WorldWideScience

Sample records for actin

  1. Actin Rings of Power.

    Science.gov (United States)

    Schwayer, Cornelia; Sikora, Mateusz; Slováková, Jana; Kardos, Roland; Heisenberg, Carl-Philipp

    2016-06-20

    Circular or ring-like actin structures play important roles in various developmental and physiological processes. Commonly, these rings are composed of actin filaments and myosin motors (actomyosin) that, upon activation, trigger ring constriction. Actomyosin ring constriction, in turn, has been implicated in key cellular processes ranging from cytokinesis to wound closure. Non-constricting actin ring-like structures also form at cell-cell contacts, where they exert a stabilizing function. Here, we review recent studies on the formation and function of actin ring-like structures in various morphogenetic processes, shedding light on how those different rings have been adapted to fulfill their specific roles.

  2. Actinic lichen nitidus

    Directory of Open Access Journals (Sweden)

    Loretta Davis

    2010-01-01

    Full Text Available We present the case of a 29-year-old black female with an initial clinical and histopathologic diagnosis of actinic lichen nitidus. Three years later, she presented with scattered hyperpigmented macules with oval pink/viol­aceous plaques bilaterally on her forearms and on her neck, clinically consistent with actinic lichen planus. She was treated with topical steroids at each visit, with subsequent resolution of her lesions. In this report, we discuss the spectrum of actinic lichenoid dermatoses and of disease that presents even in the same patient.

  3. Histones bundle F-actin filaments and affect actin structure.

    Science.gov (United States)

    Blotnick, Edna; Sol, Asaf; Muhlrad, Andras

    2017-01-01

    Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III) and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  4. Directed actin assembly and motility.

    Science.gov (United States)

    Boujemaa-Paterski, Rajaa; Galland, Rémi; Suarez, Cristian; Guérin, Christophe; Théry, Manuel; Blanchoin, Laurent

    2014-01-01

    The actin cytoskeleton is a key component of the cellular architecture. However, understanding actin organization and dynamics in vivo is a complex challenge. Reconstitution of actin structures in vitro, in simplified media, allows one to pinpoint the cellular biochemical components and their molecular interactions underlying the architecture and dynamics of the actin network. Previously, little was known about the extent to which geometrical constraints influence the dynamic ultrastructure of these networks. Therefore, in order to study the balance between biochemical and geometrical control of complex actin organization, we used the innovative methodologies of UV and laser patterning to design a wide repertoire of nucleation geometries from which we assembled branched actin networks. Using these methods, we were able to reconstitute complex actin network organizations, closely related to cellular architecture, to precisely direct and control their 3D connections. This methodology mimics the actin networks encountered in cells and can serve in the fabrication of innovative bioinspired systems.

  5. Interaction of Phalloidin with Actin

    Science.gov (United States)

    Lengsfeld, Anneliese M.; Löw, Irmentraut; Wieland, Theodor; Dancker, Peter; Hasselbach, Wilhelm

    1974-01-01

    Phalloidin, a toxic bicyclic peptide of rapid action from the toadstool, Amanita phalloides, gives rise to polymerization of G-actin to filamentous structures (Ph-actin) in a medium of low ionic strength. Ph-actin closely resembles the microfilaments found in liver membrane fractions (Ph-filaments) after in vivo or in vitro poisoning. Both phalloidin induced filaments are resistant to 0.6 M KI in contrast to F-actin, and become decorated by heavy meromyosin. After preincubation with cytochalasin B significantly fewer actin filaments are observed. Images PMID:4368830

  6. The actin-interacting protein AIP1 is essential for actin organization and plant development

    NARCIS (Netherlands)

    Ketelaar, T.; Anthony, R.G.; Voigt, B.; Menzel, D.; Hussey, P.J.

    2004-01-01

    Cell division, growth, and cytoplasmic organization require a dynamic actin cytoskeleton. The filamentous actin (F-actin) network is regulated by actin binding proteins that modulate actin dynamics. These actin binding proteins often have cooperative interactions [1 and 2]. In particular, actin inte

  7. Actinic cheilitis: A review

    Directory of Open Access Journals (Sweden)

    Elangovan Somasundaram

    2015-01-01

    Full Text Available Actinic cheilitis (AC is a chronic inflammatory disorder of the lips that is caused by prolonged exposure to sunlight in susceptible individuals. It affects the vermilion region of the lower lip almost exclusively. UV-B rays with a wavelength of 290-320 nm are held responsible for the sunlight-induced damage. The exact mechanism of the development of AC is unclear. It is considered to be potentially malignant.

  8. Ring closure in actin polymers

    Science.gov (United States)

    Sinha, Supurna; Chattopadhyay, Sebanti

    2017-03-01

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers.

  9. Actin binding proteins and spermiogenesis

    Science.gov (United States)

    Mruk, Dolores D

    2011-01-01

    Drebrin E, an actin-binding protein lacking intrinsic activity in the regulation of actin dynamics (e.g., polymerization, capping, nucleation, branching, cross-linking, bundling and severing), is known to recruit actin regulatory proteins to a specific cellular site. Herein, we critically evaluate recent findings in the field which illustrate that drebrin E works together with two other actin-binding proteins, namely Arp3 (actin-related protein 3, a component of the Arp2/3 complex that simultaneously controls actin nucleation for polymerization and branching of actin filaments) and Eps8 (epidermal growth factor receptor pathway substrate 8 that controls capping of the barbed ends of actin filaments, as well as actin filament bundling) to regulate the homeostasis of F-actin filament bundles at the ectoplasmic specialization (ES), a testis-specific atypical adherens junction (AJ) in the seminiferous epithelium. This is mediated by the strict temporal and spatial expression of these three actin-binding proteins at the apical and basal ES at the Sertoli cell-spermatid (step 8–19) and Sertoli-Sertoli cell interface, respectively, during the seminiferous epithelial cycle of spermatogenesis. In this Commentary, we put forth a possible model by which drebrin E may be acting as a platform upon which proteins (e.g., Arp3) that are needed to alter the conformation of actin filament bundles at the ES can be recruited to the site, thus facilitating changes in cell shape and cell position in the epithelium during spermiogenesis and spermiation. In short, drebrin E may be acting as a “logistic” distribution center to manage different regulatory proteins at the apical ES, thereby regulating the dynamics of actin filament bundles and modulating the plasticity of the apical ES. This would allow adhesion to be altered continuously throughout the epithelial cycle to accommodate spermatid movement in the seminiferous epithelium during spermiogenesis and spermiation. We also

  10. Actin cytoskeleton: putting a CAP on actin polymerization.

    Science.gov (United States)

    Stevenson, V A; Theurkauf, W E

    2000-10-05

    Two recent studies have identified a Drosophila homolog of cyclase-associated protein (CAP) as a developmentally important negative regulator of actin polymerization that may also directly mediate signal transduction.

  11. [Photodynamic therapy for actinic cheilitis].

    Science.gov (United States)

    Castaño, E; Comunión, A; Arias, D; Miñano, R; Romero, A; Borbujo, J

    2009-12-01

    Actinic cheilitis is a subtype of actinic keratosis that mainly affects the lower lip and has a higher risk of malignant transformation. Its location on the labial mucosa influences the therapeutic approach. Vermilionectomy requires local or general anesthetic and is associated with a risk of an unsightly scar, and the treatment with 5-fluorouracil or imiquimod lasts for several weeks and the inflammatory reaction can be very intense. A number of authors have used photodynamic therapy as an alternative to the usual treatments. We present 3 patients with histologically confirmed actinic cheilitis treated using photodynamic therapy with methyl aminolevulinic acid as the photosensitizer and red light at 630 nm. The clinical response was good, with no recurrences after 3 to 6 months of follow-up. Our experience supports the use of photodynamic therapy as a good alternative for the treatment of actinic cheilitis.

  12. Thermal unfolding and aggregation of actin.

    Science.gov (United States)

    Levitsky, Dmitrii I; Pivovarova, Anastasiya V; Mikhailova, Valeria V; Nikolaeva, Olga P

    2008-09-01

    Actin is one of the most abundant proteins in nature. It is found in all eukaryotes and plays a fundamental role in many diverse and dynamic cellular processes. Also, actin is one of the most ubiquitous proteins because actin-like proteins have recently been identified in bacteria. Actin filament (F-actin) is a highly dynamic structure that can exist in different conformational states, and transitions between these states may be important in cytoskeletal dynamics and cell motility. These transitions can be modulated by various factors causing the stabilization or destabilization of actin filaments. In this review, we look at actin stabilization and destabilization as expressed by changes in the thermal stability of actin; specifically, we summarize and analyze the existing data on the thermal unfolding of actin as measured by differential scanning calorimetry. We also analyze in vitro data on the heat-induced aggregation of actin, the process that normally accompanies actin thermal denaturation. In this respect, we focus on the effects of small heat shock proteins, which can prevent the aggregation of thermally denatured actin with no effect on actin thermal unfolding. As a result, we have proposed a mechanism describing the thermal denaturation and aggregation of F-actin. This mechanism explains some of the special features of the thermal unfolding of actin filaments, including the effects of their stabilization and destabilization; it can also explain how small heat shock proteins protect the actin cytoskeleton from damage caused by the accumulation of large insoluble aggregates under heat shock conditions.

  13. Progresses in studies of nuclear actin

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiaojuan; ZENG Xianlu; SONG Zhaoxia; HAO Shui

    2004-01-01

    Actin is a protein abundant in cells. Recently, it has been proved to be universally existent in the nuclei of many cell types. Actin and actin-binding proteins, as well as actin-related proteins, are necessary for the mediation of the conformation and function of nuclear actin, including the transformation of actin between unpolymerized and polymerized, chroinatin remodeling, regulation of gene expression and RNA processing as well as RNA transportation. In this paper, we summarized the progresses in the research of nu clear actin.

  14. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development.

    Science.gov (United States)

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-08-15

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated.

  15. Nucleus-associated actin in Amoeba proteus.

    Science.gov (United States)

    Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew

    2016-10-01

    The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms.

  16. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  17. Effects of actin-binding proteins on the thermal stability of monomeric actin.

    Science.gov (United States)

    Pivovarova, Anastasia V; Chebotareva, Natalia A; Kremneva, Elena V; Lappalainen, Pekka; Levitsky, Dmitrii I

    2013-01-08

    Differential scanning calorimetry (DSC) was applied to investigate the thermal unfolding of rabbit skeletal muscle G-actin in its complexes with actin-binding proteins, cofilin, twinfilin, and profilin. The results show that the effects of these proteins on the thermal stability of G-actin depend on the nucleotide, ATP or ADP, bound in the nucleotide-binding cleft between actin subdomains 2 and 4. Interestingly, cofilin binding stabilizes both ATP-G-actin and ADP-G-actin, whereas twinfilin increases the thermal stability of the ADP-G-actin but not that of the ATP-G-actin. By contrast, profilin strongly decreases the thermal stability of the ATP-G-actin but has no appreciable effect on the ADP-G-actin. Comparison of these DSC results with literature data reveals a relationship between the effects of actin-binding proteins on the thermal unfolding of G-actin, stabilization or destabilization, and their effects on the rate of nucleotide exchange in the nucleotide-binding cleft, decrease or increase. These results suggest that the thermal stability of G-actin depends, at least partially, on the conformation of the nucleotide-binding cleft: the actin molecule is more stable when the cleft is closed, while an opening of the cleft leads to significant destabilization of G-actin. Thus, DSC studies of the thermal unfolding of G-actin can provide new valuable information about the conformational changes induced by actin-binding proteins in the actin molecule.

  18. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers.

    Science.gov (United States)

    Higashida, Chiharu; Suetsugu, Shiro; Tsuji, Takahiro; Monypenny, James; Narumiya, Shuh; Watanabe, Naoki

    2008-10-15

    mDia1 belongs to the formin family of proteins that share FH1 and FH2 domains. Although formins play a critical role in the formation of many actin-based cellular structures, the physiological regulation of formin-mediated actin assembly within the cell is still unknown. Here we show that cells possess an acute actin polymer restoration mechanism involving mDia1. By using single-molecule live-cell imaging, we found that several treatments including low-dose G-actin-sequestering drugs and unpolymerizable actin mutants activate mDia1 to initiate fast directional movement. The FH2 region, the core domain for actin nucleation, is sufficient to respond to latrunculin B (LatB) to increase its actin nucleation frequency. Simulation analysis revealed an unexpected paradoxical effect of LatB that leads to a several fold increase in free G-actin along with an increase in total G-actin. These results indicate that in cells, the actin nucleation frequency of mDia1 is enhanced not only by Rho, but also strongly through increased catalytic efficiency of the FH2 domain. Consistently, frequent actin nucleation by mDia1 was found around sites of vigorous actin disassembly. Another major actin nucleator, the Arp2/3 complex, was not affected by the G-actin increase induced by LatB. Taken together, we propose that transient accumulation of G-actin works as a cue to promote mDia1-catalyzed actin nucleation to execute rapid reassembly of actin filaments.

  19. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    Science.gov (United States)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  20. Fascin regulates nuclear actin during Drosophila oogenesis.

    Science.gov (United States)

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved.

  1. Three-dimensional structure of actin filaments and of an actin gel made with actin-binding protein.

    Science.gov (United States)

    Niederman, R; Amrein, P C; Hartwig, J

    1983-05-01

    Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three-dimensional network resembling the peripheral cytoskeleton of motile cells.

  2. Actinic cheilitis in dental practice.

    Science.gov (United States)

    Savage, N W; McKay, C; Faulkner, C

    2010-06-01

    Actinic cheilitis is a potentially premalignant condition involving predominantly the vermilion of the lower lip. The aim of the current paper was to review the clinical presentation of actinic cheilitis and demonstrate the development of management plans using a series of cases. These are designed to provide immediate treatment where required but also to address the medium and long-term requirements of the patient. The authors suggest that the clinical examination of lips and the assessment of actinic cheilitis and other lip pathology become a regular part of the routine soft tissue examination undertaken as a part of the periodic examination of dental patients. Early recognition of actinic cheilitis can allow the development of strategies for individual patients that prevent progression. These are based on past sun exposure, future lifestyle changes and the daily use of emollient sunscreens, broad-brimmed hats and avoidance of sun exposure during the middle of the day. This is a service that is not undertaken as a matter of routine in general medical practice as patients are not seen with the regularity of dental patients and generally not under the ideal examination conditions available in the dental surgery.

  3. Plant actin controls membrane permeability.

    Science.gov (United States)

    Hohenberger, Petra; Eing, Christian; Straessner, Ralf; Durst, Steffen; Frey, Wolfgang; Nick, Peter

    2011-09-01

    The biological effects of electric pulses with low rise time, high field strength, and durations in the nanosecond range (nsPEFs) have attracted considerable biotechnological and medical interest. However, the cellular mechanisms causing membrane permeabilization by nanosecond pulsed electric fields are still far from being understood. We investigated the role of actin filaments for membrane permeability in plant cells using cell lines where different degrees of actin bundling had been introduced by genetic engineering. We demonstrate that stabilization of actin increases the stability of the plasma membrane against electric permeabilization recorded by penetration of Trypan Blue into the cytoplasm. By use of a cell line expressing the actin bundling WLIM domain under control of an inducible promotor we can activate membrane stabilization by the glucocorticoid analog dexamethasone. By total internal reflection fluorescence microscopy we can visualize a subset of the cytoskeleton that is directly adjacent to the plasma membrane. We conclude that this submembrane cytoskeleton stabilizes the plasma membrane against permeabilization through electric pulses. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins.

    Science.gov (United States)

    Paredez, Alexander R; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C; Wang, Chung-Ju Rachel; Cande, W Z

    2011-04-12

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host.

  5. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins

    OpenAIRE

    Paredez, Alexander R.; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C.; Wang, Chung-Ju Rachel; Cande, W. Z.

    2011-01-01

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of gi...

  6. Nuclear Actin in Development and Transcriptional Reprogramming.

    Science.gov (United States)

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin's roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation.

  7. Microrheology of active actin networks

    Science.gov (United States)

    Larsen, Travis H.; Furst, Eric M.

    2006-03-01

    To provide insight into the viscoelastic response of non-equilibrium, entangled semi-flexible polymeric networks, we study the model system of F-actin networks in the presence of active fragments of skeletal myosin. To characterize the microrheological response of this system, polystyrene microspheres of 1μm in diameter are suspended into the three-dimensional, entangled F-actin network and diffusing wave spectroscopy is used to measure the mean-squared displacement of the particles on timescales from 100ns to 10ms. Particle motion is a result of both random thermal forces and the dissipation of actin filament fluctuations caused by the interactions of the suspended motor proteins with the network. Upon addition of myosin, we observe an increase in the MSD of the tracer particles and a shift in the scaling--dependence with respect to lag time from t^3/4 to t^x, where 3/4 motor proteins cause the filaments to develop an apparent decreased persistence length at length scales longer than the crossover length. Finally, we demonstrate that the addition of the cross-linking protein, α-actinin, suppresses this ``active'' scaling behavior, while maintaining elevated probe particle diffusivity relative to the control.

  8. The actin multigene family of Paramecium tetraurelia

    Directory of Open Access Journals (Sweden)

    Wagner Erika

    2007-03-01

    Full Text Available Abstract Background A Paramecium tetraurelia pilot genome project, the subsequent sequencing of a Megabase chromosome as well as the Paramecium genome project aimed at gaining insight into the genome of Paramecium. These cells display a most elaborate membrane trafficking system, with distinct, predictable pathways in which actin could participate. Previously we had localized actin in Paramecium; however, none of the efforts so far could proof the occurrence of actin in the cleavage furrow of a dividing cell, despite the fact that actin is unequivocally involved in cell division. This gave a first hint that Paramecium may possess actin isoforms with unusual characteristics. The genome project gave us the chance to search the whole Paramecium genome, and, thus, to identify and characterize probably all actin isoforms in Paramecium. Results The ciliated protozoan, P. tetraurelia, contains an actin multigene family with at least 30 members encoding actin, actin-related and actin-like proteins. They group into twelve subfamilies; a large subfamily with 10 genes, seven pairs and one trio with > 82% amino acid identity, as well as three single genes. The different subfamilies are very distinct from each other. In comparison to actins in other organisms, P. tetraurelia actins are highly divergent, with identities topping 80% and falling to 30%. We analyzed their structure on nucleotide level regarding the number and position of introns. On amino acid level, we scanned the sequences for the presence of actin consensus regions, for amino acids of the intermonomer interface in filaments, for residues contributing to ATP binding, and for known binding sites for myosin and actin-specific drugs. Several of those characteristics are lacking in several subfamilies. The divergence of P. tetraurelia actins and actin-related proteins between different P. tetraurelia subfamilies as well as with sequences of other organisms is well represented in a phylogenetic

  9. Mesoscopic model of actin-based propulsion.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  10. From pollen actin to crop male sterility

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Actin plays an important role in the life activity of animal and plant cells. Pollen cells have plenty of actin whose structure and characteristics are very similar to the animal actin. The nucleotide sequence and amino acid sequence of plant actin gene are very similar to those of the animal gene. The content of pollen actin from male sterile plants is much more lower than that from its maintainer plants. The expression of actin gene is organ-specific during the plant development. The expression quantity of actin gene in pollen is much more higher than those from root, stem and leaf. The expression plasmid of the anti-sense actin gene was constructed, transferred to the protoplasts of wheat and tomato to inhibit the expression of actin gene in pollen and thus the male sterile plants of wheat and tomato were obtained. The actin in pollens from the transgenic plants was reduced significantly, whereas the pistil was not affected. This study might pave a new way to breeding male sterile lines for the application of hybrid vigor of wheat and tomato.

  11. The design of MACs (minimal actin cortices).

    Science.gov (United States)

    Vogel, Sven K; Heinemann, Fabian; Chwastek, Grzegorz; Schwille, Petra

    2013-11-01

    The actin cell cortex in eukaryotic cells is a key player in controlling and maintaining the shape of cells, and in driving major shape changes such as in cytokinesis. It is thereby constantly being remodeled. Cell shape changes require forces acting on membranes that are generated by the interplay of membrane coupled actin filaments and assemblies of myosin motors. Little is known about how their interaction regulates actin cell cortex remodeling and cell shape changes. Because of the vital importance of actin, myosin motors and the cell membrane, selective in vivo experiments and manipulations are often difficult to perform or not feasible. Thus, the intelligent design of minimal in vitro systems for actin-myosin-membrane interactions could pave a way for investigating actin cell cortex mechanics in a detailed and quantitative manner. Here, we present and discuss the design of several bottom-up in vitro systems accomplishing the coupling of actin filaments to artificial membranes, where key parameters such as actin densities and membrane properties can be varied in a controlled manner. Insights gained from these in vitro systems may help to uncover fundamental principles of how exactly actin-myosin-membrane interactions govern actin cortex remodeling and membrane properties for cell shape changes.

  12. Actin organization, bristle morphology, and viability are affected by actin capping protein mutations in Drosophila

    OpenAIRE

    1996-01-01

    Regulation of actin filament length and orientation is important in many actin-based cellular processes. This regulation is postulated to occur through the action of actin-binding proteins. Many actin-binding proteins that modify actin in vitro have been identified, but in many cases, it is not known if this activity is physiologically relevant. Capping protein (CP) is an actin-binding protein that has been demonstrated to control filament length in vitro by binding to the barbed ends and pre...

  13. LL-37 induces polymerization and bundling of actin and affects actin structure.

    Directory of Open Access Journals (Sweden)

    Asaf Sol

    Full Text Available Actin exists as a monomer (G-actin which can be polymerized to filaments F-actin that under the influence of actin-binding proteins and polycations bundle and contribute to the formation of the cytoskeleton. Bundled actin from lysed cells increases the viscosity of sputum in lungs of cystic fibrosis patients. The human host defense peptide LL-37 was previously shown to induce actin bundling and was thus hypothesized to contribute to the pathogenicity of this disease. In this work, interactions between actin and the cationic LL-37 were studied by optical, proteolytic and surface plasmon resonance methods and compared to those obtained with scrambled LL-37 and with the cationic protein lysozyme. We show that LL-37 binds strongly to CaATP-G-actin while scrambled LL-37 does not. While LL-37, at superstoichiometric LL-37/actin concentrations polymerizes MgATP-G-actin, at lower non-polymerizing concentrations LL-37 inhibits actin polymerization by MgCl(2 or NaCl. LL-37 bundles Mg-F-actin filaments both at low and physiological ionic strength when in equimolar or higher concentrations than those of actin. The LL-37 induced bundles are significantly less sensitive to increase in ionic strength than those induced by scrambled LL-37 and lysozyme. LL-37 in concentrations lower than those needed for actin polymerization or bundling, accelerates cleavage of both monomer and polymer actin by subtilisin. Our results indicate that the LL-37-actin interaction is partially electrostatic and partially hydrophobic and that a specific actin binding sequence in the peptide is responsible for the hydrophobic interaction. LL-37-induced bundles, which may contribute to the accumulation of sputum in cystic fibrosis, are dissociated very efficiently by DNase-1 and also by cofilin.

  14. Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening.

    Science.gov (United States)

    Gentry, Brian S; van der Meulen, Stef; Noguera, Philippe; Alonso-Latorre, Baldomero; Plastino, Julie; Koenderink, Gijsje H

    2012-11-01

    Vasodilator-stimulated phosphoprotein (Ena/VASP) is an actin binding protein, important for actin dynamics in motile cells and developing organisms. Though VASP's main activity is the promotion of barbed end growth, it has an F-actin binding site and can form tetramers, and so could additionally play a role in actin crosslinking and bundling in the cell. To test this activity, we performed rheology of reconstituted actin networks in the presence of wild-type VASP or mutants lacking the ability to tetramerize or to bind G-actin and/or F-actin. We show that increasing amounts of wild-type VASP increase network stiffness up to a certain point, beyond which stiffness actually decreases with increasing VASP concentration. The maximum stiffness is 10-fold higher than for pure actin networks. Confocal microscopy shows that VASP forms clustered actin filament bundles, explaining the reduction in network elasticity at high VASP concentration. Removal of the tetramerization site results in significantly reduced bundling and bundle clustering, indicating that VASP's flexible tetrameric structure causes clustering. Removing either the F-actin or the G-actin binding site diminishes VASP's effect on elasticity, but does not eliminate it. Mutating the F-actin and G-actin binding site together, or mutating the F-actin binding site and saturating the G-actin binding site with monomeric actin, eliminates VASP's ability to increase network stiffness. We propose that, in the cell, VASP crosslinking confers only moderate increases in linear network elasticity, and unlike other crosslinkers, VASP's network stiffening activity may be tuned by the local concentration of monomeric actin.

  15. Regulation of Actin Dynamics in Pollen Tubes: Control of Actin Polymer Level

    Institute of Scientific and Technical Information of China (English)

    Naizhi Chen; Xiaolu Qu; Youjun Wu; Shanjin Huang

    2009-01-01

    Actin cytoskeleton undergoes rapid reorganization In response to internal and external cues. How the dynamics of actin cytoskeleton are regulated, and how its dynamics relate to its function are fundamental questions inplant cell biology. The pollen tube is a well characterized actin-based call morphogenesis in plants. One of the striking features of actin cytoskeleton characterized in the pollen tube is its surprisingly low level of actin polymer. This special phenomenon might relate to the function of actin cytoskeleton in pollen tubes. Understanding the molecular mechanism underlying this special phenomenon requires careful analysis of actin-binding proteins that modulate actin dynamics directly. Recent biochemical and biophysical analyses of several highly conserved plant actin-binding proteins reveal unusual and un-expected properties, which emphasizes the importance of carefully analyzing their action mechanism and cellular activity. In this review, we highlight an actin monomer sequestering protein, a barbed end capping protein and an F-actin severing and dynamizing protein in plant. We propose that these proteins function in harmony to regulate actin dynamics and maintain the low level of actin polymer in pollen tubes.

  16. Actin gene family in Branchiostoma belched

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Actin is a highly conserved cytoskeletal protein that is found in essentially all eukaryotic cells,which plays a paramount role in several basic functions of the organism, such as the maintenance of cellshape, cell division, cell mobility and muscle contraction. However, little is known about actin gene family inChinese amphioxus (Branchiostoma belcheri). Here we systemically analyzed the actin genes family inBranchiostoma belched and found that amphioxus contains 33 actin genes. These genes have undergoneextensive expansion through tandem duplications by phylogenetic analysis. In addition, we also providedevidence indicating that actin genes have divergent functions by specializing their EST data in both Bran-chiostoma belched and Branchiostoma florida. Our results provided an alternative explanation for the evolu-tion of actin genes, and gave new insights into their functional roles.

  17. Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells.

    Science.gov (United States)

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H

    2013-09-30

    Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear actin meshwork connects actin cables to nuclei via actin-crosslinking proteins such as the filamin Cheerio. We provide a revised model for how actin structures position nuclei in nurse cells, employing evolutionary conserved machinery.

  18. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II.

    Science.gov (United States)

    Serebryannyy, Leonid A; Parilla, Megan; Annibale, Paolo; Cruz, Christina M; Laster, Kyle; Gratton, Enrico; Kudryashov, Dmitri; Kosak, Steven T; Gottardi, Cara J; de Lanerolle, Primal

    2016-09-15

    Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.

  19. Pharmacological treatment of actinic keratosis

    Directory of Open Access Journals (Sweden)

    Ewa Zwierzyńska

    2016-09-01

    Full Text Available Actinic keratosis (AK is a disease characterized by hyperkeratotic lesions on skin damaged by ultraviolet. radiation. These lesions may progress to squamous cell or basal cell carcinoma. Currently pharmacotherapy and different surgical procedures are used in AK therapy. The most common treatment options are 5-fluorouracil, imiquimod, diclofenac, ingenol mebutate, and first and third generation retinoids (retinol, adapalene, tazarotene. Furthermore, research is being carried out in order to test new medications including nicotinamide, resiquimod, piroxicam, potassium dobesilate and oleogel based on a triterpene extract (betulin, betulinic acid. Recently, the preventive effect of acetylsalicylic acid and celecoxib has also been investigated.

  20. Packaging of actin into Ebola virus VLPs

    Directory of Open Access Journals (Sweden)

    Harty Ronald N

    2005-12-01

    Full Text Available Abstract The actin cytoskeleton has been implicated in playing an important role assembly and budding of several RNA virus families including retroviruses and paramyxoviruses. In this report, we sought to determine whether actin is incorporated into Ebola VLPs, and thus may play a role in assembly and/or budding of Ebola virus. Our results indicated that actin and Ebola virus VP40 strongly co-localized in transfected cells as determined by confocal microscopy. In addition, actin was packaged into budding VP40 VLPs as determined by a functional budding assay and protease protection assay. Co-expression of a membrane-anchored form of Ebola virus GP enhanced the release of both VP40 and actin in VLPs. Lastly, disruption of the actin cytoskeleton with latrunculin-A suggests that actin may play a functional role in budding of VP40/GP VLPs. These data suggest that VP40 may interact with cellular actin, and that actin may play a role in assembly and/or budding of Ebola VLPs.

  1. Dynamic Actin Gene Family Evolution in Primates

    Directory of Open Access Journals (Sweden)

    Liucun Zhu

    2013-01-01

    Full Text Available Actin is one of the most highly conserved proteins and plays crucial roles in many vital cellular functions. In most eukaryotes, it is encoded by a multigene family. Although the actin gene family has been studied a lot, few investigators focus on the comparison of actin gene family in relative species. Here, the purpose of our study is to systematically investigate characteristics and evolutionary pattern of actin gene family in primates. We identified 233 actin genes in human, chimpanzee, gorilla, orangutan, gibbon, rhesus monkey, and marmoset genomes. Phylogenetic analysis showed that actin genes in the seven species could be divided into two major types of clades: orthologous group versus complex group. Codon usages and gene expression patterns of actin gene copies were highly consistent among the groups because of basic functions needed by the organisms, but much diverged within species due to functional diversification. Besides, many great potential pseudogenes were found with incomplete open reading frames due to frameshifts or early stop codons. These results implied that actin gene family in primates went through “birth and death” model of evolution process. Under this model, actin genes experienced strong negative selection and increased the functional complexity by reproducing themselves.

  2. Bioinformatics study of the mangrove actin genes

    Science.gov (United States)

    Basyuni, M.; Wasilah, M.; Sumardi

    2017-01-01

    This study describes the bioinformatics methods to analyze eight actin genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, subcellular localization, similarity, and phylogenetic. The physical and chemical properties of eight mangroves showed variation among the genes. The percentage of the secondary structure of eight mangrove actin genes followed the order of a helix > random coil > extended chain structure for BgActl, KcActl, RsActl, and A. corniculatum Act. In contrast to this observation, the remaining actin genes were random coil > extended chain structure > a helix. This study, therefore, shown the prediction of secondary structure was performed for necessary structural information. The values of chloroplast or signal peptide or mitochondrial target were too small, indicated that no chloroplast or mitochondrial transit peptide or signal peptide of secretion pathway in mangrove actin genes. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove actin genes. To clarify the relationship among the mangrove actin gene, a phylogenetic tree was constructed. Three groups of mangrove actin genes were formed, the first group contains B. gymnorrhiza BgAct and R. stylosa RsActl. The second cluster which consists of 5 actin genes the largest group, and the last branch consist of one gene, B. sexagula Act. The present study, therefore, supported the previous results that plant actin genes form distinct clusters in the tree.

  3. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2014-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, an...

  4. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  5. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    DEFF Research Database (Denmark)

    Rasmussen, Izabela; Pedersen, Line Hjortshøj; Byg, Luise;

    2010-01-01

    Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin d...

  6. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins.

    Science.gov (United States)

    Higashida, Chiharu; Kiuchi, Tai; Akiba, Yushi; Mizuno, Hiroaki; Maruoka, Masahiro; Narumiya, Shuh; Mizuno, Kensaku; Watanabe, Naoki

    2013-04-01

    Physical force evokes rearrangement of the actin cytoskeleton. Signalling pathways such as tyrosine kinases, stretch-activated Ca(2+) channels and Rho GTPases are involved in force sensing. However, how signals are transduced to actin assembly remains obscure. Here we show mechanosensitive actin polymerization by formins (formin homology proteins). Cells overexpressing mDia1 increased the amount of F-actin on release of cell tension. Fluorescence single-molecule speckle microscopy revealed rapid induction of processive actin assembly by mDia1 on cell cortex deformation. mDia1 lacking the Rho-binding domain and other formins exhibited mechanosensitive actin nucleation, suggesting Rho-independent activation. Mechanosensitive actin nucleation by mDia1 required neither Ca(2+) nor kinase signalling. Overexpressing LIM kinase abrogated the induction of processive mDia1. Furthermore, s-FDAPplus (sequential fluorescence decay after photoactivation) analysis revealed a rapid actin monomer increase on cell cortex deformation. Our direct visualization of the molecular behaviour reveals a mechanosensitive actin filament regeneration mechanism in which G-actin released by actin remodelling plays a pivotal role.

  7. Xenopus egg cytoplasm with intact actin.

    Science.gov (United States)

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.

  8. Load fluctuations drive actin network growth

    CERN Document Server

    Shaevitz, Joshua W

    2007-01-01

    The growth of actin filament networks is a fundamental biological process that drives a variety of cellular and intracellular motions. During motility, eukaryotic cells and intracellular pathogens are propelled by actin networks organized by nucleation-promoting factors, which trigger the formation of nascent filaments off the side of existing filaments in the network. A Brownian ratchet (BR) mechanism has been proposed to couple actin polymerization to cellular movements, whereby thermal motions are rectified by the addition of actin monomers at the end of growing filaments. Here, by following actin--propelled microspheres using three--dimensional laser tracking, we find that beads adhered to the growing network move via an object--fluctuating BR. Velocity varies with the amplitude of thermal fluctuation and inversely with viscosity as predicted for a BR. In addition, motion is saltatory with a broad distribution of step sizes that is correlated in time. These data point to a model in which thermal fluctuati...

  9. A method for rapidly screening functionality of actin mutants and tagged actins

    Directory of Open Access Journals (Sweden)

    Rommelaere Heidi

    2004-01-01

    Full Text Available Recombinant production and biochemical analysis of actin mutants has been hampered by the fact that actin has an absolute requirement for the eukaryotic chaperone CCT to reach its native state. We therefore have developed a method to rapidly screen the folding capacity and functionality of actin variants, by combining in vitro expression of labelled actin with analysis on native gels, band shift assays or copolymerization tests. Additionally, we monitor, using immuno-fluorescence, incorporation of actin variants in cytoskeletal structures in transfected cells. We illustrate the method by two examples. In one we show that tagged versions of actin do not always behave native-like and in the other we study some of the molecular defects of three &bgr;-actin mutants that have been associated with diseases.

  10. Actin dynamics shape microglia effector functions.

    Science.gov (United States)

    Uhlemann, Ria; Gertz, Karen; Boehmerle, Wolfgang; Schwarz, Tobias; Nolte, Christiane; Freyer, Dorette; Kettenmann, Helmut; Endres, Matthias; Kronenberg, Golo

    2016-06-01

    Impaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease. Using genetic and pharmacological manipulations, we studied the effects of alterations in actin dynamics on microglia effector functions. Disruption of actin dynamics did not affect transcription of genes involved in the LPS-triggered classical inflammatory response. By contrast, in consequence of impaired nuclear translocation of phospho-STAT6, genes involved in IL-4 induced alternative activation were strongly downregulated. Functionally, impaired actin dynamics resulted in reduced NO secretion and reduced release of TNFalpha and IL-6 from LPS-stimulated microglia and of IGF-1 from IL-4 stimulated microglia. However, pathological stabilization of the actin cytoskeleton increased LPS-induced release of IL-1beta and IL-18, which belong to an unconventional secretory pathway. Reduced NO release was associated with decreased cytoplasmic iNOS protein expression and decreased intracellular arginine uptake. Furthermore, disruption of actin dynamics resulted in reduced microglia migration, proliferation and phagocytosis. Finally, baseline and ATP-induced [Ca(2+)]int levels were significantly increased in microglia lacking gelsolin, a key actin-severing protein. Together, the dynamic state of the actin cytoskeleton profoundly and distinctly affects microglia behaviours. Disruption of actin dynamics attenuates M2 polarization by inhibiting transcription of alternative activation genes. In classical activation, the role of actin remodelling is complex, does not relate to gene transcription and shows a major divergence between cytokines following conventional and unconventional secretion.

  11. Crystal structure of an archaeal actin homolog.

    Science.gov (United States)

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  12. Erbium laser resurfacing for actinic cheilitis.

    Science.gov (United States)

    Cohen, Joel L

    2013-11-01

    Actinic cheilitis is a precancerous condition characterized by grayish-whitish area(s) of discoloration on the mucosal lip, often blunting the demarcation between mucosa and cutaneous lip. Actinic cheilitis is considered to be an early part of the spectrum of squamous cell carcinoma. Squamous cell carcinoma specifically of the lip has a high rate of recurrence and metastasis through the oral cavity leading to a poor overall survival. Risk factors for the development of actinic cheilitis include chronic solar irradiation, increasing age, male gender, light skin complexion, immunosuppression, and possibly tobacco and alcohol consumption. Treatment options include topical pharmacotherapy (eg, fluorouracil, imiquimod) or procedural interventions (eg, cryotherapy, electrosurgery, surgical vermillionectomy, laser resurfacing), each with their known advantages and disadvantages. There is little consensus as to which treatment options offer the most clinical utility given the paucity of comparative clinical data. In my practice, laser resurfacing has become an important tool for the treatment of actinic cheilitis owing to its ease of use and overall safety, tolerability, and cosmetic acceptability. Herein the use of erbium laser resurfacing is described for three actinic cheilitis presentations for which I find it particularly useful: clinically prominent actinic cheilitis, biopsy-proven actinic cheilitis, and treatment of the entire lip following complete tumor excision of squamous cell carcinoma. All patients were treated with a 2940-nm erbium laser (Sciton Profile Contour Tunable Resurfacing Laser [TRL], Sciton, Inc., Palo Alto, CA).

  13. GROWTH AND MORPHOLOGY OF POLYMER-ACTIN COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    Hyuck Joon Kwon; Kazuhiro Shikinaka; Akira Kakugo; Hidemitsu Furukawa; Yoshihito Osada; Jian Ping Gong

    2007-01-01

    F-actins are semi-flexible polyelectrolytes and can be assembled into large polymer-actin complex with polymorphism through electrostatic interaction with polycations. This study investigates the structural phase behavior and the growth of polymer-actin complexes in terms of its longitudinal and lateral sizes. Our results show that formation of polymer-actin complexes is cooperative, and morphology and growth of polymer-actin complexes depend on polycation species and concentrations of polycation and salt in a constant actin concentration. We found that the longitudinal growth and lateral growth of polymer-actin complexes are dominated by different factors. This induces the structural polymorphism of polymer-actin complexes. Major factors to influence the polymorphism of polymer-actin complexes in polyelectrolyte system have been discussed. Our results indicate that the semi-flexible polyelectrolyte nature of F-actins is important for controlling the morphology and growth of actin architectures in cell.

  14. Actin as a potential target for decavanadate.

    Science.gov (United States)

    Ramos, Susana; Moura, José J G; Aureliano, Manuel

    2010-12-01

    ATP prevents G-actin cysteine oxidation and vanadyl formation specifically induced by decavanadate, suggesting that the oxometalate-protein interaction is affected by the nucleotide. The ATP exchange rate is increased by 2-fold due to the presence of decavanadate when compared with control actin (3.1×10(-3) s(-1)), and an apparent dissociation constant (k(dapp)) of 227.4±25.7 μM and 112.3±8.7 μM was obtained in absence or presence of 20 μM V(10), respectively. Moreover, concentrations as low as 50 μM of decameric vanadate species (V(10)) increases the relative G-actin intrinsic fluorescence intensity by approximately 80% whereas for a 10-fold concentration of monomeric vanadate (V(1)) no effects were observed. Upon decavanadate titration, it was observed a linear increase in G-actin hydrophobic surface (2.6-fold), while no changes were detected for V(1) (0-200 μM). Taken together, three major ideas arise: i) ATP prevents decavanadate-induced G-actin cysteine oxidation and vanadate reduction; ii) decavanadate promotes actin conformational changes resulting on its inactivation, iii) decavanadate has an effect on actin ATP binding site. Once it is demonstrated that actin is a new potential target for decavanadate, being the ATP binding site a suitable site for decavanadate binding, it is proposed that some of the biological effects of vanadate can be, at least in part, explained by decavanadate interactions with actin.

  15. Dynamin2 organizes lamellipodial actin networks to orchestrate lamellar actomyosin.

    Directory of Open Access Journals (Sweden)

    Manisha Menon

    Full Text Available Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2's action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.

  16. Actinic Granuloma with Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Ruedee Phasukthaworn

    2016-02-01

    Full Text Available Actinic granuloma is an uncommon granulomatous disease, characterized by annular erythematous plaque with central clearing predominately located on sun-damaged skin. The pathogenesis is not well understood, ultraviolet radiation is recognized as precipitating factor. We report a case of a 52-year-old woman who presented with asymptomatic annular erythematous plaques on the forehead and both cheeks persisting for 2 years. The clinical presentation and histopathologic findings support the diagnosis of actinic granuloma. During that period of time, she also developed focal segmental glomerulosclerosis. The association between actinic granuloma and focal segmental glomerulosclerosis needs to be clarified by further studies.

  17. Actin Nanobodies Uncover the Mystery of Actin Filament Dynamics in Toxoplasma gondii.

    Science.gov (United States)

    Tardieux, Isabelle

    2017-08-01

    While the intracellular parasite Toxoplasma relies on a divergent actomyosin motor to support unique speeds in directional movement, the dynamics and architecture of parasite actin filaments remain a much-discussed issue. Using actin chromobodies, Periz et al. started to unveil how networks of dynamic F-actin connect Toxoplasma progeny and expand in the replicative vacuole. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea

    Directory of Open Access Journals (Sweden)

    Ligia Cristina Kalb Souza

    2013-08-01

    Full Text Available Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major, insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis and plants (Phytomonas serpens. A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids.

  19. Mechanics model for actin-based motility.

    Science.gov (United States)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  20. Structural Differences Explain Diverse Functions of Plasmodium Actins

    Science.gov (United States)

    Vahokoski, Juha; Martinez, Silvia Muñico; Ignatev, Alexander; Lepper, Simone; Frischknecht, Friedrich; Sidén-Kiamos, Inga; Sachse, Carsten; Kursula, Inari

    2014-01-01

    Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than α-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties. PMID:24743229

  1. Cross-linking study on skeletal muscle actin: properties of suberimidate-treated actin.

    Science.gov (United States)

    Ohara, O; Takahashi, S; Ooi, T; Fujiyoshi, Y

    1982-06-01

    Cross-linking experiments were performed on muscle skeletal actin, using imidoesters of various chain lengths. Chemical analyses on all products except one (derived from succinimidate) show evidence of the presence of intramolecular cross-links in the molecule. The detailed properties of suberimidate-treated actin (SA) are as follows: SA contains nearly 1 mol of intramolecular cross-link per mol of actin and less than 15% of intermolecularly cross-linked products. Even at a low salt concentration, SA is polymeric, exchanges slowly its bound nucleotide with free nucleotides in solution, and shows an F-actin-type CD spectrum. Electron micrographs of SA reveal that SA exists actually as fibrous polymers in solutions of low ionic strength, although the fibers seem to be less rigid than those at high salt concentration. The F-form of SA at a high salt concentration is indistinguishable from intact F-actin. SA can bind heavy meromyosin and activate the ATPase of heavy meromyosin as observed for intact F-actin. Tropomyosin binds SA only at a high salt concentration. These results show that SA possesses the properties of F-actin even in media of low salt concentration, which are favorable for depolymerization of F-actin. Thus, we may infer that the conformation of SA is frozen in the F-state of actin by the introduction of intramolecular cross-links in the protein.

  2. [When and why treat actinic keratoses?].

    Science.gov (United States)

    Wulf, Hans Christian

    2014-02-03

    Actinic keratoses (AK) are small, inflamed, hyperkeratotic, sunprovoked lesions which may progress to squamous cell carcinoma (SCC). There are two main reasons for treating AK: one is as prophylaxis against SCC, the other is because of cosmetic discomfort, with clothes getting caught in the hyperkeratotic AK. Visible AK and neighbouring invisible AK should be treated. As AK are provoked by UV radiation, protection against UV is essential. This paper comments on a Cochrane review: "Interventions for actinic keratosis" and treatments avaliable in Denmark.

  3. Actin: its cumbersome pilgrimage through cellular compartments.

    Science.gov (United States)

    Schleicher, Michael; Jockusch, Brigitte M

    2008-06-01

    In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days' knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin.

  4. Sarcomeric Pattern Formation by Actin Cluster Coalescence

    Science.gov (United States)

    Friedrich, Benjamin M.; Fischer-Friedrich, Elisabeth; Gov, Nir S.; Safran, Samuel A.

    2012-01-01

    Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells. PMID:22685394

  5. Sarcomeric pattern formation by actin cluster coalescence.

    Directory of Open Access Journals (Sweden)

    Benjamin M Friedrich

    Full Text Available Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.

  6. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Kelpsch, Daniel J.; Chen, Xiang; Spracklen, Cassandra N.; Tootle, Tina L.

    2014-01-01

    Prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton—temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin ...

  7. Implications of oxidovanadium(IV) binding to actin.

    Science.gov (United States)

    Ramos, Susana; Almeida, Rui M; Moura, José J G; Aureliano, Manuel

    2011-06-01

    Oxidovanadium(IV), a cationic species (VO(2+)) of vanadium(IV), binds to several proteins, including actin. Upon titration with oxidovanadium(IV), approximately 100% quenching of the intrinsic fluorescence of monomeric actin purified from rabbit skeletal muscle (G-actin) was observed, with a V(50) of 131 μM, whereas for the polymerized form of actin (F-actin) 75% of quenching was obtained and a V(50) value of 320 μM. Stern-Volmer plots were used to estimate an oxidovanadium(IV)-actin dissociation constant, with K(d) of 8.2 μM and 64.1 μM VOSO(4), for G-actin and F-actin, respectively. These studies reveal the presence of a high affinity binding site for oxidovanadium(IV) in actin, producing local conformational changes near the tryptophans most accessible to water in the three-dimensional structure of actin. The actin conformational changes, also confirmed by (1)H NMR, are accompanied by changes in G-actin hydrophobic surface, but not in F-actin. The (1)H NMR spectra of G-actin treated with oxidovanadium(IV) clearly indicates changes in the resonances ascribed to methyl group and aliphatic regions as well as to aromatics and peptide-bond amide region. In parallel, it was verified that oxidovanadium(IV) prevents the G-actin polymerization into F-actin. In the 0-200 μM range, VOSO(4) inhibits 40% of the extent of polymerization with an IC(50) of 15.1 μM, whereas 500 μM VOSO(4) totally suppresses actin polymerization. The data strongly suggest that oxidovanadium(IV) binds to actin at specific binding sites preventing actin polymerization. By affecting actin structure and function, oxidovanadium(IV) might be responsible for many cellular effects described for vanadium.

  8. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

    Science.gov (United States)

    Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.

    1990-05-01

    THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

  9. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto (IBS); (BBRI); (UPENN-MED)

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  10. Structure of a longitudinal actin dimer assembled by tandem w domains: implications for actin filament nucleation.

    Science.gov (United States)

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C; Navaza, Jorge; Dominguez, Roberto

    2010-10-15

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin β4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  11. Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity.

    Science.gov (United States)

    Bertling, Enni; Englund, Jonas; Minkeviciene, Rimante; Koskinen, Mikko; Segerstråle, Mikael; Castrén, Eero; Taira, Tomi; Hotulainen, Pirta

    2016-05-11

    Rapid reorganization and stabilization of the actin cytoskeleton in dendritic spines enables cellular processes underlying learning, such as long-term potentiation (LTP). Dendritic spines are enriched in exceptionally short and dynamic actin filaments, but the studies so far have not revealed the molecular mechanisms underlying the high actin dynamics in dendritic spines. Here, we show that actin in dendritic spines is dynamically phosphorylated at tyrosine-53 (Y53) in rat hippocampal and cortical neurons. Our findings show that actin phosphorylation increases the turnover rate of actin filaments and promotes the short-term dynamics of dendritic spines. During neuronal maturation, actin phosphorylation peaks at the first weeks of morphogenesis, when dendritic spines form, and the amount of Y53-phosphorylated actin decreases when spines mature and stabilize. Induction of LTP transiently increases the amount of phosphorylated actin and LTP induction is deficient in neurons expressing mutant actin that mimics phosphorylation. Actin phosphorylation provides a molecular mechanism to maintain the high actin dynamics in dendritic spines during neuronal development and to induce fast reorganization of the actin cytoskeleton in synaptic plasticity. In turn, dephosphorylation of actin is required for the stabilization of actin filaments that is necessary for proper dendritic spine maturation and LTP maintenance. Dendritic spines are small protrusions from neuronal dendrites where the postsynaptic components of most excitatory synapses reside. Precise control of dendritic spine morphology and density is critical for normal brain function. Accordingly, aberrant spine morphology is linked to many neurological diseases. The actin cytoskeleton is a structural element underlying the proper morphology of dendritic spines. Therefore, defects in the regulation of the actin cytoskeleton in neurons have been implicated in neurological diseases. Here, we revealed a novel mechanism for

  12. Separation of actin-dependent and actin-independent lipid rafts

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Kok, Jan Willem

    2013-01-01

    Lipid rafts have been isolated on the basis of their resistance to various detergents and more recently by using detergent-free procedures. The actin cytoskeleton is now recognized as a dynamic regulator of lipid raft stability. We carefully analyzed the effects of the cortical actin-disrupting agen

  13. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles.

    Science.gov (United States)

    Mavrakis, Manos; Azou-Gros, Yannick; Tsai, Feng-Ching; Alvarado, José; Bertin, Aurélie; Iv, Francois; Kress, Alla; Brasselet, Sophie; Koenderink, Gijsje H; Lecuit, Thomas

    2014-04-01

    Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.

  14. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments.

    Science.gov (United States)

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly.

  15. Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD toxin.

