encoded by the mu opioid receptor gene (Oprm). Confocal laser microscopy revealed that fibers containing EM-2-like immunoreactivity (-LI) were distributed in close apposition to fibers showing MOR-1-LI (exon 4-LI) and to MOR-1C-LI (exons 7/8/9-LI) in the superficial laminae of the lumbar spinal cord. We also observed colocalization of EM-2-LI and MOR-1-LI in a few fibers of lamina II, and colocalization of EM-2-LI and MOR-1C-LI in laminae I-II, and V-VI. To assess the functional relevance of the MOR-1 variants in endomorphin analgesia, we examined the effects of antisense treatments that targeted individual exons within the Oprm1 gene on EM-1 and EM-2 analgesia in the tail flick test. This antisense mapping study implied mu opioid receptor mechanisms for the endomorphins are distinct from those of morphine or morphine-6beta-glucuronide (M6G).

  3. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Periyasamy, S.; Hoss, W. (Univ. of Toledo, OH (USA))

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  4. Prevention of Stimulant-Induced Euphoria with an Opioid Receptor Antagonist

    Science.gov (United States)

    2014-10-01

    NY. 2. Lomas, B. and P.S. Gartside, Attention - deficit hyperactivity disorder among homeless veterans. Psychiatr Serv, 1997. 48(10): p. 1331-3. 3...developed negative mood side effects , most likely attributed to the study medication, and was subsequently terminated from the study and transitioned to...stimulant medicines are documented effective treatments of ADHD across the lifecycle, persistent concerns remain about their abuse potential that greatly

  5. A long-acting GH receptor antagonist through fusion to GH binding protein.

    Science.gov (United States)

    Wilkinson, Ian R; Pradhananga, Sarbendra L; Speak, Rowena; Artymiuk, Peter J; Sayers, Jon R; Ross, Richard J

    2016-10-12

    Acromegaly is a human disease of growth hormone (GH) excess with considerable morbidity and increased mortality. Somatostatin analogues are first line medical treatment but the disease remains uncontrolled in up to 40% of patients. GH receptor (GHR) antagonist therapy is more effective but requires frequent high-dose injections. We have developed an alternative technology for generating a long acting potent GHR antagonist through translational fusion of a mutated GH linked to GH binding protein and tested three candidate molecules. All molecules had the amino acid change (G120R), creating a competitive GHR antagonist and we tested the hypothesis that an amino acid change in the GH binding domain (W104A) would increase biological activity. All were antagonists in bioassays. In rats all antagonists had terminal half-lives >20 hours. After subcutaneous administration in rabbits one variant displayed a terminal half-life of 40.5 hours. A single subcutaneous injection of the same variant in rabbits resulted in a 14% fall in IGF-I over 7 days.

  6. Redefining the structure-activity relationships of 2,6-methano-3-benzazocines. 5. Opioid receptor binding properties of N-((4'-phenyl)-phenethyl) analogues of 8-CAC.

    Science.gov (United States)

    VanAlstine, Melissa A; Wentland, Mark P; Cohen, Dana J; Bidlack, Jean M

    2007-12-01

    A series of aryl-containing N-monosubstituted analogues of the lead compound 8-[N-((4'-phenyl)-phenethyl)]-carboxamidocyclazocine were synthesized and evaluated to probe a putative hydrophobic binding pocket of opioid receptors. Very high binding affinity to the mu opioid receptor was achieved though the N-(2-(4'-methoxybiphenyl-4-yl)ethyl) analogue of 8-CAC. High binding affinity to mu and very high binding affinity to kappa opioid receptors was observed for the N-(3-bromophenethyl) analogue of 8-CAC. High binding affinity to all three opioid receptors were observed for the N-(2-naphthylethyl) analogue of 8-CAC.

  7. δ-阿片受体抑制阿片诱发痛觉过敏的研究进展%The role of δ- opioid receptor in the inhibition of opioid induced hyperalgesia

    Institute of Scientific and Technical Information of China (English)

    李依泽; 王海云; 王国林

    2012-01-01

    Background Opioids are the most powerful analgesics for the treatment of moderate to severe pain.Although opioids have analgesic effect,they have many side effects at the same time.Long term opioids exposure can induce hyperalgesia and tolerance.Moreover,increasing the dose of opioids,paradoxically,aggravates the hyperalgesia and tolerance,causing a vicious cycle.The use of opioids,therefore,is largely limited in the clinical setting. Objective The relevant literatures involved in the role of δ-opioid receptors in the attenuation of opioid induced hyperalgesia (OIH) in recent years were summarized,which helps readership to update the latest information about this topic. Content The structure,distribution,physiological function and the progress of antihyperalgesic effect of δ-opioid receptors were reviewed in this article.Those researches suggest that OIH and tolerance can be attenuated by the inhibition of δ-opioid receptor phosphorylation,knocking out δ-opioid receptor coding genes and the application of δ-opioid receptor antagonists. Trend Since the antihyperalgesia effect of δ-opioid receptor is widely acknowledged,δ- opioid receptor may become a new target to relieve pain in the clinical setting.%背景 阿片类药物是治疗中、重度疼痛的主要药物,长时间应用可出现阿片诱发的痛觉过敏和耐受,而增加药物剂量可造成更严重的痛觉过敏和耐受,从而形成恶性循环,很大程度上限制了阿片类药物在临床工作中的应用.目的 通过对近年δ-阿片受体在痛觉过敏中所起作用的研究进行总结,帮助读者了解国外相关研究的最新趋势和进展.内容 就δ-阿片受体的结构、分布、生理功能和δ-阿片受体的抗痛觉过敏作用的研究进展进行综述.得出如下结论,通过抑制δ-阿片受体磷酸化、敲除δ-阿片受体编码基因和应用δ-阿片受体拮抗剂等方法,可抑制痛觉过敏和耐受的形成.趋向 随着越来越多的学者对

  8. Delta-opioid receptors mediate unique plasticity onto parvalbumin-expressing interneurons in area CA2 of the hippocampus.

    Science.gov (United States)

    Piskorowski, Rebecca A; Chevaleyre, Vivien

    2013-09-04

    Inhibition is critical for controlling information transfer in the brain. However, the understanding of the plasticity and particular function of different interneuron subtypes is just emerging. Using acute hippocampal slices prepared from adult mice, we report that in area CA2 of the hippocampus, a powerful inhibitory transmission is acting as a gate to prevent CA3 inputs from driving CA2 neurons. Furthermore, this inhibition is highly plastic, and undergoes a long-term depression following high-frequency 10 Hz or theta-burst induction protocols. We describe a novel form of long-term depression at parvalbumin-expressing (PV+) interneuron synapses that is dependent on delta-opioid receptor (DOR) activation. Additionally, PV+ interneuron transmission is persistently depressed by DOR activation in area CA2 but only transiently depressed in area CA1. These results provide evidence for a differential temporal modulation of PV+ synapses between two adjacent cortical circuits, and highlight a new function of PV+ cells in controlling information transfer.

  9. Differential signaling properties at the kappa opioid receptor of 12-epi-salvinorin A and its analogues.

    Science.gov (United States)

    Béguin, Cécile; Potuzak, Justin; Xu, Wei; Liu-Chen, Lee-Yuan; Streicher, John M; Groer, Chad E; Bohn, Laura M; Carlezon, William A; Cohen, Bruce M

    2012-01-15

    The kappa opioid receptor (KOPR) has been identified as a potential drug target to prevent or alter the course of mood, anxiety and addictive disorders or reduce response to stress. In a search for highly potent and selective KOPR partial agonists as pharmacological tools, we have modified 12-epi-salvinorin A, a compound which we have previously observed to be a KOPR partial agonist. Five analogues of 12-epi-salvinorin A were synthesized and their effects on G protein activation as well as β-arrestin2 recruitment were evaluated. Only 12-epi-salvinorin A (1) partially activated signaling through G proteins, yet acted as a full agonist in the β-arrestin 2 DiscoveRx assay. Other salvinorin analogues tested in these functional assays were full agonists in both assays of KOPR activation. By comparison, the non-selective opioid ligand nalbuphine, known to be a partial agonist for G-protein activation, was also a partial agonist for the β-arrestin mediated signaling pathway activated through KOPR.

  10. Hypothalamic kappa opioid receptor mediates both diet‐induced and melanin concentrating hormone–induced liver damage through inflammation and endoplasmic reticulum stress

    Science.gov (United States)

    Imbernon, Monica; Sanchez‐Rebordelo, Estrella; Romero‐Picó, Amparo; Kalló, Imre; Chee, Melissa J.; Porteiro, Begoña; Al‐Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M.; van Gestel, Margriet; Adan, Roger A.; Liposits, Zsolt; Dieguez, Carlos; López, Miguel

    2016-01-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose‐regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH‐R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone–induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline–deficient, diet‐induced and choline‐deficient, high‐fat diet–induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose‐regulated protein 78 kDa in the liver abolished hypothalamic κOR‐induced steatosis by reducing hepatic ER stress. Conclusions: This study reveals a novel hypothalamic–parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086‐1104) PMID:27387967

  11. Prenatal exposure to vanilla or alcohol induces crawling after these odors in the neonate rat: The role of mu and kappa opioid receptor systems.

    Science.gov (United States)

    Gaztañaga, Mirari; Aranda-Fernández, P Ezequiel; Chotro, M Gabriela

    2015-09-01

    Rat fetuses can perceive chemosensory stimuli derived from their mother's diet, and they may learn about those stimuli. In previous studies we have observed that prenatal exposure to alcohol during the last days of gestation increases the acceptance and liking of an alcohol flavor in infant and adolescent rats. While these results were not found after prenatal exposure to vanilla, cineole or anise, suggesting that the pharmacological properties of alcohol, mediated by the opioid system, underlie the effects observed with this drug. Considering that other studies report enhanced acceptance of non-alcohol flavors experienced prenatally when subjects were tested before infancy, we explore the possibility of observing similar results if testing 1-day old rats exposed prenatally to vanilla. Using an "odor-induced crawling" testing procedure, it was observed that neonates exposed prenatally to vanilla or alcohol crawl for a longer distance towards the experienced odor than to other odors or than control pups. Blocking mu, but not kappa opioid receptors, reduced the attraction of vanilla odor to neonates exposed to vanilla in utero, while the response to alcohol in pups exposed prenatally to this drug was affected by both antagonists. Results confirm that exposure to a non-alcohol odor enhances postnatal responses to it, observable soon after birth, while also suggesting that the mu opioid receptor system plays an important role in generating this effect. The results also imply that with alcohol exposure, the prenatal opioid system is wholly involved, which could explain the longer retention of the enhanced attraction to alcohol following prenatal experience with the drug.

  12. Opioid mediated activity and expression of mu and delta opioid receptors in isolated human term non-labouring myometrium.

    LENUS (Irish Health Repository)

    Fanning, Rebecca A

    2013-01-05

    The existence of opioid receptors in mammalian myometrial tissue is now widely accepted. Previously enkephalin degrading enzymes have been shown to be elevated in pregnant rat uterus and a met-enkephalin analogue has been shown to alter spontaneous contractility of rat myometrium. Here we have undertaken studies to determine the effects of met-enkephalin on in vitro human myometrial contractility and investigate the expression of opioid receptors in pregnant myometrium. Myometrial biopsies were taken from women undergoing elective caesarean delivery at term. Organ bath experiments were used to investigate the effect of the met-enkephalin analogue [d-Ala 2, d-met 5] enkephalin (DAMEA) on spontaneous contractility. A confocal immunofluorescent technique and real time PCR were used to determine the expression of protein and mRNA, respectively for two opioid receptor subtypes, mu and delta. DAMEA had a concentration dependent inhibitory effect on contractile activity (1 × 10(-7)M-1 × 10(-4)M; 54% reduction in contractile activity, P<0.001 at 1 × 10(-4)M concentration). Mu and delta opioid receptor protein sub-types and their respective mRNA were identified in all tissues sampled. This is the first report of opioid receptor expression and of an opioid mediated uterorelaxant action in term human non-labouring myometrium in vitro.

  13. Differentiation of δ, μ, and κ opioid receptor agonists based on pharmacophore development and computed physicochemical properties

    Science.gov (United States)

    Filizola, Marta; Villar, Hugo O.; Loew, Gilda H.

    2001-04-01

    Compounds that bind with significant affinity to the opioid receptor types, δ, μ, and κ, with different combinations of activation and inhibition at these three receptors could be promising behaviorally selective agents. Working on this hypothesis, the chemical moieties common to three different sets of opioid receptor agonists with significant affinity for each of the three receptor types δ, μ, or κ were identified. Using a distance analysis approach, common geometric arrangements of these chemical moieties were found for selected δ, μ, or κ opioid agonists. The chemical and geometric commonalities among agonists at each opioid receptor type were then compared with a non-specific opioid recognition pharmacophore recently developed. The comparison provided identification of the additional requirements for activation of δ, μ, and κ opioid receptors. The distance analysis approach was able to clearly discriminate κ-agonists, while global molecular properties for all compounds were calculated to identify additional requirements for activation of δ and μ receptors. Comparisons of the combined geometric and physicochemical properties calculated for each of the three sets of agonists allowed the determination of unique requirements for activation of each of the three opioid receptors. These results can be used to improve the activation selectivity of known opioid agonists and as a guide for the identification of novel selective opioid ligands with potential therapeutic usefulness.

  14. In Vitro Opioid Receptor Affinity and in Vivo Behavioral Studies of Nelumbo nucifera Flower

    Science.gov (United States)

    Kumarihamy, Mallika; León, Francisco; Pettaway, Sara; Wilson, Lisa; Lambert, Janet A.; Wang, Mei; Hill, Christopher; McCurdy, Christopher R.; ElSohly, Mahmoud A.; Cutler, Stephen J.; Muhammad, Ilias

    2015-01-01

    Ethnopharmacological relevance Nelumbo nucifera Geartn., known as sacred lotus, has been used traditionally in South East Asia as a traditional medicine for various CNS disorders including stress, fever, depression, insomnia, and cognitive conditions. Aim of the study To investigate the in vitro cannabinoid and opioid receptor binding affinities, and in vivo behavioral actions of Nelumbo flower extracts and to isolate the potential compounds to treat CNS associated disorders. Materials and methods The white and pink flowers of N. nucifera were extracted with 95% EtOH, followed by acid-base partitioning using CHCl3 to give acidic and basic partitions. These partitions were subjected to Centrifugal Preparative TLC (CPTLC) to yield benzyltetrahydroisoquinoline (BTIQ) alkaloids and long chain fatty acids, identified by physical and spectroscopic methods. In addition, EtOH extracts and partitions were analyzed for chemical markers by UHPLC/MS and GC/MS. In vitro neuropharmacological effects were evaluated by cannabinoid (CB1 and CB2) and opioid [delta (δ), kappa (κ), and mu (μ)] competitive radioligand binding and GTPγS functional assays. The in vivo behavioral effect was studied through the use of the mouse tetrad assay at 10, 30, 75 and 100 mg/kg/ip doses that revealed the effect on locomotion, catalepsy, body temperature, and nociception of acidic and basic CHCl3 partitions, fractions, and compounds. Results Three aporphines, nuciferine (1), N-nor-nuciferine (2), asimilobine (3), and five BTIQs, armepavine (4), O-methylcoclaurine (5), N-methylcoclaurine (6), coclaurine (7), neferine (10), and a mixture of linoleic and palmitic acids (LA and PA), were identified and evaluated for cannabinoid and opioid receptor displacement activities. Compounds 5–7 showed binding affinities for the κ opioid receptor with equilibrium dissociation constant (Ki) values of 3.5±0.3, 0.9±0.1, 2.2±0.2 µM, respectively. Compound 10 displayed affinities for δ-and μ- opioid

  15. Effects of defeat stress on behavioral flexibility in males and females: modulation by the mu-opioid receptor.

    Science.gov (United States)

    Laredo, Sarah A; Steinman, Michael Q; Robles, Cindee F; Ferrer, Emilio; Ragen, Benjamin J; Trainor, Brian C

    2015-02-01

    Behavioral flexibility is a component of executive functioning that allows individuals to adapt to changing environmental conditions. Independent lines of research indicate that the mu opioid receptor (MOR) is an important mediator of behavioral flexibility and responses to psychosocial stress. The current study bridges these two lines of research and tests the extent to which social defeat and MOR affect behavioral flexibility and whether sex moderates these effects in California mice (Peromyscus californicus). Males and females assigned to social defeat or control conditions were tested in a Barnes maze. In males, defeat impaired behavioral flexibility but not acquisition. Female performance was unaffected by defeat. MOR binding in defeated and control mice in the orbitofrontal cortex (OFC), striatum and hippocampus was examined via autoradiography. Stressed males had reduced MOR binding in the OFC whereas females were unaffected. The MOR antagonist beta-funaltrexamine (1 mg/kg) impaired performance in males naïve to defeat during the reversal phase but had no effect on females. Finally, we examined the effects of the MOR agonist morphine (2.5 and 5 mg/kg) on stressed mice. As expected, morphine improved behavioral flexibility in stressed males. The stress-induced deficits in behavioral flexibility in males are consistent with a proactive coping strategy, including previous observations that stressed male California mice exhibit strong social approach and aggression. Our pharmacological data suggest that a down-regulation of MOR signaling in males may contribute to sex differences in behavioral flexibility following stress. This is discussed in the framework of coping strategies for individuals with mood disorders.

  16. Ghrelin receptor agonist, GHRP-2, produces antinociceptive effects at the supraspinal level via the opioid receptor in mice.

    Science.gov (United States)

    Zeng, Ping; Li, Shu; Zheng, Yue-hui; Liu, Fu-Yan; Wang, Jing-lei; Zhang, Da-lei; Wei, Jie

    2014-05-01

    GHRP-2 is a synthetic agonist of ghrelin receptor. GHRP-2 has similar physiological functions with ghrelin. In our previous study, ghrelin (i.c.v.) could induce analgesic effect through an interaction with GHS-R1α and with the central opioid system in the acute pain in mice. To date, the function of GHRP-2 in pain processing was not understood. Therefore the aim of this study was to investigate the effects of GHRP-2 on pain modulation at supraspinal level in mice using the tail immersion test. Intracerebroventricular (i.c.v.) administration of GHRP-2 (0.1, 0.3, 1, 3 and 10 nmol/L) produced a concentration- and time-related antinociceptive effect. This effect could be fully antagonized by GHS-R1α antagonist [d-Lys(3)]-GHRP-6, indicating that the analgesic effect induced by GHRP-2 is mediated through the activation of GHS-R1α. Interestingly, naloxone, naltrindole and nor-binaltorphimine, but not β-funaltrexamine, could also block the analgesic effect markedly, suggesting that δ- and κ-opioid receptor is involved in the analgesic response evoked by GHRP-2. Moreover, i.c.v. administration of GHRP-2 potentiated the analgesic effect induced by morphine (i.c.v., 1 nmol/L) and this potentiated effect could not be reversed by [d-Lys(3)]-GHRP-6. Thus these findings may be a new strategy on investigating the interaction between ghrelin system and opioids on pain modulation. Furthermore, GHRP-2 may be a promising peptide for developing new analgesic drugs.

  17. Morphine and endomorphins differentially regulate micro-opioid receptor mRNA in SHSY-5Y human neuroblastoma cells.

    Science.gov (United States)

    Yu, Xin; Mao, Xin; Blake, Allan D; Li, Wen Xin; Chang, Sulie L

    2003-08-01

    A sensitive quantitative-competitive reverse transcriptase-polymerase chain reaction method was developed to measure micro-opioid receptor (MOR) mRNA expression in SHSY-5Y neuroblastoma cells. Differentiation of SHSY-5Y cells with either retinoic acid (RA) or 12-o-tetradecanoyl-phorbol-13-acetate (TPA) significantly increased MOR mRNA levels. Morphine treatment (10 microM) for 24 h decreased MOR mRNA levels in control, as well as RA- and TPA-differentiated cells. In contrast, chronic exposure to the opioid peptides endomorphin-1 or endomorphin-2 significantly increased MOR mRNA levels in undifferentiated and RA-differentiated cells. An opioid antagonist, naloxone, reversed the morphine and endomorphin-1 and -2 effects on MOR mRNA levels in undifferentiated SHSY-5Y cells, but naloxone had differential reversing effects on the agonists' regulation of MOR mRNA in RA- or TPA-differentiated cells. To investigate whether the changes in MOR mRNA expression paralleled changes in MOR receptor function, intracellular cAMP accumulation in SHSY-5Y cells was measured. After chronic treatment with morphine, forskolin-induced cAMP levels in SHSY-5Y cells were significantly higher than those of untreated control cells. In contrast, forskolin-induced cAMP accumulation levels were lower in cells treated with endomorphin-1 or -2 than in untreated control cells. Together, our studies indicate that the opioid alkaloid morphine and the opioid peptides endomorphin-1 and -2 differentially regulate MOR mRNA expression and MOR function in SHSY-5Y cells.

  18. Synthesis of triated N1`-alkyl derivatives of the delta opioid receptor ligand naltrindole

    Energy Technology Data Exchange (ETDEWEB)

    Lever, J.R.; Johnson, S.M. [Johns Hopkins Univ. School of Hygiene and Public Health, Environmental Health Sciences Dept., Baltimore, MD (United States)

    1997-02-01

    Tritiated N1`-methyl and N1`-ethyl analogues of naltrindole (NTI) have been synthesized for evaluation as radioligands for studies of delta opioid receptors. The two N1`-alkyl-5`,7`-dibromoNTI precursors for radiolabeling were prepared by base-promoted alkylation of 2,4-dibromophenylhydrazine with either iodomethane or iodoethane followed by condensation with naltrexone using the Fischer indole synthesis. Catalytic debromotritiation followed by HPLC purification afforded [{sup 3}H]MeNTI (17.3 Ci/mmol) and [{sup 3}H]EtNTI (22.5 Ci/mmol) with high chemical and radiochemical purities ({>=} 99.8%). (author).

  19. Synthetic studies of neoclerodane diterpenoids from Salvia splendens and evaluation of Opioid Receptor affinity.

    Science.gov (United States)

    Fontana, Gianfranco; Savona, Giuseppe; Rodríguez, Benjamín; Dersch, Christina M; Rothman, Richard B; Prisinzano, Thomas E

    2008-12-20

    Salvinorin A (1), a neoclerodane diterpene from the hallucinogenic mint Salvia divinorum, is the only known non-nitrogenous and specific kappa-opioid agonist. Several structural congeners of 1 isolated from Salvia splendens (2 - 8) together with a series of semisynthetic derivatives (9 - 24), some of which possess a pyrazoline structural moiety (9, 19 - 22), have been tested for affinity at human mu, delta, and kappa opioid receptors. None of these compounds showed high affinity binding to these receptors. However, 10 showed modest affinity for kappa receptors suggesting other naturally neoclerodanes from different Salvia species may possess opioid affinity.

  20. Complete knockout of the nociceptin/orphanin FQ receptor in the rat does not induce compensatory changes in mu, delta and kappa opioid receptors.

    NARCIS (Netherlands)

    Homberg, J.R.; Mul, J.D.; Wit, E. de; Cuppen, E.

    2009-01-01

    The nociceptin/orphanin FQ (N/OFQ) opioid peptide receptor (NOPr) is a new member of the opioid receptor family consisting of mu, delta and kappa opioid receptors. The anti-opioid properties of its endogenous ligand, N/OFQ provide the receptor interesting potentials in symptoms and processes related

  1. Delta-opioid receptor analgesia is independent of microglial activation in a rat model of neuropathic pain.

    Science.gov (United States)

    Mika, Joanna; Popiolek-Barczyk, Katarzyna; Rojewska, Ewelina; Makuch, Wioletta; Starowicz, Katarzyna; Przewlocka, Barbara

    2014-01-01

    The analgesic effect of delta-opioid receptor (DOR) ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI) to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p.) over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t.) administered morphine (10-20 µg), DAMGO (1-2 µg) and U50,488H (25-50 µg) were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10-20 µg), deltorphin II (1.5-15 µg) and SNC80 (10-20 µg) administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR) and kappa-opioid receptors (KOR), further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.

  2. Delta-opioid receptor analgesia is independent of microglial activation in a rat model of neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Joanna Mika

    Full Text Available The analgesic effect of delta-opioid receptor (DOR ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p. over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t. administered morphine (10-20 µg, DAMGO (1-2 µg and U50,488H (25-50 µg were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10-20 µg, deltorphin II (1.5-15 µg and SNC80 (10-20 µg administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR and kappa-opioid receptors (KOR, further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.

  3. Delta-Opioid Receptor Analgesia Is Independent of Microglial Activation in a Rat Model of Neuropathic Pain

    Science.gov (United States)

    Rojewska, Ewelina; Makuch, Wioletta; Starowicz, Katarzyna; Przewlocka, Barbara

    2014-01-01

    The analgesic effect of delta-opioid receptor (DOR) ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI) to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p.) over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t.) administered morphine (10–20 µg), DAMGO (1–2 µg) and U50,488H (25–50 µg) were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10–20 µg), deltorphin II (1.5–15 µg) and SNC80 (10–20 µg) administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR) and kappa-opioid receptors (KOR), further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain. PMID:25105291

  4. Specific binding of a ligand of sigma-opioid receptors - N-allylnormetazocine (SKF 10047) - with liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Samovilova, N.N.; Yarygin, K.N.; Vinogradov, V.A.

    1986-08-01

    A ligand of the sigma-opioid receptors - N-allylnormetazocine (SKF 10047) -binds specifically and reversible with rat liver membranes. In relation to a number of properties, the sites binding SKF 10047 in the liver are similar to the sigma-opioid receptors of the central nervous system. They do not interact with classical opiates (morphine, naloxone) and with opioid peptides, but bind well benzomorphans (bremazocine, SKF 10047) and a number of compounds of different chemical structures with a pronounced psychtropic action (haloperidol, imipramine, phencyclidine, etc.).

  5. The interaction between histamine H1 receptor and μ- opioid receptor in scratching behavior in ICR mice.

    Science.gov (United States)

    Nakasone, Tasuku; Sugimoto, Yumi; Kamei, Chiaki

    2016-04-15

    In this study, we examined the interaction between histamine H1 receptor and μ-opioid receptor in scratching behavior in ICR mice. Both histamine and morphine caused scratching and simultaneous injection of histamine and morphine had an additive effect. Chlorpheniramine and naloxone inhibited histamine-induced scratching behavior. These two drugs also inhibited morphine-induced scratching behavior. Simultaneous injection of chlorpheniramine and naloxone caused a significant inhibition of histamine-induced scratching compared with separate injections. The same findings were also noted for morphine-induced scratching. These results strongly indicate a close relationship between histamine H1 receptor and μ-opioid receptor in scratching behavior in ICR mice.

  6. Characterization of zeta (zeta): a new opioid receptor involved in growth.

    Science.gov (United States)

    Zagon, I S; Goodman, S R; McLaughlin, P J

    1989-03-20

    Endogenous opioid systems (i.e., opioids and opioid receptors) are known to play a role in neural cancer. Using [3H]-[Met5]enkephalin, a potent ligand involved in growth, specific and saturable binding was detected in homogenates of S20Y neuroblastoma transplanted into A/Jax mice; the data fit a single binding site. Scatchard analysis yielded a Kd of 0.49 nM and a binding capacity of 5.32 fmol/mg protein. Binding was dependent on protein concentration, time, temperature, and pH, and was sensitive to Na+ and guanine nucleotides. Optimal binding required protease inhibitors, and pretreatment of the tumor homogenates with trypsin markedly reduced [3H]-[Met5]enkephalin binding, suggesting that the binding site was proteinaceous in character. Displacement experiments indicated that [Met5]enkephalin was the most potent displacer of [3H]-[Met5]enkephalin; other ligands selective for mu, delta, kappa, epsilon, and sigma were not highly competitive. Given the functional significance of [Met5]enkephalin as a potent regulator of normal and abnormal growth, and that the receptor recognized by [Met5]enkephalin does not resemble any previously described, the present study has demonstrated the presence of a new opioid receptor termed zeta (zeta) (from the Greek 'Zoe', life) related to the proliferation of cells and tissues.

  7. Amisulpride-induced seizurogenic effect: a potential role of opioid receptor-linked transduction systems.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Thakur Gurjeet; Chand, Prem

    2011-05-01

    This study was designed to investigate the role of opioid receptors, gamma-aminobutyric acid (GABA) receptors, mast cells and histamine receptors (H(1) subtype) in the seizurogenic effect of amisulpride on mice. A single injection of amisulpride (180 mg/kg) was employed to evaluate the seizurogenicity of the drug in mice. Seizures were assessed in terms of a composite seizure severity score (SSS), time of the onset of straub-like tail, onset of jerky movements of whole body, convulsions and death. Amisulpride administration (180 mg/kg) induced a significant pro-convulsant effect in mice as measured in terms of the SSS (21.12 ± 2.71) and a significant decrease in the time latency of the onset of straub-like tail (132.45 ± 12.31), jerky movements of whole body (153.28 ± 14.12), convulsions (184.97 ± 13.11) and death (100%). Moreover, prior administration of naloxone, cetrizine, sodium cromoglycate and gabapentin, respectively, attenuated this seizurogenic activity that amisulpride exerted on mice (p amisulpride exerts a seizurogenic effect on mice possibly via an opioid receptor activation-dependent release of histamine from the mast cells and a simultaneous inhibition of GABA release.

  8. Pavlovian conditioning of morphine-induced alterations of immune status: evidence for opioid receptor involvement.

    Science.gov (United States)

    Coussons-Read, M E; Dykstra, L A; Lysle, D T

    1994-12-01

    Prior work in our laboratory has shown that morphine's immunomodulatory effects can become conditioned to environmental stimuli that predict drug administration. These immune alterations include conditioned changes in natural killer cell activity, interleukin-2 production, and mitogen-induced lymphocyte proliferation. The present study examined the involvement of opioid receptor activity in the establishment and expression of conditioned morphine-induced alterations of immune status. During the training phase of the experiment, Lewis rats received two conditioning sessions during which a subcutaneous injection of 15 mg/kg morphine sulfate was paired with exposure to a distinctive environment. On the test day, animals were re-exposed to the distinctive environment alone prior to sacrifice. Saline or naltrexone (0.3, 1.0, 3.0 or 10.0 mg/kg) was administered during either the training or the test session. Administration of naltrexone prior to training antagonized the development of all of the conditioned alterations of immune status including changes in the mitogenic responsiveness of splenocytes, suppression of natural killer cell activity, and interleukin-2 production by splenocytes. Naltrexone administration prior to testing also was effective in antagonizing the expression of a subset of morphine-induced conditioned alterations in immune status. Taken together, these studies indicate that opioid receptor activity is involved in the establishment of conditioned morphine-induced immune alterations, as well as in the expression of a subset of these conditioned alterations of immune status.

  9. Role of opioid receptors in the reinstatement of opioid-seeking behavior: an overview.

    Science.gov (United States)

    Fattore, Liana; Fadda, Paola; Antinori, Silvia; Fratta, Walter

    2015-01-01

    Opioid abuse in humans is characterized by discontinuous periods of drug use and abstinence. With time, the probability of falling into renewed drug consumption becomes particularly high and constitutes a considerable problem in the management of heroin addicts. The major problem in the treatment of opioid dependence still remains the occurrence of relapse, to which stressful life events, renewed use of heroin, and exposure to drug-associated environmental cues are all positively correlated. To study the neurobiology of relapse, many research groups currently use the reinstatement animal model, which greatly contributed to disentangle the mechanisms underlying relapse to drug-seeking in laboratory animals. The use of this model is becoming increasingly popular worldwide, and new versions have been recently developed to better appreciate the differential contribution of each opioid receptor subtype to the relapse phenomenon. In this chapter we review the state of the art of our knowledge on the specific role of the opioid receptors as unrevealed by the reinstatement animal model of opioid-seeking behavior.

  10. Localization of the kappa opioid receptor gene to human chromosome band 8q11. 2

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kazuki; Takeda, Jun; Bell, G.I.; Espinosa, R.; Le Beau, M.M. (Univ. of Chicago, IL (United States))

    1994-02-01

    Using the cloned mouse kappa opioid receptor cDNA clone as a probe, screened a human genomic library and isolated a clone containing part of the human kappa opioid receptor gene (OPRK1), designated [lambda]hSR4-1. To determine the chromosomal localization of OPRK1, [lambda]hSR4-1 DNA was labeled with biotin by nick-translation in the presence of bio-11-dUTP and hybridized to human metaphase cells prepared from phytohemagglutinin-stimulated peripheral blood lymphocytes as described previously. Hybridization of the OPRK1-specific probe [lambda]hSR4-1 DNA to normal human metaphase chromosomes resulted in specific labeling only of chromosome 8. Specific labeling of 8q11 was observed on all 4 (6 cells), 3 (9 cells), 2 (9 cells), or 1 (1 cell) chromatid of the chromosome 8 homologs in 25 cells examined. Of 72 signals observed, 70 were located at 8q11. 1 signal was located at 7q11 and at 12p11. In most cells, the signal on 8q was located at 8q11.2. 7 refs., 1 fig.

  11. Synthesis and in vivo brain distribution of carbon-11-labeled {delta}-opioid receptor agonists

    Energy Technology Data Exchange (ETDEWEB)

    Pichika, Rama, E-mail: rpichika@ucsd.ed [Department of Radiology, University of California, San Diego, CA (United States); Jewett, Douglas M.; Sherman, Philip S. [Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States); Traynor, John R. [Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States); Husbands, Stephen M. [Department of Pharmacy and Pharmacology, University of Bath, Bath (United Kingdom); Woods, James H. [Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States); Kilbourn, Michael R. [Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States)

    2010-11-15

    Three new radiolabeled compounds, [{sup 11}C]SNC80 ((+)-4-[({alpha}R)-{alpha}-{l_brace}(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl{r_brace}-3-[{sup 11}C] methoxybenzyl-N,N-diethylbenzamide), N,N-diethyl-4-[3-methoxyphenyl-1-[{sup 11}C]methylpiperidin-4-ylidenemethyl) benzamide and N,N-diethyl-4-[(1-[{sup 11}C]methylpiperidin-4-ylidene)phenylmethyl]benzamide, were prepared as potential in vivo radiotracers for the {delta}-opioid receptor. Each compound was synthesized by alkylation of the appropriate desmethyl compounds using [{sup 11}C]methyl triflate. In vivo biodistribution studies in mice showed very low initial brain uptake of all three compounds and no regional specific binding for [{sup 11}C]SNC80. A monkey positron emission tomography study of [{sup 11}C]SNC80 confirmed low brain permeability and uniform regional distribution of this class of opioid agonists in a higher species. Opioid receptor ligands of this structural class are thus unlikely to succeed as in vivo radiotracers, likely due to efficient exclusion from the brain by the P-glycoprotein efflux transporter.

  12. A unique binding epitope for salvinorin A, a non-nitrogenous kappa opioid receptor agonist.

    Science.gov (United States)

    Kane, Brian E; Nieto, Marcelo J; McCurdy, Christopher R; Ferguson, David M

    2006-05-01

    Salvinorin A is a potent kappa opioid receptor (KOP) agonist with unique structural and pharmacological properties. This non-nitrogenous ligand lacks nearly all the structural features commonly associated with opioid ligand binding and selectivity. This study explores the structural basis to salvinorin A binding and selectivity using a combination of chimeric and single-point mutant opioid receptors. The experiments were designed based on previous models of salvinorin A that locate the ligand within a pocket formed by transmembrane (TM) II, VI, and VII. More traditional sites of opioid recognition were also explored, including the highly conserved aspartate in TM III (D138) and the KOP selectivity site E297, to determine the role, if any, that these residues play in binding and selectivity. The results indicate that salvinorin A recognizes a cluster of residues in TM II and VII, including Q115, Y119, Y312, Y313, and Y320. Based on the position of these residues within the receptor, and prior study on salvinorin A, a model is proposed that aligns the ligand vertically, between TM II and VII. In this orientation, the ligand spans residues that are spaced one to two turns down the face of the helices within the receptor cavity. The ligand is also in close proximity to EL-2 which, based on chimeric data, is proposed to play an indirect role in salvinorin A binding and selectivity.