    Directory of Open Access Journals (Sweden)

    Elena Kudryashova

    Full Text Available Actin Crosslinking Domain (ACD is produced by several life-threatening Gram-negative pathogenic bacteria as part of larger toxins and delivered into the cytoplasm of eukaryotic host cells via Type I or Type VI secretion systems. Upon delivery, ACD disrupts the actin cytoskeleton by catalyzing intermolecular amide bond formation between E270 and K50 residues of actin, leading to the formation of polymerization-deficient actin oligomers. Ultimately, accumulation of the crosslinked oligomers results in structural and functional failure of the actin cytoskeleton in affected cells. In the present work, we advanced in our understanding of the ACD catalytic mechanism by discovering that the enzyme transfers the gamma-phosphoryl group of ATP to the E270 actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. We also determined the pH optimum for the reaction and the kinetic parameters of ACD catalysis for its substrates, ATP and actin. ACD showed sigmoidal, non-Michaelis-Menten kinetics for actin (K(0.5 = 30 µM reflecting involvement of two actin molecules in a single crosslinking event. We established that ACD can also utilize Mg(2+-GTP to support crosslinking, but the kinetic parameters (K(M = 8 µM and 50 µM for ATP and GTP, respectively suggest that ATP is the primary substrate of ACD in vivo. The optimal pH for ACD activity was in the range of 7.0-9.0. The elucidated kinetic mechanism of ACD toxicity adds to understanding of complex network of host-pathogen interactions.

  16. Sensing actin dynamics: Structural basis for G-actin-sensitive nuclear import of MAL

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Hidemi; Matsuura, Yoshiyuki, E-mail: matsuura.yoshiyuki@d.mbox.nagoya-u.ac.jp

    2011-10-22

    Highlights: {yields} MAL has a bipartite NLS that binds to Imp{alpha} in an extended conformation. {yields} Mutational analyses verified the functional significance of MAL-Imp{alpha} interactions. {yields} Induced folding and NLS-masking by G-actins inhibit nuclear import of MAL. -- Abstract: The coordination of cytoskeletal actin dynamics with gene expression reprogramming is emerging as a crucial mechanism to control diverse cellular processes, including cell migration, differentiation and neuronal circuit assembly. The actin-binding transcriptional coactivator MAL (also known as MRTF-A/MKL1/BSAC) senses G-actin concentration and transduces Rho GTPase signals to serum response factor (SRF). MAL rapidly shuttles between the cytoplasm and the nucleus in unstimulated cells but Rho-induced depletion of G-actin leads to MAL nuclear accumulation and activation of transcription of SRF:MAL-target genes. Although the molecular and structural basis of actin-regulated nucleocytoplasmic shuttling of MAL is not understood fully, it is proposed that nuclear import of MAL is mediated by importin {alpha}/{beta} heterodimer, and that G-actin competes with importin {alpha}/{beta} for the binding to MAL. Here we present structural, biochemical and cell biological evidence that MAL has a classical bipartite nuclear localization signal (NLS) in the N-terminal 'RPEL' domain containing Arg-Pro-X-X-X-Glu-Leu (RPEL) motifs. The NLS residues of MAL adopt an extended conformation and bind along the surface groove of importin-{alpha}, interacting with the major- and minor-NLS binding sites. We also present a crystal structure of wild-type MAL RPEL domain in complex with five G-actins. Comparison of the importin-{alpha}- and actin-complexes revealed that the binding of G-actins to MAL is associated with folding of NLS residues into a helical conformation that is inappropriate for importin-{alpha} recognition.

  17. The unusual dynamics of parasite actin result from isodesmic polymerization.

    Science.gov (United States)

    Skillman, Kristen M; Ma, Christopher I; Fremont, Daved H; Diraviyam, Karthikeyan; Cooper, John A; Sept, David; Sibley, L David

    2013-01-01

    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here we re-examine the polymerization properties of actin in Toxoplasma gondii, unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. Polymerization kinetics of actin in T. gondii lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly and the size distribution of actin filaments in T. gondii in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers.

  18. Actin: Structure, Function, Dynamics, and Interactions with Bacterial Toxins.

    Science.gov (United States)

    Kühn, Sonja; Mannherz, Hans Georg

    Actin is one of the most abundant proteins in any eukaryotic cell and an indispensable component of the cytoskeleton. In mammalian organisms, six highly conserved actin isoforms can be distinguished, which differ by only a few amino acids. In non-muscle cells, actin polymerizes into actin filaments that form actin structures essential for cell shape stabilization, and participates in a number of motile activities like intracellular vesicle transport, cytokinesis, and also cell locomotion. Here, we describe the structure of monomeric and polymeric actin, the polymerization kinetics, and its regulation by actin-binding proteins. Probably due to its conserved nature and abundance, actin and its regulating factors have emerged as prefered targets of bacterial toxins and effectors, which subvert the host actin cytoskeleton to serve bacterial needs.

  19. Actin-dependent mechanisms in AMPA receptor trafficking

    Directory of Open Access Journals (Sweden)

    Jonathan G Hanley

    2014-11-01

    Full Text Available The precise regulation of AMPA receptor (AMPAR number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits during learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signalling pathways that modulate actin polymerization and depolymerisation. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine.

  20. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  1. The actinome of Dictyostelium discoideum in comparison to actins and actin-related proteins from other organisms.

    Directory of Open Access Journals (Sweden)

    Jayabalan M Joseph

    Full Text Available Actin belongs to the most abundant proteins in eukaryotic cells which harbor usually many conventional actin isoforms as well as actin-related proteins (Arps. To get an overview over the sometimes confusing multitude of actins and Arps, we analyzed the Dictyostelium discoideum actinome in detail and compared it with the genomes from other model organisms. The D. discoideum actinome comprises 41 actins and actin-related proteins. The genome contains 17 actin genes which most likely arose from consecutive gene duplications, are all active, in some cases developmentally regulated and coding for identical proteins (Act8-group. According to published data, the actin fraction in a D. discoideum cell consists of more than 95% of these Act8-type proteins. The other 16 actin isoforms contain a conventional actin motif profile as well but differ in their protein sequences. Seven actin genes are potential pseudogenes. A homology search of the human genome using the most typical D. discoideum actin (Act8 as query sequence finds the major actin isoforms such as cytoplasmic beta-actin as best hit. This suggests that the Act8-group represents a nearly perfect actin throughout evolution. Interestingly, limited data from D. fasciculatum, a more ancient member among the social amoebae, show different relationships between conventional actins. The Act8-type isoform is most conserved throughout evolution. Modeling of the putative structures suggests that the majority of the actin-related proteins is functionally unrelated to canonical actin. The data suggest that the other actin variants are not necessary for the cytoskeleton itself but rather regulators of its dynamical features or subunits in larger protein complexes.

  2. Plant villins:Versatile actin regulatory proteins

    Institute of Scientific and Technical Information of China (English)

    Shanjin Huang; Xiaolu Qu; Ruihui Zhang

    2015-01-01

    Regulation of actin dynamics is a central theme in cel biology that is important for different aspects of cel physiology. Vil in, a member of the vil in/gelsolin/fragmin superfamily of proteins, is an important regulator of actin. Vil ins contain six gelsolin homology domains (G1–G6) and an extra headpiece domain. In contrast to their mammalian counterparts, plant vil ins are expressed widely, implying that plant vil ins play a more general role in regulating actin dynamics. Some plant vil ins have a defined role in modifying actin dynamics in the pol en tube;most of their in vivo activities remain to be ascertained. Recently, our understanding of the functions and mechanisms of action for plant vil ins has progressed rapidly, primarily due to the advent of Arabidopsis thaliana genetic approaches and imaging capabilities that can visualize actin dynamics at the single filament level in vitro and in living plant cel s. In this review, we focus on discussing the biochemical activities and modes of regulation of plant vil ins. Here, we present current understand-ing of the functions of plant vil ins. Final y, we highlight some of the key unanswered questions regarding the functions and regulation of plant vil ins for future research.

  3. Dynamic buckling of actin within filopodia

    DEFF Research Database (Denmark)

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Pól Martin

    2015-01-01

    Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted...... on external substrates.(1) These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling...... microsphere which acts like an external substrate attached to the filopodial tip. There is a clear correlation between presence of actin near the tip and exertion of a traction force, thus demonstrating that the traction force is transduced along the actin shaft inside the filopodium. By extending...

  4. The role of actin turnover in retrograde actin network flow in neuronal growth cones.

    Directory of Open Access Journals (Sweden)

    David Van Goor

    Full Text Available The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network.

  5. Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate.

    Science.gov (United States)

    Ramos, Susana; Manuel, Miguel; Tiago, Teresa; Duarte, Rui; Martins, Jorge; Gutiérrez-Merino, Carlos; Moura, José J G; Aureliano, Manuel

    2006-11-01

    Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68+/-22 microM and 17+/-2 microM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2mM concentration of "metavanadate" solution that contains ortho and metavanadate species, as observed by combining kinetic with (51)V NMR spectroscopy studies. Although at 25 degrees C, decameric vanadate (10 microM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 microM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the "decavanadate" interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems.

  6. Non-Straub type actin from molluscan catch muscle

    Energy Technology Data Exchange (ETDEWEB)

    Shelud' ko, Nikolay S., E-mail: sheludko@stl.ru; Girich, Ulyana V.; Lazarev, Stanislav S.; Vyatchin, Ilya G.

    2016-05-27

    We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Crenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate. Surface proteins of thin filaments-tropomyosin, troponin, calponin and some minor actin-binding proteins-were dissociated from actin filaments by increasing the ionic strength to 0.6 M KCL. Natural fibrillar actin obtained in that way depolymerizes easily in low ionic strength solutions commonly used for the extraction of Straub-type actin from acetone powder. Purification of natural actin was carried out by the polymerization–depolymerization cycle. The content of inactivated actin remaining in the supernatant is much less than at a similar purification of Straub-type actin. A comparative investigation was performed between the natural mussel actin and the Straub-type rabbit skeletal actin in terms of the key properties of actin: polymerization, activation of Mg-ATPase activity of myosin, and the electron-microscopic structure of actin polymers. -- Highlights: •We developed method of repolymerizable invertebrate smooth muscle actin obtaining. •Our method does not involve use of denaturating agents, which could modify proteins. •Viscosity and polymerization rate of actin, gained that way, is similar to Straub one. •Electron microscopy showed that repolymerized mussel actin is similar to Straub one. •Repolymerized mussel actin has greater ATPase activating capacity, than Straub actin.

  7. A Continuum Model of Actin Waves in Dictyostelium discoideum

    Science.gov (United States)

    Khamviwath, Varunyu; Hu, Jifeng; Othmer, Hans G.

    2013-01-01

    Actin waves are complex dynamical patterns of the dendritic network of filamentous actin in eukaryotes. We developed a model of actin waves in PTEN-deficient Dictyostelium discoideum by deriving an approximation of the dynamics of discrete actin filaments and combining it with a signaling pathway that controls filament branching. This signaling pathway, together with the actin network, contains a positive feedback loop that drives the actin waves. Our model predicts the structure, composition, and dynamics of waves that are consistent with existing experimental evidence, as well as the biochemical dependence on various protein partners. Simulation suggests that actin waves are initiated when local actin network activity, caused by an independent process, exceeds a certain threshold. Moreover, diffusion of proteins that form a positive feedback loop with the actin network alone is sufficient for propagation of actin waves at the observed speed of . Decay of the wave back can be caused by scarcity of network components, and the shape of actin waves is highly dependent on the filament disassembly rate. The model allows retraction of actin waves and captures formation of new wave fronts in broken waves. Our results demonstrate that a delicate balance between a positive feedback, filament disassembly, and local availability of network components is essential for the complex dynamics of actin waves. PMID:23741312

  8. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    Science.gov (United States)

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  9. Actin dynamics and the elasticity of cytoskeletal networks

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The structural integrity of a cell depends on its cytoskeleton, which includes an actin network. This network is transient and depends upon the continual polymerization and depolymerization of actin. The degradation of an actin network, and a corresponding reduction in cell stiffness, can indicate the presence of disease. Numerical simulations will be invaluable for understanding the physics of these systems and the correlation between actin dynamics and elasticity. Here we develop a model that is capable of generating actin network structures. In particular, we develop a model of actin dynamics which considers the polymerization, depolymerization, nucleation, severing, and capping of actin filaments. The structures obtained are then fed directly into a mechanical model. This allows us to qualitatively assess the effects of changing various parameters associated with actin dynamics on the elasticity of the material.

  10. Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity.

    Science.gov (United States)

    Hlushchenko, Iryna; Koskinen, Mikko; Hotulainen, Pirta

    2016-09-01

    The majority of the postsynaptic terminals of excitatory synapses in the central nervous system exist on small bulbous structures on dendrites known as dendritic spines. The actin cytoskeleton is a structural element underlying the proper development and morphology of dendritic spines. Synaptic activity patterns rapidly change actin dynamics, leading to morphological changes in dendritic spines. In this mini-review, we will discuss recent findings on neuronal maturation and synaptic plasticity-induced changes in the dendritic spine actin cytoskeleton. We propose that actin dynamics in dendritic spines decrease through actin filament crosslinking during neuronal maturation. In long-term potentiation, we evaluate the model of fast breakdown of actin filaments through severing and rebuilding through polymerization and later stabilization through crosslinking. We will discuss the role of Ca(2+) in long-term depression, and suggest that actin filaments are dissolved through actin filament severing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. CNS myelin wrapping is driven by actin disassembly.

    Science.gov (United States)

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.

  12. Viscoelastic properties of actin-coated membranes

    Science.gov (United States)

    Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; Mackintosh, F. C.; Chatenay, D.

    2001-02-01

    In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (ω=0) two-dimensional (2D) shear modulus G02D~0.5 to 5 μN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G'2D(f )~f0.85+/-0.07] and of the bending modulus (κACM(f)~f0.55+/-0.21) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.

  13. Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    CERN Document Server

    Carlsson, Anders E

    2010-01-01

    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: a) traveling waves, b) moving patches, and c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism which does not require myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

  14. Targeting of TMV movement protein to plasmodesmata requires the actin/ER network: evidence from FRAP

    National Research Council Canada - National Science Library

    Wright, Kathryn M; Wood, Nicola T; Roberts, Alison G; Chapman, Sean; Boevink, Petra; Mackenzie, Katrin M; Oparka, Karl J

    2007-01-01

    ...) of tobacco mosaic virus (TMV) is targeted to plasmodesmata (PD). The data show that fluorescence recovery in PD at the leading edge of an infection requires elements of the cortical actin/endoplasmic reticulum (ER...

  15. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation

    DEFF Research Database (Denmark)

    Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.

    2017-01-01

    . This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament...... lengths of two differently sized filamentous actin populations, wherein forminmediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact...... with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface...

  16. Actin cytoskeleton demonstration in Trichomonas vaginalis and in other trichomonads.

    Science.gov (United States)

    Brugerolle, G; Bricheux, G; Coffe, G

    1996-01-01

    The flagellate form of Trichomonas vaginalis (T v) transforms to amoeboid cells upon adherence to converslips. They grow and their nuclei divide without undergoing cytokinesis, yielding giant cells and a monolayer of T v F-actin was demonstrated in Trichomonas vaginalis by fluorescence microscopy using phalloidin and an anti-actin mAb which labelled the cytoplasm of both the flagellate and amoeboid forms. Comparative electrophoresis and immunoblotting established that the actin band has the same 42 kDa as muscle actin, but 2-D electrophoresis resolved the actin band into four spots; the two major spots observed were superimposable with major muscle actin isoforms. Electron microscopy demonstrated an ectoplasmic microfibrillar layer along the adhesion zone of amoeboid T v adhering to coverslips. Immunogold staining, using anti-actin monoclonal antibodies demonstrated that this layer was mainly composed of actin microfilaments. A comparative immunoblotting study comprising seven trichomonad species showed that all trichomonads studied expressed actin. The mAb Sigma A-4700 specific for an epitope on the actin C-terminal sequence labelled only actin of Trichomonas vaginalis, Tetratrichomonas gallinarum. Trichomitus batrachorum and Hypotrichomonas acosta, but not the actin of Tritrichomonas foetus, Tritrichomonas augusta and Monocercomonas sp. This discrimination between a 'trichomonas branch' and a 'tritrichomonas branch' is congruent with inferred sequence phylogeny from SSu rRNA and with classical phylogeny of trichomonads.

  17. Freely suspended actin cortex models on arrays of microfabricated pillars

    NARCIS (Netherlands)

    Roos, Wouter H.; Roth, Alexander; Konle, Johannes; Presting, Hartmut; Sackmann, Erich; Spatz, Joachim P.

    2003-01-01

    Actin networking across pillar-tops: Actin filaments have been self-assembled onto microscopic silicon pillars, forming quasi-two-dimensional networks (see graphic) and creating novel possibilities for mimicking functions of the cellular actin cortex on solid-state devices.

  18. Actin-organising properties of the muscular dystrophy protein myotilin.

    Science.gov (United States)

    von Nandelstadh, Pernilla; Grönholm, Mikaela; Moza, Monica; Lamberg, Arja; Savilahti, Harri; Carpén, Olli

    2005-10-15

    Myotilin is a sarcomeric Z-disc protein that binds F-actin directly and bundles actin filaments, although it does not contain a conventional actin-binding domain. Expression of mutant myotilin leads to sarcomeric alterations in the dominantly inherited limb-girdle muscular dystrophy 1A and in myofibrillar myopathy/desmin-related myopathy. Together, with previous in vitro studies, this indicates that myotilin has an important function in the assembly and maintenance of Z-discs. This study characterises further the interaction between myotilin and actin. Functionally important regions in myotilin were identified by actin pull-down and yeast two-hybrid assays and with a novel strategy that combines in vitro DNA transposition-based peptide insertion mutagenesis with phenotype analysis in yeast cells. The shortest fragment to bind actin was the second Ig domain together with a short C-terminal sequence. Concerted action of the first and second Ig domain was, however, necessary for the functional activity of myotilin, as verified by analysis of transposon mutants, actin binding and phenotypic effect in mammalian cells. Furthermore, the Ig domains flanked with N- and C-terminal regions were needed for actin-bundling, indicating that the mere actin-binding sequence was insufficient for the actin-regulating activity. None of the four known disease-associated mutations altered the actin-organising ability. These results, together with previous studies in titin and kettin, identify the Ig domain as an actin-binding unit.

  19. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Kelpsch, Daniel J; Chen, Xiang; Spracklen, Cassandra N; Tootle, Tina L

    2014-02-01

    Prostaglandins (PGs)--lipid signals produced downstream of cyclooxygenase (COX) enzymes--regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton--temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin remodeling, including actin filaments and aggregates, within the posterior nurse cells of S9 follicles; wild-type follicles exhibit similar structures at a low frequency. Hu li tai shao (Hts-RC) and Villin (Quail), an actin bundler, localize to all early actin structures, whereas Enabled (Ena), an actin elongation factor, preferentially localizes to those in pxt mutants. Reduced Ena levels strongly suppress early actin remodeling in pxt mutants. Furthermore, loss of Pxt results in reduced Ena localization to the sites of bundle formation during S10B. Together these data lead to a model in which PGs temporally regulate actin remodeling during Drosophila oogenesis by controlling Ena localization/activity, such that in S9, PG signaling inhibits, whereas at S10B, it promotes Ena-dependent actin remodeling.

  20. Dynamics and Regulation of Actin Cytoskeleton in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Ren Haiyun

    2007-01-01

    @@ The actin cytoskeleton constituted of globular actin (G-actin) is a ubiquitous component of eukaryotic cells and plays crucial roles in diverse physiological processes in plant cells, such as cytoplasmic streaming, organelle and nucleus positioning, cell morphogenesis, cell division, tip growth, etc.

  1. Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells

    OpenAIRE

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H

    2013-01-01

    Summary Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cel...

  2. Unconventional actins and actin-binding proteins in human protozoan parasites.

    Science.gov (United States)

    Gupta, C M; Thiyagarajan, S; Sahasrabuddhe, A A

    2015-06-01

    Actin and its regulatory proteins play a key role in several essential cellular processes such as cell movement, intracellular trafficking and cytokinesis in most eukaryotes. While these proteins are highly conserved in higher eukaryotes, a number of unicellular eukaryotic organisms contain divergent forms of these proteins which have highly unusual biochemical and structural properties. Here, we review the biochemical and structural properties of these unconventional actins and their core binding proteins which are present in commonly occurring human protozoan parasites.

  3. Quantification of Filamentous Actin (F-actin) Puncta in Rat Cortical Neurons.

    Science.gov (United States)

    Li, Hailong; Aksenova, Marina; Bertrand, Sarah J; Mactutus, Charles F; Booze, Rosemarie

    2016-02-10

    Filamentous actin protein (F-actin) plays a major role in spinogenesis, synaptic plasticity, and synaptic stability. Changes in dendritic F-actin rich structures suggest alterations in synaptic integrity and connectivity. Here we provide a detailed protocol for culturing primary rat cortical neurons, Phalloidin staining for F-actin puncta, and subsequent quantification techniques. First, the frontal cortex of E18 rat embryos are dissociated into low-density cell culture, then the neurons grown in vitro for at least 12-14 days. Following experimental treatment, the cortical neurons are stained with AlexaFluor 488 Phalloidin (to label the dendritic F-actin puncta) and microtubule-associated protein 2 (MAP2; to validate the neuronal cells and dendritic integrity). Finally, specialized software is used to analyze and quantify randomly selected neuronal dendrites. F-actin rich structures are identified on second order dendritic branches (length range 25-75 µm) with continuous MAP2 immunofluorescence. The protocol presented here will be a useful method for investigating changes in dendritic synapse structures subsequent to experimental treatments.

  4. Tailor-made ezrin actin binding domain to probe its interaction with actin in-vitro.

    Directory of Open Access Journals (Sweden)

    Rohini Shrivastava

    Full Text Available Ezrin, a member of the ERM (Ezrin/Radixin/Moesin protein family, is an Actin-plasma membrane linker protein mediating cellular integrity and function. In-vivo study of such interactions is a complex task due to the presence of a large number of endogenous binding partners for both Ezrin and Actin. Further, C-terminal actin binding capacity of the full length Ezrin is naturally shielded by its N-terminal, and only rendered active in the presence of Phosphatidylinositol bisphosphate (PIP2 or phosphorylation at the C-terminal threonine. Here, we demonstrate a strategy for the design, expression and purification of constructs, combining the Ezrin C-terminal actin binding domain, with functional elements such as fusion tags and fluorescence tags to facilitate purification and fluorescence microscopy based studies. For the first time, internal His tag was employed for purification of Ezrin actin binding domain based on in-silico modeling. The functionality (Ezrin-actin interaction of these constructs was successfully demonstrated by using Total Internal Reflection Fluorescence Microscopy. This design can be extended to other members of the ERM family as well.

  5. Transient state model of actin-based motility

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    We developed a transient model for actin-based motility.Diffusion of actin monomers was included in the formulation and its influence on the speed of actin-driven cargos was examined in detail.Our results clearly demonstrated how actin polymerization accelerates cargos that are initially stationary,as well as how steady-state is eventually reached.We also found that,due to polymerization and diffusion,actin monomer concentration near the load surface can be significantly lower than that in the rest of th...

  6. The 5’cap of Tobacco Mosaic Virus (TMV) is required for virion attachment to the actin/ER network during early infection

    DEFF Research Database (Denmark)

    Christensen, Nynne Meyn; Tilsner, Jens; Bell, Karen;

    to the motile cortical actin/ER network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actindependent RNA movement. The 5’ methylguanosine TMV cap was shown to be required for vRNA anchoring to the ER. TMV vRNA lacking the 5’cap failed to form granules...

  7. Distributed actin turnover in the lamellipodium and FRAP kinetics.

    Science.gov (United States)

    Smith, Matthew B; Kiuchi, Tai; Watanabe, Naoki; Vavylonis, Dimitrios

    2013-01-08

    Studies of actin dynamics at the leading edge of motile cells with single-molecule speckle (SiMS) microscopy have shown a broad distribution of EGFP-actin speckle lifetimes and indicated actin polymerization and depolymerization over an extended region. Other experiments using FRAP with the same EGFP-actin as a probe have suggested, by contrast, that polymerization occurs exclusively at the leading edge. We performed FRAP experiments on XTC cells to compare SiMS to FRAP on the same cell type. We used speckle statistics obtained by SiMS to model the steady-state distribution and kinetics of actin in the lamellipodium. We demonstrate that a model with a single diffuse actin species is in good agreement with FRAP experiments. A model including two species of diffuse actin provides an even better agreement. The second species consists of slowly diffusing oligomers that associate to the F-actin network throughout the lamellipodium or break up into monomers after a characteristic time. Our work motivates studies to test the presence and composition of slowly diffusing actin species that may contribute to local remodeling of the actin network and increase the amount of soluble actin.

  8. Bundling Actin Filaments From Membranes: Some Novel Players

    Directory of Open Access Journals (Sweden)

    Clément eThomas

    2012-08-01

    Full Text Available Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.

  9. Geometrical and mechanical properties control actin filament organization.

    Directory of Open Access Journals (Sweden)

    Gaëlle Letort

    2015-05-01

    Full Text Available The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model.

  10. Tropomyosin diffusion over actin subunits facilitates thin filament assembly

    Directory of Open Access Journals (Sweden)

    Stefan Fischer

    2016-01-01

    Full Text Available Coiled-coil tropomyosin binds to consecutive actin-subunits along actin-containing thin filaments. Tropomyosin molecules then polymerize head-to-tail to form cables that wrap helically around the filaments. Little is known about the assembly process that leads to continuous, gap-free tropomyosin cable formation. We propose that tropomyosin molecules diffuse over the actin-filament surface to connect head-to-tail to partners. This possibility is likely because (1 tropomyosin hovers loosely over the actin-filament, thus binding weakly to F-actin and (2 low energy-barriers provide tropomyosin freedom for 1D axial translation on F-actin. We consider that these unique features of the actin-tropomyosin interaction are the basis of tropomyosin cable formation.

  11. Tropomyosin diffusion over actin subunits facilitates thin filament assembly

    Science.gov (United States)

    Fischer, Stefan; Rynkiewicz, Michael J.; Moore, Jeffrey R.; Lehman, William

    2016-01-01

    Coiled-coil tropomyosin binds to consecutive actin-subunits along actin-containing thin filaments. Tropomyosin molecules then polymerize head-to-tail to form cables that wrap helically around the filaments. Little is known about the assembly process that leads to continuous, gap-free tropomyosin cable formation. We propose that tropomyosin molecules diffuse over the actin-filament surface to connect head-to-tail to partners. This possibility is likely because (1) tropomyosin hovers loosely over the actin-filament, thus binding weakly to F-actin and (2) low energy-barriers provide tropomyosin freedom for 1D axial translation on F-actin. We consider that these unique features of the actin-tropomyosin interaction are the basis of tropomyosin cable formation. PMID:26798831

  12. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner.

    Science.gov (United States)

    Nomura, Kazumi; Hayakawa, Kimihide; Tatsumi, Hitoshi; Ono, Shoichiro

    2016-03-04

    Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  14. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin-actin interactions.

    Science.gov (United States)

    Hong, Nan Hyung; Qi, Aidong; Weaver, Alissa M

    2015-08-31

    Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7(+) endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor-induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover.

  15. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility

    Science.gov (United States)

    Benanti, Erin L.; Nguyen, Catherine M.; Welch, Matthew D.

    2015-01-01

    Summary Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, while their close relative B. thailandensis is nonpathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection. PMID:25860613

  16. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin or polymeric form (F-actin. Members of the actin-depolymerizing factor (ADF/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1 in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.

  17. Dissociative mechanism of F-actin thermal denaturation.

    Science.gov (United States)

    Mikhailova, V V; Kurganov, B I; Pivovarova, A V; Levitsky, D I

    2006-11-01

    We have applied differential scanning calorimetry to investigate thermal unfolding of F-actin. It has been shown that the thermal stability of F-actin strongly depends on ADP concentration. The transition temperature, T(m), increases with increasing ADP concentration up to 1 mM. The T(m) value also depends on the concentration of F-actin: it increases by almost 3 degrees C as the F-actin concentration is increased from 0.5 to 2.0 mg/ml. Similar dependence of the T(m) value on protein concentration was demonstrated for F-actin stabilized by phalloidin, whereas it was much less pronounced in the presence of AlF4(-). However, T(m) was independent of protein concentration in the case of monomeric G-actin. The results suggest that at least two reversible stages precede irreversible thermal denaturation of F-actin; one of them is dissociation of ADP from actin subunits, and another is dissociation of subunits from the ends of actin filaments. The model explains why unfolding of F-actin depends on both ADP and protein concentration.

  18. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-01

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.

  19. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Science.gov (United States)

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.

  20. Adhesive F-actin Waves: A Novel Integrin-Mediated Adhesion Complex Coupled to Ventral Actin Polymerization

    Science.gov (United States)

    Case, Lindsay B.; Waterman, Clare M.

    2011-01-01

    At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in “ventral F-actin waves” that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These “adhesive F-actin waves” require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization. PMID:22069459

  1. Adhesive F-actin waves: a novel integrin-mediated adhesion complex coupled to ventral actin polymerization.

    Directory of Open Access Journals (Sweden)

    Lindsay B Case

    Full Text Available At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These "adhesive F-actin waves" require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization.

  2. Actin-Dynamics in Plant Cells: The Function of Actin Perturbing Substances Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins

    Science.gov (United States)

    Holzinger, Andreas; Blaas, Kathrin

    2016-01-01

    This chapter will give an overview of the most common F-actin perturbing substances, that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement or when apoptosis has to be induced. These substances can be divided into two major subclasses – F-actin stabilizing and polymerizing substances like jasplakinolide, chondramides and F-actin severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane permeable F-actin stabilizing and polymerizing agent, which may even have anti-cancer activities. Cytochalasins, derived from fungi show an F-actin severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges, however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin- and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given. PMID:26498789

  3. Steric effects induce geometric remodeling of actin bundles in filopodia

    CERN Document Server

    Dobramysl, Ulrich; Erban, Radek

    2016-01-01

    Filopodia are ubiquitous fingerlike protrusions, spawned by many eukaryotic cells, to probe and interact with their environments. Polymerization dynamics of actin filaments, comprising the structural core of filopodia, largely determine their instantaneous lengths and overall lifetimes. The polymerization reactions at the filopodial tip require transport of G-actin, which enter the filopodial tube from the filopodial base and diffuse toward the filament barbed ends near the tip. Actin filaments are mechanically coupled into a tight bundle by cross-linker proteins. Interestingly, many of these proteins are relatively short, restricting the free diffusion of cytosolic G-actin throughout the bundle and, in particular, its penetration into the bundle core. To investigate the effect of steric restrictions on G-actin diffusion by the porous structure of filopodial actin filament bundle, we used a particle-based stochastic simulation approach. We discovered that excluded volume interactions result in partial and the...

  4. Identification of sucrose synthase as an actin-binding protein

    Science.gov (United States)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  5. Photodynamic therapy for the treatment of actinic cheilitis.

    Science.gov (United States)

    Kodama, Makiko; Watanabe, Daisuke; Akita, Yoichi; Tamada, Yasuhiko; Matsumoto, Yoshinari

    2007-10-01

    Although actinic cheilitis is a common disease, it should be treated carefully because it can undergo malignant transformation. We report a case of actinic cheilitis treated with photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA), with satisfactory outcome in both clinical and pathological aspects. Actinic cheilitis is a pathologic condition affecting mainly the lower lip caused by long-term exposure of the lips to the UV radiation in sunlight. Analogous to actinic keratosis of the skin, actinic cheilitis is considered as a precancerous lesion and it may develop into squamous cell carcinoma. We report a case of actinic cheilitis treated with PDT using ALA, with satisfactory outcome in both clinical and pathological aspects.

  6. Dynamic buckling of actin within filopodia

    DEFF Research Database (Denmark)

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Pól Martin

    2015-01-01

    Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted...... in conjunction with rotation enables the cell to explore a much larger 3-dimensional space and allows for more complex, and possibly stronger, interactions with the external environment.(2) Here we focus on how bending of the filopodial actin dynamically correlates with pulling on an optically trapped...

  7. Daylight photodynamic therapy for actinic keratosis

    DEFF Research Database (Denmark)

    Wiegell, Stine; Wulf, H C; Szeimies, R-M

    2011-01-01

    Photodynamic therapy (PDT) is an attractive therapy for non-melanoma skin cancers including actinic keratoses (AKs) because it allows treatment of large areas; it has a high response rate and results in an excellent cosmesis. However, conventional PDT for AKs is associated with inconveniently long...... clinic visits and discomfort during therapy. In this article, we critically review daylight-mediated PDT, which is a simpler and more tolerable treatment procedure for PDT. We review the effective light dose, efficacy and safety, the need for prior application of sunscreen, and potential clinical scope...

  8. WH2 domain: a small, versatile adapter for actin monomers.

    Science.gov (United States)

    Paunola, Eija; Mattila, Pieta K; Lappalainen, Pekka

    2002-02-20

    The actin cytoskeleton plays a central role in many cell biological processes. The structure and dynamics of the actin cytoskeleton are regulated by numerous actin-binding proteins that usually contain one of the few known actin-binding motifs. WH2 domain (WASP homology domain-2) is a approximately 35 residue actin monomer-binding motif, that is found in many different regulators of the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP (Wiskott Aldrich syndrome protein), verprolin/WIP (WASP-interacting protein), Srv2/CAP (adenylyl cyclase-associated protein) and several uncharacterized proteins. The most highly conserved residues in the WH2 domain are important in beta-thymosin's interactions with actin monomers, suggesting that all WH2 domains may interact with actin monomers through similar interfaces. Our sequence database searches did not reveal any WH2 domain-containing proteins in plants. However, we found three classes of these proteins: WASP, Srv2/CAP and verprolin/WIP in yeast and animals. This suggests that the WH2 domain is an ancient actin monomer-binding motif that existed before the divergence of fungal and animal lineages.

  9. Correlative nanoscale imaging of actin filaments and their complexes.

    Science.gov (United States)

    Sharma, Shivani; Zhu, Huanqi; Grintsevich, Elena E; Reisler, Emil; Gimzewski, James K

    2013-07-01

    Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.

  10. Interaction of calponin with actin and its functional implications.

    Science.gov (United States)

    Kołakowski, J; Makuch, R; Stepkowski, D; Dabrowska, R

    1995-01-01

    Titration of F-actin with calponin causes the formation of two types of complexes. One, at saturation, contains a lower ratio of calponin to actin (0.5:1) and is insoluble at physiological ionic strength. The another is soluble, with a higher ratio of calponin to actin (1:1). Electron microscopy revealed that the former complex consists of paracrystalline bundles of actin filaments, whereas the latter consists of separate filaments. Ca(2+)-calmodulin causes dissociation of bundles with simultaneous increase in the number of separate calponin-containing filaments. Further increase in the calmodulin concentration results in full release of calponin from actin filaments. In motility assays, calponin, when added together with ATP to actin filaments complexed with immobilized myosin, evoked a decrease in both the number and velocity of moving actin filaments. Addition of calponin to actin filaments before their binding to myosin resulted in a formation of actin filament bundles which were dissociated by ATP. Images Figure 2 PMID:7864810

  11. Altered actin centripetal retrograde flow in physically restricted immunological synapses.

    Directory of Open Access Journals (Sweden)

    Cheng-han Yu

    Full Text Available Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3epsilon on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network.

  12. Microtubules Modulate F-actin Dynamics during Neuronal Polarization.

    Science.gov (United States)

    Zhao, Bing; Meka, Durga Praveen; Scharrenberg, Robin; König, Theresa; Schwanke, Birgit; Kobler, Oliver; Windhorst, Sabine; Kreutz, Michael R; Mikhaylova, Marina; Calderon de Anda, Froylan

    2017-08-29

    Neuronal polarization is reflected by different dynamics of microtubule and filamentous actin (F-actin). Axonal microtubules are more stable than those in the remaining neurites, while dynamics of F-actin in axonal growth cones clearly exceed those in their dendritic counterparts. However, whether a functional interplay exists between the microtubule network and F-actin dynamics in growing axons and whether this interplay is instrumental for breaking cellular symmetry is currently unknown. Here, we show that an increment on microtubule stability or number of microtubules is associated with increased F-actin dynamics. Moreover, we show that Drebrin E, an F-actin and microtubule plus-end binding protein, mediates this cross talk. Drebrin E segregates preferentially to growth cones with a higher F-actin treadmilling rate, where more microtubule plus-ends are found. Interruption of the interaction of Drebrin E with microtubules decreases F-actin dynamics and arrests neuronal polarization. Collectively the data show that microtubules modulate F-actin dynamics for initial axon extension during neuronal development.

  13. Formins: Bringing new insights to the organization of actin cytoskeleton

    Institute of Scientific and Technical Information of China (English)

    GUO Chunqing; REN Haiyun

    2006-01-01

    The actin cytoskeleton is an important component of eukaryotic cell cytoskeleton and is temporally and spatially controlled by a series of actin binding proteins (ABPs). Among ABPs, formin family proteins have attracted much attention as they can nucleate unbranched actin filament from the profilin bound actin pool in vivo. In recent years, a number of formin family members from different organisms have been reported, and their characteristics are known more clearly, although some questions are still to be clarified. Here, we summarize the structures, functions and nucleation mechanisms of different formin family proteins, intending to compare them and give some new clues to the study of formins.

  14. Electrostatics control actin filament nucleation and elongation kinetics.

    Science.gov (United States)

    Crevenna, Alvaro H; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L; Lamb, Don C; Wedlich-Söldner, Roland

    2013-04-26

    The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment.

  15. Visualization of Actin Cytoskeletal Dynamics in Fixed and Live Drosophila Egg Chambers.

    Science.gov (United States)

    Groen, Christopher M; Tootle, Tina L

    2015-01-01

    Visualization of actin cytoskeletal dynamics is critical for understanding the spatial and temporal regulation of actin remodeling. Drosophila oogenesis provides an excellent model system for visualizing the actin cytoskeleton. Here, we present methods for imaging the actin cytoskeleton in Drosophila egg chambers in both fixed samples by phalloidin staining and in live egg chambers using transgenic actin labeling tools.

  16. Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover.

    Science.gov (United States)

    Moriyama, Kenji; Yahara, Ichiro

    2002-04-15

    Cofilin-ADF (actin-depolymerizing factor) is an essential driver of actin-based motility. We discovered two proteins, p65 and p55, that are components of the actin-cofilin complex in a human HEK293 cell extract and identified p55 as CAP1/ASP56, a human homologue of yeast CAP/SRV2 (cyclase-associated protein). CAP is a bifunctional protein with an N-terminal domain that binds to Ras-responsive adenylyl cyclase and a C-terminal domain that inhibits actin polymerization. Surprisingly, we found that the N-terminal domain of CAP1, but not the C-terminal domain, is responsible for the interaction with the actin-cofilin complex. The N-terminal domain of CAP1 was also found to accelerate the depolymerization of F-actin at the pointed end, which was further enhanced in the presence of cofilin and/or the C-terminal domain of CAP1. Moreover, CAP1 and its C-terminal domain were observed to facilitate filament elongation at the barbed end and to stimulate ADP-ATP exchange on G-actin, a process that regenerates easily polymerizable G-actin. Although cofilin inhibited the nucleotide exchange on G-actin even in the presence of the C-terminal domain of CAP1, its N-terminal domain relieved this inhibition. Thus, CAP1 plays a key role in speeding up the turnover of actin filaments by effectively recycling cofilin and actin and through its effect on both ends of actin filament.

  17. Actin Foci Adhesion of D. discoideum

    Science.gov (United States)

    Flanders, Bret; Paneru, Govind

    2014-03-01

    Amoeboid migration is a fast (10 μm min-1) integrin-independent mode of migration that is important with D. discoideum, leukocytes, and breast cancer cells. It is poorly understood, but depends on the establishment of adhesive contacts to the substrate where the cell transmits traction forces. In pre-aggregative D. discoideum, a model system for learning about amoeboid migration, these adhesive contacts are discrete complexes that are known as actin-foci. They have an area of ~ 0.5 μm2 and a lifetime of ~ 20 s. This talk will present measurements of the adhesive character of actin foci that have been obtained using a submicron force transducer that was designed for this purpose. Results on the rupture stresses and lifetimes of individual acting foci under nano-newton level forces will be described in the context of a general theory for cellular adhesion. This theory depends on, essentially, three cellular properties: the membrane-medium surface tension, the number density of adhesion receptors in the membrane, and the receptor-substrate potential energy surface. Therefore, the use of the transducer to determine the surface tension will be presented, as well.

  18. Self-assembly of Artificial Actin Filaments

    Science.gov (United States)

    Grosenick, Christopher; Cheng, Shengfeng

    Actin Filaments are long, double-helical biopolymers that make up the cytoskeleton along with microtubules and intermediate filaments. In order to further understand the self-assembly process of these biopolymers, a model to recreate actin filament geometry was developed. A monomer in the shape of a bent rod with vertical and lateral binding sites was designed to assemble into single or double helices. With Molecular Dynamics simulations, a variety of phases were observed to form by varying the strength of the binding sites. Ignoring lateral binding sites, we have found a narrow range of binding strengths that lead to long single helices via various growth pathways. When lateral binding strength is introduced, double helices begin to form. These double helices self-assemble into substantially more stable structures than their single helix counterparts. We have found double helices to form long filaments at about half the vertical binding strength of single helices. Surprisingly, we have found that triple helices occasionally form, indicating the importance of structural regulation in the self-assembly of biopolymers.

  19. Recent advances into vanadyl, vanadate and decavanadate interactions with actin.

    Science.gov (United States)

    Ramos, S; Moura, J J G; Aureliano, M

    2012-01-01

    Although the number of papers about "vanadium" has doubled in the last decade, the studies about "vanadium and actin" are scarce. In the present review, the effects of vanadyl, vanadate and decavanadate on actin structure and function are compared. Decavanadate (51)V NMR signals, at -516 ppm, broadened and decreased in intensity upon actin titration, whereas no effects were observed for vanadate monomers, at -560 ppm. Decavanadate is the only species inducing actin cysteine oxidation and vanadyl formation, both processes being prevented by the natural ligand of the protein, ATP. Vanadyl titration with monomeric actin (G-actin), analysed by EPR spectroscopy, reveals a 1:1 binding stoichiometry and a K(d) of 7.5 μM(-1). Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC(50) of 68 and 300 μM, respectively, as analysed by light scattering assays, whereas no effects were detected for vanadate up to 2 mM. However, only vanadyl (up to 200 μM) induces 100% of G-actin intrinsic fluorescence quenching, whereas decavanadate shows an opposite effect, which suggests the presence of vanadyl high affinity actin binding sites. Decavanadate increases (2.6-fold) the actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Both vanadium species increased the ε-ATP exchange rate (k = 6.5 × 10(-3) s(-1) and 4.47 × 10(-3) s(-1) for decavanadate and vanadyl, respectively). Finally, (1)H NMR spectra of G-actin treated with 0.1 mM decavanadate clearly indicate that major alterations occur in protein structure, which are much less visible in the presence of ATP, confirming the preventive effect of the nucleotide on the decavanadate interaction with the protein. Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl. By affecting actin structure and function, vanadium can

  20. Mechanics of composite actin networks: in vitro and cellular perspectives

    Science.gov (United States)

    Upadhyaya, Arpita

    2014-03-01

    Actin filaments and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. Even though cells have multiple actin binding proteins (ABPs) that exist simultaneously to maintain the structural and mechanical integrity of the cellular cytoskeleton, how these proteins work together to determine the properties of actin networks is not well understood. The ABP, palladin, is essential for the integrity of cell morphology and movement during development. Palladin coexists with alpha-actinin in stress fibers and focal adhesions and binds to both actin and alpha-actinin. To obtain insight into how mutually interacting actin crosslinking proteins modulate the properties of actin networks, we have characterized the micro-structure and mechanics of actin networks crosslinked with palladin and alpha-actinin. Our studies on composite networks of alpha-actinin/palladin/actin show that palladin and alpha-actinin synergistically determine network viscoelasticity. We have further examined the role of palladin in cellular force generation and mechanosensing. Traction force microscopy revealed that TAFs are sensitive to substrate stiffness as they generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells, and also inhibited the ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in the actin organization and adhesion dynamics of palladin knock down cells. Perturbation experiments also suggest altered myosin activity in palladin KD cells. Our results suggest that the actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.

  1. Modulating F-actin organization induces organ growth by affecting the Hippo pathway

    OpenAIRE

    Sansores-Garcia, Leticia; Bossuyt, Wouter; Wada, Ken-Ichi; Yonemura, Shigenobu; Tao, Chunyao; Sasaki, Hiroshi; Halder, Georg

    2011-01-01

    This study identifies actin organization as an upstream regulator of the Hippo pathway: F-actin accumulation promotes Yorkie-dependent transcriptional activation. This modulation of Hippo signalling by actin regulators controls organ growth in Drosophila.

  2. Building an artificial actin cortex on microscopic pillar arrays

    NARCIS (Netherlands)

    Ayadi, R; Roos, W H

    2015-01-01

    Eukaryotic cells obtain their morphology and mechanical strength from the cytoskeleton and in particular from the cross-linked actin network that branches throughout the whole cell. This actin cortex lies like a quasi-two-dimensional (2D) biopolymer network just below the cell membrane, to which it

  3. Deafness and espin-actin self-organization in stereocilia

    Science.gov (United States)

    Wong, Gerard C. L.

    2009-03-01

    Espins are F-actin-bundling proteins associated with large parallel actin bundles found in hair cell stereocilia in the ear, as well as brush border microvilli and Sertoli cell junctions. We examine actin bundle structures formed by different wild-type espin isoforms, fragments, and naturally-occurring human espin mutants linked to deafness and/or vestibular dysfunction. The espin-actin bundle structure consisted of a hexagonal arrangement of parallel actin filaments in a non-native twist state. We delineate the structural consequences caused by mutations in espin's actin-bundling module. For espin mutation with a severely damaged actin-bundling module, which are implicated in deafness in mice and humans, oriented nematic-like actin filament structures, which strongly impinges on bundle mechanical stiffness. Finally, we examine what makes espin different, via a comparative study of bundles formed by espin and those formed by fascin, a prototypical bundling protein found in functionally different regions of the cell, such as filopodia.

  4. Filament assembly by Spire: key residues and concerted actin binding.

    Science.gov (United States)

    Rasson, Amy S; Bois, Justin S; Pham, Duy Stephen L; Yoo, Haneul; Quinlan, Margot E

    2015-02-27

    The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers.

  5. Actin puts the squeeze on Drosophila glue secretion.

    Science.gov (United States)

    Merrifield, Christien J

    2016-02-01

    An actin filament coat promotes cargo expulsion from large exocytosing vesicles, but the mechanisms of coat formation and force generation have been poorly characterized. Elegant imaging studies of the Drosophila melanogaster salivary gland now reveal how actin and myosin are recruited, and show that myosin II forms a contractile 'cage' that facilitates exocytosis.

  6. Actin growth profile in clathrin-mediated endocytosis

    Science.gov (United States)

    Tweten, D. J.; Bayly, P. V.; Carlsson, A. E.

    2017-05-01

    Clathrin-mediated endocytosis in yeast is driven by a protein patch containing close to 100 different types of proteins. Among the proteins are 5000 -10 000 copies of polymerized actin, and successful endocytosis requires growth of the actin network. Since it is not known exactly how actin network growth drives endocytosis, we calculate the spatial distribution of actin growth required to generate the force that drives the process. First, we establish the force distribution that must be supplied by actin growth, by combining membrane-bending profiles obtained via electron microscopy with established theories of membrane mechanics. Next, we determine the profile of actin growth, using a continuum mechanics approach and an iterative procedure starting with an actin growth profile obtained from a linear analysis. The profile has fairly constant growth outside a central hole of radius 45-50 nm, but very little growth in this hole. This growth profile can reproduce the required forces if the actin shear modulus exceeds 80 kPa, and the growing filaments can exert very large polymerization forces. The growth profile prediction could be tested via electron-microscopy or super-resolution experiments in which the turgor pressure is suddenly turned off.

  7. Interaction of actin and the chloroplast protein import apparatus.

    Science.gov (United States)

    Jouhet, Juliette; Gray, John C

    2009-07-10

    Actin filaments are major components of the cytoskeleton and play numerous essential roles, including chloroplast positioning and plastid stromule movement, in plant cells. Actin is present in pea chloroplast envelope membrane preparations and is localized at the surface of the chloroplasts, as shown by agglutination of intact isolated chloroplasts by antibodies to actin. To identify chloroplast envelope proteins involved in actin binding, we have carried out actin co-immunoprecipitation and co-sedimentation experiments on detergent-solubilized pea chloroplast envelope membranes. Proteins co-immunoprecipitated with actin were identified by mass spectrometry and by Western blotting and included the Toc159, Toc75, Toc34, and Tic110 components of the TOC-TIC protein import apparatus. A direct interaction of actin with Escherichia coli-expressed Toc159, but not Toc33, was shown by co-sedimentation experiments, suggesting that Toc159 is the component of the TOC complex that interacts with actin on the cytosolic side of the outer envelope membrane. The physiological significance of this interaction is unknown, but it may play a role in the import of nuclear-encoded photosynthesis proteins.

  8. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin

    Science.gov (United States)

    Liu, Yao; Zhu, Wenhan; Tan, Yunhao; Nakayasu, Ernesto S.; Staiger, Christopher J.

    2017-01-01

    Legionella pneumophila, the etiological agent of Legionnaires’ disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen. PMID:28129393

  9. Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton

    Science.gov (United States)

    Sattlegger, Evelyn; Chernova, Tatiana A.; Gogoi, Neeku M.; Pillai, Indu V.; Chernoff, Yury O.; Munn, Alan L.

    2014-01-01

    Classic functions of the actin cytoskeleton include control of cell size and shape and the internal organisation of cells. These functions are manifest in cellular processes of fundamental importance throughout biology such as the generation of cell polarity, cell migration, cell adhesion and cell division. However, studies in the unicellular model eukaryote Saccharomyces cerevisiae (Baker's yeast) are giving insights into other functions in which the actin cytoskeleton plays a critical role. These include endocytosis, control of protein translation and determination of protein 3-dimensional shape (especially conversion of normal cellular proteins into prions). Here we present a concise overview of these new "moonlighting" roles for the actin cytoskeleton and how some of these roles might lie at the heart of important molecular switches. This is an exciting time for researchers interested in the actin cytoskeleton. We show here how studies of actin are leading us into many new and exciting realms at the interface of genetics, biochemistry and cell biology. While many of the pioneering studies have been conducted using yeast, the conservation of the actin cytoskeleton and its component proteins throughout eukaryotes suggests that these new roles for the actin cytoskeleton may not be restricted to yeast cells but rather may reflect new roles for the actin cytoskeleton of all eukaryotes. PMID:25138357

  10. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    Science.gov (United States)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  11. Dynamics of actin evolution in dinoflagellates.

    Science.gov (United States)

    Kim, Sunju; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F

    2011-04-01

    Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop

  12. Structural Modeling and Molecular Dynamics Simulation of the Actin Filament

    Energy Technology Data Exchange (ETDEWEB)

    Splettstoesser, Thomas [University of Heidelberg; Holmes, Kenneth [Max Planck Institute, Heidelberg, Germany; Noe, Frank [DFG Research Center Matheon, FU Berlin, Germany; Smith, Jeremy C [ORNL

    2011-01-01

    Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.

  13. Photodynamic therapy: treatment of choice for actinic cheilitis?

    Science.gov (United States)

    Rossi, R; Assad, G Bani; Buggiani, G; Lotti, T

    2008-01-01

    The major therapeutic approaches (5-fluorouracil, imiquimod, vermilionectomy, and CO(2) Laser ablation) for actinic cheilitis are aimed at avoiding and preventing a malignant transformation into invasive squamous cell carcinoma via destruction/removal of the damaged epithelium. Recently, photodynamic therapy (PDT) has been introduced as a therapeutic modality for epithelial skin tumors, with good efficacy/safety profile and good cosmetic results. Regarding actinic cheilitis, PDT could be considered a new therapeutic option? The target of our study was to evaluate the efficacy and tolerability of PDT in actinic cheilitis, using a methyl-ester of aminolevulinic acid (MAL) as topical photosensitizing agent and controlled the effects of the therapy for a 30-month follow-up period. MAL-PDT seems to be the ideal treatment for actinic cheilitis and other actinic keratosis, especially on exposed parts such as the face, joining tolerability and clinical efficacy with an excellent cosmetic outcome.

  14. Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH.

    Science.gov (United States)

    Normoyle, Kieran P M; Brieher, William M

    2012-10-12

    Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization.

  15. Cyclase-associated Protein (CAP) Acts Directly on F-actin to Accelerate Cofilin-mediated Actin Severing across the Range of Physiological pH*

    Science.gov (United States)

    Normoyle, Kieran P. M.; Brieher, William M.

    2012-01-01

    Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization. PMID:22904322

  16. Holding back the microfilament--structural insights into actin and the actin-monomer-binding proteins of apicomplexan parasites.

    Science.gov (United States)

    Olshina, Maya A; Wong, Wilson; Baum, Jake

    2012-05-01

    Parasites from the phylum Apicomplexa are responsible for several major diseases of man, including malaria and toxoplasmosis. These highly motile protozoa use a conserved actomyosin-based mode of movement to power tissue traversal and host cell invasion. The mode termed as 'gliding motility' relies on the dynamic turnover of actin, whose polymerisation state is controlled by a markedly limited number of identifiable regulators when compared with other eukaryotic cells. Recent studies of apicomplexan actin regulator structure-in particular those of the core triad of monomer-binding proteins, actin-depolymerising factor/cofilin, cyclase-associated protein/Srv2, and profilin-have provided new insights into possible mechanisms of actin regulation in parasite cells, highlighting divergent structural features and functions to regulators from other cellular systems. Furthermore, the unusual nature of apicomplexan actin itself is increasingly coming into the spotlight. Here, we review recent advances in understanding of the structure and function of actin and its regulators in apicomplexan parasites. In particular we explore the paradox between there being an abundance of unpolymerised actin, its having a seemingly increased potential to form filaments relative to vertebrate actin, and the apparent lack of visible, stable filaments in parasite cells.

  17. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila.

    Science.gov (United States)

    Fernández, Beatriz García; Gaspar, Pedro; Brás-Pereira, Catarina; Jezowska, Barbara; Rebelo, Sofia Raquel; Janody, Florence

    2011-06-01

    The conserved Hippo tumor suppressor pathway is a key kinase cascade that controls tissue growth by regulating the nuclear import and activity of the transcription co-activator Yorkie. Here, we report that the actin-Capping Protein αβ heterodimer, which regulates actin polymerization, also functions to suppress inappropriate tissue growth by inhibiting Yorkie activity. Loss of Capping Protein activity results in abnormal accumulation of apical F-actin, reduced Hippo pathway activity and the ectopic expression of several Yorkie target genes that promote cell survival and proliferation. Reduction of two other actin-regulatory proteins, Cofilin and the cyclase-associated protein Capulet, cause abnormal F-actin accumulation, but only the loss of Capulet, like that of Capping Protein, induces ectopic Yorkie activity. Interestingly, F-actin also accumulates abnormally when Hippo pathway activity is reduced or abolished, independently of Yorkie activity, whereas overexpression of the Hippo pathway component expanded can partially reverse the abnormal accumulation of F-actin in cells depleted for Capping Protein. Taken together, these findings indicate a novel interplay between Hippo pathway activity and actin filament dynamics that is essential for normal growth control.

  18. Toxoplasma gondii profilin acts primarily to sequester G-actin while formins efficiently nucleate actin filament formation in vitro.

    Science.gov (United States)

    Skillman, Kristen M; Daher, Wassim; Ma, Christopher I; Soldati-Favre, Dominique; Sibley, L David

    2012-03-27

    Apicomplexan parasites employ gliding motility that depends on the polymerization of parasite actin filaments for host cell entry. Despite this requirement, parasite actin remains almost entirely unpolymerized at steady state; formation of filaments required for motility relies on a small repertoire of actin-binding proteins. Previous studies have shown that apicomplexan formins and profilin exhibit canonical functions on heterologous actins from higher eukaryotes; however, their biochemical properties on parasite actins are unknown. We therefore analyzed the impact of T. gondii profilin (TgPRF) and FH1-FH2 domains of two formin isoforms in T. gondii (TgFRM1 and TgFRM2) on the polymerization of T. gondii actin (TgACTI). Our findings based on in vitro assays demonstrate that TgFRM1-FH1-FH2 and TgFRM2-FH1-FH2 dramatically enhanced TgACTI polymerization in the absence of profilin, making them the sole protein factors known to initiate polymerization of this normally unstable actin. In addition, T. gondii formin domains were shown to both initiate polymerization and induce bundling of TgACTI filaments; however, they did not rely on TgPRF for these activities. In contrast, TgPRF sequestered TgACTI monomers, thus inhibiting polymerization even in the presence of formins. Collectively, these findings provide insight into the unusual control mechanisms of actin dynamics within the parasite.

  19. Actin-Depolymerizing Factor2-Mediated Actin Dynamics Are Essential for Root-Knot Nematode Infection of Arabidopsis

    NARCIS (Netherlands)

    Clement, M.; Ketelaar, T.; Rodiuc, N.; Banora, M.Y.; Smertenko, A.; Engler, G.; Abad, P.; Hussey, P.J.; Almeida Engler, De J.

    2009-01-01

    Reorganization of the actin and microtubule networks is known to occur in targeted vascular parenchymal root cells upon infection with the nematode Meloidogyne incognita. Here, we show that actin-depolymerizing factor (ADF) is upregulated in the giant feeding cells of Arabidopsis thaliana that devel

  20. Actin-Depolymerizing Factor2-Mediated Actin Dynamics Are Essential for Root-Knot Nematode Infection of Arabidopsis

    NARCIS (Netherlands)

    Clement, M.; Ketelaar, T.; Rodiuc, N.; Banora, M.Y.; Smertenko, A.; Engler, G.; Abad, P.; Hussey, P.J.; Almeida Engler, De J.

    2009-01-01

    Reorganization of the actin and microtubule networks is known to occur in targeted vascular parenchymal root cells upon infection with the nematode Meloidogyne incognita. Here, we show that actin-depolymerizing factor (ADF) is upregulated in the giant feeding cells of Arabidopsis thaliana that

  1. Mechanical properties of branched actin filaments

    CERN Document Server

    Razbin, Mohammadhosein; Benetatos, Panayotis; Zippelius, Annette

    2015-01-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measur...

  2. Titin-Actin Interaction: PEVK-Actin-Based Viscosity in a Large Animal

    Directory of Open Access Journals (Sweden)

    Charles S. Chung

    2011-01-01

    Full Text Available Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio ~0.5–1.0 than mice (N2BA:N2B ratio ~0.2. To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL to SL of 2.15 μm. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1–400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 μm and by 50% at 2.25 μm, suggesting a SL-dependent nature of viscosity that might prevent SL ``overshoot’’ at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.

  3. Visualization of endothelial actin cytoskeleton in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Alessia Fraccaroli

    Full Text Available Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs, orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs, enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation.

  4. Drebrin attenuates the interaction between actin and myosin-V.

    Science.gov (United States)

    Ishikawa, Ryoki; Katoh, Kaoru; Takahashi, Ayumi; Xie, Ce; Oseki, Koushi; Watanabe, Michitoshi; Igarashi, Michihiro; Nakamura, Akio; Kohama, Kazuhiro

    2007-07-27

    Drebrin-A is an actin-binding protein localized in the dendritic spines of mature neurons, and has been suggested to affect spine morphology [K. Hayashi, T. Shirao, Change in the shape of dendritic spines caused by overexpression of drebrin in cultured cortical neurons, J. Neurosci. 19 (1999) 3918-3925]. However, no biochemical analysis of drebrin-A has yet been reported. In this study, we purified drebrin-A using a bacterial expression system, and characterized it in vitro. Drebrin-A bound to actin filaments with a stoichiometry of one drebrin molecule to 5-6 actin molecules. Furthermore, drebrin-A decreased the Mg-ATPase activity of myosin V. In vitro motility assay revealed that the attachment of F-actin to glass surface coated with myosin-V was decreased by drebrin-A, but once F-actin attached to the surface, the sliding speed of F-actin was unaffected by the presence of drebrin A. These findings suggest that drebrin-A may affect spine dynamics, vesicle transport, and other myosin-V-driven motility in neurons through attenuating the interaction between actin and myosin-V.

  5. Concentration profiles of actin-binding molecules in lamellipodia

    Science.gov (United States)

    Falcke, Martin

    2016-04-01

    Motile cells form lamellipodia in the direction of motion, which are flat membrane protrusions containing an actin filament network. The network flows rearward relative to the leading edge of the lamellipodium due to actin polymerization at the front. Thus, actin binding molecules are subject to transport towards the rear of the cell in the bound state and diffuse freely in the unbound state. We analyze this reaction-diffusion-advection process with respect to the concentration profiles of these species and provide an analytic approximation for them. Network flow may cause a depletion zone of actin binding molecules close to the leading edge. The existence of such zone depends on the free molecule concentration in the cell body, on the ratio of the diffusion length to the distance bound molecules travel rearward with the flow before dissociating, and the ratio of the diffusion length to the width of the region with network flow and actin binding. Our calculations suggest the existence of depletion zones for the F-actin cross-linkers filamin and α-actinin in fish keratocytes (and other cell types), which is in line with the small elastic moduli of the F-actin network close to the leading edge found in measurements of the force motile cells are able to exert.

  6. Interconnection between actin cytoskeleton and plant defense signaling.

    Science.gov (United States)

    Janda, Martin; Matoušková, Jindřiška; Burketová, Lenka; Valentová, Olga

    2014-01-01

    Actin cytoskeleton is the fundamental structural component of eukaryotic cells. It has a role in numerous elementary cellular processes such as reproduction, development and also in response to abiotic and biotic stimuli. Remarkably, the role of actin cytoskeleton in plant response to pathogens is getting to be under magnifying glass. Based on microscopic studies, most of the data showed, that actin plays an important role in formation of physiological barrier in the site of infection. Actin dynamics is involved in the transport of antimicrobial compounds and cell wall fortifying components (e.g. callose) to the site of infection. Also the role in PTI (pathogen triggered immunity) and ETI (effector triggered immunity) was recently indicated. On the other hand much less is known about the transcriptome reprogramming upon changes in actin dynamics. Our recently published results showed that drugs inhibiting actin polymerization (latrunculin B, cytochalasin E) cause the induction of genes which are involved in salicylic acid (SA) signaling pathway. In this addendum we would like to highlight in more details current state of knowledge concerning the involvement of actin dynamics in plant defense signaling.

  7. Liquid crystal domains and thixotropy of filamentous actin suspensions.

    Science.gov (United States)

    Kerst, A; Chmielewski, C; Livesay, C; Buxbaum, R E; Heidemann, S R

    1990-06-01

    The thixotropic properties of filamentous actin suspensions were examined by a step-function shearing protocol. Samples of purified filamentous actin were sheared at 0.2 sec-1 in a cone and plate rheometer. We noted a sharp stress overshoot upon the initiation of shear, indicative of a gel state, and a nearly instantaneous drop to zero stress upon cessation of shear. Stress-overshoot recovery was almost complete after 5 min of "rest" before samples were again sheared at 0.2 sec-1. Overshoot recovery increased linearly with the square root of rest time, suggesting that gel-state recovery is diffusion limited. Actin suspensions subjected to oscillatory shearing at frequencies from 0.003 to 30 radians/sec confirmed the existence of a 5-min time scale in the gel, similar to that for stress-overshoot recovery. Flow of filamentous actin was visualized by polarized light observations. Actin from 6 mg/ml to 20 mg/ml showed the "polycrystalline" texture of birefringence typical for liquid crystal structure. At shear rates less than 1 sec-1, flow occurred by the relative movement of irregular, roughly ellipsoidal actin domains 40-140 microns long; the appearance was similar to moving ice floes. At shear rates greater than 1 sec-1, domains decreased in size, possibly by frictional interactions among domains. Eventually domains flow in a "river" of actin aligned by the flow. Our observations confirm our previous domain-friction model for actin rheology. The similarities between the unusual flow properties of actin and cytoplasm argue that cytoplasm also may flow as domains.

  8. Role of actin in auxin transport and transduction of gravity

    Science.gov (United States)

    Hu, S.; Basu, S.; Brady, S.; Muday, G.

    Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)

  9. Analysis of actinic flux profiles measured from an ozonesonde balloon

    Science.gov (United States)

    Wang, P.; Allaart, M.; Knap, W. H.; Stammes, P.

    2015-04-01

    A green light sensor has been developed at KNMI to measure actinic flux profiles using an ozonesonde balloon. In total, 63 launches with ascending and descending profiles were performed between 2006 and 2010. The measured uncalibrated actinic flux profiles are analysed using the Doubling-Adding KNMI (DAK) radiative transfer model. Values of the cloud optical thickness (COT) along the flight track were taken from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Cloud Physical Properties (CPP) product. The impact of clouds on the actinic flux profile is evaluated on the basis of the cloud modification factor (CMF) at the cloud top and cloud base, which is the ratio between the actinic fluxes for cloudy and clear-sky scenes. The impact of clouds on the actinic flux is clearly detected: the largest enhancement occurs at the cloud top due to multiple scattering. The actinic flux decreases almost linearly from cloud top to cloud base. Above the cloud top the actinic flux also increases compared to clear-sky scenes. We find that clouds can increase the actinic flux to 2.3 times the clear-sky value at cloud top and decrease it to about 0.05 at cloud base. The relationship between CMF and COT agrees well with DAK simulations, except for a few outliers. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost. It is worth further developing the instrument and launching it together with atmospheric chemistry composition sensors.

  10. Actin-based dynamics during spermatogenesis and its significance

    Institute of Scientific and Technical Information of China (English)

    XIAO Xiang; YANG Wan-xi

    2007-01-01

    Actin can be found in all kinds ofeukaryotic cells, maintaining their shapes and motilities, while its dynamics in sperm cells is understood less than their nonmuscle somatic cell counterparts. Spermatogenesis is a complicated process, resulting in the production of mature sperm from primordial germ cell. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. It was proved that all mammalian sperm contain actin, and that F-actin may play an important role during spermatogenesis, especially in nuclear shaping. Recently a new model for sperm head elongation based on the acrosome-acroplaxome-manchette complex has been proposed. In Drosophila, F-actin assembly is supposed to be very crucial during individualization. In this mini-review, we provide an overview of the structure, function, and regulation characteristics of actin cytoskeleton, and a summary of the current status of research of actin-based structure and movement is also provided, with emphasis on the role of actins in sperm head shaping during spermiogenesis and the cell junction dynamics in the testis. Research of the Sertoli ectoplasmic specialization is in the spotlight, which is a testis-specific actin-based junction very important for the movement of germ cells across the epithelium. Study of the molecular architecture and the regulating mechanism of the Sertoli ectoplasmic specialization has become an intriguing field. All this may lead to a new strategy for male infertility and,at the same time, a novel idea may result in devising much safer contraception with high efficiency. It is hoped that the advances listed in this review would give developmental and morphological researchers a favorable investigating outline and could help to enlarge the view of new strategies and models for actin dynamics during spermatogenesis.

  11. Actin purification from a gel of rat brain extracts.

    Science.gov (United States)

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles.

  12. Disease causing mutations of troponin alter regulated actin state distributions.

    Science.gov (United States)

    Chalovich, Joseph M

    2012-12-01

    Striated muscle contraction is regulated primarily through the action of tropomyosin and troponin that are bound to actin. Activation requires Ca(2+) binding to troponin and/or binding of high affinity myosin complexes to actin. Mutations within components of the regulatory complex may lead to familial cardiomyopathies and myopathies. In several cases examined, either physiological or pathological changes in troponin alter the distribution among states of actin-tropomyosin-troponin that differ in their abilities to stimulate myosin ATPase activity. These observations open possibilities for managing disorders of the troponin complex. Furthermore, analyses of mutant forms of troponin give insights into the regulation of striated muscle contraction.

  13. New insights into dynamic actin-based chloroplast photorelocation movement.

    Science.gov (United States)

    Kong, Sam-Geun; Wada, Masamitsu

    2011-09-01

    Chloroplast movement is essential for plants to survive under various environmental light conditions. Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction. Recently, novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement. Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses. This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments, thus providing a basis for reflection on their biochemical activities and functions.

  14. Observations on the actin content of the rabbit myofibril

    Science.gov (United States)

    Corsi, A.; Ronchetti, Ivonne; Cigognetti, Clara

    1966-01-01

    1. On extraction of whole muscle by the procedure of Hasselbach & Schneider (1951), the amount of actin that passes into solution seems to account for little more than 10% of the protein content of the myofibrils. 2. Extraction of isolated myofibrils with suitable media that allow identification and estimation of dissolved proteins seems to give about the same yield of actin (10–13% of the total). 3. A comparatively large residue of myofibrillar components remains after extraction. The amount of actin present in the residue can be only hypothetical. PMID:4290530

  15. Computational defect review for actinic mask inspections

    Science.gov (United States)

    Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram

    2013-04-01

    As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The limitation of 1.35 NA posed by water-based lithography has led to the application of various resolution enhancement techniques (RET), for example, use of strong phase-shifting masks, aggressive OPC and sub-resolution assist features, customized illuminators, etc. The adoption of these RET techniques combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for a mask inspection engineer. Inspecting masks under their actinic-aerial image conditions would detect defects that are more likely to print under those exposure conditions. However, this also makes reviewing such defects in their low-contrast aerial images very challenging. On the other hand, inspecting masks under higher resolution inspection optics would allow for better viewing of defects post-inspection. However, such inspections generally would also detect many more defects, including printable and nuisance, thereby making it difficult to judge which are of real concern for printability on wafer. Often, an inspection engineer may choose to use Aerial and/or high resolution inspection modes depending on where in the process flow the mask is and the specific device-layer characteristics of the mask. Hence, a comprehensive approach is needed in handling defects both post-aerial and post-high resolution inspections. This analysis system is designed for the Applied Materials Aera™ mask inspection platform, all data reported was collected using the Aera.

  16. Biochemistry of Drebrin and Its Binding to Actin Filaments.

    Science.gov (United States)

    Ishikawa, Ryoki

    2017-01-01

    Drebrin is an actin-binding protein mainly expressed in developing neurons and dendritic spine in mature neurons. To understand the functions of drebrin in vivo, we must understand its molecular properties. In this chapter, I will focus on the purification and characterization of drebrin in vitro. Drebrin binds to F-actin with a stoichiometry of 1:5~6 with a K d of 1~3 × 10(-7) M and strongly inhibits the binding of other actin-binding proteins such as tropomyosin, caldesmon, fascin, α-actinin, and cofilin. It also inhibits the activities of myosin-II and myosin-V. These results are discussed in terms of the possible roles of drebrin in the stability, dynamics, and organizations of actin structures in neuronal cells.

  17. Curved trajectories of actin-based motility in two dimensions

    Science.gov (United States)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-05-01

    Recent experiments have reported fascinating geometrical trajectories for actin-based motility of bacteria Listeria monocytogenes and functionalized beads. To understand the physical mechanism for these trajectories, we constructed a phenomenological model to study the motion of an actin-propelled disk in two dimensions. In our model, the force and actin density on the surface of the disk are influenced by the translation and rotation of the disk, which in turn is induced by the asymmetric distributions of those densities. We show that this feedback can destabilize a straight trajectory, leading to circular, S-shape and other geometrical trajectories observed in the experiments through bifurcations in the distributions of the force and actin density. The relation between our model and the models for self-propelled deformable particles is emphasized and discussed.

  18. Roles of Cortactin, an Actin Polymerization Mediator, in Cell Endocytosis

    Institute of Scientific and Technical Information of China (English)

    Li CHEN; Zhi-Wei WANG; Jian-wei ZHU; Xi ZHAN

    2006-01-01

    Cortactin, an actin-binding protein and a substrate of Src, is encoded by the EMS 1 oncogene.Cortactin is known to activate Arp2/3 complex-mediated actin polymerization and interact with dynamin, a large GTPase and proline rich domain-containing protein. Transferrin endocytosis was significantly reduced in cells by knock-down of cortactin expression as well as in vivo introduction of cortactin immunoreagents.Cortactin-dynamin interaction displayed morphologically dynamic co-distribution with a change in the endocytosis level in cells treated with an actin depolymerization reagent, cytochalasin D. In an in vitro beads assay, a branched actin network was recruited onto dynamin-coated beads in a cortactin Src homology domain 3 (SH3)-dependent manner. In addition, cortactin was found to function in the late stage of clathrin coated vesicle formation.Taken together, cortactin is required for optimal clathrin mediated endocytosis in a dynamin directed manner.

  19. Tracing myoblast fusion in Drosophila embryos by fluorescent actin probes.

    Science.gov (United States)

    Haralalka, Shruti; Abmayr, Susan M

    2015-01-01

    Myoblast fusion in the Drosophila embryo is a highly elaborate process that is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs). It occurs through an asymmetric event in which actin foci assemble in the FCMs at points of cell-cell contact and direct the formation of membrane protrusions that drive fusion. Herein, we describe the approach that we have used to image in living embryos the highly dynamic actin foci and actin-rich projections that precede myoblast fusion. We discuss resources currently available for imaging actin and myogenesis, and our experience with these resources if available. This technical report is not intended to be comprehensive on providing instruction on standard microscopy practices or software utilization. However, we discuss microscope parameters that we have used in data collection, and our experience with image processing tools in data analysis.

  20. Antenna mechanism of length control of actin cables

    CERN Document Server

    Mohapatra, Lishibanya; Kondev, Jane

    2014-01-01

    Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This antenna mechanism involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentra...

  1. Growing actin networks regulated by obstacle size and shape

    Science.gov (United States)

    Gong, Bo; Lin, Ji; Qian, Jin

    2017-01-01

    Growing actin networks provide the driving force for the motility of cells and intracellular pathogens. Based on the molecular-level processes of actin polymerization, branching, capping, and depolymerization, we have developed a modeling framework to simulate the stochastic and cooperative behaviors of growing actin networks in propelling obstacles, with an emphasis on the size and shape effects on work capacity and filament orientation in the growing process. Our results show that the characteristic size of obstacles changes the protrusion power per unit length, without influencing the orientation distribution of actin filaments in growing networks. In contrast, the geometry of obstacles has a profound effect on filament patterning, which influences the orientation of filaments differently when the drag coefficient of environment is small, intermediate, or large. We also discuss the role of various parameters, such as the aspect ratio of obstacles, branching rate, and capping rate, in affecting the protrusion power of network growth.

  2. Actinic cheilitis with a familial pattern: An unusual case

    Directory of Open Access Journals (Sweden)

    Surekha Murthi

    2014-01-01

    Full Text Available Actinic cheilitis is a chronic inflammatory disorder of the lip, affecting the lower lip mainly, caused by cumulative long-term effects of ultraviolet (UV radiation in sunlight. It is a premalignant condition with a malignancy potential of 6-10%. It is reported that it almost exclusively occurs in fair-skinned people and those who work outdoors. However, it has recently been reported that actinic cheilitis is not exclusive to fair-skinned people. It is most common in middle-aged or older male patients. Diagnosis of actinic cheilitis is mainly based on demographical, clinical, and histopathological findings. Factors such as socioeconomic status, smoking, dietary habits, and genetic predisposition are also associated with lip cancer. Here, we present a case of actinic cheilitis in two siblings and in their mother, showing a familial pattern. An incisional biopsy of the lower lip in the mother showed severe dysplastic changes indicating transformation to squamous cell carcinoma.

  3. Nanosecond electric pulses trigger actin responses in plant cells.

    Science.gov (United States)

    Berghöfer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H; Frey, Wolfgang; Nick, Peter

    2009-09-25

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  4. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent.

    Science.gov (United States)

    Kim, Hak Rim; Gallant, Cynthia; Leavis, Paul C; Gunst, Susan J; Morgan, Kathleen G

    2008-09-01

    Dynamic remodeling of the actin cytoskeleton plays an essential role in the migration and proliferation of vascular smooth muscle cells. It has been suggested that actin remodeling may also play an important functional role in nonmigrating, nonproliferating differentiated vascular smooth muscle (dVSM). In the present study, we show that contractile agonists increase the net polymerization of actin in dVSM, as measured by the differential ultracentrifugation of vascular smooth muscle tissue and the costaining of single freshly dissociated cells with fluorescent probes specific for globular and filamentous actin. Furthermore, induced alterations of the actin polymerization state, as well as actin decoy peptides, inhibit contractility in a stimulus-dependent manner. Latrunculin pretreatment or actin decoy peptides significantly inhibit contractility induced by a phorbol ester or an alpha-agonist, but these procedures have no effect on contractions induced by KCl. Aorta dVSM expresses alpha-smooth muscle actin, beta-actin, nonmuscle gamma-actin, and smooth muscle gamma-actin. The incorporation of isoform-specific cell-permeant synthetic actin decoy peptides, as well as isoform-specific probing of cell fractions and two-dimensional gels, demonstrates that actin remodeling during alpha-agonist contractions involves the remodeling of primarily gamma-actin and, to a lesser extent, beta-actin. Taken together, these results show that net isoform- and agonist-dependent increases in actin polymerization regulate vascular contractility.

  5. The role of actin networks in cellular mechanosensing

    Science.gov (United States)

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  6. Computational Analysis of the Transcriptional Regulation of the Actin Family

    Institute of Scientific and Technical Information of China (English)

    郑家顺; 吴加金; 孙之荣

    2002-01-01

    Transcriptional regulation is a very important regulatory step in the regulation of gene expression. Transcription factors (TFs) play an important role in controlling the temporal special specificity of gene expression. The regulation area of actin genes was analyzed statistically to predict the transcription factor binding sites in the regulatory area. A group of transcription factors located in most of the sequences is believed to play an important role in co-regulating the expression of actin genes.

  7. Polymerization of fluorescent analogue of plant actin in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Maize pollen actin has been labeled with Oregon Green 488 iodoacetamide. A yield of 3 mg fluorescent actin analogue has been obtained from 10 mg of maize pollen actin, which is 99% in purity and the dye/protein ratio is 72%. In the presence of Mg2+ and K+, the fluorescent actin analogue polymerized into filaments in vitro. Green fluorescent filaments were observed when the fluorescent actin was introduced into living plant cells by microinjection, indicating that the fluorescent actin analogue functions similarly to the native actin.

  8. The core and conserved role of MAL is homeostatic regulation of actin levels.

    Science.gov (United States)

    Salvany, Lara; Muller, Julius; Guccione, Ernesto; Rørth, Pernille

    2014-05-15

    The transcription cofactor MAL is regulated by free actin levels and thus by actin dynamics. MAL, together with its DNA-binding partner, SRF, is required for invasive cell migration and in experimental metastasis. Although MAL/SRF has many targets, we provide genetic evidence in both Drosophila and human cellular models that actin is the key target that must be regulated by MAL/SRF for invasive cell migration. By regulating MAL/SRF activity, actin protein feeds back on production of actin mRNA to ensure sufficient supply of actin. This constitutes a dedicated homeostatic feedback system that provides a foundation for cellular actin dynamics.

  9. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Gomibuchi, Yuki [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Uyeda, Taro Q.P. [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Wakabayashi, Takeyuki, E-mail: tw007@nasu.bio.teikyo-u.ac.jp [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Department of Judo Therapy, Faculty of Medical Technology, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan)

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA

  10. The Role of Actin Cytoskeleton in Memory Formation in Amygdala

    Directory of Open Access Journals (Sweden)

    Raphael eLamprecht

    2016-03-01

    Full Text Available The central, lateral and basolateral amygdala nuclei are essential for the formation of long-term memories including emotional and drug-related memories. The study of cellular and molecular mechanisms underpinning memory in amygdala may shed light on the formation of memory and on fear and addiction-related disorders. A challenge is to identify molecules activated by learning that subserve cellular changes needed for memory formation and maintenance in amygdala. Recent studies show that activation of synaptic receptors during fear and drug-related learning leads to alteration in actin cytoskeleton dynamics and structure in amygdala. Such changes in actin cytoskeleton in amygdala are essential for fear and drug-related memories formation. Moreover, the actin cytoskeleton subserves, after learning, changes in neuronal morphogenesis and glutamate receptors trafficking in amygdala. These cellular events are involved in fear and drug-related memories formation. Actin polymerization is also needed for the maintenance of drug-associated memories in amygdala. Thus, the actin cytoskeleton is a key mediator between receptor activation during learning and cellular changes subserving long-term memory in amygdala. The actin cytoskeleton may serve as a target for pharmacological treatment of fear memory associated with fear and anxiety disorders and drug addiction to prevent the debilitating consequences of these diseases.

  11. Effect of temperature on the mechanism of actin polymerization.

    Science.gov (United States)

    Zimmerle, C T; Frieden, C

    1986-10-21

    The rate of the Mg2+-induced polymerization of rabbit skeletal muscle G-actin has been measured as as function of temperature at pH 8 by using various concentrations of Mg2+, Ca2+, and G-actin. A polymerization mechanism similar to that proposed at this pH [Frieden, C. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6513-6517] was found to fit the data from 10 to 35 degrees C. From the kinetic data, no evidence for actin filament fragmentation was found at any temperature. Dimer formation is the most temperature-sensitive step, with the ratio of forward and reverse rate constants changing 4 orders of magnitude from 10 to 35 degrees C. Over this temperature change, all other ratios of forward and reverse rate constants change 7-fold or less, and the critical concentration remains nearly constant. The reversible Mg2+-induced isomerization of G-actin monomer occurs to a greater extent with increasing temperature, measured either by using N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled actin or by simulation of the full-time course of the polymerization reaction. This is partially due to Mg2+ binding becoming tighter, and Ca2+ binding becoming weaker, with increasing temperature. Elongation rates from the filament-pointed end, determined by using actin nucleated by plasma gelsolin, show a temperature dependence slightly larger than that expected for a diffusion-limited reaction.

  12. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis.

    Science.gov (United States)

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris Kc; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis.

  13. In vivo imaging and characterization of actin microridges.

    Directory of Open Access Journals (Sweden)

    Pui-ying Lam

    Full Text Available Actin microridges form labyrinth like patterns on superficial epithelial cells across animal species. This highly organized assembly has been implicated in mucus retention and in the mechanical structure of mucosal surfaces, however the mechanisms that regulate actin microridges remain largely unknown. Here we characterize the composition and dynamics of actin microridges on the surface of zebrafish larvae using live imaging. Microridges contain phospho-tyrosine, cortactin and VASP, but not focal adhesion kinase. Time-lapse imaging reveals dynamic changes in the length and branching of microridges in intact animals. Transient perturbation of the microridge pattern occurs before cell division with rapid re-assembly during and after cytokinesis. Microridge assembly is maintained with constitutive activation of Rho or inhibition of myosin II activity. However, expression of dominant negative RhoA or Rac alters microridge organization, with an increase in distance between microridges. Latrunculin A treatment and photoconversion experiments suggest that the F-actin filaments are actively treadmilling in microridges. Accordingly, inhibition of Arp2/3 or PI3K signaling impairs microridge structure and length. Taken together, actin microridges in zebrafish represent a tractable in vivo model to probe pattern formation and dissect Arp2/3-mediated actin dynamics in vivo.

  14. Actin network architecture and elasticity in lamellipodia of melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Frank [Medical Data Services/Biostatistics, Boehringer Ingelheim Pharma GmbH and Co KG, D-88397 Biberach, Baden-Wuerttemberg (Germany); Ananthakrishnan, Revathi [Laboratory of Cell and Computational Biology, Section of Molecular and Cellular Biology, University of California at Davis, Davis, CA 95616 (United States); Eckel, Stefanie [Institute of Stochastics, Ulm University, D-89069 Ulm (Germany); Schmidt, Hendrik [France Telecom R and D RESA/NET/NSO, F-92131 Issy les Moulineaux, Cedex 9, France (France); Kaes, Josef [Division of Soft Matter Physics, Department of Physics, University of Leipzig, D-04103 Leipzig (Germany); Svitkina, Tatyana [Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Schmidt, Volker [Institute of Stochastics, Ulm University, D-89069 Ulm (Germany); Beil, Michael [Department of Internal Medicine I, University Hospital, D-89070 Ulm (Germany)

    2007-11-15

    Cell migration is an essential element in the immune response on the one hand and in cancer metastasis on the other hand. The architecture of the actin network in lamellipodia determines the elasticity of the leading edge and contributes to the regulation of migration. We have implemented a new method for the analysis of actin network morphology in the lamellipodia of B16F1 mouse melanoma cells. This method is based on fitting multi-layer geometrical models to electron microscopy images of lamellipodial actin networks. The chosen model and F-actin concentrations are thereby deterministic parameters. Using this approach, we identified distinct structural features of actin networks in lamellipodia. The mesh size which defines the elasticity of the lamellipodium was determined as 34 and 78 nm for a two-layer network at a total actin concentration of 9.6 mg ml{sup -1}. These data lead to estimates of the low frequency elastic shear moduli which differ by more than a magnitude between the two layers. These findings indicate an anisotropic shear modulus of the lamellipodium with the stiffer layer being the dominant structure against deformations in the lamellipodial plane and the softer layer contributing significantly at lower indentations perpendicular to the lamellipodial plane. This combination creates a material that is optimal for pushing forward as well as squeezing through narrow spaces.

  15. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.

    Science.gov (United States)

    Lomakin, Alexis J; Lee, Kun-Chun; Han, Sangyoon J; Bui, Duyen A; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-11-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient.

  16. Effects of latrunculin B on the actin cytoskeleton and hyphal growth in Phytophthora infestans.

    Science.gov (United States)

    Ketelaar, Tijs; Meijer, Harold J G; Spiekerman, Marjolein; Weide, Rob; Govers, Francine

    2012-12-01

    The actin cytoskeleton is conserved in all eukaryotes, but its functions vary among different organisms. In oomycetes, the function of the actin cytoskeleton has received relatively little attention. We have performed a bioinformatics study and show that oomycete actin genes fall within a distinct clade that is divergent from plant, fungal and vertebrate actin genes. To obtain a better understanding of the functions of the actin cytoskeleton in hyphal growth of oomycetes, we studied the actin organization in Phytophthora infestans hyphae and the consequences of treatment with the actin depolymerising drug latrunculin B (latB). This revealed that latB treatment causes a concentration dependent inhibition of colony expansion and aberrant hyphal growth. The most obvious aberrations observed upon treatment with 0.1 μM latB were increased hyphal branching and irregular tube diameters whereas at higher concentrations latB (0.5 and 1 μM) tips of expanding hyphae changed into balloon-like shapes. This aberrant growth correlated with changes in the organization of the actin cytoskeleton. In untreated hyphae, staining with fluorescently tagged phalloidin revealed two populations of actin filaments: long, axially oriented actin filament cables and cortical actin filament plaques. Two hyphal subtypes were recognized, one containing only plaques and the other containing both cables and plaques. In the latter, some hyphae had an apical zone without actin filament plaques. Upon latB treatment, the proportion of hyphae without actin filament cables increased and there were more hyphae with a short apical zone without actin filament plaques. In general, actin filament plaques were more resilient against actin depolymerisation than actin filament cables. Besides disturbing hyphal growth and actin organization, actin depolymerisation also affected the positioning of nuclei. In the presence of latB, the distance between nuclei and the hyphal tip decreased, suggesting that the actin

  17. Identification of Obscure yet Conserved Actin-Associated Proteins in Giardia lamblia

    OpenAIRE

    Paredez, Alexander R.; Nayeri, Arash; Xu, Jennifer W.; Krtková, Jana; Cande, W. Zacheus

    2014-01-01

    Consistent with its proposed status as an early branching eukaryote, Giardia has the most divergent actin of any eukaryote and lacks core actin regulators. Although conserved actin-binding proteins are missing from Giardia, its actin is utilized similarly to that of other eukaryotes and functions in core cellular processes such as cellular organization, endocytosis, and cytokinesis. We set out to identify actin-binding proteins in Giardia using affinity purification coupled with mass spectros...

  18. Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis

    OpenAIRE

    Kadota, Akeo; Yamada, Noboru; Suetsugu, Noriyuki; Hirose, Mana; Saito, Chieko; Shoda, Keiko; Ichikawa, Satoshi; Kagawa, Takatoshi; Nakano, Akihiko; Wada, Masamitsu

    2009-01-01

    Organelle movement is essential for proper function of living cells. In plants, these movements generally depend on actin filaments, but the underlying mechanism is unknown. Here, in Arabidopsis, we identify associations of short actin filaments along the chloroplast periphery on the plasma membrane side associated with chloroplast photorelocation and anchoring to the plasma membrane. We have termed these chloroplast-actin filaments (cp-actin filaments). Cp-actin filaments emerge from the chl...

  19. Multilayer defects nucleated by substrate pits: a comparison of actinic inspection and non-actinic inspection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Barty, A; Goldberg, K; Kearney, P; Rekawa, S; LaFontaine, B; Wood, O; Taylor, J S; Han, H

    2006-10-02

    The production of defect-free mask blanks remains a key challenge for EUV lithography. Mask-blank inspection tools must be able to accurately detect all critical defects while simultaneously having the minimum possible false-positive detection rate. We have recently observed and here report the identification of bump-type buried substrate defects, that were below the detection limit of a non-actinic (i.e. non-EUV) in inspection tool. Presently, the occurrence inspection of pit-type defects, their printability, and their detectability with actinic techniques and non-actinic commercial tools, has become a significant concern. We believe that the most successful strategy for the development of effective non-actinic mask inspection tools will involve the careful cross-correlation with actinic inspection and lithographic printing. In this way, the true efficacy of prototype inspection tools now under development can be studied quantitatively against relevant benchmarks. To this end we have developed a dual-mode actinic mask inspection system capable of scanning mask blanks for defects (with simultaneous EUV bright-field and dark-field detection) and imaging those same defects with a zoneplate microscope that matches or exceeds the resolution of EUV steppers.

  20. Actin-binding proteins implicated in the formation of the punctate actin foci stimulated by the self-incompatibility response in Papaver.

    Science.gov (United States)

    Poulter, Natalie S; Staiger, Christopher J; Rappoport, Joshua Z; Franklin-Tong, Vernonica E

    2010-03-01

    The actin cytoskeleton is a key target for signaling networks and plays a central role in translating signals into cellular responses in eukaryotic cells. Self-incompatibility (SI) is an important mechanism responsible for preventing self-fertilization. The SI system of Papaver rhoeas pollen involves a Ca(2+)-dependent signaling network, including massive actin depolymerization as one of the earliest cellular responses, followed by the formation of large actin foci. However, no analysis of these structures, which appear to be aggregates of filamentous (F-)actin based on phalloidin staining, has been carried out to date. Here, we characterize and quantify the formation of F-actin foci in incompatible Papaver pollen tubes over time. The F-actin foci increase in size over time, and we provide evidence that their formation requires actin polymerization. Once formed, these SI-induced structures are unusually stable, being resistant to treatments with latrunculin B. Furthermore, their formation is associated with changes in the intracellular localization of two actin-binding proteins, cyclase-associated protein and actin-depolymerizing factor. Two other regulators of actin dynamics, profilin and fimbrin, do not associate with the F-actin foci. This study provides, to our knowledge, the first insights into the actin-binding proteins and mechanisms involved in the formation of these intriguing structures, which appear to be actively formed during the SI response.

  1. Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator.

    Science.gov (United States)

    Mouilleron, Stéphane; Langer, Carola A; Guettler, Sebastian; McDonald, Neil Q; Treisman, Richard

    2011-06-14

    Subcellular localization of the actin-binding transcriptional coactivator MRTF-A is controlled by its interaction with monomeric actin (G-actin). Signal-induced decreases in G-actin concentration reduce MRTF-A nuclear export, leading to its nuclear accumulation, whereas artificial increases in G-actin concentration in resting cells block MRTF-A nuclear import, retaining it in the cytoplasm. This regulation is dependent on three actin-binding RPEL motifs in the regulatory domain of MRTF-A. We describe the structures of pentavalent and trivalent G-actin•RPEL domain complexes. In the pentavalent complex, each RPEL motif and the two intervening spacer sequences bound an actin monomer, forming a compact assembly. In contrast, the trivalent complex lacked the C-terminal spacer- and RPEL-actins, both of which bound only weakly in the pentavalent complex. Cytoplasmic localization of MRTF-A in unstimulated fibroblasts also required binding of G-actin to the spacer sequences. The bipartite MRTF-A nuclear localization sequence was buried in the pentameric assembly, explaining how increases in G-actin concentration prevent nuclear import of MRTF-A. Analyses of the pentavalent and trivalent complexes show how actin loads onto the RPEL domain and reveal a molecular mechanism by which actin can control the activity of one of its binding partners.

  2. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dov, Nadav [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel); Korenstein, Rafi, E-mail: korens@post.tau.ac.il [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel)

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  3. Cytoskeletal actin gates a Cl- channel in neocortical astrocytes.

    Science.gov (United States)

    Lascola, C D; Nelson, D J; Kraig, R P

    1998-03-01

    Increases in astroglial Cl- conductance accompany changes in cell morphology and disassembly of cytoskeletal actin, but Cl- channels underlying these conductance increases have not been described. We characterize an outwardly rectifying Cl- channel in rodent neocortical cultured astrocytes and describe how cell shape and cytoskeletal actin modulate channel gating. In inside-out patch-clamp recordings from cultured astrocytes, outwardly rectifying Cl- channels either were spontaneously active or inducible in quiescent patches by depolarizing voltage steps. Average single-channel conductance was 36 pS between -60 and -80 mV and was 75 pS between 60 and 80 mV in symmetrical (150 mM NaCl) solutions. The permeability ratio (PNa/PCl) was 0.14 at lower ionic strength but increased at higher salt concentrations. Both ATP and 4, 4-diisothiocyanostilbene-2,2'-disulfonic acid produced a flicker block, whereas Zn2+ produced complete inhibition of channel activity. The frequency of observing both spontaneous and inducible Cl- channel activity was markedly higher in stellate than in flat, polygonally shaped astrocytes. In addition, cytoskeletal actin modulated channel open-state probability (PO) and conductance at negative membrane potentials, controlling the degree of outward rectification. Direct application of phalloidin, which stabilizes actin, preserved low PO and promoted lower conductance levels at negative potentials. Lower PO also was induced by direct application of polymerized actin. The actions of phalloidin and actin were reversed by coapplication of gelsolin and cytochalasin D, respectively. These results provide the first report of an outwardly rectifying Cl- channel in neocortical astrocytes and demonstrate how changes in cell shape and cytoskeletal actin may control Cl- conductance in these cells.

  4. Cytoskeletal Actin Gates a Cl− Channel in Neocortical Astrocytes

    Science.gov (United States)

    Lascola, Christopher D.; Nelson, Deborah J.; Kraig, Richard P.

    2009-01-01

    Increases in astroglial Cl− conductance accompany changes in cell morphology and disassembly of cytoskeletal actin, but Cl− channels underlying these conductance increases have not been described. We characterize an outwardly rectifying Cl− channel in rodent neocortical cultured astrocytes and describe how cell shape and cytoskeletal actin modulate channel gating. In inside-out patch-clamp recordings from cultured astrocytes, outwardly rectifying Cl− channels either were spontaneously active or inducible in quiescent patches by depolarizing voltage steps. Average single-channel conductance was 36 pS between −60 and −80 mV and was 75 pS between 60 and 80 mV in symmetrical (150 mm NaCl) solutions. The permeability ratio (PNa/PCl) was 0.14 at lower ionic strength but increased at higher salt concentrations. Both ATP and 4,4-diisothiocyanostilbene-2,2′-disulfonic acid produced a flicker block, whereas Zn2+ produced complete inhibition of channel activity. The frequency of observing both spontaneous and inducible Cl− channel activity was markedly higher in stellate than in flat, polygonally shaped astrocytes. In addition, cytoskeletal actin modulated channel open-state probability (PO) and conductance at negative membrane potentials, controlling the degree of outward rectification. Direct application of phalloidin, which stabilizes actin, preserved low PO and promoted lower conductance levels at negative potentials. Lower PO also was induced by direct application of polymerized actin. The actions of phalloidin and actin were reversed by coapplication of gelsolin and cytochalasin D, respectively. These results provide the first report of an outwardly rectifying Cl− channel in neocortical astrocytes and demonstrate how changes in cell shape and cytoskeletal actin may control Cl− conductance in these cells. PMID:9464993

  5. Optogenetics to target actin-mediated synaptic loss in Alzheimer's

    Science.gov (United States)

    Zahedi, Atena; DeFea, Kathryn; Ethell, Iryna

    2013-03-01

    Numerous studies in Alzheimer's Disease (AD) animal models show that overproduction of Aβ peptides and their oligomerization can distort dendrites, damage synapses, and decrease the number of dendritic spines and synapses. Aβ may trigger synapse loss by modulating activity of actin-regulating proteins, such as Rac1 and cofilin. Indeed, Aβ1-42 oligomers can activate actin severing protein cofilin through calcineurin-mediated activation of phosphatase slingshot and inhibit an opposing pathway that suppresses cofilin phosphorylation through Rac-mediated activation of LIMK1. Excessive activation of actin-severing protein cofilin triggers the formation of a non-dynamic actin bundles, called rods that are found in AD brains and cause loss of synapses. Hence, regulation of these actin-regulating proteins in dendritic spines could potentially provide useful tools for preventing the synapse/spine loss associated with earlier stages of AD neuropathology. However, lack of spatiotemporal control over their activity is a key limitation. Recently, optogenetic advancements have provided researchers with convenient light-activating proteins such as photoactivatable Rac (PARac). Here, we transfected cultured primary hippocampal neurons and human embryonic kidney (HEK) cells with a PARac/ mCherry-containing plasmid and the mCherry-positive cells were identified and imaged using an inverted fluorescence microscope. Rac1 activation was achieved by irradiation with blue light (480nm) and live changes in dendritic spine morphology were observed using mCherry (587nm). Rac activation was confirmed by immunostaining for phosphorylated form of effector proteinP21 protein-activated kinase 1 (PAK1) and reorganization of actin. Thus, our studies confirm the feasibility of using the PA-Rac construct to trigger actin re-organization in the dendritic spines.

  6. Decavanadate interactions with actin: cysteine oxidation and vanadyl formation.

    Science.gov (United States)

    Ramos, Susana; Duarte, Rui O; Moura, José J G; Aureliano, Manuel

    2009-10-14

    Incubation of actin with decavanadate induces cysteine oxidation and oxidovanadium(IV) formation. The studies were performed combining kinetic with spectroscopic (NMR and EPR) methodologies. Although decavanadate is converted to labile oxovanadates, the rate of deoligomerization can be very slow (half-life time of 5.4 h, at 25 degrees C, with a first order kinetics), which effectively allows decavanadate to exist for some time under experimental conditions. It was observed that decavanadate inhibits F-actin-stimulated myosin ATPase activity with an IC(50) of 0.8 microM V(10) species, whereas 50 microM of vanadate or oxidovanadium(IV) only inhibits enzyme activity up to 25%. Moreover, from these three vanadium forms, only decavanadate induces the oxidation of the so called "fast" cysteines (or exposed cysteine, Cys-374) when the enzyme is in the polymerized and active form, F-actin, with an IC(50) of 1 microM V(10) species. Decavanadate exposition to F- and G-actin (monomeric form) promotes vanadate reduction since a typical EPR oxidovanadium(IV) spectrum was observed. Upon observation that V(10) reduces to oxidovanadium(IV), it is proposed that this cation interacts with G-actin (K(d) of 7.48 +/- 1.11 microM), and with F-actin (K(d) = 43.05 +/- 5.34 microM) with 1:1 and 4:1 stoichiometries, respectively, as observed by EPR upon protein titration with oxidovanadium(IV). The interaction of oxidovanadium(IV) with the protein may occur close to the ATP binding site of actin, eventually with lysine-336 and 3 water molecules.

  7. Mechanics of Biomimetic Liposomes Encapsulating an Actin Shell.

    Science.gov (United States)

    Guevorkian, Karine; Manzi, John; Pontani, Léa-Lætitia; Brochard-Wyart, Françoise; Sykes, Cécile

    2015-12-15

    Cell-shape changes are insured by a thin, dynamic, cortical layer of cytoskeleton underneath the plasma membrane. How this thin cortical structure impacts the mechanical properties of the whole cell is not fully understood. Here, we study the mechanics of liposomes or giant unilamellar vesicles, when a biomimetic actin cortex is grown at the inner layer of the lipid membrane via actin-nucleation-promoting factors. Using a hydrodynamic tube-pulling technique, we show that tube dynamics is clearly affected by the presence of an actin shell anchored to the lipid bilayer. The same force pulls much shorter tubes in the presence of the actin shell compared to bare membranes. However, in both cases, we observe that the dynamics of tube extrusion has two distinct features characteristic of viscoelastic materials: rapid elastic elongation, followed by a slower elongation phase at a constant rate. We interpret the initial elastic regime by an increase of membrane tension due to the loss of lipids into the tube. Tube length is considerably shorter for cortex liposomes at comparable pulling forces, resulting in a higher spring constant. The presence of the actin shell seems to restrict lipid mobility, as is observed in the corral effect in cells. The viscous regime for bare liposomes corresponds to a leakout of the internal liquid at constant membrane tension. The presence of the actin shell leads to a larger friction coefficient. As the tube is pulled from a patchy surface, membrane tension increases locally, leading to a Marangoni flow of lipids. As a conclusion, the presence of an actin shell is revealed by its action that alters membrane mechanics.