  13. Toward a structure-based model of salvinorin A recognition of the kappa-opioid receptor.

    Science.gov (United States)

    Kane, Brian E; McCurdy, Christopher R; Ferguson, David M

    2008-03-27

    The structural basis to salvinorin A recognition of the kappa-opioid receptor is evaluated using a combination of site-directed mutagenesis and molecular-modeling techniques. The results show that salvinorin A recognizes a collection of residues in transmembrane II and VII, including Q115, Y119, Y313, I316, and Y320. The mutation of one hydrophobic residue in particular, I316, was found to completely abolish salvinorin A binding. As expected, none of the residues in transmembrane III or VI commonly associated with opiate recognition (such as D138 or E297) appear to be required for ligand binding. On the basis of the results presented here and elsewhere, a binding site model is proposed that aligns salvinorin A vertically within a pocket spanning transmembrane II and VII, with the 2' substituent directed toward the extracellular domains. The model explains the role that hydrophobic contacts play in binding this lipophilic ligand and gives insight into the structural basis to the mu-opioid receptor selectivity of 2'-benzoyl salvinorin (herkinorin).

  14. Inhibition of Activity of GABA Transporter GAT1 by δ-Opioid Receptor

    Directory of Open Access Journals (Sweden)

    Lu Pu

    2012-01-01

    Full Text Available Analgesia is a well-documented effect of acupuncture. A critical role in pain sensation plays the nervous system, including the GABAergic system and opioid receptor (OR activation. Here we investigated regulation of GABA transporter GAT1 by δOR in rats and in Xenopus oocytes. Synaptosomes of brain from rats chronically exposed to opiates exhibited reduced GABA uptake, indicating that GABA transport might be regulated by opioid receptors. For further investigation we have expressed GAT1 of mouse brain together with mouse δOR and μOR in Xenopus oocytes. The function of GAT1 was analyzed in terms of Na+-dependent [3H]GABA uptake as well as GAT1-mediated currents. Coexpression of δOR led to reduced number of fully functional GAT1 transporters, reduced substrate translocation, and GAT1-mediated current. Activation of δOR further reduced the rate of GABA uptake as well as GAT1-mediated current. Coexpression of μOR, as well as μOR activation, affected neither the number of transporters, nor rate of GABA uptake, nor GAT1-mediated current. Inhibition of GAT1-mediated current by activation of δOR was confirmed in whole-cell patch-clamp experiments on rat brain slices of periaqueductal gray. We conclude that inhibition of GAT1 function will strengthen the inhibitory action of the GABAergic system and hence may contribute to acupuncture-induced analgesia.

  15. [Effect of barnidipine hydrochloride on the autonomic nervous system: difference between short- and long-acting components of calcium antagonist].

    Science.gov (United States)

    Soejima, K; Akaishi, M; Oyamada, K; Mitamura, H; Ogawa, S

    1997-07-01

    Short-acting calcium antagonists have a deleterious effect on the prognosis for patients with myocardial ischemia, possibly caused by overactivation of sympathetic nerves due to vasodilatation, negative inotropism, or coronary steal. However, there is considerable debate about whether long-acting calcium antagonists as well as the short-acting calcium antagonists have the same effect. Barnidipine-HCl is a newly-developed calcium antagonist with 1:2 short- and long-acting particles. This study evaluated the changes of autonomic tone due to barnidipine. Both the short- and long-acting effect of the calcium antagonist was evaluated. Eleven patients with primary hypertension underwent 24-hour ambulatory electrocardiogram and blood pressure monitoring before and after the treatment with barnidipine. Heart rate and blood pressure were compared before and after the medication. Heart rate variability was analyzed with a Marquette 8000/T. High frequency power (HF), as a parameter of vagal tone, and the ratio to low frequency power (LF), as a parameter of sympathetic tone, were obtained. Twenty-four-hour average blood pressure decreased significantly during the day, but nocturnal hypotension was not observed. Heart rate did not increase. HF decreased at the peak of the short- and long-acting components. LF/HF increased at the peak of the short-acting component. Short-acting particles of barnidipine had a deleterious effect on the autonomic tone, that is overactivation of sympathetic tone and suppression of vagal tone. Long-acting particles of barnidipine suppressed the vagal tone. These findings suggest that short-acting calcium antagonists may cause arrhythmia or deterioration of coronary ischemia.

  16. Activation of κ Opioid Receptors in Cutaneous Nerve Endings by Conorphin-1, a Novel Subtype-Selective Conopeptide, Does Not Mediate Peripheral Analgesia.

    Science.gov (United States)

    Deuis, Jennifer R; Whately, Ella; Brust, Andreas; Inserra, Marco C; Asvadi, Naghmeh H; Lewis, Richard J; Alewood, Paul F; Cabot, Peter J; Vetter, Irina

    2015-10-21

    Selective activation of peripheral κ opioid receptors (KORs) may overcome the dose-limiting adverse effects of conventional opioid analgesics. We recently developed a vicinal disulfide-stabilized class of peptides with subnanomolar potency at the KOR. The aim of this study was to assess the analgesic effects of one of these peptides, named conorphin-1, in comparison with the prototypical KOR-selective small molecule agonist U-50488, in several rodent pain models. Surprisingly, neither conorphin-1 nor U-50488 were analgesic when delivered peripherally by intraplantar injection at local concentrations expected to fully activate the KOR at cutaneous nerve endings. While U-50488 was analgesic when delivered at high local concentrations, this effect could not be reversed by coadministration with the selective KOR antagonist ML190 or the nonselective opioid antagonist naloxone. Instead, U-50488 likely mediated its peripheral analgesic effect through nonselective inhibition of voltage-gated sodium channels, including peripheral sensory neuron isoforms NaV1.8 and NaV1.7. Our study suggests that targeting the KOR in peripheral sensory nerve endings innervating the skin is not an alternative analgesic approach.

  17. In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment.

    Science.gov (United States)

    Yang, Li; Islam, Mohammad R; Karamyan, Vardan T; Abbruscato, Thomas J

    2015-06-03

    To meet the challenge of identification of new treatments for stroke, this study was designed to evaluate a potent, nonselective opioid receptor (OR) agonist, biphalin, in comparison to subtype selective OR agonists, as a potential neuroprotective drug candidate using in vitro and in vivo models of ischemic stroke. Our in vitro approach included mouse primary neuronal cells that were challenged with glutamate and hypoxic/aglycemic (H/A) conditions. We observed that 10nM biphalin, exerted a statistically significant neuroprotective effect after glutamate challenge, compared to all selective opioid agonists, according to lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Moreover, 10nM biphalin provided superior neuroprotection after H/A-reoxygenation compared to selective opioid agonists in all cases. Our in vitro investigations were supported by in vivo studies which indicate that the nonselective opioid agonist, biphalin, achieves enhanced neuroprotective potency compared to any of the selective opioid agonists, evidenced by reduced edema and infarct ratios. Reduction of edema and infarction was accompanied by neurological improvement of the animals in two independent behavioral tests. Collectively these data strongly suggest that concurrent agonist stimulation of mu, kappa and delta ORs with biphalin is neuroprotective and superior to neuroprotection by activation of any single OR subtype.

  18. Human Mu Opioid Receptor (OPRM1A118G) polymorphism is associated with brain mu- opioid receptor binding potential in smokers

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R.; Logan, J.; Ray, R.; Ruparel, K.; Newberg, A.; Wileyto, E.P.; Loughead, J.W.; Divgi, C.; Blendy, J.A.; Logan, J.; Zubieta, J.-K.; Lerman, C.

    2011-04-15

    Evidence points to the endogenous opioid system, and the mu-opioid receptor (MOR) in particular, in mediating the rewarding effects of drugs of abuse, including nicotine. A single nucleotide polymorphism (SNP) in the human MOR gene (OPRM1 A118G) has been shown to alter receptor protein level in preclinical models and smoking behavior in humans. To clarify the underlying mechanisms for these associations, we conducted an in vivo investigation of the effects of OPRM1 A118G genotype on MOR binding potential (BP{sub ND} or receptor availability). Twenty-two smokers prescreened for genotype (12 A/A, 10 */G) completed two [{sup 11}C] carfentanil positron emission tomography (PET) imaging sessions following overnight abstinence and exposure to a nicotine-containing cigarette and a denicotinized cigarette. Independent of session, smokers homozygous for the wild-type OPRM1 A allele exhibited significantly higher levels of MOR BP{sub ND} than smokers carrying the G allele in bilateral amygdala, left thalamus, and left anterior cingulate cortex. Among G allele carriers, the extent of subjective reward difference (denicotinized versus nicotine cigarette) was associated significantly with MOR BP{sub ND} difference in right amygdala, caudate, anterior cingulate cortex, and thalamus. Future translational investigations can elucidate the role of MORs in nicotine addiction, which may lead to development of novel therapeutics.

  19. Deltorphin II enhances extracellular levels of dopamine in the nucleus accumbens via opioid receptor-independent mechanisms.

    NARCIS (Netherlands)

    Murakawa, K.; Hirose, N.; Takada, K.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2004-01-01

    The effects of the delta2-opioid receptor agonist, deltorphin II, on extracellular levels of dopamine in the rat nucleus accumbens were investigated in awake animals by in vivo brain microdialysis. In agreement with previous studies, perfusion of deltorphin II (50.0 nmol) into the nucleus accumbens

  20. Opioid mediated activity and expression of mu and delta opioid receptors in isolated human term non-labouring myometrium.

    Science.gov (United States)

    Fanning, Rebecca A; McMorrow, Jason P; Campion, Deirdre P; Carey, Michael F; O'Connor, John J

    2013-01-05

    The existence of opioid receptors in mammalian myometrial tissue is now widely accepted. Previously enkephalin degrading enzymes have been shown to be elevated in pregnant rat uterus and a met-enkephalin analogue has been shown to alter spontaneous contractility of rat myometrium. Here we have undertaken studies to determine the effects of met-enkephalin on in vitro human myometrial contractility and investigate the expression of opioid receptors in pregnant myometrium. Myometrial biopsies were taken from women undergoing elective caesarean delivery at term. Organ bath experiments were used to investigate the effect of the met-enkephalin analogue [d-Ala 2, d-met 5] enkephalin (DAMEA) on spontaneous contractility. A confocal immunofluorescent technique and real time PCR were used to determine the expression of protein and mRNA, respectively for two opioid receptor subtypes, mu and delta. DAMEA had a concentration dependent inhibitory effect on contractile activity (1 × 10(-7)M-1 × 10(-4)M; 54% reduction in contractile activity, Popioid receptor protein sub-types and their respective mRNA were identified in all tissues sampled. This is the first report of opioid receptor expression and of an opioid mediated uterorelaxant action in term human non-labouring myometrium in vitro.

  1. Cloning of opioid receptors in common carp (Cyprinus carpio L.) and their involvement in regulation of stress and immune response

    NARCIS (Netherlands)

    Chadzinska, M.K.; Hermsen, G.J.; Savelkoul, H.F.J.; Verburg-van Kemenade, B.M.L.

    2009-01-01

    In mammals opiate alkaloids and endogenous opioid peptides exert their physiological and pharmacological actions through opioid receptors (MOR, DOR and KOR) expressed not only on neuroendocrine cells but also on leukocytes. Therefore, opioids can modulate the immune response. We cloned and sequenced

  2. Isolation and chemical modification of clerodane diterpenoids from Salvia species as potential agonists at the kappa-opioid receptor.

    Science.gov (United States)

    Li, Yiqiang; Husbands, Stephen M; Mahon, Mary F; Traynor, John R; Rowan, Michael G

    2007-07-01

    The clerodane diterpenoid salvinorin A (1), the main active component of the psychotropic herb Salvia divinorum, has been reported to be a potent agonist at the kappa-opioid receptor. Computer modeling suggested that splendidin (2) from S. splendens, as well as related compounds, might possess similar activities. In the present study, this hypothesis was tested by determination of the binding properties of a series of structural congeners, compounds 2-8, at the mu-, delta-, and kappa-opioid receptors. However, none of these compounds showed significant binding to any of the opioid-receptor subtypes, thus disproving the above hypothesis. The novel compounds 7 and 8 were obtained semi-synthetically by selective modification of salvifarin (5), isolated from Salvia farinacea, upon epoxide-ring opening with AcOH in the presence of indium(III) triflate. Also, the X-ray crystal structure of salvifaricin (6; Fig.), obtained from S. farinacea, was determined for the first time and used, in combination with in-depth NMR experiments, to elucidate the absolute configurations of the new products. Our experiments demonstrate that the relatively well-accessible diterpenoid 6 could be used as starting material for future studies into the structure-activity relationship at the kappa-opioid receptor.

  3. Immunohistochemical observations of methionine-enkephalin and delta opioid receptor in the digestive system of Octopus ocellatus.

    Science.gov (United States)

    Sha, Ailong; Sun, Hushan; Wang, Yiyan

    2013-02-01

    The study was designed to determine whether methionine-enkephalin (met-Enk) or delta opioid receptor was present in the digestive system of Octopus ocellatus. The results showed that they were both in the bulbus oris, esophagus, crop, stomach, gastric cecum, intestine, posterior salivary glands of O. ocellatus, one of them, met-Enk in the rectum, anterior salivary glands, digestive gland. And the distributions were extensive in the digestive system. Strong or general met-Enk immunoreactivity was observed in the inner epithelial cells of the bulbus oris, esophagus, stomach, gastric cecum, intestine, anterior salivary glands and the adventitia of the intestine and rectum, and so was the delta opioid receptor immunoreactivity in the inner epithelial cells of the bulbus oris, esophagus, and crop, however, they were weak in other parts. Combining with delta opioid receptor, met-Enk may be involved in the regulations of food intake, absorption, movement of gastrointestinal smooth muscle and secretion of digestive gland. The different densities of met-Enk and delta opioid receptor may be related to the different functions in the digestive system of O. ocellatus.

  4. Negative regulation of opioid receptor-G protein-Ca2+ channel pathway by the nootropic nefiracetam.

    Science.gov (United States)

    Yoshii, Mitsunobu; Furukawa, Taiji; Ogihara, Yoshiyasu; Watabe, Shigeo; Shiotani, Tadashi; Ishikawa, Yasuro; Nishimura, Masao; Nukada, Toshihide

    2004-10-01

    It has recently been reported that nefiracetam, a nootropic agent, is capable of attenuating the development of morphine dependence and tolerance in mice. The mechanism of this antimorphine action is not clear. The present study was designed to address this issue using Xenopus oocytes expressing delta-opioid receptors, G proteins (G(i3alpha) or G(o1alpha)), and N-type (alpha1B) Ca2+ channels. Membrane currents through Ca2+ channels were recorded from the oocytes under voltage-clamp conditions. The Ca2+ channel currents were reduced reversibly by 40-60% in the presence of 1 microM leucine-enkephalin (Leu-Enk). The Leu-Enk-induced current inhibition was recovered promptly by nefiracetam (1 microM), while control currents in the absence of Leu-Enk were not influenced by nefiracetam. A binding assay revealed that 3H-nefiracetam preferentially bound to the membrane fraction of oocytes expressing G(i3alpha). When delta-opioid receptors were coexpressed, the binding was significantly increased. However, an additional expression of alpha1B Ca2+ channels decreased the binding. The results suggest that nefiracetam preferentially binds to G(i3alpha) associated with delta-opioid receptors, thereby inhibiting the association of G proteins with Ca2+ channels. In conclusion, nefiracetam negatively regulates the inhibitory pathway of opioid receptor-G protein-Ca2+ channel.

  5. Pyrrolo- and pyridomorphinans: non-selective opioid antagonists and delta opioid agonists/mu opioid partial agonists.

    Science.gov (United States)

    Kumar, V; Clark, M J; Traynor, J R; Lewis, J W; Husbands, S M

    2014-08-01

    Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse.

  6. Synthesis of radioiodinated naltrindole analogues: Ligands for studies of delta opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kinter, Chris M.; Lever, John R

    1995-07-01

    Analogues of naltrindole and N1'-methylnaltrindole having radioiodine in the 7'-position of the indole ring have been prepared for evaluation as delta opioid receptor ligands. The no-carrier-added radiosyntheses were conducted by Cu(I) assisted nucleophilic exchange of radioiodide for bromide under reducing conditions at 190 deg. C. A combination of HPLC and solid-phase extraction gave the {sup 125}I- or {sup 123}I-labeled products in satisfactory yields (47%) with high radiochemical purities (>98%) and high specific activities ({sup 125}I: 43-68 GBq/{mu}mol, 1155-1833 mCi/{mu}mol; {sup 123}I: > 92 GBq/{mu}mol, 2500 mCi/{mu}mol)

  7. 8-epi-Salvinorin B: crystal structure and affinity at the κ opioid receptor

    Directory of Open Access Journals (Sweden)

    Béguin Cécile

    2007-01-01

    Full Text Available Abstract There have been many reports of epimerization of salvinorins at C-8 under basic conditions, but little evidence has been presented to establish the structure of these compounds. We report here the first crystal structure of an 8-epi-salvinorin or derivative: the title compound, 2b. The lactone adopts a boat conformation with the furan equatorial. Several lines of evidence suggest that epimerization proceeds via enolization of the lactone rather than a previously proposed indirect mechanism. Consistent with the general trend in related compounds, the title compound showed lower affinity at the kappa opioid receptor than the natural epimer salvinorin B (2a. The related 8-epi-acid 4b showed no affinity.

  8. The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine

    DEFF Research Database (Denmark)

    Kristensen, K; Christensen, C B; Christrup, Lona Louring

    1995-01-01

    The binding affinities of racemic methadone and its optical isomers R-methadone and S-methadone were evaluated for the opioid receptors mu1, mu2, delta and kappa, in comparison with that of morphine. The analgesic R-methadone had a 10-fold higher affinity for mu1 receptors than S-methadone (IC50 3.......0 nM and 26.4 nM, respectively). At the mu2 receptor, the IC50 value of R-methadone was 6.9 nM and 88 nM for S-methadone, respectively. As expected, R-methadone had twice the affinity for mu1 and mu2 receptors than the racemate. All of the compounds tested had low affinity for the delta and kappa...

  9. Expression of mu-opioid receptors in human chronic inflamed knee joint synovium tissue

    Institute of Scientific and Technical Information of China (English)

    YUAN Hong-bin; HE Xing-ying; XU Hai-tao; ZHU Qiu-feng; WANG Ya-hua; SHI Xue-yin

    2006-01-01

    Objective:To examine the changes of mu-opioid receptors (MORs) expression in human chronic inflamed knee joint synovium tissue. Methods:Knee joint synovium tissues were taken from 21 patients with chronic arthritis(inflamed group) and 6 fresh bodies with normal knee joints(control group). And the expression of MORs was detected by using immunohistochemistry, flow cytometry (FCM) and reverse-transcription polymerase chain reaction(RT-PCR). Results: The expression of MORs in the inflamed group was significantly higher than that in the normal group by using the 3 techniques(P<0.05).Conclusion: Chronic inflammation enhances the up-regulation of MORs in human knee joint synovium tissue.

  10. Facile synthesis of ( sup 11 C)buprenorphine for positron emission tomographic studies of opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lever, J.R.; Dannals, R.F.; Wagner, H.N. Jr. (Johns Hopkins Univ., Baltimore, MD (USA). School of Hygiene and Public Health Johns Hopkins Univ., Baltimore, MD (USA). Dept. of Radiology); Mazza, S.M. (Johns Hopkins Univ., Baltimore, MD (USA). School of Hygiene and Public Health); Ravert, H.T.; Wilson, A.A. (Johns Hopkins Univ., Baltimore, MD (USA). Dept. of Radiology)

    1990-01-01

    We have developed a simple and rapid method for the production of buprenorphine (BPN), a potent opioid partial agonist, labelled with carbon-11 at the 6-methoxy position. The procedure uses a precursor synthesized in high yield (89%) from BPN in two steps and employs ({sup 11}C)iodomethane as the radiolabelling reagent. ({sup 11}C)BPN of 97% radiochemical purity can be prepared in high specific activity (41 GBq/{mu}mol; 1120 mCi/{mu}mol) in a radiochemical yield of 10% at end-of-synthesis (not decay corrected). The ({sup 11}C)BPN is available for use in studies of cerebral opioid receptors by positron emission tomography within 24 min from end-of-bombardment, including radiosynthesis, purification, formulation for i.v. injection and determination of specific activity. (author).

  11. Long-Acting Muscarinic Antagonists for Difficult-to-Treat Asthma: Emerging Evidence and Future Directions.

    Science.gov (United States)

    Bulkhi, Adeeb; Tabatabaian, Farnaz; Casale, Thomas B

    2016-07-01

    Asthma is a complex disease where many patients remain symptomatic despite guideline-directed therapy. This suggests an unmet need for alternative treatment approaches. Understanding the physiological role of muscarinic receptors and the parasympathetic nervous system in the respiratory tract will provide a foundation of alternative therapeutics in asthma. Currently, several long-acting muscarinic antagonists (LAMAs) are on the market for the treatment of respiratory diseases. Many studies have shown the effectiveness of tiotropium, a LAMA, as add-on therapy in uncontrolled asthma. These studies led to FDA approval for tiotropium use in asthma. In this review, we discuss how the neurotransmitter acetylcholine itself contributes to inflammation, bronchoconstriction, and remodeling in asthma. We further describe the current clinical studies evaluating LAMAs in adult and adolescent patients with asthma, providing a comprehensive review of the current known physiological benefits of LAMAs in respiratory disease.

  12. Multiscale design of coarse-grained elastic network-based potentials for the μ opioid receptor.

    Science.gov (United States)

    Fossépré, Mathieu; Leherte, Laurence; Laaksonen, Aatto; Vercauteren, Daniel P

    2016-09-01

    Despite progress in computer modeling, most biological processes are still out of reach when using all-atom (AA) models. Coarse-grained (CG) models allow classical molecular dynamics (MD) simulations to be accelerated. Although simplification of spatial resolution at different levels is often investigated, simplification of the CG potential in itself has been less common. CG potentials are often similar to AA potentials. In this work, we consider the design and reliability of purely mechanical CG models of the μ opioid receptor (μOR), a G protein-coupled receptor (GPCR). In this sense, CG force fields (FF) consist of a set of holonomic constraints guided by an elastic network model (ENM). Even though ENMs are used widely to perform normal mode analysis (NMA), they are not often implemented as a single FF in the context of MD simulations. In this work, various ENM-like potentials were investigated by varying their force constant schemes and connectivity patterns. A method was established to systematically parameterize ENM-like potentials at different spatial resolutions by using AA data. To do so, new descriptors were introduced. The choice of conformation descriptors that also include flexibility information is important for a reliable parameterization of ENMs with different degrees of sensitivity. Hence, ENM-like potentials, with specific parameters, can be sufficient to accurately reproduce AA MD simulations of μOR at highly coarse-grained resolutions. Therefore, the essence of the flexibility properties of μOR can be captured with simple models at different CG spatial resolutions, opening the way to mechanical approaches to understanding GPCR functions. Graphical Abstract All atom structure, residue interaction network and coarse-grained elastic network models of the μ opioid receptor (μOR).

  13. Reduced emotional and corticosterone responses to stress in mu-opioid receptor knockout mice.

    Science.gov (United States)

    Ide, Soichiro; Sora, Ichiro; Ikeda, Kazutaka; Minami, Masabumi; Uhl, George R; Ishihara, Kumatoshi

    2010-01-01

    The detailed mechanisms of emotional modulation in the nervous system by opioids remain to be elucidated, although the opioid system is well known to play important roles in the mechanisms of analgesia and drug dependence. In the present study, we conducted behavioral tests of anxiety and depression and measured corticosterone concentrations in both male and female mu-opioid receptor knockout (MOP-KO) mice to reveal the involvement of mu-opioid receptors in stress-induced emotional responses. MOP-KO mice entered more and spent more time in the open arms of the elevated plus maze compared with wild-type mice. MOP-KO mice also displayed significantly decreased immobility in a 15 min tail-suspension test compared with wild-type mice. Similarly, MOP-KO mice exhibited significantly decreased immobility on days 2, 3, and 4 in a 6 min forced swim test conducted for 5 consecutive days. The increase in plasma corticosterone concentration induced by tail-suspension, repeated forced swim, or restraint stress was reduced in MOP-KO mice compared with wild-type mice. Corticosterone levels were not different between wild-type and MOP-KO mice before stress exposure. In contrast, although female mice tended to exhibit fewer anxiety-like responses in the tail-suspension test in both genotypes, no significant gender differences were observed in stress-induced emotional responses. These results suggest that MOPs play an important facilitatory role in emotional responses to stress, including anxiety- and depression-like behavior and corticosterone levels.

  14. Early role of the κ opioid receptor in ethanol-induced reinforcement.

    Science.gov (United States)

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Acevedo, Ma Belén; Spear, Norman E

    2012-03-20

    Effects of early ethanol exposure on later ethanol intake emphasize the importance of understanding the neurobiology of ethanol-induced reinforcement early in life. Infant rats exhibit ethanol-induced appetitive conditioning and ethanol-induced locomotor activation, which have been linked in theory and may have mechanisms in common. The appetitive effects of ethanol are significantly modulated by μ and δ opioid receptors, whereas μ but not δ receptors are involved in the motor stimulant effects of ethanol during early development. The involvement of the κ opioid receptor (KOR) system in the motivational effects of ethanol has been much less explored. The present study assessed, in preweanling (infant) rats, the modulatory role of the KOR system in several paradigms sensitive to ethanol-induced reinforcement. Kappa opioid activation and blockade were examined in second-order conditioned place preference with varied timing before conditioning and with varied ethanol doses. The role of KOR on ethanol-induced locomotion and ethanol-induced taste conditioning was also explored. The experiments were based on the assumption that ethanol concurrently induces appetitive and aversive effects and that the latter may be mediated by activation of kappa receptors. The main result was that blockade of kappa function facilitated the expression of appetitive ethanol reinforcement in terms of tactile and taste conditioning. The effects of kappa activation on ethanol conditioning seemed to be independent from ethanol's stimulant effects. Kappa opioid activation potentiated the motor depressing effects of ethanol but enhanced motor activity in control subjects. Overall, the results support the hypothesis that a reduced function of the KOR system in nondependent subjects should attenuate the aversive consequences of ethanol.

  15. Antinociceptive effects of morphine and naloxone in mu-opioid receptor knockout mice transfected with the MORS196A gene

    Directory of Open Access Journals (Sweden)

    Tao Pao-Luh

    2010-04-01

    Full Text Available Abstract Background Opioid analgesics such as morphine and meperidine have been used to control moderate to severe pain for many years. However, these opioids have many side effects, including the development of tolerance and dependence after long-term use, which has limited their clinical use. We previously reported that mutations in the mu-opioid receptors (MOR S196L and S196A rendered them responsive to the opioid antagonist naloxone without altering the agonist phenotype. In MORS196A knock-in mice, naloxone and naltrexone were antinociceptive but did not cause tolerance or physical dependence. In this study we delivery this mutated MOR gene into pain related pathway to confirm the possibility of in vivo transfecting MORS196A gene and using naloxone as a new analgesic agent. Methods The MOR-knockout (MOR-KO mice were used to investigate whether morphine and naloxone could show antinociceptive effects when MORS196A gene was transfected into the spinal cords of MOR-KO mice. Double-stranded adeno-associated virus type 2 (dsAAV2 was used to deliver the MORS196A-enhanced green fluorescence protein (EGFP gene by microinjected the virus into the spinal cord (S2/S3 dorsal horn region. Tail-flick test was used to measure the antinociceptive effect of drugs. Results Morphine (10 mg/kg, s.c. and naloxone (10 mg/kg, s.c. had no antinociceptive effects in MOR-KO mice before gene transfection. However, two or three weeks after the MOR-S196A gene had been injected locally into the spinal cord of MOR-KO mice, significant antinociceptive effects could be induced by naloxone or morphine. On the other hand, only morphine but not naloxone induced significant tolerance after sub-chronic treatment. Conclusion Transfecting the MORS196A gene into the spinal cord and systemically administering naloxone in MOR-KO mice activated the exogenously delivered mutant MOR and provided antinociceptive effect without causing tolerance. Since naloxone will not activate natural

  16. Possible Involvement of µ Opioid Receptor in the Antidepressant-Like Effect of Shuyu Formula in Restraint Stress-Induced Depression-Like Rats

    Directory of Open Access Journals (Sweden)

    Fu-rong Wang

    2015-01-01

    Full Text Available Recently μ opioid receptor (MOR has been shown to be closely associated with depression. Here we investigated the action of Shuyu, a Chinese herbal prescription, on repeated restraint stress induced depression-like rats, with specific attention to the role of MOR and the related signal cascade. Our results showed that repeated restraint stress caused significant depressive-like behaviors, as evidenced by reduced body weight gain, prolonged duration of immobility in forced swimming test, and decreased number of square-crossings and rearings in open field test. The stress-induced depression-like behaviors were relieved by Shuyu, which was accompanied by decreased expression of MOR in hippocampus. Furthermore, Shuyu upregulated BDNF protein expression, restored the activity of CREB, and stimulated MEK and ERK phosphorylation in hippocampus of stressed rats. More importantly, MOR is involved in the effects of Shuyu on these depression-related signals, as they can be strengthened by MOR antagonist CTAP. Collectively, these data indicated that the antidepressant-like properties of Shuyu are associated with MOR and the corresponding CREB, BDNF, MEK, and ERK signal pathway. Our study supports clinical use of Shuyu as an effective treatment of depression and also suggests that MOR might be a target for treatment of depression and developing novel antidepressants.

  17. Dopamine D₄ receptor counteracts morphine-induced changes in µ opioid receptor signaling in the striosomes of the rat caudate putamen.

    Science.gov (United States)

    Suárez-Boomgaard, Diana; Gago, Belén; Valderrama-Carvajal, Alejandra; Roales-Buján, Ruth; Van Craenenbroeck, Kathleen; Duchou, Jolien; Borroto-Escuela, Dasiel O; Medina-Luque, José; de la Calle, Adelaida; Fuxe, Kjell; Rivera, Alicia

    2014-01-21

    The mu opioid receptor (MOR) is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine.

  18. mu-Opioid receptor-independent fashion of the suppression of sodium currents by mu-opioid analgesics in thalamic neurons.

    Science.gov (United States)

    Hashimoto, Keisuke; Amano, Taku; Kasakura, Akiko; Uhl, George R; Sora, Ichiro; Sakai, Norio; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru

    2009-03-27

    Most reports in the literature have shown that the effects of opioid analgesics are primarily mediated by mu-opioid receptor (MOR), whereas other potential targets of opioid analgesics have not been thoroughly characterized. In this study, we found that extracellular application of morphine, fentanyl or oxycodone, which are all considered to be MOR agonists, at relatively high concentrations, but not endogenous mu-opioid peptides, produced a concentration-dependent suppression of sodium currents in cultured thalamic neurons. These effects of opioids were not affected by either a MOR antagonist naloxone or a deletion of MOR gene. Among these opioids, fentanyl strongly suppressed sodium currents to the same degree as lidocaine, and both morphine and oxycodone slightly but significantly reduced sodium currents when they were present extracellularly. In contrast, the intracellular application of morphine, but not oxycodone, fentanyl or lidocaine, reduced sodium currents. These results suggest that morphine, fentanyl and oxycodone each produce the MOR-independent suppression of sodium currents by distinct mechanisms in thalamic neurons.

  19. Opiorphin causes a panicolytic-like effect in rat panic models mediated by μ-opioid receptors in the dorsal periaqueductal gray.

    Science.gov (United States)

    Maraschin, Jhonatan Christian; Rangel, Marcel Pereira; Bonfim, Antonio Joaquim; Kitayama, Mariana; Graeff, Frederico Guilherme; Zangrossi, Hélio; Audi, Elisabeth Aparecida

    2016-02-01

    Reported evidence indicates that endogenous opioid peptides regulate the expression of escape behavior in rats, a panic-related defensive response, through μ-opioid receptors (MORs) in the dorsal periaqueductal gray (dPAG). These peptides are rapidly catabolized by degrading enzymes, including neutral endopeptidase (NEP) and aminopeptidase N (APN). Opiorphin is a peptide inhibitor of both NEP and APN and potentiates the action of endogenous enkephalins. This study evaluated the effects of intravenous and intra-dPAG administration of opiorphin on escape responses in the elevated T-maze and in a dPAG electrical stimulation test in rats. We also evaluated the involvement of MORs in the effects of opiorphin using the selective MOR antagonist CTOP. A dose of 2.0 mg/kg, i.v., of opiorphin impaired escape performance in both tests. Similar effects were observed with intra-dPAG administration of 5.0 nmol of opiorphin. Local pretreatment with 1.0 nmol CTOP antagonized the anti-escape effects of intra-dPAG opiorphin in both tests, as well as the effect of systemically administered opiorphin (2.0 mg/kg, i.v.) in the electrical stimulation test. These results indicate that opiorphin has an antipanic-like effect that is mediated by MORs in the dPAG. They may open new perspectives for the development of opiorphin analogues with greater bioavailability and physicochemical characteristics in the pursuit of new medications for the treatment of panic disorder.

  20. Opioid receptor modulation of hedonic taste preference and food intake: a single-dose safety, pharmacokinetic, and pharmacodynamic investigation with GSK1521498, a novel μ-opioid receptor inverse agonist.

    Science.gov (United States)

    Nathan, Pradeep J; O'Neill, Barry V; Bush, Mark A; Koch, Annelize; Tao, Wenli X; Maltby, Kay; Napolitano, Antonella; Brooke, Allison C; Skeggs, Andrew L; Herman, Craig S; Larkin, Andrew L; Ignar, Diane M; Richards, Duncan B; Williams, Pauline M; Bullmore, Edward T

    2012-04-01

    Endogenous opioids and µ-opioid receptors have been linked to hedonic and rewarding aspects of palatable food intake. The authors examined the safety, pharmacokinetic, and pharmacodynamic profile of GSK1521498, a µ-opioid receptor inverse agonist that is being investigated primarily for the treatment of overeating behavior in obesity. In healthy participants, GSK1521498 oral solution and capsule formulations were well tolerated up to a dose of 100 mg. After single doses (10-150 mg), the maximum concentration (C(max)) and area under the curve (AUC) in plasma increased in a dose-proportional manner. GSK1521498 selectively reduced sensory hedonic ratings of high-sugar and high-fat dairy products and caloric intake of high-fat/high-sucrose snack foods. These findings provide encouraging data in support of the development of GSK1521498 for the treatment of disorders of maladaptive ingestive behavior or compulsive consumption.

  1. Discovery and characterization of ACT-335827, an orally available, brain penetrant orexin receptor type 1 selective antagonist.

    Science.gov (United States)

    Steiner, Michel A; Gatfield, John; Brisbare-Roch, Catherine; Dietrich, Hendrik; Treiber, Alexander; Jenck, Francois; Boss, Christoph

    2013-06-01

    Stress relief: Orexin neuropeptides regulate arousal and stress processing through orexin receptor type 1 (OXR-1) and 2 (OXR-2) signaling. A selective OXR-1 antagonist, represented by a phenylglycine-amide substituted tetrahydropapaverine derivative (ACT-335827), is described that is orally available, penetrates the brain, and decreases fear, compulsive behaviors and autonomic stress reactions in rats.

  2. Density of mu-opioid receptors in the hippocampus of adult male and female rats is altered by prenatal morphine exposure and gonadal hormone treatment.