  8. Automated detection of actinic keratoses in clinical photographs.

    Directory of Open Access Journals (Sweden)

    Samuel C Hames

    Full Text Available BACKGROUND: Clinical diagnosis of actinic keratosis is known to have intra- and inter-observer variability, and there is currently no non-invasive and objective measure to diagnose these lesions. OBJECTIVE: The aim of this pilot study was to determine if automatically detecting and circumscribing actinic keratoses in clinical photographs is feasible. METHODS: Photographs of the face and dorsal forearms were acquired in 20 volunteers from two groups: the first with at least on actinic keratosis present on the face and each arm, the second with no actinic keratoses. The photographs were automatically analysed using colour space transforms and morphological features to detect erythema. The automated output was compared with a senior consultant dermatologist's assessment of the photographs, including the intra-observer variability. Performance was assessed by the correlation between total lesions detected by automated method and dermatologist, and whether the individual lesions detected were in the same location as the dermatologist identified lesions. Additionally, the ability to limit false positives was assessed by automatic assessment of the photographs from the no actinic keratosis group in comparison to the high actinic keratosis group. RESULTS: The correlation between the automatic and dermatologist counts was 0.62 on the face and 0.51 on the arms, compared to the dermatologist's intra-observer variation of 0.83 and 0.93 for the same. Sensitivity of automatic detection was 39.5% on the face, 53.1% on the arms. Positive predictive values were 13.9% on the face and 39.8% on the arms. Significantly more lesions (p<0.0001 were detected in the high actinic keratosis group compared to the no actinic keratosis group. CONCLUSIONS: The proposed method was inferior to assessment by the dermatologist in terms of sensitivity and positive predictive value. However, this pilot study used only a single simple feature and was still able to achieve

  9. Change in the actin cytoskeleton during seismonastic movement of Mimosa pudica.

    Science.gov (United States)

    Kanzawa, Nobuyuki; Hoshino, Yoshinori; Chiba, Makiko; Hoshino, Daisuke; Kobayashi, Hidetaka; Kamasawa, Naomi; Kishi, Yoshiro; Osumi, Masako; Sameshima, Masazumi; Tsuchiya, Takahide

    2006-04-01

    The seismonastic movement of Mimosa pudica is triggered by a sudden loss of turgor pressure. In the present study, we compared the cell cytoskeleton by immunofluorescence analysis before and after movement, and the effects of actin- and microtubule-targeted drugs were examined by injecting them into the cut pulvinus. We found that fragmentation of actin filaments and microtubules occurs during bending, although the actin cytoskeleton, but not the microtubules, was involved in regulation of the movement. Transmission electron microscopy revealed that actin cables became loose after the bending. We injected phosphatase inhibitors into the severed pulvinus to examine the effects of such inhibitors on the actin cytoskeleton. We found that changes in actin isoforms, fragmentation of actin filaments and the bending movement were all inhibited after injection of a tyrosine phosphatase inhibitor. We thus propose that the phosphorylation status of actin at tyrosine residues affects the dynamic reorganization of actin filaments and causes seismonastic movement.

  10. Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin.

    Science.gov (United States)

    Pivovarova, Anastasia V; Khaitlina, Sofia Yu; Levitsky, Dmitrii I

    2010-09-01

    Differential scanning calorimetry was used to investigate the thermal unfolding of actin specifically cleaved within the DNaseI-binding loop between residues Met47-Gly48 or Gly42-Val43 by two bacterial proteases, subtilisin or ECP32/grimelysin (ECP), respectively. The results obtained show that both cleavages strongly decreased the thermal stability of monomeric actin with either ATP or ADP as a bound nucleotide. An even more pronounced difference in the thermal stability between the cleaved and intact actin was observed when both actins were polymerized into filaments. Similar to intact F-actin, both cleaved F-actins were significantly stabilized by phalloidin and aluminum fluoride; however, in all cases, the thermal stability of the cleaved F-actins was much lower than that of intact F-actin, and the stability of ECP-cleaved F-actin was lower than that of subtilisin-cleaved F-actin. These results confirm that the DNaseI-binding loop is involved in the stabilization of the actin structure, both in monomers and in the filament subunits, and suggest that the thermal stability of actin depends, at least partially, on the conformation of the nucleotide-binding cleft. Moreover, an additional destabilization of the unstable cleaved actin upon ATP/ADP replacement provides experimental evidence for the highly dynamic actin structure that cannot be simply open or closed, but rather should be considered as being able to adopt multiple conformations. © 2010 The Authors Journal compilation © 2010 FEBS.

  11. Arabidopsis AtADF1 is Functionally Affected by Mutations on Actin Binding Sites

    Institute of Scientific and Technical Information of China (English)

    Chun-Hai Dong; Wei-Ping Tang; Jia-Yao Liu

    2013-01-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin,and is directly involved in the depolymerization of actin filaments.To better understand the actin binding sites of the Arabidopsis thaliana L.AtADF1,we generated mutants of AtADF1 and investigated their functions in vitro and in vivo.Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G-and F-actin binding.The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A,R137/A) form another actin binding site that is important for F-actin binding.Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L.plants overexpressing these mutants,we analyzed how these mutant proteins regulate actin organization and affect seedling growth.Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional,unless the affinity foractin monomers is also affected.The G-actin binding activity of the ADF plays an essential role in actin binding,depolymerization of actin polymers,and therefore in the control of actin organization.

  12. Antenna Mechanism of Length Control of Actin Cables.

    Directory of Open Access Journals (Sweden)

    Lishibanya Mohapatra

    2015-06-01

    Full Text Available Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This "antenna mechanism" involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control.

  13. Novel Actin-like Filament Structure from Clostridium tetani*

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K.; Tanaka, Toshitsugu; Robinson, Robert C.

    2012-01-01

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines. PMID:22514279

  14. Multiscale modeling and mechanics of filamentous actin cytoskeleton.

    Science.gov (United States)

    Yamaoka, Hidetaka; Matsushita, Shinji; Shimada, Yoshitaka; Adachi, Taiji

    2012-03-01

    The adaptive structure and functional changes of the actin cytoskeleton are induced by its mechanical behavior at various temporal and spatial scales. In particular, the mechanical behaviors at different scales play important roles in the mechanical functions of various cells, and these multiscale phenomena require clarification. To establish a milestone toward achieving multiscale modeling and simulation, this paper reviews mathematical analyses and simulation methods applied to the mechanics of the filamentous actin cytoskeleton. The actin cytoskeleton demonstrates characteristic behaviors at every temporal and spatial scale, and mathematical models and simulation methods can be applied to each level of actin cytoskeletal structure ranging from the molecular to the network level. This paper considers studies on mathematical models and simulation methods based on the molecular dynamics, coarse-graining, and continuum dynamics approaches. Every temporal and spatial scale of actin cytoskeletal structure is considered, and it is expected that discrete and continuum dynamics ranging from functional expression at the molecular level to macroscopic functional expression at the whole cell level will be developed and applied to multiscale modeling and simulation.

  15. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization

    Directory of Open Access Journals (Sweden)

    Nuria Domínguez-Iturza

    2016-01-01

    Full Text Available Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.

  16. Control of nuclear organization by F-actin binding proteins.

    Science.gov (United States)

    Pfisterer, Karin; Jayo, Asier; Parsons, Maddy

    2017-01-06

    The regulation of nuclear shape and deformability is a key factor in controlling diverse events from embryonic development to cancer cell metastasis, but the mechanisms governing this process are still unclear. Our recent study demonstrated an unexpected role for the F-actin bundling protein fascin in controlling nuclear plasticity through a direct interaction with Nesprin-2. Nesprin-2 is a component of the LINC complex that is known to couple the F-actin cytoskeleton to the nuclear envelope. We demonstrated that fascin, which is predominantly associated with peripheral F-actin rich filopodia, binds directly to Nesprin-2 at the nuclear envelope in a range of cell types. Depleting fascin or specifically blocking the fascin-Nesprin-2 complex leads to defects in nuclear polarization, movement and cell invasion. These studies reveal a novel role for an F-actin bundling protein in control of nuclear plasticity and underline the importance of defining nuclear-associated roles for F-actin binding proteins in future.

  17. Actin Genes in the Mediterranean Fruit Fly, Ceratitis Capitata

    Science.gov (United States)

    Haymer, D. S.; Anleitner, J. E.; He, M.; Thanaphum, S.; Saul, S. H.; Ivy, J.; Houtchens, K.; Arcangeli, L.

    1990-01-01

    We have undertaken the study of actin gene organization and expression in the genome of the Mediterranean fruit fly (medfly), Ceratitis capitata. Actin genes have been extensively characterized previously in a wide range of eukaryotic organisms, and they have valuable properties for comparative studies. These genes are typically highly conserved in coding regions, represented in multiple copies per genome and regulated in expression during development. We have isolated a gene in the medfly using the cloned Drosophila melanogaster 5C actin gene as a probe. This medfly gene detects abundant messages present during late larval and late pupal development as well as in thoracic and leg tissue preparations from newly emerged adults. This pattern of expression is consistent with what has been seen for actin genes in other organisms. Using either the D. melanogaster 5C actin gene or the medfly gene as a probe identifies five common cross reacting Eco RI fragments in genomic DNA, but only under less than fully stringent hybridization conditions. PMID:1692797

  18. Triggering signaling pathways using F-actin self-organization.

    Science.gov (United States)

    Colin, A; Bonnemay, L; Gayrard, C; Gautier, J; Gueroui, Z

    2016-10-04

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity.

  19. State transitions of actin cortices in vitro and in vivo

    Science.gov (United States)

    Tan, Tzer Han; Keren, Kinneret; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Most animal cells are enveloped by a thin layer of actin cortex which governs the cell mechanics. A functional cortex must be rigid to provide mechanical support while being flexible to allow for rapid restructuring events such as cell division. To satisfy these requirements, the actin cortex is highly dynamic with fast actin turnover and myosin-driven contractility. The regulatory mechanism responsible for the transition between a mechanically stable state and a restructuring state is not well understood. Here, we develop a technique to map the dynamics of reconstituted actin cortices in emulsion droplets using IR fluorescent single-walled carbon nanotubes (SWNTs). By increasing crosslinker concentration, we find that a homogeneous cortex transitions to an intermediate state with broken rotational symmetry and a globally contractile state which further breaks translational symmetry. We apply this new dynamic mapping technique to cortices of live starfish oocytes in various developmental stages. To identify the regulatory mechanism for steady state transitions, we subject the oocytes to actin and myosin disrupting drugs.

  20. Novel actin-like filament structure from Clostridium tetani.

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K; Tanaka, Toshitsugu; Robinson, Robert C

    2012-06-15

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines.

  1. Cortactin Adopts a Globular Conformation and Bundles Actin into Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Cowieson, Nathan P.; King, Gordon; Cookson, David; Ross, Ian; Huber, Thomas; Hume, David A.; Kobe, Bostjan; Martin, Jennifer L. (Queensland); (Aust. Synch.)

    2008-08-21

    Cortactin is a filamentous actin-binding protein that plays a pivotal role in translating environmental signals into coordinated rearrangement of the cytoskeleton. The dynamic reorganization of actin in the cytoskeleton drives processes including changes in cell morphology, cell migration, and phagocytosis. In general, structural proteins of the cytoskeleton bind in the N-terminal region of cortactin and regulatory proteins in the C-terminal region. Previous structural studies have reported an extended conformation for cortactin. It is therefore unclear how cortactin facilitates cross-talk between structural proteins and their regulators. In the study presented here, circular dichroism, chemical cross-linking, and small angle x-ray scattering are used to demonstrate that cortactin adopts a globular conformation, thereby bringing distant parts of the molecule into close proximity. In addition, the actin bundling activity of cortactin is characterized, showing that fully polymerized actin filaments are bundled into sheet-like structures. We present a low resolution structure that suggests how the various domains of cortactin interact to coordinate its array of binding partners at sites of actin branching.

  2. Active Chemical Thermodynamics promoted by activity of cortical actin

    Science.gov (United States)

    Bhattacharya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Rao, Madan

    2011-03-01

    The spatial distribution and dynamics of formation and breakup of the nanoclusters of cell surface proteins is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we have proposed a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. We study the consequences of such active actin-based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that the active remodeling of cortical actin, can give rise to a dramatic increase in efficiency and extent of conformational spread, even at low levels of expression at the cell surface. We define a activity temperature (τa) arising due to actin activities which can be used to describe chemical thermodynamics of the system. We plot TTT (time-temparature-transformation) curves and compute the Arrhenius factors which depend on τa . With this, the active asters can be treated as enzymes whose enzymatic reaction rate can be related to the activity.

  3. New Insights into Dynamic Actin-Based Chloroplast Photorelocation Movement

    Institute of Scientific and Technical Information of China (English)

    Sam-Geun Kong; Masamitsu Wada

    2011-01-01

    Chloroplast movement is essential for plants to survive under various environmental light conditions.Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction.Recently,novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement.Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses.This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments,thus providing a basis for reflection on their biochemical activities and functions.

  4. An Arabidopsis Class Ⅱ Formin, AtFH19, Nucleates Actin Assembly, Binds to the Barbed End of Actin Filaments, and Antagonizes the Effect of AtFH1 on Actin Dynamics

    Institute of Scientific and Technical Information of China (English)

    Yiyan Zheng; Haibo Xin; Jinxing Lin; Chun-Ming Liu; Shanjin Huang

    2012-01-01

    Formin is a major protein responsible for regulating the nucleation of actin filaments,and as such,it permits the cell to control where and when to assemble actin arrays.It is encoded by a multigene family comprising 21 members in Arabidopsis thaliana.The Arabidopsis formins can be separated into two phylogenetically-distinct classes:there are 11 class Ⅰ formins and 10 class Ⅱ formins.Significant questions remain unanswered regarding the molecular mechanism of actin nucleation and elongation stimulated by each formin isovariant,and how the different isovariants coordinate to regulate actin dynamics in cells.Here,we characterize a class Ⅱ formin,AtFH19,biochemically.We found that AtFH19 retains all general properties of the formin family,including nucleation and barbed end capping activity.It can also generate actin filaments from a pool of actin monomers bound to profilin.However,both the nucleation and barbed end capping activities of AtFH19 are less efficient compared to those of another well-characterized formin,AtFH1.Interestingly,AtFH19 FH1FH2 competes with AtFH1 FH1FH2 in binding actin filament barbed ends,and inhibits the effect of AtFH1 FH1FH2 on actin.We thus propose a mechanism in which two quantitatively different formins coordinate to regulate actin dynamics by competing for actin filament barbed ends.

  5. Identification of Actin-Binding Proteins from Maize Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  6. The Association of Myosin IB with Actin Waves in Dictyostelium Requires Both the Plasma Membrane-Binding Site and Actin-Binding Region in the Myosin Tail

    Science.gov (United States)

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A.; Korn, Edward D.

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave. PMID:24747353

  7. The integrin-actin connection, an eternal love affair

    DEFF Research Database (Denmark)

    Brakebusch, Cord; Fässler, Reinhard

    2003-01-01

    Integrin receptors connect the extracellular matrix to the actin cytoskeleton. This interaction can be viewed as a cyclical liaison, which develops again and again at new adhesion sites only to cease at sites of de-adhesion. Recent work has demonstrated that multidomain proteins play crucial roles...... in the integrin-actin connection by providing a high degree of regulation adjusted to the needs of the cell. In this review we present several examples of this paradigm and with special emphasis on the ILK-PINCH-parvin complex, which amply demonstrates how structural and signalling functions are linked together....

  8. Oral nicotinamide and actinic keratosis: a supplement success story.

    Science.gov (United States)

    Kim, Burcu; Halliday, Gary M; Damian, Diona L

    2015-01-01

    Nicotinamide has shown potential as a safe and effective intervention for the prevention of malignant and premalignant skin lesions. Recent studies have shown that nicotinamide, in both oral and topical forms, is able to prevent ultraviolet-induced immunosuppression in humans [1,2,3] and mice [4,5]. Immunosuppression is a known factor for the progression of premalignant lesions, such as actinic keratosis [6]. Murine studies have shown that nicotinamide is also able to protect against photocarcinogenesis [4,5]. Preliminary human studies suggest that nicotinamide may help prevent skin cancers and enhance the regression of actinic keratoses.

  9. Filament attachment dynamics in actin-based propulsion

    CERN Document Server

    Katz, J I

    2005-01-01

    Theory and experiment have established that F-actin filaments are strongly attached to the intracellular parasites (such as Listeria) they propel with ``comet tails''. We consider the implications of these observations for propulsion. By calculating the motion produced in various models of attachment and comparing to experiment we demonstrate that the attachment must be sliding rather than hinged. By modeling experiments on ActA-coated spheres we draw conclusions regarding the interaction between F-actin and their surfaces that may also be applicable to living systems.

  10. Modelling phagosomal lipid networks that regulate actin assembly

    Directory of Open Access Journals (Sweden)

    Schwarz Roland

    2008-12-01

    Full Text Available Abstract Background When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel. Results We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds. In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator. However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP. Conclusion By establishing an active 'dialogue' between an

  11. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia

    Science.gov (United States)

    Vitriol, Eric A.; McMillen, Laura M.; Kapustina, Maryna; Gomez, Shawn M.; Vavylonis, Dimitrios; Zheng, James Q.

    2015-01-01

    Summary Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer binding protein thymosin β4 (Tβ4) for optimal leading edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it doesn’t interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions. PMID:25865895

  12. Actin in Mung Bean Mitochondria and Implications for Its Function[W][OA

    Science.gov (United States)

    Lo, Yih-Shan; Cheng, Ning; Hsiao, Lin-June; Annamalai, Arunachalam; Jauh, Guang-Yuh; Wen, Tuan-Nan; Dai, Hwa; Chiang, Kwen-Sheng

    2011-01-01

    Here, a large fraction of plant mitochondrial actin was found to be resistant to protease and high-salt treatments, suggesting it was protected by mitochondrial membranes. A portion of this actin became sensitive to protease or high-salt treatment after removal of the mitochondrial outer membrane, indicating that some actin is located inside the mitochondrial outer membrane. The import of an actin–green fluorescent protein (GFP) fusion protein into the mitochondria in a transgenic plant, actin:GFP, was visualized in living cells and demonstrated by flow cytometry and immunoblot analyses. Polymerized actin was found in mitochondria of actin:GFP plants and in mung bean (Vigna radiata). Notably, actin associated with mitochondria purified from early-developing cotyledons during seed germination was sensitive to high-salt and protease treatments. With cotyledon ageing, mitochondrial actin became more resistant to both treatments. The progressive import of actin into cotyledon mitochondria appeared to occur in concert with the conversion of quiescent mitochondria into active forms during seed germination. The binding of actin to mitochondrial DNA (mtDNA) was demonstrated by liquid chromatography–tandem mass spectrometry analysis. Porin and ADP/ATP carrier proteins were also found in mtDNA-protein complexes. Treatment with an actin depolymerization reagent reduced the mitochondrial membrane potential and triggered the release of cytochrome C. The potential function of mitochondrial actin and a possible actin import pathway are discussed. PMID:21984697

  13. The role of cyclase-associated protein in regulating actin filament dynamics – more than a monomer-sequestration factor

    OpenAIRE

    Ono, Shoichiro

    2013-01-01

    Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in a...

  14. A comparison between Vanadyl, Vanadate, and decavanadate effects in actin structure and function: combination of several spectroscopic studies

    OpenAIRE

    2012-01-01

    The studies about the interaction of actin with vanadium are seldom. In the present paper the effects of vanadyl, vanadate, and decavanadate in the actin structure and function were compared. Decavanadate clearly interacts with actin, as shown by 51V-NMR spectroscopy. Decavanadate interaction with actin induces protein cysteine oxidation and vanadyl formation, being both prevented by the natural ligand of the protein, ATP. Monomeric actin (G-actin) titration with vanadyl, as analysed by...

  15. Pattern formation in polymerising actin flocks: spirals, spots and waves without nonlinear chemistry

    CERN Document Server

    Goff, Thomas Le; Marenduzzo, Davide

    2016-01-01

    We propose a model solely based on actin treadmilling and polymerisation which describes many characteristic states of actin wave formation: spots, spirals and travelling waves. In our model, as in experiments on cell recovering motility following actin depolymerisation, we choose an isotropic low density initial condition; polymerisation of actin filaments then raises the density towards the Onsager threshold where they align. We show that this alignment, in turn, destabilizes the isotropic phase and generically induces transient actin spots or spirals as part of the dynamical pathway towards a polarized phase which can either be uniform or consist of a series of actin-wave trains (flocks). Our results uncover a universal route to actin wave formation in the absence of any system specific nonlinear biochemistry, and it may help understand the mechanism underlying the observation of actin spots and waves in vivo. They also suggest a minimal setup to design similar patterns in vitro.

  16. A function for filamentous alpha-smooth muscle actin: Retardation of motility in human breast fibroblasts

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Petersen, Ole William

    1996-01-01

    Actins are known to comprise six mammalian isoforms of which beta- and gamma-nonmuscle actins are present in all cells, whereas alpha-smooth muscle (alpha-sm) actin is normally restricted to cells of the smooth muscle lineages. alpha-Sm actin has been found also to be expressed transiently...... reactions. Here, we show that the presence of alpha-sm actin is a signal for retardation of migratory behavior in fibroblasts. Comparison in a migration assay of fibroblast cell strains with and without alpha-sm actin revealed migratory restraint in alpha-sm actin-positive fibroblasts. Electroporation...... in certain nonmuscle cells, in particular fibroblasts, which are referred to as myofibroblasts. The functional significance of alpha-sm actin in fibroblasts is unknown. However, myofibroblasts appear to play a prominent role in stromal reaction in breast cancer, at the site of wound repair, and in fibrotic...

  17. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast.

    Science.gov (United States)

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R; Drubin, David G

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin-Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism.

  18. Spectrin-dependent and -independent association of F-actin with the erythrocyte membrane.

    Science.gov (United States)

    Cohen, C M; Foley, S F

    1980-08-01

    Binding of F-actin to spectrin-actin-depleted erythrocyte membrane inside-out vesicles was measured using [3H]F-actin. F-actin binding to vesicles at 25 degrees C was stimulated 5-10 fold by addition of spectrin dimers or tetramers to vesicles. Spectrin tetramer was twice as effective as dimer in stimulating actin binding, but neither tetramer nor dimer stimulated binding at 4 degrees C. The addition of purified erythrocyte membrane protein band 4.1 to spectrin-reconstituted vesicles doubled their actin-binding capacity. Trypsinization of unreconstituted vesicles that contain ghosts, decreased their F-actin-binding capacity by 70%. Whereas little or none of the residual spectrin was affected by trypsinization, band 4.1 was significantly degraded. Our results show that spectrin can anchor actin filaments to the cytoplasmic surface of erythrocyte membranes and suggest that band 4.1 may be importantly involved in the association.

  19. eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1

    Science.gov (United States)

    García-Ortiz, Almudena; Martín-Cofreces, Noa B.; Ibiza, Sales; Ortega, Ángel; Izquierdo-Álvarez, Alicia; Trullo, Antonio; Victor, Víctor M.; Calvo, Enrique; Sot, Begoña; Martínez-Ruiz, Antonio; Vázquez, Jesús; Sánchez-Madrid, Francisco

    2017-01-01

    The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-θ (PKC-θ) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of β-actin and PKC-θ from the lamellipodium-like distal (d)-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated β-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of β-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS. PMID:28394935

  20. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the a

  1. The actin Cytoskeleton in Root Hairs: a cell elongation device

    NARCIS (Netherlands)

    Ketelaar, T.; Emons, A.M.C.

    2009-01-01

    The actin cytoskeleton plays an important role in root hair development. It is involved in both the delivery of growth materials to the expanding tip of root hairs and the regulation of the area of tip growth. This review starts with a discussion of the techniques that are available to visualize the

  2. Photodynamic therapy for actinic keratosis in organ transplant patients

    NARCIS (Netherlands)

    Basset-Seguin, N.; Baumann Conzett, K.; Gerritsen, M.J.P.; Gonzalez, H.; Haedersdal, M.; Hofbauer, G.F.; Aguado, L.; Kerob, D.; Lear, J.T.; Piaserico, S.; Ulrich, C.

    2013-01-01

    BACKGROUND: The incidence of actinic keratoses (AK) and non-melanoma skin cancer (NMSC) in organ transplant recipients (OTRs) is significantly higher than in immunocompetent patients. Rates of progression and recurrence following treatment are higher too, in part due to the effects of the immunosupp

  3. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies

    Science.gov (United States)

    Sarowar, Tasnuva

    2016-01-01

    Shank proteins (Shank1, Shank2, and Shank3) act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD) in both human and mouse models. Shank3 proteins are made of several domains—the Shank/ProSAP N-terminal (SPN) domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM) domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling.

  4. Suspected Pulmonary Metastasis of Actinic Cutaneous Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Monet E. Meter

    2017-01-01

    Full Text Available Introduction. It is rare for actinic or squamous cell carcinoma (SCC in situ to metastasize. Case Presentation. A 67-year-old male had a significant medical history including severe psoriatic arthritis treated with UVB, methotrexate, and rapamycin. He had twenty-five different skin excisions of actinic keratosis four of which were invasive SCC. Our patient developed shortness of breath necessitating a visit to the emergency department. A CT scan of his chest revealed a mass in the right lower lung. A subsequent biopsy of the mass revealed well-differentiated SCC. He underwent thoracoscopic surgery with wedge resection of the lung lesion. Discussion. Actinic keratosis (AK is considered precancerous and associated with UV exposure. It exists as a continuum of progression with low potential for malignancy. The majority of invasive SCCs are associated with malignant progression of AK, but only 5–10% of AKs will progress to malignant potential. Conclusion. In this case, a new finding of lung SCC in the setting of multiple invasive actinic cutaneous SCC associated with a history of extensive UV light exposure and immunosuppression supports a metastatic explanation for lung cancer.

  5. Mical links semaphorins to F-actin disassembly

    NARCIS (Netherlands)

    Hung, R.J.; Yazdani, U.; Yoon, J.; Wu, H.; Yang, T.; Gupta, N.; Huang, Z.; Berkel, van W.J.H.; Terman, J.R.

    2010-01-01

    How instructive cues present on the cell surface have their precise effects on the actin cytoskeleton is poorly understood. Semaphorins are one of the largest families of these instructive cues and are widely studied for their effects on cell movement, navigation, angiogenesis, immunology and cancer

  6. Severe congenital actin related myopathy with myofibrillar myopathy features.

    Science.gov (United States)

    Selcen, Duygu

    2015-06-01

    Mutations in ACTA1 have been associated with different pathologic findings including nemaline myopathy, intranuclear rod myopathy, actin myopathy, cap myopathy, congenital fiber type disproportion, and core myopathy. Myofibrillar myopathies are morphologically distinct but genetically heterogeneous muscular dystrophies arising from mutations in Z-disk related proteins. We report a 26-month-old boy with significantly delayed motor development requiring mechanical ventilation and tube-feeding since birth. The muscle biopsy displayed typical features of myofibrillar myopathy with abnormal expression of multiple proteins. Whole exome sequencing revealed two-amino-acid duplication in ACTA1. In cell culture system, mutant actin was expressed at ~11% of wild-type, and mutant actin formed pleomorphic cytoplasmic aggregates whereas wild-type actin appeared in filamentous structures. We conclude that mutations in ACTA1 can cause pathologic features consistent with myofibrillar myopathy, and mutations in ACTA1 should be considered in patients with severe congenital hypotonia associated with muscle weakness and features of myofibrillar myopathy.

  7. Mical links semaphorins to F-actin disassembly

    NARCIS (Netherlands)

    Hung, R.J.; Yazdani, U.; Yoon, J.; Wu, H.; Yang, T.; Gupta, N.; Huang, Z.; Berkel, van W.J.H.; Terman, J.R.

    2010-01-01

    How instructive cues present on the cell surface have their precise effects on the actin cytoskeleton is poorly understood. Semaphorins are one of the largest families of these instructive cues and are widely studied for their effects on cell movement, navigation, angiogenesis, immunology and

  8. ALKBH4-dependent demethylation of actin regulates actomyosin dynamics

    DEFF Research Database (Denmark)

    Li, M.-M.; Shi, Y.; Niu, Y.

    2013-01-01

    and midbody via association with methylated actin. ALKBH4-mediated regulation of actomyosin dynamics is completely dependent on its catalytic activity. Disorganization of cleavage furrow components and multinucleation associated with ALKBH4 deficiency can all be restored by reconstitution with wild...

  9. The actin Cytoskeleton in Root Hairs: a cell elongation device

    NARCIS (Netherlands)

    Ketelaar, T.; Emons, A.M.C.

    2009-01-01

    The actin cytoskeleton plays an important role in root hair development. It is involved in both the delivery of growth materials to the expanding tip of root hairs and the regulation of the area of tip growth. This review starts with a discussion of the techniques that are available to visualize the

  10. Actin dynamics involved in gravity perception in Arabidopsis inflorescense stem

    Science.gov (United States)

    Tasaka, Masao; Nakamura, Moritaka; Morita, Miyo T.

    The amyloplasts sedimentation in the endodermal cells is important for gravity perception in Arabidopsis shoot. Our previous study suggests that SGR5(SHOOT GRAVITROPISM 5) and SGR9 are synergistically involved in regulation of amyloplast movement in these cells, and shows that sgr5 sgr9 double mutant completely loses gravitropic response. SGR5 encodes putative transcription factor and SGR9 encodes a ring finger containing protein, which surrounds amyloplasts. It has been reported that amyloplasts are surrounded by actin microfilaments (MFs), and that treatment with actin polymerization inhibitor enhances gravitropic organ curvature. However, not only the molecular link between amyolplasts and MFs, but also regulatory role of MFs in gravitropic response is still unclear. Here, we found that treatment with actin polymerization inhibitor restored gravitropic response of sgr5 sgr9 double mutant stems. The result suggests that abnormal amyloplasts movement in the double mutant could result from inhibition of MFs depolymerization, leading to abnormal gravitropism. We are investigating whether SGR5 and SGR9 are involved in amyloplasts movement by regulating actin remodeling in gravity perceptive cells.

  11. Phosphorylated filamin A regulates actin-linked caveolae dynamics.

    Science.gov (United States)

    Muriel, Olivia; Echarri, Asier; Hellriegel, Christian; Pavón, Dácil M; Beccari, Leonardo; Del Pozo, Miguel A

    2011-08-15

    Caveolae are relatively stable membrane invaginations that compartmentalize signaling, regulate lipid metabolism and mediate viral entry. Caveolae are closely associated with actin fibers and internalize in response to diverse stimuli. Loss of cell adhesion is known to induce rapid and robust caveolae internalization and trafficking toward a Rab11-positive recycling endosome; however, pathways governing this process are poorly understood. Here, we report that filamin A is required to maintain the F-actin-dependent linear distribution of caveolin-1. High spatiotemporal resolution particle tracking of caveolin-1-GFP vesicles by total internal reflection fluorescence (TIRF) microscopy revealed that FLNa is required for the F-actin-dependent arrest of caveolin-1 vesicles in a confined area and their stable anchorage to the plasma membrane. The linear distribution and anchorage of caveolin-1 vesicles are both required for proper caveolin-1 inwards trafficking. De-adhesion-triggered caveolae inward trafficking towards a recycling endosome is impaired in FLNa-depleted HeLa and FLNa-deficient M2-melanoma cells. Inwards trafficking of caveolin-1 requires both the ability of FLNa to bind actin and cycling PKCα-dependent phosphorylation of FLNa on Ser2152 after cell detachment. © 2011. Published by The Company of Biologists Ltd

  12. p53 and MDM2 protein expression in actinic cheilitis.

    Science.gov (United States)

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia.

  13. p53 and MDM2 protein expression in actinic cheilitis

    Directory of Open Access Journals (Sweden)

    Maria da Conceição Andrade de Freitas

    2008-12-01

    Full Text Available Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976 parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia.

  14. Evaluation of actinic cheilitis using fluorescence lifetime spectroscopy

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Pratavieira, Sebastião.; Takahama, Ademar; Souza Azevedo, Rebeca; Kurachi, Cristina

    2016-03-01

    Actinic cheilitis is a potentially malignant disorder that mostly affects the vermilion border of the lower lip and can lead to squamous cell carcinoma. Because of its heterogeneous clinical aspect, it is difficult to indicate representative biopsy area. Late diagnosis is a limiting factor of therapeutic possibilities available to treat oral cancer. The diagnosis of actinic cheilitis is mainly based on clinical and histopathological analysis and it is a time consuming procedure to get the results. Information about the organization and chemical composition of the tissues can be obtained using fluorescence lifetime spectroscopy techniques without the need for biopsy. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and allow a quick and non-invasive clinical investigation of injuries and to help clinicians with the early diagnosis of actinic cheilitis. This study aims to evaluate the fluorescence lifetime parameters at the discrimination of three degrees of epithelial dysplasia, the most important predictor of malignant development, described in up to 100% of actinic cheilitis cases.

  15. Maternal effect mutations of the sponge locus affect actin cytoskeletal rearrangements in Drosophila melanogaster embryos

    OpenAIRE

    1992-01-01

    In the syncytial blastoderm stage of Drosophila embryogenesis, dome- shaped actin "caps" are observed above the interphase nuclei. During mitosis, this actin rearranges to participate in the formation of pseudocleavage furrows, transient membranous invaginations between dividing nuclei. Embryos laid by homozygous sponge mothers lack these characteristic actin structures, but retain other actin associated structures and processes. Our results indicate that the sponge product is specifically re...

  16. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  17. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling

    OpenAIRE

    Groen, Christopher M.; Spracklen, Andrew J.; Fagan, Tiffany N.; Tootle, Tina L.

    2012-01-01

    Although prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. He...

  18. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites.

    Science.gov (United States)

    Skillman, Kristen M; Diraviyam, Karthikeyan; Khan, Asis; Tang, Keliang; Sept, David; Sibley, L David

    2011-10-01

    Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility.

  19. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites.

    Directory of Open Access Journals (Sweden)

    Kristen M Skillman

    2011-10-01

    Full Text Available Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI and Plasmodium (PfACTI and PfACTII actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility.

  20. Multidrug Resistance-Related Protein 1 (MRP1) Function and Localization Depend on Cortical Actin

    NARCIS (Netherlands)

    Hummel, Ina; Klappe, Karin; Ercan, Cigdem; Kok, Jan Willem

    2011-01-01

    MRP1 (ABCC1) is known to be localized in lipid rafts. Here we show in two different cell lines that localization of Mrp1/MRP1 (Abcc1/ABCC1) in lipid rafts and its function as an efflux pump are dependent on cortical actin. Latrunculin B disrupts both cortical actin and actin stress fibers. This resu

  1. Chloroplast actin filaments organize meshwork on the photorelocated chloroplasts in the moss Physcomitrella patens.

    Science.gov (United States)

    Yamashita, Hiroko; Sato, Yoshikatsu; Kanegae, Takeshi; Kagawa, Takatoshi; Wada, Masamitsu; Kadota, Akeo

    2011-02-01

    Cytoskeleton dynamics during phototropin-dependent chloroplast photorelocation movement was analyzed in protonemal cells of actin- and microtubule-visualized lines of Physcomitrella patens expressing GFP- or tdTomato-talin and GFP-tubulin. Using newly developed epi- and trans-microbeam irradiation systems that permit fluorescence observation of the cell under blue microbeam irradiation inducing chloroplast relocation, it was revealed that meshwork of actin filaments formed at the chloroplast-accumulating area both in the avoidance and accumulation movements. The structure disappeared soon when blue microbeam was turned off, and it was not induced under red microbeam irradiation that did not evoke chloroplast relocation movement. In contrast, no apparent change in microtubule organization was detected during the movements. The actin meshwork was composed of short actin filaments distinct from the cytoplasmic long actin cables and was present between the chloroplasts and plasma membrane. The short actin filaments emerged from around the chloroplast periphery towards the center of chloroplast. Showing highly dynamic behavior, the chloroplast actin filaments (cp-actin filaments) were rapidly organized into meshwork on the chloroplast surface facing plasma membrane. The actin filament configuration on a chloroplast led to the formation of actin meshwork area in the cell as the chloroplasts arrived at and occupied the area. After establishment of the meshwork, cp-actin filaments were still highly dynamic, showing appearance, disappearance, severing and bundling of filaments. These results indicate that the cp-actin filaments have significant roles in the chloroplast movement and positioning in the cell.

  2. Actin-filament disassembly: it takes two to shrink them fast.

    Science.gov (United States)

    Winterhoff, Moritz; Faix, Jan

    2015-06-01

    Actin-filament disassembly is indispensable for replenishing the pool of polymerizable actin and allows continuous dynamic remodelling of the actin cytoskeleton. A new study now reveals that ADF/cofilin preferentially dismantles branched networks and provides new insights into the collaborative work of ADF/cofilin and Aip1 on filament disassembly at the molecular level.

  3. Gamma-actin is involved in regulating centrosome function and mitotic progression in cancer cells.

    Science.gov (United States)

    Po'uha, Sela T; Kavallaris, Maria

    2015-01-01

    Reorganization of the actin cytoskeleton during mitosis is crucial for regulating cell division. A functional role for γ-actin in mitotic arrest induced by the microtubule-targeted agent, paclitaxel, has recently been demonstrated. We hypothesized that γ-actin plays a role in mitosis. Herein, we investigated the effect of γ-actin in mitosis and demonstrated that γ-actin is important in the distribution of β-actin and formation of actin-rich retraction fibers during mitosis. The reduced ability of paclitaxel to induce mitotic arrest as a result of γ-actin depletion was replicated with a range of mitotic inhibitors, suggesting that γ-actin loss reduces the ability of broad classes of anti-mitotic agents to induce mitotic arrest. In addition, partial depletion of γ-actin enhanced centrosome amplification in cancer cells and caused a significant delay in prometaphase/metaphase. This prolonged prometaphase/metaphase arrest was due to mitotic defects such as uncongressed and missegregated chromosomes, and correlated with an increased presence of mitotic spindle abnormalities in the γ-actin depleted cells. Collectively, these results demonstrate a previously unknown role for γ-actin in regulating centrosome function, chromosome alignment and maintenance of mitotic spindle integrity.

  4. Dynamic organization of actin cytoskeleton during the polarity formation and germination of pollen protoplasts

    Institute of Scientific and Technical Information of China (English)

    XU Xia; Zl Huijun; SUN Yina; REN Haiyun

    2004-01-01

    The formation of the polarity of pollen protoplast and the dynamics of actin cytoskeleton were observed by non-fixation, Alexa-Phalloidin probing and confocal laser scanning microscopy. Our results showed that the protoplast obtained from stored pollen contained numerous crystalline fusiform bodies to constitute a storage form of actin. When dormant pollen was hydrated, the actin cytoskeleton forms a fine network spreading uniformly in the protoplast. In the process of polarity formation and germination of pollen protoplast, actin filaments marshaled slowly to the brim, and then formed multilayer continuous actin filament bundles surrounding the cortical of the protoplast. When the protoplast was exposed to actin filament-disrupting drugs, such as Latrunculin A and Cytochalasin D, continuously arranged actin bundles were disturbed and in this condition, the protoplast could not germinate. But when exposed to actin filament stabiling drug-phalliodin, the dynamics of actin filaments in the protoplasts behaved normally and the protoplasts could germinate normally. These results were also confirmed by the pharmacology experiments on pollen grains. And when Latrunculin A or Cytochalasin D was washed off, the ratio of pollen germination was resumed partly. All the results above show that the dynamic organization of the actin cytoskeleton are critical in the cell polarity formation and germination of pollen protoplast, and that the reorganization of actin cytoskeleton is mainly due to the rearrangement of actin filament arrays.

  5. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types

    Science.gov (United States)

    Yamashiro, Sawako; Gokhin, David S.; Kimura, Sumiko; Nowak, Roberta B.; Fowler, Velia M.

    2012-01-01

    Tropomodulins are a family of four proteins (Tmods 1–4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a tropomyosin (TM)-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods’ functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1–3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology. PMID:22488942

  6. Statistics of actin-propelled trajectories in noisy environments

    Science.gov (United States)

    Wen, Fu-Lai; Chen, Hsuan-Yi; Leung, Kwan-tai

    2016-06-01

    Actin polymerization is ubiquitously utilized to power the locomotion of eukaryotic cells and pathogenic bacteria in living systems. Inevitably, actin polymerization and depolymerization proceed in a fluctuating environment that renders the locomotion stochastic. Previously, we have introduced a deterministic model that manages to reproduce actin-propelled trajectories in experiments, but not to address fluctuations around them. To remedy this, here we supplement the deterministic model with noise terms. It enables us to compute the effects of fluctuating actin density and forces on the trajectories. Specifically, the mean-squared displacement (MSD) of the trajectories is computed and found to show a super-ballistic scaling with an exponent 3 in the early stage, followed by a crossover to a normal, diffusive scaling of exponent 1 in the late stage. For open-end trajectories such as straights and S-shaped curves, the time of crossover matches the decay time of orientational order of the velocities along trajectories, suggesting that it is the spreading of velocities that leads to the crossover. We show that the super-ballistic scaling of MSD arises from the initial, linearly increasing correlation of velocities, before time translational symmetry is established. When the spreading of velocities reaches a steady state in the long-time limit, short-range correlation then yields a diffusive scaling in MSD. In contrast, close-loop trajectories like circles exhibit localized periodic motion, which inhibits spreading. The initial super-ballistic scaling of MSD arises from velocity correlation that both linearly increases and oscillates in time. Finally, we find that the above statistical features of the trajectories transcend the nature of noises, be it additive or multiplicative, and generalize to other self-propelled systems that are not necessarily actin based.

  7. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    Energy Technology Data Exchange (ETDEWEB)

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K. (IIT); (EMBL); (Scripps); (Duke); (Prince); (FSU); (MRC); (U. Florence)

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  8. Depletion of the actin bundling protein SM22/transgelin increases actin dynamics and enhances the tumourigenic phenotypes of cells

    Directory of Open Access Journals (Sweden)

    Thompson Oliver

    2012-01-01

    Full Text Available Abstract Background SM22 has long been studied as an actin-associated protein. Interestingly, levels of SM22 are often reduced in tumour cell lines, while they are increased during senescence possibly indicating a role for SM22 in cell fate decisions via its interaction with actin. In this study we aimed to determine whether reducing levels of SM22 could actively contribute to a tumourigenic phenotype. Results We demonstrate that in REF52 fibroblasts, decreased levels of SM22 disrupt normal actin organization leading to changes in the motile behaviour of cells. Interestingly, SM22 depletion also led to an increase in the capacity of cells to spontaneously form podosomes with a concomitant increase in the ability to invade Matrigel. In PC3 prostate epithelial cancer cells by contrast, where SM22 is undetectable, re-expression of SM22 reduced the ability to invade Matrigel. Furthermore SM22 depleted cells also had reduced levels of reactive oxygen species when under serum starvation stress. Conclusions These findings suggest that depletion of SM22 could contribute to tumourigenic properties of cells. Reduction in SM22 levels would tend to promote cell survival when cells are under stress, such as in a hypoxic tumour environment, and may also contribute to increases in actin dynamics that favour metastatic potential.

  9. Regulation of actin cytoskeleton architecture by Eps8 and Abi1

    Directory of Open Access Journals (Sweden)

    Miller Jeffrey R

    2005-10-01

    Full Text Available Abstract Background The actin cytoskeleton participates in many fundamental processes including the regulation of cell shape, motility, and adhesion. The remodeling of the actin cytoskeleton is dependent on actin binding proteins, which organize actin filaments into specific structures that allow them to perform various specialized functions. The Eps8 family of proteins is implicated in the regulation of actin cytoskeleton remodeling during cell migration, yet the precise mechanism by which Eps8 regulates actin organization and remodeling remains elusive. Results Here, we show that Eps8 promotes the assembly of actin rich filopodia-like structures and actin cables in cultured mammalian cells and Xenopus embryos, respectively. The morphology of actin structures induced by Eps8 was modulated by interactions with Abi1, which stimulated formation of actin cables in cultured cells and star-like structures in Xenopus. The actin stars observed in Xenopus animal cap cells assembled at the apical surface of epithelial cells in a Rac-independent manner and their formation was accompanied by recruitment of N-WASP, suggesting that the Eps8/Abi1 complex is capable of regulating the localization and/or activity of actin nucleators. We also found that Eps8 recruits Dishevelled to the plasma membrane and actin filaments suggesting that Eps8 might participate in non-canonical Wnt/Polarity signaling. Consistent with this idea, mis-expression of Eps8 in dorsal regions of Xenopus embryos resulted in gastrulation defects. Conclusion Together, these results suggest that Eps8 plays multiple roles in modulating actin filament organization, possibly through its interaction with distinct sets of actin regulatory complexes. Furthermore, the finding that Eps8 interacts with Dsh and induced gastrulation defects provides evidence that Eps8 might participate in non-canonical Wnt signaling to control cell movements during vertebrate development.

  10. Disassembly of actin filaments by botulinum C2 toxin and actin-filament-disrupting agents induces assembly of microtubules in human leukaemia cell lines.

    Science.gov (United States)

    Uematsu, Yosuke; Kogo, Yasusi; Ohishi, Iwao

    2007-03-01

    C(2) toxin produced by Clostridium botulinum types C and D ADP-ribosylates actin monomers and inactivates their polymerization activities. The disassembly of actin filaments by C(2) toxin induces a polarization of cultured human leukaemia cell lines. The polarization induced by C(2) toxin was temperature dependent and was prevented by nocodazole, a microtubule-disrupting agent, whereas it was promoted by paclitaxel, a microtubule-stabilizing agent. The fluorescence staining of polarized cells indicated an increase in microtubule assembly accompanying disassembly of actin filaments. Furthermore, several actin-filament-disrupting agents, other than C(2) toxin, also induced microtubule assembly and cell polarization, irrespective of their different mechanisms of action. The effects induced by some of the agents, which have lower binding affinities for actin, were reversible in response to the re-assembly of actin filaments. Thus the disassembly of actin filaments by C(2) toxin and actin-filament-disrupting agents induces assembly of microtubules followed by polarization of human leukaemia cell lines, indicating that the assembly/disassembly equilibrium of actin filaments influences the dynamics of microtubules, which control cell morphology and, in turn, diverse cellular processes.

  11. Viruses that ride on the coat-tails of actin nucleation.

    Science.gov (United States)

    Newsome, Timothy P; Marzook, N Bishara

    2015-10-01

    Actin nucleation drives a diversity of critical cellular processes and the motility of a select group of viral pathogens. Vaccinia virus and baculovirus, Autographa californica multiple nucleopolyhedrovirus, recruit and activate the cellular actin nucleator, the Arp2/3 complex, at the surface of virus particles thereby instigating highly localized actin nucleation. The extension of these filaments provides a mechanical force that bestows the ability to navigate the intracellular environment and promote their infectious cycles. This review outlines the viral and cellular proteins that initiate and regulate the signalling networks leading to viral modification of the actin cytoskeleton and summarizes recent insights into the role of actin-based virus transport.

  12. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins

    Science.gov (United States)

    Loisel, Thomas P.; Boujemaa, Rajaa; Pantaloni, Dominique; Carlier, Marie-France

    1999-10-01

    Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, α-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.

  13. Identification of obscure yet conserved actin-associated proteins in Giardia lamblia.

    Science.gov (United States)

    Paredez, Alexander R; Nayeri, Arash; Xu, Jennifer W; Krtková, Jana; Cande, W Zacheus

    2014-06-01

    Consistent with its proposed status as an early branching eukaryote, Giardia has the most divergent actin of any eukaryote and lacks core actin regulators. Although conserved actin-binding proteins are missing from Giardia, its actin is utilized similarly to that of other eukaryotes and functions in core cellular processes such as cellular organization, endocytosis, and cytokinesis. We set out to identify actin-binding proteins in Giardia using affinity purification coupled with mass spectroscopy (multidimensional protein identification technology [MudPIT]) and have identified >80 putative actin-binding proteins. Several of these have homology to conserved proteins known to complex with actin for functions in the nucleus and flagella. We validated localization and interaction for seven of these proteins, including 14-3-3, a known cytoskeletal regulator with a controversial relationship to actin. Our results indicate that although Giardia lacks canonical actin-binding proteins, there is a conserved set of actin-interacting proteins that are evolutionarily indispensable and perhaps represent some of the earliest functions of the actin cytoskeleton.

  14. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  15. The conserved Tarp actin binding domain is important for chlamydial invasion.

    Directory of Open Access Journals (Sweden)

    Travis J Jewett

    Full Text Available The translocated actin recruiting phosphoprotein (Tarp is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  16. Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis.

    Science.gov (United States)

    Kadota, Akeo; Yamada, Noboru; Suetsugu, Noriyuki; Hirose, Mana; Saito, Chieko; Shoda, Keiko; Ichikawa, Satoshi; Kagawa, Takatoshi; Nakano, Akihiko; Wada, Masamitsu

    2009-08-04

    Organelle movement is essential for proper function of living cells. In plants, these movements generally depend on actin filaments, but the underlying mechanism is unknown. Here, in Arabidopsis, we identify associations of short actin filaments along the chloroplast periphery on the plasma membrane side associated with chloroplast photorelocation and anchoring to the plasma membrane. We have termed these chloroplast-actin filaments (cp-actin filaments). Cp-actin filaments emerge from the chloroplast edge and exhibit rapid turnover. The presence of cp-actin filaments depends on an actin-binding protein, chloroplast unusual positioning1 (CHUP1), localized on the chloroplast envelope. chup1 mutant lacked cp-actin filaments but showed normal cytoplasmic actin filaments. When irradiated with blue light to induce chloroplast movement, cp-actin filaments relocalize to the leading edge of chloroplasts before and during photorelocation and are regulated by 2 phototropins, phot1 and phot2. Our findings suggest that plants evolved a unique actin-based mechanism for organelle movement.

  17. Magnetic manipulation of actin orientation, polymerization, and gliding on myosin using superparamagnetic iron oxide particles.

    Science.gov (United States)

    Chen, Yun; Guzik, Stephanie; Sumner, James P; Moreland, John; Koretsky, Alan P

    2011-02-11

    The actin cytoskeleton controls cell shape, motility, as well as intracellular molecular trafficking. The ability to remotely manipulate actin is therefore highly desirable as a tool to probe and manipulate biological processes at the molecular level. We demonstrate actin manipulation by labeling actin filaments with superparamagnetic iron oxide particles (IOPs) and applying a uniform magnetic field to affect actin orientation, polymerization and gliding on myosin. We show for the first time magnetic manipulation of magnetizable actin filaments at the molecular level while gliding on a bed of myosin molecules and during polymerization. A model for the magnetic alignment and guiding mechanism is proposed based on the torque from the induced molecular anisotropy due to interactions between neighboring IOPs distributed along magnetically labeled actin molecules.

  18. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing.

    Science.gov (United States)

    Matsubayashi, Yutaka; Coulson-Gilmer, Camilla; Millard, Tom H

    2015-08-01

    The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form "signaling centers" along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing.

  19. Reconstitution of cortical actin networks within water-in-oil emulsions.

    Science.gov (United States)

    Abu Shah, Enas; Malik-Garbi, Maya; Keren, Kinneret

    2015-01-01

    We describe the reconstitution of dynamic cortical actin networks within cell-like compartments. The approach is based on encapsulation of Xenopus egg extract within water-in-oil emulsions. The growth of cortical actin networks is catalyzed by an amphiphilic actin nucleation-promoting factor that localizes to the water/oil interface. We first describe the preparation of cell-free Xenopus egg extract that provides all the soluble components of the actin machinery. We then describe the preparation of the amphiphilic, fluorescent actin nucleation-promoting factor that directs actin polymerization to the interface. Finally, we describe the steps required for assembly of dynamic actin cortices within water-in-oil emulsions, including the emulsification process and the sample preparation procedures. We provide recommendations for handling sensitive system components and discuss potential uses of this reconstitution approach for cytoskeletal research. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A unique profilin-actin interface is important for malaria parasite motility.

    Directory of Open Access Journals (Sweden)

    Catherine A Moreau

    2017-05-01

    Full Text Available Profilin is an actin monomer binding protein that provides ATP-actin for incorporation into actin filaments. In contrast to higher eukaryotic cells with their large filamentous actin structures, apicomplexan parasites typically contain only short and highly dynamic microfilaments. In apicomplexans, profilin appears to be the main monomer-sequestering protein. Compared to classical profilins, apicomplexan profilins contain an additional arm-like β-hairpin motif, which we show here to be critically involved in actin binding. Through comparative analysis using two profilin mutants, we reveal this motif to be implicated in gliding motility of Plasmodium berghei sporozoites, the rapidly migrating forms of a rodent malaria parasite transmitted by mosquitoes. Force measurements on migrating sporozoites and molecular dynamics simulations indicate that the interaction between actin and profilin fine-tunes gliding motility. Our data suggest that evolutionary pressure to achieve efficient high-speed gliding has resulted in a unique profilin-actin interface in these parasites.

  1. Actin Remodeling and Polymerization Forces Control Dendritic Spine Morphology

    CERN Document Server

    Miermans, Karsten; Storm, Cornelis; Hoogenraad, Casper

    2015-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. This striking progression is coincident with the (re)configuration of the neuronal network during early development, learning and memory formation, and has been conjectured to be part of the machinery that encodes these processes at the scale of individual neuronal connections. It is well established that the structural plasticity of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present...

  2. Nano-assembly of nanodiamonds by conjugation to actin filaments.

    Science.gov (United States)

    Bradac, Carlo; Say, Jana M; Rastogi, Ishan D; Cordina, Nicole M; Volz, Thomas; Brown, Louise J

    2016-03-01

    Fluorescent nanodiamonds (NDs) are remarkable objects. They possess unique mechanical and optical properties combined with high surface areas and controllable surface reactivity. They are non-toxic and hence suited for use in biological environments. NDs are also readily available and commercially inexpensive. Here, the exceptional capability of controlling and tailoring their surface chemistry is demonstrated. Small, bright diamond nanocrystals (size ˜30 nm) are conjugated to protein filaments of actin (length ˜3-7 µm). The conjugation to actin filaments is extremely selective and highly target-specific. These unique features, together with the relative simplicity of the conjugation-targeting method, make functionalised nanodiamonds a powerful and versatile platform in biomedicine and quantum nanotechnologies. Applications ranging from using NDs as superior biological markers to, potentially, developing novel bottom-up approaches for the fabrication of hybrid quantum devices that would bridge across the bio/solid-state interface are presented and discussed.

  3. Prokaryotic DNA segregation by an actin-like filament

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Löwe, Jan;

    2002-01-01

    The mechanisms responsible for prokaryotic DNA segregation are largely unknown. The partitioning locus (par) encoded by the Escherichia coli plasmid R1 actively segregates its replicon to daughter cells. We show here that the ParM ATPase encoded by par forms dynamic actin-like filaments with prop......The mechanisms responsible for prokaryotic DNA segregation are largely unknown. The partitioning locus (par) encoded by the Escherichia coli plasmid R1 actively segregates its replicon to daughter cells. We show here that the ParM ATPase encoded by par forms dynamic actin-like filaments...... point for ParM polymerization. Hence, we provide evidence for a simple prokaryotic analogue of the eukaryotic mitotic spindle apparatus....

  4. Actin-based propulsion of spatially extended objects

    Energy Technology Data Exchange (ETDEWEB)

    Enculescu, Mihaela [Institute for Theoretical Physics, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); Falcke, Martin, E-mail: mihaela.enculescu@tu-berlin.de [Max-Delbrueck-Center for Molecular Medicine, Mathematical Cell Physiology, Robert-Roessle-Street 10, 13125 Berlin (Germany)

    2011-05-15

    We propose a mathematical model of the actin-based propulsion of spatially extended obstacles. It starts from the properties of individual actin filaments and includes transient attachment to the obstacle, polymerization as well as cross-linking. Two particular geometries are discussed, which apply to the motion of protein-coated beads in a cell-like medium and the leading edge of a cell protrusion, respectively. The model gives rise to both steady and saltatory movement of beads and can explain the experimentally observed transitions of the dynamic regime with changing bead radius and protein surface density. Several spatiotemporal patterns are obtained with a soft obstacle under tension, including the experimentally observed spontaneous emergence of lateral traveling waves in crawling cells. Thus, we suggest a unifying mechanism for systems that are currently described by differential concepts.

  5. Myosin and Actin Filaments in Muscle: Structures and Interactions.

    Science.gov (United States)

    Squire, John M; Paul, Danielle M; Morris, Edward P

    2017-01-01

    In the last decade, improvements in electron microscopy and image processing have permitted significantly higher resolutions to be achieved (sometimes <1 nm) when studying isolated actin and myosin filaments. In the case of actin filaments the changing structure when troponin binds calcium ions can be followed using electron microscopy and single particle analysis to reveal what happens on each of the seven non-equivalent pseudo-repeats of the tropomyosin α-helical coiled-coil. In the case of the known family of myosin filaments not only are the myosin head arrangements under relaxing conditions being defined, but the latest analysis, also using single particle methods, is starting to reveal the way that the α-helical coiled-coil myosin rods are packed to give the filament backbones.

  6. Osmotic Force-Controlled Microrheometry of Entangled Actin Networks

    Science.gov (United States)

    Uhde, Jorg; Feneberg, Wolfgang; Ter-Oganessian, N.; Sackmann, Erich; Boulbitch, Alexei

    2005-05-01

    In studying a magnetic bead’s creep response to force pulses in an entangled actin network we have found a novel regime where the bead motion obeys a power law x(t)˜t1/2 over two decades in time. It is flanked by a short-time regime with x(t)˜t3/4 and a viscous with x(t)˜t. In the intermediate regime the creep compliance depends on the actin concentration c as c-β with β≈1.1±0.3. We explain this behavior in terms of osmotic restoring force generated by the piling up of filaments in front of the moving bead. A model based on this concept predicts intermediate x(t)˜t1/2 and long-time regimes x(t)˜t in which the compliance varies as c-4/3, in agreement with experiment.

  7. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  8. Bacterial actin and tubulin homologs in cell growth and division.

    Science.gov (United States)

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

  9. Reconstitution and dissection of the 600-kDa Srv2/CAP complex: roles for oligomerization and cofilin-actin binding in driving actin turnover.

    Science.gov (United States)

    Quintero-Monzon, Omar; Jonasson, Erin M; Bertling, Enni; Talarico, Lou; Chaudhry, Faisal; Sihvo, Maarit; Lappalainen, Pekka; Goode, Bruce L

    2009-04-17

    Srv2/cyclase-associated protein is expressed in virtually all plant, animal, and fungal organisms and has a conserved role in promoting actin depolymerizing factor/cofilin-mediated actin turnover. This is achieved by the abilities of Srv2 to recycle cofilin from ADP-actin monomers and to promote nucleotide exchange (ATP for ADP) on actin monomers. Despite this important and universal role in facilitating actin turnover, the mechanism underlying Srv2 function has remained elusive. Previous studies have demonstrated a critical functional role for the G-actin-binding C-terminal half of Srv2. Here we describe an equally important role in vivo for the N-terminal half of Srv2 in driving actin turnover. We pinpoint this activity to a conserved patch of surface residues on the N-terminal dimeric helical folded domain of Srv2, and we show that this functional site interacts with cofilin-actin complexes. Furthermore, we show that this site is essential for Srv2 acceleration of cofilin-mediated actin turnover in vitro. A cognate Srv2-binding site is identified on a conserved surface of cofilin, suggesting that this function likely extends to other organisms. In addition, our analyses reveal that higher order oligomerization of Srv2 depends on its N-terminal predicted coiled coil domain and that oligomerization optimizes Srv2 function in vitro and in vivo. Based on these data, we present a revised model for the mechanism by which Srv2 promotes actin turnover, in which coordinated activities of its N- and C-terminal halves catalyze sequential steps in recycling cofilin and actin monomers.

  10. Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin.

    Science.gov (United States)

    Pivovarova, Anastasia V; Chebotareva, Natalia A; Chernik, Ivan S; Gusev, Nikolai B; Levitsky, Dmitrii I

    2007-11-01

    Previously, we have shown that the small heat shock protein with apparent molecular mass 27 kDa (Hsp27) does not affect the thermal unfolding of F-actin, but effectively prevents aggregation of thermally denatured F-actin [Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI & Gusev NB (2005) Biochem Biophys Res Commun331, 1548-1553], and supposed that Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. In the present work, we applied dynamic light scattering, analytical ultracentrifugation and size exclusion chromatography to examine the properties of complexes formed by denatured actin with a recombinant human Hsp27 mutant (Hsp27-3D) mimicking the naturally occurring phosphorylation of this protein at Ser15, Ser78, and Ser82. Our results show that formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. All the methods show that the size of actin-Hsp27-3D complexes decreases with increasing Hsp27-3D concentration in the incubation mixture and that saturation occurs at approximately equimolar concentrations of Hsp27-3D and actin. Under these conditions, the complexes exhibit a hydrodynamic radius of approximately 16 nm, a sedimentation coefficient of 17-20 S, and a molecular mass of about 2 MDa. It is supposed that Hsp27-3D binds to denatured actin monomers or short oligomers dissociated from actin filaments upon heating and protects them from aggregation by forming relatively small and highly soluble complexes. This mechanism might explain how small heat shock proteins prevent aggregation of denatured actin and by this means protect the cytoskeleton and the whole cell from damage caused by accumulation of large insoluble aggregates under heat shock conditions.

  11. Actinic inspection of multilayer defects on EUV masks

    Energy Technology Data Exchange (ETDEWEB)

    Barty, A; Liu, Y; Gullikson, E; Taylor, J S; Wood, O

    2005-03-24

    The production of defect-free mask blanks, and the development of techniques for inspecting and qualifying EUV mask blanks, remains a key challenge for EUV lithography. In order to ensure a reliable supply of defect-free mask blanks, it is necessary to develop techniques to reliably and accurately detect defects on un-patterned mask blanks. These inspection tools must be able to accurately detect all critical defects whilst simultaneously having the minimum possible false-positive detection rate. There continues to be improvement in high-speed non-actinic mask blank inspection tools, and it is anticipated that these tools can and will be used by industry to qualify EUV mask blanks. However, the outstanding question remains one of validating that non-actinic inspection techniques are capable of detecting all printable EUV defects. To qualify the performance of non-actinic inspection tools, a unique dual-mode EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory. In high-speed inspection mode, whole mask blanks are scanned for defects using 13.5-nm wavelength light to identify and map all locations on the mask that scatter a significant amount of EUV light. In imaging, or defect review mode, a zone plate is placed in the reflected beam path to image a region of interest onto a CCD detector with an effective resolution on the mask of 100-nm or better. Combining the capabilities of the two inspection tools into one system provides the unique capability to determine the coordinates of native defects that can be used to compare actinic defect inspection with visible light defect inspection tools under commercial development, and to provide data for comparing scattering models for EUV mask defects.

  12. Scanning coherent scattering methods for actinic EUV mask inspection

    Science.gov (United States)

    Ekinci, Y.; Helfenstein, P.; Rajeev, R.; Mochi, I.; Mohacsi, I.; Gobrecht, J.; Yoshitake, S.

    2016-10-01

    Actinic mask inspection for EUV lithography with targeted specifications of resolution, sensitivity, and throughput remains a big hurdle for the successful insertion of EUVL into high volume manufacturing and effective solutions are needed to address this. We present a method for actinic mask inspection based on scanning coherent scattering microscopy. In this method, the mask is scanned with an EUV beam of relatively small spot size and the scattered light is recorded with a pixel detector. Customized algorithms reconstruct the aerial image by iteratively solving the phaseproblem using over-determined diffraction data gathered by scanning across the specimen with a finite illumination. This approach provides both phase and amplitude of actinic aerial images of the mask with high resolution without the need to use high NA (numerical aperture) lenses. Futher, we describe a reflective mode EUV mask scanning lensless imaging tool (RESCAN), which was installed at the XIL-II beamline and later at the SIM beamline of the Swiss Light Source and show reconstructed aerial images down to 10 nm (on-wafer) resolution. As a complementary method, the a-priori knowledge of the sample is employed to identify potential defect sites by analyzing the diffraction patterns. In this method, the recorded diffraction patterns are compared with the die or database data (i.e. previously measured or calculated diffraction data from the defect-free mask layout respectively) and their difference is interpreted as the defect signal. Dynamic software filtering helps to suppress the strong diffraction from defect-free structures and allows registration of faint defects with high sensitivity. Here, we discuss the basic principles of these Fourier domain techniques and its potential for actinic mask inspection with high signal-to-noise ratio and high throughput.

  13. Dynamics of Actin Filament Ends in a Network

    Science.gov (United States)

    Yang, Le; Sept, David; Carlsson, Anders

    2004-03-01

    The formation of filopodia-like bundles in vitro from a dendritic actin network has been observed(D. Vignjevic et al, J. Cell Biol. 160, 951 (2003)) to occur as a result of a nucleation process. We study the dynamics of the actin filament ends in such a network in order to evaluate the dynamics of the bundle nucleation process. Our model treats two semiflexible actin filaments fixed at one end and free at the other, moving according to Brownian dynamics. The initial filament positions are chosen according to a thermal distribution, and we evaluate the time for the filaments to come close enough to each other to interact and bind. The capture criterion is based either on the distance between filaments, or on a combination of distance and relative orientation. We evaluate the dependence of the capture time on the filament length and radius, and the distance between the filament bases. Since treating the movement of the individual monomers in filaments is computationally unwieldy, we treat the filament motion using a normal mode analysis which permits use of a much longer timestep. We find that this method yields rapid convergence even when only the few longest-wavelength modes are included.

  14. Plasma Actin, Gelsolin and Orosomucoid Levels after Eccentric Exercise.

    Science.gov (United States)

    Tékus, Éva; Váczi, Márk; Horváth-Szalai, Zoltán; Ludány, Andrea; Kőszegi, Tamás; Wilhelm, Márta

    2017-02-01

    The present study investigated the acute effect of eccentric exercise on blood plasma actin, gelsolin (GSN) and orosomucoid (AGP) levels in untrained and moderately trained individuals, and their correlation with exercise induced muscle damage (EIMD) markers (CK, intensity of muscle soreness and maximal voluntary contraction torque deficit). Healthy physical education students (6 untrained, 12 moderately trained) participated in this research. Actin, GSN, AGP and CK levels were measured in blood plasma at baseline, immediately, 1 h, 6 h and 24 h post-exercise comprising 90 eccentric quadriceps contractions performed on a dynamometer. There was significant time main effect for GSN, AGP, CK and significant difference was found between baseline and the lowest value of post-exercise GSN (p exercise AGP (p exercise and CK activity at 6 h, p exercise, p eccentric exercise do not seem sensitive to training status. The plasma actin level is used as an indicator of injury, however, our results suggest that it is not an accurate marker of EIMD, while plasma GSN concentrations show a better relationship with EIMD and the post-exercise inflammatory process. The elevated plasma AGP and the correlation between GSN and AGP seem to be promising for assessment of exercise-induced muscle injury.

  15. Dynamic Actin Controls Polarity Induction de novo in Protoplasts

    Institute of Scientific and Technical Information of China (English)

    Beatrix Zaban; Jan Maisch; Peter Nick

    2013-01-01

    Cell polarity and axes are central for plant morphogenesis.To study how polarity and axes are induced de novo,we investigated protoplasts of tobacco Nicotiana tabacum cv.BY-2 expressing fluorescentlytagged cytoskeletal markers.We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages.The synthesis of a new cell wall marks the transition to the first stage of regeneration,and proceeds after a long preparatory phase within a few minutes.During this preparatory phase,the nucleus migrates actively,and cytoplasmic strands remodel vigorously.We probed this system for the effect of anti-cytoskeletal compounds,inducible bundling of actin,RGD-peptides,and temperature.Suppression of actin dynamics at an early stage leads to aberrant tripolar cells,whereas suppression of microtubule dynamics produces aberrant sausagelike cells with asymmetric cell walls.We integrated these data into a model,where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis.Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments,and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.

  16. Actin cytoskeleton remodeling governs aquaporin-4 localization in astrocytes.

    Science.gov (United States)

    Nicchia, Grazia Paola; Rossi, Andrea; Mola, Maria Grazia; Procino, Giuseppe; Frigeri, Antonio; Svelto, Maria

    2008-12-01

    Aquaporin-4 (AQP4) is constitutively concentrated in the plasma membrane of the perivascular glial processes, and its expression is altered in certain pathological conditions associated with brain edema or altered glial migration. When astrocytes are grown in culture, they lose their characteristic star-like shape and AQP4 continuous plasma membrane localization observed in vivo. In this study, we differentiated primary astrocyte cultures with cAMP and lovastatin, both able to induce glial stellation through a reorganization of F-actin cytoskeleton, and obtained AQP4 selectively localized on the cell plasma membrane associated with an increase in the plasma membrane water transport level, but only cAMP induced an increase in AQP4 total protein expression. Phosphorylation experiments indicated that AQP4 in astrocytes is neither phosphorylated nor a substrate of PKA. Depolymerization of F-actin cytoskeleton performed by cytochalasin-D suggested that F-actin cytoskeleton plays a primary role for AQP4 plasma membrane localization and during cell adhesion. Finally, AQP4 knockdown does not compromise the ability of astrocytes to stellate in the presence of cAMP, indicating that astrocyte stellation is independent of AQP4. Copyright 2008 Wiley-Liss, Inc.

  17. Force-producing ADP state of myosin bound to actin.

    Science.gov (United States)

    Wulf, Sarah F; Ropars, Virginie; Fujita-Becker, Setsuko; Oster, Marco; Hofhaus, Goetz; Trabuco, Leonardo G; Pylypenko, Olena; Sweeney, H Lee; Houdusse, Anne M; Schröder, Rasmus R

    2016-03-29

    Molecular motors produce force when they interact with their cellular tracks. For myosin motors, the primary force-generating state has MgADP tightly bound, whereas myosin is strongly bound to actin. We have generated an 8-Å cryoEM reconstruction of this state for myosin V and used molecular dynamics flexed fitting for model building. We compare this state to the subsequent state on actin (Rigor). The ADP-bound structure reveals that the actin-binding cleft is closed, even though MgADP is tightly bound. This state is accomplished by a previously unseen conformation of the β-sheet underlying the nucleotide pocket. The transition from the force-generating ADP state to Rigor requires a 9.5° rotation of the myosin lever arm, coupled to a β-sheet rearrangement. Thus, the structure reveals the detailed rearrangements underlying myosin force generation as well as the basis of strain-dependent ADP release that is essential for processive myosins, such as myosin V.

  18. How cellular membrane properties are affected by the actin cytoskeleton.

    Science.gov (United States)

    Lemière, J; Valentino, F; Campillo, C; Sykes, C

    2016-11-01

    Lipid membranes define the boundaries of living cells and intracellular compartments. The dynamic remodelling of these membranes by the cytoskeleton, a very dynamic structure made of active biopolymers, is crucial in many biological processes such as motility or division. In this review, we present some aspects of cellular membranes and how they are affected by the presence of the actin cytoskeleton. We show that, in parallel with the direct study of membranes and cytoskeleton in vivo, biomimetic in vitro systems allow reconstitution of biological processes in a controlled environment. In particular, we show that liposomes, or giant unilamellar vesicles, encapsulating a reconstituted actin network polymerizing at their membrane are suitable models of living cells and can be used to decipher the relative contributions of membrane and actin on the mechanical properties of the cellular interface. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. Dynamic actin controls polarity induction de novo in protoplasts.

    Science.gov (United States)

    Zaban, Beatrix; Maisch, Jan; Nick, Peter

    2013-02-01

    Cell polarity and axes are central for plant morphogenesis. To study how polarity and axes are induced de novo, we investigated protoplasts of tobacco Nicotiana tabacum cv. BY-2 expressing fluorescently-tagged cytoskeletal markers. We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages. The synthesis of a new cell wall marks the transition to the first stage of regeneration, and proceeds after a long preparatory phase within a few minutes. During this preparatory phase, the nucleus migrates actively, and cytoplasmic strands remodel vigorously. We probed this system for the effect of anti-cytoskeletal compounds, inducible bundling of actin, RGD-peptides, and temperature. Suppression of actin dynamics at an early stage leads to aberrant tripolar cells, whereas suppression of microtubule dynamics produces aberrant sausage-like cells with asymmetric cell walls. We integrated these data into a model, where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis. Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments, and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.

  20. The Evolution of the Actin Binding NET Superfamily

    Directory of Open Access Journals (Sweden)

    Tim eHawkins

    2014-06-01

    Full Text Available The arabidopsis Networked protein superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in arabidopsis which group into 4 distinct clades or subfamilies. NET homologues are absent from the genomes of metazoa and fungi, furthermore in Plantae NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single subfamily of the NET proteins are found encoded in the club moss genome; an extant species of the earliest vascular plants. Gymnosperms have examples from subfamilies 4 and 3 with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 subfamilies, the NET1 and pollen-expressed NET2 subfamilies are only found as independent sequences in angiosperms. This is consistent with the divergence of reproductive actin. The four subfamilies are conserved across monocots and eudicots with the numbers of members of each clade expanding at this point due in part to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants they have continued to develop and diversify in a manner which has mirrored the divergence and complexity of plant species through evolution in the ‘March of Progress’.

  1. Myosin lever arm directs collective motion on cellular actin network.

    Science.gov (United States)

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  2. LATS1 tumor suppressor is a novel actin-binding protein and negative regulator of actin polymerization

    Institute of Scientific and Technical Information of China (English)

    Stacy Visser-Grieve; Zhonghua Zhou; Yi-Min She; He Huang; Terry D Cyr; Tian Xu; Xiaolong Yang

    2011-01-01

    Dear Editor,The LATS tumor suppressor,conserved from Drosophila (dlats) to humans (LATS1,LATS2),plays a vital role in maintaining cellular homeostasis in humans since loss of either LATS1 or LATS2 leads to the development of numerous cancer types such as breast cancer and leukemia [1].Apart from its roles as a Ser/Thr kinase within the emerging Hippo pathway regulating cell proliferation and apoptosis,ultimately leading to the control of organ size and tumorigenesis [2],LATS is also implicated in a broad range of functions including regulation of genetic stability,transcription,and protein stability [1 ].Recently,tumor suppressors have also been shown to affect the later stages of tumorigenesis,including metastasis.Among this group of metastasis regulators are genes that can directly affect actin dynamics by binding to F-actin,such as the tumor suppressors p53 [3],NF2 [4] and APC [5].

  3. Hypotonicity causes actin reorganization and recruitment of the actin-binding ERM protein moesin in membrane protrusions in collecting duct principal cells

    NARCIS (Netherlands)

    Tamma, G.; Procino, G.; Svelto, M.; Valenti, G.

    2007-01-01

    Hypotonicity-induced cell swelling is characterized by a modification in cell architecture associated with actin cytoskeleton remodeling. The ezrin/radixin/moesin (ERM) family proteins are important signal transducers during actin reorganization regulated by the monomeric G proteins of the Rho famil

  4. Hypotonicity causes actin reorganization and recruitment of the actin-binding ERM protein moesin in membrane protrusions in collecting duct principal cells

    NARCIS (Netherlands)

    Tamma, G.; Procino, G.; Svelto, M.; Valenti, G.

    2007-01-01

    Hypotonicity-induced cell swelling is characterized by a modification in cell architecture associated with actin cytoskeleton remodeling. The ezrin/radixin/moesin (ERM) family proteins are important signal transducers during actin reorganization regulated by the monomeric G proteins of the Rho famil

  5. Actin nemaline myopathy mouse reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression.

    Directory of Open Access Journals (Sweden)

    Gianina Ravenscroft

    Full Text Available Mutations in the skeletal muscle α-actin gene (ACTA1 cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G of ACTA1 (identified in a severe nemaline myopathy patient fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ~30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations.

  6. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle

    OpenAIRE

    Nomura, Kazumi; Ono, Kanako; Ono, Shoichiro

    2012-01-01

    Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we repo...

  7. Phototropin-dependent biased relocalization of cp-actin filaments can be induced even when chloroplast movement is inhibited

    OpenAIRE

    Yamada, Noboru; Suetsugu, Noriyuki; Wada, Masamitsu; Kadota, Akeo

    2011-01-01

    In a recent publication using an actin-visualized line of Arabidopsis (Ichikawa et al. 2011, ref. 11), we reported a detailed analysis with higher time resolution on the dynamics of chloroplast actin filaments (cp-actin filaments) during chloroplast avoidance movement and demonstrated a good correlation between the biased configuration of cp-actin filaments and chloroplast movement. However, we could not conclusively determine whether the reorganization of cp-actin filaments into a biased con...

  8. Myopathy mutations in alpha-skeletal-muscle actin cause a range of molecular defects.

    Science.gov (United States)

    Costa, Céline F; Rommelaere, Heidi; Waterschoot, Davy; Sethi, Kamaljit K; Nowak, Kristen J; Laing, Nigel G; Ampe, Christophe; Machesky, Laura M

    2004-07-01

    Mutations in the gene encoding alpha-skeletal-muscle actin, ACTA1, cause congenital myopathies of various phenotypes that have been studied since their discovery in 1999. Although much is now known about the clinical aspects of myopathies resulting from over 60 different ACTA1 mutations, we have very little evidence for how mutations alter the behavior of the actin protein and thus lead to disease. We used a combination of biochemical and cell biological analysis to classify 19 myopathy mutants and found a range of defects in the actin. Using in vitro expression systems, we probed actin folding and actin's capacity to interact with actin-binding proteins and polymerization. Only two mutants failed to fold; these represent recessive alleles, causing severe myopathy, indicating that patients produce nonfunctional actin. Four other mutants bound tightly to cyclase-associated protein, indicating a possible instability in the nucleotide-binding pocket, and formed rods and aggregates in cells. Eleven mutants showed defects in the ability to co-polymerize with wild-type actin. Some of these could incorporate into normal actin structures in NIH 3T3 fibroblasts, but two of the three tested also formed aggregates. Four mutants showed no defect in vitro but two of these formed aggregates in cells, indicating functional defects that we have not yet tested for. Overall, we found a range of defects and behaviors of the mutants in vitro and in cultured cells, paralleling the complexity of actin-based muscle myopathy phenotypes.

  9. Regulation of actin catch-slip bonds with a RhoA-formin module

    Science.gov (United States)

    Lee, Cho-Yin; Lou, Jizhong; Wen, Kuo-Kuang; McKane, Melissa; Eskin, Suzanne G.; Rubenstein, Peter A.; Chien, Shu; Ono, Shoichiro; Zhu, Cheng; McIntire, Larry V.

    2016-10-01

    The dynamic turnover of the actin cytoskeleton is regulated cooperatively by force and biochemical signaling. We previously demonstrated that actin depolymerization under force is governed by catch-slip bonds mediated by force-induced K113:E195 salt-bridges. Yet, the biochemical regulation as well as the functional significance of actin catch bonds has not been elucidated. Using AFM force-clamp experiments, we show that formin controlled by RhoA switches the actin catch-slip bonds to slip-only bonds. SMD simulations reveal that the force does not induce the K113:E195 interaction when formin binds to actin K118 and E117 residues located at the helical segment extending to K113. Actin catch-slip bonds are suppressed by single residue replacements K113E and E195K that interrupt the force-induced K113:E195 interaction; and this suppression is rescued by a K113E/E195K double mutant (E/K) restoring the interaction in the opposite orientation. These results support the biological significance of actin catch bonds, as they corroborate reported observations that RhoA and formin switch force-induced actin cytoskeleton alignment and that either K113E or E195K induces yeast cell growth defects rescued by E/K. Our study demonstrates how the mechano-regulation of actin dynamics is modulated by biochemical signaling molecules, and suggests that actin catch bonds may be important in cell functions.

  10. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators.

    Science.gov (United States)

    Dopie, Joseph; Rajakylä, Eeva K; Joensuu, Merja S; Huet, Guillaume; Ferrantelli, Evelina; Xie, Tiao; Jäälinoja, Harri; Jokitalo, Eija; Vartiainen, Maria K

    2015-07-01

    Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes.

  11. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Directory of Open Access Journals (Sweden)

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  12. Actin and myosin regulate cytoplasm stiffness in plant cells: a study using optical tweezers.

    Science.gov (United States)

    van der Honing, Hannie S; de Ruijter, Norbert C A; Emons, Anne Mie C; Ketelaar, Tijs

    2010-01-01

    Here, we produced cytoplasmic protrusions with optical tweezers in mature BY-2 suspension cultured cells to study the parameters involved in the movement of actin filaments during changes in cytoplasmic organization and to determine whether stiffness is an actin-related property of plant cytoplasm. Optical tweezers were used to create cytoplasmic protrusions resembling cytoplasmic strands. Simultaneously, the behavior of the actin cytoskeleton was imaged. After actin filament depolymerization, less force was needed to create cytoplasmic protrusions. During treatment with the myosin ATPase inhibitor 2,3-butanedione monoxime, more trapping force was needed to create and maintain cytoplasmic protrusions. Thus, the presence of actin filaments and, even more so, the deactivation of a 2,3-butanedione monoxime-sensitive factor, probably myosin, stiffens the cytoplasm. During 2,3-butanedione monoxime treatment, none of the tweezer-formed protrusions contained filamentous actin, showing that a 2,3-butanedione monoxime-sensitive factor, probably myosin, is responsible for the movement of actin filaments, and implying that myosin serves as a static cross-linker of actin filaments when its motor function is inhibited. The presence of actin filaments does not delay the collapse of cytoplasmic protrusions after tweezer release. Myosin-based reorganization of the existing actin cytoskeleton could be the basis for new cytoplasmic strand formation, and thus the production of an organized cytoarchitecture.

  13. Possible association of actin filaments with chloroplasts of spinach mesophyll cells in vivo and in vitro.

    Science.gov (United States)

    Kumatani, T; Sakurai-Ozato, N; Miyawaki, N; Yokota, E; Shimmen, T; Terashima, I; Takagi, S

    2006-11-01

    In palisade mesophyll cells of spinach (Spinacia oleracea L.) kept under low-intensity white light, chloroplasts were apparently immobile and seemed to be surrounded by fine bundles of actin filaments. High-intensity blue light induced actin-dependent chloroplast movement concomitant with the appearance of a couple of long, straight bundles of actin filaments in each cell, whereas high-intensity red light was essentially ineffective in inducing these responses. The actin organization observed under low-intensity white light has been postulated to function in anchoring chloroplasts at proper intracellular positions through direct interaction with the chloroplasts. Intact chloroplasts, which retained their outer envelopes, were isolated after homogenization of leaves and Percoll centrifugation. No endogenous actin was detected by immunoblotting in the final intact-chloroplast fraction prepared from the leaves kept under low-intensity white light or in darkness. In cosedimentation assays with exogenously added skeletal muscle filamentous actin, however, actin was detected in the intact-chloroplast fraction precipitated after low-speed centrifugation. The association of actin with chloroplasts was apparently dependent on incubation time and chloroplast density. After partial disruption of the outer envelope of isolated chloroplasts by treatment with trypsin, actin was no longer coprecipitated. The results suggest that chloroplasts in spinach leaves can directly interact with actin, and that this interaction may be involved in the regulation of intracellular positioning of chloroplasts.

  14. Stochastic dynamics of actin filaments in guard cells regulating chloroplast localization during stomatal movement.

    Science.gov (United States)

    Wang, Xiu-Ling; Gao, Xin-Qi; Wang, Xue-Chen

    2011-08-01

    Actin filaments and chloroplasts in guard cells play roles in stomatal function. However, detailed actin dynamics vary, and the roles that they play in chloroplast localization during stomatal movement remain to be determined. We examined the dynamics of actin filaments and chloroplast localization in transgenic tobacco expressing green fluorescent protein (GFP)-mouse talin in guard cells by time-lapse imaging. Actin filaments showed sliding, bundling and branching dynamics in moving guard cells. During stomatal movement, long filaments can be severed into small fragments, which can form longer filaments by end-joining activities. With chloroplast movement, actin filaments near chloroplasts showed severing and elongation activity in guard cells during stomatal movement. Cytochalasin B treatment abolished elongation, bundling and branching activities of actin filaments in guard cells, and these changes of actin filaments, and as a result, more chloroplasts were localized at the centre of guard cells. However, chloroplast turning to avoid high light, and sliding of actin fragments near the chloroplast, was unaffected following cytochalasin B treatment in guard cells. We suggest that the sliding dynamics of actin may play roles in chloroplast turning in guard cells. Our results indicate that the stochastic dynamics of actin filaments in guard cells regulate chloroplast localization during stomatal movement.

  15. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    Science.gov (United States)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  16. Expression of Chlamydomonas actin-gfp fusion gene in to-bacco suspension cell and polymerization of the actin-gfp protein in vitro

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fusion gene of actin (cDNA of Chlamydo- monas reinhardtii) and green fluorescence protein (gfp) had been constructed into two expression vectors which could be expressed in E. coli and tobacco suspension cells BY2. The correct expression was observed in E. coli and BY2 with a fluorescence microscopy. The fusion protein, which took part in the membrane skeleton, was mainly located peripherally along the membrane, specially the fusion protein was dis-tributed around nucleus and cell plate, while the fusion pro-tein also forms F-actin in the cell. The fusion protein was purified from Bl21plus by ammonium sulfate fractionation, ion exchange chromatography and hydrophobic interaction chromatography. The purified production could polymerize into F-actin when the actin polymerizing buffer was added. It was demonstrated that the characteristics and function of actin in Chlamydomonas was similar with those of animals and higher plants.

  17. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    Directory of Open Access Journals (Sweden)

    Su Deng

    2015-08-01

    Full Text Available The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia, which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  18. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    Science.gov (United States)

    Deng, Su; Bothe, Ingo; Baylies, Mary K

    2015-08-01

    The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  19. Mutational Analysis Reveals a Noncontractile but Interactive Role of Actin and Profilin in Viral RNA-Dependent RNA Synthesis▿

    Science.gov (United States)

    Harpen, Mary; Barik, Tiasha; Musiyenko, Alla; Barik, Sailen

    2009-01-01

    As obligatory parasites, viruses co-opt a variety of cellular functions for robust replication. The expression of the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV), a significant pediatric pathogen, absolutely requires actin and is stimulated by the actin-regulatory protein profilin. As actin is a major contractile protein, it was important to determine whether the known functional domains of actin and profilin were important for their ability to activate RSV transcription. Analyses of recombinant mutants in a reconstituted RSV transcription system suggested that the divalent-cation-binding domain of actin is critically needed for binding to the RSV genome template and for the activation of viral RNA synthesis. In contrast, the nucleotide-binding domain and the N-terminal acidic domain were needed neither for template binding nor for transcription. Specific surface residues of actin, required for actin-actin contact during filamentation, were also nonessential for viral transcription. Unlike actin, profilin did not directly bind to the viral template but was recruited by actin. Mutation of the interactive residues of actin or profilin, resulting in the loss of actin-profilin binding, also abolished profilin's ability to stimulate viral transcription. Together, these results suggest that actin acts as a classical transcription factor for the virus by divalent-cation-dependent binding to the viral template and that profilin acts as a transcriptional cofactor, in part by associating with actin. This essential viral role of actin is independent of its contractile cellular role. PMID:19710142

  20. Cloning and Characterization of an Abalone (Haliotis discus hannai) Actin Gene

    Institute of Scientific and Technical Information of China (English)

    MA Hongming; XU Wei; MAI Kangsen; LIUFU Zhiguo; CHEN Hong

    2004-01-01

    An actin encoding gene was cloned by using RT-PCR, 3' RACE and 5' RACE from abalone Haliotis discus hannai. The full length of the gene is 1532 base pairs, which contains a long 3' untranslated region of 307 base pairs and 79 base pairs of 5' untranslated sequence. The open reading frame encodes 376 amino acid residues. Sequence comparison with those of human and other mollusks showed high conservation among species at amino acid level. The identities was 96%, 97% and 96% respectively compared with Aplysia californica, Biomphalaria glabrata and Homo sapience β-actin. It is also indicated that this actin is more similar to the human cytoplasmic actin(β-actin)than to human muscle actin.

  1. Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte.

    Science.gov (United States)

    Dahlgaard, Katja; Raposo, Alexandre A S F; Niccoli, Teresa; St Johnston, Daniel

    2007-10-01

    Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin filaments in the oocyte cytoplasm. capu and spire mutants lack this mesh, whereas overexpressed truncated Cappuccino stabilizes the mesh in the presence of Latrunculin A and partially rescues spire mutants. Spire overexpression cannot rescue capu mutants, but prevents actin mesh disassembly at stage 10B and blocks late cytoplasmic streaming. We also show that the actin mesh regulates microtubules indirectly, by inhibiting kinesin-dependent cytoplasmic flows. Thus, the Capu pathway controls alternative states of the oocyte cytoplasm: when active, it assembles an actin mesh that suppresses kinesin motility to maintain a polarized microtubule cytoskeleton. When inactive, unrestrained kinesin movement generates flows that wash microtubules to the cortex.

  2. A morphometric analysis of adrenocortical actin localized by immunoelectron microscopy: the effect of adrenocorticotropin.

    Science.gov (United States)

    Loesser, K E; Malamed, S

    1987-10-01

    The localization of actin and the effect of ACTH on its concentration was examined in freshly isolated rat adrenocortical cells. Lowicryl K4M-embedded cells were used for the immunoelectron localization of actin; gold was used as a label for immunoreactive sites. Actin was at least 4 times as concentrated at the cortical cytoplasm as in the lipid droplets and at least 5 times as concentrated in the microvilli as in the lipid droplets. ACTH stimulation approximately doubled the concentration of actin in the cortical cytoplasm and increased by 50% the concentration of actin in the microvilli. The microvillar contribution to the cell surface area was 40% higher in ACTH-stimulated cells than it was in unstimulated cells. These results provide quantitative evidence suggesting that actin and the microvilli participate in steroid secretion by the adrenocortical cell.

  3. The interaction between the adaptor protein APS and Enigma is involved in actin organisation

    DEFF Research Database (Denmark)

    Barres, Romain; Gonzalez, Teresa; Le Marchand-Brustel, Yannick

    2005-01-01

    and APS were partially co-localised with F-actin in small ruffling structures. Insulin increased the complex formation between APS and Enigma and their co-localisation in large F-actin containing ruffles. While in NIH-3T3 and HeLa cells the co-expression of both Enigma and APS did not modify the actin...... cytoskeleton organisation, expression of Enigma alone led to the formation of F-actin clusters. Similar alteration in actin cytoskeleton organisation was observed in cells expressing both Enigma and APS with a mutation in the NPTY motif. These results identify Enigma as a novel APS-binding protein and suggest...... that the APS/Enigma complex plays a critical role in actin cytoskeleton organisation....

  4. Actin based processes that could determine the cytoplasmic architecture of plant cells.

    Science.gov (United States)

    van der Honing, Hannie S; Emons, Anne Mie C; Ketelaar, Tijs

    2007-05-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells that is likely to depend on actin-based force generation is the organisation of the cytoplasm. We compare the function of actin binding proteins of three well-studied mammalian models that depend on actin-based force generation with the function of their homologues in plants. We predict the possible role of these proteins, and thus the role of actin-based force generation, in the production of cytoplasmic organisation in plant cells.

  5. Total synthesis of (-)-doliculide, structure-activity relationship studies and its binding to F-actin.

    Science.gov (United States)

    Matcha, Kiran; Madduri, Ashoka V R; Roy, Sayantani; Ziegler, Slava; Waldmann, Herbert; Hirsch, Anna K H; Minnaard, Adriaan J

    2012-11-26

    Actin, an abundant protein in most eukaryotic cells, is one of the targets in cancer research. Recently, a great deal of attention has been paid to the synthesis and function of actin-targeting compounds and their use as effective molecular probes in chemical biology. In this study, we have developed an efficient synthesis of (-)-doliculide, a very potent actin binder with a higher cell-membrane permeability than phalloidin. Actin polymerization assays with (-)-doliculide and two analogues on HeLa and BSC-1 cells, together with a prediction of their binding mode to F-actin by unbiased computational docking, show that doliculide stabilizes F-actin in a similar way to jasplakinolide and chondramide C. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells

    Directory of Open Access Journals (Sweden)

    Tiantian eSun

    2013-12-01

    Full Text Available Membrane structures and cytoskeleton dynamics are intimately inter-connected in the eukaryotic cell. Recently, the molecular mechanisms operating at this interface have been progressively addressed. Many experiments have revealed that the actin cytoskeleton can interact with membranes through various discrete membrane domains. The actin-binding protein, profilin has been proven to inhibit actin polymerization and to promote F-actin elongation. This is dependent on many factors, such as the profilin/G-actin ratio and the ionic environment of the cell. Additionally, profilin has specific domains that interact with phosphoinositides and poly-L-proline rich proteins; theoretically, this gives profilin the opportunity to interact with membranes, and a large number of experiments have confirmed this possibility. In this article, we summarize recent findings in plant cells, and discuss the evidence of the connections among actin cytoskeleton, profilin and biomembranes through direct or indirect relationships.

  7. Xenopus oocyte wound healing as a model system for analysis of microtubule-actin interactions.

    Science.gov (United States)

    Zhang, Tong; Mandato, Craig A

    2007-01-01

    Microtubule-actin interactions are fundamental to many cellular processes such as cytokinesis and cellular locomotion. Investigating the mechanism of microtubule-actin interactions is the key to understand the cellular morphogenesis and related pathological processes. The abundance and highly dynamic nature of microtubules and F-actin raise a serious challenge when trying to distinguish between the real and fortuitous interactions within a cell. Xenopus oocyte wound model represents an ideal system to study microtubule-actin interactions as well as microtubule-dependent control of the actin polymerization. Here, we describe a series of cytoskeleton specific treatments in Xenopus oocyte wound healing experiments and use confocal fluorescence microscopy to analyze fixed oocytes to examine microtubule-actin interactions.

  8. Effect of cytochalasins on F-actin and morphology of Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Mills, J W; Falsig Pedersen, S; Walmod, P S

    2000-01-01

    that, in intact cells, different cytochalasins can have varying effects on cell morphology and F-actin content and organization. To examine this problem in more detail, we analyzed the effects of cytochalasins on the cell morphology of and F-actin content and organization in Ehrlich ascites tumor (EAT......) cells. After a 3-min exposure to 0.5 microM cytochalasin D, B, or E, F-actin content was equally reduced in all cases and this correlated with a reduction in the amount of cortical F-actin associated with the EAT cell membrane. However, only with CE was cell morphology markedly altered......, with the appearance of numerous blebs. At 10 microM, blebbing was present in all conditions and the organization of cortical F-actin was disrupted. F-actin content, however, was not further reduced by this higher concentration and in CD it was identical to control levels. Exposure of EAT cells to similar...

  9. Viral exploitation of actin:force-generation and scaffolding functions in viral infection

    Institute of Scientific and Technical Information of China (English)

    Mark Spear; Yuntao Wu

    2014-01-01

    As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array of mechanisms for manipulating the actin cytoskeleton for efifcacious infection. An ongoing chorus of research now indicates that the actin cytoskeleton is critical for viral replication at many stages of the viral life cycle, including binding, entry, nuclear localization, genomic transcription and reverse transcription, assembly, and egress/dissemination. Speciifcally, viruses subvert the force-generating and macromolecular scaffolding properties of the actin cytoskeleton to propel viral surifng, internalization, and migration within the cell. Additionally, viruses utilize the actin cytoskeleton to support and organize assembly sites, and eject budding virions for cell-to-cell transmission. It is the purpose of this review to provide an overview of current research, focusing on the various mechanisms and themes of virus-mediated actin modulation described therein.

  10. Actin and nuclear myosin Ⅰ are associated with RNAP Ⅱ and function in gene transcription

    Institute of Scientific and Technical Information of China (English)

    ZHU XiaoJuan; HUANG BaiQu; WANG XingZhi; HAO Shui; ZENG XianLu

    2007-01-01

    The presence of actin in the nucleus as well as its functions in various nuclear processes has been made clear in the past few years. Actin is known to be a part of chromatin-remodeling complexes BAF,which are required for maximal ATPase activity of the Brg1 component of the BAF complex. Moreover,the essential roles of acfin in transcription mediated by RNA polymerases Ⅰ, Ⅱ and Ⅲ have been demonstrated recently. On the other hand, a myosin Ⅰ isoform, which contains a unique NH2-terminal extension for nucleus localization, has been specifically localized in nucleus. As is well known, myosin Ⅰis an actin-binding protein and plays an important role in various cellular activities. Though actin and nuclear myosin Ⅰ (NM Ⅰ) have been implicated to play distinct roles in gene expression, there has been no evidence for the actin-myosin interaction that might be involved in gene transcription mediated by RNA polymerase Ⅱ (RNAP Ⅱ). Here we show evidence that both actin and NM Ⅰ are associated with RNAP Ⅱ in nucleus by using co-localization and co-IP assays, and they may act together on gene transcription.The antibodies against β-actin or NM Ⅰ can block RNA synthesis in a eukaryotic in vitro transcription system with template DNA comprising the promoter and the coding region of human autocrine motility factor receptor (hAMFR) gene; the antibodies pre-adsorbed with purified actin and NM Ⅰ have no effect in transcriptional inhibition, indicating that the inhibition of transcription by anti-actin and anti-NM Ⅰ is specific. These results suggest a direct involvement of actin-myosin complexes in regulating transcription. It also implicates that actin and NM Ⅰ may co-exist in a same complex with RNAP Ⅱ and the interaction of RNAP Ⅱ with actin and NM Ⅰ functions in the RNAP Ⅱ-mediated transcription.

  11. Keeping it all together: auxin–actin crosstalk in plant development

    OpenAIRE

    2015-01-01

    Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in...

  12. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana

    OpenAIRE

    Suetsugu, Noriyuki; Yamada, Noboru; Kagawa, Takatoshi; Yonekura, Hisashi; Uyeda, Taro Q. P.; Kadota, Akeo; Wada, Masamitsu

    2010-01-01

    Organelle movement is essential for efficient cellular function in eukaryotes. Chloroplast photorelocation movement is important for plant survival as well as for efficient photosynthesis. Chloroplast movement generally is actin dependent and mediated by blue light receptor phototropins. In Arabidopsis thaliana, phototropins mediate chloroplast movement by regulating short actin filaments on chloroplasts (cp-actin filaments), and the chloroplast outer envelope protein CHUP1 is necessary for c...

  13. Cell stress promotes the association of phosphorylated HspB1 with F-actin.

    Directory of Open Access Journals (Sweden)

    Joseph P Clarke

    Full Text Available Previous studies have suggested that the small heat shock protein, HspB1, has a direct influence on the dynamics of cytoskeletal elements, in particular, filamentous actin (F-actin polymerization. In this study we have assessed the influence of HspB1 phosphorylation on its interaction(s with F-actin. We first determined the distribution of endogenous non-phosphorylated HspB1, phosphorylated HspB1 and F-actin in neuroendocrine PC12 cells by immunocytochemistry and confocal microscopy. We then investigated a potential direct interaction between HspB1 with F-actin by precipitating F-actin directly with biotinylated phalloidin followed by Western analyses; the reverse immunoprecipitation of HspB1 was also carried out. The phosphorylation influence of HspB1 in this interaction was investigated by using pharmacologic inhibition of p38 MAPK. In control cells, HspB1 interacts with F-actin as a predominantly non-phosphorylated protein, but subsequent to stress there is a redistribution of HspB1 to the cytoskeletal fraction and a significantly increased association of pHspB1 with F-actin. Our data demonstrate HspB1 is found in a complex with F-actin both in phosphorylated and non-phosphorylated forms, with an increased association of pHspB1 with F-actin after heat stress. Overall, our study combines both cellular and biochemical approaches to show cellular localization and direct demonstration of an interaction between endogenous HspB1 and F-actin using methodolgy that specifically isolates F-actin.

  14. Tropomodulin Capping of Actin Filaments in Striated Muscle Development and Physiology

    OpenAIRE

    Gokhin, David S.; Fowler, Velia M.

    2011-01-01

    Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by ...

  15. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton.

    Science.gov (United States)

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R; Bryce, Nicole S; Whan, Renee M; Hardeman, Edna C; Fath, Thomas; Schevzov, Galina; Gunning, Peter W

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.

  16. Mammalian CAP interacts with CAP, CAP2, and actin.

    Science.gov (United States)

    Hubberstey, A; Yu, G; Loewith, R; Lakusta, C; Young, D

    1996-06-01

    We previously identified human CAP, a homolog of the yeast adenylyl cyclase-associated protein. Previous studies suggest that the N-terminal and C-terminal domains of CAP have distinct functions. We have explored the interactions of human CAP with various proteins. First, by performing yeast two-hybrid screens, we have identified peptides from several proteins that interact with the C-terminal and/or the N-terminal domains of human CAP. These peptides include regions derived from CAP and BAT3, a protein with unknown function. We have further shown that MBP fusions with these peptides can associate in vitro with the N-terminal or C-terminal domains of CAP fused to GST. Our observations indicate that CAP contains regions in both the N-terminal and C-terminal domains that are capable of interacting with each other or with themselves. Furthermore, we found that myc-epitope-tagged CAP coimmunoprecipitates with HA-epitope-tagged CAP from either yeast or mammalian cell extracts. Similar results demonstrate that human CAP can also interact with human CAP2. We also show that human CAP interacts with actin, both by the yeast two-hybrid test and by coimmunoprecipitation of epitope-tagged CAP from yeast or mammalian cell extracts. This interaction requires the C-terminal domain of CAP, but not the N-terminal domain. Thus CAP appears to be capable of interacting in vivo with other CAP molecules, CAP2, and actin. We also show that actin co-immunoprecipitates with HA-CAP2 from mammalian cell extracts.