    Science.gov (United States)

    Slamberová, Romana; Rimanóczy, Agnes; Bar, Noffar; Schindler, Cheryl J; Vathy, Ilona

    2003-01-01

    The present in vitro autoradiography study demonstrates that prenatal exposure to morphine alters the density of mu-opioid receptors in the hippocampus of adult female but not adult male rats. Prenatal morphine exposure increased the mu-opioid receptor density in the CA1 of ovariectomized (OVX) females and in the CA3 of OVX, estradiol benzoate-plus progesterone (EB+P)-treated females, but decreased it in CA3 of OVX females. There were also hormonal effects on mu-opioid receptor density in adult female rats. In the CA1, only morphine-exposed but not saline-exposed, hormone-treated females (EB, P, or EB+P) had a decrease in mu-opioid receptor density relative to OVX females. Both saline-exposed and morphine-exposed, OVX females after gonadal hormone replacement had a lower density of mu-opioid receptors in the CA3 and in the dentate gyrus (DG) than OVX females. In male rats, there was a decrease in mu-opioid receptor density in the CA1 and CA3 of gonadectomized (GNX), testosterone 17beta-proprionate (TP)-treated males relative to GNX males regardless of prenatal morphine exposure. In the DG, the mu-opioid receptor density was reduced only in morphine-exposed but not in saline-exposed, TP-treated males compared with GNX males. Thus, our data demonstrate that mu-opioid receptor density in the hippocampus is affected by prenatal morphine exposure and by male and female gonadal hormones.

  3. Transformation of naltrexone into mesembrane and investigation of the binding properties of its intermediate derivatives to opioid receptors.

    Science.gov (United States)

    Konoura, Kazuya; Fujii, Hideaki; Imaide, Satomi; Gouda, Hiroaki; Hirayama, Shigeto; Hirono, Shuichi; Nagase, Hiroshi

    2015-02-01

    We transformed naltrexone (5) with the morphinan skeleton into mesembrane (4) belonging to the Sceletium alkaloids via key intermediate 6, characterized by a cis-fused hydroindole skeleton with a suspended phenyl ring fixed by an epoxy bridge. We then investigated the binding affinities of 4 and the key intermediate 6 derivatives to the opioid receptors. Among the tested compounds, 15', with a cis-fused hydroindole core, bound to the three opioid receptor types with strong to moderate affinities. The observed differences of binding affinities among the tested compounds were reasonably explained by the conformational analyses of the compounds. The structure-activity relationship (SAR) of the tested compounds like 15' with the hydroindole structure was completely different from the reported SAR of morphinan derivatives with the hydroisoquinoline skeleton. Compound 15' with a structure that differs from the morphinans represents a useful fundamental skeleton with a novel chemotype that may contribute to the development of new opioid ligands.

  4. Synthesis of novel triplets with a 1,3,5-trioxazatriquinane skeleton and their pharmacologies for opioid receptors.

    Science.gov (United States)

    Nagase, Hiroshi; Kutsumura, Noriki

    2015-06-01

    We designed and synthesized novel triplet molecules with 1,3,5-trioxazatriquinane skeletons. One class comprises double-capped triplets with a morphinan skeleton; the other class comprises simple phenol derivatives with phenethylamine moieties. One compound with m-phenolic hydroxyl group, called SYK-146, is a highly selective, potent agonist for the κ receptor, with activity nearly equivalent to that of U-50488H. The o-phenolic isomer of SYK-146, called SYK-524, showed potent but non-selective agonistic activity for the opioid receptors. We also added several simple phenol derivatives to a library of compounds that target opioid receptors, and they showed high hit rates for the receptor. This library might also be expected to show high hit rates for other receptors.

  5. Effects of endomorphins-1 and -2, endogenous mu-opioid receptor agonists, on spontaneous alternation performance in mice.

    Science.gov (United States)

    Ukai, M; Watanabe, Y; Kameyama, T

    2000-05-03

    The effects of intracerebroventricular (i.c.v.) administration of endomorphins-1 and -2, endogenous mu-opioid receptor agonists, on the spontaneous alternation performance associated with spatial working memory were investigated in mice. Endomorphin-1 (10 and 17.5 microg) and endomorphin-2 (10 microg) produced a significant decrease in percent alternation without affecting total arm entries. beta-Funaltrexamine (5 microg) almost completely reversed the endomorphin-1 (10 microg)- and endomorphin-2 (10 microg)-induced decrease in percent alternation, although neither naltrindole (4 ng) nor nor-binaltorphimine (4 microg) produced any significant effects on alternation performance. These results suggest that endomorphins impair spatial working memory through the mediation of mu-opioid receptors.

  6. Effect of forced treadmill exercise and blocking of opioid receptors with naloxone on memory in male rats

    OpenAIRE

    Atefeh Asadi Rizi; Parham Reisi; Nooshin Naghsh

    2016-01-01

    Background: The forced treadmill running can influence the opioid contents of the brain, through both effects of exercise and the effects of stress caused by coercion. Since opioids can cause negative effects on brain functions, this study aimed to evaluate the effect of forced treadmill exercise and blocking of opioid receptors with naloxone on memory in male rats. Materials and Methods: Experimental groups were the control, the exercise, the naloxone, and the naloxone exercise. The exerc...

  7. Sodium modulates opioid receptors through a membrane component different from G-proteins. Demonstration by target size analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ott, S.; Costa, T.; Herz, A.

    1988-07-25

    The target size for opioid receptor binding was studied after manipulations known to affect the interactions between receptor and GTP-binding regulatory proteins (G-proteins). Addition of GTP or its analogs to the binding reaction, exposure of intact cells to pertussis toxin prior to irradiation, or treatment of irradiated membranes with N-ethylmaleimide did not change the target size (approximately equal to 100 kDa) for opioid receptors in NG 108-15 cells and rat brain. These data suggest that the 100-kDa species does not include an active subunit of a G-protein or alternatively that GTP does not promote the dissociation of the receptor-G-protein complex. The presence of Na+ (100 mM) in the radioligand binding assay induced a biphasic decay curve for agonist binding and a flattening of the monoexponential decay curve for a partial agonist. In both cases the effect was explained by an irradiation-induced loss of the low affinity state of the opioid receptor produced by the addition of Na+. This suggests that an allosteric inhibitor that mediates the effect of sodium on the receptor is destroyed at low doses of irradiation, leaving receptors which are no longer regulated by sodium. The effect of Na+ on target size was slightly increased by the simultaneous addition of GTP but was not altered by pertussis toxin treatment. Thus, the sodium unit is distinct from G-proteins and may represent a new component of the opioid receptor complex. Assuming a simple bimolecular model of one Na+ unit/receptor, the size of this inhibitor can be measured as 168 kDa.

  8. Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence

    OpenAIRE

    Stagljar Igor; Van Bockstaele Elisabeth J; Reyes Beverly AS; Wong Victoria; Kittanakom Saranya; Jin Jay; Berrettini Wade; Levenson Robert

    2010-01-01

    Abstract Background Opioid agonist drugs produce analgesia. However, long-term exposure to opioid agonists may lead to opioid dependence. The analgesic and addictive properties of opioid agonist drugs are mediated primarily via the mu-opioid receptor (MOR). Opioid agonists appear to alter neuronal morphology in key brain regions implicated in the development of opioid dependence. However, the precise role of the MOR in the development of these neuronal alterations remains elusive. We hypothes...

  9. Effects of defeat stress on behavioral flexibility in males and females: modulation by the mu-opioid receptor

    OpenAIRE

    Laredo, Sarah A.; Steinman, Michael Q.; Robles, Cindee F.; Ferrer, Emilio; Ragen, Benjamin J.; Trainor, Brian C.

    2015-01-01

    Behavioral flexibility is a component of executive functioning that allows individuals to adapt to changing environmental conditions. Independent lines of research indicate that the mu opioid receptor (MOR) is an important mediator of behavioral flexibility and responses to psychosocial stress. The current study bridges these two lines of research and tests the extent to which social defeat and MOR affect behavioral flexibility and whether sex moderates these effects in California mice (Perom...

  10. Local analgesic effect of tramadol is mediated by opioid receptors in late postoperative pain after plantar incision in rats

    Science.gov (United States)

    de Oliveira Junior, José Oswaldo; de Freitas, Milena Fernandes; Bullara de Andrade, Carolina; Chacur, Marucia; Ashmawi, Hazem Adel

    2016-01-01

    Tramadol is a drug used to treat moderate to severe pain. It is known to present a peripheral effect, but the local mechanisms underlying its actions remain unclear. The role of peripheral opioid receptors in postoperative pain is not well understood. In the present study, we examined the peripheral opioid receptors to determine the local effect of tramadol in a plantar incision pain model. Rats were subjected to plantar incision and divided into four groups on postoperative day (POD) 1: SF_SF, 0.9% NaCl injected into the right hindpaw; SF_TraI, 0.9% NaCl and tramadol injected into the right hindpaw; SF_TraC, 0.9% NaCl and tramadol injected into the contralateral hindpaw; and Nal_Tra, naloxone and tramadol injected into the ipsilateral hindpaw. To determine the animals’ nociceptive threshold, mechanical hyperalgesia was measured before incision, on POD1 before treatment and at 15, 30, 45, and 60 minutes after the incision. The same procedure was repeated on the POD2. The expression levels of μ-opioid receptor (MOR) and δ-opioid receptor (DOR) were obtained through immunoblotting assays in the lumbar dorsal root ganglia (L3–L6) in naïve rats and 1, 2, 3, and 7 days after the incision. Our results showed that the plantar incision was able to cause an increase in mechanical hyperalgesia and that tramadol reversed this hyperalgesia on POD1 and POD2. Tramadol injections in the contralateral paw did not affect the animals’ nociceptive threshold. Naloxone was able to antagonize the tramadol effect partially on POD1 and completely on POD2. The DOR expression increased on POD2, POD3, and POD7, whereas the MOR expression did not change. Together, our results show that tramadol promoted a local analgesic effect in the postoperative pain model that was antagonized by naloxone in POD2, alongside the increase of DOR expression. PMID:27799813

  11. Regulation of ingestive behaviors in the rat by GSK1521498, a novel micro-opioid receptor-selective inverse agonist.

    Science.gov (United States)

    Ignar, Diane M; Goetz, Aaron S; Noble, Kimberly Nichols; Carballo, Luz Helena; Stroup, Andrea E; Fisher, Julie C; Boucheron, Joyce A; Brainard, Tracy A; Larkin, Andrew L; Epperly, Andrea H; Shearer, Todd W; Sorensen, Scott D; Speake, Jason D; Hommel, Jonathan D

    2011-10-01

    μ-Opioid receptor (MOR) agonism induces palatable food consumption principally through modulation of the rewarding properties of food. N-{[3,5-difluoro-3'-(1H-1,2,4-triazol-3-yl)-4-biphenylyl]methyl}-2,3-dihydro-1H-inden-2-amine (GSK1521498) is a novel opioid receptor inverse agonist that, on the basis of in vitro affinity assays, is greater than 10- or 50-fold selective for human or rat MOR, respectively, compared with κ-opioid receptors (KOR) and δ-opioid receptors (DOR). Likewise, preferential MOR occupancy versus KOR and DOR was observed by autoradiography in brain slices from Long Evans rats dosed orally with the drug. GSK1521498 suppressed nocturnal food consumption of standard or palatable chow in lean and diet-induced obese (DIO) Long Evans rats. Both the dose-response relationship and time course of efficacy in lean rats fed palatable chow correlated with μ receptor occupancy and the plasma concentration profile of the drug. Chronic oral administration of GSK1521498 induced body weight loss in DIO rats, which comprised fat mass reduction. The reduction in body weight was equivalent to the cumulative reduction in food consumption; thus, the effect of GSK1521498 on body weight is related to inhibition of food consumption. GSK1521498 suppressed the preference for sucrose-containing solutions in lean rats. In operant response models also using lean rats, GSK1521498 reduced the reinforcement efficacy of palatable food reward and enhanced satiety. In conclusion, GSK1521498 is a potent, MOR-selective inverse agonist that modulates the hedonic aspects of ingestion and, therefore, could represent a pharmacological treatment for obesity and binge-eating disorders.

  12. Sex differences in kappa opioid receptor function and their potential impact on addiction

    Directory of Open Access Journals (Sweden)

    Elena eChartoff

    2015-12-01

    Full Text Available Behavioral, biological and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN, an endogenous ligand at kappa opioid receptors (KORs, is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain,mood and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN gene, genetic linkage with the melanocortin-1 receptor (MC1R, heterodimerization of KORs and mu opioid receptors (MORs, and gonadal hormones

  13. Hormonal regulation of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus.

    Science.gov (United States)

    Williams, Tanya J; Torres-Reveron, Annelyn; Chapleau, Jeanette D; Milner, Teresa A

    2011-02-01

    Clinical and preclinical studies indicate that women and men differ in relapse vulnerability to drug-seeking behavior during abstinence periods. As relapse is frequently triggered by exposure of the recovered addict to objects previously associated with drug use and the formation of these associations requires memory systems engaged by the hippocampal formation (HF), studies exploring ovarian hormone modulation of hippocampal function are warranted. Previous studies revealed that ovarian steroids alter endogenous opioid peptide levels and trafficking of mu opioid receptors in the HF, suggesting cooperative interaction between opioids and estrogens in modulating hippocampal excitability. However, whether ovarian steroids affect the levels or trafficking of delta opioid receptors (DORs) in the HF is unknown. Here, hippocampal sections of adult male and normal cycling female Sprague-Dawley rats were processed for quantitative immunoperoxidase light microscopy and dual label fluorescence or immunoelectron microscopy using antisera directed against the DOR and neuropeptide Y (NPY). Consistent with previous studies in males, DOR-immunoreactivity (-ir) localized to select interneurons and principal cells in the female HF. In comparison to males, females, regardless of estrous cycle phase, show reduced DOR-ir in the granule cell layer of the dentate gyrus and proestrus (high estrogen) females, in particular, display reduced DOR-ir in the CA1 pyramidal cell layer. Ultrastructural analysis of DOR-labeled profiles in CA1 revealed that while females generally show fewer DORs in the distal apical dendrites of pyramidal cells, proestrus females, in particular, exhibit DOR internalization and trafficking towards the soma. Dual label studies revealed that DORs are found in NPY-labeled interneurons in the hilus, CA3, and CA1. While DOR colocalization frequency in NPY-labeled neuron somata was similar between animals in the hilus, proestrus females had fewer NPY-labeled neurons that

  14. Effects of juvenile isolation and morphine treatment on social interactions and opioid receptors in adult rats: behavioural and autoradiographic studies.

    Science.gov (United States)

    Van den Berg, C L; Van Ree, J M; Spruijt, B M; Kitchen, I

    1999-09-01

    The consequences of juvenile isolation and morphine treatment during the isolation period on (social) behaviour and mu-, delta- and kappa-opioid receptors in adulthood were investigated by using a social interaction test and in vitro autoradiography in rats. Juvenile isolation reduced social exploration in adults. Morphine treatment counteracted this reduction in isolated rats, but decreased social exploration in nonisolated rats. Self-grooming and nonsocial exploration were enhanced after juvenile isolation. Morphine treatment had no effect on self-grooming, but suppressed nonsocial exploration in isolated rats. With respect to the opioid receptors, juvenile isolation resulted in regiospecific increases in mu-binding sites with a 58% increase in the basolateral amygdala and a 33% increase in the bed nucleus of stria terminalis. Morphine treatment in isolated rats reversed this upregulation in both areas. The number of delta-binding sites did not differ between the experimental groups. A general upregulation of kappa-binding sites was observed after juvenile isolation, predominantly in the cortical regions, the hippocampus and the substantia nigra. Morphine treatment did not affect the upregulation of kappa-receptors. The results show that juvenile isolation during the play period causes long-term effects on social and nonsocial behaviours and on the number of mu- and kappa- but not delta-opioid receptors in distinct brain areas. The number of mu-receptors in the basolateral amygdala appears to be negatively correlated with the amount of social exploration in adult rats.

  15. Dezocine exhibits antihypersensitivity activities in neuropathy through spinal μ-opioid receptor activation and norepinephrine reuptake inhibition

    Science.gov (United States)

    Wang, Yong-Xiang; Mao, Xiao-Fang; Li, Teng-Fei; Gong, Nian; Zhang, Ma-Zhong

    2017-01-01

    Dezocine is the number one opioid painkiller prescribed and sold in China, occupying 44% of the nation’s opioid analgesics market today and far ahead of the gold-standard morphine. We discovered the mechanisms underlying dezocine antihypersensitivity activity and assessed their implications to antihypersensitivity tolerance. Dezocine, given subcutaneously in spinal nerve-ligated neuropathic rats, time- and dose-dependently produced mechanical antiallodynia and thermal antihyperalgesia, significantly increased ipsilateral spinal norepinephrine and serotonin levels, and induced less antiallodynic tolerance than morphine. Its mechanical antiallodynia was partially (40% or 60%) and completely (100%) attenuated by spinal μ-opioid receptor (MOR) antagonism or norepinephrine depletion/α2-adrenoceptor antagonism and combined antagonism of MORs and α2-adenoceptors, respectively. In contrast, antagonism of spinal κ-opioid receptors (KORs) and δ-opioid receptors (DORs) or depletion of spinal serotonin did not significantly alter dezocine antiallodynia. In addition, dezocine-delayed antiallodynic tolerance was accelerated by spinal norepinephrine depletion/α2-adenoceptor antagonism. Thus dezocine produces antihypersensitivity activity through spinal MOR activation and norepinephrine reuptake inhibition (NRI), but apparently not through spinal KOR and DOR activation, serotonin reuptake inhibition or other mechanisms. Our findings reclassify dezocine as the first analgesic of the recently proposed MOR-NRI, and reveal its potential as an alternative to as well as concurrent use with morphine in treating pain. PMID:28230181

  16. Somatostatin and opioid receptors do not regulate proliferation or apoptosis of the human multiple myeloma U266 cells

    Directory of Open Access Journals (Sweden)

    Allouche Stéphane

    2009-06-01

    Full Text Available Abstract Background opioid and somatostatin receptors (SSTRs that can assemble as heterodimer were individually reported to modulate malignant cell proliferation and to favour apoptosis. Materials and methods: SSTRs and opioid receptors expression were examined by RT-PCR, western-blot and binding assays, cell proliferation was studied by XTT assay and propidium iodide (PI staining and apoptosis by annexin V-PI labelling. Results almost all human malignant haematological cell lines studied here expressed the five SSTRs. Further experiments were conducted on the human U266 multiple myeloma cells, which express also μ-opioid receptors (MOP-R. XTT assays and cell cycle studies provide no evidence for a significant effect upon opioid or somatostatin receptors stimulation. Furthermore, neither direct effect nor potentiation of the Fas-receptor pathway was detected on apoptosis after these treatments. Conclusion these data suggest that SSTRs or opioid receptors expression is not a guaranty for an anti-tumoral action in U266 cell line.

  17. κ-Opioid receptor in the nucleus is a novel prognostic factor of esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Yong-Fa; Xu, Qing-Xia; Liao, Lian-Di; Xu, Xiu-E; Wu, Jian-Yi; Shen, Jian; Wu, Zhi-Yong; Shen, Jin-Hui; Li, En-Min; Xu, Li-Yan

    2013-09-01

    Opioid receptors, members of the G-protein-coupled receptor superfamily, appear to be involved in cancer progression. However, the expression and significance of opioid receptors in esophageal squamous cell carcinoma (ESCC) remain unclear. In this study, we demonstrated by flow cytometry that μ, δ, and κ-opioid receptors (MOR, DOR, and KOR) are expressed to various degrees in ESCC cell lines. The KOR protein was further examined by several methods in ESCC cell lines and tissues. Immunocytochemical staining localized KOR to the cell membrane in KYSE180 cells and the nucleus in EC109 cells, whereas no signal or weak staining of the cytoplasm was observed in KYSE150 cells. The expression of KOR was confirmed in ESCC cells by Western blotting. Furthermore, immunohistochemistry staining showed that KOR was up-regulated in ESCC tissues compared with nontumorous esophageal epithelium (P = .004, χ(2) test). Moreover, high nuclear KOR expression was significantly correlated with lymph node metastasis in 256 ESCC cases (R = 0.144; P = .030, Kendall τB test). Patients with high nuclear KOR expression in ESCC had a significantly poorer prognosis (P = .001, log-rank test). Multivariate Cox analysis revealed that KOR in the nucleus was an independent prognostic factor (hazard ratio, 1.789; 95% confidence interval, 1.177-2.720; P = .006). Our results suggest that KOR is involved in the carcinogenesis or progression of ESCC and that nuclear KOR may be indicative of prognosis.

  18. Synthesis and evaluation of aryl-naloxamide opiate analgesics targeting truncated exon 11-associated μ opioid receptor (MOR-1) splice variants.

    Science.gov (United States)

    Majumdar, Susruta; Subrath, Joan; Le Rouzic, Valerie; Polikar, Lisa; Burgman, Maxim; Nagakura, Kuni; Ocampo, Julie; Haselton, Nathan; Pasternak, Anna R; Grinnell, Steven; Pan, Ying-Xian; Pasternak, Gavril W

    2012-07-26

    3-Iodobenzoylnaltrexamide 1 (IBNtxA) is a potent analgesic acting through a novel receptor target that lack many side-effects of traditional opiates composed, in part, of exon 11-associated truncated six transmembrane domain MOR-1 (6TM/E11) splice variants. To better understand the SAR of this drug target, a number of 4,5-epoxymorphinan analogues were synthesized. Results show the importance of a free 3-phenolic group, a phenyl ring at the 6 position, an iodine at the 3'or 4' position of the phenyl ring, and an N-allyl or c-propylmethyl group to maintain high 6TM/E11 affinity and activity. 3-Iodobenzoylnaloxamide 15 (IBNalA) with a N-allyl group displayed lower δ opioid receptor affinity than its naltrexamine analogue, was 10-fold more potent an analgesic than morphine, elicited no respiratory depression or physical dependence, and only limited inhibition of gastrointestinal transit. Thus, the aryl-naloxamide scaffold can generate a potent analgesic acting through the 6TM/E11 sites with advantageous side-effect profile and greater selectivity.

  19. RNA interference targeting mu-opioid receptors reverses the inhibition of fentanyl on glucose-evoked insulin release of rat islets

    Institute of Scientific and Technical Information of China (English)

    QIAN Tao-lai; ZHANG Lei; WANG Xin-hua; LIU Sheng; MA Liang; LU Ying

    2010-01-01

    Background Mu opioid receptor plays an important role in many physiological functions. Fentanyl is a widely used opioid receptor agonist for analgesia. This study was conducted to test the role of mu-opioid receptor on insulin release by determining whether fentanyl affected insulin release from freshly isolated rat pancreatic islets and if small interfering RNAs (siRNA) targeting mu-opioid receptor in the islets could knock down mu-opioid receptor expression.Methods Islets were isolated from ripe SD rats' pancreas by common bile duct intraductal collagenase V digestion and purified by discontinuous Ficoll density gradient centrifugation. The siRNA knock-down of mu-opioid receptor mRNA and protein in islet cells was analyzed by semi-quantitative real time-PCR and Western blotting. After siRNA-transfection for 48 hours, the islets were co-cultured with fentanyl as follows: 0 ng/ml, 3 ng/ml and 30 ng/ml for 48 hours. Then glucose-evoked insulin release was performed. As a control, the insulin release was also analyzed in islets without siRNA-trasfection after being co-cultured with fentanyl for 48 hours.Results After 48 hours of transfections, specific siRNA targeting of mu-opioid receptors produced significant reduction of mu-opioid receptor mRNA and protein (P <0.01). Fentanyl significantly inhibited glucose-evoked insulin release in islets in a concentration dependent manner (P <0.01). But after siRNA-transfection for 48 hours, the inhibition on glucose-evoked insulin reiease was reversed (P <0.01).Conclusions RNA interference specifically reduces mu-opioid receptor mRNA and protein expression, leading to reversal of the fentanyl-induced inhibition on glucose-evoked insulin release of rat islets. The activation of opioid receptor induced by fentanyl functions to inhibit insulin release. The use of RNAi presents a promising tool for future research in diabetic mechanisms and a novel therapy for diabetes.

  20. Up-regulation of -opioid receptors in the spinal cord of morphine-tolerant rats

    Indian Academy of Sciences (India)

    Subrata Basu Ray; Himanshu Gupta; Yogendra Kumar Gupta

    2004-03-01

    Though morphine remains the most powerful drug for treating pain, its effectiveness is limited by the development of tolerance and dependence. The mechanism underlying development of tolerance to morphine is still poorly understood. One of the factors could be an alteration in the number of m-receptors within specific parts of the nervous system. However, reports on changes in the -opioid receptor density in the spinal cord after chronic morphine administration are conflicting. Most of the studies have used subcutaneously implanted morphine pellets to produce tolerance. However, it does not simulate clinical conditions, where it is more common to administer morphine at intervals, either by injections or orally. In the present study, rats were made tolerant to morphine by injecting increasing doses of morphine (10–50 mg/kg, subcutaneously) for five days. In vitro tissue autoradiography for localization of -receptor in the spinal cord was done using [3H]-DAMGO. As compared to the spinal cord of control rats, the spinal cord of tolerant rats showed an 18.8% increase or up-regulation in the density of -receptors in the superficial layers of the dorsal horn. This up-regulation of -receptors after morphine tolerance suggests that a fraction of the receptors have been rendered desensitized, which in turn could lead to tolerance.

  1. μ-δ opioid receptor heteromer-specific signaling in the striatum and hippocampus.

    Science.gov (United States)

    Kabli, Noufissa; Fan, Theresa; O'Dowd, Brian F; George, Susan R

    2014-07-18

    The μ-δ opioid receptor heteromer activates the pertussis toxin-resistant Gαz GTP-binding protein following stimulation by the δ-agonist deltorphin-II whereas μ- and δ-receptors activate the pertussis toxin-sensitive Gαi3 protein following stimulation by μ- and δ-agonists, respectively. Although the regulation of the μ-δ heteromer is being investigated extensively in vitro, its physiological relevance remains elusive owing to a lack of available molecular tools. We investigated μ-δ heteromer signaling under basal conditions and following prolonged morphine treatment in rodent brain regions highly co-expressing μ- and δ-receptors and Gαz. Deltorphin-II induced Gαz activation in the striatum and hippocampus, demonstrating the presence of μ-δ heteromer signaling in these brain regions. Prolonged morphine treatment, which desensitizes μ- and δ-receptor function, had no effect on μ-δ heteromer signaling in the brain. Our data demonstrate that μ-δ heteromer signaling does not desensitize and is regulated differently from μ- and δ-receptor signaling following prolonged morphine treatment.

  2. Functional polymorphism of the mu-opioid receptor gene (OPRM1) influences reinforcement learning in humans.

    Science.gov (United States)

    Lee, Mary R; Gallen, Courtney L; Zhang, Xiaochu; Hodgkinson, Colin A; Goldman, David; Stein, Elliot A; Barr, Christina S

    2011-01-01

    Previous reports on the functional effects (i.e., gain or loss of function), and phenotypic outcomes (e.g., changes in addiction vulnerability and stress response) of a commonly occurring functional single nucleotide polymorphism (SNP) of the mu-opioid receptor (OPRM1 A118G) have been inconsistent. Here we examine the effect of this polymorphism on implicit reward learning. We used a probabilistic signal detection task to determine whether this polymorphism impacts response bias to monetary reward in 63 healthy adult subjects: 51 AA homozygotes and 12 G allele carriers. OPRM1 AA homozygotes exhibited typical responding to the rewarded response--that is, their bias to the rewarded stimulus increased over time. However, OPRM1 G allele carriers exhibited a decline in response to the rewarded stimulus compared to the AA homozygotes. These results extend previous reports on the heritability of performance on this task by implicating a specific polymorphism. Through comparison with other studies using this task, we suggest a possible mechanism by which the OPRM1 polymorphism may confer reduced response to natural reward through a dopamine-mediated decrease during positive reinforcement learning.

  3. The role of ubiquitination in lysosomal trafficking of δ-opioid receptors.

    Science.gov (United States)

    Henry, Anastasia G; White, Ian J; Marsh, Mark; von Zastrow, Mark; Hislop, James N

    2011-02-01

    The δ-opioid receptor (DOR) undergoes ligand-induced downregulation by endosomal sorting complex required for transport (ESCRT)-dependent endocytic trafficking to lysosomes. In contrast to a number of other signaling receptors, the DOR can downregulate effectively when its ubiquitination is prevented. We explored the membrane trafficking basis of this behavior. First, we show that internalized DORs traverse the canonical multivesicular body (MVB) pathway and localize to intralumenal vesicles (ILVs). Second, we show that DOR ubiquitination stimulates, but is not essential for, receptor transfer to ILVs and proteolysis of the receptor endodomain. Third, we show that receptor ubiquitination plays no detectable role in the early sorting of internalized DORs out of the recycling pathway. Finally, we show that DORs undergo extensive proteolytic fragmentation in the ectodomain, even when receptor ubiquitination is prevented or ILV formation itself is blocked. Together, these results are sufficient to explain why DORs downregulate effectively in the absence of ubiquitination, and they place a discrete molecular sorting operation in the MVB pathway effectively upstream of the ESCRT. More generally, these findings support the hypothesis that mammalian cells can control the cytoplasmic accessibility of internalized signaling receptors independently from their ultimate trafficking fate.

  4. Inflammation enhances mu-opioid receptor transcription and expression in mice intestine.

    Science.gov (United States)

    Pol, O; Alameda, F; Puig, M M

    2001-11-01

    Opioid receptors (ORs) and their mRNA are present in the central and peripheral nervous systems of mammals and in different peripheral tissues, including the gut. Using a model of croton oil-induced (CO) intestinal inflammation in mice, we have shown a 6-fold increase in the potency of the antitransit and antisecretory effects of mu-OR agonists, mediated by peripheral ORs. We postulate that the enhanced effects are mediated by an increase in the expression of intestinal OR. We used jejunum (stripped of the mucosal layer) from mice with CO-induced intestinal inflammation and, as control subjects, saline-treated animals (SS). We evaluated the quantity of mu-OR mRNA determined by a competitive reverse-transcriptase polymerase chain reaction; the levels of mu-OR protein by Western blot immunoassay, and the localization and number of cells expressing mu-OR using immunohistochemistry. The results show a significant increase of mu-OR mRNA (7.7-fold) and receptor protein (3-fold) during intestinal inflammation. Inflammation also induced a 64.3% increase in the number of neurons expressing mu-OR immunoreactivity in the myenteric plexus but not in the submucosal plexus. Our results show that intestinal inflammation enhances the transcription and translation of mu-OR mRNA, thus explaining the increased potency of mu-opioids during inflammation.

  5. Behavioural activation system sensitivity is associated with cerebral μ-opioid receptor availability.

    Science.gov (United States)

    Karjalainen, Tomi; Tuominen, Lauri; Manninen, Sandra; Kalliokoski, Kari K; Nuutila, Pirjo; Jääskeläinen, Iiro P; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2016-08-01

    The reinforcement-sensitivity theory proposes that behavioural activation and inhibition systems (BAS and BIS, respectively) guide approach and avoidance behaviour in potentially rewarding and punishing situations. Their baseline activity presumably explains individual differences in behavioural dispositions when a person encounters signals of reward and harm. Yet, neurochemical bases of BAS and BIS have remained poorly understood. Here we used in vivo positron emission tomography with a µ-opioid receptor (MOR) specific ligand [(11)C]carfentanil to test whether individual differences in MOR availability would be associated with BAS or BIS. We scanned 49 healthy subjects and measured their BAS and BIS sensitivities using the BIS/BAS scales. BAS but not BIS sensitivity was positively associated with MOR availability in frontal cortex, amygdala, ventral striatum, brainstem, cingulate cortex and insula. Strongest associations were observed for the BAS subscale 'Fun Seeking'. Our results suggest that endogenous opioid system underlies BAS, and that differences in MOR availability could explain inter-individual differences in reward seeking behaviour.

  6. Gold Nanorods Targeted to Delta Opioid Receptor: Plasmon-Resonant Contrast and Photothermal Agents

    Directory of Open Access Journals (Sweden)

    Kvar C. Black

    2008-01-01

    Full Text Available Molecularly targeted gold nanorods were investigated for applications in both diagnostic imaging and disease treatment with cellular resolution. The nanorods were tested in two genetically engineered cell lines derived from the human colon carcinoma HCT-116, a model for studying ligand-receptor interactions. One of these lines was modified to express delta opioid receptor (δOR and green fluorescent protein, whereas the other was receptor free and expressed a red fluorescent protein, to serve as the control. Deltorphin, a high-affinity ligand for δOR, was stably attached to the gold nanorods through a thiol-terminated linker. In a mixed population of cells, we demonstrated selective imaging and destruction of receptor-expressing cells while sparing those cells that did not express the receptor. The molecularly targeted nanorods can be used as an in vitro ligand-binding and cytotoxic treatment assay platform and could potentially be applied in vivo for diagnostic and therapeutic purposes with endoscopic technology.

  7. Graphene decorated with mu-opioid receptor: the ionic screening effect and detection of enkephalin

    Science.gov (United States)

    Ping, Jinglei; Johnson, A. T. Charlie; Liu, Renyu; A. T. Charlie Johnson Team; Renyu Liu Collaboration

    2015-03-01

    We investigated the properties of graphene field effect transistors (GFETs) decorated with a computaionally redesigned, water-soluble variant of the human mu-opioid receptor (wsMOR) in physiological buffer solution. The shift of the Fermi level in the GFETs is quantitatively described by chemical-gating effect of charges on the wsMOR that are screened by the ionic solution. Our results suggest that sensitivity to the molecular target is lost when the Debye screening length of the solution is shorter than the distance from the graphene to the wsMOR; thus de-salting may be necessary when wsMOR decorated GFETs are used as biosensors in solution. We used this insight to detect DAMGO, a synthetic analog to the endogenous opioid peptide encephalin, at a concentration of 10 pM (5.1 pg/mL) in artificial cerebrospinal fluid (aCSF) diluted to 5% of its normal salt concentration. When the sensors were measured in a dry state, the limit of detection for DAGMO was 1 pM (0.5 pg/mL), one-third of the baseline in human body.Funding for this work was provided by DARPA.

  8. Functional polymorphism of the mu-opioid receptor gene (OPRM1 influences reinforcement learning in humans.

    Directory of Open Access Journals (Sweden)

    Mary R Lee

    Full Text Available Previous reports on the functional effects (i.e., gain or loss of function, and phenotypic outcomes (e.g., changes in addiction vulnerability and stress response of a commonly occurring functional single nucleotide polymorphism (SNP of the mu-opioid receptor (OPRM1 A118G have been inconsistent. Here we examine the effect of this polymorphism on implicit reward learning. We used a probabilistic signal detection task to determine whether this polymorphism impacts response bias to monetary reward in 63 healthy adult subjects: 51 AA homozygotes and 12 G allele carriers. OPRM1 AA homozygotes exhibited typical responding to the rewarded response--that is, their bias to the rewarded stimulus increased over time. However, OPRM1 G allele carriers exhibited a decline in response to the rewarded stimulus compared to the AA homozygotes. These results extend previous reports on the heritability of performance on this task by implicating a specific polymorphism. Through comparison with other studies using this task, we suggest a possible mechanism by which the OPRM1 polymorphism may confer reduced response to natural reward through a dopamine-mediated decrease during positive reinforcement learning.

  9. Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available It is well known that the mu-opioid receptor (MOR plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2 protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.