  17. Mechanical heterogeneity favors fragmentation of strained actin filaments.

    Science.gov (United States)

    De La Cruz, Enrique M; Martiel, Jean-Louis; Blanchoin, Laurent

    2015-05-05

    We present a general model of actin filament deformation and fragmentation in response to compressive forces. The elastic free energy density along filaments is determined by their shape and mechanical properties, which were modeled in terms of bending, twisting, and twist-bend coupling elasticities. The elastic energy stored in filament deformation (i.e., strain) tilts the fragmentation-annealing reaction free-energy profile to favor fragmentation. The energy gradient introduces a local shear force that accelerates filament intersubunit bond rupture. The severing protein, cofilin, renders filaments more compliant in bending and twisting. As a result, filaments that are partially decorated with cofilin are mechanically heterogeneous (i.e., nonuniform) and display asymmetric shape deformations and energy profiles distinct from mechanically homogenous (i.e., uniform), bare actin, or saturated cofilactin filaments. The local buckling strain depends on the relative size of the compliant segment as well as the bending and twisting rigidities of flanking regions. Filaments with a single bare/cofilin-decorated boundary localize energy and force adjacent to the boundary, within the compliant cofilactin segment. Filaments with small cofilin clusters were predicted to fragment within the compliant cofilactin rather than at boundaries. Neglecting contributions from twist-bend coupling elasticity underestimates the energy density and gradients along filaments, and thus the net effects of filament strain to fragmentation. Spatial confinement causes compliant cofilactin segments and filaments to adopt higher deformation modes and store more elastic energy, thereby promoting fragmentation. The theory and simulations presented here establish a quantitative relationship between actin filament fragmentation thermodynamics and elasticity, and reveal how local discontinuities in filament mechanical properties introduced by regulatory proteins can modulate both the severing efficiency

  18. Microrheology and micromechanics of actin-coated membranes

    Science.gov (United States)

    Bourdieu, Laurent

    2002-03-01

    To study the interaction between cytoskeletal filaments and the plasma membrane, we designed composite membranes obtained by self-assembly of actin filaments on the outer leaflet of giant unilamellar fluid vesicles. Their rich dynamics is studied by micromanipulation with optical tweezers and by single particle tracking experiments. We first show that microrheology study can be carried out on such an individual microscopic object by measuring the thermally excited position fluctuations of a probed bead bound biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin filaments network first induces a finite 2D shear modulus of the order of 1 microN/m. Moreover, these membranes exhibit a clear viscoelastic behavior at high frequency: above a few tens of Hz, both the shear and the bending moduli exhibit the same frequency dependence, a power law of exponent 0.75. These results are consistent in the framework of our model with previous measurements on actin solutions. We show moreover that these complexes exhibit typical mechanical features of a solid shell. For example, a buckling instability is observed when a localized force of the order of 0.5 picoNewton is applied perpendicular to the membrane plane. Although predicted for polymerized vesicles, this is the first evidence of such an instability. This instability is a striking example of the coupling between in-plane stretch and shear and out-of-plane bending, which takes place for curves shells when it becomes more favorable energetically to concentrate the in-plane stress due to the bending within a narrow ring, centered on the force application point.

  19. Colocalization of synapsin and actin during synaptic vesicle recycling

    DEFF Research Database (Denmark)

    Bloom, Ona; Evergren, Emma; Tomilin, Nikolay;

    2003-01-01

    activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin......-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known...

  20. Internal Motility in Stiffening Actin-Myosin Networks

    CERN Document Server

    Uhde, J; Sackmann, E; Parmeggiani, A; Frey, E; Uhde, Joerg; Keller, Manfred; Sackmann, Erich; Parmeggiani, Andrea; Frey, Erwin

    2003-01-01

    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and suggest a "zipping" mechanism to explain the filament motion in the vicinity of the sol-gel transition.

  1. Acting on Actin: Rac and Rho Played by Yersinia.

    Science.gov (United States)

    Aepfelbacher, Martin; Wolters, Manuel

    2017-01-01

    Pathogenic bacteria of the genus Yersinia include Y. pestis-the agent of plaque-and two enteropathogens, Y. enterocolitica, and Y. pseudotuberculosis. These pathogens have developed an array of virulence factors aimed at manipulating Rho GTP-binding proteins and the actin cytoskeleton in host cells to cross the intestinal barrier and suppress the immune system. Yersinia virulence factors include outer membrane proteins triggering cell invasion by binding to integrins, effector proteins injected into host cells to manipulate Rho protein functions and a Rho protein-activating exotoxin. Here, we present an overview of how Yersinia and host factors are integrated in a regulatory network that orchestrates the subversion of host defense.

  2. Actin-based propulsion of functionalized hard versus fluid spherical objects

    Science.gov (United States)

    Delatour, Vincent; Shekhar, Shashank; Reymann, Anne-Cécile; Didry, Dominique; Diêp Lê, Kim Hô; Romet-Lemonne, Guillaume; Helfer, Emmanuèle; Carlier, Marie-France

    2008-02-01

    The directed polymerization of a branched actin network against a functionalized surface drives cell protrusions and organelle propulsion in living cells. Solid microspheres or giant unilamellar vesicles, functionalized with neural Wiskott-Aldrich syndrome protein (N-WASP), initiate the formation of a branched actin array using actin-related protein 2/3 (Arp2/3) complex, when placed in a motility assay reconstituted with pure proteins. These systems are useful biomimetic models of actin-based propulsion that allow to address how the interplay between the physical properties of the functionalized surface and the dynamics of the actin cytoskeleton determines motile behavior. Both solid beads and deformable vesicles display either continuous or saltatory propulsive motions, which are analyzed comparatively; we show that the deformability of liposomes and the mobility of N-WASP at the lipid surface affect the dynamic and structural parameters of the actin meshwork. Our results indicate that beads and vesicles use different mechanisms to translate insertional polymerization of actin at their surface into directed movement: stress relaxation within the actin gel prevents the accumulation of filaments at the front of moving beads, while segregation of nucleators reduces actin polymerization at the front of moving vesicles.

  3. Cytochemical evidence for the presence of actin in the nucleus of the voodoo lily appendix.

    Science.gov (United States)

    Skubatz, H; Orellana, M V; Yablonka-Reuveni, Z

    2000-08-01

    Immunoflorescence microscopy of sections of the voodoo lily Sauromatum guttatum appendix stained with monoclonal antibodies against alpha-smooth muscle actin and cytoplasmic actin revealed different staining intensity of different parts of the cell. The anti-cytoplasmic-actin recognized antigens present mainly in the cytoplasm, and the anti-alpha-smooth muscle-actin recognized more intensively antigens present in the nuclei. A positive staining of the nucleus was also obtained with FITC-phalloidin confirming the presence of actin in its filamenous form in the nucleus. The presence of a nuclear alpha-smooth muscle-actin-like protein was further confirmed by confocal laser microscopy. On Western blots, the two anti-actins labelled a protein band that comigrated with standard actin at the approximate molecular weight of 43 kDa. Several other proteins interacted with the two antibodies to a different degree. The monoclonal antibodies against beta-tubulin subunit stained only the periphery of the cytoplasm and anti-pan cytoplasmic myosin stained the cytoplasm weakly. On a Western blot, anti-beta-tubulin subunit primarily recognized a protein band at the appropriate molecular weight of 50 kDa. This is the first cytochemical evidence for the presence of alpha-smooth muscle-actin-like protein in the plant nucleus.

  4. Interaction between microtubules and the Drosophila formin Cappuccino and its effect on actin assembly.

    Science.gov (United States)

    Roth-Johnson, Elizabeth A; Vizcarra, Christina L; Bois, Justin S; Quinlan, Margot E

    2014-02-14

    Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte.

  5. Interaction between Microtubules and the Drosophila Formin Cappuccino and Its Effect on Actin Assembly*

    Science.gov (United States)

    Roth-Johnson, Elizabeth A.; Vizcarra, Christina L.; Bois, Justin S.; Quinlan, Margot E.

    2014-01-01

    Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte. PMID:24362037

  6. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging.

    Directory of Open Access Journals (Sweden)

    Vedakumar Tatavarty

    Full Text Available Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM-based single-molecule tracking technique to analyze F-actin movements with approximately 30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow and kinetic (F-actin turn-over dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of approximately 138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines.

  7. Unique properties of eukaryote-type actin and profilin horizontally transferred to cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Arthur Guljamow

    Full Text Available A eukaryote-type actin and its binding protein profilin encoded on a genomic island in the cyanobacterium Microcystis aeruginosa PCC 7806 co-localize to form a hollow, spherical enclosure occupying a considerable intracellular space as shown by in vivo fluorescence microscopy. Biochemical and biophysical characterization reveals key differences between these proteins and their eukaryotic homologs. Small-angle X-ray scattering shows that the actin assembles into elongated, filamentous polymers which can be visualized microscopically with fluorescent phalloidin. Whereas rabbit actin forms thin cylindrical filaments about 100 µm in length, cyanobacterial actin polymers resemble a ribbon, arrest polymerization at 5-10 µm and tend to form irregular multi-strand assemblies. While eukaryotic profilin is a specific actin monomer binding protein, cyanobacterial profilin shows the unprecedented property of decorating actin filaments. Electron micrographs show that cyanobacterial profilin stimulates actin filament bundling and stabilizes their lateral alignment into heteropolymeric sheets from which the observed hollow enclosure may be formed. We hypothesize that adaptation to the confined space of a bacterial cell devoid of binding proteins usually regulating actin polymerization in eukaryotes has driven the co-evolution of cyanobacterial actin and profilin, giving rise to an intracellular entity.

  8. F-actin distribution and function during sexual development in Eimeria maxima.

    Science.gov (United States)

    Frölich, Sonja; Wallach, Michael

    2015-06-01

    To determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.

  9. Directional Transport of a Bead Bound to Lamellipodial Surface Is Driven by Actin Polymerization

    Directory of Open Access Journals (Sweden)

    Daisuke Nobezawa

    2017-01-01

    Full Text Available The force driving the retrograde flow of actin cytoskeleton is important in the cellular activities involving cell movement (e.g., growth cone motility in axon guidance, wound healing, or cancer metastasis. However, relative importance of the forces generated by actin polymerization and myosin II in this process remains elusive. We have investigated the retrograde movement of the poly-D-lysine-coated bead attached with the optical trap to the edge of lamellipodium of Swiss 3T3 fibroblasts. The velocity of the attached bead drastically decreased by submicromolar concentration of cytochalasin D, latrunculin A, or jasplakinolide, indicating the involvement of actin turnover. On the other hand, the velocity decreased only slightly in the presence of 50 μM (−-blebbistatin and Y-27632. Comparative fluorescence microscopy of the distribution of actin filaments and that of myosin II revealed that the inhibition of actin turnover by cytochalasin D, latrunculin A, or jasplakinolide greatly diminished the actin filament network. On the other hand, inhibition of myosin II activity by (−-blebbistatin or Y-27632 little affected the actin network but diminished stress fibers. Based on these results, we conclude that the actin polymerization/depolymerization plays the major role in the retrograde movement, while the myosin II activity is involved in the maintenance of the dynamic turnover of actin in lamellipodium.

  10. Barrier role of actin filaments in regulated mucin secretion from airway goblet cells.

    Science.gov (United States)

    Ehre, Camille; Rossi, Andrea H; Abdullah, Lubna H; De Pestel, Kathleen; Hill, Sandra; Olsen, John C; Davis, C William

    2005-01-01

    Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/G(q)-coupled P2Y(2) receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of beta- and gamma-actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of beta- or gamma-actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca(2+)-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis.

  11. Unique properties of eukaryote-type actin and profilin horizontally transferred to cyanobacteria.

    Science.gov (United States)

    Guljamow, Arthur; Delissen, Friedmar; Baumann, Otto; Thünemann, Andreas F; Dittmann, Elke

    2012-01-01

    A eukaryote-type actin and its binding protein profilin encoded on a genomic island in the cyanobacterium Microcystis aeruginosa PCC 7806 co-localize to form a hollow, spherical enclosure occupying a considerable intracellular space as shown by in vivo fluorescence microscopy. Biochemical and biophysical characterization reveals key differences between these proteins and their eukaryotic homologs. Small-angle X-ray scattering shows that the actin assembles into elongated, filamentous polymers which can be visualized microscopically with fluorescent phalloidin. Whereas rabbit actin forms thin cylindrical filaments about 100 µm in length, cyanobacterial actin polymers resemble a ribbon, arrest polymerization at 5-10 µm and tend to form irregular multi-strand assemblies. While eukaryotic profilin is a specific actin monomer binding protein, cyanobacterial profilin shows the unprecedented property of decorating actin filaments. Electron micrographs show that cyanobacterial profilin stimulates actin filament bundling and stabilizes their lateral alignment into heteropolymeric sheets from which the observed hollow enclosure may be formed. We hypothesize that adaptation to the confined space of a bacterial cell devoid of binding proteins usually regulating actin polymerization in eukaryotes has driven the co-evolution of cyanobacterial actin and profilin, giving rise to an intracellular entity.

  12. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division.

    Science.gov (United States)

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-08-25

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division.

  13. Actin, RhoA, and Rab11 participation during encystment in Entamoeba invadens.

    Science.gov (United States)

    Herrera-Martínez, M; Hernández-Ramírez, V I; Lagunes-Guillén, A E; Chávez-Munguía, B; Talamás-Rohana, P

    2013-01-01

    In the genus Entamoeba, actin reorganization is necessary for cyst differentiation; however, its role is still unknown. The aim of this work was to investigate the role of actin and encystation-related proteins during Entamoeba invadens encystation. Studied proteins were actin, RhoA, a small GTPase involved through its effectors in the rearrangement of the actin cytoskeleton; Rab11, a protein involved in the transport of encystation vesicles; and enolase, as an encystment vesicles marker. Results showed a high level of polymerized actin accompanied by increased levels of RhoA-GTP during cell rounding and loss of vacuoles. Cytochalasin D, an actin polymerization inhibitor, and Y27632, an inhibitor of RhoA activity, reduced encystment in 80%. These inhibitors also blocked cell rounding, disposal of vacuoles, and the proper formation of the cysts wall. At later times, F-actin and Rab11 colocalized with enolase, suggesting that Rab11 could participate in the transport of the cyst wall components through the F-actin cytoskeleton. These results suggest that actin cytoskeleton rearrangement is playing a decisive role in determining cell morphology changes and helping with the transport of cell wall components to the cell surface during encystment of E. invadens.

  14. F-actin reorganization upon de- and rehydration in the aeroterrestrial green alga Klebsormidium crenulatum.

    Science.gov (United States)

    Blaas, Kathrin; Holzinger, Andreas

    2017-07-01

    Filamentous actin (F-actin) is a dynamic network involved in many cellular processes like cell division and cytoplasmic streaming. While many studies have addressed the involvement of F-actin in different cellular processes in cultured cells, little is known on the reactions to environmental stress scenarios, where this system might have essential regulatory functions. We investigated here the de- and rehydration kinetics of breakdown and reassembly of F-actin in the streptophyte green alga Klebsormidium crenulatum. Measurements of the chlorophyll fluorescence (effective quantum yield of photosystem II [ΔF/Fm']) via pulse amplitude modulation were performed as a measure for dehydration induced shut down of physiological activity, which ceased after 141±15min at ∼84% RH. We hypothesized that there is a link between this physiological parameter and the status of the F-actin system. Indeed, 20min of dehydration (ΔF/Fm'=0) leads to a breakdown of the fine cortical F-actin network as visualized by Atto 488 phalloidin staining, and dot-like structures remained. Already 10min after rehydration a beginning reassembly of F-actin is observed, after 25min the F-actin network appeared similar to untreated controls, indicating a full recovery. These results demonstrate the fast kinetics of F-actin dis- and reassembly likely contributing to cellular reorganization upon rehydration. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Actin induction during PMA and cAMP-dependent signal pathway activation in Entamoeba histolytica trophozoites.

    Science.gov (United States)

    Ortiz, D; del Carmen Dominguez-Robles, M; Villegas-Sepúlveda, N; Meza, I

    2000-10-01

    Activation of PKC or cAMP-dependent signalling pathways in Entamoeba histolytica triggers the phosphorylation of proteins involved in actin rearrangements necessary for adhesion and locomotion. Analogous motifs to SRE and CRE sequences--known to respond to PMA and cAMP--were identified within the 5' regulatory region (5'RR) of one of the parasite actin genes. These sequences could be involved in the actin transcriptional upregulation reported during signalling. To test this hypothesis, a plasmid containing the 5'RR of the actin gene fused to the bacterial neomycin gene (neo) was used for stable transfection. Expression of neo and endogenous actin was measured after stimulation of transfected amoebae by PMA and dcAMP. It was found that both compounds induced neo and actin expression and showed a co-operative effect in the induction of neo. Induction by PMA or dcAMP failed if the directing amoebic 5'RR lacked SRE and CRE motifs. Transfection of amoebae with plasmid constructs, containing either progressive deletions of the actin 5'RR or site-directed mutations of the SRE and CRE-like motifs, corroborated that these sequences and a co-ordinated participation of PKC- and PKA-activated transcription factors are responsible for the increments in neo and actin mRNAs. In vivo, these PMA and cAMP-response elements could play an important role in regulating actin expression and organization in signalling processes activated during tissue invasion.

  16. Fertilization in Torenia fournieri: actin organization and nuclear behavior in the central cell and primary endosperm

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Studies of the living embryo sacs of Torenia fournieri reveal that the actin cytoskeleton undergoes dramatic changes that correlate with nuclear migration within the central cell and the primary endosperm. Before pollination, actin filaments appear as short bundles randomly distributed in the cortex of the central cell. Two days after anthesis, they become organized into a distinct actin network. At this stage the secondary nucleus, which is located in the central region of the central cell, possesses an associated array of short actin filaments. Soon after pollination, the actin filaments become fragmented in the micropylar end and the secondary nucleus is located next to the egg apparatus. After fertilization, the primary endosperm nucleus moves away from the egg cell and actin filaments reorganize into a prominent network in the cytoplasm of the primary endosperm. Disruption of the actin cytoskeleton with latrunculin A and cytochalasin B indicates that actin is involved in the migration of the nucleus in the central cell. Our data also suggest that the dynamics of actin cytoskeleton may be responsible for the reorganization of the central cell and primary endosperm cytoplasm during fertilization.

  17. Cell-cycle regulation of formin-mediated actin cable assembly.

    Science.gov (United States)

    Miao, Yansong; Wong, Catherine C L; Mennella, Vito; Michelot, Alphée; Agard, David A; Holt, Liam J; Yates, John R; Drubin, David G

    2013-11-19

    Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.

  18. AFAP-1L1-mediated actin filaments crosslinks hinder Trypanosoma cruzi cell invasion and intracellular multiplication.

    Science.gov (United States)

    de Araújo, Karine Canuto Loureiro; Teixeira, Thaise Lara; Machado, Fabrício Castro; da Silva, Aline Alves; Quintal, Amanda Pifano Neto; da Silva, Claudio Vieira

    2016-10-01

    Host actin cytoskeleton polymerization has been shown to play an important role during Trypanosoma cruzi internalization into mammalian cell. The structure and dynamics of the actin cytoskeleton in cells are regulated by a vast number of actin-binding proteins. Here we aimed to verify the impact of AFAP-1L1, during invasion and multiplication of T. cruzi. Knocking-down AFAP-1L1 increased parasite cell invasion and intracellular multiplication. Thus, we have shown that the integrity of the machinery formed by AFAP-1L1 in actin cytoskeleton polymerization is important to hinder parasite infection.

  19. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division

    Science.gov (United States)

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-01-01

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division. DOI: http://dx.doi.org/10.7554/eLife.08828.001 PMID:26305500

  20. Actin-myosin network is required for proper assembly of influenza virus particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  1. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle.

    Science.gov (United States)

    Nomura, Kazumi; Ono, Kanako; Ono, Shoichiro

    2012-09-01

    Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we report that CAS-1, a cyclase-associated protein in Caenorhabditis elegans, promotes ADF/cofilin-dependent actin filament turnover in vitro and is required for sarcomeric actin organization in striated muscle. CAS-1 is predominantly expressed in striated muscle from embryos to adults. In vitro, CAS-1 binds to actin monomers and enhances exchange of actin-bound ATP/ADP even in the presence of UNC-60B, a muscle-specific ADF/cofilin that inhibits the nucleotide exchange. As a result, CAS-1 and UNC-60B cooperatively enhance actin filament turnover. The two proteins also cooperate to shorten actin filaments. A cas-1 mutation is homozygous lethal with defects in sarcomeric actin organization. cas-1-mutant embryos and worms have aggregates of actin in muscle cells, and UNC-60B is mislocalized to the aggregates. These results provide genetic and biochemical evidence that cyclase-associated protein is a critical regulator of sarcomeric actin organization in striated muscle.

  2. Plant villin, lily P-135-ABP, possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner.

    Science.gov (United States)

    Yokota, Etsuo; Tominaga, Motoki; Mabuchi, Issei; Tsuji, Yasunori; Staiger, Christopher J; Oiwa, Kazuhiro; Shimmen, Teruo

    2005-10-01

    From germinating pollen of lily, two types of villins, P-115-ABP and P-135-ABP, have been identified biochemically. Ca(2+)-CaM-dependent actin-filament binding and bundling activities have been demonstrated for both villins previously. Here, we examined the effects of lily villins on the polymerization and depolymerization of actin. P-115-ABP and P-135-ABP present in a crude protein extract prepared from germinating pollen bound to a DNase I affinity column in a Ca(2+)-dependent manner. Purified P-135-ABP reduced the lag period that precedes actin filament polymerization from monomers in the presence of either Ca(2+) or Ca(2+)-CaM. These results indicated that P-135-ABP can form a complex with G-actin in the presence of Ca(2+) and this complex acts as a nucleus for polymerization of actin filaments. However, the nucleation activity of P-135-ABP is probably not relevant in vivo because the assembly of G-actin saturated with profilin, a situation that mimics conditions found in pollen, was not accelerated in the presence of P-135-ABP. P-135-ABP also enhanced the depolymerization of actin filaments during dilution-mediated disassembly. Growth from filament barbed ends in the presence of Ca(2+)-CaM was also prevented, consistent with filament capping activity. These results suggested that lily villin is involved not only in the arrangement of actin filaments into bundles in the basal and shank region of the pollen tube, but also in regulating and modulating actin dynamics through its capping and depolymerization (or fragmentation) activities in the apical region of the pollen tube, where there is a relatively high concentration of Ca(2+).

  3. αT-Catenin Is a Constitutive Actin-binding α-Catenin That Directly Couples the Cadherin·Catenin Complex to Actin Filaments.

    Science.gov (United States)

    Wickline, Emily D; Dale, Ian W; Merkel, Chelsea D; Heier, Jonathon A; Stolz, Donna B; Kwiatkowski, Adam V

    2016-07-22

    α-Catenin is the primary link between the cadherin·catenin complex and the actin cytoskeleton. Mammalian αE-catenin is allosterically regulated: the monomer binds the β-catenin·cadherin complex, whereas the homodimer does not bind β-catenin but interacts with F-actin. As part of the cadherin·catenin complex, αE-catenin requires force to bind F-actin strongly. It is not known whether these properties are conserved across the mammalian α-catenin family. Here we show that αT (testes)-catenin, a protein unique to amniotes that is expressed predominantly in the heart, is a constitutive actin-binding α-catenin. We demonstrate that αT-catenin is primarily a monomer in solution and that αT-catenin monomer binds F-actin in cosedimentation assays as strongly as αE-catenin homodimer. The β-catenin·αT-catenin heterocomplex also binds F-actin with high affinity unlike the β-catenin·αE-catenin complex, indicating that αT-catenin can directly link the cadherin·catenin complex to the actin cytoskeleton. Finally, we show that a mutation in αT-catenin linked to arrhythmogenic right ventricular cardiomyopathy, V94D, promotes homodimerization, blocks β-catenin binding, and in cardiomyocytes disrupts localization at cell-cell contacts. Together, our data demonstrate that αT-catenin is a constitutively active actin-binding protein that can physically couple the cadherin·catenin complex to F-actin in the absence of tension. We speculate that these properties are optimized to meet the demands of cardiomyocyte adhesion.

  4. Health related quality of life in patients with actinic keratosis

    DEFF Research Database (Denmark)

    Tennvall, Gunnel Ragnarson; Norlin, J M; Malmberg, I;

    2015-01-01

    BACKGROUND: Actinic keratosis (AK) is a common skin condition that may progress to non-melanoma skin cancer (NMSC). The disease may influence Health Related Quality of Life (HRQoL), but studies of HRQoL in patients with AK are limited. The purpose of the study was to analyze HRQoL in patients wit...... with severe actinic damage showed more impairment in HRQoL than those with mild disease. Correlations between instruments suggest that they are complementary as they measure different aspects of HRQoL and are used for different purposes....... with different severity levels of AK treated in dermatology specialist care using generic and disease-specific HRQoL instruments and to analyze their relationship. METHODS: AK patients who visited dermatological clinics in Denmark were included in an observational, cross-sectional, study in a multi...... instruments was analyzed with the Spearman correlation test. RESULTS: A total of 312 patients were included in the analyses. Patients reported impairment in the disease specific HRQoL instrument AKQoL (mean AKQoL 6.7, DLQI 2, EQ-5D-5 L 0.88, and EQ-VAS 79). HRQoL was least affected in patients with mild...

  5. A Dual-Mode Actinic EUV Mask Inspection Tool

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Barty, A; Gullikson, E; S.Taylor, J; Liddle, J A; Wood, O

    2005-03-21

    To qualify the performance of non-actinic inspection tools, a novel EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron facility at Lawrence Berkeley National Laboratory. Similar to the older generation actinic mask inspection tool, the new system can operate in scanning mode, when mask blanks are scanned for defects using 13.5-nm in-band radiation to identify and map all locations on the mask that scatter a significant amount of EUV light. By modifying and optimizing beamline optics (11.3.2 at ALS) and replacing K-B focusing mirrors with a high quality Schwarzschild illuminator, the new system achieves an order of magnitude improvement on in-band EUV flux density at the mask, enabling faster scanning speed and higher sensitivity to smaller defects. Moreover, the system can also operate in imaging mode, when it becomes a zone-plate-based full-field EUV microscope with spatial resolution better than 100 nm. The microscope utilizes an off-axis setup, making it possible to obtain bright field images over a field-of-view of 5 x 5 {micro}m.

  6. Coupled actin-lamin biopolymer networks and protecting DNA

    Science.gov (United States)

    Zhang, Tao; Rocklin, D. Zeb; Mao, Xiaoming; Schwarz, J. M.

    The mechanical properties of cells are largely determined by networks of semiflexible biopolymers forming the cytoskeleton. Similarly, the mechanical properties of cell nuclei are also largely determined by networks of semiflexible biopolymers forming the nuclear cytoskeleton. In particular, a network of filamentous lamin sits just inside the inner nuclear membrane to presumably protect the heart of the cell nucleus--the DNA. It has been demonstrated over the past decade that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins bridging the outer and inner nuclear membranes, known as the LINC complex. We, therefore, probe the consequences of such a coupling in a model biopolymer network system via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the actin cytoskeletal network. We find, for example, that the force transmission across the coupled system can depend sensitively on the concentration of LINC complexes. Such study could have implications for mechanical mechanisms of the regulation of transcription since DNA couples to lamin via lamin-binding domains so that deformations in the lamin network may result in deformations in the DNA.

  7. Polarized actin structural dynamics in response to cyclic uniaxial stretch

    Science.gov (United States)

    Huang, Lawrence; Helmke, Brian P.

    2014-01-01

    Endothelial cell (EC) alignment to directional flow or stretch supports anti-inflammatory functions, but mechanisms controlling polarized structural adaptation in response to physical cues remain unclear. This study aimed to determine whether factors associated with early actin edge ruffling implicated in cell polarization are prerequisite for stress fiber (SF) reorientation in response to cyclic uniaxial stretch. Time-lapse analysis of EGFP-actin in confluent ECs showed that onset of either cyclic uniaxial or equibiaxial stretch caused a non-directional increase in edge ruffling. Edge activity was concentrated in a direction perpendicular to the stretch axis after 60 min, consistent with the direction of SF alignment. Rho-kinase inhibition caused reorientation of both stretch-induced edge ruffling and SF alignment parallel to the stretch axis. Arp2/3 inhibition attenuated stretch-induced cell elongation and disrupted polarized edge dynamics and microtubule organizing center reorientation, but it had no effect on the extent of SF reorientation. Disrupting localization of p21-activated kinase (PAK) did not prevent stretch-induced SF reorientation, suggesting that this Rac effector is not critical in regulating stretch-induced cytoskeletal remodeling. Overall, these results suggest that directional edge ruffling is not a primary mechanism that guides SF reorientation in response to stretch; the two events are coincident but not causal. PMID:25821527

  8. Chronic actinic dermatitis - A study of clinical features

    Directory of Open Access Journals (Sweden)

    Somani Vijay

    2005-01-01

    Full Text Available Background: Chronic actinic dermatitis (CAD, one of the immune mediated photo-dermatoses, comprises a spectrum of conditions including persistent light reactivity, photosensitive eczema and actinic reticuloid. Diagnostic criteria were laid down about 20 years back, but clinical features are the mainstay in diagnosis. In addition to extreme sensitivity to UVB, UVA and/or visible light, about three quarters of patients exhibit contact sensitivity to several allergens, which may contribute to the etiopathogenesis of CAD. This study was undertaken to examine the clinical features of CAD in India and to evaluate the relevance of patch testing and photo-aggravation testing in the diagnosis of CAD. Methods: The clinical data of nine patients with CAD were analyzed. Histopathology, patch testing and photo-aggravation testing were also performed. Results: All the patients were males. The average age of onset was 57 years. The first episode was usually noticed in the beginning of summer. Later the disease gradually tended to be perennial, without any seasonal variations. The areas affected were mainly the photo-exposed areas in all patients, and the back in three patients. Erythroderma was the presenting feature in two patients. The palms and soles were involved in five patients. Patch testing was positive in seven of nine patients. Conclusions: The diagnosis of CAD mainly depended upon the history and clinical features. The incidence of erythroderma and palmoplantar eczema was high in our series. Occupation seems to play a role in the etiopathogenesis of CAD.

  9. 5DFRXXL region of long myosin light chain kinase causes F-actin bundle formation

    Institute of Scientific and Technical Information of China (English)

    YANG Chunxiang; WEI Dongmei; CHEN Chen; YU Weiping; ZHU Minsheng

    2005-01-01

    Long myosin light chain kinase (L-MLCK) contains five DFRXXL motifs with ability to bind F-actin. Binding stoichiometry data indicated that each DFRXXL motif might bind each G-actin, but its biological significance remained unknown. We hypothesized that L-MLCK might act as an F-actin bundle peptides by its multiple binding sites of 5DFRXXL motifs to actin. In order to characterize F-actin-bundle formation properties of 5DFRXXL region of long myosin light chain kinase, we expressed and purified 5DFRXXL peptides tagged with HA in vitro. The properties of 5DFRXXL peptides binding to myofilaments or F-actin were analyzed by binding stoichiometries assays. The results indicated that 5DFRXXL peptides bound to myofilaments or F-actin with high affinity. KD values of 5DFRXXL binding to myofilaments and F-actin were 0.45 and 0.41 μmol/L, re- spectively. Cross-linking assay demonstrated that 5DFRXXL peptides could bundle F-actin efficiently. Typical F-actin bundles were observed morphologically through determina- tion of confocal and electron microscopy after adding 5DFRXXL peptides. After transfection of pEGFP-5DFRXXL plasmid into eukaryocyte, spike structure was observed around cell membrane edge. We guess that such structure formation may be attributable to F-actin over-bundle forma- tion caused by 5DFRXXL peptides. Therefore, we suppose that L-MLCK may be a new bundling protein and somehow play a certain role in organization of cell skeleton besides mediating cell contraction by it kinase activity.

  10. Actin organization associated with the expression of multidrug resistant phenotype in osteosarcoma cells and the effect of actin depolymerization on drug resistance.

    Science.gov (United States)

    Takeshita, H; Kusuzaki, K; Ashihara, T; Gebhardt, M C; Mankin, H J; Hirasawa, Y

    1998-04-10

    We have previously reported that P-glycoprotein (Pgp)-overexpressing multidrug resistant (MDR) osteosarcoma cells were functionally more differentiated than their parent cells. The present study showed that in the parent cells, the actin filaments were sparsely distributed or were diffusely spread throughout the cytoplasm, whereas the MDR osteosarcoma cells exhibited a remarkable increase in well-organized actin stress fibers. Furthermore, dihydrocytochalasin B, a specific inhibitor of actin polymerization, dramatically disrupted this network of stress fibers, increased the intracellular accumulation of doxorubicin (DOX) and modified the resistance against DOX. These results indicate that the organization of actin filaments associated with cellular differentiation may be involved in the expression of Pgp function in the MDR osteosarcoma cells.

  11. Roles of Asp179 and Glu270 in ADP-Ribosylation of Actin by Clostridium perfringens Iota Toxin.

    Directory of Open Access Journals (Sweden)

    Alexander Belyy

    Full Text Available Clostridium perfringens iota toxin is a binary toxin composed of the enzymatically active component Ia and receptor binding component Ib. Ia is an ADP-ribosyltransferase, which modifies Arg177 of actin. The previously determined crystal structure of the actin-Ia complex suggested involvement of Asp179 of actin in the ADP-ribosylation reaction. To gain more insights into the structural requirements of actin to serve as a substrate for toxin-catalyzed ADP-ribosylation, we engineered Saccharomyces cerevisiae strains, in which wild type actin was replaced by actin variants with substitutions in residues located on the Ia-actin interface. Expression of the actin mutant Arg177Lys resulted in complete resistance towards Ia. Actin mutation of Asp179 did not change Ia-induced ADP-ribosylation and growth inhibition of S. cerevisiae. By contrast, substitution of Glu270 of actin inhibited the toxic action of Ia and the ADP-ribosylation of actin. In vitro transcribed/translated human β-actin confirmed the crucial role of Glu270 in ADP-ribosylation of actin by Ia.

  12. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin.

    Science.gov (United States)

    Ngo, Kien Xuan; Umeki, Nobuhisa; Kijima, Saku T; Kodera, Noriyuki; Ueno, Hiroaki; Furutani-Umezu, Nozomi; Nakajima, Jun; Noguchi, Taro Q P; Nagasaki, Akira; Tokuraku, Kiyotaka; Uyeda, Taro Q P

    2016-10-20

    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells.

  13. A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial characterization of an actin-binding activity

    Energy Technology Data Exchange (ETDEWEB)

    Luna, E.J.; Fowler, V.M.; Swanson, J.; Branton, D.; Taylor, D.L.

    1981-02-01

    Dictyostelium discoideum plasma membranes isolated by each of three procedures bind F-actin. The interactions between these membranes and actin are examined by a novel application of falling ball viscometry. Treating the membranes as multivalent actin-binding particles analogous to divalent actin-gelatin factors, large increases in viscosity (actin-cross-linking) were observed when membranes depleted of actin and myosin are incubated with rabbit skeletal muscle F-actin. Pre-extraction of peripheral membrane proteins with chaotropes or the inclusion of Triton X-100 during the assay does not appreciably diminish this actin cross-linking activity. Lipid vesicles, heat-denatured membranes, proteolyzed membranes, or membranes containing endogenous actin show minimal actin cross-linking activity. Heat-denatured, but not proteolyzed, membranes regain activity when assayed in the presence of Triton X-100. Thus, integral membrane proteins appear to be responsible for some or all of the actin cross-linking activity of D. discoideum membranes. In the absence of MgATP, Triton X-100 extraction of isolated D. discoideum membranes results in a Triton-insoluble residue composed of actin, myosin, and associated membrane proteins. The inclusion of MgATP before and during Triton extraction greatly diminishes the amount of protein in the Triton-insoluble residue without appreciably altering its composition. Our results suggest the existence of a protein complex stabilized by actin and/or myosin (membrane cytoskeleton) associated with the D. discoideum plasma membrane.

  14. Drosophila myosin-XX functions as an actin-binding protein to facilitate the interaction between Zyx102 and actin.

    Science.gov (United States)

    Cao, Yang; White, Howard D; Li, Xiang-Dong

    2014-01-21

    The class XX myosin is a member of the diverse myosin superfamily and exists in insects and several lower invertebrates. DmMyo20, the class XX myosin in Drosophila, is encoded by dachs, which functions as a crucial downstream component of the Fat signaling pathway, influencing growth, affinity, and gene expression during development. Sequence analysis shows that DmMyo20 contains a unique N-terminal extension, the motor domain, followed by one IQ motif, and a C-terminal tail. To investigate the biochemical properties of DmMyo20, we expressed several DmMyo20 truncated constructs containing the motor domain in the baculovirus/Sf9 system. We found that the motor domain of DmMyo20 had neither ATPase activity nor the ability to bind to ATP, suggesting that DmMyo20 does not function as a molecular motor. We found that the motor domain of DmMyo20 could specifically bind to actin filaments in an ATP-independent manner and enhance the interaction between actin filaments and Zyx102, a downstream component of DmMyo20 in the Fat signaling pathway. These results suggest that DmMyo20 functions as a scaffold protein, but not as a molecular motor, in a signaling pathway controlling cell differentiation.

  15. Femtosecond pump-probe studies of actinic-wavelength dependence in aqueous chlorine dioxide photochemistry

    Science.gov (United States)

    Bixby, Teresa J.; Bolinger, Joshua C.; Patterson, Joshua D.; Reid, Philip J.

    2009-04-01

    The actinic or photolysis-wavelength dependence of aqueous chlorine dioxide (OClO) photochemistry is investigated using femtosecond pump-probe spectroscopy. Following photoexcitation at 310, 335, and 410 nm the photoinduced evolution in optical density is measured from the UV to the near IR. Analysis of the optical-density evolution illustrates that the quantum yield for atomic chlorine production (ΦCl) increases with actinic energy, with ΦCl=0.16±0.02 for 410 nm excitation and increasing to 0.25±0.01 and 0.54±0.10 for 335 and 310 nm excitations, respectively. Consistent with previous studies, the production of Cl occurs through two channels, with one channel corresponding to prompt (<5 ps) Cl formation and the other corresponding to the thermal decomposition of ClOO formed by OClO photoisomerization. The partitioning between Cl production channels is dependent on actinic energy, with prompt Cl production enhanced with an increase in actinic energy. Limited evidence is found for enhanced ClO production with an increase in actinic energy. Stimulated emission and excited-state absorption features associated with OClO populating the optically prepared A22 surface decrease with an increase in actinic energy suggesting that the excited-state decay dynamics are also actinic energy dependent. The studies presented here provide detailed information on the actinic-wavelength dependence of OClO photochemistry in aqueous solution.

  16. Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin.

    Science.gov (United States)

    Zhou, Guo-Lei; Zhang, Haitao; Wu, Huhehasi; Ghai, Pooja; Field, Jeffrey

    2014-12-01

    Cell signaling can control the dynamic balance between filamentous and monomeric actin by modulating actin regulatory proteins. One family of actin regulating proteins that controls actin dynamics comprises cyclase-associated proteins 1 and 2 (CAP1 and 2, respectively). However, cell signals that regulate CAPs remained unknown. We mapped phosphorylation sites on mouse CAP1 and found S307 and S309 to be regulatory sites. We further identified glycogen synthase kinase 3 as a kinase phosphorylating S309. The phosphomimetic mutant S307D/S309D lost binding to its partner cofilin and, when expressed in cells, caused accumulation of actin stress fibers similar to that in cells with reduced CAP expression. In contrast, the non-phosphorylatable S307A/S309A mutant showed drastically increased cofilin binding and reduced binding to actin. These results suggest that the phosphorylation serves to facilitate release of cofilin for a subsequent cycle of actin filament severing. Moreover, our results suggest that S307 and S309 function in tandem; neither the alterations in binding cofilin and/or actin, nor the defects in rescuing the phenotype of the enlarged cell size in CAP1 knockdown cells was observed in point mutants of either S307 or S309. In summary, we identify a novel regulatory mechanism of CAP1 through phosphorylation.

  17. Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gourlay, C W; Ayscough, K R

    2006-09-01

    Recent research has revealed a conserved role for the actin cytoskeleton in the regulation of aging and apoptosis among eukaryotes. Here we show that the stabilization of the actin cytoskeleton caused by deletion of Sla1p or End3p leads to hyperactivation of the Ras signaling pathway. The consequent rise in cyclic AMP (cAMP) levels leads to the loss of mitochondrial membrane potential, accumulation of reactive oxygen species (ROS), and cell death. We have established a mechanistic link between Ras signaling and actin by demonstrating that ROS production in actin-stabilized cells is dependent on the G-actin binding region of the cyclase-associated protein Srv2p/CAP. Furthermore, the artificial elevation of cAMP directly mimics the apoptotic phenotypes displayed by actin-stabilized cells. The effect of cAMP elevation in inducing actin-mediated apoptosis functions primarily through the Tpk3p subunit of protein kinase A. This pathway represents the first defined link between environmental sensing, actin remodeling, and apoptosis in Saccharomyces cerevisiae.

  18. Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling.

    Science.gov (United States)

    Pakhomov, Andrei G; Xiao, Shu; Pakhomova, Olga N; Semenov, Iurii; Kuipers, Marjorie A; Ibey, Bennett L

    2014-12-01

    Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PRO-1 dye uptake, gradual cell rounding and swelling. Concurrently, bright actin features were replaced by dimmer and uniform fluorescence of diffuse actin. To block the nsPEF-induced swelling, the bath buffer was isoosmotically supplemented with an electropore-impermeable solute (sucrose). A similar addition of a smaller, electropore-permeable solute (adonitol) served as a control. We demonstrated that sucrose efficiently blocked disassembly of actin features by nsPEF, whereas adonitol did not. Sucrose also attenuated bleaching of mApple-tagged actin in nsPEF-treated cells (as integrated over the cell volume), although did not fully prevent it. We conclude that disintegration of the actin cytoskeleton was a result of cell swelling, which, in turn, was caused by cell permeabilization by nsPEF and transmembrane diffusion of solutes which led to the osmotic imbalance.

  19. Effect of Flumorph on F-Actin Dynamics in the Potato Late Blight Pathogen Phytophthora infestans.

    Science.gov (United States)

    Hua, Chenlei; Kots, Kiki; Ketelaar, Tijs; Govers, Francine; Meijer, Harold J G

    2015-04-01

    Oomycetes are fungal-like pathogens that cause notorious diseases. Protecting crops against oomycetes requires regular spraying with chemicals, many with an unknown mode of action. In the 1990s, flumorph was identified as a novel crop protection agent. It was shown to inhibit the growth of oomycete pathogens including Phytophthora spp., presumably by targeting actin. We recently generated transgenic Phytophthora infestans strains that express Lifeact-enhanced green fluorescent protein (eGFP), which enabled us to monitor the actin cytoskeleton during hyphal growth. For analyzing effects of oomicides on the actin cytoskeleton in vivo, the P. infestans Lifeact-eGFP strain is an excellent tool. Here, we confirm that flumorph is an oomicide with growth inhibitory activity. Microscopic analyses showed that low flumorph concentrations provoked hyphal tip swellings accompanied by accumulation of actin plaques in the apex, a feature reminiscent of tips of nongrowing hyphae. At higher concentrations, swelling was more pronounced and accompanied by an increase in hyphal bursting events. However, in hyphae that remained intact, actin filaments were indistinguishable from those in nontreated, nongrowing hyphae. In contrast, in hyphae treated with the actin depolymerizing drug latrunculin B, no hyphal bursting was observed but the actin filaments were completely disrupted. This difference demonstrates that actin is not the primary target of flumorph.

  20. EhCoactosin stabilizes actin filaments in the protist parasite Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Nitesh Kumar

    2014-09-01

    Full Text Available Entamoeba histolytica is a protist parasite that is the causative agent of amoebiasis, and is a highly motile organism. The motility is essential for its survival and pathogenesis, and a dynamic actin cytoskeleton is required for this process. EhCoactosin, an actin-binding protein of the ADF/cofilin family, participates in actin dynamics, and here we report our studies of this protein using both structural and functional approaches. The X-ray crystal structure of EhCoactosin resembles that of human coactosin-like protein, with major differences in the distribution of surface charges and the orientation of terminal regions. According to in vitro binding assays, full-length EhCoactosin binds both F- and G-actin. Instead of acting to depolymerize or severe F-actin, EhCoactosin directly stabilizes the polymer. When EhCoactosin was visualized in E. histolytica cells using either confocal imaging or total internal reflectance microscopy, it was found to colocalize with F-actin at phagocytic cups. Over-expression of this protein stabilized F-actin and inhibited the phagocytic process. EhCoactosin appears to be an unusual type of coactosin involved in E. histolytica actin dynamics.

  1. Changes in actin dynamics are involved in salicylic acid signaling pathway.

    Science.gov (United States)

    Matoušková, Jindřiška; Janda, Martin; Fišer, Radovan; Sašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, Jiřina; Martinec, Jan; Valentová, Olga

    2014-06-01

    Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented.

  2. F-actin distribution and function during sexual differentiation in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Petersen, J; Nielsen, O; Egel, R

    1998-01-01

    Sexual differentiation in Schizosaccharomyces pombe is induced from the G1 phase of the cell cycle by nitrogen starvation and the presence of mating pheromones. We describe the distribution of F-actin during sexual differentiation. Cortical F-actin dots have previously been shown to be restricted...

  3. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  4. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells.

    Science.gov (United States)

    Estes, Kathleen A; Szumowski, Suzannah C; Troemel, Emily R

    2011-09-01

    The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo.

  5. The actin homologue MreB organizes the bacterial cell membrane

    NARCIS (Netherlands)

    Strahl, H.; Burmann, F.; Hamoen, L.W.

    2014-01-01

    The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate

  6. Keeping it all together: auxin-actin crosstalk in plant development.

    Science.gov (United States)

    Zhu, Jinsheng; Geisler, Markus

    2015-08-01

    Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in polar auxin transport and identify known similarities and differences in its structure, function and dynamics in comparison to non-plant organisms. By describing how auxin modulates actin expression and actin organization and how actin and its stability affects auxin-transporter endocytosis and recycling, we discuss the current knowledge on regulatory auxin-actin feedback loops. We focus on known effects of auxin and of auxin transport inhibitors on the stability and organization of actin and examine the functionality of auxin and/or auxin transport inhibitor-binding proteins with respect to their suitability to integrate auxin/auxin transport inhibitor action. Finally, we indicate current difficulties in the interpretation of organ, time and concentration-dependent auxin/auxin transport inhibitor treatments and formulate simple future experimental guidelines.

  7. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling.

    Science.gov (United States)

    Groen, Christopher M; Spracklen, Andrew J; Fagan, Tiffany N; Tootle, Tina L

    2012-12-01

    Although prostaglandins (PGs)-lipid signals produced downstream of cyclooxygenase (COX) enzymes-regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. Here we provide the first link between Fascin (Drosophila Singed, Sn), an actin-bundling protein, and PGs. Loss of either pxt or fascin results in similar actin defects. Fascin interacts, both pharmacologically and genetically, with PGs, as reduced Fascin levels enhance the effects of COX inhibition and synergize with reduced Pxt levels to cause both parallel bundle and cortical actin defects. Conversely, overexpression of Fascin in the germline suppresses the effects of COX inhibition and genetic loss of Pxt. These data lead to the conclusion that PGs regulate Fascin to control actin remodeling. This novel interaction has implications beyond Drosophila, as both PGs and Fascin-1, in mammalian systems, contribute to cancer cell migration and invasion.

  8. Regulation of levels of actin threonine phosphorylation during life cycle of Physarum polycephalum.

    Science.gov (United States)

    Shirai, Yuki; Sasaki, Narie; Kishi, Yoshiro; Izumi, Akiko; Itoh, Kie; Sameshima, Masazumi; Kobayashi, Tetsuyuki; Murakami-Murofushi, Kimiko

    2006-02-01

    Under various environmental stresses, the true slime mold Physarum polycephalum converts into dormant forms, such as microcysts, sclerotia, and spores, which can survive in adverse environments for a considerable period of time. In drought-induced sclerotia, actin is threonine phosphorylated, which blocks its ability to polymerize into filaments. It is known that fragmin and actin-fragmin kinase (AFK) mediate this phosphorylation event. In this work, we demonstrate that high levels of actin threonine phosphorylation are also found in other dormant cells, including microcysts and spores. As the threonine phosphorylation of actin in microcysts and sclerotia were induced by drought stress but not by other stresses, we suggest that drought stress is essential for actin phosphorylation in both cell types. Although characteristic filamentous actin structures (dot- or rod-like structures) were observed in microcysts, sclerotia, and spores, actin phosphorylation was not required for the formation of these structures. Prior to the formation of both microcysts and sclerotia, AFK mRNA expression was activated transiently, whereas fragmin mRNA levels decreased. Our results suggest that drought stress and AFK might be involved in the threonine phosphorylation of actin. Copyright (c) 2005 Wiley-Liss, Inc.

  9. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  10. A dynamin-actin interaction is required for vesicle scission during endocytosis in yeast.

    Science.gov (United States)

    Palmer, Sarah E; Smaczynska-de Rooij, Iwona I; Marklew, Christopher J; Allwood, Ellen G; Mishra, Ritu; Johnson, Simeon; Goldberg, Martin W; Ayscough, Kathryn R

    2015-03-30

    Actin is critical for endocytosis in yeast cells, and also in mammalian cells under tension. However, questions remain as to how force generated through actin polymerization is transmitted to the plasma membrane to drive invagination and scission. Here, we reveal that the yeast dynamin Vps1 binds and bundles filamentous actin. Mutational analysis of Vps1 in a helix of the stalk domain identifies a mutant RR457-458EE that binds actin more weakly. In vivo analysis of Vps1 function demonstrates that the mutation disrupts endocytosis but not other functions of Vps1 such as vacuolar trafficking or peroxisome fission. The mutant Vps1 is stably expressed in cells and co-localizes with the endocytic reporters Abp1 and the amphiphysin Rvs167. Detailed analysis of individual endocytic patch behavior indicates that the mutation causes aberrant movements in later stages of endocytosis, consistent with a scission defect. Ultrastructural analysis of yeast cells using electron microscopy reveals a significant increase in invagination depth, further supporting a role for the Vps1-actin interaction during scission. In vitro analysis of the mutant protein demonstrates that--like wild-type Vps1--it is able to form oligomeric rings, but, critically, it has lost its ability to bundle actin filaments into higher-order structures. A model is proposed in which actin filaments bind Vps1 during invagination, and this interaction is important to transduce the force of actin polymerization to the membrane to drive successful scission.