  10. Chronic Morphine Reduces Surface Expression of δ-Opioid Receptors in Subregions of Rostral Striatum.

    Science.gov (United States)

    Leah, Paul M; Heath, Emily M L; Balleine, Bernard W; Christie, Macdonald J

    2016-03-01

    The delta opioid receptor (DOPr), whilst not the primary target of clinically used opioids, is involved in development of opioid tolerance and addiction. There is growing evidence that DOPr trafficking is involved in drug addiction, e.g., a range of studies have shown increased plasma membrane DOPr insertion during chronic treatment with opioids. The present study used a transgenic mouse model in which the C-terminal of the DOPr is tagged with enhanced-green fluorescence protein to examine the effects of chronic morphine treatment on surface membrane expression in striatal cholinergic interneurons that are implicated in motivated learning following both chronic morphine and morphine sensitization treatment schedules in male mice. A sex difference was noted throughout the anterior striatum, which was most prominent in the nucleus accumbens core region. Incontrast with previous studies in other neurons, chronic exposure to a high dose of morphine for 6 days had no effect, or slightly decreased (anterior dorsolateral striatum) surface DOPr expression. A morphine sensitization schedule produced similar results with a significant decrease in surface DOPr expression in nucleus accumbens shell. These results suggest that chronic morphine and morphine sensitisation treatment may have effects on instrumental reward-seeking behaviours and learning processes related to drug addiction, via effects on striatal DOPr function.

  11. Molecular modeling directed synthesis of a bicyclic analogue of the delta opioid receptor agonist SNC 80.

    Science.gov (United States)

    Jung, Bettina; Englberger, Werner; Wünsch, Bernhard

    2005-06-01

    In order to find novel delta opioid receptor agonists, the pharmacophoric benzhydryl moiety of the lead compound SNC 80 (1) was dissected and the phenyl residues were attached to different positions of the 6,8-diazabicyclo[3.2.2]nonane core system (4). The position of the carboxamido group, the stereochemistry, the C3/C4 bond order and the kind and length of the spacer X were considered. The resulting compounds were compared with the four energetically most favourable conformations of SNC 80 by a multifit analysis. These calculations led to the structures 5-10, which fit best to SNC 80. Herein the synthesis of one of these compounds (9) is described. Starting from (S)-glutamate two alternative routes are detailed to obtain the key intermediate 14. A variation of the Dieckmann cyclization, which uses trapping of the first cyclization product with ClSiMe(3) provided the mixed acetal 20, which was carefully hydrolyzed to yield the bicyclic ketone 17. Stereoselective addition of phenylmagnesium bromide, dehydration, LiAlH(4) reduction and exchange of the N-6 residue afforded the designed compound 9. The affinities of 9 towards delta, mu, kappa and ORL1 receptors were determined in receptor binding studies with radioligands. Only moderate receptor affinity was found.

  12. Corelation Between Single Nucleotide Polymorphisms in Mu Opioid Receptor Exon 2 and Stereotypic Behaviour in Sows

    Institute of Scientific and Technical Information of China (English)

    LI Jianhong; BAO Jun; CUI Weiguo

    2008-01-01

    Three breeds of sows were observed to investigate the relationship between Single Nucleotide Polymorphisms (SNPs) in Mu Opioid Receptor (MOR) and stereotypic behaviour, such as, sham-chewing, bar biting and standing still in order to better understand the mechanism of stereotypic development of the animals in restrained conditions. MOR exon 2 partial sequences were amplified to analyze single nucleotide polymorphisms by PCR-SSCE One SNP, a silence mutant was found. A significant difference (P<0.01) was found in the frequency of genotypes in these 3 breeds where only the BB genotype, which was identical to that published in GenBank, was found in the Duroc breed, while no AA genotype was found in Landrace, 3 genotypes AA, BB and AB were found in Yorkshire. The result also indicated that the individuals with AA and AB genotypes tended to be more active in sham-chewing than those with the BB genotype (P<0.05). The overall results of this study suggested that sham-chewing of sows may be subjected to both genetic control and environmental conditions, but activity level was more likely to be affected by their environment. We can putatively draw the conclusion that MOR gene has effect on the sham-chewing behavioral traits of sow.

  13. Evaluation of radioiodinated C6-O- and N-iodoallyl analogues of diprenorphine as ligands for cerebral opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lever, J.R.; Scheffel, U.; Stathis, M. [The Johns Hopkins Medical Institutions, Baltimore, MD (United States)] [and others

    1994-05-01

    Analogues of diprenorphine (DPN) having C6-O-iodoallyl (O-IA-DPN) and N-iodoallyl (N-IA-DPN) substituents can be I-125 labeled in good yield with high specific activity by radioiododestannylation. When tested in vitro against [H-3]-DPN in rat brain membranes, the apparent affinity (Ki) of O-IA-DPN (1.35 nM) proved 17-fold stronger than that of N-IA-DPN (23.4 nM). Against selective [H-3]-ligands, O-IA-DPN showed high apparent affinities for {mu}(1.9 nM), {gamma}(1.1 nM) and {kappa}(0.9 nM) sites. Consistent with the low apparent affinity in vitro, [I-125]-N-IA- DPN did not allow localization of cerebral opioid receptors after i.v. administration to mice. By contrast, [I-125]-O-IA-DPN exhibited a regional brain distribution which reflects binding to multiple opioid receptors. The highest radioactivity concentrations were in superior colliculi, hypothalamus, olfactory tubercles, thalamus and striatum. Peak levels (2.5-3.5 %ID/g) were maintained over the first 60 min. At all times, the lowest levels of radioactivity were in the cerebellum. Binding in vivo was saturable by O-IA-DPN, was blocked by (-)- but not by (+)-naloxone, and was inhibited by naltrexone in dose-dependent fashion. Specific binding was 83-93% for all tissues except cerebellum, where 50% blockade was noted with naltrexone (5.0 mg/kg). Using naltrexone blockade to define non-specific binding, the highest ratio of specific to non-specific binding (> 14 to 1) was noted for superior colliculi at 60 min. Inhibition studies with drugs selective for {mu}, {gamma} or {kappa} sites established that multiple opioid receptors are labeled. [123I]-O-IA-DPN has been prepared (84%, >2400 mCi/{mu}mol), and allows visualization of opioid receptors in mouse brain by ex vivo autoradiography. Together, these results suggest that [123I]-O-IA-DPN is suitable for SPECT studies of multiple opioid receptors.

  14. The μ-and δ-opioid pharmacophore conformations of cyclic β-casomorphin analogues indicate docking of the Phe3 residue to different domains of the opioid receptors

    Science.gov (United States)

    Brandt, Wolfgang; Stoldt, Matthias; Schinke, Heiko

    1996-06-01

    Cyclic β-casomorphin analogues with a d-configured amino acid residue in position 2, such as Tyr-c[-Xaa-Phe-Pro-Gly-] and Tyr-c[-Xaa-Phe- d-Pro-Gly-] (Xaa= d-A2bu, d-Orn, d-Lys) were found to bind to the μ-opioid receptor as well as to the δ-opioid receptor, whereas the corresponding l-Xaa2 derivatives are nearly inactive at both. Low-energy conformers of both active and nearly inactive derivatives have been determined in a systematic conformational search or by molecular dynamics simulations using the TRIPOS force field. The obatained conformations were compared with regard to a model for μ-selective opiates developed by Brandt et al. [Drug Des. Discov., 10 (1993) 257]. Superpositions as well as electrostatic, lipophilic and hydrogen bonding similarities with the δ-opioid receptor pharmacophore conformation of t-Hpp-JOM-13 proposed by Mosberg et al. [J. Med. Chem., 37 (1994) 4371, 4384] were used to establish the probable δ-pharmacophoric cyclic β-casomorphin conformations. These conformations were also compared with a δ-opioid agonist (SNC 80) and the highly potent antagonist naltrindole. These investigations led to a prediction of the μ-and δ-pharmacophore structures for the cyclic β-casomorphins. Interestingly, for the inactive compounds such conformations could not be detected. The comparison between the μ-and δ-pharmacophore conformations of the cyclic β-casomorphins demonstrates not only differences in spatial orientation of both aromatic groups, but also in the backbone conformations of the ring part. In particular, the differences in Φ2 and Ψ2 (μ≈70°,-80°; δ≈165°,55°) cause a completely different spatial arrangement of the cyclized peptide rings when all compounds are matched with regard to maximal spatial overlap of the tyrosine residue. Assuming that both the μ-and δ-pharmacophore conformations bind with the tyrosine residue in a similar orientation at the same transmembrane domain X of their receptors, the side chain of Phe3

  15. Opioid analgesics as noncompetitive N-methyl-D-aspartate (NMDA) antagonists

    DEFF Research Database (Denmark)

    Ebert, B; Thorkildsen, C; Andersen, S;

    1998-01-01

    Much evidence points to the involvement of N-methyl-D-aspartate (NMDA) receptors in the development and maintainance of neuropathic pain. In neuropathic pain, there is generally involved a presumed opioid-insensitive component, which apparently can be blocked by NMDA receptor antagonists. However......, in order to obtain complete analgesia, a combination of an NMDA receptor antagonist and an opioid receptor agonist is needed. Recent in vitro data have demonstrated that methadone, ketobemidone, and dextropropoxyphene, in addition to being opioid receptor agonists, also are weak noncompetitive NMDA...... receptor antagonists. Clinical anecdotes suggest that the NMDA receptor antagonism of these opioids may play a significant role in the pharmacological action of these compounds; however, no clinical studies have been conducted to support this issue. In the present commentary, we discuss evidence...

  16. Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects.

    Science.gov (United States)

    Majumdar, Susruta; Grinnell, Steven; Le Rouzic, Valerie; Burgman, Maxim; Polikar, Lisa; Ansonoff, Michael; Pintar, John; Pan, Ying-Xian; Pasternak, Gavril W

    2011-12-06

    Pain remains a pervasive problem throughout medicine, transcending all specialty boundaries. Despite the extraordinary insights into pain and its mechanisms over the past few decades, few advances have been made with analgesics. Most pain remains treated by opiates, which have significant side effects that limit their utility. We now describe a potent opiate analgesic lacking the traditional side effects associated with classical opiates, including respiratory depression, significant constipation, physical dependence, and, perhaps most important, reinforcing behavior, demonstrating that it is possible to dissociate side effects from analgesia. Evidence indicates that this agent acts through a truncated, six-transmembrane variant of the G protein-coupled mu opioid receptor MOR-1. Although truncated splice variants have been reported for a number of G protein-coupled receptors, their functional relevance has been unclear. Our evidence now suggests that truncated variants can be physiologically important through heterodimerization, even when inactive alone, and can comprise new therapeutic targets, as illustrated by our unique opioid analgesics with a vastly improved pharmacological profile.

  17. Direct influence of C-terminally substituted amino acids in the Dmt-Tic pharmacophore on delta-opioid receptor selectivity and antagonism.

    Science.gov (United States)

    Balboni, Gianfranco; Salvadori, Severo; Guerrini, Remo; Negri, Lucia; Giannini, Elisa; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H

    2004-07-29

    A series of 17 analogues were developed on the basis of the general formula H-Dmt-Tic-NH-CH(R)-R' (denotes chirality; R = charged, neutral, or aromatic functional group; R' = -OH or -NH(2)). These compounds were designed to test the following hypothesis: the physicochemical properties of third-residue substitutions C-terminal to Tic in the Dmt-Tic pharmacophore modify delta-opioid receptor selectivity and delta-opioid receptor antagonism through enhanced interactions with the mu-opioid receptor. The data substantiate the following conclusions: (i) all compounds had high receptor affinity [K(i)(delta) = 0.034-1.1 nM], while that for the mu-opioid receptor fluctuated by orders of magnitude [K(i)(mu) = 15.1-3966 nM]; (ii) delta-opioid receptor selectivity [K(i)(mu)/K(i)(delta)] declined 1000-fold from 22,600 to 21; (iii) a C-terminal carboxyl group enhanced selectivity but only as a consequence of the specific residue; (iv) amidated, positive charged residues [Lys-NH(2) (6), Arg-NH(2) (7)], and a negatively charged aromatic residue [Trp-OH (11)] enhanced mu-opioid affinity [K(i)(mu) = 17.0, 15.1, and 15.7 nM, respectively], while Gly-NH(2) (8), Ser-NH(2) (10), and His-OH (12) were nearly one-tenth as active; and (v) D-isomers exhibited mixed effects on mu-opioid receptor affinity (2' 1 microM) except H-Dmt-Tic-Glu-NH(2) (3), which was a partial delta-opioid receptor agonist (IC(50) = 2.5 nM). Thus, these C-terminally extended analogues indicated that an amino acid residue containing a single charge, amino or guanidino functionality, or aromatic group substantially altered the delta-opioid receptor activity profile (selectivity and antagonism) of the Dmt-Tic pharmacophore, which suggests that the C-terminal constituent plays a major role in determining opioid receptor activity as an "address domain".

  18. Ultrastructural relationship between the mu opioid receptor and its interacting protein, GPR177, in striatal neurons.

    Science.gov (United States)

    Reyes, Arith-Ruth S; Levenson, Robert; Berrettini, Wade; Van Bockstaele, Elisabeth J

    2010-10-28

    GPR177, the mammalian ortholog of Drosophila Wntless/Evi/Sprinter, was recently identified as a novel mu-opioid receptor (MOR) interacting protein. GPR177 is a trans-membrane protein pivotal to mediating the secretion of Wnt signaling proteins. Wnt proteins, in turn, are essential in regulating neuronal development, a phenomenon inhibited upon chronic exposure to MOR agonists such as morphine and heroin. We previously showed that GPR177 and MOR are co-localized in the mouse dorsolateral striatum; however, the nature of this interaction was not fully elucidated. Therefore, in the present study, we examined cellular substrates for interactions between GPR177 and MOR using a combined immunogold-silver and peroxidase detection approach in coronal sections in the dorsolateral segment of the striatum. Semi-quantitative analysis of the ultrastructural distribution of GPR177 and MOR in striatal somata and in dendritic processes showed that, of the somata and dendritic processes exhibiting GPR177, 32% contained MOR immunolabeling while for profiles exhibiting MOR, 37% also contained GPR177 immunoreactivity. GPR177-labeled particles were localized predominantly along both the plasma membrane and within the cytoplasm of MOR-labeled dendrites. Somata and dendritic processes that contained both GPR177 and MOR more often received symmetric (inhibitory-type) synapses from unlabeled axon terminals. To further define the phenotype of GPR177 and MOR-containing cellular profiles, triple immunofluorescence detection showed that GPR177 and MOR are localized in neurons containing the opioid peptide, enkephalin, within the dorsolateral striatum. The results provide an anatomical substrate for interactions between MOR and its interacting protein, GPR177, in striatal opioid-containing neurons that may underlie the morphological alterations produced in neurons by chronic opiate use.

  19. Delta opioid receptors colocalize with corticotropin releasing factor in hippocampal interneurons.

    Science.gov (United States)

    Williams, T J; Milner, T A

    2011-04-14

    The hippocampal formation (HF) is an important site at which stress circuits and endogenous opioid systems intersect, likely playing a critical role in the interaction between stress and drug addiction. Prior study findings suggest that the stress-related neuropeptide corticotropin releasing factor (CRF) and the delta opioid receptor (DOR) may localize to similar neuronal populations within HF lamina. Here, hippocampal sections of male and cycling female adult Sprague-Dawley rats were processed for immunolabeling using antisera directed against the DOR and CRF peptide, as well as interneuron subtype markers somatostatin or parvalbumin, and analyzed by fluorescence and electron microscopy. Both DOR- and CRF-labeling was observed in interneurons in the CA1, CA3, and dentate hilus. Males and normal cycling females displayed a similar number of CRF immunoreactive neurons co-labeled with DOR and a similar average number of CRF-labeled neurons in the dentate hilus and stratum oriens of CA1 and CA3. In addition, 70% of DOR/CRF dual-labeled neurons in the hilar region co-labeled with somatostatin, suggesting a role for these interneurons in regulating perforant path input to dentate granule cells. Ultrastructural analysis of CRF-labeled axon terminals within the hilar region revealed that proestrus females have a similar number of CRF-labeled axon terminals that contain DORs compared to males but an increased number of CRF-labeled axon terminals without DORs. Taken together, these findings suggest that while DORs are anatomically positioned to modulate CRF immunoreactive interneuron activity and CRF peptide release, their ability to exert such regulatory activity may be compromised in females when estrogen levels are high.

  20. Functional Selectivity of Kappa Opioid Receptor Agonists in Peripheral Sensory Neurons

    Science.gov (United States)

    Jamshidi, Raehannah J.; Jacobs, Blaine A.; Sullivan, Laura C.; Chavera, Teresa A.; Saylor, Rachel M.; Prisinzano, Thomas E.; Clarke, William P.

    2015-01-01

    Activation of kappa opioid receptors (KORs) expressed by peripheral sensory neurons that respond to noxious stimuli (nociceptors) can reduce neurotransmission of pain stimuli from the periphery to the central nervous system. We have previously shown that the antinociception dose-response curve for peripherally restricted doses of the KOR agonist (–)-(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide (U50488) has an inverted U shape. Here, we found that the downward phase of the U50488 dose-response curve was blocked by an inhibitor of extracellular signal-regulated kinase (ERK) activation U0126. Local administration of the selective KOR agonist salvinorin A (Sal-A), also resulted in an inverted U-shaped curve; however, the downward phase was insensitive to U0126. By contrast, inhibition of c-Jun N-terminal kinase (JNK) partially blocked the downward phase of the dose-response curve to Sal-A, suggesting a role for JNK. In cultures of peripheral sensory neurons, U50488 and Sal-A inhibited adenylyl cyclase activity with similar efficacies; however, their ability to activate ERK and JNK differed. Whereas U50488 activated ERK but not JNK, Sal-A activated JNK but not ERK. Moreover, although both U50488 and Sal-A produced homologous desensitization, desensitization to U50488 was blocked by inhibition of ERK activation, whereas desensitization to Sal-A was blocked by inhibition of JNK. Substitution of an ethoxymethyl ether for the C2 position acetyl group of Sal-A reduced stimulation of JNK, prevented desensitization by ethoxymethyl ether for the C2 position acetyl group of Sal-A, and resulted in a monotonic antinociception dose-response curve. Collectively, these data demonstrate the functional selectivity of KOR ligands for signaling in peripheral sensory neurons, which results in differential effects on behavioral responses in vivo. PMID:26297384

  1. A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism

    Directory of Open Access Journals (Sweden)

    Wentworth Sean

    2010-06-01

    Full Text Available Abstract Background Opioids are the most widely used analgesics for the treatment of clinical pain. They produce their therapeutic effects by binding to μ-opioid receptors (MORs, which are 7 transmembrane domain (7TM G-protein-coupled receptors (GPCRs, and inhibiting cellular activity. However, the analgesic efficacy of opioids is compromised by side-effects such as analgesic tolerance, dependence and opioid-induced hyperalgesia (OIH. In contrast to opioid analgesia these side effects are associated with cellular excitation. Several hypotheses have been advanced to explain these phenomena, yet the molecular mechanisms underlying tolerance and OIH remain poorly understood. Results We recently discovered a new human alternatively spliced isoform of MOR (MOR1K that is missing the N-terminal extracellular and first transmembrane domains, resulting in a 6TM GPCR variant. To characterize the pattern of cellular transduction pathways activated by this human MOR1K isoform, we conducted a series of pharmacological and molecular experiments. Results show that stimulation of MOR1K with morphine leads to excitatory cellular effects. In contrast to stimulation of MOR1, stimulation of MOR1K leads to increased Ca2+ levels as well as increased nitric oxide (NO release. Immunoprecipitation experiments further reveal that unlike MOR1, which couples to the inhibitory Gαi/o complex, MOR1K couples to the stimulatory Gαs complex. Conclusion The major MOR1 and the alternative MOR1K isoforms mediate opposite cellular effects in response to morphine, with MOR1K driving excitatory processes. These findings warrant further investigations that examine animal and human MORK1 expression and function following chronic exposure to opioids, which may identify MOR1K as a novel target for the development of new clinically effective classes of opioids that have high analgesic efficacy with diminished ability to produce tolerance, OIH, and other unwanted side-effects.

  2. Decreased motivation to eat in mu-opioid receptor-deficient mice.

    Science.gov (United States)

    Papaleo, Francesco; Kieffer, Brigitte L; Tabarin, Antoine; Contarino, Angelo

    2007-06-01

    Altered motivational processes might participate to the physiopathology of eating-related disorders. The endogenous opioid system is thought to mediate the hedonic properties of food intake. To assess the role for the micro-opioid receptor (MOR) pathway in the motivational properties of food intake, in the present study we tested wild-type and MOR-deficient mice (MOR-/-) in a nose-poke operant paradigm for chow or sucrose pellets. To avoid confounding factors linked to food restriction/deprivation experience, mice were always provided with food ad libitum. Although less MOR-/- than wild-type mice initiated operant behaviour, under a fixed ratio-1 (FR-1) reinforcement schedule the two genotypes showed similar patterns of food-driven nose-poking, indicating preserved cognitive abilities in MOR-deficient mice. However, during FR-3 and progressive ratio (PR) reinforcement experiments, MOR-/- mice showed lower levels of nose-poking for either chow or sucrose pellets than wild-type mice, indicating a crucial role for the MOR pathway in the motivational properties of food intake. Moreover, under the PR reinforcement schedule mice nose-poking for sucrose pellets showed higher genotype-independent breakpoint levels than mice working for chow pellets, indicating that the MOR pathway is not essential for hedonic processing of palatable food intake. Finally, MOR-/- mice did not differ from wild-type mice in the rate of operant responding extinction, further supporting the notion of unaltered cognitive abilities in the MOR-deficient mice. The present findings strongly indicate that the MOR pathway mediates the motivational properties of food intake, but it is not essential for hedonic processing of ingestive behaviour.

  3. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  4. Immediate and Persistent Effects of Salvinorin A on the Kappa Opioid Receptor in Rodents, Monitored In Vivo with PET.

    Science.gov (United States)

    Placzek, Michael S; Van de Bittner, Genevieve C; Wey, Hsiao-Ying; Lukas, Scott E; Hooker, Jacob M

    2015-12-01

    Monitoring changes in opioid receptor binding with positron emission tomography (PET) could lead to a better understanding of tolerance and addiction because altered opioid receptor dynamics following agonist exposure has been linked to tolerance mechanisms. We have studied changes in kappa opioid receptor (KOR) binding availability in vivo with PET following kappa opioid agonist administration. Male Sprague-Dawley rats (n=31) were anesthetized and treated with the (KOR) agonist salvinorin A (0.01-1.8 mg/kg, i.v.) before administration of the KOR selective radiotracer [(11)C]GR103545. When salvinorin A was administered 1 min prior to injection of the radiotracer, [(11)C]GR103545 binding potential (BPND) was decreased in a dose-dependent manner, indicating receptor binding competition. In addition, the unique pharmacokinetics of salvinorin A (half-life ~8 min in non-human primates) allowed us to study the residual impact on KOR after the drug had eliminated from the brain. Salvinorin A was administered up to 5 h prior to [(11)C]GR103545, and the changes in BPND were compared with baseline, 2.5 h, 1 h, and 1 min pretreatment times. At lower doses (0.18 mg/kg and 0.32 mg/kg) we observed no prolonged effect on KOR binding but at 0.60 mg/kg salvinorin A induced a sustained decrease in KOR binding (BPND decreased by 40-49%) which persisted up to 2.5 h post administration, long after salvinorin A had been eliminated from the brain. These data point towards an agonist-induced adaptive response by KOR, the dynamics of which have not been previously studied in vivo with PET.

  5. Membrane glycoprotein M6A promotes μ-opioid receptor endocytosis and facilitates receptor sorting into the recycling pathway

    Institute of Scientific and Technical Information of China (English)

    Ying-Jian Liang; Dai-Fei Wu; Ralf Stumm; Volker H(o)llt; Thomas Koch

    2008-01-01

    The interaction of μ-opioid receptor (MOPr) with the neuronal membrane glycoprotein M6a is known to facilitate MOPr endocytosis in human embryonic kidney 293 (HEK293) cells. To further study the role of M6a in the post-endocytotic sorting of MOPr, we investigated the agonist-induced co-internalization of MOPr and M6a and protein targeting after internalization in HEK293 cells that co-expressed HA-tagged MOPr and Myc-tagged M6a. We found that M6a, MOPr, and Rab 11, a marker for recycling endosomes, co-localized in endocytotic vesicles, indicating that MOPr and M6a are primarily targeted to recycling endosomes after endocytosis. Furthermore, co-expression of M6a augmented the post-endocytotic sorting of δ-opioid receptors into the recycling pathway, indicating that M6a might have a more general role in opioid receptor post-ndocytotic sorting. The enhanced post-endocytotic sorting of MOPr into the recycling pathway was accompanied by a decrease in agonist-induced receptor down-regulation of M6a in co-expressing cells. We tested the physiological relevance of these findings in primary cultures of cortical neurons and found that co-expression of M6a markedly increased the translocation of MOPrs from the plasma membrane to intracellular vesicles at steady state and significantly enhanced both constitutive and agonist-induced receptor endocytosis. In conclusion, our results strongly indicate that M6a modulates MOPr endocytosis and post-endocytotic sorting and has an important role in receptor regulation.

  6. Mu Opioid Receptor Modulation of Dopamine Neurons in the Periaqueductal Gray/Dorsal Raphe: A Role in Regulation of Pain.

    Science.gov (United States)

    Li, Chia; Sugam, Jonathan A; Lowery-Gionta, Emily G; McElligott, Zoe A; McCall, Nora M; Lopez, Alberto J; McKlveen, Jessica M; Pleil, Kristen E; Kash, Thomas L

    2016-07-01

    The periaqueductal gray (PAG) is a brain region involved in nociception modulation, and an important relay center for the descending nociceptive pathway through the rostral ventral lateral medulla. Given the dense expression of mu opioid receptors and the role of dopamine in pain, the recently characterized dopamine neurons in the ventral PAG (vPAG)/dorsal raphe (DR) region are a potentially critical site for the antinociceptive actions of opioids. The objectives of this study were to (1) evaluate synaptic modulation of the vPAG/DR dopamine neurons by mu opioid receptors and to (2) dissect the anatomy and neurochemistry of these neurons, in order to assess the downstream loci and functions of their activation. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase (TH) promoter, we found that mu opioid receptor activation led to a decrease in inhibitory inputs onto the vPAG/DR dopamine neurons. Furthermore, combining immunohistochemistry, optogenetics, electrophysiology, and fast-scan cyclic voltammetry in a TH-cre mouse line, we demonstrated that these neurons also express the vesicular glutamate type 2 transporter and co-release dopamine and glutamate in a major downstream projection structure-the bed nucleus of the stria terminalis. Finally, activation of TH-positive neurons in the vPAG/DR using Gq designer receptors exclusively activated by designer drugs displayed a supraspinal, but not spinal, antinociceptive effect. These results indicate that vPAG/DR dopamine neurons likely play a key role in opiate antinociception, potentially via the activation of downstream structures through dopamine and glutamate release.

  7. Effects of ibogaine and noribogaine on the antinociceptive action of mu-, delta- and kappa-opioid receptor agonists in mice.

    Science.gov (United States)

    Bhargava, H N; Cao, Y J; Zhao, G M

    1997-03-28

    Ibogaine, an alkaloid isolated from the bark of the African shrub, Tabernanthe iboga, has been claimed to decrease the self-administration of drugs of abuse like morphine, cocaine and alcohol. To determine whether these effects are mediated via opioid receptor systems, the effects of ibogaine and its metabolite, noribogaine on the antinociceptive actions of morphine, U-50,488H and [D-Pen2,D-Pen5]enkephalin (DPDPE) which are mu- kappa- and delta-opioid receptor agonists, respectively, were determined in male Swiss-Webster mice. Administration of morphine (7 or 10 mg/kg, s.c.), U-50,488H (15 or 25 mg/kg, i.p.) or DPDPE (10 microg/mouse, i.c.v.) produced antinociception in mice as measured by the tail-flick test. Ibogaine (10, 20 or 40 mg/kg, i.p.) by itself did not alter the tail-flick latency. The same doses of ibogaine injected 10 min before the opioid drugs did not modify the antinociceptive actions of morphine, U-50,488H or DPDPE. Ibogaine administered 4 h or 24 h prior to morphine injection did not modify the antinociceptive action of the latter. A dose of 40 mg/kg (i.p.) of noribogaine enhanced the antinociceptive activity of morphine (10 mg/kg, s.c.). Similarly, the doses of 40 and 80 mg/kg of noribogaine enhanced the antinociception produced by a smaller dose of morphine (5 mg/kg, s.c.). However, antinociception induced by U-50,488H and DPDPE was not modified by noribogaine (10-40 mg/kg). It is concluded that ibogaine, which has been suggested to decrease the self-administration of cocaine and opiates like heroin in humans, does not produce such an action by interacting directly with multiple opioid receptors. However, the metabolite of ibogaine enhances the antinociception of morphine but not of U-50,488H or DPDPE. Thus, in vivo evidence has been provided for the possible interaction of ibogaine with mu-opioid receptor following its metabolism to noribogaine.

  8. Altered gene expression and functional activity of opioid receptors in the cerebellum of CB1 cannabinoid receptor knockout mice after acute treatments with cannabinoids.

    Science.gov (United States)

    Páldyová, Estera; Bereczki, E; Sántha, M; Wenger, T; Borsodi, Anna; Benyhe, S

    2007-01-01

    Numerous studies have shown functional links between the cannabinoid and opioid systems. The goal of this study was to evaluate whether acute treatments by endogenous cannabinoid agonist, selective CB1 or CB2 receptor antagonists modulate the expression of mu- (MOR) and delta- (DOR) opioid receptor mRNA levels and functional activity in the cerebellum of transgenic mice deficient in the CB1 type of cannabis receptors. We examined the effect of noladin ether (endogenous cannabinoid agonist) pretreatment on MOR and DOR mRNA expression by using reverse transcription and real-time polimerase chain reaction (PCR) and the ability of subsequent application of the opioid agonists to activate G-proteins, as measured by [35S]GTPgammaS binding, in wild-type (CB1+/+) and CB1 cannabinoid receptor deficient (CB1-/-, 'knockout', K.O.) mice. The acute administration of noladin ether markedly reduced MOR-mediated G-protein activation and caused a significant increase in the level of MOR mRNAs in the cerebella of wildtype, but not in the CB1-/- mice. No significant differences were observed in DOR functional activity and mRNA expression in wild-type animals. In CB1-/- mice the expression of DOR mRNA increased after noladin ether treatment, but no changes were found in DOR functional activity. In addition, Rimonabant (selective central cannabinoid CB1 receptor antagonist) and SR144528 (selective peripheral cannabinoid CB2 receptor antagonist) caused significant potentiation in MOR functional activity in the wild-type animals, whereas DOR mediated G-protein activation was increased in the CB1-/- mice. In contrast, Rimonabant and SR144528 decreased the MOR and DOR mRNA expressions in both CB1+/+ and CB1-/- mice. Taken together, these results indicate that acute treatment with cannabinoids causes alterations in MOR and DOR mRNA expression and functional activity in the cerebella of wild-type and CB1 knockout mice indicating indirect interactions between these two signaling systems.

  9. Spinal-supraspinal and intrinsic μ-opioid receptor agonist-norepinephrine reuptake inhibitor (MOR-NRI) synergy of tapentadol in diabetic heat hyperalgesia in mice.

    Science.gov (United States)

    Christoph, Thomas; Schröder, Wolfgang; Tallarida, Ronald J; De Vry, Jean; Tzschentke, Thomas M

    2013-12-01

    Tapentadol is a μ-opioid receptor (MOR) agonist and norepinephrine reuptake inhibitor (NRI) with established efficacy in neuropathic pain in patients and intrinsic synergistic interaction of both mechanisms as demonstrated in rodents. In diabetic mice, we analyzed the central antihyperalgesic activity, the occurrence of site-site interaction, as well as the spinal contribution of opioid and noradrenergic mechanisms in a hotplate test. Tapentadol (0.1-3.16 µg/animal) showed full efficacy after intrathecal as well as after intracerebroventricular administration (ED50 0.42 µg/animal i.t., 0.18 µg/animal i.c.v.). Combined administration of equianalgesic doses revealed spinal-supraspinal synergy (ED50 0.053 µg/animal i.t. + i.c.v.). Morphine (0.001-10 µg/animal) also showed central efficacy and synergy (ED50 0.547 µg/animal i.t., 0.004 µg/animal i.c.v., 0.014 µg/animal i.t. + i.c.v.). Supraspinal potencies of tapentadol and morphine correlated with the 50-fold difference in their MOR affinities. In contrast, spinal potencies of both drugs were similar and correlated with their relative systemic potencies (ED50 0.27 mg/kg i.p. tapentadol, 1.1 mg/kg i.p. morphine). Spinal administration of the opioid antagonist naloxone or the α2-adrenoceptor antagonist yohimbine before systemic administration of equianalgesic doses of tapentadol (1 mg/kg i.p.) or morphine (3.16 mg/kg i.p.) revealed pronounced influence on opioidergic and noradrenergic pathways for both compounds. Tapentadol was more sensitive toward both antagonists than was morphine, with median effective dose values of 0.75 and 1.72 ng/animal i.t. naloxone and 1.56 and 2.04 ng/animal i.t. yohimbine, respectively. It is suggested that the antihyperalgesic action of systemically administered tapentadol is based on opioid spinal-supraspinal synergy, as well as intrinsic spinally mediated MOR-NRI synergy.

  10. The Effect of the [mu]-Opioid Receptor Antagonist Naloxone on Extinction of Conditioned Fear in the Developing Rat

    Science.gov (United States)

    Kim, Jee Hyun; Richardson, Rick

    2009-01-01

    Several recent studies report that neurotransmitters that are critically involved in extinction in adult rats are not important for extinction in young rats. Specifically, pretest injection of the [gamma]-aminobutryic acid (GABA) receptor inverse agonist FG7142 has no effect on extinction in postnatal day (P)17 rats, although it reverses…

  11. Heterologous activation of protein kinase C stimulates phosphorylation of delta-opioid receptor at serine 344, resulting in beta-arrestin- and clathrin-mediated receptor internalization

    DEFF Research Database (Denmark)

    Xiang, B; Yu, G H; Guo, J

    2001-01-01

    , and ionomycin resulted in DOR internalization that required phosphorylation of Ser-344. Expression of dominant negative beta-arrestin and hypertonic sucrose treatment blocked PMA-induced DOR internalization, suggesting that PKC mediates DOR internalization via a beta-arrestin- and clathrin-dependent mechanism......The purpose of the current study is to investigate the effect of opioid-independent, heterologous activation of protein kinase C (PKC) on the responsiveness of opioid receptor and the underlying molecular mechanisms. Our result showed that removing the C terminus of delta opioid receptor (DOR...... phosphorylation could inhibit PKC-catalyzed heterologous DOR phosphorylation and subsequent internalization. These data demonstrate that the responsiveness of opioid receptor is regulated by both PKC and GRK through agonist-dependent and agonist-independent mechanisms and PKC-mediated receptor phosphorylation...

  12. Comparison of pharmacological activities of three distinct kappa ligands (Salvinorin A, TRK-820 and 3FLB) on kappa opioid receptors in vitro and their antipruritic and antinociceptive activities in vivo.