  11. F-actin localization dynamics during appressorium formation in Colletotrichum graminicola.

    Science.gov (United States)

    Wang, Chih-Li; Shaw, Brian D

    2016-01-01

    Appressoria are essential penetration structures for many phytopathogenic fungi. Here F-actin localization dynamics were documented during appressorium formation in vitro and in planta in Colletotrichum graminicola Four discernible stages of dynamic F-actin distribution occurring in a programmed order were documented from differentiation of appressoria to formation of penetration pores: (stage A) from germ tube enlargement to complete expansion of the appressorium; (stage S) septation occurs; (stage L) a long period of low F-actin activity; (stage P) the penetration pore forms. The F-actin subcellular localization corresponded to each stage. A distinct redistribution of actin cables occurred at the transition from stage A to stage S. The in planta assays revealed that F-actin also assembled in invasive hyphae and that actin cables might play an essential role for penetration-peg development. The F-actin localization distribution may be used as a subcellular marker to define the developmental stages during appressorium formation. © 2016 by The Mycological Society of America.

  12. Spectroscopic study of conformational changes in subdomain 1 of G-actin: influence of divalent cations.

    Science.gov (United States)

    Nyitrai, M; Hild, G; Belágyi, J; Somogyi, B

    1997-10-01

    Temperature dependence of the fluorescence intensity and anisotropy decay of N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine attached to Cys374 of actin monomer was investigated to characterize conformational differences between Ca- and Mg-G-actin. The fluorescence lifetime is longer in Mg-G-actin than that in Ca-G-actin in the temperature range of 5-34 degrees C. The width of the lifetime distribution is smaller by 30% in Mg-saturated actin monomer at 5 degrees C, and the difference becomes negligible above 30 degrees C. The semiangle of the cone within which the fluorophore can rotate is larger in Ca-G-actin at all temperatures. Electron paramagnetic resonance measurements on maleimide spin-labeled (on Cys374) monomer actin gave evidence that exchange of Ca2+ for Mg2+ induced a rapid decrease in the mobility of the label immediately after the addition of Mg2+. These results suggest that the C-terminal region of the monomer becomes more rigid as a result of the replacement of Ca2+ by Mg2+. The change can be related to the difference between the polymerization abilities of the two forms of G-actin.

  13. F-actin distribution and function during sexual differentiation in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Petersen, J; Nielsen, O; Egel, R;

    1998-01-01

    Sexual differentiation in Schizosaccharomyces pombe is induced from the G1 phase of the cell cycle by nitrogen starvation and the presence of mating pheromones. We describe the distribution of F-actin during sexual differentiation. Cortical F-actin dots have previously been shown to be restricted...

  14. Improved diagnoses of autoimmune hepatitis using an anti-actin ELISA.

    Science.gov (United States)

    Aubert, Vincent; Pisler, Isabelle Graf; Spertini, François

    2008-01-01

    The presence of antismooth muscle antibodies is one of the diagnostic criteria of autoimmune hepatitis. We evaluated a new anti-F-actin ELISA test and compared it with indirect immunofluorescence assay (IIFA) for antismooth muscle antibodies (ASMA). Two hundred and nine serum samples (35 autoimmune hepatitis, 174 other hepatopathies and control sera) were tested by IIFA on mouse stomach kidney sections for ASMA and by the Quanta Lite Actin ELISA for anti-F-actin antibodies. ASMA were detected in 26 of 35 sera from autoimmune hepatitis (74%) as compared with 25 (71%) with anti-actin antibodies, as well as in 25 of 49 (51%) samples from viral hepatitis as compared with 7 (14%) with anti-actin antibodies. With regards to autoimmune hepatitis, though sensitivity (74.3 vs 71.4%) and negative predictive value (93.5 vs 93.9%) of ASMA and anti-actin ELISA were comparable, anti-actin ELISA was significantly better than ASMA IIFA in terms of specificity (89.7 vs 74.7%), and positive predictive value (58.1 vs 37.1%). Although frequently positive in HCV samples, a comparable sensitivity but better specificity makes the anti-actin ELISA a useful tool in combination with ASMA IIFA for the screening and diagnosis of autoimmune hepatitis.

  15. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana.

    Science.gov (United States)

    Suetsugu, Noriyuki; Yamada, Noboru; Kagawa, Takatoshi; Yonekura, Hisashi; Uyeda, Taro Q P; Kadota, Akeo; Wada, Masamitsu

    2010-05-11

    Organelle movement is essential for efficient cellular function in eukaryotes. Chloroplast photorelocation movement is important for plant survival as well as for efficient photosynthesis. Chloroplast movement generally is actin dependent and mediated by blue light receptor phototropins. In Arabidopsis thaliana, phototropins mediate chloroplast movement by regulating short actin filaments on chloroplasts (cp-actin filaments), and the chloroplast outer envelope protein CHUP1 is necessary for cp-actin filament accumulation. However, other factors involved in cp-actin filament regulation during chloroplast movement remain to be determined. Here, we report that two kinesin-like proteins, KAC1 and KAC2, are essential for chloroplasts to move and anchor to the plasma membrane. A kac1 mutant showed severely impaired chloroplast accumulation and slow avoidance movement. A kac1kac2 double mutant completely lacked chloroplast photorelocation movement and showed detachment of chloroplasts from the plasma membrane. KAC motor domains are similar to those of the kinesin-14 subfamily (such as Ncd and Kar3) but do not have detectable microtubule-binding activity. The C-terminal domain of KAC1 could interact with F-actin in vitro. Instead of regulating microtubules, KAC proteins mediate chloroplast movement via cp-actin filaments. We conclude that plants have evolved a unique mechanism to regulate actin-based organelle movement using kinesin-like proteins.

  16. THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility.

    Science.gov (United States)

    Whippo, Craig W; Khurana, Parul; Davis, Phillip A; DeBlasio, Stacy L; DeSloover, Daniel; Staiger, Christopher J; Hangarter, Roger P

    2011-01-11

    Chloroplast movement in response to changing light conditions optimizes photosynthetic light absorption. This repositioning is stimulated by blue light perceived via the phototropin photoreceptors and is transduced to the actin cytoskeleton. Some actin-based motility systems use filament reorganizations rather than myosin-based translocations. Recent research favors the hypothesis that chloroplast movement is driven by actin reorganization at the plasma membrane, but no proteins affecting chloroplast movements have been shown to associate with both the plasma membrane and actin filaments in vivo. Here we identified THRUMIN1 as a critical link between phototropin photoreceptor activity at the plasma membrane and actin-dependent chloroplast movements. THRUMIN1 bundles filamentous actin in vitro, and it localizes to the plasma membrane and displays light- and phototropin-dependent localization to microfilaments in vivo. These results suggest that phototropin-induced actin bundling via THRUMIN1 is important for chloroplast movement. A mammalian homolog of THRUMIN1, GRXCR1, has been implicated in auditory responses and hair cell stereocilla development as a regulator of actin architecture. Studies of THRUMIN1 will help elucidate the function of this family of eukaryotic proteins.

  17. Total Synthesis of (-)-Doliculide, Structure-Activity Relationship Studies and Its Binding to F-Actin

    NARCIS (Netherlands)

    Matcha, Kiran; Madduri, Ashoka V. R.; Roy, Sayantani; Ziegler, Slava; Waldmann, Herbert; Hirsch, Anna K. H.; Minnaard, Adriaan J.

    2012-01-01

    Actin, an abundant protein in most eukaryotic cells, is one of the targets in cancer research. Recently, a great deal of attention has been paid to the synthesis and function of actin-targeting compounds and their use as effective molecular probes in chemical biology. In this study, we have develope

  18. An antifungal protein from Ginkgo biloba binds actin and can trigger cell death.

    Science.gov (United States)

    Gao, Ningning; Wadhwani, Parvesh; Mühlhäuser, Philipp; Liu, Qiong; Riemann, Michael; Ulrich, Anne S; Nick, Peter

    2016-07-01

    Ginkbilobin is a short antifungal protein that had been purified and cloned from the seeds of the living fossil Ginkgo biloba. Homologues of this protein can be detected in all seed plants and the heterosporic fern Selaginella and are conserved with respect to domain structures, peptide motifs, and specific cysteine signatures. To get insight into the cellular functions of these conserved motifs, we expressed green fluorescent protein fusions of full-length and truncated ginkbilobin in tobacco BY-2 cells. We show that the signal peptide confers efficient secretion of ginkbilobin. When this signal peptide is either cleaved or masked, ginkbilobin binds and visualizes the actin cytoskeleton. This actin-binding activity of ginkbilobin is mediated by a specific subdomain just downstream of the signal peptide, and this subdomain can also coassemble with actin in vitro. Upon stable overexpression of this domain, we observe a specific delay in premitotic nuclear positioning indicative of a reduced dynamicity of actin. To elucidate the cellular response to the binding of this subdomain to actin, we use chemical engineering based on synthetic peptides comprising different parts of the actin-binding subdomain conjugated with the cell-penetrating peptide BP100 and with rhodamine B as a fluorescent reporter. Binding of this synthetic construct to actin efficiently induces programmed cell death. We discuss these findings in terms of a working model, where ginkbilobin can activate actin-dependent cell death.

  19. Total Synthesis of (-)-Doliculide, Structure-Activity Relationship Studies and Its Binding to F-Actin

    NARCIS (Netherlands)

    Matcha, Kiran; Madduri, Ashoka V. R.; Roy, Sayantani; Ziegler, Slava; Waldmann, Herbert; Hirsch, Anna K. H.; Minnaard, Adriaan J.

    2012-01-01

    Actin, an abundant protein in most eukaryotic cells, is one of the targets in cancer research. Recently, a great deal of attention has been paid to the synthesis and function of actin-targeting compounds and their use as effective molecular probes in chemical biology. In this study, we have

  20. Proneural proteins Achaete and Scute associate with nuclear actin to promote formation of external sensory organs.

    Science.gov (United States)

    Hsiao, Yun-Ling; Chen, Yu-Ju; Chang, Yi-Jie; Yeh, Hsiao-Fong; Huang, Yi-Chun; Pi, Haiwei

    2014-01-01

    Basic helix-loop-helix (bHLH) proneural proteins promote neurogenesis through transcriptional regulation. Although much is known about the tissue-specific regulation of proneural gene expression, how proneural proteins interact with transcriptional machinery to activate downstream target genes is less clear. Drosophila proneural proteins Achaete (Ac) and Scute (Sc) induce external sensory organ formation by activating neural precursor gene expression. Through co-immunoprecipitation and mass spectrometric analyses, we found that nuclear but not cytoplasmic actin associated with the Ac and Sc proteins in Drosophila S2 cells. Daughterless (Da), the common heterodimeric partner of Drosophila bHLH proteins, was observed to associate with nuclear actin through proneural proteins. A yeast two-hybrid assay revealed that the binding specificity between actin and Ac or Sc was conserved in yeast nuclei without the presence of additional Drosophila factors. We further show that actin is required in external sensory organ formation. Reduction in actin gene activity impaired proneural-protein-dependent expression of the neural precursor genes, as well as formation of neural precursors. Furthermore, increased nuclear actin levels, obtained by expression of nucleus-localized actin, elevated Ac-Da-dependent gene transcription as well as Ac-mediated external sensory organ formation. Taken together, our in vivo and in vitro observations suggest a novel link for actin in proneural-protein-mediated transcriptional activation and neural precursor differentiation.

  1. In vitro reconstitution of dynamic microtubules interacting with actin filament networks

    NARCIS (Netherlands)

    Preciado Lopez, M.; Huber, F.; Grigoriev, Ilya; Steinmetz, M.O.; Akhmanova, Anna; Dogterom, M.; Koenderink, G.H.

    2014-01-01

    Interactions between microtubules and actin filaments (F-actin) are essential for eukaryotic cell migration, polarization, growth, and division. Although the importance of these interactions has been long recognized, the inherent complexity of the cell interior hampers a detailed mechanistic study o

  2. A requirement for polymerized actin in DNA double-strand break repair.

    Science.gov (United States)

    Andrin, Christi; McDonald, Darin; Attwood, Kathleen M; Rodrigue, Amélie; Ghosh, Sunita; Mirzayans, Razmik; Masson, Jean-Yves; Dellaire, Graham; Hendzel, Michael J

    2012-07-01

    Nuclear actin is involved in several nuclear processes from chromatin remodeling to transcription. Here we examined the requirement for actin polymerization in DNA double-strand break repair. Double-strand breaks are considered the most dangerous type of DNA lesion. Double-strand break repair consists of a complex set of events that are tightly regulated. Failure at any step can have catastrophic consequences such as genomic instability, oncogenesis or cell death. Many proteins involved in this repair process have been identified and their roles characterized. We discovered that some DNA double-strand break repair factors are capable of associating with polymeric actin in vitro and specifically, that purified Ku70/80 interacts with polymerized actin under these conditions. We find that the disruption of polymeric actin inhibits DNA double strand break repair both in vitro and in vivo. Introduction of nuclear targeted mutant actin that cannot polymerize, or the depolymerization of endogenous actin filaments by the addition of cytochalasin D, alters the retention of Ku80 at sites of DNA damage in live cells. Our results suggest that polymeric actin is required for proper DNA double-strand break repair and may function through the stabilization of the Ku heterodimer at the DNA damage site.

  3. Actin evolution in ciliates (Protist, Alveolata) is characterized by high diversity and three duplication events.

    Science.gov (United States)

    Yi, Zhenzhen; Huang, Lijuan; Yang, Ran; Lin, Xiaofeng; Song, Weibo

    2016-03-01

    Ciliates possess two distinct nuclear genomes and unique genomic features, including highly fragmented chromosomes and extensive chromosomal rearrangements. Recent transcriptomic surveys have revealed that ciliates have several multi-copy genes providing an ideal template to study gene family evolution. Nonetheless, this process remains little studied in ciliated protozoa and consequently, the evolutionary patterns that govern it are not well understood. In this study, we focused on obtaining fine-scale information relative to ciliate species divergence for the first time. A total of 230 actin gene sequences were derived from this study, among which 217 were from four closely related Pseudokeronopsis species and 13 from other hypotrichous ciliates. Our investigation shows that: (1) At least three duplication events occurred in ciliates: diversification of three actin genes (Actin I, II, III) happened after the divergence of ciliate classes but before that of subclasses. And several recent and genus-specific duplications were followed within Actin I (Sterkiella, Oxytricha, Uroleptus, etc.), Actin II (Sterkiella), respectively. (2) Within the genus Pseudokeronopsis, Actin I gene duplication events happened after P. carnea and P. erythrina diverged. In contrast, in the morphologically similar species P. flava and P. rubra, the duplication event preceded diversification of the two species. The Actin II gene duplication events preceded divergence of the genus Pseudokeronopsis. (3) Phylogenetic analyses revealed that actin is suitable for resolving ciliate classes, but may not be used to infer lower taxon relationships.

  4. Peroxynitrite induces F-actin depolymerization and blockade of myosin ATPase stimulation.

    Science.gov (United States)

    Tiago, Teresa; Ramos, Susana; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2006-03-31

    Treatment of F-actin with the peroxynitrite-releasing agent 3-morpholinosydnonimine (SIN-1) produced a dose-dependent F-actin depolymerization. This is due to released peroxynitrite because it is not produced by 'decomposed SIN-1', and it is prevented by superoxide dismutase concentrations efficiently preventing peroxynitrite formation. F-actin depolymerization has been found to be very sensitive to peroxynitrite, as exposure to fluxes as low as 50-100nM peroxynitrite leads to nearly 50% depolymerization in about 1h. G-actin polymerization is also impaired by peroxynitrite although with nearly 2-fold lower sensitivity. Exposure of F-actin to submicromolar fluxes of peroxynitrite produced cysteine oxidation and also a blockade of the ability of actin to stimulate myosin ATPase activity. Our results suggest that an imbalance of the F-actin/G-actin equilibrium can account for the observed structural and functional impairment of myofibrils under the peroxynitrite-mediated oxidative stress reported for some pathophysiological conditions.

  5. Total Synthesis of (-)-Doliculide, Structure-Activity Relationship Studies and Its Binding to F-Actin

    NARCIS (Netherlands)

    Matcha, Kiran; Madduri, Ashoka V. R.; Roy, Sayantani; Ziegler, Slava; Waldmann, Herbert; Hirsch, Anna K. H.; Minnaard, Adriaan J.

    2012-01-01

    Actin, an abundant protein in most eukaryotic cells, is one of the targets in cancer research. Recently, a great deal of attention has been paid to the synthesis and function of actin-targeting compounds and their use as effective molecular probes in chemical biology. In this study, we have develope

  6. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter

    Directory of Open Access Journals (Sweden)

    Sérgio Carvalho Leite

    2016-04-01

    Full Text Available The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings.

  7. Expression patterns of ubiquitin, heat shock protein 70, alpha-actin and beta-actin over the molt cycle in the abdominal muscle of marine shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Cesar, Jose Renato O; Yang, Jinzeng

    2007-05-01

    Crustacean muscle growth is discontinuous due to molt cycle. To characterize molt-related gene expression patterns, we studied the mRNA levels of molecular chaperone-ubiquitin and heat shock protein 70 (Hsp 70) in comparison with muscle protein alpha-actin and beta-actin in marine shrimp Litopenaeus vannamei. Total RNA from abdominal muscle was isolated from 3-month-old animals in six different molt stages. The mRNA levels of target genes were detected by reverse-transcriptase-multiplex PCR and expressed as the ratio to elongation factor-1alpha. Ubiquitin mRNA levels were relatively steady over all stages of the molt cycle. Hsp70 levels were not detectable in early postmolt and late premolt stages, but showed a progressive increase from late postmolt to intermolt stages. Expression levels of alpha-actin gene were lower during postmolt, reached a plateau in intermolt and remained relatively high in premolt stage. Levels of beta-actin increased progressively from postmolt to intermolt, reaching a maximum value in premolt. Therefore, the mRNAs encoding for ubiquitin and Hsp 70 in abdominal muscle did not increase significantly in premolt stages, which is typically associated with claw muscle degradation. Muscle structural alpha-actin and cytoskeletal beta-actin were increased during intermolt and premolt stages, suggesting high muscle growth during these stages in the abdominal muscle of the L. vannamei.

  8. A Steric Antagonism of Actin Polymerization by a Salmonella Virulence Protein

    Energy Technology Data Exchange (ETDEWEB)

    Margarit,S.; Davidson, W.; Frego, L.; Stebbins, F.

    2006-01-01

    Salmonella spp. require the ADP-ribosyltransferase activity of the SpvB protein for intracellular growth and systemic virulence. SpvB covalently modifies actin, causing cytoskeletal disruption and apoptosis. We report here the crystal structure of the catalytic domain of SpvB, and we show by mass spectrometric analysis that SpvB modifies actin at Arg177, inhibiting its ATPase activity. We also describe two crystal structures of SpvB-modified, polymerization-deficient actin. These structures reveal that ADP-ribosylation does not lead to dramatic conformational changes in actin, suggesting a model in which this large family of toxins inhibits actin polymerization primarily through steric disruption of intrafilament contacts.

  9. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jinsoo; Schmidt, Jacob; Chien Aichi; Montemagno, Carlo D [Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, 7523 Boelter Hall, Los Angeles, CA 90095-1600 (United States)], E-mail: montemcd@ucmail.uc.edu

    2009-02-25

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  10. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing

    Science.gov (United States)

    Kim, Dong-Hwee; Khatau, Shyam B.; Feng, Yunfeng; Walcott, Sam; Sun, Sean X.; Longmore, Gregory D.; Wirtz, Denis

    2012-01-01

    The ability for cells to sense and adapt to different physical microenvironments plays a critical role in development, immune responses, and cancer metastasis. Here we identify a small subset of focal adhesions that terminate fibers in the actin cap, a highly ordered filamentous actin structure that is anchored to the top of the nucleus by the LINC complexes; these differ from conventional focal adhesions in morphology, subcellular organization, movements, turnover dynamics, and response to biochemical stimuli. Actin cap associated focal adhesions (ACAFAs) dominate cell mechanosensing over a wide range of matrix stiffness, an ACAFA-specific function regulated by actomyosin contractility in the actin cap, while conventional focal adhesions are restrictively involved in mechanosensing for extremely soft substrates. These results establish the perinuclear actin cap and associated ACAFAs as major mediators of cellular mechanosensing and a critical element of the physical pathway that transduce mechanical cues all the way to the nucleus. PMID:22870384

  11. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization.

    Science.gov (United States)

    Yi, Jinsoo; Schmidt, Jacob; Chien, Aichi; Montemagno, Carlo D

    2009-02-25

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  12. STK16 regulates actin dynamics to control Golgi organization and cell cycle

    Science.gov (United States)

    Liu, Juanjuan; Yang, Xingxing; Li, Binhua; Wang, Junjun; Wang, Wenchao; Liu, Jing; Liu, Qingsong; Zhang, Xin

    2017-01-01

    STK16 is a ubiquitously expressed, myristoylated, and palmitoylated serine/threonine protein kinase with underexplored functions. Recently, it was shown to be involved in cell division but the mechanism remains unclear. Here we found that human STK16 localizes to the Golgi complex throughout the cell cycle and plays important roles in Golgi structure regulation. STK16 knockdown or kinase inhibition disrupts actin polymers and causes fragmented Golgi in cells. In vitro assays show that STK16 directly binds to actin and regulates actin dynamics in a concentration- and kinase activity-dependent way. In addition, STK16 knockdown or kinase inhibition not only delays mitotic entry and prolongs mitosis, but also causes prometaphase and cytokinesis arrest. Therefore, we revealed STK16 as a novel actin binding protein that resides in the Golgi, which regulates actin dynamics to control Golgi structure and participate in cell cycle progression. PMID:28294156

  13. Echinococcus granulosus: Cloning and Functional in Vitro Characterization of an Actin Filament Fragmenting Protein.

    Science.gov (United States)

    Cortez-Herrera, E; Yamamoto, R R; Rodrigues, J J; Farias, S E; Ferreira, H B; Zaha, A

    2001-04-01

    We report the isolation and characterization of an Echinococcus granulosus gene that codes for a protein with actin filament fragmenting and nucleating activities (EgAFFP). The genomic region corresponding to the EgAFFP gene presents a coding sequence of 1110 bp that is interrupted by eight introns. The EgAFFP deduced amino acid sequence is about 40% homologous to those of several members of the gelsolin family, such as Physarum polycephalum fragmin, Dictyostelium discoideum severin, and Lumbricus terrestris actin modulator. As do other proteins of the same family, EgAFFP presents three repeated domains, each one characterized by internal conserved amino acid motifs. Assays with fluorescence-labeled actin showed that the full-length recombinant EgAFFP effectively binds actin monomers in both a calcium-dependent and calcium-independent manner and also presents actin nucleating and severing activities.

  14. Covalent immobilization of myosin for in-vitro motility of actin

    Indian Academy of Sciences (India)

    Ellis Bagga; Sunita Kumari; Rajesh Kumar; Rakesh Kumar; R P Bajpai; Lalit M Bharadwaj

    2005-11-01

    The present study reports the covalent immobilization of myosin on glass surface and in-vitro motility of actin-myosin biomolecular motor. Myosin was immobilized on poly-L-lysine coated glass using heterobifunctional cross linker EDC and characterized by AFM. The in-vitro motility of actin was carried out on the immobilized myosin. It was observed that velocity of actin over myosin increases with increasing actin concentration (0.4-1.0 mg/ml) and was found in the range of 0.40-3.25 m/s. The motility of actin-myosin motor on artificial surfaces is of immense importance for developing nanodevices for healthcare and engineering applications.

  15. O’Brien Actinic Granuloma: A Case Report and Brief Review of Literature

    Science.gov (United States)

    Coutinho, Inês D; Ramos, Leonor I C; Brites, Maria M; Tellechea, Oscar

    2015-01-01

    O’Brien first described the actinic granuloma in 1975, as an infrequent granulomatous disorder occurring in sun-exposed skin, with a slow but often self-limited course. Ever since its initial description, the actinic physiopathogenic hypothesis has been debated by many authors. We report a 60-year-old female rural worker that presented with a 14 × 7 cm annular lesion with erythematous elevated borders and an atrophic center on the right calf. The lesion was evolving for 2 years, and histopathology confirmed actinic granuloma. She started acitretin with halting of disease progression after 6 months of therapy. Our case can also be associated to actinic damage, despite its unusual location, therefore highlighting the role of solar elastosis in the development of O’Brien actinic granuloma. PMID:26288411

  16. O′Brien actinic granuloma: A case report and brief review of literature

    Directory of Open Access Journals (Sweden)

    Inês D Coutinho

    2015-01-01

    Full Text Available O′Brien first described the actinic granuloma in 1975, as an infrequent granulomatous disorder occurring in sun-exposed skin, with a slow but often self-limited course. Ever since its initial description, the actinic physiopathogenic hypothesis has been debated by many authors. We report a 60-year-old female rural worker that presented with a 14 × 7 cm annular lesion with erythematous elevated borders and an atrophic center on the right calf. The lesion was evolving for 2 years, and histopathology confirmed actinic granuloma. She started acitretin with halting of disease progression after 6 months of therapy. Our case can also be associated to actinic damage, despite its unusual location, therefore highlighting the role of solar elastosis in the development of O′Brien actinic granuloma.

  17. Self-organizing actin patterns shape membrane architecture but not cell mechanics

    Science.gov (United States)

    Fritzsche, M.; Li, D.; Colin-York, H.; Chang, V. T.; Moeendarbary, E.; Felce, J. H.; Sezgin, E.; Charras, G.; Betzig, E.; Eggeling, C.

    2017-02-01

    Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties.

  18. Ingenol Mebutate Topical Gel A Status Report On Clinical Use Beyond Actinic Keratosis

    Science.gov (United States)

    Del Rosso, James Q.

    2016-01-01

    Ingenol mebutate is available as a topical gel formulation approved for the treatment of actinic keratosis. Two different concentrations are available for treatment of actinic keratoses at specific anatomic sites with the advantages of short durations of therapy and limited “down time” related to visible inflammation as compared to other topical agents. Due to the various modes of action of ingenol mebutate, it has also been used for treatment of disease states other than actinic keratosis. This manuscript discusses the suggested modes of action of ingenol mebutate and reviews publications on the use of ingenol mebutate gel for cutaneous disorders other than actinic keratosis, including squamous cell carcinoma in-situ, basal cell carcinoma, actinic cheilitis, anogenital warts, and others. Author commentaries are also included with the goal of providing relevant clinical insights. PMID:28224020

  19. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and membrane anchoring of F-actin resulting in dwarf, lintless Li1 cotton plants

    Science.gov (United States)

    Actin polymerizes to form the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hi...

  20. Actin filaments growing against a barrier with fluctuating shape

    CERN Document Server

    Sadhu, Raj Kumar

    2016-01-01

    We study force generation by a set of parallel actin filaments growing against a non-rigid obstacle, in presence of an external load. The filaments polymerize by either moving the whole obstacle, with a large energy cost, or by causing local distortion in its shape which costs much less energy. The non-rigid obstacle also has local thermal fluctuations due to which its shape can change with time and we describe this using fluctuations in the height profile of a one dimensional interface with Kardar-Parisi-Zhang dynamics. We find the shape fluctuations of the barrier strongly affects the force generation mechanism. The qualitative nature of the force-velocity curve is crucially determined by the relative time-scale of filament and barrier dynamics. The height profile of the barrier also shows interesting variation with the external load. Our analytical calculation within mean-field theory shows reasonable agreement with our simulation results.

  1. Percolation mechanism drives actin gels to the critically connected state

    Science.gov (United States)

    Lee, Chiu Fan; Pruessner, Gunnar

    2016-05-01

    Cell motility and tissue morphogenesis depend crucially on the dynamic remodeling of actomyosin networks. An actomyosin network consists of an actin polymer network connected by cross-linker proteins and motor protein myosins that generate internal stresses on the network. A recent discovery shows that for a range of experimental parameters, actomyosin networks contract to clusters with a power-law size distribution [J. Alvarado, Nat. Phys. 9, 591 (2013), 10.1038/nphys2715]. Here, we argue that actomyosin networks can exhibit a robust critical signature without fine-tuning because the dynamics of the system can be mapped onto a modified version of percolation with trapping (PT), which is known to show critical behavior belonging to the static percolation universality class without the need for fine-tuning of a control parameter. We further employ our PT model to generate experimentally testable predictions.

  2. Noisy Oscillations in the Actin Cytoskeleton of Chemotactic Amoeba

    Science.gov (United States)

    Negrete, Jose; Pumir, Alain; Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Beta, Carsten; Bodenschatz, Eberhard

    2016-09-01

    Biological systems with their complex biochemical networks are known to be intrinsically noisy. Here we investigate the dynamics of actin polymerization of amoeboid cells, which are close to the onset of oscillations. We show that the large phenotypic variability in the polymerization dynamics can be accurately captured by a generic nonlinear oscillator model in the presence of noise. We determine the relative role of the noise with a single dimensionless, experimentally accessible parameter, thus providing a quantitative description of the variability in a population of cells. Our approach, which rests on a generic description of a system close to a Hopf bifurcation and includes the effect of noise, can characterize the dynamics of a large class of noisy systems close to an oscillatory instability.

  3. Desmosome dynamics in migrating epithelial cells requires the actin cytoskeleton

    Science.gov (United States)

    Roberts, Brett J.; Pashaj, Anjeza; Johnson, Keith R.; Wahl, James K.

    2011-01-01

    Re-modeling of epithelial tissues requires that the cells in the tissue rearrange their adhesive contacts in order to allow cells to migrate relative to neighboring cells. Desmosomes are prominent adhesive structures found in a variety of epithelial tissues that are believed to inhibit cell migration and invasion. Mechanisms regulating desmosome assembly and stability in migrating cells are largely unknown. In this study we established a cell culture model to examine the fate of desmosomal components during scratch wound migration. Desmosomes are rapidly assembled between epithelial cells at the lateral edges of migrating cells and structures are transported in a retrograde fashion while the structures become larger and mature. Desmosome assembly and dynamics in this system are dependent on the actin cytoskeleton prior to being associated with the keratin intermediate filament cytoskeleton. These studies extend our understanding of desmosome assembly and provide a system to examine desmosome assembly and dynamics during epithelial cell migration. PMID:21945137

  4. Actin filaments on myosin beds: The velocity distribution

    Science.gov (United States)

    Bourdieu, L.; Magnasco, M. O.; Winkelmann, D. A.; Libchaber, A.

    1995-12-01

    In vitro studies of actin filaments sliding on a myosin-coated surface are analyzed, filament by filament, at a sampling rate of 30 per second. For each filament, the mean arc length coordinate is computed and histograms of instantaneous velocities, along the arc length, are established. Two types of motion are observed, depending on the experimental conditions. The first one is characterized by a homogeneous flow, with well defined velocities. In this regime, specific defects are a constitutive part of the flow. It is observed at high temperature, at high myosin coverage, and with a particular mode of attachment of myosin to the surface. The second regime shows no clear velocity selection, but a broadband distribution. It is characterized by high friction and is observed at low temperature or low myosin density. (c) 1995 The American Physical Society

  5. Cryosurgery treatment of actinic keratoses monitored by optical coherence tomography

    DEFF Research Database (Denmark)

    Themstrup, L.; Banzhaf, C.; Jemec, G.B.E.

    2013-01-01

    Background: Optical coherence tomography (OCT) is a non-invasive optical imaging technique providing high-resolution images. OCT may be useful as a monitoring tool during treatment of actinic keratoses (AK) and skin cancer. Objective: To examine and describe how OCT skin morphology changes when...... could not be monitored by OCT. Vesicle formation after cryotherapy could be identified in OCT images. In ex vivo skin no vesicle formation occurred. Conclusion: OCT cannot monitor the freezing depth, but OCT was able to visualise AK lesions and vesicle formation shortly after cryotherapy. Results add...... the tissue is exposed to the effects of cryotherapy. Methods: Normal ex vivo skin and in vivo AK lesions were examined. Cryotherapy was applied and OCT images were acquired at defined time points. OCT morphology was described. Results: Cryotherapy treatment produced an opaque iceball, and freezing depth...

  6. The Role of Actin-Capping Protein and Src signalling in tissue growth and apoptosis during Drosophila wing development

    OpenAIRE

    Jezowska, Barbara Zofia

    2012-01-01

    Dissertation presented to obtain the Ph.D degree in Developmental Biology The actin cytoskeleton controls numerous cellular processes, including cell morphology and polarity, endocytosis, intracellular trafficking, contractility and cell division. Actin filament growth, stability and disassembly are controlled by a plethora of actin-binding proteins. Among them Capping Protein is a highly conserved αβ heterodimer, which binds the barbed ends of actin filaments, inhibiting addit...

  7. Infiltrated papules on the trunk and headaches: A case of actinic granuloma and a review of the literature

    Directory of Open Access Journals (Sweden)

    Sonal A. Parikh, BS

    2015-08-01

    Full Text Available Actinic granuloma is a rare granulomatous reaction that is more commonly seen in females and thought to occur as an autoimmune response to actinic damage of elastic tissue. We discuss a case of a patient with actinic granuloma presenting with concomitant temporal arteritis. Our case and review of the literature emphasize the association between actinic granuloma and temporal arteritis, a serious inflammatory condition that could lead to blindness if misdiagnosed.

  8. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-03-10

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.

  9. Criticalities in crosslinked actin networks due to myosin activity

    Science.gov (United States)

    Sheinman, Michael

    2013-03-01

    Many essential processes in cells and tissues, like motility and morphogenesis, are orchestrated by molecular motors applying internal, active stresses on crosslinked networks of actin filaments. Using scaling analysis, mean-field calculation, numerical modelling and in vitro experiments of such active networks we predict and observe different mechanical regimes exhibiting interesting critical behaviours with non-trivial power-law dependencies. Firstly, we find that the presence of active stresses can dramatically increase the stiffness of a floppy network, as was observed in reconstituted intracellular F-actin networks with myosin motors and extracellular gels with contractile cells. Uniform internal stress results in an anomalous, critical mechanical regime only in the vicinity of the rigidity percolation points of the network. However, taking into account heterogeneity of motors, we demonstrate that the motors, stiffening any floppy network, induce large non-affine fluctuations, giving rise to a critical mechanical regime. Secondly, upon increasing motor concentration, the resulting large internal stress is able to significantly enhance unbinding of the network's crosslinks and, therefore, disconnect the initially well-connected network to isolated clusters. However, during this process, when the network approaches marginal connectivity the internal stresses are expected to drop drastically such that the connectivity stabilizes. This general argument and detailed numerical simulations show that motors should drive a well connected network to a close vicinity of a critical point of marginal connectivity. Experiments clearly confirm this conclusion and demonstrate robust critical connectivity of initially well-connected networks, ruptured by the motor activity for a wide range of parameters. M. Sheinman, C.P. Broedersz and F.C. MacKintosh, Phys. Rev. Lett, in press. J. Alvarado, M. Sheinman, A. Sharma, F.C. MacKintosh and G. Koenderink, in preparation.

  10. Calcium and actin in the saga of awakening oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Luigia, E-mail: santella@szn.it; Limatola, Nunzia; Chun, Jong T.

    2015-04-24

    The interaction of the spermatozoon with the egg at fertilization remains one of the most fascinating mysteries of life. Much of our scientific knowledge on fertilization comes from studies on sea urchin and starfish, which provide plenty of gametes. Large and transparent, these eggs have served as excellent model systems for studying egg activation and embryo development in seawater, a plain natural medium. Starfish oocytes allow the study of the cortical, cytoplasmic and nuclear changes during the meiotic maturation process, which can also be triggered in vitro by hormonal stimulation. These morphological and biochemical changes ensure successful fertilization of the eggs at the first metaphase. On the other hand, sea urchin eggs are fertilized after the completion of meiosis, and are particularly suitable for the study of sperm–egg interaction, early events of egg activation, and embryonic development, as a large number of mature eggs can be fertilized synchronously. Starfish and sea urchin eggs undergo abrupt changes in the cytoskeleton and ion fluxes in response to the fertilizing spermatozoon. The plasma membrane and cortex of an egg thus represent “excitable media” that quickly respond to the stimulus with the Ca{sup 2+} swings and structural changes. In this article, we review some of the key findings on the rapid dynamic rearrangements of the actin cytoskeleton in the oocyte/egg cortex upon hormonal or sperm stimulation and their roles in the modulation of the Ca{sup 2+} signals and in the control of monospermic fertilization. - Highlights: • Besides microtubules, microfilaments may anchor the nucleus to oocyte surface. • The cortical Ca{sup 2+} flash and wave at fertilization mirror electrical membrane change. • Artificial egg activation lacks microvilli extension in the perivitelline space. • Calcium is necessary but not sufficient for cortical granules exocytosis. • Actin cytoskeleton modulates Ca{sup 2+} release at oocyte maturation

  11. Extending the molecular clutch beyond actin-based cell motility

    Science.gov (United States)

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-10-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton.

  12. Phosphatidylserine liposomes can be tethered by caldesmon to actin filaments.

    Science.gov (United States)

    Makuch, R; Zasada, A; Mabuchi, K; Krauze, K; Wang, C L; Dabrowska, R

    1997-01-01

    Rotary shadowing electron microscopy revealed that attachment of caldesmon to phosphatidylserine (PS) liposomes was mainly through its C-terminal end. To determine the PS-binding sites of caldesmon, we have made use of synthetic peptides covering the two C-terminal calmodulin binding sites and a recombinant fragment corresponding to the N-terminal end of the C-terminal domain that contains an amphipathic helix. Interactions of these peptides with the PS liposomes were studied by nondenaturing gel electrophoresis and fluorescence spectroscopy. The results showed that both calmodulin-binding sites of caldesmon were able to interact with PS. The affinity (Kd) of PS for these sites was in the range of 1.8-14.3 x 10(-5) M, compared to 0.69 x 10(-5) M for the whole caldesmon molecule. Fragments located outside of calmodulin-binding sites bound PS weakly (3.85 x 10(-4) M) and thus may contain a second class of lipid-binding sites. Binding of PS induced conformational changes in regions other than the C-terminal PS-binding sites, as evidenced by the changes in the susceptibility to proteolytic cleavages. Most significantly, the presence of caldesmon greatly increased binding of PS to F-actin, suggesting that caldesmon may tether PS liposomes to actin filaments. These results raise the possibility that caldesmon-lipid interactions could play a functionally important role in the assembly of contractile filaments near the membranes. Images FIGURE 2 FIGURE 4 FIGURE 6 PMID:9284327

  13. Differences in G-actin containing bound ATP or ADP: the Mg2+-induced conformational change requires ATP.

    Science.gov (United States)

    Frieden, C; Patane, K

    1985-07-16

    The role of adenosine 5'-triphosphate (ATP) in the Mg2+-induced conformational change of rabbit skeletal muscle G-actin has been investigated by comparing actin containing bound ADP with actin containing bound ATP. As previously described [Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886], N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled G-actin containing ATP undergoes a time-dependent Mg2+-induced fluorescence change that reflects a conformational change in the actin. Addition of Mg2+ to labeled G-actin containing ADP gives no fluorescence change, suggesting that the conformational change does not occur. The fluorescence change can be restored on the addition of ATP. Examination of the time courses of these experiments suggests that ATP must replace ADP prior to the Mg2+-induced change. The Mg2+-induced polymerization of actin containing ADP is extraordinarily slow compared to that of actin containing ATP. The lack of the Mg2+-induced conformational change, which is an essential step in the Mg2+-induced polymerization, is probably the cause for the very slow polymerization of actin containing ADP. On the other hand, at 20 degrees C, at pH 8, and in 2 mM Mg2+, the elongation rate from the slow growing end of an actin filament, measured by using the protein brevin to block growth at the fast growing end, is only 4 times slower for actin containing ADP than for actin containing ATP.

  14. Structural Analysis of Human Cofilin 2/Filamentous Actin Assemblies: Atomic-Resolution Insights from Magic Angle Spinning NMR Spectroscopy

    Science.gov (United States)

    Yehl, Jenna; Kudryashova, Elena; Reisler, Emil; Kudryashov, Dmitri; Polenova, Tatyana

    2017-01-01

    Cellular actin dynamics is an essential element of numerous cellular processes, such as cell motility, cell division and endocytosis. Actin’s involvement in these processes is mediated by many actin-binding proteins, among which the cofilin family plays unique and essential role in accelerating actin treadmilling in filamentous actin (F-actin) in a nucleotide-state dependent manner. Cofilin preferentially interacts with older filaments by recognizing time-dependent changes in F-actin structure associated with the hydrolysis of ATP and release of inorganic phosphate (Pi) from the nucleotide cleft of actin. The structure of cofilin on F-actin and the details of the intermolecular interface remain poorly understood at atomic resolution. Here we report atomic-level characterization by magic angle spinning (MAS) NMR of the muscle isoform of human cofilin 2 (CFL2) bound to F-actin. We demonstrate that resonance assignments for the majority of atoms are readily accomplished and we derive the intermolecular interface between CFL2 and F-actin. The MAS NMR approach reported here establishes the foundation for atomic-resolution characterization of a broad range of actin-associated proteins bound to F-actin. PMID:28303963

  15. Comparative genome analysis of cortactin and HSI : the significance of the F-actin binding repeat domain

    NARCIS (Netherlands)

    van Rossum, AGSH; Schuuring-Scholtes, E; Seggelen, VV; Kluin, PM; Schuuring, E

    2005-01-01

    Background: In human carcinomas, overexpression of cortactin correlates with poor prognosis. Cortactin is an F-actin-binding protein involved in cytoskeletal rearrangements and cell migration by promoting actin-related protein (Arp)2/3 mediated actin polymerization. It shares a high amino acid seque

  16. Region-Specific Involvement of Actin Rearrangement-Related Synaptic Structure Alterations in Conditioned Taste Aversion Memory

    Science.gov (United States)

    Bi, Ai-Ling; Wang, Yue; Li, Bo-Qin; Wang, Qian-Qian; Ma, Ling; Yu, Hui; Zhao, Ling; Chen, Zhe-Yu

    2010-01-01

    Actin rearrangement plays an essential role in learning and memory; however, the spatial and temporal regulation of actin dynamics in different phases of associative memory has not been fully understood. Here, using the conditioned taste aversion (CTA) paradigm, we investigated the region-specific involvement of actin rearrangement-related…

  17. Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin.

    Science.gov (United States)

    Chaudhry, Faisal; Guérin, Christophe; von Witsch, Matthias; Blanchoin, Laurent; Staiger, Christopher J

    2007-08-01

    The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP-actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP- and ATP-monomeric actin (Kd approximately 1.3 microM). Binding of AtCAP1 to ATP-actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux

  18. Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin.

    Science.gov (United States)

    Winkelman, Jonathan D; Bilancia, Colleen G; Peifer, Mark; Kovar, David R

    2014-03-18

    Filopodia are exploratory finger-like projections composed of multiple long, straight, parallel-bundled actin filaments that protrude from the leading edge of migrating cells. Drosophila melanogaster Enabled (Ena) is a member of the Ena/vasodilator-stimulated phosphoprotein protein family, which facilitates the assembly of filopodial actin filaments that are bundled by Fascin. However, the mechanism by which Ena and Fascin promote the assembly of uniformly thick F-actin bundles that are capable of producing coordinated protrusive forces without buckling is not well understood. We used multicolor evanescent wave fluorescence microscopy imaging to follow individual Ena molecules on both single and Fascin-bundled F-actin in vitro. Individual Ena tetramers increase the elongation rate approximately two- to threefold and inhibit capping protein by remaining processively associated with the barbed end for an average of ∼10 s in solution, for ∼60 s when immobilized on a surface, and for ∼110 s when multiple Ena tetramers are clustered on a surface. Ena also can gather and simultaneously elongate multiple barbed ends. Collectively, these properties could facilitate the recruitment of Fascin and initiate filopodia formation. Remarkably, we found that Ena's actin-assembly properties are tunable on Fascin-bundled filaments, facilitating the formation of filopodia-like F-actin networks without tapered barbed ends. Ena-associated trailing barbed ends in Fascin-bundled actin filaments have approximately twofold more frequent and approximately fivefold longer processive runs, allowing them to catch up with leading barbed ends efficiently. Therefore, Fascin and Ena cooperate to extend and maintain robust filopodia of uniform thickness with aligned barbed ends by a unique mechanistic cycle.

  19. Identification of Extracellular Actin As a Ligand for Triggering Receptor Expressed on Myeloid Cells-1 Signaling

    Directory of Open Access Journals (Sweden)

    Lei Fu

    2017-08-01

    Full Text Available Triggering receptor expressed on myeloid cells-1 (TREM-1 is a potent amplifier of pro-inflammatory innate immune reactions, and it is an essential mediator of death in sepsis. However, the ligand for TREM-1 has not been fully identified. Previous research identified a natural ligand of TREM-1 distributed on platelets that contributed to the development of sepsis. However, the exact signal for TREM-1 recognition remains to be identified. Here, we identified actin as a TREM-1-interacting protein on platelets and found that recombinant actin could interact with recombinant TREM-1 extracellular domain directly. Furthermore, actin co-localized with TREM-1 on the surface of activated mouse macrophage RAW264.7 cells interacting with platelets. In addition, recombinant actin could enhance the inflammatory response of macrophages from wt mice but not from trem1−/− mice, and the enhancement could be inhibited by LP17 (a TREM-1 inhibitor in a dose-dependent manner. Importantly, extracellular actin showed co-localization with TREM-1 in lung tissue sections from septic mice, which suggested that TREM-1 recognized actin during activation in sepsis. Therefore, the present study identified actin as a new ligand for TREM-1 signaling, and it also provided a link between both essential regulators of death in sepsis.

  20. Neuronal actin dynamics, spine density and neuronal dendritic complexity are regulated by CAP2

    Directory of Open Access Journals (Sweden)

    Atul Kumar

    2016-07-01

    Full Text Available Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapse. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.

  1. Changes of the content and distribution of cochlear actin iron-deficient growing rats

    Institute of Scientific and Technical Information of China (English)

    YUAN Jun; SUN Ai-hua; WANG Jin-ling; FAN Rong; JIAO Xi-ying; LIN Shun-zhang

    2001-01-01

    To observe the changes of the content and distribution of cochlear actin in growing rats at different periods of iron deficiency (ID) and to explore the pathogenetic mechanism of ID-induced sensorineuralhear ing loss. Methods: Actin of cochlear membranous tissue was separated and determined with SDS-PAGE and West em blot. The relative content and distribution of cochlear actin in both ID and normal rats in week 8 and 12 were studied by TLC-densitometric determination and immunohistochemical procedures. Results: A marked reduction of relative content and immunohistochemical reaction product of cochlear actin was found in ID rats with sensorineural hearing loss in comparison with normal controls. There was no significant difference of cochlea actin among differ ent groups of ID rats with hearing loss. Conclusion: ID-induced sensorineural hearing loss is probably associated with reduction of actin in the cochlea. It is suggested that the experimental ID period of time have no considerable effect on the relative content and distribution of cochlear actin.

  2. Interaction of actin with plasminogen/plasmin system: mechanisms and physiological role

    Directory of Open Access Journals (Sweden)

    Tykhomyrov A. A.

    2012-12-01

    Full Text Available In the present review, we have summarized and analyzed the literature data concerning cooperation between multifunctional proteins, the components of plasminogen/plasmin system and actin. The mechanisms underlying intermolecular interactions and the role of plasminogen kringle domains in protein-protein recognition are reviewed. A particular attention is paid to extracellular actin that serves as a surface protein of plasma membrane in various cells. A putative role of surface actin as the universal «non-hemostatic» center of plasminogen activation is discussed. The exposition of cytoskeletal actin on the outer surface of cellular membrane is thought to be a phenomenon, which is involved in both normal cell functioning and development of pathologies. In particular, the mechanism of plasminogen fragmentation on the surface of cancer cells mediated by actin, which results in generation of endogenous suppressors of tumor growth and metastazing (angiostatins, is described. It has been acknowledged that the plasminogen/plasmin system in concert with surface actin regulates releasing biologically active substances, e. g. catecholamines. The comprehensive assessment of plasminogen/plasmin system and surface actin exposition is proposed to be a criterion of functional status of cells and can be used as a diagnostic parameter at various pathologies.

  3. Cloning and sequence analysis of β-actin gene from Aedes albopictus (Diptera: Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Weijie Wang; Xiaobang Hu; Donghui Zhang; Jianhua Jiao; Yan Sun; Lei Ma; Changliang Zhu

    2007-01-01

    Objective: To obtain the complete β-actin gene from Aedes albopictus. Methods: Total RNA was extracted from C6/36 cells. Degenerate primers were designed based on the β-actin sequences of An. gambiae, Ae. aegypti, Cx. pipiens pallens and D.melanogaster. By RT-PCR, the product was amplified, purified, cloned into the pGT vector and sequenced. The β-actin sequence was aligned and phylogenetically analyzed by the BLAST program and the CLUSTAL W program. Results: A sequence of 1132 bp including an open reading frame of 1131 bp was obtained (GenBank DQ657949). The deduced protein had 376 amino acids.Aligned to SWISS-PROT, it exhibited a high level of identity with β-actins from Anopheles, Drosophila and Culex at the amino acid sequence level. Phylogenetic analysis indicated that Ae. albopictus β-actin was much more homologous with invertebrate β-actin than with vertebrate β-actin. Conclusion: The gene may be used as the internal control in the experiments of Ae. albopictus.

  4. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging.