    Science.gov (United States)

    Wang, Yulin; Tang, Kang; Inan, Saadet; Siebert, Daniel; Holzgrabe, Ulrike; Lee, David Y W; Huang, Peng; Li, Jian-Guo; Cowan, Alan; Liu-Chen, Lee-Yuan

    2005-01-01

    Salvinorin A, TRK-820 (17-cyclopropylmethyl-3,14beta-dihydroxy-4,5alpha-epoxy-6beta-[N-methyl-trans-3-(3-furyl) acrylamido]morphinan hydrochloride), and 3FLB (diethyl 2,4-di-[3-fluorophenyl]-3,7-dimethyl-3,7-diazabicyclo[3.3.1]nonane-9-one-1,5-dicarboxylate) are structurally distinctly different from U50,488H [(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide methanesulfonate], the prototypic selective kappa agonist. Here, we investigated their in vitro pharmacological activities on receptors expressed in Chinese hamster ovary cells and in vivo antiscratch and antinociceptive activities in mice. All three compounds showed high selectivity for the kappa opioid receptor (KOR) over the mu opioid receptor (MOR) and delta opioid receptor (DOR) and nociceptin or orphanin FQ receptors. In the guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding assay, all three were full agonists on the KOR. The rank order of affinity and potency for the KOR was TRK-820 > U50,488H approximately salvinorin A > 3FLB. TRK-820 acted as a partial agonist on MOR and DOR, whereas salvinorin A and 3FLB showed no activities on these receptors. Salvinorin A, TRK-820, and 3FLB caused internalization of the human KOR in a dose-dependent manner. Interestingly, although salvinorin A and U50,488H had similar potencies in stimulating [(35)S]GTPgammaS binding, salvinorin A was about 40-fold less potent than U50,488H in promoting internalization. Following 4-h incubation, all three compounds induced down-regulation of the human KOR, with salvinorin A causing a lower extent of down-regulation. Although TRK-820 was potent and efficacious against compound 48/80-induced scratching, salvinorin A showed low and inconsistent effects, and 3FLB was inactive. In addition, salvinorin A and 3FLB were not active in the acetic acid abdominal constriction test. The discrepancy between in vitro and in vivo results may be due to in vivo metabolism of salvinorin A and 3FLB and

  13. Potent μ-Opioid Receptor Agonists from Cyclic Peptides Tyr-c[D-Lys-Xxx-Tyr-Gly]: Synthesis, Biological, and Structural Evaluation.

    Science.gov (United States)

    Li, Yangmei; Cazares, Margret; Wu, Jinhua; Houghten, Richard A; Toll, Laurence; Dooley, Colette

    2016-02-11

    To optimize the structure of a μ-opioid receptor ligand, analogs H-Tyr-c[D-Lys-Xxx-Tyr-Gly] were synthesized and their biological activity was tested. The analog containing a Phe(3) was identified as not only exhibiting binding affinity 14-fold higher than the original hit but also producing agonist activity 3-fold more potent than morphine. NMR study suggested that a trans conformation at D-Lys(2)-Xxx(3) is crucial for these cyclic peptides to maintain high affinity, selectivity, and functional activity toward the μ-opioid receptor.

  14. In vivo delta opioid receptor internalization controls behavioral effects of agonists.

    Directory of Open Access Journals (Sweden)

    Amynah A A Pradhan

    Full Text Available BACKGROUND: GPCRs regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Stimulation of a GPCR by an extracellular ligand triggers receptor signaling via G proteins, and this process is highly regulated. Receptor activation is typically accompanied by desensitization of receptor signaling, a complex feedback regulatory process of which receptor internalization is postulated as a key event. The in vivo significance of GPCR internalization is poorly understood. In fact, the majority of studies have been performed in transfected cell systems, which do not adequately model physiological environments and the complexity of integrated responses observed in the whole animal. METHODS AND FINDINGS: In this study, we used knock-in mice expressing functional fluorescent delta opioid receptors (DOR-eGFP in place of the native receptor to correlate receptor localization in neurons with behavioral responses. We analyzed the pain-relieving effects of two delta receptor agonists with similar signaling potencies and efficacies, but distinct internalizing properties. An initial treatment with the high (SNC80 or low (AR-M100390 internalizing agonist equally reduced CFA-induced inflammatory pain. However, subsequent drug treatment produced highly distinct responses. Animals initially treated with SNC80 showed no analgesic response to a second dose of either delta receptor agonist. Concomitant receptor internalization and G-protein uncoupling were observed throughout the nervous system. This loss of function was temporary, since full DOR-eGFP receptor responses were restored 24 hours after SNC80 administration. In contrast, treatment with AR-M100390 resulted in retained analgesic response to a subsequent agonist injection, and ex vivo analysis showed that DOR-eGFP receptor remained G protein-coupled on the cell surface. Finally SNC80 but not AR-M100390 produced DOR-eGFP phosphorylation, suggesting that the two

  15. Evaluation of the kappa-opioid receptor-selective tracer [{sup 11}C]GR103545 in awake rhesus macaques

    Energy Technology Data Exchange (ETDEWEB)

    Schoultz, Bent W. [University of Oslo, Department of Chemistry, Oslo (Norway); Hjornevik, Trine; Willoch, Frode [University of Oslo, Centre for Molecular Biology and Neuroscience and Institute of Basic Medical Sciences, Oslo (Norway); Akershus University Hospital, Department of Nuclear Medicine, Loerenskog (Norway); Marton, Janos [ABX Advanced Biochemical Compounds GmbH, Radeberg (Germany); Noda, Akihiro; Murakami, Yoshihiro; Miyoshi, Sosuke; Nishimura, Shintaro [Medical and Pharmacological Research Center Foundation, Basic Research Department, Hakui City, Ishikawa (Japan); Aarstad, Erik [University College of London, Institute of Nuclear Medicine, London (United Kingdom); Drzezga, Alexander [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Matsunari, Ichiro [Medical and Pharmacological Research Center Foundation, Clinical Research Department, Hakui City, Ishikawa (Japan); Henriksen, Gjermund [University of Oslo, Department of Chemistry, Oslo (Norway); Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany)

    2010-06-15

    The recent development in radiosynthesis of the {sup 11}C-carbamate function increases the potential of [{sup 11}C]GR103545, which for the last decade has been regarded as promising for imaging the kappa-opioid receptor ({kappa}-OR) with PET. In the present study, [{sup 11}C]GR103545 was evaluated in awake rhesus macaques. Separate investigations were performed to clarify the OR subtype selectivity of this compound. Regional brain uptake kinetics of [{sup 11}C]GR103545 was studied 0-120 min after injection. The binding affinity and opioid subtype selectivity of [{sup 11}C]GR103545 was determined in cells transfected with cloned human opioid receptors. In vitro binding assays demonstrated a high affinity of GR103545 for {kappa}-OR (K{sub i} = 0.02 {+-}0.01 nM) with excellent selectivity over {mu}-OR (6 x 10{sup 2}-fold) and {delta}-OR (2 x 10{sup 4}-fold). PET imaging revealed a volume of distribution (V{sub T}) pattern consistent with the known distribution of {kappa}-OR, with striatum = temporal cortex > cingulate cortex > frontal cortex > parietal cortex > thalamus > cerebellum. [{sup 11}C]GR103545 is selective for {kappa}-OR and holds promise for use to selectively depict and quantify this receptor in humans by means of PET. (orig.)

  16. mu-opioid receptor-stimulated synthesis of reactive oxygen species is mediated via phospholipase D2.

    Science.gov (United States)

    Koch, Thomas; Seifert, Anja; Wu, Dai-Fei; Rankovic, Marija; Kraus, Jürgen; Börner, Christine; Brandenburg, Lars-Ove; Schröder, Helmut; Höllt, Volker

    2009-08-01

    We have recently shown that the activation of the rat mu-opioid receptor (MOPr, also termed MOR1) by the mu-agonist [D-Ala(2), Me Phe(4), Glyol(5)]enkephalin (DAMGO) leads to an increase in phospholipase D2 (PLD2) activity and an induction of receptor endocytosis, whereas the agonist morphine which does not induce opioid receptor endocytosis fails to activate PLD2. We report here that MOPr-mediated activation of PLD2 stimulates production of reactive oxygen molecules via NADH/NADPH oxidase. Oxidative stress was measured with the fluorescent probe dichlorodihydrofluorescein diacetate and the role of PLD2 was assessed by the PLD inhibitor D-erythro-sphingosine (sphinganine) and by PLD2-small interfering RNA transfection. To determine whether NADH/NADPH oxidase contributes to opioid-induced production of reactive oxygen species, mu-agonist-stimulated cells were pre-treated with the flavoprotein inhibitor, diphenylene iodonium, or the specific NADPH oxidase inhibitor, apocynin. Our results demonstrate that receptor-internalizing agonists (like DAMGO, beta-endorphin, methadone, piritramide, fentanyl, sufentanil, and etonitazene) strongly induce NADH/NADPH-mediated ROS synthesis via PLD-dependent signaling pathways, whereas agonists that do not induce MOPr endocytosis and PLD2 activation (like morphine, buprenorphine, hydromorphone, and oxycodone) failed to activate ROS synthesis in transfected human embryonic kidney 293 cells. These findings indicate that the agonist-selective PLD2 activation plays a key role in the regulation of NADH/NADPH-mediated ROS formation by opioids.

  17. Association between Opioid Receptor mu 1 (OPRM1 Gene Polymorphisms and Tobacco and Alcohol Consumption in a Spanish Population

    Directory of Open Access Journals (Sweden)

    Francesc Francès

    2015-04-01

    Full Text Available Evidence gained from animals and humans suggests that the encephalic opioid system might be involved in the development of drug addiction through its role in reward. Our aim is to assess the influence of genetic variations in the opioid receptor mu 1 on alcohol and tobacco consumption in a Spanish population. 763 unrelated individuals (465 women, 298 men aged 18-85 years were recruited between October 2011 and April 2012. Participants were requested to answer a 35-item questionnaire on tobacco and alcohol consumption, as well as to complete the AUDIT and Fagerström tests. Individuals were genotyped for three polymorphisms in the opioid receptor mu 1 (OPRM1 gene, using a TaqMan® protocol. In males, the rs10485057 polymorphism was associated with total pure ethanol intake and with the risk of being an alcohol consumer. Also, this polymorphism was significantly associated with higher Fagerström scores. Rs1799971 had a different influence on adaptive and maladaptive patterns of alcohol use. Despite the limited sample size, our study might enrich current knowledge on patterns of alcohol use, because it encompasses both extreme and adaptive phenotypes, providing thus a wider perspective on this subject.

  18. Effects of fentanyl administration on locomotor response in horses with the G57C μ-opioid receptor polymorphism.

    Science.gov (United States)

    Wetmore, Lois A; Pascoe, Peter J; Shilo-Benjamini, Yael; Lindsey, Jane C

    2016-08-01

    OBJECTIVE To determine the locomotor response to the administration of fentanyl in horses with and without the G57C polymorphism of the μ-opioid receptor. ANIMALS 20 horses of various breeds and ages (10 horses heterozygous for the G57C polymorphism and 10 age-, breed-, and sex-matched horses that did not have the G57C polymorphism). PROCEDURES The number of steps each horse took was counted over consecutive 2-minute periods for 20 minutes to determine a baseline value. The horse then received a bolus of fentanyl (20 μg/kg, IV), and the number of steps was again counted during consecutive 2-minute periods for 60 minutes. The mean baseline value was subtracted from each 2-minute period after fentanyl administration; step counts with negative values were assigned a value of 0. Data were analyzed by use of a repeated-measures ANOVA. RESULTS Data for 19 of 20 horses (10 horses with the G57C polymorphism and 9 control horses without the G57C polymorphism) were included in the analysis. Horses with the G57C polymorphism had a significant increase in locomotor activity, compared with results for horses without the polymorphism. There was a significant group-by-time interaction. CONCLUSIONS AND CLINICAL RELEVANCE Horses heterozygous for the G57C polymorphism of the μ-opioid receptor had an increased locomotor response to fentanyl administration, compared with the response for horses without this polymorphism. The clinical impact of this finding should be investigated.

  19. Schild (apparent pA2) analysis of a kappa-opioid antagonist in Planaria.

    Science.gov (United States)

    Raffa, Robert B; Baron, David A; Tallarida, Ronald J

    2006-07-01

    Previous investigators have provided radioimmunological and immunocytochemical evidence for an enkephalinergic (opioid) system in Planaria and described naloxone-sensitive qualitative behavioral responses to kappa-opioid receptor agonists. We report the application of Schild-analysis to the antagonism of a selective kappa agonist (U-50,488H) by a selective kappa antagonist (nor-BNI) in a quantitative in vivo endpoint. The results provide further evidence of a kappa-opioid-like receptor in planarians.

  20. Salvinorin A, an active component of the hallucinogenic sage salvia divinorum is a highly efficacious kappa-opioid receptor agonist: structural and functional considerations.

    Science.gov (United States)

    Chavkin, Charles; Sud, Sumit; Jin, Wenzhen; Stewart, Jeremy; Zjawiony, Jordan K; Siebert, Daniel J; Toth, Beth Ann; Hufeisen, Sandra J; Roth, Bryan L

    2004-03-01

    The diterpene salvinorin A from Salvia divinorum has recently been reported to be a high-affinity and selective kappa-opioid receptor agonist (Roth et al., 2002). Salvinorin A and selected derivatives were found to be potent and efficacious agonists in several measures of agonist activity using cloned human kappa-opioid receptors expressed in human embryonic kidney-293 cells. Thus, salvinorin A, salvinorinyl-2-propionate, and salvinorinyl-2-heptanoate were found to be either full (salvinorin A) or partial (2-propionate, 2-heptanoate) agonists for inhibition of forskolin-stimulated cAMP production. Additional studies of agonist potency and efficacy of salvinorin A, performed by cotransfecting either the chimeric G proteins Gaq-i5 or the universal G protein Ga16 and quantification of agonist-evoked intracellular calcium mobilization, affirmed that salvinorin A was a potent and effective kappa-opioid agonist. Results from structure-function studies suggested that the nature of the substituent at the 2-position of salvinorin A was critical for kappa-opioid receptor binding and activation. Because issues of receptor reserve complicate estimates of agonist efficacy and potency, we also examined the agonist actions of salvinorin A by measuring potassium conductance through G protein-gated K(+) channels coexpressed in Xenopus oocytes, a system in which receptor reserve is minimal. Salvinorin A was found to be a full agonist, being significantly more efficacious than (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U50488) or (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U69593) (two standard kappa-opioid agonists) and similar in efficacy to dynorphin A (the naturally occurring peptide ligand for kappa-opioid receptors). Salvinorin A thus represents the first known naturally occurring non-nitrogenous full agonist at kappa-opioid receptors.

  1. Quantification of brain {mu}-opioid receptors with [{sup 11}C]carfentanil: reference-tissue methods

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Christopher J.; Bencherif, Badreddine; Hilton, John; Madar, Igal; James Frost, J. E-mail: jfrost@jhmi.edu

    2003-02-01

    [{sup 11}C]Carfentanil (CFN) is a {mu}-opioid agonist used for in vivo positron emission tomography (PET) studies of {mu}-opioid receptors. Previously, a tissue-ratio method was validated for the quantification of CFN binding. However, since that initial validation, several other blood independent (reference-tissue) methods have become available. To evaluate these methods, CFN PET studies with arterial blood sampling were acquired in six healthy male control subjects. Specific binding estimates obtained from reference-tissue methods were compared to those obtained with a more rigorous blood input modeling technique. It was determined that both a graphical method, and a simplified reference tissue model, were more accurate than the tissue-ratio method for quantification of CFN binding.

  2. New neoclerodane diterpenoids isolated from the leaves of Salvia divinorum and their binding affinities for human kappa opioid receptors.

    Science.gov (United States)

    Lee, David Y W; Ma, Zhongze; Liu-Chen, Lee-Yuan; Wang, Yulin; Chen, Yong; Carlezon, William A; Cohen, Bruce

    2005-10-01

    Bioactivity-guided fractionation of the leaves of Salvia divinorum has resulted in the isolation of three new neoclerodane diterpenoids: divinatorin D (1), divinatorin E (2), and salvinorin G (3), together with 10 known terpenoids, divinatorin C (4), hardwickiic acid (5), salvinorin-A (6), -B (7), -C (8), -D (9), -E (10), and -F (11), presqualene alcohol (12), and (E)-phytol (13). The structures of these three new compounds were characterized by spectroscopic methods. All these compounds were evaluated for their binding affinities to the human kappa opioid receptors. In comparison with divinatorin D (1), divinatorin E (2), and salvinorin G (3), salvinorin A (6) is still the most potent kappa agonist.

  3. Novel approaches for the treatment of psychostimulant and opioid abuse – focus on opioid receptor-based therapies

    Science.gov (United States)

    Bailey, Chris P.; Husbands, Steve M.

    2015-01-01

    Introduction Psychostimulant and opioid addiction are poorly treated. The majority of abstinent users relapse back to drug-taking within a year of abstinence, making ‘anti-relapse’ therapies the focus of much current research. There are two fundamental challenges to developing novel treatments for drug addiction. Firstly, there are 3 key stimuli that precipitate relapse back to drug-taking: stress, presentation of drug-conditioned cue, taking a small dose of drug. The most successful novel treatment would be effective against all 3 stimuli. Secondly, a large number of drug users are poly-drug users: taking more than one drug of abuse at a time. The ideal anti-addiction treatment would therefore be effective against all classes of drugs of abuse. Areas Covered In this review, the authors discuss the clinical need and animal models used to uncover potential novel treatments. There is a very broad range of potential treatment approaches and targets currently being examined as potential anti-relapse therapies. These broadly fit into 2 categories: ‘memory-based’ and ‘receptor-based’ and the authors discuss the key targets here within. Expert opinion Opioid receptors and ligands have been widely studied, and research into how different opioid subtypes affect behaviours related to addiction (reward, dysphoria, motivation) suggests that they are tractable targets as anti-relapse treatments. Regarding opioid ligands as novel ‘anti-relapse’ medications targets - research suggests that a ‘non-selective’ approach to targeting opioid receptors will be the most effective. PMID:25253272

  4. Identification of the molecular mechanisms by which the diterpenoid salvinorin A binds to kappa-opioid receptors.

    Science.gov (United States)

    Yan, Feng; Mosier, Philip D; Westkaemper, Richard B; Stewart, Jeremy; Zjawiony, Jordan K; Vortherms, Timothy A; Sheffler, Douglas J; Roth, Bryan L

    2005-06-21

    Salvinorin A is a naturally occurring hallucinogenic diterpenoid from the plant Salvia divinorumthat selectively and potently activates kappa-opioid receptors (KORs). Salvinorin A is unique in that it is the only known lipid-like molecule that selectively and potently activates a G-protein coupled receptor (GPCR), which has as its endogenous agonist a peptide; salvinorin A is also the only known non-nitrogenous opioid receptor agonist. In this paper, we identify key residues in KORs responsible for the high binding affinity and agonist efficacy of salvinorin A. Surprisingly, we discovered that salvinorin A was stabilized in the binding pocket by interactions with tyrosine residues in helix 7 (Tyr313 and Tyr320) and helix 2 (Tyr119). Intriguingly, activation of KORs by salvinorin A required interactions with the helix 7 tyrosines Tyr312, Tyr313, and Tyr320 and with Tyr139 in helix 3. In contrast, the prototypical nitrogenous KOR agonist U69593 and the endogenous peptidergic agonist dynorphin A (1-13) showed differential requirements for these three residues for binding and activation. We also employed a novel approach, whereby we examined the effects of cysteine-substitution mutagenesis on the binding of salvinorin A and an analogue with a free sulfhydryl group, 2-thiosalvinorin B. We discovered that residues predicted to be in close proximity, especially Tyr313, to the free thiol of 2-thiosalvinorin B when mutated to Cys showed enhanced affinity for 2-thiosalvinorin B. When these findings are taken together, they imply that the diterpenoid salvinorin A utilizes unique residues within a commonly shared binding pocket to selectively activate KORs.

  5. Effect of electromagnetic field on cyclic adenosine monophosphate (cAMP) in a human mu-opioid receptor cell model.

    Science.gov (United States)

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-01-01

    During the cell communication process, endogenous and exogenous signaling affect normal as well as pathological developmental conditions. Exogenous influences such as extra-low-frequency electromagnetic field (EMF) have been shown to effect pain and inflammation by modulating G-protein receptors, down-regulating cyclooxygenase-2 activity, and affecting the calcium/calmodulin/nitric oxide pathway. Investigators have reported changes in opioid receptors and second messengers, such as cyclic adenosine monophosphate (cAMP), in opiate tolerance and dependence by showing how repeated exposure to morphine decreases adenylate cyclase activity causing cAMP to return to control levels in the tolerant state, and increase above control levels during withdrawal. Resonance responses to biological systems using exogenous EMF signals suggest that frequency response characteristics of the target can determine the EMF biological response. In our past research we found significant down regulation of inflammatory markers tumor necrosis factor alpha (TNF-α) and nuclear factor kappa B (NFκB) using 5 Hz EMF frequency. In this study cAMP was stimulated in Chinese Hamster Ovary (CHO) cells transfected with human mu-opioid receptors, then exposed to 5 Hz EMF, and outcomes were compared with morphine treatment. Results showed a 23% greater inhibition of cAMP-treating cells with EMF than with morphine. In order to test our results for frequency specific effects, we ran identical experiments using 13 Hz EMF, which produced results similar to controls. This study suggests the use of EMF as a complementary or alternative treatment to morphine that could both reduce pain and enhance patient quality of life without the side-effects of opiates.

  6. Binding affinity to and dependence on some opioidsin Sf9 insect cells expressing human μ-opioid receptor

    Institute of Scientific and Technical Information of China (English)

    LIUZhong-Hua; HEYou; JINWen-Qiao; CHENXin-Jian; ZHANGHong-Ping; SHENQing-Xiang; CHIZhi-Qiang

    2003-01-01

    AIM: To investigate the receptor binding affinity and naloxone-precipitated cAMP overshoot of dihydroetorphine,fentanyl, heroin, and pethidine in Sf9 insect cells expressing human μ-opioid receptor (Sf9-μ cells). METHODS:Competitive binding assay of [3H]ohmefentanyl was used to reveal the affinity for μ-opioid receptor in Sf9-μ cells.[3H]cAMP RIA was used to determine cAMP level. Antinociceptive activity was evaluated using 55℃ mouse hotplate test. Naloxone-precipitated withdrawal jumping was used to reflect physical dependence in mice. RESULTS:All drugs displayed antinociceptive activity and produced physical dependence in mice. The Ki values ofdihydroetorphine, fentanyl, heroin, and pethidine in competitive binding assay were (0.85±0.20)nmol, (59.1±11.7)nmol, (0.36±0.13)μmol, and (12.2±3.8) μmol respectively. The binding affinities of these drugs for μ-opioidreceptor in Sf9-μ cells were paralleled to their antinociceptive activities in mice. After chronic pretreatment withthese drugs, naloxone induced cAMP withdrawal overshoot in Sf9-μ cells. The dependence index in Sf9-μ cellswas calculated as Ki value in competitive binding assay over ECs0 value in naloxone-precipitated cAMP assay, Thephysical dependence index in mice was calculated as antinociceptive ED50/withdrawal jumping cumulative EDs0.There was a good linear correlation between dependence index in Sf9-μ cells and physical dependence index inmice. CONCLUSION: The Sf9-μ cells could be used as a cell model to evaluate the receptor binding affinity andphysical dependent liability of analgesic agents.

  7. Sexually antagonistic coevolution for sexual harassment can act as a barrier to further invasions by parthenogenesis.

    Science.gov (United States)

    Kawatsu, Kazutaka

    2013-02-01

    The assumption of a twofold cost of sex not only complicates the maintenance of sex but also sets conditions for sexual conflict: in organisms with the twofold cost, males often sexually harass females. Sexual harassment is detrimental to female fitness and thus might help maintain sexual populations if male harassment inflicts a harsher cost on parthenogens than on sexual females (asymmetric harassment cost). However, the generality of this concept is now considered doubtful because selective harassment of parthenogens results in loss of mating opportunities for males. Using three mathematical models, I show here that sexual harassment still can impose the asymmetric cost on parthenogens. First, I apply the Lotka-Volterra model to show the degree of asymmetric harassment cost that permits sex to be maintained stably in the population. Second, using adaptive dynamics, I examine whether sexually antagonistic coevolution for sexual harassment, which occurs only in sexual populations, can promote the asymmetric harassment cost. Finally, an individual-based model, which assumes a spatial structure unlike that in the other two, demonstrates that the asymmetric evolution of harassment cost prevents further invasions of parthenogens from different patches into sexual lineages; these mechanisms may account for allopatric distributions of sexual and parthenogenetic lineages as well as the maintenance of sex.

  8. Changes of μ-opioid receptor in the brain tissues of morphine-dependent and abstinent rats%吗啡依赖与戒断大鼠脑组织μ阿片受体的变化

    Institute of Scientific and Technical Information of China (English)

    傅强; 王新华; 邹最; 宋建刚; 陈杞; 蒋健强

    2004-01-01

    BACKGROUND: The alteration of endogenous opioid peptide system is one of the important mechanisms for opioid dependence, μ opioid receptor antagonist or activator can regulate opioid receptor in vitro, but the results from the animal experiment vary greatly.OBJECTIVE: To study the locahzation and quantitative changes of μ-opioid receptor in the brain tissues of morphine-dependent and abstinent rats.DESIGN: A completely randomized controlled experimental study.SETTING and MATERIALS: The experiment was conducted in the Depurtment of Anaesthesiology, Changzheng Hospital, Second Military Medical University using 30 male SD rats provided by the Experimental Animal Center, Second Military Medical University.INTERVENTIONS: Thirty SD rats were divided randomly into 3 groups( n =10) . Intraperitoneal injection with morphine was given to the rats in morphine-dependent group and abstinent group to produce morphine - dependent models, and 3 hours after the model establishment, the rats in the abstinent group were injected with naloxone(5 mg/kg) to induce the withdrawal syndromes. The rats in the control group received only injection with saline. All rats were sacrificed by decapitation 24 hours after the last injection of morphine, and the coronal sections of discrete brain regions(namely the frontal cortex, hippocampus, striatum, thalamus, and hypothalamus) were prepared.MAIN OUTCOME MEASURES: The localization and density of μ-opioid receptor in the specified brain regions of rats in all the 3 groups were measured by autoradiography.RESULTS: In morphine dependent group, the density ofμ-opioid receptor in the frontal cortex, hippocampus, striatum, thalamus, and hypothalamus were significantly lowered by 22%, 49%, 21% and 28%, respectively( t = 11.54,17.82, 15.80, 8.35, 13.78, respectively, P < 0. 01) in comparison with the control group. In morphine abstinent group, the densities of μ opioid receptor in those brain regions were significantly higher by 10%, 38%, 12%, 13

  9. δ-opioid receptors protect neurons against neuronal injury induced by oxygen-glucose deprivation%激活δ-阿片受体可对抗原代培养神经元氧糖剥夺损伤

    Institute of Scientific and Technical Information of China (English)

    李名伟; 朱敏; 田雪松; 区晓敏; 夏萤; 郭景春

    2009-01-01

    Objective To investigate the effect of cortical 8-opioid receptor (DOR) on oxygen-glucose deprivation-induced (OGD-induced) neuronal injury. Methods Primary cultured cortical neurons incubated with selective DOR agonist (TAN-67) and antagonist (naltrindole) or PKC inhibitor (chelerythrine, CHE) were exposed to OGD. Lactate dehydrogenase (LDH) release was detected after 24 h reperfusion. The expression levels of DOR were measured by Western blot. Results Compared with OGD group, TAN-67 significantly decreased OGD-indueed LDH release, and increased the expression levels of DOR, while nahrindole aggravated neuronal injury and decreased the DOR protein expression. CHE could abolish the LDH down-regulation induced by TAN-67 plus OGD (P< 0.05, compared with TAN-67 treated group). Conclusions DOR activation protects neurons against OGD injury. PKC might take part in the neuroprotection pathways of DOR.%目的 研究皮层δ-阿片受体(δ-opioid receptor,DOR)的抗神经元氧糖剥夺损伤作用.方法 采用原代培养胎鼠皮层神经元氧糖剥夺(oxygen-glucose deprivation,OGD)模型,分别加入DOR选择性激动剂TAN一67、拮抗剂nahrindole及PKC抑制剂chelerythrine(CHE),检测再灌注后培液中LDH水平、进行死/活细胞染色,并利用Western blot检测再灌注24 h后DOR蛋白表达水平.结果 与单纯OGD组相比,OGD+TAN-67组培液中的LDH水平明显下降,荧光染色显示活细胞增加死细胞减少,且DOR蛋白表达增加;OGD+naltrindole组则细胞受损加重.且DOR蛋白表达减少.PKC抑制剂CHE能抑制DOR激活后培液中LDH水平的下调.结论 DOR激动剂可以抗神经元氧糖剥夺损伤.拮抗DOR则加重该损伤.PKC可能参与了DOR的神经保护作用.

  10. Voltage-Gated R-Type Calcium Channel Inhibition via Human μ-, δ-, and κ-opioid Receptors Is Voltage-Independently Mediated by Gβγ Protein Subunits.

    Science.gov (United States)

    Berecki, Géza; Motin, Leonid; Adams, David J

    2016-01-01

    Elucidating the mechanisms that modulate calcium channels via opioid receptor activation is fundamental to our understanding of both pain perception and how opioids modulate pain. Neuronal voltage-gated N-type calcium channels (Cav2.2) are inhibited by activation of G protein-coupled opioid receptors (ORs). However, inhibition of R-type (Cav2.3) channels by μ- or κ-ORs is poorly defined and has not been reported for δ-ORs. To investigate such interactions, we coexpressed human μ-, δ-, or κ-ORs with human Cav2.3 or Cav2.2 in human embryonic kidney 293 cells and measured depolarization-activated Ba(2+) currents (IBa). Selective agonists of μ-, δ-, and κ-ORs inhibited IBa through Cav2.3 channels by 35%. Cav2.2 channels were inhibited to a similar extent by κ-ORs, but more potently (60%) via μ- and δ-ORs. Antagonists of δ- and κ-ORs potentiated IBa amplitude mediated by Cav2.3 and Cav2.2 channels. Consistent with G protein βγ (Gβγ) interaction, modulation of Cav2.2 was primarily voltage-dependent and transiently relieved by depolarizing prepulses. In contrast, Cav2.3 modulation was voltage-independent and unaffected by depolarizing prepulses. However, Cav2.3 inhibition was sensitive to pertussis toxin and to intracellular application of guanosine 5'-[β-thio]diphosphate trilithium salt and guanosine 5'-[γ-thio]triphosphate tetralithium salt. Coexpression of Gβγ-specific scavengers-namely, the carboxyl terminus of the G protein-coupled receptor kinase 2 or membrane-targeted myristoylated-phosducin-attenuated or abolished Cav2.3 modulation. Our study reveals the diversity of OR-mediated signaling at Cav2 channels and identifies neuronal Cav2.3 channels as potential targets for opioid analgesics. Their novel modulation is dependent on pre-existing OR activity and mediated by membrane-delimited Gβγ subunits in a voltage-independent manner.

  11. Rapid agonist-induced loss of sup 125 I-. beta. -endorphin opioid receptor sites in NG108-15, but not SK-N-SH neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cone, R.I.; Lameh, J.; Sadee, W. (Univ. of California, San Francisco (United States))

    1991-01-01

    The authors have measured {mu} and {delta} opioid receptor sites on intact SK-N-SH and NG108-15 neuroblastoma cells, respectively, in culture. Use of {sup 125}I-{beta}-endorphin ({beta}E) as a tracer, together with {beta}E(6-31) to block high-affinity non-opioid binding in both cell lines, permitted the measurement of cell surface {mu} and {delta} opioid receptor sites. Labeling was at {delta} sites in NG108-15 cells and predominantly at {mu} sites in SK-N-SH cells. Pretreatment with the {mu} and {delta} agonist, DADLE, caused a rapid loss of cell surface {delta} receptor sites in NG108-15 cells, but failed to reduce significantly {mu} receptor density in SK-N-SH cells.

  12. New 2',6'-dimethyl-L-tyrosine (Dmt) opioid peptidomimetics based on the Aba-Gly scaffold. Development of unique mu-opioid receptor ligands.

    Science.gov (United States)

    Ballet, Steven; Salvadori, Severo; Trapella, Claudio; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H; Negri, Lucia; Giannini, Elisa; Lattanzi, Roberta; Tourwé, Dirk; Balboni, Gianfranco

    2006-06-29

    The Aba-Gly scaffold, incorporated into Dmt-Tic ligands (H-Dmt-Tic-Gly-NH-CH2-Ph, H-Dmt-Tic-Gly-NH-Ph, H-Dmt-Tic-NH-CH2-Bid), exhibited mixed micro/delta or delta opioid receptor activities with micro agonism. Substitution of Tic by Aba-Gly coupled to -NH-CH2-Ph (1), -NH-Ph (2), or -Bid (Bid=1H-benzimidazole-2-yl) (3) shifted affinity (Ki(micro)=0.46, 1.48, and 19.9 nM, respectively), selectivity, and bioactivity to micro-opioid receptors. These compounds represent templates for a new class of lead opioid agonists that are easily synthesized and suitable for therapeutic pain relief.

  13. Discovery of 5-substituted tetrahydronaphthalen-2yl-methyl with N-phenyl-N-(piperidin-4-yl)propionamide derivatives as potent opioid receptor ligands.

    Science.gov (United States)

    Deekonda, Srinivas; Wugalter, Lauren; Kulkarni, Vinod; Rankin, David; Largent-Milnes, Tally M; Davis, Peg; Bassirirad, Neemah M; Lai, Josephine; Vanderah, Todd W; Porreca, Frank; Hruby, Victor J

    2015-09-15

    A new series of novel opioid ligands have been designed and synthesized based on the 4-anilidopiperidine scaffold containing a 5-substituted tetrahydronaphthalen-2yl)methyl group with different N-phenyl-N-(piperidin-4-yl)propionamide derivatives to study the biological effects of these substituents on μ and δ opioid receptor interactions. Recently our group reported novel 4-anilidopiperidine analogues, in which several aromatic ring-contained amino acids were conjugated with N-phenyl-N-(piperidin-4-yl)propionamide and examined their biological activities at the μ and δ opioid receptors. In continuation of our efforts in these novel 4-anilidopiperidine analogues, we took a peptidomimetic approach in the present design, in which we substituted aromatic amino acids with tetrahydronaphthalen-2yl methyl moiety with amino, amide and hydroxyl substitutions at the 5th position. In in vitro assays these ligands, showed very good binding affinity and highly selective toward the μ opioid receptor. Among these, the lead ligand 20 showed excellent binding affinity (2 nM) and 5000 fold selectivity toward the μ opioid receptor, as well as functional selectivity in GPI assays (55.20 ± 4.30 nM) and weak or no agonist activities in MVD assays. Based on the in vitro bioassay results the lead compound 20 was chosen for in vivo assessment for efficacy in naïve rats after intrathecal administration. Compound 20 was not significantly effective in alleviating acute pain. This discrepancy between high in vitro binding affinity, moderate in vitro activity, and low in vivo activity may reflect differences in pharmacodynamics (i.e., engaging signaling pathways) or pharmacokinetics (i.e., metabolic stability). In sum, our data suggest that further optimization of this compound 20 is required to enhance in vivo activity.

  14. Subchronic nicotine exposure in adolescence induces long-term effects on hippocampal and striatal cannabinoid-CB1 and mu-opioid receptors in rats.

    Science.gov (United States)

    Marco, Eva M; Granstrem, Oleg; Moreno, Enrique; Llorente, Ricardo; Adriani, Walter; Laviola, Giovanni; Viveros, Maria-Paz

    2007-02-14

    There is evidence for the existence of functional interactions between nicotine and cannabinoids and opioid compounds in adult experimental animals. However, there is scarce information about these relationships in young animals. In the present study we evaluated short and long-term effects of a subchronic nicotine treatment [0.4 mg/kg daily i.p. injections from postnatal day (PND) 34 to PND 43], upon hippocampal and striatal cannabinoid-CB(1) and mu-opioid receptors in Wistar rats of both genders. Rats were sacrificed 2 h after the last nicotine injection (short-term effects, PND 43) or one month later (long-term effects, PND 75). Hippocampal and striatal cannabinoid CB(1) and mu-opioid receptors were quantified by Western blotting. The subchronic nicotine treatment induced a region-dependent long-lasting effect in cannabinoid CB(1) receptor: a significant increase in hippocampal cannabinoid CB(1) receptors and a significant decrease in striatal cannabinoid CB(1) receptors, with these effects being similar in males and females. With respect to mu-opioid receptors, subchronic nicotine induced a significant down-regulation in hippocampal and striatal mu-opioid receptors in the long-term, and within the striatum the effects were more marked in adult males than in females. The present results indicate that juvenile nicotine taking may have implications for the endocannabinoid and endogenous opioid function and for the behaviors served by those systems, this includes possible modification of the response of adults to different psychotropic drugs, i.e. cannabis and morphine/heroin when taken later in life.

  15. Human delta opioid receptor: functional studies on stably transfected Chinese hamster ovary cells after acute and chronic treatment with the selective nonpeptidic agonist SNC-80.

    Science.gov (United States)

    Malatynska, E; Wang, Y; Knapp, R J; Waite, S; Calderon, S; Rice, K; Hruby, V J; Yamamura, H I; Roeske, W R

    1996-09-01

    The SNC-80 series of nonpeptidic agonists for the delta-opioid receptor are being developed as potential analgesic drugs. It is important to understand their acute and chronic effects at human delta-opioid receptors. Thus, we measured the ability of SNC-80 and [D-Pen2,4'-Cl-Phe4,D-Pen5]enkephalin to inhibit forskolin-stimulated adenylyl cyclase activity in recombinant Chinese hamster ovary cells stably expressing the cloned human delta-opioid receptor. The calculated EC50 values for [D-Pen2,4'-Cl-Phe4,D-Pen5]enkephalin and SNC-80 were 0.6 +/- 0.1 nM and 6.3 +/- 0.1 nM, respectively. Pretreatment of these cells with SNC-80 (100 nM) for 24 hr produced 1) a time-dependent reduction of delta receptor density, as measured by radioligand binding studies with [3H]naltrindole; 2) a shift in the EC50 value of SNC-80 from 7.7 +/- 4.2 nM to 44.1 +/- 12 nM, as measured by the cyclic AMP assay; 3) a reduction in the maximum inhibition of adenylyl cyclase activity from 86% to 48%; 4) a marked increase in the forskolin stimulation of basal cyclic AMP accumulation by nearly 100% (from 442 pmol/mg of protein to 824 pmol/mg of protein); and 5) a 5-fold increase in forskolin-stimulated cyclic AMP accumulation after addition of naltrindole. These studies showed that SNC-80 produced desensitization and down-regulation of human delta-opioid receptors in recombinant Chinese hamster ovary cells after chronic treatment and that this effect was associated with an increase in adenylyl cyclase activity.

  16. Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress.

    Science.gov (United States)

    Mazid, Sanoara; Hall, Baila S; Odell, Shannon C; Stafford, Khalifa; Dyer, Andreina D; Van Kempen, Tracey A; Selegean, Jane; McEwen, Bruce S; Waters, Elizabeth M; Milner, Teresa A

    2016-12-01

    Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and chronic stress similarly alters the levels and trafficking of hippocampal delta opioid receptors (DORs). Immediately after acute immobilization stress (AIS) or one-day after chronic immobilization stress (CIS), the brains of adult female and male rats were perfusion-fixed with aldehydes. The CA3b region and the dentate hilus of the dorsal hippocampus were quantitatively analyzed by light microscopy using DOR immunoperoxidase or dual label electron microscopy for DOR using silver intensified immunogold particles (SIG) and GABA using immunoperoxidase. At baseline, females compared to males had more DORs near the plasmalemma of pyramidal cell dendrites and about 3 times more DOR-labeled CA3 dendritic spines contacted by mossy fibers. In AIS females, near-plasmalemmal DOR-SIGs decreased in GABAergic hilar dendrites. However, in AIS males, near-plasmalemmal DOR-SIGs increased in CA3 pyramidal cell and hilar GABAergic dendrites and the percentage of CA3 dendritic spines contacted by mossy fibers increased to about half that seen in unstressed females. Conversely, after CIS, near-plasmalemmal DOR-SIGs increased in hilar GABA-labeled dendrites of females whereas in males plasmalemmal DOR-SIGs decreased in CA3 pyramidal cell dendrites and near-plasmalemmal DOR-SIGs decreased hilar GABA-labeled dendrites. As CIS in females, but not males, redistributed DOR-SIGs near the plasmalemmal of hilar GABAergic dendrites, a subsequent experiment examined the acute affect of oxycodone on the redistribution of DOR-SIGs in a separate cohort of CIS females. Plasmalemmal DOR-SIGs were significantly elevated on hilar interneuron

  17. Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress

    Directory of Open Access Journals (Sweden)

    Sanoara Mazid

    2016-12-01

    Full Text Available Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and chronic stress similarly alters the levels and trafficking of hippocampal delta opioid receptors (DORs. Immediately after acute immobilization stress (AIS or one-day after chronic immobilization stress (CIS, the brains of adult female and male rats were perfusion-fixed with aldehydes. The CA3b region and the dentate hilus of the dorsal hippocampus were quantitatively analyzed by light microscopy using DOR immunoperoxidase or dual label electron microscopy for DOR using silver intensified immunogold particles (SIG and GABA using immunoperoxidase. At baseline, females compared to males had more DORs near the plasmalemma of pyramidal cell dendrites and about 3 times more DOR-labeled CA3 dendritic spines contacted by mossy fibers. In AIS females, near-plasmalemmal DOR-SIGs decreased in GABAergic hilar dendrites. However, in AIS males, near-plasmalemmal DOR-SIGs increased in CA3 pyramidal cell and hilar GABAergic dendrites and the percentage of CA3 dendritic spines contacted by mossy fibers increased to about half that seen in unstressed females. Conversely, after CIS, near-plasmalemmal DOR-SIGs increased in hilar GABA-labeled dendrites of females whereas in males plasmalemmal DOR-SIGs decreased in CA3 pyramidal cell dendrites and near-plasmalemmal DOR-SIGs decreased hilar GABA-labeled dendrites. As CIS in females, but not males, redistributed DOR-SIGs near the plasmalemmal of hilar GABAergic dendrites, a subsequent experiment examined the acute affect of oxycodone on the redistribution of DOR-SIGs in a separate cohort of CIS females. Plasmalemmal DOR-SIGs were significantly elevated on hilar

  18. Design, synthesis, pharmacological evaluation and molecular dynamics of β-amino acids morphan-derivatives as novel ligands for opioid receptors.

    Science.gov (United States)

    Nieto, Carlos T; Gonzalez-Nunez, Veronica; Rodríguez, Raquel E; Diez, David; Garrido, Narciso M

    2015-08-28

    Structure-Activity Relationship (SAR) is a current approach in the design of new pharmacological agents. We previously reported the synthesis of a novel analogue of morphine, a 2-azabicyclo[3.3.1]nonane, which contains a β-amino acid. This bicyclic core exhibits two distinctive chemical handles for further elaboration, which allowed us to create a library of morphan-containing compounds by in silico molecular docking on the μ opioid receptor. Lead candidates were synthesized and biological tests were performed to evaluate their ability to bind to opioid receptors. The four top compounds, three phenyl esters and an N-phenylethyl morphan derivative, were selected for Molecular Dynamics simulations to get topological and thermodynamic information. Aromatic morphan derivatives displayed an interacting domain which fits into a hydrophobic cleft and the effect of the substituents in their affinity was explained by the differences in the calculated binding free energies. Our results indicate that the 3D arrangement of the aromatic ring in the morphine derivatives is not a key issue for a specific ligand - μ receptor interaction. Thus, these morphan derivatives represent a new class of opioid receptor ligands which may be of great use in the clinical practice.

  19. A DFT and Semiempirical Model-Based Study of Opioid Receptor Affinity and Selectivity in a Group of Molecules with a Morphine Structural Core

    Directory of Open Access Journals (Sweden)

    Tamara Bruna-Larenas

    2012-01-01

    Full Text Available We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31 levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  20. Different amounts of ejaculatory activity, a natural rewarding behavior, induce differential mu and delta opioid receptor internalization in the rat's ventral tegmental area.

    Science.gov (United States)

    Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela

    2013-12-06

    Opioid receptors internalize upon specific agonist stimulation. The in vivo significance of receptor internalization is not well established, partly due to the limited in vivo models used to study this phenomenon. Ejaculation promotes endogenous opioid release which activates opioid receptors at the brain, including the mesolimbic system and medial preoptic area. The objective of the present work was to analyze if there was a correlation between the degree of in vivo mu (MOR) and delta opioid receptor (DOR) internalization in the ventral tegmental area and the execution of different amounts of ejaculatory behavior of male rats. To this aim, we analyzed the brains of rats that ejaculated once or six successive times and of sexually exhausted rats with an established sexual inhibition, using immunofluorescence and confocal microscopy. Results showed that MOR and DOR internalization increased as a consequence of ejaculation. There was a relationship between the amount of sexual activity executed and the degree of internalization for MOR, but not for DOR. MOR internalization was larger in rats that ejaculated repeatedly than in animals ejaculating only once. Significant DOR internalization was found only in animals ejaculating once. Changes in MOR, DOR and beta arrestin2 detection, associated to sexual activity, were also found. It is suggested that copulation to satiety might be useful as a model system to study the biological significance of receptor internalization.

  1. Electroacupuncture-Induced Dynamic Processes of Gene Expression Levels of Endogenous Opioid Peptide Precursors and Opioid Receptors in the CNS of Goats

    Directory of Open Access Journals (Sweden)

    Li-Li Cheng

    2013-01-01

    Full Text Available In order to investigate the dynamic processes of mRNA levels of proenkephalin, proopiomelanocortin, prodynorphin, and opioid receptors (δ-, μ-, and κ-receptor induced by electroacupuncture (EA in the central nerve system, goats were stimulated by EA of 60 Hz for 0.5 h at a set of Baihui, Santai, Ergen, and Sanyangluo points. The pain threshold was measured using the method of potassium iontophoresis. The mRNA levels of the three opioid peptide precursors and three opioid receptors were determined with quantitative real-time PCR and the levels of Met-enkephalin with SABC immunohistochemistry at 0.5 h before and at 0, 2, 4, 6, 8, 12, and 24 h after EA. The results showed that the pain threshold correlated (P<0.01 with Met-enkephalin immunoactivities in the measured nuclei and areas of goats. The analgesic aftereffect lasted for 12 h at least. The mRNA levels of the three opioid peptide precursors and three opioid receptors began to increase at 0 h, reached the peak during the time from 4 h to 6 h or at 12 h, and remained higher at 24 h after EA was discontinued. These results suggested that the initiation of gene expression of opioid peptides and the three receptors may be associated with EA-induced analgesic aftereffect.

  2. Parallel Synthesis of Hexahydrodiimidazodiazepines Heterocyclic Peptidomimetics and Their in Vitro and in Vivo Activities at μ (MOR), δ (DOR), and κ (KOR) Opioid Receptors.

    Science.gov (United States)

    Eans, Shainnel O; Ganno, Michelle L; Mizrachi, Elisa; Houghten, Richard A; Dooley, Colette T; McLaughlin, Jay P; Nefzi, Adel

    2015-06-25

    In the development of analgesics with mixed-opioid agonist activity, peripherally selective activity is expected to decrease side effects, minimizing respiratory depression and reinforcing properties generating significantly safer analgesic therapeutics. We synthesized diazaheterocyclics from reduced tripeptides. In vitro screening with radioligand competition binding assays demonstrated variable affinity for μ (MOR), δ (DOR), and κ (KOR) opioid receptors across the series, with the diimidazodiazepine 14 (2065-14) displaying good affinity for DOR and KOR. Central (icv), intraperitoneal (ip), or oral (po) administration of 14 produced dose-dependent, opioid-receptor mediated antinociception in the mouse, as determined from a 55 °C warm-water tail-withdrawal assay. Only trace amounts of compound 14 was found in brain up to 90 min later, suggesting poor BBB penetration and possible peripherally restricted activity. Central administration of 14 did not produce locomotor effects, acute antinociceptive tolerance, or conditioned-place preference or aversion. The data suggest these diazaheterocyclic mixed activity opioid receptor agonists may hold potential as new analgesics with fewer liabilities of use.

  3. MOR is not enough: identification of novel mu-opioid receptor interacting proteins using traditional and modified membrane yeast two-hybrid screens.

    Science.gov (United States)

    Petko, Jessica; Justice-Bitner, Stephanie; Jin, Jay; Wong, Victoria; Kittanakom, Saranya; Ferraro, Thomas N; Stagljar, Igor; Levenson, Robert

    2013-01-01

    The mu-opioid receptor (MOR) is the G-protein coupled receptor primarily responsible for mediating the analgesic and rewarding properties of opioid agonist drugs such as morphine, fentanyl, and heroin. We have utilized a combination of traditional and modified membrane yeast two-hybrid screening methods to identify a cohort of novel MOR interacting proteins (MORIPs). The interaction between the MOR and a subset of MORIPs was validated in pulldown, co-immunoprecipitation, and co-localization studies using HEK293 cells stably expressing the MOR as well as rodent brain. Additionally, a subset of MORIPs was found capable of interaction with the delta and kappa opioid receptors, suggesting that they may represent general opioid receptor interacting proteins (ORIPS). Expression of several MORIPs was altered in specific mouse brain regions after chronic treatment with morphine, suggesting that these proteins may play a role in response to opioid agonist drugs. Based on the known function of these newly identified MORIPs, the interactions forming the MOR signalplex are hypothesized to be important for MOR signaling and intracellular trafficking. Understanding the molecular complexity of MOR/MORIP interactions provides a conceptual framework for defining the cellular mechanisms of MOR signaling in brain and may be critical for determining the physiological basis of opioid tolerance and addiction.

  4. Differential helical orientations among related G protein-coupled receptors provide a novel mechanism for selectivity. Studies with salvinorin A and the kappa-opioid receptor.

    Science.gov (United States)

    Vortherms, Timothy A; Mosier, Philip D; Westkaemper, Richard B; Roth, Bryan L

    2007-02-02

    Salvinorin A, the active component of the hallucinogenic sage Salvia divinorum, is an apparently selective and highly potent kappa-opioid receptor (KOR) agonist. Salvinorin A is unique among ligands for peptidergic G protein-coupled receptors in being nonnitrogenous and lipid-like in character. To examine the molecular basis for the subtype-selective binding of salvinorin A, we utilized an integrated approach using chimeric opioid receptors, site-directed mutagenesis, the substituted cysteine accessibility method, and molecular modeling and dynamics studies. We discovered that helix 2 is required for salvinorin A binding to KOR and that two residues (Val-108(2.53) and Val-118(2.63)) confer subtype selectivity. Intriguingly, molecular modeling studies predicted that these loci exhibit an indirect effect on salvinorin A binding, presumably through rotation of helix 2. Significantly, and in agreement with our in silico predictions, substituted cysteine accessibility method analysis of helix 2 comparing KOR and the delta-opioid receptor, which has negligible affinity for salvinorin A, revealed that residues known to be important for salvinorin A binding exhibit a differential pattern of water accessibility. These findings imply that differences in the helical orientation of helix 2 are critical for the selectivity of salvinorin A binding to KOR and provide a structurally novel basis for ligand selectivity.

  5. 吗啡耐受过程中δ阿片受体对μ阿片受体功能的调节作用%Role of the delta -opioid receptor in the regulation of mu -opioid receptor function during morphine tolerance

    Institute of Scientific and Technical Information of China (English)

    苏林; 王国林

    2010-01-01

    Morphine tolerance involves numerous and complex mechanisms. The heterodimerization of mu and delta opioid receptors put forward recently is one of the important mechanisms which cause the development of opiate tolerance. Once transported to the membrane of neural cells, delta opioid receptors (DOR) combine with mu opioid receptors (MOR) to form MOR-DOR heterodimers,leading to the formation of new signaling pathway. This novel mechanism plays the critical role of DOR in the development of morphine tolerance. This review summarizes the regulation of DOR on MOR function during morphine tolerance in light of the recent findings about the regulation of DOR membrane transport and the new complex: MOR-DOR heterodimer.%吗啡耐受涉及繁多而复杂的机制,μ阿片受体(mu opioid receptors,MOR)和δ阿片受体(delta opioid receptors,DOR)单体异体二聚化就是最近提出的促成阿片耐受发展的重要机制之一.DOR被转运到细胞膜表面后可以与MOR结合形成MOR-DOR二聚物并产生新的信号转导途径.这一机制表明DOR在吗啡耐受发展中所起的重要作用.现从DOR质膜转运的调节以及转运后DOR和MOR形成的新的受体复合物阐述吗啡耐受过程中DOR对MOR功能的调节作用.

  6. (-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl): a novel mu-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties.

    Science.gov (United States)

    Tzschentke, Thomas M; Christoph, Thomas; Kögel, Babette; Schiene, Klaus; Hennies, Hagen-Heinrich; Englberger, Werner; Haurand, Michael; Jahnel, Ulrich; Cremers, Thomas I F H; Friderichs, Elmar; De Vry, Jean

    2007-10-01

    (-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl) is a novel micro-opioid receptor (MOR) agonist (Ki = 0.1 microM; relative efficacy compared with morphine 88% in a [35S]guanosine 5'-3-O-(thio)triphosphate binding assay) and NE reuptake inhibitor (Ki = 0.5 microM for synaptosomal reuptake inhibition). In vivo intracerebral microdialysis showed that tapentadol, in contrast to morphine, produces large increases in extracellular levels of NE (+450% at 10 mg/kg i.p.). Tapentadol exhibited analgesic effects in a wide range of animal models of acute and chronic pain [hot plate, tail-flick, writhing, Randall-Selitto, mustard oil colitis, chronic constriction injury (CCI), and spinal nerve ligation (SNL)], with ED50 values ranging from 8.2 to 13 mg/kg after i.p. administration in rats. Despite a 50-fold lower binding affinity to MOR, the analgesic potency of tapentadol was only two to three times lower than that of morphine, suggesting that the dual mode of action of tapentadol may result in an opiate-sparing effect. A role of NE in the analgesic efficacy of tapentadol was directly demonstrated in the SNL model, where the analgesic effect of tapentadol was strongly reduced by the alpha2-adrenoceptor antagonist yohimbine but only moderately attenuated by the MOR antagonist naloxone, whereas the opposite was seen for morphine. Tolerance development to the analgesic effect of tapentadol in the CCI model was twice as slow as that of morphine. It is suggested that the broad analgesic profile of tapentadol and its relative resistance to tolerance development may be due to a dual mode of action consisting of both MOR activation and NE reuptake inhibition.

  7. Purification to homogeneity of an active opioid receptor from rat brain by affinity chromatography.

    Science.gov (United States)

    Loukas, S; Mercouris, M; Panetsos, F; Zioudrou, C

    1994-05-10

    Active opioid binding proteins were solubilized from rat brain membranes in high yield with sodium deoxycholate in the presence of NaCl. Purification of opioid binding proteins was accomplished by opioid antagonist affinity chromatography. Chromatography using the delta-opioid antagonist N,N-diallyl-Tyr-D-Leu-Gly-Tyr-Leu attached to omega-aminododecyl-agarose (Affi-G) (procedure A) yielded a partially purified protein that binds selectively the delta-opioid agonist [3H]Tyr-D-Ser-Gly-Phe-Leu-Thr ([3H]DSLET), with a Kd of 19 +/- 3 nM and a Bmax of 5.1 +/- 0.4 nmol/mg of protein. Subsequently, Lens culinaris agglutinin-Sepharose 4B chromatography of the Affi-G eluate resulted in isolation of an electrophoretically homogeneous protein of 58 kDa that binds selectively [3H]DSLET with a Kd of 21 +/- 3 nM and a Bmax of 16.5 +/- 1.0 nmol/mg of protein. Chromatography using the nonselective antagonist 6-aminonaloxone coupled to 6-aminohexanoic acid-Sepharose 4B (Affi-NAL) (procedure B) resulted in isolation of a protein that binds selectively [3H]DSLET with a Kd of 32 +/- 2 nM and a Bmax of 12.4 +/- 0.5 nmol/mg of protein, and NaDodSO4/PAGE revealed a major band of apparent molecular mass 58 kDa. Polyclonal antibodies (Anti-R IgG) raised against the Affi-NAL protein inhibit the specific [3H]DSLET binding to the Affi-NAL eluate and to the solubilized membranes. Moreover, the Anti-R IgG inhibits the specific binding of radiolabeled Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol (DAMGO; mu-agonist), DSLET (delta-agonist), and naloxone to homogenates of rat brain membranes with equal potency. Furthermore, immunoaffinity chromatography of solubilized membranes resulted in the retention of a major protein of apparent molecular mass 58 kDa. In addition, immunoblotting of solubilized membranes and purified proteins from the Affi-G and Affi-NAL matrices revealed that the Anti-R IgG interacts with a protein of 58 kDa.

  8. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana.

    Science.gov (United States)

    Katz, Ella; Nisani, Sophia; Yadav, Brijesh S; Woldemariam, Melkamu G; Shai, Ben; Obolski, Uri; Ehrlich, Marcelo; Shani, Eilon; Jander, Georg; Chamovitz, Daniel A

    2015-05-01

    The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development.

  9. Targeted expression of μ-opioid receptors in a subset of striatal direct-pathway neurons restores opiate reward.

    Science.gov (United States)

    Cui, Yijun; Ostlund, Sean B; James, Alex S; Park, Chang Sin; Ge, Weihong; Roberts, Kristofer W; Mittal, Nitish; Murphy, Niall P; Cepeda, Carlos; Kieffer, Brigitte L; Levine, Michael S; Jentsch, James David; Walwyn, Wendy M; Sun, Yi E; Evans, Christopher J; Maidment, Nigel T; Yang, X William

    2014-02-01

    μ-opioid receptors (MORs) are necessary for the analgesic and addictive effects of opioids such as morphine, but the MOR-expressing neuronal populations that mediate the distinct opiate effects remain elusive. Here we devised a new conditional bacterial artificial chromosome rescue strategy to show, in mice, that targeted MOR expression in a subpopulation of striatal direct-pathway neurons enriched in the striosome and nucleus accumbens, in an otherwise MOR-null background, restores opiate reward and opiate-induced striatal dopamine release and partially restores motivation to self administer an opiate. However, these mice lack opiate analgesia or withdrawal. We used Cre-mediated deletion of the rescued MOR transgene to establish that expression of the MOR transgene in the striatum, rather than in extrastriatal sites, is needed for the restoration of opiate reward. Our study demonstrates that a subpopulation of striatal direct-pathway neurons is sufficient to support opiate reward-driven behaviors and provides a new intersectional genetic approach to dissecting neurocircuit-specific gene function in vivo.

  10. Morphine sensitization increases the extracellular level of glutamate in CA1 of rat hippocampus via μ-opioid receptor.

    Science.gov (United States)

    Farahmandfar, Maryam; Karimian, Seyed Morteza; Zarrindast, Mohammad-Reza; Kadivar, Mehdi; Afrouzi, Hossein; Naghdi, Nasser

    2011-04-25

    Repeated administration of abuse drugs such as morphine elicits a progressive enhancement of drug-induced behavioral responses, a phenomenon termed behavioral sensitization. These changes in behavior may reflect plastic changes requiring regulation of glutamatergic system in the brain. In this study, we investigated the effect of morphine sensitization on extracellular glutamate concentration in the hippocampus, a brain region rich in glutamatergic neurons. Sensitization was induced by subcutaneous (s.c.) injection of morphine, once daily for 3 days followed by 5 days free of the opioid treatment. The results showed that extracellular glutamate concentration in the CA1 was decreased following administration of morphine in non-sensitized rats. However, morphine-induced behavioral sensitization significantly increased the extracellular glutamate concentration in this area. The enhancement of glutamate in morphine sensitized rats was prevented by administration of naloxone 30 min before each of three daily doses of morphine. These results suggest an adaptation of the glutamatergic neuronal transmission in the hippocampus after morphine sensitization and it is postulated that opioid receptors may play an important role in this effect.

  11. Identification of a Conformational Equilibrium That Determines the Efficacy and Functional Selectivity of the μ-Opioid Receptor

    Science.gov (United States)

    Okude, Junya; Ueda, Takumi; Kofuku, Yutaka; Sato, Motohiko; Nobuyama, Naoyuki; Kondo, Keita; Shiraishi, Yutaro; Mizumura, Takuya; Onishi, Kento; Natsume, Mei; Maeda, Masahiro; Tsujishita, Hideki; Kuranaga, Takefumi; Inoue, Masayuki; Shimada, Ichio

    2015-01-01

    G-protein-coupled receptor (GPCR) ligands impart differing degrees of signaling in the G-protein and arrestin pathways, in phenomena called “biased signaling”. However, the mechanism underlying the biased signaling of GPCRs is still unclear, although crystal structures of GPCRs bound to the G protein or arrestin are available. In this study, we observed the NMR signals from methionine residues of the μ-opioid receptor (μOR) in the balanced- and biased-ligand-bound states. We found that the intracellular cavity of μOR exists in an equilibrium between closed and multiple open conformations with coupled conformational changes on the transmembrane helices 3, 5, 6, and 7, and that the population of each open conformation determines the G-protein- and arrestin-mediated signaling levels in each ligand-bound state. These findings provide insight into the biased signaling of GPCRs and will be helpful for development of analgesics that stimulate μOR with reduced tolerance and dependence. PMID:26568421

  12. Salvinorin A, a kappa-opioid receptor agonist hallucinogen: pharmacology and potential template for novel pharmacotherapeutic agents in neuropsychiatric disorders

    Science.gov (United States)

    Butelman, Eduardo R.; Kreek, Mary Jeanne

    2015-01-01

    Salvinorin A is a potent hallucinogen, isolated from the ethnomedical plant Salvia divinorum. Salvinorin A is a selective high efficacy kappa-opioid receptor (KOPr) agonist, and thus implicates the KOPr system and its endogenous agonist ligands (the dynorphins) in higher functions, including cognition and perceptual effects. Salvinorin A is the only selective KOPr ligand to be widely available outside research or medical settings, and salvinorin A-containing products have undergone frequent non-medical use. KOPr/dynorphin systems in the brain are known to be powerful counter-modulatory mechanisms to dopaminergic function, which is important in mood and reward engendered by natural and chemical reinforcers (including drugs of abuse). KOPr activation (including by salvinorin A) can thus cause aversion and anhedonia in preclinical models. Salvinorin A is also a completely new scaffold for medicinal chemistry approaches, since it is a non-nitrogenous neoclerodane, unlike other known opioid ligands. Ongoing efforts have the goal of discovering novel semi-synthetic salvinorin analogs with potential KOPr-mediated pharmacotherapeutic effects (including partial agonist or biased agonist effects), with a reduced burden of undesirable effects associated with salvinorin A. PMID:26441647

  13. A unique natural selective kappa-opioid receptor agonist, salvinorin A, and its roles in human therapeutics.

    Science.gov (United States)

    Cruz, André; Domingos, Sara; Gallardo, Eugenia; Martinho, Ana

    2017-05-01

    Until the mid-60s, only the Mazatecs, an indigenous group from Oaxaca, Mexico, used Salvia Divinorum (S. divinorum) due to its hallucinogen properties. Later it was found that the hallucinogen effects of this plant were caused by the presence of a neoclerodane diterpene Salvinorin A (salvinorin A), which is a highly selective agonist of kappa-opioid receptor (KOR) that cause more intense hallucinations than the common hallucinogens as lysergic acid, mushrooms, ecstasy and others. In fact, smoking of only 200-500 μg of S. divinorum leaves is enough to produce these effects thus making it the most potent natural occurring hallucinogen known. Due to its legal status in various countries, this compound has gained a worldwide popularity as a drug of abuse with an easy access through smartshops and internet. Furthermore, salvinorin A gathered an increased interest in the scientific community thanks to its unique structure and properties, and various studies demonstrated that salvinorin A has antinociceptive, antidepressant, in some circumstances pro-depressant and anti-addictive effects that have yielded potential new avenues for research underlying salvinorin A and its semi-synthetic analogs as therapeutic agents.

  14. Salvinorin A, a kappa-opioid receptor agonist hallucinogen: pharmacology and potential template for novel pharmacotherapeutic agents in neuropsychiatric disorders.

    Science.gov (United States)

    Butelman, Eduardo R; Kreek, Mary Jeanne

    2015-01-01

    Salvinorin A is a potent hallucinogen, isolated from the ethnomedical plant Salvia divinorum. Salvinorin A is a selective high efficacy kappa-opioid receptor (KOPr) agonist, and thus implicates the KOPr system and its endogenous agonist ligands (the dynorphins) in higher functions, including cognition and perceptual effects. Salvinorin A is the only selective KOPr ligand to be widely available outside research or medical settings, and salvinorin A-containing products have undergone frequent non-medical use. KOPr/dynorphin systems in the brain are known to be powerful counter-modulatory mechanisms to dopaminergic function, which is important in mood and reward engendered by natural and chemical reinforcers (including drugs of abuse). KOPr activation (including by salvinorin A) can thus cause aversion and anhedonia in preclinical models. Salvinorin A is also a completely new scaffold for medicinal chemistry approaches, since it is a non-nitrogenous neoclerodane, unlike other known opioid ligands. Ongoing efforts have the goal of discovering novel semi-synthetic salvinorin analogs with potential KOPr-mediated pharmacotherapeutic effects (including partial agonist or biased agonist effects), with a reduced burden of undesirable effects associated with salvinorin A.

  15. Antidepressive effects of the κ-opioid receptor agonist salvinorin A in a rat model of anhedonia.

    Science.gov (United States)

    Harden, Mitchell T; Smith, Staci E; Niehoff, Jennifer A; McCurdy, Christopher R; Taylor, George T

    2012-10-01

    Salvinorin A (SalvA), the hallucinogenic derivative of the plant Salvia divinorum, is a selective κ-opioid receptor agonist that may also have antidepressant properties. Chronic mild stress (CMS) was applied to male and female Long-Evans rats to model anhedonia common in depression. The progressive loss in preference for a sucrose solution over plain water, a measure of anhedonia, and locomotor activity were monitored for 7 weeks. Because antidepressant medications often modify reproductive functions, endocrine glands and hormone-sensitive tissues were assessed at necropsy after the conclusion of the behavioral protocol. Three weeks of CMS exposure led to a decrease in sucrose preference. CMS was continued for 3 additional weeks and animals were randomly assigned to treatment with 1 mg SalvA/kg body weight or to a vehicle control group. The results indicate that SalvA reversed anhedonia whereas control animals continued to show a suppressed preference for the sucrose solution. In addition, no change in sucrose preference was observed in nonstressed rats that were exposed to the same dosage of SalvA. The results indicate that SalvA is an effective antidepressant agent when administered chronically to rats showing symptoms of depression similar to those observed in humans.

  16. Functional Stability of the Human Kappa Opioid Receptor Reconstituted in Nanodiscs Revealed by a Time-Resolved Scintillation Proximity Assay

    Science.gov (United States)

    Hansen, Randi Westh; Wang, Xiaole; Golab, Agnieszka; Bornert, Olivier; Oswald, Christine; Wagner, Renaud; Martinez, Karen Laurence

    2016-01-01

    Long-term functional stability of isolated membrane proteins is crucial for many in vitro applications used to elucidate molecular mechanisms, and used for drug screening platforms in modern pharmaceutical industry. Compared to soluble proteins, the understanding at the molecular level of membrane proteins remains a challenge. This is partly due to the difficulty to isolate and simultaneously maintain their structural and functional stability, because of their hydrophobic nature. Here we show, how scintillation proximity assay can be used to analyze time-resolved high-affinity ligand binding to membrane proteins solubilized in various environments. The assay was used to establish conditions that preserved the biological function of isolated human kappa opioid receptor. In detergent solution the receptor lost high-affinity ligand binding to a radiolabelled ligand within minutes at room temperature. After reconstitution in Nanodiscs made of phospholipid bilayer the half-life of high-affinity ligand binding to the majority of receptors increased 70-fold compared to detergent solubilized receptors—a level of stability that is appropriate for further downstream applications. Time-resolved scintillation proximity assay has the potential to screen numerous conditions in parallel to obtain high levels of stable and active membrane proteins, which are intrinsically unstable in detergent solution, and with minimum material consumption. PMID:27035823

  17. Ligand-Specific Regulation of the Endogenous Mu-Opioid Receptor by Chronic Treatment with Mu-Opioid Peptide Agonists

    Science.gov (United States)

    Murányi, Marianna; Cinar, Resat; Kékesi, Orsolya; Birkás, Erika; Fábián, Gabriella; Bozó, Beáta; Zentai, András; Tóth, Géza; Kicsi, Emese Gabriella; Mácsai, Mónika; Szabó, Gyula; Szücs, Mária

    2013-01-01

    Since the discovery of the endomorphins (EM), the postulated endogenous peptide agonists of the mu-opioid receptors, several analogues have been synthesized to improve their binding and pharmacological profiles. We have shown previously that a new analogue, cis-1S,2R-aminocyclohexanecarboxylic acid2-endomorphin-2 (ACHC-EM2), had elevated mu-receptor affinity, selectivity, and proteolytic stability over the parent compound. In the present work, we have studied its antinociceptive effects and receptor regulatory processes. ACHC-EM2 displayed a somewhat higher (60%) acute antinociceptive response than the parent peptide, EM2 (45%), which peaked at 10 min after intracerebroventricular (icv) administration in the rat tail-flick test. Analgesic tolerance developed to the antinociceptive effect of ACHC-EM2 upon its repeated icv injection that was complete by a 10-day treatment. This was accompanied by attenuated coupling of mu-sites to G-proteins in subcellular fractions of rat brain. Also, the density of mu-receptors was upregulated by about 40% in the light membrane fraction, with no detectable changes in surface binding. Distinct receptor regulatory processes were noted in subcellular fractions of rat brains made tolerant by the prototypic full mu-agonist peptide, DAMGO, and its chloromethyl ketone derivative, DAMCK. These results are discussed in light of the recently discovered phenomenon, that is, the “so-called biased agonism” or “functional selectivity”. PMID:24350273

  18. Decreased Endomorphin-2 and μ-Opioid Receptor in the Spinal Cord Are Associated with Painful Diabetic Neuropathy

    Science.gov (United States)

    Kou, Zhen-Zhen; Wan, Fa-Ping; Bai, Yang; Li, Chun-Yu; Hu, Jia-Chen; Zhang, Guo-Tao; Zhang, Ting; Chen, Tao; Wang, Ya-Yun; Li, Hui; Li, Yun-Qing

    2016-01-01

    Painful diabetic neuropathy (PDN) is one of the most common complications in the early stage of diabetes mellitus (DM). Endomorphin-2 (EM2) selectively activates the μ-opioid receptor (MOR) and subsequently induces antinociceptive effects in the spinal dorsal horn. However, the effects of EM2-MOR in PDN have not yet been clarified in the spinal dorsal horn. Therefore, we aimed to explore the role of EM2-MOR in the pathogenesis of PDN. The main findings were the following: (1) streptozotocin (STZ)-induced diabetic rats exhibited hyperglycemia, body weight loss and mechanical allodynia; (2) in the spinal dorsal horn, the expression levels of EM2 and MOR decreased in diabetic rats; (3) EM2 protein concentrations decreased in the brain, lumbar spinal cord and cerebrospinal fluid (CSF) in diabetic rats but were unchanged in the plasma; (4) the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) was significantly higher in diabetic rats than in control rats; and (5) intrathecal injection of EM2 for 14 days in the early stage of PDN partially alleviated mechanical allodynia and reduced MOR expression in diabetic rats. Our results demonstrate that the EM2-MOR signal may be involved in the early stage of PDN. PMID:27656127

  19. Ligand-Specific Regulation of the Endogenous Mu-Opioid Receptor by Chronic Treatment with Mu-Opioid Peptide Agonists

    Directory of Open Access Journals (Sweden)

    Marianna Murányi

    2013-01-01

    Full Text Available Since the discovery of the endomorphins (EM, the postulated endogenous peptide agonists of the mu-opioid receptors, several analogues have been synthesized to improve their binding and pharmacological profiles. We have shown previously that a new analogue, cis-1S,2R-aminocyclohexanecarboxylic acid2-endomorphin-2 (ACHC-EM2, had elevated mu-receptor affinity, selectivity, and proteolytic stability over the parent compound. In the present work, we have studied its antinociceptive effects and receptor regulatory processes. ACHC-EM2 displayed a somewhat higher (60% acute antinociceptive response than the parent peptide, EM2 (45%, which peaked at 10 min after intracerebroventricular (icv administration in the rat tail-flick test. Analgesic tolerance developed to the antinociceptive effect of ACHC-EM2 upon its repeated icv injection that was complete by a 10-day treatment. This was accompanied by attenuated coupling of mu-sites to G-proteins in subcellular fractions of rat brain. Also, the density of mu-receptors was upregulated by about 40% in the light membrane fraction, with no detectable changes in surface binding. Distinct receptor regulatory processes were noted in subcellular fractions of rat brains made tolerant by the prototypic full mu-agonist peptide, DAMGO, and its chloromethyl ketone derivative, DAMCK. These results are discussed in light of the recently discovered phenomenon, that is, the “so-called biased agonism” or “functional selectivity”.