    Science.gov (United States)

    Tormos, Ana M; Rius-Pérez, Sergio; Jorques, María; Rada, Patricia; Ramirez, Lorena; Valverde, Ángela M; Nebreda, Ángel R; Sastre, Juan; Taléns-Visconti, Raquel

    2017-01-01

    Hepatocyte poliploidization is an age-dependent process, being cytokinesis failure the main mechanism of polyploid hepatocyte formation. Our aim was to study the role of p38α MAPK in the regulation of actin cytoskeleton and cytokinesis in hepatocytes during development and aging. Wild type and p38α liver-specific knock out mice at different ages (after weaning, adults and old) were used. We show that p38α MAPK deficiency induces actin disassembly upon aging and also cytokinesis failure leading to enhanced binucleation. Although the steady state levels of cyclin D1 in wild type and p38α knock out old livers remained unaffected, cyclin B1- a marker for G2/M transition- was significantly overexpressed in p38α knock out mice. Our findings suggest that hepatocytes do enter into S phase but they do not complete cell division upon p38α deficiency leading to cytokinesis failure and binucleation. Moreover, old liver-specific p38α MAPK knock out mice exhibited reduced F-actin polymerization and a dramatic loss of actin cytoskeleton. This was associated with abnormal hyperactivation of RhoA and Cdc42 GTPases. Long-term p38α deficiency drives to inactivation of HSP27, which seems to account for the impairment in actin cytoskeleton as Hsp27-silencing decreased the number and length of actin filaments in isolated hepatocytes. p38α MAPK is essential for actin dynamics with age in hepatocytes.

  5. Cortical instability drives periodic supracellular actin pattern formation in epithelial tubes.

    Science.gov (United States)

    Hannezo, Edouard; Dong, Bo; Recho, Pierre; Joanny, Jean-François; Hayashi, Shigeo

    2015-07-14

    An essential question of morphogenesis is how patterns arise without preexisting positional information, as inspired by Turing. In the past few years, cytoskeletal flows in the cell cortex have been identified as a key mechanism of molecular patterning at the subcellular level. Theoretical and in vitro studies have suggested that biological polymers such as actomyosin gels have the property to self-organize, but the applicability of this concept in an in vivo setting remains unclear. Here, we report that the regular spacing pattern of supracellular actin rings in the Drosophila tracheal tubule is governed by a self-organizing principle. We propose a simple biophysical model where pattern formation arises from the interplay of myosin contractility and actin turnover. We validate the hypotheses of the model using photobleaching experiments and report that the formation of actin rings is contractility dependent. Moreover, genetic and pharmacological perturbations of the physical properties of the actomyosin gel modify the spacing of the pattern, as the model predicted. In addition, our model posited a role of cortical friction in stabilizing the spacing pattern of actin rings. Consistently, genetic depletion of apical extracellular matrix caused strikingly dynamic movements of actin rings, mirroring our model prediction of a transition from steady to chaotic actin patterns at low cortical friction. Our results therefore demonstrate quantitatively that a hydrodynamical instability of the actin cortex can trigger regular pattern formation and drive morphogenesis in an in vivo setting.

  6. AIP1 acts with cofilin to control actin dynamics during epithelial morphogenesis.

    Science.gov (United States)

    Chu, Dandan; Pan, Hanshuang; Wan, Ping; Wu, Jing; Luo, Jun; Zhu, Hong; Chen, Jiong

    2012-10-01

    During epithelial morphogenesis, cells not only maintain tight adhesion for epithelial integrity but also allow dynamic intercellular movement to take place within cell sheets. How these seemingly opposing processes are coordinated is not well understood. Here, we report that the actin disassembly factors AIP1 and cofilin are required for remodeling of adherens junctions (AJs) during ommatidial precluster formation in Drosophila eye epithelium, a highly stereotyped cell rearrangement process which we describe in detail in our live imaging study. AIP1 is enriched together with F-actin in the apical region of preclusters, whereas cofilin displays a diffuse and uniform localization pattern. Cofilin overexpression completely rescues AJ remodeling defects caused by AIP1 loss of function, and cofilin physically interacts with AIP1. Pharmacological reduction of actin turnover results in similar AJ remodeling defects and decreased turnover of E-cadherin, which also results from AIP1 deficiency, whereas an F-actin-destabilizing drug affects AJ maintenance and epithelial integrity. Together with other data on actin polymerization, our results suggest that AIP1 enhances cofilin-mediated actin disassembly in the apical region of precluster cells to promote remodeling of AJs and thus intercellular movement, but also that robust actin polymerization promotes AJ general adhesion and integrity during the remodeling process.

  7. The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells.

    Science.gov (United States)

    Lucas, Eliana P; Khanal, Ichha; Gaspar, Pedro; Fletcher, Georgina C; Polesello, Cedric; Tapon, Nicolas; Thompson, Barry J

    2013-06-10

    Collective migration of Drosophila border cells depends on a dynamic actin cytoskeleton that is highly polarized such that it concentrates around the outer rim of the migrating cluster of cells. How the actin cytoskeleton becomes polarized in these cells to enable collective movement remains unknown. Here we show that the Hippo signaling pathway links determinants of cell polarity to polarization of the actin cytoskeleton in border cells. Upstream Hippo pathway components localize to contacts between border cells inside the cluster and signal through the Hippo and Warts kinases to polarize actin and promote border cell migration. Phosphorylation of the transcriptional coactivator Yorkie (Yki)/YAP by Warts does not mediate the function of this pathway in promoting border cell migration, but rather provides negative feedback to limit the speed of migration. Instead, Warts phosphorylates and inhibits the actin regulator Ena to activate F-actin Capping protein activity on inner membranes and thereby restricts F-actin polymerization mainly to the outer rim of the migrating cluster.

  8. Structural Transition of Actin Filament in a Cell-Sized Water Droplet with a Phospholipid Membrane

    CERN Document Server

    Hase, M

    2005-01-01

    Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents on cell membranes. To clarify the effect of cross-talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively-charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6 mM Mg2+, while between 6 and 12 mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12 mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12 mM, thick bundles are formed in the...

  9. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    Science.gov (United States)

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin.

  10. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging

    Science.gov (United States)

    Jorques, María; Rada, Patricia; Ramirez, Lorena; Valverde, Ángela M.; Nebreda, Ángel R.; Sastre, Juan

    2017-01-01

    Background Hepatocyte poliploidization is an age-dependent process, being cytokinesis failure the main mechanism of polyploid hepatocyte formation. Our aim was to study the role of p38α MAPK in the regulation of actin cytoskeleton and cytokinesis in hepatocytes during development and aging. Methods Wild type and p38α liver-specific knock out mice at different ages (after weaning, adults and old) were used. Results We show that p38α MAPK deficiency induces actin disassembly upon aging and also cytokinesis failure leading to enhanced binucleation. Although the steady state levels of cyclin D1 in wild type and p38α knock out old livers remained unaffected, cyclin B1- a marker for G2/M transition- was significantly overexpressed in p38α knock out mice. Our findings suggest that hepatocytes do enter into S phase but they do not complete cell division upon p38α deficiency leading to cytokinesis failure and binucleation. Moreover, old liver-specific p38α MAPK knock out mice exhibited reduced F-actin polymerization and a dramatic loss of actin cytoskeleton. This was associated with abnormal hyperactivation of RhoA and Cdc42 GTPases. Long-term p38α deficiency drives to inactivation of HSP27, which seems to account for the impairment in actin cytoskeleton as Hsp27-silencing decreased the number and length of actin filaments in isolated hepatocytes. Conclusions p38α MAPK is essential for actin dynamics with age in hepatocytes. PMID:28166285

  11. The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag.

    Science.gov (United States)

    Szabó, Eszter C; Manguinhas, Rita; Fonseca, Rosalina

    2016-09-21

    Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture.

  12. WAVE binds Ena/VASP for enhanced Arp2/3 complex-based actin assembly.

    Science.gov (United States)

    Havrylenko, Svitlana; Noguera, Philippe; Abou-Ghali, Majdouline; Manzi, John; Faqir, Fahima; Lamora, Audrey; Guérin, Christophe; Blanchoin, Laurent; Plastino, Julie

    2015-01-01

    The WAVE complex is the main activator of the Arp2/3 complex for actin filament nucleation and assembly in the lamellipodia of moving cells. Other important players in lamellipodial protrusion are Ena/VASP proteins, which enhance actin filament elongation. Here we examine the molecular coordination between the nucleating activity of the Arp2/3 complex and the elongating activity of Ena/VASP proteins for the formation of actin networks. Using an in vitro bead motility assay, we show that WAVE directly binds VASP, resulting in an increase in Arp2/3 complex-based actin assembly. We show that this interaction is important in vivo as well, for the formation of lamellipodia during the ventral enclosure event of Caenorhabditis elegans embryogenesis. Ena/VASP's ability to bind F-actin and profilin-complexed G-actin are important for its effect, whereas Ena/VASP tetramerization is not necessary. Our data are consistent with the idea that binding of Ena/VASP to WAVE potentiates Arp2/3 complex activity and lamellipodial actin assembly.

  13. The chloroplast outer membrane protein CHUP1 interacts with actin and profilin.

    Science.gov (United States)

    Schmidt von Braun, Serena; Schleiff, Enrico

    2008-04-01

    Chloroplasts accumulate in response to low light, whereas high light induces an actin-dependent avoidance movement. This is a long known process, but its molecular base is barely understood. Only recently first components of the blue light perceiving signal cascade initiating this process were described. Among these, a protein was identified by the analysis of a deletion mutant in the corresponding gene resulting in a chloroplast unusual positioning phenotype. The protein was termed CHUP1 and initial results suggested chloroplast localization. We demonstrate that the protein is indeed exclusively and directly targeted to the chloroplast surface. The analysis of the deletion mutant of CHUP1 using microarray analysis shows an influence on the expression of genes found to be up-regulated, but not on genes found to be down-regulated upon high light exposure in wild-type. Analyzing a putative role of CHUP1 as a linker between chloroplasts and the cytoskeleton, we demonstrate an interaction with actin, which is independent on the filamentation status of actin. Moreover, binding of CHUP1 to profilin -- an actin modifying protein -- could be shown and an enhancing effect of CHUP1 on the interaction of profilin to actin is demonstrated. Therefore, a role of CHUP1 in bridging chloroplasts to actin filaments and a regulatory function in actin polymerization can be discussed.

  14. Mammalian verprolin CR16 acts as a modulator of ITSN scaffold proteins association with actin.

    Science.gov (United States)

    Kropyvko, Sergii; Gryaznova, Tetyana; Morderer, Dmytro; Rynditch, Alla

    2017-03-18

    Actin cytoskeleton rearrangements are required for normal cell functioning, and their deregulation leads to various pathologies. Members of two mammalian protein families - ITSNs (ITSN1 and ITSN2) and verprolins (WIP, CR16 and WIRE) are involved in Cdc42/N-WASP/Arp2/3 signaling pathway-mediated remodeling of the actin cytoskeleton. Recently we demonstrated that ITSNs interact with the actin-regulating protein WIP. Here, we show that other member of verprolin family, CR16, also forms complexes with ITSN1 and ITSN2 in human cell lines. The actin-binding protein CR16 modulates ITSN/β-actin association. Moreover, overexpressed CR16 promoted co-localization of ITSN1 with F-actin in MCF-7 breast cancer cells. Our data demonstrated that CR16 mRNA is expressed in glioblastoma and breast tumors. These findings provide the basis for further functional investigations of the ITSN/CR16 complex that may play an important role in actin remodeling and cellular invasion.

  15. Real-time dynamics of emerging actin networks in cell-mimicking compartments.

    Directory of Open Access Journals (Sweden)

    Siddharth Deshpande

    Full Text Available Understanding the cytoskeletal functionality and its relation to other cellular components and properties is a prominent question in biophysics. The dynamics of actin cytoskeleton and its polymorphic nature are indispensable for the proper functioning of living cells. Actin bundles are involved in cell motility, environmental exploration, intracellular transport and mechanical stability. Though the viscoelastic properties of actin-based structures have been extensively probed, the underlying microstructure dynamics, especially their disassembly, is not fully understood. In this article, we explore the rich dynamics and emergent properties exhibited by actin bundles within flow-free confinements using a microfluidic set-up and epifluorescence microscopy. After forming entangled actin filaments within cell-sized quasi two-dimensional confinements, we induce their bundling using three different fundamental mechanisms: counterion condensation, depletion interactions and specific protein-protein interactions. Intriguingly, long actin filaments form emerging networks of actin bundles via percolation leading to remarkable properties such as stress generation and spindle-like intermediate structures. Simultaneous sharing of filaments in different links of the network is an important parameter, as short filaments do not form networks but segregated clusters of bundles instead. We encounter a hierarchical process of bundling and its subsequent disassembly. Additionally, our study suggests that such percolated networks are likely to exist within living cells in a dynamic fashion. These observations render a perspective about differential cytoskeletal responses towards numerous stimuli.

  16. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation.

    Science.gov (United States)

    Kim, Min Hwan; Kim, Jongshin; Hong, Hyowon; Lee, Si-Hyung; Lee, June-Koo; Jung, Eunji; Kim, Joon

    2016-03-01

    The activation of transcriptional coactivators YAP and its paralog TAZ has been shown to promote resistance to anti-cancer therapies. YAP/TAZ activity is tightly coupled to actin cytoskeleton architecture. However, the influence of actin remodeling on cancer drug resistance remains largely unexplored. Here, we report a pivotal role of actin remodeling in YAP/TAZ-dependent BRAF inhibitor resistance in BRAF V600E mutant melanoma cells. Melanoma cells resistant to the BRAF inhibitor PLX4032 exhibit an increase in actin stress fiber formation, which appears to promote the nuclear accumulation of YAP/TAZ. Knockdown of YAP/TAZ reduces the viability of resistant melanoma cells, whereas overexpression of constitutively active YAP induces resistance. Moreover, inhibition of actin polymerization and actomyosin tension in melanoma cells suppresses both YAP/TAZ activation and PLX4032 resistance. Our siRNA library screening identifies actin dynamics regulator TESK1 as a novel vulnerable point of the YAP/TAZ-dependent resistance pathway. These results suggest that inhibition of actin remodeling is a potential strategy to suppress resistance in BRAF inhibitor therapies.

  17. Actin filament attachments for sustained motility in vitro are maintained by filament bundling.

    Directory of Open Access Journals (Sweden)

    Xiaohua Hu

    Full Text Available We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+ generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+ abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+, Lys-Lys(2+, or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+ buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.

  18. The formin DAD domain plays dual roles in autoinhibition and actin nucleation.

    Science.gov (United States)

    Gould, Christopher J; Maiti, Sankar; Michelot, Alphée; Graziano, Brian R; Blanchoin, Laurent; Goode, Bruce L

    2011-03-08

    Formins are a large family of actin assembly-promoting proteins with many important biological roles. However, it has remained unclear how formins nucleate actin polymerization. All other nucleators are known to recruit actin monomers as a central part of their mechanisms. However, the actin-nucleating FH2 domain of formins lacks appreciable affinity for monomeric actin. Here, we found that yeast and mammalian formins bind actin monomers but that this activity requires their C-terminal DAD domains. Furthermore, we observed that the DAD works in concert with the FH2 to enhance nucleation without affecting the rate of filament elongation. We dissected this mechanism in mDia1, mapped nucleation activity to conserved residues in the DAD, and demonstrated that DAD roles in nucleation and autoinhibition are separable. Furthermore, DAD enhancement of nucleation was independent of contributions from the FH1 domain to nucleation. Together, our data show that (1) the DAD has dual functions in autoinhibition and nucleation; (2) the FH1, FH2, and DAD form a tripartite nucleation machine; and (3) formins nucleate by recruiting actin monomers and therefore are more similar to other nucleators than previously thought.

  19. Plastins: versatile modulators of actin organization in (patho)physiological cellular processes

    Institute of Scientific and Technical Information of China (English)

    Veerle DELANOTE; Jo(e)l VANDEKERCKHOVE; Jan GETTEMANS

    2005-01-01

    Many actin-binding proteins are expressed in eukaryotic cells. These polypeptides assist in stabilizing and rearranging the organization of the actin cytoskeleton in response to external stimuli, or during cell migration and adhesion. Here we review a particular set of actin-binding proteins called plastins. Plastins (also called fimbrins) belong to a subclass of actin-binding proteins known as actin bundling proteins. Three isoforms have been characterized in mammals: T-plastin is expressed in cells from solid tissue, whereas L-plastin occurs predominantly in hematopoietic cells. The third isoform, I-plastin, is specifically expressed in the small intestine, colon and kidney. These proteins share the unique property of cross-linking actin filaments into tight bundles. Although plastins are primarily involved in regulation of the actin cytoskeleton, they possess some unique features. For instance, they are implicated in invasion by pathogenic bacteria such as Shigella flexneri and Salmonella typhimurium. Also, L-plastin plays an important role in leukocyte function. T-plastin, on the other hand, is possibly involved in DNA repair. Finally, both T- and L-plastin are implicated in several diseases, and L-plastin is considered to be a valuable marker for cancer.

  20. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Directory of Open Access Journals (Sweden)

    Fernando Navarro-Garcia

    2013-01-01

    Full Text Available The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.

  1. The nitrate reductase inhibitor, tungsten, disrupts actin microfilaments in Zea mays L.

    Science.gov (United States)

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-05-01

    Tungsten is a widely used inhibitor of nitrate reductase, applied to diminish the nitric oxide levels in plants. It was recently shown that tungsten also has heavy metal attributes. Since information about the toxic effects of tungsten on actin is limited, and considering that actin microfilaments are involved in the entry of tungsten inside plant cells, the effects of tungsten on them were studied in Zea mays seedlings. Treatments with sodium tungstate for 3, 6, 12 or 24 h were performed on intact seedlings and seedlings with truncated roots. Afterwards, actin microfilaments in meristematic root and leaf tissues were stained with fluorescent phalloidin, and the specimens were examined by confocal laser scanning microscopy. While the actin microfilament network was well organized in untreated seedlings, in tungstate-treated ones it was disrupted in a time-dependent manner. In protodermal root cells, the effects of tungsten were stronger as cortical microfilaments were almost completely depolymerized and the intracellular ones appeared highly bundled. Fluorescence intensity measurements confirmed the above results. In the meristematic leaf tissue of intact seedlings, no depolymerization of actin microfilaments was noticed. However, when root tips were severed prior to tungstate application, both cortical and endoplasmic actin networks of leaf cells were disrupted and bundled after 24 h of treatment. The differential response of root and leaf tissues to tungsten toxicity may be due to differential penetration and absorption, while the effects on actin microfilaments could not be attributed to the nitric oxide depletion by tungsten.

  2. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri.

    Science.gov (United States)

    Sohn, Hae-Jin; Kim, Jong-Hyun; Shin, Myeong-Heon; Song, Kyoung-Ju; Shin, Ho-Joon

    2010-03-01

    Naegleria fowleri destroys target cells by trogocytosis, a phagocytosis mechanism, and a process of piecemeal ingestion of target cells by food-cups. Phagocytosis is an actin-dependent process that involves polymerization of monomeric G-actin into filamentous F-actin. However, despite the numerous studies concerning phagocytosis, its role in the N. fowleri food-cup formation related with trogocytosis has been poorly reported. In this study, we cloned and characterized an Nf-actin gene to elucidate the role of Nf-actin gene in N. fowleri pathogenesis. The Nf-actin gene is composed of 1,128-bp and produced a 54.1-kDa recombinant protein (Nf-actin). The sequence identity was 82% with nonpathogenic Naegleria gruberi but has no sequence identity with other mammals or human actin gene. Anti-Nf-actin polyclonal antibody was produced in BALB/c mice immunized with recombinant Nf-actin. The Nf-actin was localized on the cytoplasm, pseudopodia, and especially, food-cup structure (amoebastome) in N. fowleri trophozoites using immunofluorescence assay. When N. fowleri co-cultured with Chinese hamster ovary cells, Nf-actin was observed to localize around on phagocytic food-cups. We also observed that N. fowleri treated with cytochalasin D as actin polymerization inhibitor or transfected with antisense oligomer of Nf-actin gene had shown the reduced ability of food-cup formation and in vitro cytotoxicity. Finally, it suggests that Nf-actin plays an important role in phagocytic activity of pathogenic N. fowleri.

  3. Differences in the ionic interaction of actin with the motor domains of nonmuscle and muscle myosin II.

    Science.gov (United States)

    Van Dijk, J; Furch, M; Derancourt, J; Batra, R; Knetsch, M L; Manstein, D J; Chaussepied, P

    1999-03-01

    Changes in the actin-myosin interface are thought to play an important role in microfilament-linked cellular movements. In this study, we compared the actin binding properties of the motor domain of Dictyostelium discoideum (M765) and rabbit skeletal muscle myosin subfragment-1 (S1). The Dictyostelium motor domain resembles S1(A2) (S1 carrying the A2 light chain) in its interaction with G-actin. Similar to S1(A2), none of the Dictyostelium motor domain constructs induced G-actin polymerization. The affinity of monomeric actin (G-actin) was 20-fold lower for M765 than for S1(A2) but increasing the number of positive charges in the loop 2 region of the D. discoideum motor domain (residues 613-623) resulted in equivalent affinities of G-actin for M765 and for S1. Proteolytic cleavage and cross-linking approaches were used to show that M765, like S1, interacts via the loop 2 region with filamentous actin (F-actin). For both types of myosin, F-actin prevents trypsin cleavage in the loop 2 region and F-actin segment 1-28 can be cross-linked to loop 2 residues by a carbodiimide-induced reaction. In contrast with the S1, loop residues 559-565 of D. discoideum myosin was not cross-linked to F-actin, probably due to the lower number of positive charges. These results confirm the importance of the loop 2 region of myosin for the interaction with both G-actin and F-actin, regardless of the source of myosin. The differences observed in the way in which M765 and S1 interact with actin may be linked to more general differences in the structure of the actomyosin interface of muscle and nonmuscle myosins.

  4. Structure and mechanism of mouse cyclase-associated protein (CAP1) in regulating actin dynamics.

    Science.gov (United States)

    Jansen, Silvia; Collins, Agnieszka; Golden, Leslie; Sokolova, Olga; Goode, Bruce L

    2014-10-31

    Srv2/CAP is a conserved actin-binding protein with important roles in driving cellular actin dynamics in diverse animal, fungal, and plant species. However, there have been conflicting reports about whether the activities of Srv2/CAP are conserved, particularly between yeast and mammalian homologs. Yeast Srv2 has two distinct functions in actin turnover: its hexameric N-terminal-half enhances cofilin-mediated severing of filaments, while its C-terminal-half catalyzes dissociation of cofilin from ADP-actin monomers and stimulates nucleotide exchange. Here, we dissected the structure and function of mouse CAP1 to better understand its mechanistic relationship to yeast Srv2. Although CAP1 has a shorter N-terminal oligomerization sequence compared with Srv2, we find that the N-terminal-half of CAP1 (N-CAP1) forms hexameric structures with six protrusions, similar to N-Srv2. Further, N-CAP1 autonomously binds to F-actin and decorates the sides and ends of filaments, altering F-actin structure and enhancing cofilin-mediated severing. These activities depend on conserved surface residues on the helical-folded domain. Moreover, N-CAP1 enhances yeast cofilin-mediated severing, and conversely, yeast N-Srv2 enhances human cofilin-mediated severing, highlighting the mechanistic conservation between yeast and mammals. Further, we demonstrate that the C-terminal actin-binding β-sheet domain of CAP1 is sufficient to catalyze nucleotide-exchange of ADP-actin monomers, while in the presence of cofilin this activity additionally requires the WH2 domain. Thus, the structures, activities, and mechanisms of mouse and yeast Srv2/CAP homologs are remarkably well conserved, suggesting that the same activities and mechanisms underlie many of the diverse actin-based functions ascribed to Srv2/CAP homologs in different organisms.

  5. Gβ Regulates Coupling between Actin Oscillators for Cell Polarity and Directional Migration.

    Directory of Open Access Journals (Sweden)

    Oliver Hoeller

    2016-02-01

    Full Text Available For directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3 to form protrusions. However, how signaling cues tame actin dynamics to produce a pseudopod and guide cellular motility is a critical open question in eukaryotic chemotaxis. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. We implement an inducible sequestration system to inactivate the heterotrimeric G protein subunit Gβ and find that this acute perturbation triggers persistent, high-amplitude cortical oscillations of F-actin. Actin oscillators that are normally weakly coupled to one another in wild-type cells become strongly synchronized following acute inactivation of Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. A simple mathematical model of coupled actin oscillators reveals the importance of appropriate coupling strength for chemotaxis: moderate coupling can increase sensitivity to noisy inputs. Taken together, our data suggest that Gβ regulates the strength of coupling between actin oscillators for efficient polarity and directional migration. As these observations are only possible following acute inhibition of Gβ and are masked by slow compensation in genetic knockouts, our work also shows that acute loss-of-function approaches can complement and extend the reach of classical genetics in Dictyostelium and likely other systems as well.

  6. Prediction and dissection of widely-varying association rate constants of actin-binding proteins.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pang

    Full Text Available Actin is an abundant protein that constitutes a main component of the eukaryotic cytoskeleton. Its polymerization and depolymerization are regulated by a variety of actin-binding proteins. Their functions range from nucleation of actin polymerization to sequestering G-actin in 1∶1 complexes. The kinetics of forming these complexes, with rate constants varying at least three orders of magnitude, is critical to the distinct regulatory functions. Previously we have developed a transient-complex theory for computing protein association mechanisms and association rate constants. The transient complex refers to an intermediate in which the two associating proteins have near-native separation and relative orientation but have yet to form short-range specific interactions of the native complex. The association rate constant is predicted as k(a = k(a0 e(-ΔG(el*/k(BT, where k(a0 is the basal rate constant for reaching the transient complex by free diffusion, and the Boltzmann factor captures the bias of long-range electrostatic interactions. Here we applied the transient-complex theory to study the association kinetics of seven actin-binding proteins with G-actin. These proteins exhibit three classes of association mechanisms, due to their different molecular shapes and flexibility. The 1000-fold k(a variations among them can mostly be attributed to disparate electrostatic contributions. The basal rate constants also showed variations, resulting from the different shapes and sizes of the interfaces formed by the seven actin-binding proteins with G-actin. This study demonstrates the various ways that actin-binding proteins use physical properties to tune their association mechanisms and rate constants to suit distinct regulatory functions.

  7. Drosophila actin-Capping Protein limits JNK activation by the Src proto-oncogene.

    Science.gov (United States)

    Fernández, B G; Jezowska, B; Janody, F

    2014-04-17

    The Src family kinases c-Src, and its downstream effectors, the Rho family of small GTPases RhoA and Jun N-terminal kinase (JNK) have a significant role in tumorigenesis. In this report, using the Drosophila wing disc epithelium as a model system, we demonstrate that the actin-Capping Protein (CP) αβ heterodimer, which regulates actin filament (F-actin) polymerization, limits Src-induced apoptosis or tissue overgrowth by restricting JNK activation. We show that overexpressing Src64B drives JNK-independent loss of epithelial integrity and JNK-dependent apoptosis via Btk29A, p120ctn and Rho1. However, when cells are kept alive with the Caspase inhibitor P35, JNK acts as a potent inducer of proliferation via activation of the Yorkie oncogene. Reducing CP levels direct apoptosis of overgrowing Src64B-overexpressing tissues. Conversely, overexpressing capping protein inhibits Src64B and Rho1, but not Rac1-induced JNK signaling. CP requires the actin-binding domain of the α-subunit to limit Src64B-induced apoptosis, arguing that the control of F-actin mediates this effect. In turn, JNK directs F-actin accumulation. Moreover, overexpressing capping protein also prevents apoptosis induced by ectopic JNK expression. Our data are consistent with a model in which the control of F-actin by CP limits Src-induced apoptosis or tissue overgrowth by acting downstream of Btk29A, p120ctn and Rho1, but upstream of JNK. In turn, JNK may counteract the effect of CP on F-actin, providing a positive feedback, which amplifies JNK activation. We propose that cytoskeletal changes triggered by misregulation of F-actin modulators may have a significant role in Src-mediated malignant phenotypes during the early stages of cellular transformation.

  8. The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton.

    Science.gov (United States)

    Lu, Qiuheng; Schafer, Dorothy A; Adler, Paul N

    2015-07-15

    The evolutionarily conserved frizzled/starry night (fz/stan) pathway regulates planar cell polarity (PCP) in vertebrates and invertebrates. This pathway has been extensively studied in the Drosophila wing, where it is manifested by an array of distally pointing cuticular hairs. Using in vivo imaging we found that, early in hair growth, cells have multiple actin bundles and hairs that subsequently fuse into a single growing hair. The downstream PCP gene multiple wing hairs (mwh) plays a key role in this process and acts to antagonize the actin cytoskeleton. In mwh mutants hair initiation is not limited to a small region at the distal edge of pupal wing cells as in wild type, resulting in multiple hairs with aberrant polarity. Extra actin bundles/hairs are formed and do not completely fuse, in contrast to wild type. As development proceeded additional hairs continued to form, further increasing hair number. We identified a fragment of Mwh with in vivo rescue activity and that bound and bundled F-actin filaments and inhibited actin polymerization in in vitro actin assays. The loss of these activities can explain the mwh mutant phenotype. Our data suggest a model whereby, prior to hair initiation, proximally localized Mwh inhibits actin polymerization resulting in polarized activation of the cytoskeleton and hair formation on the distal side of wing cells. During hair growth Mwh is found in growing hairs, where we suggest it functions to promote the fusion of actin bundles and inhibit the formation of additional actin bundles that could lead to extra hairs.

  9. A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis.

    Directory of Open Access Journals (Sweden)

    Marcus J Taylor

    Full Text Available Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase dynamin and which may involve the actin-dependent recruitment of N-terminal containing BIN/Amphiphysin/RVS domain containing (N-BAR proteins. Optical microscopy has revealed a detailed picture of when and where particular protein types are recruited in the ∼20-30 s preceding scission. Nevertheless, the regulatory mechanisms and functions that underpin protein recruitment are not well understood. Here we used an optical assay to investigate the coordination and interdependencies between the recruitment of dynamin, the actin cytoskeleton, and N-BAR proteins to individual clathrin-mediated endocytic scission events. These measurements revealed that a feedback loop exists between dynamin and actin at sites of membrane scission. The kinetics of dynamin, actin, and N-BAR protein recruitment were modulated by dynamin GTPase activity. Conversely, acute ablation of actin dynamics using latrunculin-B led to a ∼50% decrease in the incidence of scission, an ∼50% decrease in the amplitude of dynamin recruitment, and abolished actin and N-BAR recruitment to scission events. Collectively these data suggest that dynamin, actin, and N-BAR proteins work cooperatively to efficiently catalyze membrane scission. Dynamin controls its own recruitment to scission events by modulating the kinetics of actin and N-BAR recruitment to sites of scission. Conversely actin serves as a dynamic scaffold that concentrates dynamin and N-BAR proteins at sites of scission.

  10. Spatial localisation of actin filaments across developmental stages of the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Fiona Angrisano

    Full Text Available Actin dynamics have been implicated in a variety of developmental processes during the malaria parasite lifecycle. Parasite motility, in particular, is thought to critically depend on an actomyosin motor located in the outer pellicle of the parasite cell. Efforts to understand the diverse roles actin plays have, however, been hampered by an inability to detect microfilaments under native conditions. To visualise the spatial dynamics of actin we generated a parasite-specific actin antibody that shows preferential recognition of filamentous actin and applied this tool to different lifecycle stages (merozoites, sporozoites and ookinetes of the human and mouse malaria parasite species Plasmodium falciparum and P. berghei along with tachyzoites from the related apicomplexan parasite Toxoplasma gondii. Actin filament distribution was found associated with three core compartments: the nuclear periphery, pellicular membranes of motile or invasive parasite forms and in a ring-like distribution at the tight junction during merozoite invasion of erythrocytes in both human and mouse malaria parasites. Localisation at the nuclear periphery is consistent with an emerging role of actin in facilitating parasite gene regulation. During invasion, we show that the actin ring at the parasite-host cell tight junction is dependent on dynamic filament turnover. Super-resolution imaging places this ring posterior to, and not concentric with, the junction marker rhoptry neck protein 4. This implies motor force relies on the engagement of dynamic microfilaments at zones of traction, though not necessarily directly through receptor-ligand interactions at sites of adhesion during invasion. Combined, these observations extend current understanding of the diverse roles actin plays in malaria parasite development and apicomplexan cell motility, in particular refining understanding on the linkage of the internal parasite gliding motor with the extra-cellular milieu.

  11. An atomic model of the tropomyosin cable on F-actin.

    Science.gov (United States)

    Orzechowski, Marek; Li, Xiaochuan Edward; Fischer, Stefan; Lehman, William

    2014-08-05

    Tropomyosin regulates a wide variety of actin filament functions and is best known for the role that it plays together with troponin in controlling muscle activity. For effective performance on actin filaments, adjacent 42-nm-long tropomyosin molecules are joined together by a 9- to 10-residue head-to-tail overlapping domain to form a continuous cable that wraps around the F-actin helix. Yet, despite the apparent simplicity of tropomyosin's coiled-coil structure and its well-known periodic association with successive actin subunits along F-actin, the structure of the tropomyosin cable on actin is uncertain. This is because the conformation of the overlap region that joins neighboring molecules is poorly understood, thus leaving a significant gap in our understanding of thin-filament structure and regulation. However, recent molecular-dynamics simulations of overlap segments defined their overall shape and provided unique and sufficient cues to model the whole actin-tropomyosin filament assembly in atomic detail. In this study, we show that these MD structures merge seamlessly onto the ends of tropomyosin coiled-coils. Adjacent tropomyosin molecules can then be joined together to provide a comprehensive model of the tropomyosin cable running continuously on F-actin. The resulting complete model presented here describes for the first time (to our knowledge) an atomic-level structure of αα-striated muscle tropomyosin bound to an actin filament that includes the critical overlap domain. Thus, the model provides a structural correlate to evaluate thin-filament mechanics, self-assembly mechanisms, and the effect of disease-causing mutations.

  12. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites

    Directory of Open Access Journals (Sweden)

    Sibley L David

    2005-12-01

    Full Text Available Abstract Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex, and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery. In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility.

  13. Retinoids and glucocorticoids have opposite effects on actin cytoskeleton rearrangement in hippocampal HT22 cells.

    Science.gov (United States)

    Hélène, Roumes; Julie, Brossaud; Aloïs, Lemelletier; Marie-Pierre, Moisan; Véronique, Pallet; Anabelle, Redonnet; Jean-Benoît, Corcuff

    2016-02-01

    A chronic excess of glucocorticoids elicits deleterious effects in the hippocampus. Conversely, retinoic acid plays a major role in aging brain plasticity. As synaptic plasticity depends on mechanisms related to cell morphology, we investigated the involvement of retinoic acid and glucocorticoids in the remodelling of the HT22 neurons actin cytoskeleton. Cells exhibited a significantly more elongated shape with retinoic acid and a rounder shape with dexamethasone; retinoic acid reversed the effects of dexamethasone. Actin expression and abundance were unchanged by retinoic acid or dexamethasone but F-actin organization was dramatically modified. Indeed, retinoic acid and dexamethasone increased (70 ± 7% and 176 ± 5%) cortical actin while retinoic acid suppressed the effect of dexamethasone (90 ± 6%). Retinoic acid decreased (-22 ± 9%) and dexamethasone increased (134 ± 16%) actin stress fibres. Retinoic acid also suppressed the effect of dexamethasone (-21 ± 7%). Spectrin is a key protein in the actin network remodelling. Its abundance was decreased by retinoic acid and increased by dexamethasone (-21 ± 11% and 52 ± 10%). However, retinoic acid did not modify the effect of dexamethasone (48 ± 7%). Calpain activity on spectrin was increased by retinoic acid and decreased by dexamethasone (26 ± 14% and -57 ± 5%); retinoic acid mildly but significantly modified the effect of dexamethasone (-44 ± 7%). The calpain inhibitor calpeptin suppressed the effects of retinoic acid and dexamethasone on cell shape and actin stress fibres remodelling but did not modify the effects on cortical actin. Retinoic acid and dexamethasone have a dramatic but mainly opposite effect on actin cytoskeleton remodelling. These effects originate, at least partly, from calpain activity.

  14. Structural complexity of filaments formed from the actin and tubulin folds

    Science.gov (United States)

    Jiang, Shimin; Ghoshdastider, Umesh; Narita, Akihiro; Popp, David

    2016-01-01

    ABSTRACT From yeast to man, an evolutionary distance of 1.3 billion years, the F-actin filament structure has been conserved largely in line with the 94% sequence identity. The situation is entirely different in bacteria. In comparison to eukaryotic actins, the bacterial actin-like proteins (ALPs) show medium to low levels of sequence identity. This is extreme in the case of the ParM family of proteins, which often display less than 20% identity. ParMs are plasmid segregation proteins that form the polymerizing motors that propel pairs of plasmids to the extremities of a cell prior to cell division, ensuring faithful inheritance of the plasmid. Recently, exotic ParM filament structures have been elucidated that show ParM filament geometries are not limited to the standard polar pair of strands typified by actin. Four-stranded non-polar ParM filaments existing as open or closed nanotubules are found in Clostridium tetani and Bacillus thuringiensis, respectively. These diverse architectures indicate that the actin fold is capable of forming a large variety of filament morphologies, and that the conception of the “actin” filament has been heavily influenced by its conservation in eukaryotes. Here, we review the history of the structure determination of the eukaryotic actin filament to give a sense of context for the discovery of the new ParM filament structures. We describe the novel ParM geometries and predict that even more complex actin-like filaments may exist in bacteria. Finally, we compare the architectures of filaments arising from the actin and tubulin folds and conclude that the basic units possess similar properties that can each form a range of structures. Thus, the use of the actin fold in microfilaments and the tubulin fold for microtubules likely arose from a wider range of filament possibilities, but became entrenched as those architectures in early eukaryotes. PMID:28042378

  15. Cofilin phosphorylation is elevated after F-actin disassembly induced by Rac1 depletion

    DEFF Research Database (Denmark)

    Liu, Linna; Li, Jing; Zhang, Liwang

    2015-01-01

    that actin filaments disassembled. In the epidermis of mice in which Rac1 was knocked out only in keratinocytes, cofilin phosphorylation was aberrantly elevated, corresponding to repression of the phosphatase slingshot1 (SSH1). These effects were independent of the signaling pathways for p21-activated kinase....../LIM kinase (Pak/LIMK), protein kinase C, or protein kinase D or generation of reactive oxygen species. Similarly, when actin polymerization was specifically inhibited or Rac1 was knocked down, cofilin phosphorylation was enhanced and SSH1 was repressed. Repression of SSH1 partially blocked actin...

  16. Structure and stability of self-assembled actin-lysozyme complexes in salty water.

    Science.gov (United States)

    Sanders, Lori K; Guáqueta, Camilo; Angelini, Thomas E; Lee, Jae-Wook; Slimmer, Scott C; Luijten, Erik; Wong, Gerard C L

    2005-09-02

    Interactions between actin, an anionic polyelectrolyte, and lysozyme, a cationic globular protein, have been examined using a combination of synchrotron small-angle x-ray scattering and molecular dynamics simulations. Lysozyme initially bridges pairs of actin filaments, which relax into hexagonally coordinated columnar complexes comprised of actin held together by incommensurate one-dimensional close-packed arrays of lysozyme macroions. These complexes are found to be stable even in the presence of significant concentrations of monovalent salt, which is quantitatively explained from a redistribution of salt between the condensed and the aqueous phases.

  17. IgA anti-actin antibodies ELISA in coeliac disease: a multicentre study.

    Science.gov (United States)

    Carroccio, A; Brusca, I; Iacono, G; Alessio, M G; Sonzogni, A; Di Prima, L; Barrale, M; Ottomano, C; Ambrosiano, G; Teresi, S; D'Angelo, A; Pirrone, G; Cefalù, B; Scalici, C; La Chiusa, S M

    2007-09-01

    Previous studies have demonstrated that serum anti-actin antibodies are a reliable marker of intestinal damage severity in coeliac disease. To validate in a multicentre study the clinical usefulness of serum IgA anti-actin antibody ELISA and its possible use in monitoring intestinal mucosa lesions during gluten-free diet. Four centres recruited 205 newly diagnosed coeliac disease patients with villous atrophy, 80 healthy controls and 81 "disease" controls. Twelve coeliac disease patients on gluten-free diet but with persistent symptoms underwent serum IgA anti-actin antibody assay and intestinal histology evaluation. IgA anti-actin antibody ELISA was performed with a commercial kit. All coeliac disease patients underwent intestinal histology study. IgA anti-actin antibodies showed a sensitivity of 80% and a specificity of 85% in the diagnosis of coeliac disease patients with villous atrophy. The area under the receiving operator curve for anti-actin antibodies was 0.873 [95% C.I. 0.805-0.899]. Serum anti-actin antibodies values were significantly higher in coeliac disease patients than in healthy or "disease" controls (P<0.0001). Serum anti-actin antibodies were positive in 41 of the 60 coeliac disease patients with mild intestinal histology lesions (69%) and in 123 of the 145 with severe lesions (85.3%) (P<0.05). There was a significant inverse correlation between anti-actin antibody values and the villi/crypts ratio (r=-0.423; P<0.0001). In the 12 coeliac disease patients on gluten-free diet who underwent re-evaluation as they were persistently symptomatic, intestinal histology showed three cases with persistent villous atrophy: all of these were positive for serum anti-actin antibodies ELISA, whereas both serum anti-tTG and EmAs were negative. The other nine patients showed normal intestinal villi and were negative for serum anti-actin antibodies. Anti-actin antibodies are a reliable marker of severe intestinal mucosa damage in coeliac disease patients and a

  18. Modeling of the motion of the actin filament on the myosin motility assays

    Science.gov (United States)

    Young, Yuan; Shelley, Mike

    2007-11-01

    In motility assays, cytoskeletal actin filaments (actin filaments) glide over a surface coated with motor proteins, and the different modes of motion provide a simple measure of the force exerted by the motor proteins (Bourdieu, 1995). Motivated by these experiments, we consider the actin filament as a slender, elastic filament immersed in Stokesian flow, driven by a tangential forcing that mimics the force by the motor proteins. We find qualitative agreement on several points between our analysis and simulations and experimental observations. Furthermore, we study the correlation between filament transport and the characteristics of motion with the spatial pattern of motor protein density.

  19. Dynamic reorganization of the actin cytoskeleton [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gaëlle Letort

    2015-10-01

    Full Text Available Cellular processes, including morphogenesis, polarization, and motility, rely on a variety of actin-based structures. Although the biochemical composition and filament organization of these structures are different, they often emerge from a common origin. This is possible because the actin structures are highly dynamic. Indeed, they assemble, grow, and disassemble in a time scale of a second to a minute. Therefore, the reorganization of a given actin structure can promote the formation of another. Here, we discuss such transitions and illustrate them with computer simulations.

  20. Microscopically proven cure of actinic cheilitis by CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, D.C.

    1987-01-01

    Actinic cheilitis is a premalignant condition of the lip frequently seen in individuals with chronic sun exposure. Various surgical and ablative therapies have been employed, but microscopic outcome has not been well documented. In this study CO/sub 2/ laser ablation was performed on 16 patients with actinic cheilitis that involved 50% or greater of the lower lip. Pre- and post-treatment biopsies were performed to assess results of therapy. After treatment all 16 patients showed microscopic clearing of atypical cells and disorderly maturation characteristic of actinic cheilitis. One patient had clinical recurrence at 14 months, which was retreated with laser.

  1. Microscopic model of the actin-myosin interaction in muscular contractions

    Science.gov (United States)

    Gaveau, B.; Moreau, M.; Schuman, B.

    2004-01-01

    We define and study a detailed many body model for the muscular contraction taking into account the various myosin heads. The state of the system is defined by the position of the actin and by an internal coordinate of rotation for each myosin head. We write a system of Fokker-Planck equations and calculate the average for the position, the number of attached myosin heads, and the total force exerted on the actin. We also study the correlation between these quantities, in particular between the number of attached myosin heads and the force on the actin.

  2. Actinic Mask Inspection at the ALS Initial Design Review

    Energy Technology Data Exchange (ETDEWEB)

    Barty, A; Chapman, H; Sweeney, D; Levesque, R; Bokor, J; Gullikson, E; Jong, S; Liu, Y; Yi, M; Denbeaux, G; Goldberg, K; Naulleau, P; Denham, P; Rekawa, S; Baston, P; Tackaberry, R; Barale, P

    2003-03-05

    This report is the first milestone report for the actinic mask blank inspection project conducted at the VNL, which forms sub-section 3 of the Q1 2003 mask blank technology transfer program at the VNL. Specifically this report addresses deliverable 3.1.1--design review and preliminary tool design. The goal of this project is to design an actinic mask inspection tool capable of operating in two modes: high-speed scanning for the detection of multilayer defects (inspection mode), and a high-resolution aerial image mode in which the image emulates the imaging illumination conditions of a stepper system (aerial image or AIM mode). The purpose and objective of these two modes is as follows: (1) Defect inspection mode--This imaging mode is designed to scan large areas of the mask for defects EUV multilayer coatings. The goal is to detect the presence of multilayer defects on a mask blank and to store the co-ordinates for subsequent review in AIM mode, thus it is not essential that the illumination and imaging conditions match that of a production stepper. Potential uses for this imaging mode include: (a) Correlating the results obtained using actinic inspection with results obtained using other non-EUV defect inspection systems to verify that the non-EUV scanning systems are detecting all critical defects; (b) Gaining sufficient information to associate defects with particular processes, such as various stages of the multilayer deposition or different modes of operation of the deposition tool; and (c) Assessing the density and EUV impact of surface and multilayer anomalies. Because of the low defect density achieved using current multilayer coating technology it is necessary to be able to efficiently scan large areas of the mask in order to obtain sufficient statistics for use in cross-correlation experiments. Speed of operation as well as sensitivity is therefore key to operation in defect inspection mode. (2) Aerial Image Microscope (AIM) mode--In AIM mode the tool is

  3. F-actin distribution at nodes of Ranvier and Schmidt-Lanterman incisures in mammalian sciatic nerves.

    Science.gov (United States)

    Kun, Alejandra; Canclini, Lucía; Rosso, Gonzalo; Bresque, Mariana; Romeo, Carlos; Hanusz, Alicia; Cal, Karina; Calliari, Aldo; Sotelo Silveira, José; Sotelo, José R

    2012-07-01

    Very little is known about the function of the F-actin cytoskeleton in the regeneration and pathology of peripheral nerve fibers. The actin cytoskeleton has been associated with maintenance of tissue structure, transmission of traction and contraction forces, and an involvement in cell motility. Therefore, the state of the actin cytoskeleton strongly influences the mechanical properties of cells and intracellular transport therein. In this work, we analyze the distribution of F-actin at Schmidt-Lanterman Incisures (SLI) and nodes of Ranvier (NR) domains in normal, regenerating and pathologic Trembler J (TrJ/+) sciatic nerve fibers, of rats and mice. F-actin was quantified and it was found increased in TrJ/+, both in SLI and NR. However, SLI and NR of regenerating rat sciatic nerve did not show significant differences in F-actin, as compared with normal nerves. Cytochalasin-D and Latrunculin-A were used to disrupt the F-actin network in normal and regenerating rat sciatic nerve fibers. Both drugs disrupt F-actin, but in different ways. Cytochalasin-D did not disrupt Schwann cell (SC) F-actin at the NR. Latrunculin-A did not disrupt F-actin at the boundary region between SC and axon at the NR domain. We surmise that the rearrangement of F-actin in neurological disorders, as presented here, is an important feature of TrJ/+ pathology as a Charcot-Marie-Tooth (CMT) model.

  4. Srv2/CAP is required for polarized actin cable assembly and patch internalization during clathrin-mediated endocytosis.

    Science.gov (United States)

    Toshima, Junko Y; Horikomi, Chika; Okada, Asuka; Hatori, Makiko N; Nagano, Makoto; Masuda, Atsushi; Yamamoto, Wataru; Siekhaus, Daria Elisabeth; Toshima, Jiro

    2016-01-15

    The dynamic assembly and disassembly of actin filaments is essential for the formation and transport of vesicles during endocytosis. In yeast, two types of actin structures, namely cortical patches and cytoplasmic cables, play a direct role in endocytosis, but how their interaction is regulated remains unclear. Here, we show that Srv2/CAP, an evolutionarily conserved actin regulator, is required for efficient endocytosis owing to its role in the formation of the actin patches that aid initial vesicle invagination and of the actin cables that these move along. Deletion of the SRV2 gene resulted in the appearance of aberrant fragmented actin cables that frequently moved past actin patches, the sites of endocytosis. We find that the C-terminal CARP domain of Srv2p is vitally important for the proper assembly of actin patches and cables; we also demonstrate that the N-terminal helical folded domain of Srv2 is required for its localization to actin patches, specifically to the ADP-actin rich region through an interaction with cofilin. These results demonstrate the in vivo roles of Srv2p in the regulation of the actin cytoskeleton during clathrin-mediated endocytosis.

  5. Characterization of Ring-Like F-Actin Structure as a Mechanical Partner for Spindle Positioning in Mitosis

    Science.gov (United States)

    Jiang, Hao; Zhu, Tongge; Xia, Peng; Seffens, William; Aikhionbare, Felix; Wang, Dongmei; Dou, Zhen; Yao, Xuebiao

    2014-01-01

    Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin. PMID:25299690

  6. Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells.

    Directory of Open Access Journals (Sweden)

    Luis Vidali

    Full Text Available BACKGROUND: Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments. METHODOLOGY/PRINCIPAL FINDINGS: In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore. CONCLUSIONS/SIGNIFICANCE: Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin's role in tip growing plant cells.

  7. Differential thymosin β10 expression levels and actin filament organization in tumor cell lines with different metastatic potential

    Institute of Scientific and Technical Information of China (English)

    刘从容; 马春树; 宁钧宇; 由江峰; 廖松林; 郑杰

    2004-01-01

    Background To investigate the differential expression levels of thymosin β10 (Tβ1O) and the corresponding changes of actin filament organization in human tumor cell lines with different metastatic potential.Methods Four groups of nine human tumor cell lines with different metastatic potential were analyzed for the amount of Tβ10 mRNAs by Northern blot and for their peptide expression levels by immunohistochemistry. The filamentous actin (F-actin)was observed by staining of TRITC-phalloidin to detect changes in actin organization. Results In comparison with non-/weakly metastatic counterparts, TβIO was upregulated in highly metastatic human lung cancer, malignant melanoma and breast cancer cell lines. Staining of TRITC-phalloidin revealed less actin bundles, a fuzzy network of shorter filaments and some F-actin aggregates in the highly metastatic tumor cells. Meanwhile, the actin filaments were robust and orderly arranged in the non-/weakly metastatic cancer cell lines.Conclusion Tβ10 levels correlate positively with the metastatic capacity in human tumors currently examined. The increasing metastatic potential of tumor cells is accompanied by a loss of F-actin,poorly arranged actin skeleton organizations and presence of F-actin</