  20. High Efficacy but Low Potency of δ-Opioid Receptor-G Protein Coupling in Brij-58-Treated, Low-Density Plasma Membrane Fragments.

    Directory of Open Access Journals (Sweden)

    Lenka Roubalova

    Full Text Available HEK293 cells stably expressing PTX-insensitive δ-opioid receptor-Gi1α (C351I fusion protein were homogenized, treated with low concentrations of non-ionic detergent Brij-58 at 0°C and fractionated by flotation in sucrose density gradient. In optimum range of detergent concentrations (0.025-0.05% w/v, Brij-58-treated, low-density membranes exhibited 2-3-fold higher efficacy of DADLE-stimulated, high-affinity [32P]GTPase and [35S]GTPγS binding than membranes of the same density prepared in the absence of detergent. The potency of agonist DADLE response was significantly decreased. At high detergent concentrations (>0.1%, the functional coupling between δ-opioid receptors and G proteins was completely diminished. The same detergent effects were measured in plasma membranes isolated from PTX-treated cells. Therefore, the effect of Brij-58 on δ-opioid receptor-G protein coupling was not restricted to the covalently bound Gi1α within δ-opioid receptor-Gi1α fusion protein, but it was also valid for PTX-sensitive G proteins of Gi/Go family endogenously expressed in HEK293 cells. Characterization of the direct effect of Brij-58 on the hydrophobic interior of isolated plasma membranes by steady-state anisotropy of diphenylhexatriene (DPH fluorescence indicated a marked increase of membrane fluidity. The time-resolved analysis of decay of DPH fluorescence by the "wobble in cone" model of DPH motion in the membrane indicated that the exposure to the increasing concentrations of Brij-58 led to a decreased order and higher motional freedom of the dye.Limited perturbation of plasma membrane integrity by low concentrations of non-ionic detergent Brij-58 results in alteration of δ-OR-G protein coupling. Maximum G protein-response to agonist stimulation (efficacy is increased; affinity of response (potency is decreased. The total degradation plasma membrane structure at high detergent concentrations results in diminution of functional coupling between δ-opioid

  1. Opioid receptor blockade and warmth-liking: effects on interpersonal trust and frontal asymmetry.

    Science.gov (United States)

    Schweiger, Desirée; Stemmler, Gerhard; Burgdorf, Christin; Wacker, Jan

    2014-10-01

    The emotion 'warmth-liking' (WL) associated with feelings of affection and acceptance is regularly activated in social contexts. WL has been suggested to be more closely related to the consummatory phase of post-goal attainment positive affect than to pre-goal attainment positive affect/approach motivation and to be partly mediated by brain opioids. To validate these assumptions we employed film/imagery to induce either a neutral emotional state or WL in female participants after intake of either placebo or the opioid antagonist naltrexone. Dependent variables were emotion self-report, interpersonal trust (TRUST, i.e. a behavioral indicator of WL) and frontal asymmetry (i.e. an electroencephalogram (EEG) indicator of approach motivation/behavioral activation). We found that participants reported more WL in the placebo/WL group than in the placebo/neutral group and both naltrexone groups. In addition, TRUST increased in the WL group after placebo, but not after naltrexone, and this pattern was reversed in the neutral control groups. Consequently, opioid blockade suppressed or even reversed the effects of the WL induction on the levels of self-report and behavior, respectively. In addition, we observed reduced relative left-frontal asymmetry in the WL (vs neutral) group, consistent with reduced approach motivation. Overall, these results suggest opioidergic influences on WL and TRUST and reduced approach motivation/behavioral activation for the positive emotion WL.

  2. Anti-hyperalgesic effect of a benzilidine-cyclohexanone analogue on a mouse model of chronic constriction injury-induced neuropathic pain: Participation of the κ-opioid receptor and KATP.

    Science.gov (United States)

    Ming-Tatt, Lee; Khalivulla, Shaik Ibrahim; Akhtar, Muhammad Nadeem; Lajis, Nordin; Perimal, Enoch Kumar; Akira, Ahmad; Ali, Daud Israf; Sulaiman, Mohd Roslan

    2013-12-01

    The present study investigated the analgesic effect of a novel synthetic cyclohexanone derivative, 2,6-bis-4-(hydroxyl-3-methoxybenzilidine)-cyclohexanone or BHMC in a mouse model of chronic constriction injury-induced neuropathic pain. It was demonstrated that intraperitoneal administration of BHMC (0.03, 0.1, 0.3 and 1.0mg/kg) exhibited dose-dependent inhibition of chronic constriction injury-induced neuropathic pain in mice, when evaluated using Randall-Selitto mechanical analgesiometer. It was also demonstrated that pretreatment of naloxone (non-selective opioid receptor blocker), nor-binaltorphimine (nor-BNI, selective κ-opioid receptor blocker), but not β-funaltrexamine (β-FN, selective μ-opioid receptor blocker) and naltrindole hydrochloride (NTI, selective δ-opioid receptor blocker), reversed the anti-nociceptive effect of BHMC. In addition, the analgesic effect of BHMC was also reverted by pretreatment of 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ, soluble guanosyl cyclase blocker) and glibenclamide (ATP-sensitive potassium channel blocker) but not Nω-nitro-l-arginine (l-NAME, a nitric oxide synthase blocker). Taken together, the present study demonstrated that the systemic administration of BHMC attenuated chronic constriction, injury-induced neuropathic pain. We also suggested that the possible mechanisms include κ-opioid receptor activation and nitric oxide-independent cyclic guanosine monophosphate activation of ATP-sensitive potassium channel opening.

  3. 3-(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-alkyl-N-arylbenzamides: potent, non-peptidic agonists of both the micro and delta opioid receptors.

    Science.gov (United States)

    Bishop, Michael J; Garrido, Dulce M; Boswell, G Evan; Collins, Mark A; Harris, Philip A; McNutt, Robert W; O'Neill, Scott J; Wei, Ke; Chang, Kwen-Jen

    2003-02-13

    Opioid analgesics with both micro and delta opioid receptor activation represent a new approach to the treatment of severe pain with an improved safety profile. Compounds with this profile may exhibit strong analgesic properties due to micro agonism, with a reduced side effect profile resulting from delta agonism. Replacing the p-diethylamide of the known potent delta opioid receptor selective agonist BW373U86 with a m-diethylamide resulted in a compound with agonist activity at both the micro and delta opioid receptors. Modifying the amide to an N-methyl-N-phenylamide increased agonist potency at both receptors. A series of 3-(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-alkyl-N-arylbenzamides have been made to explore the structure-activity relationship (SAR) around the N-methyl-N-phenylamide. Several potent agonists of both the micro and delta opioid receptors have been identified, including (+)-3-((alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(4-fluorophenyl)-N-methylbenzamide (23), which has EC50 values of 0.67 and 1.1 nM at the micro (guinea pig ileum assay) and delta (mouse vas deferens assay) opioid receptors, respectively.

  4. Interaction of the mu-opioid receptor with GPR177 (Wntless inhibits Wnt secretion: potential implications for opioid dependence

    Directory of Open Access Journals (Sweden)

    Stagljar Igor

    2010-03-01

    Full Text Available Abstract Background Opioid agonist drugs produce analgesia. However, long-term exposure to opioid agonists may lead to opioid dependence. The analgesic and addictive properties of opioid agonist drugs are mediated primarily via the mu-opioid receptor (MOR. Opioid agonists appear to alter neuronal morphology in key brain regions implicated in the development of opioid dependence. However, the precise role of the MOR in the development of these neuronal alterations remains elusive. We hypothesize that identifying and characterizing novel MOR interacting proteins (MORIPs may help to elucidate the underlying mechanisms involved in the development of opioid dependence. Results GPR177, the mammalian ortholog of Drosophila Wntless/Evi/Sprinter, was identified as a MORIP in a modified split ubiquitin yeast two-hybrid screen. GPR177 is an evolutionarily conserved protein that plays a critical role in mediating Wnt protein secretion from Wnt producing cells. The MOR/GPR177 interaction was validated in pulldown, coimmunoprecipitation, and colocalization studies using mammalian tissue culture cells. The interaction was also observed in rodent brain, where MOR and GPR177 were coexpressed in close spatial proximity within striatal neurons. At the cellular level, morphine treatment caused a shift in the distribution of GPR177 from cytosol to the cell surface, leading to enhanced MOR/GPR177 complex formation at the cell periphery and the inhibition of Wnt protein secretion. Conclusions It is known that chronic morphine treatment decreases dendritic arborization and hippocampal neurogenesis, and Wnt proteins are essential for these processes. We therefore propose that the morphine-mediated MOR/GPR177 interaction may result in decreased Wnt secretion in the CNS, resulting in atrophy of dendritic arbors and decreased neurogenesis. Our results demonstrate a previously unrecognized role for GPR177 in regulating cellular response to opioid drugs.

  5. The influences of reproductive status and acute stress on the levels of phosphorylated mu opioid receptor immunoreactivity in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Keith L. Gonzales

    2011-08-01

    Full Text Available Opioids play a critical role in hippocampally dependent behavior and plasticity. In the hippocampal formation, mu opioid receptors (MOR are prominent in parvalbumin (PARV containing interneurons. Previously we found that gonadal hormones modulate the trafficking of MORs in PARV interneurons. Although sex differences in response to stress are well documented, the point at which opioids, sex and stress interact to influence hippocampal function remains elusive. Thus, we used quantitative immunocytochemistry in combination with light and electron microscopy for the phosphorylated MOR at the SER375 carboxy-terminal residue (pMOR in male and female rats to assess these interactions. In both sexes, pMOR-immunoreactivity (ir was prominent in axons and terminals and in a few neuronal somata and dendrites, some of which contained PARV in the mossy fiber pathway region of the dentate gyrus (DG hilus and CA3 stratum lucidum. In unstressed rats, the levels of pMOR-ir in the DG or CA3 were not affected by sex or estrous cycle stage. However, immediately following 30 minutes of acute immobilization stress (AIS, males had higher levels of pMOR-ir whereas females at proestrus and estrus (high estrogen stages had lower levels of pMOR-ir within the DG. In contrast, the number and types of neuronal profiles with pMOR-ir were not altered by AIS in either males or proestrus females. These data demonstrate that although gonadal steroids do not affect pMOR levels at resting conditions, they are differentially activated both pre- and post-synaptic MORs following stress. These interactions may contribute to the reported sex differences in hippocampally dependent behaviors in stressed animals.

  6. The influences of reproductive status and acute stress on the levels of phosphorylated mu opioid receptor immunoreactivity in rat hippocampus.

    Science.gov (United States)

    Gonzales, Keith L; Chapleau, Jeanette D; Pierce, Joseph P; Kelter, David T; Williams, Tanya J; Torres-Reveron, Annelyn; McEwen, Bruce S; Waters, Elizabeth M; Milner, Teresa A

    2011-08-19

    Opioids play a critical role in hippocampally dependent behavior and plasticity. In the hippocampal formation, mu opioid receptors (MOR) are prominent in parvalbumin (PARV) containing interneurons. Previously we found that gonadal hormones modulate the trafficking of MORs in PARV interneurons. Although sex differences in response to stress are well documented, the point at which opioids, sex and stress interact to influence hippocampal function remains elusive. Thus, we used quantitative immunocytochemistry in combination with light and electron microscopy for the phosphorylated MOR at the SER375 carboxy-terminal residue (pMOR) in male and female rats to assess these interactions. In both sexes, pMOR-immunoreactivity (ir) was prominent in axons and terminals and in a few neuronal somata and dendrites, some of which contained PARV in the mossy fiber pathway region of the dentate gyrus (DG) hilus and CA3 stratum lucidum. In unstressed rats, the levels of pMOR-ir in the DG or CA3 were not affected by sex or estrous cycle stage. However, immediately following 30 minutes of acute immobilization stress (AIS), males had higher levels of pMOR-ir whereas females at proestrus and estrus (high estrogen stages) had lower levels of pMOR-ir within the DG. In contrast, the number and types of neuronal profiles with pMOR-ir were not altered by AIS in either males or proestrus females. These data demonstrate that although gonadal steroids do not affect pMOR levels at resting conditions, they are differentially activated both pre- and post-synaptic MORs following stress. These interactions may contribute to the reported sex differences in hippocampally dependent behaviors in stressed animals.

  7. The mu opioid receptor A118G gene polymorphism moderates effects of trait anger-out on acute pain sensitivity.

    Science.gov (United States)

    Bruehl, Stephen; Chung, Ok Y; Burns, John W

    2008-10-15

    Both trait anger-in (managing anger through suppression) and anger-out (managing anger through direct expression) are related to pain responsiveness, but only anger-out effects involve opioid mechanisms. Preliminary work suggested that the effects of anger-out on postoperative analgesic requirements were moderated by the A118G single nucleotide polymorphism of the mu opioid receptor gene. This study further explored these potential genotypexphenotype interactions as they impact acute pain sensitivity. Genetic samples and measures of anger-in and anger-out were obtained in 87 subjects (from three studies) who participated in controlled laboratory acute pain tasks (ischemic, finger pressure, thermal). McGill Pain Questionnaire (MPQ) Sensory and Affective ratings for each pain task were standardized within studies, aggregated across pain tasks, and combined for analyses. Significant anger-outxA118G interactions were observed (p'seffects tests for both pain measures revealed that whereas anger-out was nonsignificantly hyperalgesic in subjects homozygous for the wild-type allele, anger-out was significantly hypoalgesic in those with the variant G allele (p'spain sensitivity in high anger-out subjects with the G allele and heightened pain sensitivity in low anger-out subjects with the G allele relative to responses in homozygous wild-type subjects. No genetic moderation was observed for anger-in, although significant main effects on MPQ-Affective ratings were noted (peffects were due to overlap with negative affect, but anger-outxA118G interactions were not, suggesting unique effects of expressive anger regulation. Results support opioid-related genotypexphenotype interactions involving trait anger-out.

  8. Ligand- and cell-dependent determinants of internalization and cAMP modulation by delta opioid receptor (DOR) agonists.

    Science.gov (United States)

    Charfi, Iness; Nagi, Karim; Mnie-Filali, Ouissame; Thibault, Dominic; Balboni, Gianfranco; Schiller, Peter W; Trudeau, Louis-Eric; Pineyro, Graciela

    2014-04-01

    Signaling bias refers to G protein-coupled receptor ligand ability to preferentially activate one type of signal over another. Bias to evoke signaling as opposed to sequestration has been proposed as a predictor of opioid ligand potential for generating tolerance. Here we measured whether delta opioid receptor agonists preferentially inhibited cyclase activity over internalization in HEK cells. Efficacy (τ) and affinity (KA) values were estimated from functional data and bias was calculated from efficiency coefficients (log τ/KA). This approach better represented the data as compared to alternative methods that estimate bias exclusively from τ values. Log (τ/KA) coefficients indicated that SNC-80 and UFP-512 promoted cyclase inhibition more efficiently than DOR internalization as compared to DPDPE (bias factor for SNC-80: 50 and for UFP-512: 132). Molecular determinants of internalization were different in HEK293 cells and neurons with βarrs contributing to internalization in both cell types, while PKC and GRK2 activities were only involved in neurons. Rank orders of ligand ability to engage different internalization mechanisms in neurons were compared to rank order of E max values for cyclase assays in HEK cells. Comparison revealed a significant reversal in rank order for cyclase E max values and βarr-dependent internalization in neurons, indicating that these responses were ligand-specific. Despite this evidence, and because kinases involved in internalization were not the same across cellular backgrounds, it is not possible to assert if the magnitude and nature of bias revealed by rank orders of maximal responses is the same as the one measured in HEK cells.

  9. Protein kinase Czeta mediates micro-opioid receptor-induced cross-desensitization of chemokine receptor CCR5.

    Science.gov (United States)

    Song, Changcheng; Rahim, Rahil T; Davey, Penelope C; Bednar, Filip; Bardi, Giuseppe; Zhang, Lily; Zhang, Ning; Oppenheim, Joost J; Rogers, Thomas J

    2011-06-10

    We have previously shown that the μ-opioid receptor (MOR) is capable of mediating cross-desensitization of several chemokine receptors including CCR5, but the biochemical mechanism of this process has not been fully elucidated. We have carried out a series of functional and biochemical studies and found that the mechanism of MOR-induced cross-desensitization of CCR5 involves the activation of PKCζ. Inhibition of PKCζ by its pseudosubstrate inhibitor, or its siRNA, or dominant negative mutants suppresses the cross-desensitization of CCR5. Our results further indicate that the activation of PKCζ is mediated through a pathway involving phosphoinositol-dependent kinase-1 (PDK1). In addition, activation of MOR elevates the phosphorylation level and kinase activity of PKCζ. The phosphorylation of PKCζ can be suppressed by a dominant negative mutant of PDK1. We observed that following MOR activation, the interaction between PKCζ and PDK1 is immediately increased based on the analysis of fluorescent resonance energy transfer in cells with the expression of PKCζ-YFP and PDK1-CFP. In addition, cells expressing PKCζ kinase motif mutants (Lys-281, Thr-410, Thr-560) fail to exhibit full MOR-induced desensitization of CCR5 activity. Taken together, we propose that upon DAMGO treatment, MOR activates PKCζ through a PDK1-dependent signaling pathway to induce CCR5 phosphorylation and desensitization. Because CCR5 is a highly proinflammatory receptor, and a critical coreceptor for HIV-1, these results may provide a novel approach for the development of specific therapeutic agents to treat patients with certain inflammatory diseases or AIDS.

  10. Pharmacogenomic study of the role of the nociceptin/orphanin FQ receptor and opioid receptors in diabetic hyperalgesia.

    Science.gov (United States)

    Rutten, Kris; Tzschentke, Thomas M; Koch, Thomas; Schiene, Klaus; Christoph, Thomas

    2014-10-15

    Targeting functionally independent receptors may provide synergistic analgesic effects in neuropathic pain. To examine the interdependency between different opioid receptors (µ-opioid peptide [MOP], δ-opioid peptide [DOP] and κ-opioid peptide [KOP]) and the nociceptin/orphanin FQ peptide (NOP) receptor in streptozotocin (STZ)-induced diabetic polyneuropathy, nocifensive activity was measured using a hot plate test in wild-type and NOP, MOP, DOP and KOP receptor knockout mice in response to the selective receptor agonists Ro65-6570, morphine, SNC-80 and U50488H, or vehicle. Nocifensive activity was similar in non-diabetic wild-type and knockout mice at baseline, before agonist or vehicle administration. STZ-induced diabetes significantly increased heat sensitivity in all mouse strains, but MOP, DOP and KOP receptor knockouts showed a smaller degree of hyperalgesia than wild-type mice and NOP receptor knockouts. For each agonist, a significant antihyperalgesic effect was observed in wild-type diabetic mice (all Preceptor compared with wild-type diabetic mice. Morphine was the only agonist that demonstrated near-full antihyperalgesic efficacy across all non-cognate receptor knockouts. Partial or near-complete reductions in efficacy were observed with Ro65-6570 in DOP and KOP receptor knockouts, with SNC-80 in NOP, MOP and KOP receptor knockouts, and with U50488H in NOP and DOP receptor knockouts. There was no evidence of NOP and MOP receptor interdependency in response to selective agonists for these receptors. These findings suggest that concurrent activation of NOP and MOP receptors, which showed functional independence, may yield an effective and favorable therapeutic analgesic profile.

  11. Altered expression of glial markers, chemokines, and opioid receptors in the spinal cord of type 2 diabetic monkeys.

    Science.gov (United States)

    Kiguchi, Norikazu; Ding, Huiping; Peters, Christopher M; Kock, Nancy D; Kishioka, Shiroh; Cline, J Mark; Wagner, Janice D; Ko, Mei-Chuan

    2017-01-01

    Neuroinflammation is a pathological condition that underlies diabetes and affects sensory processing. Given the high prevalence of pain in diabetic patients and crosstalk between chemokines and opioids, it is pivotal to know whether neuroinflammation-associated mediators are dysregulated in the central nervous system of diabetic primates. Therefore, the aim of this study was to investigate whether mRNA expression levels of glial markers, chemokines, and opioid receptors are altered in the spinal cord and thalamus of naturally occurring type 2 diabetic monkeys (n=7) compared with age-matched non-diabetic monkeys (n=6). By using RT-qPCR, we found that mRNA expression levels of both GFAP and IBA1 were up-regulated in the spinal dorsal horn (SDH) of diabetic monkeys compared with non-diabetic monkeys. Among all chemokines, expression levels of three chemokine ligand-receptor systems, i.e., CCL2-CCR2, CCL3-CCR1/5, and CCL4-CCR5, were up-regulated in the SDH of diabetic monkeys. Moreover, in the SDH, seven additional chemokine receptors, i.e., CCR4, CCR6, CCR8, CCR10, CXCR3, CXCR5, and CXCR6, were also up-regulated in diabetic monkeys. In contrast, expression levels of MOP, KOP, and DOP, but not NOP receptors, were down-regulated in the SDH of diabetic monkeys, and the thalamus had fewer changes in the glial markers, chemokines and opioids. These findings indicate that neuroinflammation, manifested as glial activation and simultaneous up-regulation of multiple chemokine ligands and receptors, seems to be permanent in type 2 diabetic monkeys. As chemokines and opioids are important pain modulators, this first-in-primate study provides a translational bridge for determining the functional efficacy of spinal drugs targeting their signaling cascades.

  12. Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism.

    Science.gov (United States)

    Kivell, Bronwyn; Uzelac, Zeljko; Sundaramurthy, Santhanalakshmi; Rajamanickam, Jeyaganesh; Ewald, Amy; Chefer, Vladimir; Jaligam, Vanaja; Bolan, Elizabeth; Simonson, Bridget; Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Prisinzano, Thomas E; Gomes, Ivone; Devi, Lakshmi A; Jayanthi, Lankupalle D; Sitte, Harald H; Ramamoorthy, Sammanda; Shippenberg, Toni S

    2014-11-01

    Salvinorin A (SalA), a selective κ-opioid receptor (KOR) agonist, produces dysphoria and pro-depressant like effects. These actions have been attributed to inhibition of striatal dopamine release. The dopamine transporter (DAT) regulates dopamine transmission via uptake of released neurotransmitter. KORs are apposed to DAT in dopamine nerve terminals suggesting an additional target by which SalA modulates dopamine transmission. SalA produced a concentration-dependent, nor-binaltorphimine (BNI)- and pertussis toxin-sensitive increase of ASP(+) accumulation in EM4 cells coexpressing myc-KOR and YFP-DAT, using live cell imaging and the fluorescent monoamine transporter substrate, trans 4-(4-(dimethylamino)-styryl)-N-methylpyridinium) (ASP(+)). Other KOR agonists also increased DAT activity that was abolished by BNI pretreatment. While SalA increased DAT activity, SalA treatment decreased serotonin transporter (SERT) activity and had no effect on norepinephrine transporter (NET) activity. In striatum, SalA increased the Vmax for DAT mediated DA transport and DAT surface expression. SalA up-regulation of DAT function is mediated by KOR activation and the KOR-linked extracellular signal regulated kinase-½ (ERK1/2) pathway. Co-immunoprecipitation and BRET studies revealed that DAT and KOR exist in a complex. In live cells, DAT and KOR exhibited robust FRET signals under basal conditions. SalA exposure caused a rapid and significant increase of the FRET signal. This suggests that the formation of KOR and DAT complexes is promoted in response to KOR activation. Together, these data suggest that enhanced DA transport and decreased DA release resulting in decreased dopamine signalling may contribute to the dysphoric and pro-depressant like effects of SalA and other KOR agonists.

  13. Relative Timing Between Kappa Opioid Receptor Activation and Cocaine Determines the Impact on Reward and Dopamine Release

    Science.gov (United States)

    Chartoff, Elena H; Ebner, Shayla R; Sparrow, Angela; Potter, David; Baker, Phillip M; Ragozzino, Michael E; Roitman, Mitchell F

    2016-01-01

    Negative affective states can increase the rewarding value of drugs of abuse and promote drug taking. Chronic cocaine exposure increases levels of the neuropeptide dynorphin, an endogenous ligand at kappa opioid receptors (KOR) that suppresses dopamine release in the nucleus accumbens (NAc) and elicits negative affective states upon drug withdrawal. However, there is evidence that the effects of KOR activation on affective state are biphasic: immediate aversive effects are followed by delayed increases in reward. The impact of KOR-induced affective states on reward-related effects of cocaine over time is not known. We hypothesize that the initial aversive effects of KOR activation increase, whereas the delayed rewarding effects decrease, the net effects of cocaine on reward and dopamine release. We treated rats with cocaine at various times (15 min to 48 h) after administration of the selective KOR agonist salvinorin A (salvA). Using intracranial self-stimulation and fast scan cyclic voltammetry, we found that cocaine-induced increases in brain stimulation reward and evoked dopamine release in the NAc core were potentiated when cocaine was administered within 1 h of salvA, but attenuated when administered 24 h after salvA. Quantitative real-time PCR was used to show that KOR and prodynorphin mRNA levels were decreased in the NAc, whereas tyrosine hydroxylase and dopamine transporter mRNA levels and tissue dopamine content were increased in the ventral tegmental area 24 h post-salvA. These findings raise the possibility that KOR activation—as occurs upon withdrawal from chronic cocaine—modulates vulnerability to cocaine in a time-dependent manner. PMID:26239494

  14. It's MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system.

    Science.gov (United States)

    Chartoff, Elena H; Connery, Hilary S

    2014-01-01

    Opioids selective for the G protein-coupled mu opioid receptor (MOR) produce potent analgesia and euphoria. Heroin, a synthetic opioid, is considered one of the most addictive substances, and the recent exponential rise in opioid addiction and overdose deaths has made treatment development a national public health priority. Existing medications (methadone, buprenorphine, and naltrexone), when combined with psychosocial therapies, have proven efficacy in reducing aspects of opioid addiction. Unfortunately, these medications have critical limitations including those associated with opioid agonist therapies (e.g., sustained physiological dependence and opioid withdrawal leading to high relapse rates upon discontinuation), non-adherence to daily dosing, and non-renewal of monthly injection with extended-release naltrexone. Furthermore, current medications fail to ameliorate key aspects of addiction such as powerful conditioned associations that trigger relapse (e.g., cues, stress, the drug itself). Thus, there is a need for developing novel treatments that target neural processes corrupted with chronic opioid use. This requires a basic understanding of molecular and cellular mechanisms underlying effects of opioids on synaptic transmission and plasticity within reward-related neural circuits. The focus of this review is to discuss how crosstalk between MOR-associated G protein signaling and glutamatergic neurotransmission leads to immediate and long-term effects on emotional states (e.g., euphoria, depression) and motivated behavior (e.g., drug-seeking, relapse). Our goal is to integrate findings on how opioids modulate synaptic release of glutamate and postsynaptic transmission via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in the nucleus accumbens and ventral tegmental area with the clinical (neurobehavioral) progression of opioid dependence, as well as to identify gaps in knowledge that can be addressed in future studies.

  15. Synergy between mu opioid ligands: evidence for functional interactions among mu opioid receptor subtypes.

    Science.gov (United States)

    Bolan, Elizabeth A; Tallarida, Ronald J; Pasternak, Gavril W

    2002-11-01

    Pharmacological differences among mu opioid drugs have been observed in in vitro and in vivo preclinical models, as well as clinically, implying that all mu opioids may not be working through the same mechanism of action. Here we demonstrate analgesic synergy between L-methadone and several mu opioid ligands. Of the compounds examined, L-methadone selectively synergizes with morphine, morphine-6beta-glucuronide, codeine, and the active metabolite of heroin, 6-acetylmorphine. Morphine synergizes only with L-methadone. In analgesic assays, D-methadone was inactive alone and did not enhance morphine analgesia when the two were given together, confirming that L-methadone was not acting through N-methyl-D-aspartate mechanisms. Both L-methadone and morphine displayed only additive effects when paired with oxymorphone, oxycodone, fentanyl, alfentanyl, or meperidine. Although it displays synergy in analgesic assays, the L-methadone/morphine combination does not exhibit synergy in the gastrointestinal transit assay. This analgesic synergy of L-methadone with selective mu opioid drugs and the differences in opioid-mediated actions suggest that these drugs may be acting via different mechanisms. These findings provide further evidence for the complexity of the pharmacology of mu opioids.

  16. Comparative efficacy of long-acting muscarinic antagonist monotherapies in COPD: a systematic review and network meta-analysis

    Directory of Open Access Journals (Sweden)

    Ismaila AS

    2015-11-01

    Full Text Available Afisi Segun Ismaila,1,2 Eline L Huisman,3 Yogesh Suresh Punekar,4 Andreas Karabis31Value Evidence and Outcomes, GlaxoSmithKline, Research Triangle Park, NC, USA; 2Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada; 3Real World Strategy and Analytics, Mapi Group, Houten, the Netherlands; 4Value Evidence and Outcomes, GlaxoSmithKline, Uxbridge, UKBackground: Randomized, controlled trials comparing long-acting muscarinic antagonist (LAMA efficacy in COPD are limited. This network meta-analysis (NMA assessed the relative efficacy of tiotropium 18 µg once-daily (OD and newer agents (aclidinium 400 µg twice-daily, glycopyrronium 50 µg OD, and umeclidinium 62.5 µg OD.Methods: A systematic literature review identified randomized, controlled trials of adult COPD patients receiving LAMAs. A NMA within a Bayesian framework examined change from baseline in trough forced expiratory volume in 1 second (FEV1, transitional dyspnea index focal score, St George’s Respiratory Questionnaire score, and rescue medication use.Results: Twenty-four studies (n=21,311 compared LAMAs with placebo/each other. Aclidinium, glycopyrronium, tiotropium, and umeclidinium, respectively, demonstrated favorable results versus placebo, for change from baseline (95% credible interval in 12-week trough FEV1 (primary endpoint: 101.40 mL [77.06–125.60]; 117.20 mL [104.50–129.90]; 114.10 mL [103.10–125.20]; 136.70 mL [104.20–169.20]; 24-week trough FEV1 (128.10 mL [84.10–172.00]; 135.80 mL [123.10–148.30]; 106.40 mL [95.45–117.30]; 115.00 mL [74.51–155.30]; 24-week St George’s Respiratory Questionnaire score (-4.60 [-6.76 to -2.54]; -3.14 [-3.83 to -2.45]; -2.43 [-2.92 to -1.93]; -4.69 [-7.05 to -2.31]; 24-week transitional dyspnea index score (1.00 [0.41–1.59]; 1.01 [0.79–1.22]; 0.82 [0.62–1.02]; 1.00 [0.49–1.51]; and 24-week rescue medication use (data not available; -0.41 puffs/day [-0.62 to -0.20]; -0.52 puffs/day [-0

  17. Behavioral stress may increase the rewarding valence of cocaine-associated cues through a dynorphin/kappa-opioid receptor-mediated mechanism without affecting associative learning or memory retrieval mechanisms.

    Science.gov (United States)

    Schindler, Abigail G; Li, Shuang; Chavkin, Charles

    2010-08-01

    Stress exposure increases the risk of addictive drug use in human and animal models of drug addiction by mechanisms that are not completely understood. Mice subjected to repeated forced swim stress (FSS) before cocaine develop significantly greater conditioned place preference (CPP) for the drug-paired chamber than unstressed mice. Analysis of the dose dependency showed that FSS increased both the maximal CPP response and sensitivity to cocaine. To determine whether FSS potentiated CPP by enhancing associative learning mechanisms, mice were conditioned with cocaine in the absence of stress, then challenged after association was complete with the kappa-opioid receptor (KOR) agonist U50,488 or repeated FSS, before preference testing. Mice challenged with U50,488 60 min before CPP preference testing expressed significantly greater cocaine-CPP than saline-challenged mice. Potentiation by U50,488 was dose and time dependent and blocked by the KOR antagonist norbinaltorphimine (norBNI). Similarly, mice subjected to repeated FSS before the final preference test expressed significantly greater cocaine-CPP than unstressed controls, and FSS-induced potentiation was blocked by norBNI. Novel object recognition (NOR) performance was not affected by U50,488 given 60 min before assay, but was impaired when given 15 min before NOR assay, suggesting that KOR activation did not potentiate CPP by facilitating memory retrieval or expression. The results from this study show that the potentiation of cocaine-CPP by KOR activation does not result from an enhancement of associative learning mechanisms and that stress may instead enhance the rewarding valence of cocaine-associated cues by a dynorphin-dependent mechanism.

  18. The Central Reinforcing Properties of Ethanol Are Mediated by Endogenous Opioid Systems: Effects of Mu and Kappa Opioid Antagonists.

    Directory of Open Access Journals (Sweden)

    Norman E. Spear

    2009-09-01

    Full Text Available Endogenous opioid systems are implicated in the reinforcing effects of ethanol and may play a substantial role in modulating the central reinforcing effects of ethanol early in ontogeny. This possibility was explored in the present study through the use of an olfactory conditioning paradigm with centrally administered ethanol serving as an unconditioned stimulus (US. In Experiment 1, newborn rat pups were treated with either a selective mu antagonist CTOP or kappa selective antagonist nor-BNI prior to olfactory conditioning. Experiment 2 tested the effectiveness of an alternative, shorter-duration kappa opioid antagonist GNTI in altering ethanol reinforcement. Experiment 3 investigated whether the effectiveness of pharmacological blockade of opioid receptors was due to the disruption of learning per se using an olfactory aversive conditioning paradigm with intraoral quinine serving as a US. Central administration of either mu or kappa opioid antagonists prior to conditioning disrupted the reinforcing effects of ethanol in newborn rats. The kappa opioid antagonist GNTI was as effective as nor-BNI. These effects of opioid antagonists on ethanol reinforcement are unlikely to be due to a disruption of all types of conditioning, since CTOP did not affect aversive reinforcement to intraoral infusions of quinine. The present results support the hypothesis that in newborn rats, the reinforcing properties of ethanol are mediated by the endogenous activity at mu and kappa opioid receptors.

  19. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET.

    Science.gov (United States)

    Jones, Anthony K P; Watabe, Hiroshi; Cunningham, Vin J; Jones, Terry

    2004-10-01

    Central neuropathic pain (CNP) is pain resulting from damage to the central nervous system. Up till now, it has not been possible to identify a common lesion or pharmacological deficit in these patients. This preliminary study in a group of patients with CNP with predominantly post-stroke pain, demonstrates that there is significantly less opioid receptor binding in a number of cortical and sub-cortical structures that are mostly, but not exclusively, within the medial pain system in patients compared to age-matched pain-free controls. The reductions in opioid receptor binding within the medial system were observed mainly in the dorsolateral (Brodman area 10) and anterior cingulate (Brodman area 24 with some extension into area 23) and insula cortices and the thalamus. There were also reductions in the lateral pain system within the inferior parietal cortex (Brodman area 40). These changes in binding could not be accounted for by the cerebral lesions shown by CT or MRI, which were outside the areas of reduced binding and the human pain system. To our knowledge this is the first systematic demonstration of a reduction in opioid receptor-binding capacity in neurones within the human nociceptive system in patients with CNP. This may be a key common factor resulting in undamped nociceptor activity within some of the structures that are predominantly within the medial nociceptive system. If confirmed, these findings may explain why certain patients with CNP require high doses of synthetic opiates to achieve optimum analgesia. The findings also raise the possibility of new pharmacological approaches to treatment.

  20. Effects of the Mu opioid receptor polymorphism (OPRM1 A118G) on pain regulation, placebo effects and associated personality trait measures.

    Science.gov (United States)

    Peciña, Marta; Love, Tiffany; Stohler, Christian S; Goldman, David; Zubieta, Jon-Kar

    2015-03-01

    Mu-opioid receptors (MOPRs) are critically involved in the modulation of pain and analgesia, and represent a candidate mechanism for the development of biomarkers of pain conditions and their responses to treatment. To further understand the human implications of genetic variation within the opioid system in pain and opioid-mediated placebo responses, we investigated the association between the functional single-nucleotide polymorphism (SNP) in the μ-opioid receptor gene (OPRM1), A118G, and psychophysical responses, personality traits, and neurotransmitter systems (dopamine (DA), opioid) related to pain and placebo analgesia. OPRM1 G carriers, compared with AA homozygotes, showed an overall reduction of baseline μ-opioid receptor availability in regions implicated in pain and affective regulation. In response to a sustained painful stimulus, we found no effect of A118G on pain-induced endogenous opioid release. Instead, AA homozygotes showed a blunted DA response in the nucleus accumbens (NAc) in response to the pain challenge. After placebo administration, G carriers showed more pronounced mood disturbances and lower placebo-induced μ-opioid system activation in the anterior insula (aINS), the amygdala (AMY), the NAc, the thalamus (THA), and the brainstem, as well as lower levels of DA D2/3 activation in the NAc. At a trait level, G carriers reported higher NEO-Neuroticism scores; a personality trait previously associated with increased pain and lower placebo responses, which were negatively correlated with baseline μ-opioid receptor availability in the aINS and subgenual anterior cingulate cortex (sgACC). Our results demonstrate that the A118G OPRM1 polymorphism contributes to interindividual variations in the function of neurotransmitters responsive to pain (endogenous opioid and dopamine), as well as their regulation through cognitive-emotional influences in the context of therapeutic expectations, the so-called placebo effect. These effects are relevant to

  1. Solid-phase synthetic strategy and bioevaluation of a labeled delta-opioid receptor ligand Dmt-Tic-Lys for in vivo imaging.

    Science.gov (United States)

    Josan, Jatinder S; Morse, David L; Xu, Liping; Trissal, Maria; Baggett, Brenda; Davis, Peg; Vagner, Josef; Gillies, Robert J; Hruby, Victor J

    2009-06-18

    A general solid-phase synthetic strategy is developed to prepare fluorescent and/or lanthanide-labeled derivatives of the delta-opioid receptor (deltaOR) ligand H-Dmt-Tic-Lys(R)-OH. The high delta-OR affinity (K(i) = 3 nM) and desirable in vivo characteristics of the Cy5 derivative 1 suggest its usefulness for structure-function studies and receptor localization and as a high-contrast noninvasive molecular marker for live imaging ex vivo or in vivo.

  2. Zatosetron, a potent, selective, and long-acting 5HT3 receptor antagonist: synthesis and structure-activity relationships.

    Science.gov (United States)

    Robertson, D W; Lacefield, W B; Bloomquist, W; Pfeifer, W; Simon, R L; Cohen, M L

    1992-01-24

    Antagonists of 5HT3 receptors are clinically effective in treating nausea and emesis associated with certain oncolytic drugs, including cisplatin. Moreover, these agents may be useful in pharmacological management of several central nervous system disorders, including anxiety, schizophrenia, dementia, and substance abuse. Our studies on aroyltropanamides led to the discovery that dihydrobenzofuranyl esters and amides are potent 5HT3 receptor antagonists. Simple benzoyl derivatives of tropine and 3 alpha-aminotropane possessed weak 5HT3 receptor antagonist activity, as judged by blockade of bradycardia produced by iv injection of serotonin (5HT) to anesthetized rats. Within this series, use of benzofuran-7-carboxamide as the aroyl moiety led to a substantial increase of 5HT3 receptor affinity. The optimal 5HT3 receptor antagonist identified via extensive SAR studies was endo-5-chloro-2,3-dihydro-2,2-dimethyl-N-(8-methyl-8-azabicyclo[3.2.1]oc t- 3-yl)-7-benzofurancarboxamide (Z)-2-butenedioate (zatosetron maleate). The 7-carbamyl regiochemistry, dimethyl substitution, chloro substituent, and endo stereochemistry were all crucial elements of the SAR. Zatosetron maleate was a potent antagonist of 5HT-induced bradycardia in rats (ED50 = 0.86 micrograms/kg i.v.). Low oral doses of zatosetron (30 micrograms/kg) produced long-lasting antagonism of 5HT3 receptors, as evidenced by blockade of 5HT-induced bradycardia for longer than 6 h in rats. Moreover, this compound did not produce hemodynamic effects after i.v. administration to rats, nor did it block carbamylcholine-induced bradycardia in doses that markedly blocked 5HT3 receptors. Thus, zatosetron is a potent, selective, orally effective 5HT3 receptor antagonist with a long duration of action in rats.

  3. 阿片受体泛素化机制及其对受体功能的影响%Mechanism of opioid receptor ubiquitination and its effect on receptor function

    Institute of Scientific and Technical Information of China (English)

    江洁冰; 周培岚; 郑志兵; 苏瑞斌

    2015-01-01

    Opioid receptors, as an important member of G protein coupled receptors (GPCR), are the binding targets of endogenous opioid peptides and exogenous opiates. The activation of opioid receptors influences the nervous system, immune physiology and endocrine system. However, prolonged activation of opioid receptors is likely to produce opioid tolerance, leading to opioid addiction. Receptor endocytosis and sorting into the recycling pathway contribute to recovery of cellular opioid responsiveness. Recent studies have revealed that GPCR can be modulated by ubiquitination which plays a unique roles in governing GPCR trafficking. Moreover, ubiquitination of the opioid receptors (μ, κand δ) is increased after stimulation of most opioid agonists. Mutation of the ubiquitin sites affects the internalization and degradation of opioid receptors, which contributes to changes in signal pathways and regulation of opioid receptors. ln this paper, ubiquitination of opioid receptors and the fundamental role of ubiquitination in trafficking of opioid receptors are reviewed.%阿片受体是一类重要的 G 蛋白偶联受体(GPCR),是内源性阿片肽及阿片类药物结合的靶点,阿片受体激活后对神经系统、免疫及内分泌系统具有调节作用。但阿片受体在反复激活后,容易出现耐受,导致阿片成瘾。受体的内吞和再循环对受体复敏具有重要意义。近年来研究发现,受体的泛素化修饰参与了 GPCR 的转运过程,并且多数配体作用于阿片受体后,受体的泛素化水平明显升高。将阿片受体的泛素化位点突变后,对不同阿片受体亚型的内吞和降解过程产生了不同的影响,进而影响了阿片受体的信号转导过程。本文着重对阿片受体3种亚型的泛素化修饰特点及泛素化对受体转运的调节作用进行综述。

  4. Mu opioid receptor (OPRM1 as a predictor of treatment outcome in opiate-dependent individuals of Arab descent

    Directory of Open Access Journals (Sweden)

    Tay GK

    2012-09-01

    Full Text Available Laith N AL-Eitan,1 Saied A Jaradat,2 Steve YS Su,3 Guan K Tay,1 Gary K Hulse4,51Centre for Forensic Science, 2Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, Jordan; 3School of Mathematics and Statistics, 4School of Psychiatry and Clinical Neurosciences, 5Unit for Research and Education in Alcohol and Drugs, Queen Elizabeth II Medical Centre, The University of Western Australia, Crawley, WA, AustraliaBackground: A number of research studies on the genetics of opiate dependence have focused on the µ-opioid receptor (OPRM1, which is a primary target for opiates. This study aims to identify genetic polymorphisms within the OPRM1 gene involved in response to the biopsychosocial treatment in opiate-dependent individuals of Arab descent.Methods: Unrelated Jordanian Nationals of Arab descent (N = 183 with opiate dependence were selected for this study. These individuals, all males, met the DSM-IV criteria for opiate dependence and were undergoing a voluntary 8-week treatment program at a Jordanian Drug Rehabilitation Centre. All individuals were genotyped for 22 single nucleotide polymorphisms (SNPs within the OPRM1 gene using the Sequenom MassARRAY® system (iPLEX GOLD. Statistical analyses were carried out using the R package.Results: Patients receiving biopsychosocial treatment showed that there was a significant difference in their OPRM1 SNPs’ genotyping distribution between good, moderate, and poor responders to the treatment at two sites (rs6912029 [G-172T], and rs12205732 [G-1510A], P < 0.05, Fisher’s exact test.Conclusion: This study is the first report of an association between the OPRM1 G-172T and G-1510A polymorphisms and treatment response for opiate dependence. Specifically, this study demonstrated that the OPRM1 GG-172 and GG-1510 genotypes were more frequent among patients who were nonresponders to the biopsychosocial treatment. However, further pharmacogenetic studies in a larger cohort of

  5. Fluoxetine, a selective inhibitor of serotonin uptake, potentiates morphine analgesia without altering its discriminative stimulus properties or affinity for opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Hynes, M.D.; Lochner, M.A.; Bemis, K.G.; Hymson, D.L.

    1985-06-17

    The analgesic effect of morphine in the rat tail jerk assay was enhanced by the serotonin uptake inhibitor, fluoxetine. Tail jerk latency was not affected by fluoxetine alone. Morphine's affinity for opioid receptors labeled in vitro with /sup 3/H-naloxone or /sup 3/H-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin was not altered by fluoxetine, which has no affinity for these sites at concentrations as high as 1000 nM. In rats trained to discriminate morphine from saline, fluoxetine at doses of 5 or 10 mg/kg were recognized as saline. Increasing the fluoxetine dose to 20 mg/kg did not result in generalization to either saline or morphine. The dose response curve for morphine generalization was not significantly altered by fluoxetine doses of 5 or 10 mg/kg. Those rats treated with the combination of morphine and 20 mg/kg of fluoxetine did not exhibit saline or morphine appropriate responding. Fluoxetine potentiates the analgesic properties of morphine without enhancing its affinity for opioid receptors or its discriminative stimulus properties. 30 references, 2 figures, 2 tables.

  6. Determination of structure-activity relationships between fentanyl analogs and human μ-opioid receptors based on active binding site models

    Institute of Scientific and Technical Information of China (English)

    Ming Liu; Xiaoli Liu; Ping Wan; Qiangsan Wu; Wenxiang Hu

    2011-01-01

    Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective μ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison of three types of μ-opioid receptor protein sequence homologous rates was made. The secondary receptor structure was predicted, the model reliability was assessed and verified using the Ramachandran plot and ProTab analysis. The predictive ability of the CoMFA model was further validated using an external test set. Using the Surflex-Dock program, a series of fentanyl analog molecules were docked to the receptor, the calculation results from Biopolymer/SiteID showed that the receptor had a deep binding area situated in the extracellular side of the transmembrane domains (TM) among TM3, TM5, TM6, and TM7. Results suggested that there might be 5 active areas in the receptor. The important residues were Asp147, Tyr148, and Tyr149 in TM3, Trp293, and His297 in TM6, and Trp318, His319, Ile322, and Tyr326 in TM7, which were located at the 5 active areas. The best fentanyl docking orientation position was the piperidine ring, which was nearly perpendicular to the membrane surface in the 7 TM domains. Molecular dynamic simulations were applied to evaluate potential relationships between ligand conformation and fentanyl substitution.

  7. Preparation and biodistribution in mice of ( sup 11 C)carfentanil; A radiopharmaceutical for studying brain. mu. -opioid receptors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Hideo; Tsutsumi, Daisuke; Iida, Yasuhiko; Yokoyama, Akira (Kyoto Univ. (Japan). Faculty of Pharmaceutical Science); Magata, Yasuhiro; Konishi, Junji

    1992-02-01

    A potent {mu}-opioid agonist, ({sup 11}C)carfentanil, was prepared by the methylation of carfentanil carboxylic acid with ({sup 11}C)methyl iodide in order to study brain {mu}-opioid receptors by positron emission tomography. Synthesis (including purification) was completed within 25 min and the radiochemical yield was approximately 40%. The radiochemical purity of the product was more than 99% and its specific activity was 3.7-7.4 GBq/{mu}mol. Biodistribution studies performed in mice after intravenous injection showed a high brain uptake and rapid blood clearance, so a high brain/blood ratio of 1.5-1.8 was found from 5 to 30 min. Regional cerebral distribution studies in the mouse showed a significantly higher uptake of ({sup 11}C)carfentanil by the thalamus and striatum than by the cerebellum, with the radioactivity in the striatum disappearing more rapidly than that in the thalamus. Treatment with naloxone significantly reduced the uptake of ({sup 11}C)carfentanil by the thalamus and striatum. These results indicate that ({sup 11}C)carfentanil binds specifically to brain {mu}-opioid receptors. (author).

  8. Identification of selective agonists and positive allosteric modulators for µ- and δ-opioid receptors from a single high-throughput screen.

    Science.gov (United States)

    Burford, Neil T; Wehrman, Tom; Bassoni, Daniel; O'Connell, Jonathan; Banks, Martyn; Zhang, Litao; Alt, Andrew

    2014-10-01

    Hetero-oligomeric complexes of G protein-coupled receptors (GPCRs) may represent novel therapeutic targets exhibiting different pharmacology and tissue- or cell-specific site of action compared with receptor monomers or homo-oligomers. An ideal tool for validating this concept pharmacologically would be a hetero-oligomer selective ligand. We set out to develop and execute a 1536-well high-throughput screen of over 1 million compounds to detect potential hetero-oligomer selective ligands using a β-arrestin recruitment assay in U2OS cells coexpressing recombinant µ- and δ-opioid receptors. Hetero-oligomer selective ligands may bind to orthosteric or allosteric sites, and we might anticipate that the formation of hetero-oligomers may provide novel allosteric binding pockets for ligand binding. Therefore, our goal was to execute the screen in such a way as to identify positive allosteric modulators (PAMs) as well as agonists for µ, δ, and hetero-oligomeric receptors. While no hetero-oligomer selective ligands were identified (based on our selection criteria), this single screen did identify numerous µ- and δ-selective agonists and PAMs as well as nonselective agonists and PAMs. To our knowledge, these are the first µ- and δ-opioid receptor PAMs described in the literature.

  9. Activation of mu opioid receptors sensitizes transient receptor potential vanilloid type 1 (TRPV1 via β-arrestin-2-mediated cross-talk.

    Directory of Open Access Journals (Sweden)

    Matthew P Rowan

    Full Text Available The transient receptor potential family V1 channel (TRPV1 is activated by multiple stimuli, including capsaicin, acid, endovanilloids, and heat (>42C. Post-translational modifications to TRPV1 result in dynamic changes to the sensitivity of receptor activation. We have previously demonstrated that β-arrestin2 actively participates in a scaffolding mechanism to inhibit TRPV1 phosphorylation, thereby reducing TRPV1 sensitivity. In this study, we evaluated the effect of β-arrestin2 sequestration by G-protein coupled receptors (GPCRs on thermal and chemical activation of TRPV1. Here we report that activation of mu opioid receptor by either morphine or DAMGO results in β-arrestin2 recruitment to mu opioid receptor in sensory neurons, while activation by herkinorin does not. Furthermore, treatment of sensory neurons with morphine or DAMGO stimulates β-arrestin2 dissociation from TRPV1 and increased sensitivity of the receptor. Conversely, herkinorin treatment has no effect on TRPV1 sensitivity. Additional behavioral studies indicate that GPCR-driven β-arrestin2 sequestration plays an important peripheral role in the development of thermal sensitivity. Taken together, the reported data identify a novel cross-talk mechanism between GPCRs and TRPV1 that may contribute to multiple clinical conditions.

  10. Michael Acceptor Approach to the Design of New Salvinorin A-based High Affinity Ligands for the Kappa-Opioid Receptor

    Science.gov (United States)

    Polepally, Prabhakar R.; Huben, Krzysztof; Vardy, Eyal; Setola, Vincent; Mosier, Philip D.; Roth, Bryan L.; Zjawiony, Jordan K.

    2014-01-01

    The neoclerodane diterpenoid salvinorin A is a major secondary metabolite isolated from the psychoactive plant Salvia divinorum. Salvinorin A has been shown to have high affinity and selectivity for the κ-opioid receptor (KOR). To study the ligand–receptor interactions that occur between salvinorin A and the KOR, a new series of salvinorin A derivatives bearing potentially reactive Michael acceptor functional groups at C-2 was synthesized and used to probe the salvinorin A binding site. The κ-, δ-, and μ-opioid receptor (KOR, DOR and MOR, respectively) binding affinities and KOR efficacies were measured for the new compounds. Although none showed wash-resistant irreversible binding, most of them showed high affinity for the KOR, and some exhibited dual affinity to KOR and MOR. Molecular modeling techniques based on the recently-determined crystal structure of the KOR combined with results from mutagenesis studies, competitive binding, functional assays and structure–activity relationships, and previous salvinorin A–KOR interaction models were used to identify putative interaction modes of the new compounds with the KOR and MOR. PMID:25193297

  11. Michael acceptor approach to the design of new salvinorin A-based high affinity ligands for the kappa-opioid receptor.

    Science.gov (United States)

    Polepally, Prabhakar R; Huben, Krzysztof; Vardy, Eyal; Setola, Vincent; Mosier, Philip D; Roth, Bryan L; Zjawiony, Jordan K

    2014-10-06

    The neoclerodane diterpenoid salvinorin A is a major secondary metabolite isolated from the psychoactive plant Salvia divinorum. Salvinorin A has been shown to have high affinity and selectivity for the κ-opioid receptor (KOR). To study the ligand-receptor interactions that occur between salvinorin A and the KOR, a new series of salvinorin A derivatives bearing potentially reactive Michael acceptor functional groups at C-2 was synthesized and used to probe the salvinorin A binding site. The κ-, δ-, and μ-opioid receptor (KOR, DOR and MOR, respectively) binding affinities and KOR efficacies were measured for the new compounds. Although none showed wash-resistant irreversible binding, most of them showed high affinity for the KOR, and some exhibited dual affinity to KOR and MOR. Molecular modeling techniques based on the recently-determined crystal structure of the KOR combined with results from mutagenesis studies, competitive binding, functional assays and structure-activity relationships, and previous salvinorin A-KOR interaction models were used to identify putative interaction modes of the new compounds with the KOR and MOR.

  12. Superpotent [Dmt¹] dermorphin tetrapeptides containing the 4-aminotetrahydro-2-benzazepin-3-one scaffold with mixed μ/δ opioid receptor agonistic properties.

    Science.gov (United States)

    Vandormael, Bart; Fourla, Danai-Dionysia; Gramowski-Voss, Alexandra; Kosson, Piotr; Weiss, Dieter G; Schröder, Olaf H-U; Lipkowski, Andrzej; Georgoussi, Zafiroula; Tourwé, Dirk

    2011-11-24

    Novel dermorphin tetrapeptides are described in which Tyr(1) is replaced by Dmt(1), where d-Ala(2) and Gly(4) are N-methylated, and where Phe(3)-Gly(4) residue is substituted by the constrained Aba(3)-Gly(4) peptidomimetic. Most of these peptidic ligands displayed binding affinities in the nanomolar range for both μ- and δ-opioid receptors but no detectable affinity for the κ-opioid receptor. Measurements of cAMP accumulation, phosphorylation of extracellular signal-regulated kinase (ERK1/2) in HEK293 cells stably expressing each of these receptors individually, and functional screening in primary neuronal cultures confirmed the potent agonistic properties of these peptides. The most potent ligand H-Dmt-NMe-d-Ala-Aba-Gly-NH(2) (BVD03) displayed mixed μ/δ opioid agonist properties with picomolar functional potencies. Functional electrophysiological in vitro assays using primary cortical and spinal cord networks showed that this analogue possessed electrophysiological similarity toward gabapentin and sufentanil, which makes it an interesting candidate for further study as an analgesic for neuropathic pain.

  13. Opioid-induced redistribution of 6TM and 7TM μ opioid receptors: A hypothesized mechanistic facilitator model of opioid-induced hyperalgesia.

    Science.gov (United States)

    Wang, Wei; Wang, Yan; Zhang, Wei; Jin, Xiaoju; Liu, Yusheng; Xu, Shiqin; Lei, Liming; Shen, Xiaofeng; Guo, Xirong; Xia, Xiaoqiong; Wang, Fuzhou

    2016-08-01

    Opioids are still the most popular form of pain treatment, but many unavoidable side effects make opioids a big challenge in effective pain management. Opioid-induced hyperalgesia (OIH), a paradoxical phenomenon, portrays an increased sensitivity to harmful stimuli caused by opioid exposure. Changes in the neural modulation are considered a major contributor to the development of OIH. Activation of opioid receptors (ORs) and corresponding downstream molecules are the vital composition of functional performance of opioids. Increasing interests were proposed of the interaction between ORs and other neural transmitter systems such as glutamatergic, GABAergic and adrenergic ones to the genesis of OIH. G protein coupled μ-opioid receptor (MOR) was studied comprehensively on its role in the development of OIH. In addition to the relationship between MOR and other neurotransmitter receptors, a new intracellular MOR that has six transmembrane (6TM) domains was identified, and found to perform a pro-nociceptive task in contrast to the counterpart 7TM isoform. A mechanistic model of OIH in which both 6TM and 7TM MORs undergoing membrane redistribution upon opioid exposure is proposed which eventually facilitates the neurons more sensitive to nociceptive stimulation than that of the preceding opioid exposure.

  14. Recent advances in the investigation of the bioactive conformation of peptides active at the micro-opioid receptor. conformational analysis of endomorphins.

    Science.gov (United States)

    Gentilucci, Luca; Tolomelli, Alessandra

    2004-01-01

    Despite of the recent advances in the structural investigation of complex molecules, the comprehension of the 3D features responsible for the interaction between opioid peptides and micro-opioid receptors still remains an elusive task. This has to be attributed to the intrinsic nature of opioid peptides, which can assume a number of different conformations of similar energy, and to the flexibility of the receptorial cavity, which can modify its inner shape to host different ligands. Due to this inherent mobility of the ligand-receptor system, massive efforts devoted to the definition of a rigid bioactive conformation to be used as a template for the design of new pharmacologically active compounds might be overstressed. The future goal might be the design of peptide or nonpeptide ligands capable of maximizing specific hydrophobic interactions. This review covers the recent opinions emerged on the nature of the ligand-receptor interaction, and the development of suitable models for the determination of the bioactive conformation of peptide ligands active towards micro-opioid receptors.

  15. Activation of mu opioid receptor inhibits the excitatory glutamatergic transmission in the anterior cingulate cortex of the rats with peripheral inflammation.

    Science.gov (United States)

    Zheng, Weihong

    2010-02-25

    Emerging evidence recently indicates that the anterior cingulate cortex is critically involved in the central processing and modulation of noxious stimulus, although the neuroadaptation in the anterior cingulate cortex has not been well documented in the conditions of chronic pain. Meanwhile, the cellular mechanism underlying opiate analgesia in the anterior cingulate cortex remains unclear. To address these issues, the present study was undertaken to explore the adaptation of excitatory glutamatergic transmission and mu opioid receptor-mediated modulation of glutamatergic transmission in the anterior cingulate cortex slices from the complete Freund's adjuvant (CFA)-inflamed rats. The results demonstrated that glutamatergic paired-pulse facilitation was decreased in the anterior cingulate cortex neurons from the CFA-inflamed rats, indicating an enhanced presynaptic glutamate release. In addition, activation of mu opioid receptor significantly inhibited the glutamatergic excitatory postsynaptic currents (EPSCs) in the anterior cingulate cortex neurons, which was attained through the suppression of presynaptic glutamate release. Taken together, these findings provided the evidence for the functional adaptation of central glutamatergic transmission induced by peripheral inflammation, and elucidated the cellular mechanism underlying opiate analgesia in the anterior cingulate cortex.

  16. A subset of μ-opioid receptor-expressing cells in the rostral ventromedial medulla contribute to thermal hyperalgesia in experimental neuropathic pain.

    Science.gov (United States)

    Mase, Hiroshi; Sakai, Atsushi; Sakamoto, Atsuhiro; Suzuki, Hidenori

    2011-05-01

    The rostral ventromedial medulla (RVM) is a major region for the descending modulation of pain at the spinal cord level, and neurons in the RVM have been implicated in the inhibition and facilitation of spinal nociceptive transmission. Although recent studies have established that the RVM facilitation of nociceptive transmission in the spinal cord contributes to neuropathic pain, the underlying mechanisms remain largely unknown. In the present study, we investigated the effects of kainic acid (KA)-induced RVM damage on neuropathic pain behavior and the expression of molecules implicated in pain modulation. KA was injected into the RVM midline region after neuropathic pain was established by chronic constrictive injury of the left sciatic nerve. Thermal hyperalgesia, but not mechanical allodynia, was persistently suppressed in the ipsilateral paw by a single KA injection into the RVM for at least the next 7 days in a rat neuropathic pain model. KA injection alone did not affect the nocifensive responses to mechanical and thermal stimuli on the intact side. Immunohistochemical analysis revealed that KA injection into the RVM significantly reduced the number of immunoreactive neurons for μ-opioid receptors, but not tryptophan hydroxylase, in association with the analgesic effect. These results suggest that a subset of RVM neurons expressing μ-opioid receptors contribute to the maintenance of thermal hyperalgesia in neuropathic pain.

  17. Probes for narcotic receptor mediated phenomena. Part 28: new opioid antagonists from enantiomeric analogues of 5-(3-hydroxyphenyl)-N-phenylethylmorphan.

    Science.gov (United States)

    Hashimoto, Akihiro; Jacobson, Arthur E; Rothman, Richard B; Dersch, Christina M; George, Clifford; Flippen-Anderson, Judith L; Rice, Kenner C

    2002-10-01

    Enantiomeric analogues of 5-(3-hydroxyphenyl)morphan ligands were synthesized and evaluated because of our unexpected finding that opioid antagonists can be obtained in the 5-phenylmorphan series of opioids without sterically hindering the rotation of the phenolic ring. We determined the opioid receptor binding affinity of these new analogues, as well as the efficacy of the more interesting ligands. One of the new compounds [(1R,5S)-(-)-3-[2-(3'-phenylpropyl)-2-azabicyclo[3.3.1]non-5-yl]-phenol, 15] was found to have half of the efficacy of naloxone, a potent opioid antagonist, in the [(35)S]GTPgammaS assay, and two others (1R,5S)-(-)-3-[2-(4'-phenylbutyl)-2-azabicyclo[3.3.1]non-5-yl]-phenol, 17, and (1R,5S,1'S)-(+)-3-[2-(1'-methyl-2'-phenylethyl)-2-azabicyclo[3.3.1]non-5-yl]-phenol, 26, acted as moderately potent opioid antagonists. X-ray crystallographic structure data were obtained on three compounds. Two of them had three chiral centers; 25 [(1R,5S,1'R)-(-)-3-[2-(1'-methyl-2'-phenylethyl)-2-azabicyclo[3.3.1]non-5-yl]-phenol] was determined to have the 1R,5S,1'R configuration, and 26 the 1R,5S,1'S configuration. Since (1S,5R)-(+)-2-bromo-5-[2-(2'-phenylethyl)-2-azabicyclo[3.3.1]non-5-yl]-phenol (32) was a position isomer of (1S,5R)-(+)-4-bromo-3-[2-(2'-phenylethyl)-2-azabicyclo[3.3.1]non-5-yl]-phenol (30), and both showed the same 1H NMR spectrum, the structure of 32 was unequivocally determined by X-ray structure analysis.

  18. 阿片受体类型和功能及其在猪脑中的个体发育特点%Classification and Functions of Opioid Receptors and Their Ontogenic Characterization in Pig Brain

    Institute of Scientific and Technical Information of China (English)

    李定健

    2016-01-01

    The research progress on classification of opioid receptors and introduced functions of four main types of receptors were summarized. In animal brains, changes in the opioid receptor number and their afifnity to opioid ligands can affect opioidergic control of brain functions or central nervous control of endocrine system. In order to provide the references for changes of opioid receptors in pig brain, the ontogenic characterization of opioid receptors in pig brains was elaborated.%总结阿片受体类型的研究进展,介绍4种主要类型受体的功能。动物脑中阿片受体的数量以及它们与阿片配体亲和力的改变能够对脑功能的阿片控制或内分泌系统的中枢神经控制产生影响。为明确猪脑中阿片受体的变化,阐述了阿片受体在猪脑中的个体发育特点。

  19. Once-daily glycopyrronium bromide, a long-acting muscarinic antagonist, for chronic obstructive pulmonary disease: a systematic review of clinical benefit

    Directory of Open Access Journals (Sweden)

    Ulrik CS

    2012-09-01

    Full Text Available Charlotte Suppli UlrikDepartment of Pulmonary Medicine, Hvidovre Hospital and University of Copenhagen, Copenhagen, DenmarkBackground: Long-acting bronchodilators are central in the pharmacological management of patients with chronic obstructive pulmonary disease (COPD. The aim of this systematic review is to provide an overview of the studies evaluating the safety and clinical efficacy of inhaled glycopyrronium bromide, a novel long-acting muscarinic antagonist, in patients with COPD.Methods: This study was performed as a systematic literature review.Results: Inhaled glycopyrronium bromide seems to be a safe and well tolerated long-acting muscarinic antagonist with a fast onset of action. In patients suffering from moderate to severe COPD, glycopyrronium bromide has clinically important effects on level of forced expiratory volume in one second, use of relief medication, percentage of days with no use of rescue medication, daytime dyspnea scores, and probably also on health status. Furthermore, in this group of patients, glycopyrronium bromide has beneficial effects on dynamic hyperinflation and exercise tolerance. Glycopyrronium bromide has been shown to reduce the rate of exacerbations in patients with moderate to severe COPD, but long-term controlled trials with exacerbation rate as the primary outcome variable have not been published yet.Conclusion: Once-daily inhaled glycopyrronium bromide has characteristics important for use in COPD, including a fast onset of action, sustained 24-hour bronchodilatation, and improvement in exercise tolerance, and therefore appears to have the potential for a significant role in the future management of COPD.Keywords: chronic obstructive pulmonary disease, glycopyrronium bromide, long-acting bronchodilators

  20. Endocytosis of μ opioid receptors inhibits morphine tolerance%μ阿片受体的内吞抑制吗啡耐受的形成

    Institute of Scientific and Technical Information of China (English)

    吕庆琴; 陈霆隽; 洪炎国

    2012-01-01

    Opioids are the most effective analgesics. However, prolonged administration of morphine, the representative of opioids, results in tolerance, limiting the therapeutic utility of o-piate drugs. Studies have recently suggested that endocytosis of μ opioid receptors attenuates opioid tolerance. The ability of inducing endocytosis of opioid receptor is agonist-dependent. It has been shown that the endocytotic efficacy of opioids are negatively correlated with opioid tolerance. Receptor internalization reduced adaptive changes in signaling pathways that are involved in the development of opioid tolerance. Moreover, endocytosised μ-opioid receptors are rapidly recycled back to the cell membrane surface resuming their normal function. Therefore, tolerance does not occur. Thus, the study of receptor endocytosis and trafficking following the activation of the receptors can help the therapy for chronic pain.%阿片类药物是至今最有效的镇痛药,但是长期应用会产生药物耐受,大大限制了其临床应用.μ阿片受体和特定的激动剂结合后会出现内吞.研究发现,μ阿片受体是否内吞与耐受的发生有密切关系;加强μ阿片受体的内吞能够抑制受体耐受.不同的激动剂导致μ阿片受体内吞的能力是不同的;其导致耐受的能力和导致内吞的能力呈负相关.激动剂越容易引起μ受体内吞,就越不容易产生吗啡耐受.内吞的作用在于能抑制过度刺激μ受体而导致的环腺苷酸( cyclic adenosine monophosphate,cAMP)等兴奋性信号通路的激活,而内吞的μ受体也会很快回到细胞膜上,恢复和阿片类药物结合后激活抑制性GTP 结合蛋白的能力.因此,对受体的内吞和其后迁移过程展开研究,可能为慢性疼痛的治疗找到新的路径.

  1. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

    Directory of Open Access Journals (Sweden)

    Kelsey Moore

    2016-11-01

    Full Text Available Blood oxygen level dependent (BOLD imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (µ opioid receptor knock-outs (MuKO in response to oxycodone (OXY. Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high µ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala and hypothalamus, and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex and prelimbic cortex. Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala and preoptic areas. This result indicates that most effects of OXY on positive BOLD are mediated by the µ opioid receptor (on-target effects. OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122 and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum, and in some case intensified (hippocampus. Negative BOLD analysis therefore shows activation and deactivation events in the absence of the µ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects. Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY

  2. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

    Science.gov (United States)

    Moore, Kelsey; Madularu, Dan; Iriah, Sade; Yee, Jason R.; Kulkarni, Praveen; Darcq, Emmanuel; Kieffer, Brigitte L.; Ferris, Craig F.

    2016-01-01

    Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (μ) opioid receptor knock-outs (MuKO) in response to oxycodone (OXY). Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high μ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala, and hypothalamus), and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex, and prelimbic cortex). Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala, and preoptic areas). This result indicates that most effects of OXY on positive BOLD are mediated by the μ opioid receptor (on-target effects). OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122) and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum), and in some case intensified (hippocampus). Negative BOLD analysis therefore shows activation and deactivation events in the absence of the μ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects). Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY brain

  3. Gabapentin and the neurokinin(1) receptor antagonist CI-1021 act synergistically in two rat models of neuropathic pain.

    Science.gov (United States)

    Field, Mark J; Gonzalez, M Isabel; Tallarida, Ronald J; Singh, Lakhbir

    2002-11-01

    The present study examines the effect of combinations of gabapentin (Neurontin) and a selective neurokinin (NK)(1) receptor antagonist, 1-(1H-indol-3-ylmethyl)-1-methyl-2-oxo-2-[(1-phenylethyl)amino]ethyl]-2-benzofuranylmethyl ester (CI-1021), in two models of neuropathic pain. Dose responses to both gabapentin and CI-1021 were performed against static allodynia induced in the streptozocin and chronic constriction injury (CCI) models. Theoretical additive lines were calculated from these data. Dose responses to various fixed dose ratios of a gabapentin/CI-1021 combination were then examined in both models. In the streptozocin model, administration of gabapentin/CI-1021 combinations at fixed dose ratios of 1:1 and 60:1 resulted in an additive effect with dose response similar to the theoretical additive line. However, a synergistic interaction was seen after fixed dose ratios of 10:1, 20:1, and 40:1 with static allodynia completely blocked and the dose responses shifted approximately 8-, 30-, and 10-fold leftward, respectively, from the theoretical additive values. In the CCI model, after fixed dose ratios of 5:1 and 20:1, combinations of gabapentin and CI-1021 produced an additive response. At the fixed dose ratio of 10:1 static allodynia was completely blocked with an approximate 10-fold leftward shift of the dose response from the theoretical additive value, indicating synergy. The combination of gabapentin with a structurally unrelated NK(1) receptor antagonist, (2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine (CP-99,994), also produced synergy, at a fixed dose ratio of 20:1. This ratio completely blocked streptozocin-induced static allodynia and was approximately shifted leftward 5-fold from the theoretical additive value. These data suggest a synergistic interaction between gabapentin and NK(1) receptor antagonists in animal models of neuropathic pain.

  4. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Michel Alexander Steiner

    2013-12-01

    Full Text Available The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1 in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO associated with metabolic syndrome (MetS. Rats were fed either standard chow (SC or a cafeteria (CAF diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight