WorldWideScience

Sample records for actin-bound myosin heads

  1. Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Mizui

    Full Text Available The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1 chemical long-term potentiation (LTP stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2 Ca(2+ influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3 the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK or Rho-associated kinase (ROCK inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement.

  2. Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines.

    Science.gov (United States)

    Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

    2014-01-01

    The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca(2+) influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement.

  3. Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber

    Energy Technology Data Exchange (ETDEWEB)

    Minoda, Hiroki [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganeishi, Tokyo184-8588 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Okabe, Tatsuhiro; Inayoshi, Yuhri [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganeishi, Tokyo184-8588 (Japan); Miyakawa, Takuya; Miyauchi, Yumiko; Tanokura, Masaru [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan); Katayama, Eisaku [Graduate School of Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Wakabayashi, Takeyuki [Department of Biosciences, School of Science and Engineering, Teikyo University, Utsunomiya, Tochigiken 320-8551 (Japan); Akimoto, Tsuyoshi [Department of Physiology, School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605 (Japan); Sugi, Haruo, E-mail: sugi@kyf.biglobe.ne.jp [Department of Physiology, School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605 (Japan)

    2011-02-25

    Research highlights: {yields} We succeeded in recording structural changes of hydrated myosin cross-bridges. {yields} We succeeded in position-marking the cross-bridges with site-directed antibodies. {yields} We recorded cross-bridge movement at different regions in individual cross-bridge. {yields} The movement was smallest at the cross-bridge-subfragment two boundary. {yields} The results provide evidence for the cross-bridge lever arm mechanism. -- Abstract: Muscle contraction results from an attachment-detachment cycle between the myosin heads extending from myosin filaments and the sites on actin filaments. The myosin head first attaches to actin together with the products of ATP hydrolysis, performs a power stroke associated with release of hydrolysis products, and detaches from actin upon binding with new ATP. The detached myosin head then hydrolyses ATP, and performs a recovery stroke to restore its initial position. The strokes have been suggested to result from rotation of the lever arm domain around the converter domain, while the catalytic domain remains rigid. To ascertain the validity of the lever arm hypothesis in muscle, we recorded ATP-induced movement at different regions within individual myosin heads in hydrated myosin filaments, using the gas environmental chamber attached to the electron microscope. The myosin head were position-marked with gold particles using three different site-directed antibodies. The amplitude of ATP-induced movement at the actin binding site in the catalytic domain was similar to that at the boundary between the catalytic and converter domains, but was definitely larger than that at the regulatory light chain in the lever arm domain. These results are consistent with the myosin head lever arm mechanism in muscle contraction if some assumptions are made.

  4. A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells.

    Directory of Open Access Journals (Sweden)

    Ronna Hertzano

    2008-10-01

    Full Text Available Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or 'gating' in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI-impaired hair cells, and ultimately leading to deafness.

  5. Head-head interactions of resting myosin crossbridges in intact frog skeletal muscles, revealed by synchrotron x-ray fiber diffraction.

    Directory of Open Access Journals (Sweden)

    Kanji Oshima

    Full Text Available The intensities of the myosin-based layer lines in the x-ray diffraction patterns from live resting frog skeletal muscles with full thick-thin filament overlap from which partial lattice sampling effects had been removed were analyzed to elucidate the configurations of myosin crossbridges around the thick filament backbone to nanometer resolution. The repeat of myosin binding protein C (C-protein molecules on the thick filaments was determined to be 45.33 nm, slightly longer than that of myosin crossbridges. With the inclusion of structural information for C-proteins and a pre-powerstroke head shape, modeling in terms of a mixed population of regular and perturbed regions of myosin crown repeats along the filament revealed that the myosin filament had azimuthal perturbations of crossbridges in addition to axial perturbations in the perturbed region, producing pseudo-six-fold rotational symmetry in the structure projected down the filament axis. Myosin crossbridges had a different organization about the filament axis in each of the regular and perturbed regions. In the regular region that lacks C-proteins, there were inter-molecular interactions between the myosin heads in axially adjacent crown levels. In the perturbed region that contains C-proteins, in addition to inter-molecular interactions between the myosin heads in the closest adjacent crown levels, there were also intra-molecular interactions between the paired heads on the same crown level. Common features of the interactions in both regions were interactions between a portion of the 50-kDa-domain and part of the converter domain of the myosin heads, similar to those found in the phosphorylation-regulated invertebrate myosin. These interactions are primarily electrostatic and the converter domain is responsible for the head-head interactions. Thus multiple head-head interactions of myosin crossbridges also characterize the switched-off state and have an important role in the regulation

  6. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads.

    Science.gov (United States)

    Iwaki, M; Wickham, S F; Ikezaki, K; Yanagida, T; Shih, W M

    2016-12-12

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes.

  7. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads

    Science.gov (United States)

    Iwaki, M.; Wickham, S. F.; Ikezaki, K.; Yanagida, T.; Shih, W. M.

    2016-01-01

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes. PMID:27941751

  8. Myosin head orientation: a structural determinant for the Frank-Starling relationship.

    Science.gov (United States)

    Farman, Gerrie P; Gore, David; Allen, Edward; Schoenfelt, Kelly; Irving, Thomas C; de Tombe, Pieter P

    2011-06-01

    The cellular mechanism underlying the Frank-Starling law of the heart is myofilament length-dependent activation. The mechanism(s) whereby sarcomeres detect changes in length and translate this into increased sensitivity to activating calcium has been elusive. Small-angle X-ray diffraction studies have revealed that the intact myofilament lattice undergoes numerous structural changes upon an increase in sarcomere length (SL): lattice spacing and the I(1,1)/I(1,0) intensity ratio decreases, whereas the M3 meridional reflection intensity (I(M3)) increases, concomitant with increases in diastolic and systolic force. Using a short (∼10 ms) X-ray exposure just before electrical stimulation, we were able to obtain detailed structural information regarding the effects of external osmotic compression (with mannitol) and obtain SL on thin intact electrically stimulated isolated rat right ventricular trabeculae. We show that over the same incremental increases in SL, the relative changes in systolic force track more closely to the relative changes in myosin head orientation (as reported by I(M3)) than to the relative changes in lattice spacing. We conclude that myosin head orientation before activation determines myocardial sarcomere activation levels and that this may be the dominant mechanism for length-dependent activation.

  9. Myosin head orientation: a structural determinant for the Frank-Starling relationship

    Energy Technology Data Exchange (ETDEWEB)

    Farman, Gerrie P.; Gore, David; Allen, Edward; Schoenfelt, Kelly; Irving, Thomas C.; de Tombe, Pieter P. (IIT); (UIC)

    2011-09-06

    The cellular mechanism underlying the Frank-Starling law of the heart is myofilament length-dependent activation. The mechanism(s) whereby sarcomeres detect changes in length and translate this into increased sensitivity to activating calcium has been elusive. Small-angle X-ray diffraction studies have revealed that the intact myofilament lattice undergoes numerous structural changes upon an increase in sarcomere length (SL): lattice spacing and the I{sub 1,1}/I{sub 1,0} intensity ratio decreases, whereas the M3 meridional reflection intensity (I{sub M3}) increases, concomitant with increases in diastolic and systolic force. Using a short ({approx}10 ms) X-ray exposure just before electrical stimulation, we were able to obtain detailed structural information regarding the effects of external osmotic compression (with mannitol) and obtain SL on thin intact electrically stimulated isolated rat right ventricular trabeculae. We show that over the same incremental increases in SL, the relative changes in systolic force track more closely to the relative changes in myosin head orientation (as reported by IM3) than to the relative changes in lattice spacing. We conclude that myosin head orientation before activation determines myocardial sarcomere activation levels and that this may be the dominant mechanism for length-dependent activation.

  10. Changes in conformation of myosin heads during the development of isometric contraction and rapid shortening in single frog muscle fibres.

    Science.gov (United States)

    Piazzesi, G; Reconditi, M; Dobbie, I; Linari, M; Boesecke, P; Diat, O; Irving, M; Lombardi, V

    1999-01-15

    1. Two-dimensional X-ray diffraction patterns were recorded at the European Synchrotron Radiation Facility from central segments of intact single muscle fibres of Rana temporaria with 5 ms time resolution during the development of isometric contraction. Shortening at ca 0.8 times the maximum velocity was also imposed at the isometric tetanus plateau. 2. The first myosin-based layer line (ML1) and the second myosin-based meridional reflection (M2), which are both strong in resting muscle, were completely abolished at the plateau of the isometric tetanus. The third myosin-based meridional reflection (M3), arising from the axial repeat of the myosin heads along the filaments, remained intense but its spacing changed from 14.34 to 14.56 nm. The intensity change of the M3 reflection, IM3, could be explained as the sum of two components, I14.34 and I14.56, arising from myosin head conformations characteristic of rest and isometric contraction, respectively. 3. The amplitudes (A) of the X-ray reflections, which are proportional to the fraction of myosin heads in each conformation, changed with half-times that were similar to that of isometric force development, which was 33.5 +/- 2. 0 ms (mean +/- s.d., 224 tetani from three fibres, 4 C), measured from the end of the latent period. We conclude that the myosin head conformation changes synchronously with force development, at least within the 5 ms time resolution of these measurements. 4. The changes in the X-ray reflections during rapid shortening have two temporal components. The rapid decrease in intensity of the 14.56 nm reflection at the start of shortening is likely to be due to tilting of myosin heads attached to actin. The slower changes in the other reflections were consistent with a return to the resting conformation of the myosin heads that was about 60 % complete after shortening of 70 nm per half-sarcomere.

  11. Does Interaction between the Motor and Regulatory Domains of the Myosin Head Occur during ATPase Cycle? Evidence from Thermal Unfolding Studies on Myosin Subfragment 1.

    Directory of Open Access Journals (Sweden)

    Daria S Logvinova

    Full Text Available Myosin head (myosin subfragment 1, S1 consists of two major structural domains, the motor (or catalytic domain and the regulatory domain. Functioning of the myosin head as a molecular motor is believed to involve a rotation of the regulatory domain (lever arm relative to the motor domain during the ATPase cycle. According to predictions, this rotation can be accompanied by an interaction between the motor domain and the C-terminus of the essential light chain (ELC associated with the regulatory domain. To check this assumption, we applied differential scanning calorimetry (DSC combined with temperature dependences of fluorescence to study changes in thermal unfolding and the domain structure of S1, which occur upon formation of the ternary complexes S1-ADP-AlF4- and S1-ADP-BeFx that mimic S1 ATPase intermediate states S1**-ADP-Pi and S1*-ATP, respectively. To identify the thermal transitions on the DSC profiles (i.e. to assign them to the structural domains of S1, we compared the DSC data with temperature-induced changes in fluorescence of either tryptophan residues, located only in the motor domain, or recombinant ELC mutants (light chain 1 isoform, which were first fluorescently labeled at different positions in their C-terminal half and then introduced into the S1 regulatory domain. We show that formation of the ternary complexes S1-ADP-AlF4- and S1-ADP-BeFx significantly stabilizes not only the motor domain, but also the regulatory domain of the S1 molecule implying interdomain interaction via ELC. This is consistent with the previously proposed concepts and also adds some new interesting details to the molecular mechanism of the myosin ATPase cycle.

  12. Life without double-headed non-muscle myosin II motor proteins

    Directory of Open Access Journals (Sweden)

    Venkaiah eBetapudi

    2014-07-01

    Full Text Available Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  13. Life without double-headed non-muscle myosin II motor proteins

    Science.gov (United States)

    Betapudi, Venkaiah

    2014-07-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  14. Single-Molecule Measurement of the Stiffness of the Rigor Myosin Head

    OpenAIRE

    2007-01-01

    The force-extension curve of single myosin subfragment-1 molecules, interacting in the rigor state with an actin filament, has been investigated at low [ATP] by applying a slow triangle-wave movement to the optical traps holding a bead-actin-bead dumbbell. In combination with a measurement of the overall stiffness of the dumbbell, this allowed characterization of the three extensible elements, the actin-bead links and the myosin. Simultaneously, another method, based on an analysis of bead po...

  15. Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength.

    Directory of Open Access Journals (Sweden)

    Haruo Sugi

    Full Text Available Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca(2+-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca(2+-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM, relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca(2+-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca(2+ activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca(2+-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca(2+-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any

  16. Cooperation between the two heads of smooth muscle myosin is essential for full activation of the motor function by phosphorylation.

    Science.gov (United States)

    Ma, Rong-Na; Mabuchi, Katsuhide; Li, Jing; Lu, Zekuan; Wang, Chih-Lueh Albert; Li, Xiang-dong

    2013-09-10

    The motor function of smooth muscle myosin (SmM) is regulated by phosphorylation of the regulatory light chain (RLC) bound to the neck region of the SmM heavy chain. It is generally accepted that unphosphorylated RLC induces interactions between the two heads and between the head and the tail, thus inhibiting the motor activity of SmM, whereas phosphorylation of RLC interrupts those interactions, thus reversing the inhibition and restoring the motor activity to the maximal value. One assumption of this model is that single-headed SmM is fully active regardless of phosphorylation. To re-evaluate this model, we produced a number of SmM constructs with coiled coils of various lengths and examined their structure and regulation. With these constructs we identified the segment in the coiled-coil key for the formation of a stable double-headed structure. In agreement with the current model, we found that the actin-activated ATPase activity of unphosphorylated SmM increased with shortening of the coiled-coil. However, contrary to the current model, we found that the actin-activated ATPase activity of phosphorylated SmM decreased with shortening coiled-coil and only the stable double-headed SmM was fully activated by phosphorylation. These results indicate that single-headed SmM is neither fully active nor fully inhibited. Based on our findings, we propose that cooperation between the two heads is essential, not only for the inhibition of unphosphorylated SmM, but also for the activation of phosphorylated SmM.

  17. Model for processive movement of myosin Ⅴ and myosin

    Institute of Scientific and Technical Information of China (English)

    Xie Ping; Dou Shuo-Xing; Wang Peng-Ye

    2005-01-01

    Myosin Ⅴ and myosin Ⅵ are two classes of two-headed molecular motors of the myosin superfamily that move processively along helical actin filaments in opposite directions. Here we present a hand-over-hand model for their processive movements. In the model, the moving direction of a dimeric molecular motor is automatically determined by the relative orientation between its two heads at free state and its head's binding orientation on track filament.This determines that myosin Ⅴ moves toward the barbed end and myosin Ⅵ moves toward the pointed end of actin.During the moving period in one step, one head remains bound to actin for myosin Ⅴ whereas two heads are detached for myosin Ⅵ: the moving manner is determined by the length of neck domain. This naturally explains the similar dynamic behaviours but opposite moving directions of myosin Ⅵ and mutant myosin Ⅴ (the neck of which is truncated to only one-sixth of the native length). Because of different moving manners, myosin Ⅵ and mutant myosin Ⅴ exhibit significantly broader step-size distribution than native myosin Ⅴ. However, all the three motors give the same mean step size of ~36nm (the pseudo-repeat of actin helix). All these theoretical results are in agreement with previous experimental ones.

  18. Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle

    Energy Technology Data Exchange (ETDEWEB)

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.; Soto-Adames, Felipe N.; Vigoreaux, Jim O.; Maughan, David W.; Irving, Thomas C.; (IIT); (Vermont); (Duke)

    2010-02-02

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axial distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.

  19. Time-resolved X-ray diffraction studies of myosin head movements in live frog sartorius muscle during isometric and isotonic contractions.

    Science.gov (United States)

    Martin-Fernandez, M L; Bordas, J; Diakun, G; Harries, J; Lowy, J; Mant, G R; Svensson, A; Towns-Andrews, E

    1994-06-01

    Using the facilities at the Daresbury Synchrotron Radiation Source, meridional diffraction patterns of muscles at ca 8 degrees C were recorded with a time resolution of 2 or 4 ms. In isometric contractions tetanic peak tension (P0) is reached in ca 400 ms. Under such conditions, following stimulation from rest, the timing of changes in the major reflections (the 38.2 nm troponin reflection, and the 21.5 and 14.34/14.58 nm myosin reflections) can be explained in terms of four types of time courses: K1, K2, K3 and K4. The onset of K1 occurs immediately after stimulation, but that of K2, K3 and K4 is delayed by a latent period of ca 16 ms. Relative to the end of their own latent periods the half-times for K1, K2, K3 and K4 are 14-16, 16, 32 and 52 ms, respectively. In half-times, K1, K2, K3 lead tension rise by 52, 36 and 20 ms, respectively. K4 parallels the time course of tension rise. From an analysis of the data we conclude that K1 reflects thin filament activation which involves the troponin system; K2 arises from an order-disorder transition during which the register between the filaments is lost; K3 is due to the formation of an acto-myosin complex which (at P0) causes 70% or more of the heads to diffract with actin-based periodicities; and K4 is caused by a change in the axial orientation of the myosin heads (relative to thin filament axis) which is estimated to be from 65-70 degrees at rest to ca 90 degrees at P0. Isotonic contraction experiments showed that during shortening under a load of ca 0.27 P0, at least 85% of the heads (relative to those forming an acto-myosin complex at P0) diffract with actin-based periodicities, whilst their axial orientation does not change from that at rest. During shortening under a negligible load, at most 5-10% of the heads (relative to those forming an acto-myosin complex at P0) diffract with actin-based periodicities, and their axial orientation also remains the same as that at rest. This suggests that in isometric

  20. Heavy chain of Acanthamoeba myosine IB is a fusion of myosin-like and non-myosin-like sequences

    Energy Technology Data Exchange (ETDEWEB)

    Jung, G.; Korn, E.D.; Hammer, J.A. III

    1987-10-01

    Acanthamoeba castellanii myosins IA and IB demonstrate the catalytic properties of a myosin and can support analogues of contractile and motile activity in vitro, but their single, low molecular weight heavy chains, roughly globular shapes, and inabilities to self-assemble into filaments make them structurally atypical myosins. The authors present the complete amino acid sequence of the 128-kDa myosin IB heavy chain, which they deduced from the nucleotide sequence of the gene and which reveals that the polypeptide is a fusion of myosin-like and non-myosin-like sequences. Specifically, the amino-terminal approx. 76 kDa of amino acid sequence is highly similar to the globular head sequences of conventional myosins. By contrast, the remaining approx. 51 kDa of sequence shows no similarity to any portion of conventional myosin sequences, contains regions that are rich in glycine, proline, and alanine residues, and lacks the distinctive sequence characteristics of an ..cap alpha..-helical, coiled-coil structure. They conclude, therefore, that the protein is composed of a myosin globular head fused not to the typical coiled-coil rod-like myosin tail structure but rather to an unusual carboxyl-terminal domain. These results support the conclusion that filamentous myosin is not required for force generation and provide a further perspective on the structural requirements for myosin function. Finally, they find a striking conservation of intron/exon structure between this gene and a vertebrate muscle myosin gene. They discuss this observation in relation to the evolutionary origin of the myosin IB gene and the antiquity of myosin gene intron/exon structure.

  1. Protein Kinase A-Mediated Phosphorylation of cMyBP-C Increases Proximity of Myosin Heads to Actin in Resting Myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Colson, Brett A; Bekyarova, Tanya; Locher, Matthew R; Fitzsimons, Daniel P; Irving, Thomas C; Moss, Richard L [IIT; (UW-MED)

    2008-09-16

    Protein kinase A-mediated (PKA) phosphorylation of cardiac myosin binding protein C (cMyBP-C) accelerates the kinetics of cross-bridge cycling and may relieve the tether-like constraint of myosin heads imposed by cMyBP-C. We favor a mechanism in which cMyBP-C modulates cross-bridge cycling kinetics by regulating the proximity and interaction of myosin and actin. To test this idea, we used synchrotron low-angle x-ray diffraction to measure interthick filament lattice spacing and the equatorial intensity ratio, I{sub 11}/I{sub 10}, in skinned trabeculae isolated from wild-type and cMyBP-C null (cMyBP-C{sup -/-}) mice. In wild-type myocardium, PKA treatment appeared to result in radial or azimuthal displacement of cross-bridges away from the thick filaments as indicated by an increase (approximately 50%) in I{sub 11}/I{sub 10} (0.22{+-}0.03 versus 0.33{+-}0.03). Conversely, PKA treatment did not affect cross-bridge disposition in mice lacking cMyBP-C, because there was no difference in I{sub 11}/I{sub 10} between untreated and PKA-treated cMyBP-C{sup -/-} myocardium (0.40{+-}0.06 versus 0.42{+-}0.05). Although lattice spacing did not change after treatment in wild-type (45.68{+-}0.84 nm versus 45.64{+-}0.64 nm), treatment of cMyBP-C{sup -/-} myocardium increased lattice spacing (46.80{+-}0.92 nm versus 49.61{+-}0.59 nm). This result is consistent with the idea that the myofilament lattice expands after PKA phosphorylation of cardiac troponin I, and when present, cMyBP-C, may stabilize the lattice. These data support our hypothesis that tethering of cross-bridges by cMyBP-C is relieved by phosphorylation of PKA sites in cMyBP-C, thereby increasing the proximity of cross-bridges to actin and increasing the probability of interaction with actin on contraction.

  2. Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP

    Science.gov (United States)

    Sugi, Haruo; Yamaguchi, Maki; Ohno, Tetsuo; Kobayashi, Takakazu; Chaen, Shigeru; Okuyama, Hiroshi

    2016-01-01

    During muscle contraction, myosin heads (M) bound to actin (A) perform power stroke associated with reaction, AMADPPi → AM + ADP + Pi. In this scheme, A • M is believed to be a high-affinity complex after removal of ATP. Biochemical studies on extracted protein samples show that, in the AM complex, actin-binding sites are located at both sides of junctional peptide between 50K and 20K segments of myosin heavy chain. Recently, we found that a monoclonal antibody (IgG) to the junctional peptide had no effect on both in vitro actin-myosin sliding and skinned muscle fiber contraction, though it covers the actin-binding sites on myosin. It follows from this that, during muscle contraction, myosin heads do not pass through the static rigor AM configuration, determined biochemically and electron microscopically using extracted protein samples. To study the nature of AM and AMADP myosin heads, actually existing in muscle, we examined mechanical responses to ramp-shaped releases (0.5% of Lo, complete in 5ms) in single skinned rabbit psoas muscle fibers in high-Ca (pCa, 4) and low-Ca (pCa, >9) rigor states. The fibers exhibited initial elastic tension drop and subsequent small but definite tension recovery to a steady level. The tension recovery was present over many minutes in high-Ca rigor fibers, while it tended to decrease quickly in low-Ca rigor fibers. EDTA (10mM, with MgCl2 removed) had no appreciable effect on the tension recovery in high-Ca rigor fibers, while it completely eliminated the tension recovery in low-Ca rigor fibers. These results suggest that the AMADP myosin heads in rigor muscle have long lifetimes and dynamic properties, which show up as the tension recovery following applied release. Possible AM linkage structure in muscle is discussed in connection with the X-ray diffraction pattern from contracting muscle, which is intermediate between resting and rigor muscles. PMID:27583360

  3. Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP.

    Science.gov (United States)

    Sugi, Haruo; Yamaguchi, Maki; Ohno, Tetsuo; Kobayashi, Takakazu; Chaen, Shigeru; Okuyama, Hiroshi

    2016-01-01

    During muscle contraction, myosin heads (M) bound to actin (A) perform power stroke associated with reaction, AMADPPi → AM + ADP + Pi. In this scheme, A • M is believed to be a high-affinity complex after removal of ATP. Biochemical studies on extracted protein samples show that, in the AM complex, actin-binding sites are located at both sides of junctional peptide between 50K and 20K segments of myosin heavy chain. Recently, we found that a monoclonal antibody (IgG) to the junctional peptide had no effect on both in vitro actin-myosin sliding and skinned muscle fiber contraction, though it covers the actin-binding sites on myosin. It follows from this that, during muscle contraction, myosin heads do not pass through the static rigor AM configuration, determined biochemically and electron microscopically using extracted protein samples. To study the nature of AM and AMADP myosin heads, actually existing in muscle, we examined mechanical responses to ramp-shaped releases (0.5% of Lo, complete in 5ms) in single skinned rabbit psoas muscle fibers in high-Ca (pCa, 4) and low-Ca (pCa, >9) rigor states. The fibers exhibited initial elastic tension drop and subsequent small but definite tension recovery to a steady level. The tension recovery was present over many minutes in high-Ca rigor fibers, while it tended to decrease quickly in low-Ca rigor fibers. EDTA (10mM, with MgCl2 removed) had no appreciable effect on the tension recovery in high-Ca rigor fibers, while it completely eliminated the tension recovery in low-Ca rigor fibers. These results suggest that the AMADP myosin heads in rigor muscle have long lifetimes and dynamic properties, which show up as the tension recovery following applied release. Possible AM linkage structure in muscle is discussed in connection with the X-ray diffraction pattern from contracting muscle, which is intermediate between resting and rigor muscles.

  4. Dictyostelium myosin bipolar thick filament formation: importance of charge and specific domains of the myosin rod.

    Directory of Open Access Journals (Sweden)

    Daniel Hostetter

    2004-11-01

    Full Text Available Myosin-II thick filament formation in Dictyostelium is an excellent system for investigating the phenomenon of self-assembly, as the myosin molecule itself contains all the information required to form a structure of defined size. Phosphorylation of only three threonine residues can dramatically change the assembly state of myosin-II. We show here that the C-terminal 68 kDa of the myosin-II tail (termed AD-Cterm assembles in a regulated manner similar to full-length myosin-II and forms bipolar thick filament (BTF structures when a green fluorescent protein (GFP "head" is added to the N terminus. The localization of this GFP-AD-Cterm to the cleavage furrow of dividing Dictyostelium cells depends on assembly state, similar to full-length myosin-II. This tail fragment therefore represents a good model system for the regulated formation and localization of BTFs. By reducing regulated BTF assembly to a more manageable model system, we were able to explore determinants of myosin-II self-assembly. Our data support a model in which a globular head limits the size of a BTF, and the large-scale charge character of the AD-Cterm region is important for BTF formation. Truncation analysis of AD-Cterm tail fragments shows that assembly is delicately balanced, resulting in assembled myosin-II molecules that are poised to disassemble due to the phosphorylation of only three threonines.

  5. Myosin Assembly, Maintenance and Degradation in Muscle: Role of the Chaperone UNC-45 in Myosin Thick Filament Dynamics

    Directory of Open Access Journals (Sweden)

    David B. Pilgrim

    2008-09-01

    Full Text Available Myofibrillogenesis in striated muscle cells requires a precise ordered pathway to assemble different proteins into a linear array of sarcomeres. The sarcomere relies on interdigitated thick and thin filaments to ensure muscle contraction, as well as properly folded and catalytically active myosin head. Achieving this organization requires a series of protein folding and assembly steps. The folding of the myosin head domain requires chaperone activity to attain its functional conformation. Folded or unfolded myosin can spontaneously assemble into short myosin filaments, but further assembly requires the short and incomplete myosin filaments to assemble into the developing thick filament. These longer filaments are then incorporated into the developing sarcomere of the muscle. Both myosin folding and assembly require factors to coordinate the formation of the thick filament in the sarcomere and these factors include chaperone molecules. Myosin folding and sarcomeric assembly requires association of classical chaperones as well as folding cofactors such as UNC-45. Recent research has suggested that UNC-45 is required beyond initial myosin head folding and may be directly or indirectly involved in different stages of myosin thick filament assembly, maintenance and degradation.

  6. Microscopic model of the actin-myosin interaction in muscular contractions

    Science.gov (United States)

    Gaveau, B.; Moreau, M.; Schuman, B.

    2004-01-01

    We define and study a detailed many body model for the muscular contraction taking into account the various myosin heads. The state of the system is defined by the position of the actin and by an internal coordinate of rotation for each myosin head. We write a system of Fokker-Planck equations and calculate the average for the position, the number of attached myosin heads, and the total force exerted on the actin. We also study the correlation between these quantities, in particular between the number of attached myosin heads and the force on the actin.

  7. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.; (RPI); (IIT); (SDSU); (Vermont)

    2009-07-01

    The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

  8. Cargo binding activates myosin VIIA motor function in cells.

    Science.gov (United States)

    Sakai, Tsuyoshi; Umeki, Nobuhisa; Ikebe, Reiko; Ikebe, Mitsuo

    2011-04-26

    Myosin VIIA, thought to be involved in human auditory function, is a gene responsible for human Usher syndrome type 1B, which causes hearing and visual loss. Recent studies have suggested that it can move processively if it forms a dimer. Nevertheless, it exists as a monomer in vitro, unlike the well-known two-headed processive myosin Va. Here we studied the molecular mechanism, which is currently unknown, of activating myosin VIIA as a cargo-transporting motor. Human myosin VIIA was present throughout cytosol, but it moved to the tip of filopodia upon the formation of dimer induced by dimer-inducing reagent. The forced dimer of myosin VIIA translocated its cargo molecule, MyRip, to the tip of filopodia, whereas myosin VIIA without the forced dimer-forming module does not translocate to the filopodial tips. These results suggest that dimer formation of myosin VIIA is important for its cargo-transporting activity. On the other hand, myosin VIIA without the forced dimerization module became translocated to the filopodial tips in the presence of cargo complex, i.e., MyRip/Rab27a, and transported its cargo complex to the tip. Coexpression of MyRip promoted the association of myosin VIIA to vesicles and the dimer formation. These results suggest that association of myosin VIIA monomers with membrane via the MyRip/Rab27a complex facilitates the cargo-transporting activity of myosin VIIA, which is achieved by cluster formation on the membrane, where it possibly forms a dimer. Present findings support that MyRip, a cargo molecule, functions as an activator of myosin VIIA transporter function.

  9. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity

    Science.gov (United States)

    Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.; Stock, Ann M.

    2015-08-01

    Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin.

  10. Myosin 18A coassembles with nonmuscle myosin 2 to form mixed bipolar filaments.

    Science.gov (United States)

    Billington, Neil; Beach, Jordan R; Heissler, Sarah M; Remmert, Kirsten; Guzik-Lendrum, Stephanie; Nagy, Attila; Takagi, Yasuharu; Shao, Lin; Li, Dong; Yang, Yi; Zhang, Yingfan; Barzik, Melanie; Betzig, Eric; Hammer, John A; Sellers, James R

    2015-03-30

    Class-18 myosins are most closely related to conventional class-2 nonmuscle myosins (NM2). Surprisingly, the purified head domains of Drosophila, mouse, and human myosin 18A (M18A) lack actin-activated ATPase activity and the ability to translocate actin filaments, suggesting that the functions of M18A in vivo do not depend on intrinsic motor activity. M18A has the longest coiled coil of any myosin outside of the class-2 myosins, suggesting that it might form bipolar filaments similar to conventional myosins. To address this possibility, we expressed and purified full-length mouse M18A using the baculovirus/Sf9 system. M18A did not form large bipolar filaments under any of the conditions tested. Instead, M18A formed an ∼ 65-nm-long bipolar structure with two heads at each end. Importantly, when NM2 was polymerized in the presence of M18A, the two myosins formed mixed bipolar filaments, as evidenced by cosedimentation, electron microscopy, and single-molecule imaging. Moreover, super-resolution imaging of NM2 and M18A using fluorescently tagged proteins and immunostaining of endogenous proteins showed that NM2 and M18A are present together within individual filaments inside living cells. Together, our in vitro and live-cell imaging data argue strongly that M18A coassembles with NM2 into mixed bipolar filaments. M18A could regulate the biophysical properties of these filaments and, by virtue of its extra N- and C-terminal domains, determine the localization and/or molecular interactions of the filaments. Given the numerous, fundamental cellular and developmental roles attributed to NM2, our results have far-reaching biological implications.

  11. Cargo recognition and cargo-mediated regulation of unconventional myosins.

    Science.gov (United States)

    Lu, Qing; Li, Jianchao; Zhang, Mingjie

    2014-10-21

    Organized motions are hallmarks of living organisms. Such motions range from collective cell movements during development and muscle contractions at the macroscopic scale all the way down to cellular cargo (e.g., various biomolecules and organelles) transportation and mechanoforce sensing at more microscopic scales. Energy required for these biological motions is almost invariably provided by cellular chemical fuels in the form of nucleotide triphosphate. Biological systems have designed a group of nanoscale engines, known as molecular motors, to convert cellular chemical fuels into mechanical energy. Molecular motors come in various forms including cytoskeleton motors (myosin, kinesin, and dynein), nucleic-acid-based motors, cellular membrane-based rotary motors, and so on. The main focus of this Account is one subfamily of actin filament-based motors called unconventional myosins (other than muscle myosin II, the remaining myosins are collectively referred to as unconventional myosins). In general, myosins can use ATP to fuel two types of mechanomotions: dynamic tethering actin filaments with various cellular compartments or structures and actin filament-based intracellular transport. In contrast to rich knowledge accumulated over many decades on ATP hydrolyzing motor heads and their interactions with actin filaments, how various myosins recognize their specific cargoes and whether and how cargoes can in return regulate functions of motors are less understood. Nonetheless, a series of biochemical and structural investigations in the past few years, including works from our own laboratory, begin to shed lights on these latter questions. Some myosins (e.g., myosin-VI) can function both as cellular transporters and as mechanical tethers. To function as a processive transporter, myosins need to form dimers or multimers. To be a mechanical tether, a monomeric myosin is sufficient. It has been shown for myosin-VI that its cellular cargo proteins can play critical roles

  12. Structural Basis of Cargo Recognition by Unconventional Myosins in Cellular Trafficking.

    Science.gov (United States)

    Li, Jianchao; Lu, Qing; Zhang, Mingjie

    2016-08-01

    Unconventional myosins are a superfamily of actin-based molecular motors playing diverse roles including cellular trafficking, mechanical supports, force sensing and transmission, etc. The variable neck and tail domains of unconventional myosins function to bind to specific cargoes including proteins and lipid vesicles and thus are largely responsible for the diverse cellular functions of myosins in vivo. In addition, the tail regions, together with their cognate cargoes, can regulate activities of the motor heads. This review outlines the advances made in recent years on cargo recognition and cargo binding-induced regulation of the activity of several unconventional myosins including myosin-I, V, VI and X in cellular trafficking. We approach this topic by describing a series of high-resolution structures of the neck and tail domains of these unconventional myosins either alone or in complex with their specific cargoes, and by discussing potential implications of these structural studies on cellular trafficking of these myosin motors.

  13. Mechanochemical model for myosin V.

    Science.gov (United States)

    Craig, Erin M; Linke, Heiner

    2009-10-27

    A rigorous numerical test of a hypothetical mechanism of a molecular motor should model explicitly the diffusive motion of the motor's degrees of freedom as well as the transition rates between the motor's chemical states. We present such a Brownian dynamics, mechanochemcial model of the coarse-grain structure of the dimeric, linear motor myosin V. Compared with run-length data, our model provides strong support for a proposed strain-controlled gating mechanism that enhances processivity. We demonstrate that the diffusion rate of a detached motor head during motor stepping is self-consistent with known kinetic rate constants and can explain the motor's key performance features, such as speed and stall force. We present illustrative and realistic animations of motor stepping in the presence of thermal noise. The quantitative success and illustrative power of this type of model suggest that it will be useful in testing our understanding of a range of biological and synthetic motors.

  14. In vivo definition of cardiac myosin-binding protein C's critical interactions with myosin.

    Science.gov (United States)

    Bhuiyan, Md Shenuarin; McLendon, Patrick; James, Jeanne; Osinska, Hanna; Gulick, James; Bhandary, Bidur; Lorenz, John N; Robbins, Jeffrey

    2016-10-01

    Cardiac myosin-binding protein C (cMyBP-C) is an integral part of the sarcomeric machinery in cardiac muscle that enables normal function. cMyBP-C regulates normal cardiac contraction by functioning as a brake through interactions with the sarcomere's thick, thin, and titin filaments. cMyBP-C's precise effects as it binds to the different filament systems remain obscure, particularly as it impacts on the myosin heavy chain's head domain, contained within the subfragment 2 (S2) region. This portion of the myosin heavy chain also contains the ATPase activity critical for myosin's function. Mutations in myosin's head, as well as in cMyBP-C, are a frequent cause of familial hypertrophic cardiomyopathy (FHC). We generated transgenic lines in which endogenous cMyBP-C was replaced by protein lacking the residues necessary for binding to S2 (cMyBP-C(S2-)). We found, surprisingly, that cMyBP-C lacking the S2 binding site is incorporated normally into the sarcomere, although systolic function is compromised. We show for the first time the acute and chronic in vivo consequences of ablating a filament-specific interaction of cMyBP-C. This work probes the functional consequences, in the whole animal, of modifying a critical structure-function relationship, the protein's ability to bind to a region of the critical enzyme responsible for muscle contraction, the subfragment 2 domain of the myosin heavy chain. We show that the binding is not critical for the protein's correct insertion into the sarcomere's architecture, but is essential for long-term, normal function in the physiological context of the heart.

  15. Structural and molecular conformation of myosin in intact muscle fibers by second harmonic generation

    Science.gov (United States)

    Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.

    2009-02-01

    Recently, the use of Second Harmonic Generation (SHG) for imaging biological samples has been explored with regard to intrinsic SHG in highly ordered biological samples. As shown by fractional extraction of proteins, myosin is the source of SHG signal in skeletal muscle. SHG is highly dependent on symmetries and provides selective information on the structural order and orientation of the emitting proteins and the dynamics of myosin molecules responsible for the mechano-chemical transduction during contraction. We characterise the polarization-dependence of SHG intensity in three different physiological states: resting, rigor and isometric tetanic contraction in a sarcomere length range between 2.0 μm and 4.0 μm. The orientation of motor domains of the myosin molecules is dependent on their physiological states and modulate the SHG signal. We can discriminate the orientation of the emitting dipoles in four different molecular conformations of myosin heads in intact fibers during isometric contraction, in resting and rigor. We estimate the contribution of the myosin motor domain to the total second order bulk susceptibility from its molecular structure and its functional conformation. We demonstrate that SHG is sensitive to the fraction of ordered myosin heads by disrupting the order of myosin heads in rigor with an ATP analog. We estimate the fraction of myosin motors generating the isometric force in the active muscle fiber from the dependence of the SHG modulation on the degree of overlap between actin and myosin filaments during an isometric contraction.

  16. Various Themes of Myosin Regulation.

    Science.gov (United States)

    Heissler, Sarah M; Sellers, James R

    2016-05-01

    Members of the myosin superfamily are actin-based molecular motors that are indispensable for cellular homeostasis. The vast functional and structural diversity of myosins accounts for the variety and complexity of the underlying allosteric regulatory mechanisms that determine the activation or inhibition of myosin motor activity and enable precise timing and spatial aspects of myosin function at the cellular level. This review focuses on the molecular basis of posttranslational regulation of eukaryotic myosins from different classes across species by allosteric intrinsic and extrinsic effectors. First, we highlight the impact of heavy and light chain phosphorylation. Second, we outline intramolecular regulatory mechanisms such as autoinhibition and subsequent activation. Third, we discuss diverse extramolecular allosteric mechanisms ranging from actin-linked regulatory mechanisms to myosin:cargo interactions. At last, we briefly outline the allosteric regulation of myosins with synthetic compounds.

  17. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat.

    Science.gov (United States)

    Andruchov, Oleg; Galler, Stefan

    2008-03-01

    This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca(2+) activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.

  18. Vanadate oligomer interactions with myosin.

    Science.gov (United States)

    Aureliano, M

    2000-05-30

    'Monovanadate' containing a mixture of at least four different vanadate species and 'decavanadate' containing apparently only two vanadate species, mainly decameric species, inhibit myosin and actomyosin ATPase activities. The addition of myosin to 'monovanadate' and 'decavanadate' solutions promotes differential increases on the 51V NMR spectral linewidths of vanadate oligomers. The relative order of line broadening upon myosin addition, reflecting the interaction of the vanadate oligomers with the protein, was V10 > V4 > V1 = 1, whereas no changes were observed for monomeric vanadate species. It is concluded that decameric and tetrameric vanadate species interact quite potently with the protein and affect myosin as well actomyosin ATPase activities.

  19. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC.

    Science.gov (United States)

    Schwab, Ryan S; Ihnatovych, Ivanna; Yunus, Sharifah Z S A; Domaradzki, Tera; Hofmann, Wilma A

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms.

  20. Direct Measurements of Local Coupling between Myosin Molecules Are Consistent with a Model of Muscle Activation.

    Directory of Open Access Journals (Sweden)

    Sam Walcott

    2015-11-01

    Full Text Available Muscle contracts due to ATP-dependent interactions of myosin motors with thin filaments composed of the proteins actin, troponin, and tropomyosin. Contraction is initiated when calcium binds to troponin, which changes conformation and displaces tropomyosin, a filamentous protein that wraps around the actin filament, thereby exposing myosin binding sites on actin. Myosin motors interact with each other indirectly via tropomyosin, since myosin binding to actin locally displaces tropomyosin and thereby facilitates binding of nearby myosin. Defining and modeling this local coupling between myosin motors is an open problem in muscle modeling and, more broadly, a requirement to understanding the connection between muscle contraction at the molecular and macro scale. It is challenging to directly observe this coupling, and such measurements have only recently been made. Analysis of these data suggests that two myosin heads are required to activate the thin filament. This result contrasts with a theoretical model, which reproduces several indirect measurements of coupling between myosin, that assumes a single myosin head can activate the thin filament. To understand this apparent discrepancy, we incorporated the model into stochastic simulations of the experiments, which generated simulated data that were then analyzed identically to the experimental measurements. By varying a single parameter, good agreement between simulation and experiment was established. The conclusion that two myosin molecules are required to activate the thin filament arises from an assumption, made during data analysis, that the intensity of the fluorescent tags attached to myosin varies depending on experimental condition. We provide an alternative explanation that reconciles theory and experiment without assuming that the intensity of the fluorescent tags varies.

  1. Myosin VI regulates actin structure specialization through conserved cargo-binding domain sites.

    Directory of Open Access Journals (Sweden)

    Mamiko Isaji

    Full Text Available Actin structures are often stable, remaining unchanged in organization for the lifetime of a differentiated cell. Little is known about stable actin structure formation, organization, or maintenance. During Drosophila spermatid individualization, long-lived actin cones mediate cellular remodeling. Myosin VI is necessary for building the dense meshwork at the cones' fronts. We test several ideas for myosin VI's mechanism of action using domain deletions or site-specific mutations of myosin VI. The head (motor and globular tail (cargo-binding domains were both needed for localization at the cone front and dense meshwork formation. Several conserved partner-binding sites in the globular tail previously identified in vertebrate myosin VI were critical for function in cones. Localization and promotion of proper actin organization were separable properties of myosin VI. A vertebrate myosin VI was able to localize and function, indicating that functional properties are conserved. Our data eliminate several models for myosin VI's mechanism of action and suggest its role is controlling organization and action of actin assembly regulators through interactions at conserved sites. The Drosophila orthologues of interaction partners previously identified for vertebrate myosin VI are likely not required, indicating novel partners mediate this effect. These data demonstrate that generating an organized and functional actin structure in this cell requires multiple activities coordinated by myosin VI.

  2. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity.

    Science.gov (United States)

    Jana, Biman; Onuchic, José N

    2016-08-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities.

  3. Direct observation of the myosin Va recovery stroke that contributes to unidirectional stepping along actin.

    Directory of Open Access Journals (Sweden)

    Katsuyuki Shiroguchi

    2011-04-01

    Full Text Available Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed "strokes"; the "power stroke" is the force-generating swinging of the myosin light chain-binding "neck" domain relative to the motor domain "head" while bound to actin; the "recovery stroke" is the necessary initial motion that primes, or "cocks," myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a "hand over hand" mechanism in which the trailing head detaches and steps forward ∼72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ∼40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥ 5 k(BT of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery

  4. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.; Domaradzki, Tera [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States); Hofmann, Wilma A., E-mail: whofmann@buffalo.edu [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States)

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been identified in the myosin IC isoform B sequence. ► Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ► First mechanistic explanation of functional differences between the isoforms.

  5. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution

    Science.gov (United States)

    Hu, Zhongjun; Taylor, Dianne W.; Reedy, Michael K.; Edwards, Robert J.; Taylor, Kenneth A.

    2016-01-01

    We describe a cryo–electron microscopy three-dimensional image reconstruction of relaxed myosin II–containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin’s long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation. PMID:27704041

  6. Characterization and localization of dynein and myosins V and VI in the ovaries of queen bees.

    Science.gov (United States)

    Patricio, Karina; Calábria, Luciana Karen; Peixoto, Pablo Marco; Espindola, Foued Salmen; Da Cruz-Landim, Carminda

    2010-10-01

    The presence of myosin and dynein in the ovaries of both Apis mellifera and Scaptotrigona postica was investigated in extracts and in histological sections. In the ovary extracts, motor proteins, myosins V, VI and dynein were detected by Western blot. In histological sections, they were detected by immunocytochemistry, using a mouse monoclonal antibody against the intermediary chain of dynein and a rabbit polyclonal antibody against the myosin V head domain. The myosin VI tail domain was recognized by a pig polyclonal antibody. The results show that these molecular motors are expressed in the ovaries of both bee species with few differences in location and intensity, in regions where movement of substances is expected during oogenesis. The fact that antibodies against vertebrate proteins recognize proteins of bee species indicates that the specific epitopes are evolutionarily well preserved.

  7. Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.

    Science.gov (United States)

    Winkelmann, D A; Bourdieu, L; Kinose, F; Libchaber, A

    1995-04-01

    We have analyzed the dependence of actin filament movement on the mode of myosin attachment to surfaces. Monoclonal antibodies that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. These monoclonal antibodies were used to provide increasing flexibility in the mode of attachment. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these monoclonal antibodies and the sliding movement of fluorescently labeled actin filaments analyzed by video microscopy. Each of these antibodies produced stable, myosin-coated surfaces that supported uniform movement of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM monoclonal antibodies yielded a maximum velocity of 10 microns/s at 30 degrees C, whereas attachment through anti-LC2 produced a lower velocity of 4-5 microns/s. Each antibody showed a characteristic minimum myosin density below which sliding movement was no longer supported and an exponential dependence of actin filament velocity on myosin surface density below Vmax. Maximum sliding velocity was achieved over a range of myosin surface densities. Thus, the specific mode of attachment can influence the characteristic velocity of actin filament movement and the surface density needed to support movement. These data are being used to analyze the dynamics of sliding filament assays and evaluate estimates of the average number of motor molecules per unit length of actin required to support movement.

  8. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    Energy Technology Data Exchange (ETDEWEB)

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K. (IIT); (EMBL); (Scripps); (Duke); (Prince); (FSU); (MRC); (U. Florence)

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  9. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Science.gov (United States)

    Ihnatovych, Ivanna; Sielski, Neil L; Hofmann, Wilma A

    2014-01-01

    Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C). Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP) model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate-) cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN) lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  10. Kinetic characterization of the ATPase and actin-activated ATPase activities of Acanthamoeba castellanii myosin-2.

    Science.gov (United States)

    Heissler, Sarah M; Liu, Xiong; Korn, Edward D; Sellers, James R

    2013-09-13

    Phosphorylation of Ser-639 in loop-2 of the catalytic motor domain of the heavy chain of Acanthamoeba castellanii myosin-2 and the phosphomimetic mutation S639D have been shown previously to down-regulate the actin-activated ATPase activity of both the full-length myosin and single-headed subfragment-1 (Liu, X., Lee, D. Y., Cai, S., Yu, S., Shu, S., Levine, R. L., and Korn, E. D. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, E23-E32). In the present study we determined the kinetic constants for each step in the myosin and actomyosin ATPase cycles of recombinant wild-type S1 and S1-S639D. The kinetic parameter predominantly affected by the S639D mutation is the actin-activated release of inorganic phosphate from the acto myosin·ADP·Pi complex, which is the rate-limiting step in the steady-state actomyosin ATPase cycle. As consequence of this change, the duty ratio of this conventional myosin decreases. We speculate on the effect of Ser-639 phosphorylation on the processive behavior of myosin-2 filaments.

  11. Myosin lever arm directs collective motion on cellular actin network.

    Science.gov (United States)

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  12. Nonmuscle Myosin IIA Regulates Platelet Contractile Forces Through Rho Kinase and Myosin Light-Chain Kinase.

    Science.gov (United States)

    Feghhi, Shirin; Tooley, Wes W; Sniadecki, Nathan J

    2016-10-01

    Platelet contractile forces play a major role in clot retraction and help to hold hemostatic clots against the vessel wall. Platelet forces are produced by its cytoskeleton, which is composed of actin and nonmuscle myosin filaments. In this work, we studied the role of Rho kinase, myosin light-chain kinase, and myosin in the generation of contractile forces by using pharmacological inhibitors and arrays of flexible microposts to measure platelet forces. When platelets were seeded onto microposts, they formed aggregates on the tips of the microposts. Forces produced by the platelets in the aggregates were measured by quantifying the deflection of the microposts, which bent in proportion to the force of the platelets. Platelets were treated with small molecule inhibitors of myosin activity: Y-27632 to inhibit the Rho kinase (ROCK), ML-7 to inhibit myosin light-chain kinase (MLCK), and blebbistatin to inhibit myosin ATPase activity. ROCK inhibition reduced platelet forces, demonstrating the importance of the assembly of actin and myosin phosphorylation in generating contractile forces. Similarly, MLCK inhibition caused weaker platelet forces, which verifies that myosin phosphorylation is needed for force generation in platelets. Platelets treated with blebbistatin also had weaker forces, which indicates that myosin's ATPase activity is necessary for platelet forces. Our studies demonstrate that myosin ATPase activity and the regulation of actin-myosin assembly by ROCK and MLCK are needed for the generation of platelet forces. Our findings illustrate and explain the importance of myosin for clot compaction in hemostasis and thrombosis.

  13. Myosin VI deafness mutation prevents the initiation of processive runs on actin.

    Science.gov (United States)

    Pylypenko, Olena; Song, Lin; Shima, Ai; Yang, Zhaohui; Houdusse, Anne M; Sweeney, H Lee

    2015-03-17

    Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations.

  14. Characterization of Amoeba proteus myosin VI immunoanalog.

    Science.gov (United States)

    Dominik, Magdalena; Kłopocka, Wanda; Pomorski, Paweł; Kocik, Elzbieta; Redowicz, Maria Jolanta

    2005-07-01

    Amoeba proteus, the highly motile free-living unicellular organism, has been widely used as a model to study cell motility. However, molecular mechanisms underlying its unique locomotion and intracellular actin-based-only trafficking remain poorly understood. A search for myosin motors responsible for vesicular transport in these giant cells resulted in detection of 130-kDa protein interacting with several polyclonal antibodies against different tail regions of human and chicken myosin VI. This protein was binding to actin in the ATP-dependent manner, and immunoprecipitated with anti-myosin VI antibodies. In order to characterize its possible functions in vivo, its cellular distribution and colocalization with actin filaments and dynamin II during migration and pinocytosis were examined. In migrating amoebae, myosin VI immunoanalog localized to vesicular structures, particularly within the perinuclear and sub-plasma membrane areas, and colocalized with dynamin II immunoanalog and actin filaments. The colocalization was even more evident in pinocytotic cells as proteins concentrated within pinocytotic pseudopodia. Moreover, dynamin II and myosin VI immunoanalogs cosedimented with actin filaments, and were found on the same isolated vesicles. Blocking endogenous myosin VI immunoanalog with anti-myosin VI antibodies inhibited the rate of pseudopodia protrusion (about 19% decrease) and uroidal retraction (about 28% decrease) but did not affect cell morphology and the manner of cell migration. Treatment with anti-human dynamin II antibodies led to changes in directionality of amebae migration and affected the rate of only uroidal translocation (about 30% inhibition). These results indicate that myosin VI immunoanalog is expressed in protist Amoeba proteus and may be involved in vesicle translocation and cell locomotion.

  15. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Directory of Open Access Journals (Sweden)

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  16. Structural dynamics of myosin 5 during processive motion revealed by interferometric scattering microscopy

    Science.gov (United States)

    Andrecka, Joanna; Ortega Arroyo, Jaime; Takagi, Yasuharu; de Wit, Gabrielle; Fineberg, Adam; MacKinnon, Lachlan; Young, Gavin; Sellers, James R; Kukura, Philipp

    2015-01-01

    Myosin 5a is a dual-headed molecular motor that transports cargo along actin filaments. By following the motion of individual heads with interferometric scattering microscopy at nm spatial and ms temporal precision we found that the detached head occupies a loosely fixed position to one side of actin from which it rebinds in a controlled manner while executing a step. Improving the spatial precision to the sub-nm regime provided evidence for an ångstrom-level structural transition in the motor domain associated with the power stroke. Simultaneous tracking of both heads revealed that consecutive steps follow identical paths to the same side of actin in a compass-like spinning motion demonstrating a symmetrical walking pattern. These results visualize many of the critical unknown aspects of the stepping mechanism of myosin 5 including head–head coordination, the origin of lever-arm motion and the spatiotemporal dynamics of the translocating head during individual steps. DOI: http://dx.doi.org/10.7554/eLife.05413.001 PMID:25748137

  17. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    Science.gov (United States)

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.

  18. The Intensity Of The 2.7nm Reflection As A Constraint For Models Of Myosin Docking To Actin

    Energy Technology Data Exchange (ETDEWEB)

    Reconditi, Massimo; Irving, Tom C.; (IIT); (U.Florence)

    2009-03-16

    Previous workers have proposed high resolution models for the docking of the myosin heads on actin on the basis of combined crystallographic and electron microscopy data (Mendelson and Morris, 1997 PNAS 94:8533; Holmes et al. 2003 Nature 425:423). We have used data from small angle X-ray fiber diffraction from living muscle to check the predictions of these models. Whole sartorius muscles from Rana pipiens were mounted in a chamber containing Ringer's solution at 10 C and at rest length at the BioCAT beamline (18 ID, Advanced Photon Source, Argonne, IL-U.S.A.). The muscles were activated by electrical stimulation and the force was recorded with a muscle lever system type 300B (Aurora Scientific). X-ray patterns were collected with 1s total exposures at rest and during isometric contraction out to 0.5 nm{sup -1} in reciprocal space, as the higher angle reflections are expected to be more sensitive to the arrangement of myosin heads on actin. We observed that during isometric contraction the meridional reflection originating from the 2.73nm repeat of the actin monomers along the actin filament increases its intensity by a factor 2.1 {+-} 0.2 relative to rest. Among the models tested, Holmes et al. fits the data when the actin filament is decorated with 30-40% the total available myosin heads, a fraction similar to that estimated with fast single fiber mechanics by Piazzesi et al. (2007, Cell 131:784). However, when the mismatch between the periodicities of actin and myosin filaments is taken into account, none of the models can reproduce the fiber diffraction data. We suggest that the fiber diffraction data should be used as a further constraint on new high resolution models for the docking of the myosin heads on actin.

  19. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  20. Plant-specific myosin XI, a molecular perspective

    Directory of Open Access Journals (Sweden)

    Motoki eTominaga

    2012-09-01

    Full Text Available In eukaryotic cells, organelle movement, positioning, and communications are critical for maintaining cellular functions and are highly regulated by intracellular trafficking. Directional movement of motor proteins along the cytoskeleton is one of the key regulators of such trafficking. Most plants have developed a unique actin–myosin system for intracellular trafficking. Although the composition of myosin motors in angiosperms is limited to plant-specific myosin classes VIII and XI, there are large families of myosins, especially in class XI, suggesting functional diversification among class XI members. However, the molecular properties and regulation of each myosin XI member remains unclear.To achieve a better understanding of the plant-specific actin–myosin system, the characterization of myosin XI members at the molecular level is essential. In the first half of this review, we summarize the molecular properties of tobacco 175-kDa myosin XI, and in the later half, we focus on myosin XI members in Arabidopsis thaliana.Through detailed comparison of the functional domains of these myosins with the functional domain of myosin V, we look for possible diversification in enzymatic and mechanical properties among myosin XI members concomitant with their regulation.

  1. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle.

    Science.gov (United States)

    Poetter, K; Jiang, H; Hassanzadeh, S; Master, S R; Chang, A; Dalakas, M C; Rayment, I; Sellers, J R; Fananapazir, L; Epstein, N D

    1996-05-01

    The muscle myosins and hexomeric proteins consisting of two heavy chains and two pairs of light chains, the latter called essential (ELC) and regulatory (RLC). The light chains stabilize the long alpha helical neck of the myosin head. Their function in striated muscle, however, is only partially understood. We report here the identification of distinct missense mutations in a skeletal/ventricular ELC and RLC, each of which are associated with a rare variant of cardiac hypertrophy as well as abnormal skeletal muscle. We show that myosin containing the mutant ELC has abnormal function, map the mutant residues on the three-dimensional structure of myosin and suggest that the mutations disrupt the stretch activation response of the cardiac papillary muscles.

  2. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance

    Science.gov (United States)

    van Rooij, Eva; Quiat, Daniel; Johnson, Brett A.; Sutherland, Lillian B.; Qi, Xiaoxia; Richardson, James A.; Kelm, Robert J.; Olson, Eric N.

    2009-01-01

    Myosin is the primary regulator of muscle strength and contractility. Here we show that three myosin genes, Myh6, Myh7, and Myh7b, encode related microRNAs (miRNAs) within their introns, which, in turn, control muscle myosin content, myofiber identity and muscle performance. Within the adult heart, the Myh6 gene, encoding a fast myosin, co-expresses miR-208a, which regulates the expression of two slow myosins and their intronic miRNAs, Myh7/miR-208b and Myh7b/miR-499, respectively. miR-208b and miR-499 are functionally redundant, and play a dominant role in the specification of muscle fiber identity by activating slow and repressing fast myofiber gene programs. The actions of these miRNAs are mediated by a collection of transcriptional repressors of slow myofiber genes. These findings reveal that myosin genes not only encode the major contractile proteins of muscle, but act more broadly to influence muscle function by encoding a network of intronic miRNAs that control muscle gene expression and performance. PMID:19922871

  3. Kinetics of myosin light chain kinase activation of smooth muscle myosin in an in vitro model system.

    Science.gov (United States)

    Hong, Feng; Facemyer, Kevin C; Carter, Michael S; Jackson, Del R; Haldeman, Brian D; Ruana, Nick; Sutherland, Cindy; Walsh, Michael P; Cremo, Christine R; Baker, Josh E

    2013-11-26

    During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca²⁺CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vitro system with SMM attached to a coverslip surface. Fitting the time course of SMM phosphorylation to a kinetic model gave an initial phosphorylation rate, kp(o), of ~1.17 heads s⁻¹ MLCK⁻¹. Also, we measured the dwell time of single streptavidin-coated quantum dot-labeled MLCK molecules interacting with surface-attached SMM and phosphorylated SMM using total internal reflection fluorescence microscopy. From these data, the dissociation rate constant from phosphorylated SMM was 0.80 s⁻¹, which was similar to the kp(o) mentioned above and with rates measured in solution. This dissociation rate was essentially independent of the phosphorylation state of SMM. From calculations using our measured dissociation rates and Kd values, and estimates of SMM and MLCK concentrations in muscle, we predict that the dissociation of MLCK from phosphorylated SMM is rate-limiting and that the rate of the phosphorylation step is faster than this dissociation rate. Also, association with SMM (11-46 s⁻¹) would be much faster than with pSMM (SMM is 55-460 times greater. This would avoid sequestering MLCK to unproductive interactions with previously phosphorylated SMM, potentially leading to faster rates of phosphorylation in muscle.

  4. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  5. Mechanical output of myosin II motors is regulated by myosin filament size and actin network mechanics

    Science.gov (United States)

    Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin

    2013-03-01

    The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.

  6. Precise positioning of myosin VI on endocytic vesicles in vivo.

    Directory of Open Access Journals (Sweden)

    David Altman

    2007-08-01

    Full Text Available Myosin VI has been studied in both a monomeric and a dimeric form in vitro. Because the functional characteristics of the motor are dramatically different for these two forms, it is important to understand whether myosin VI heavy chains are brought together on endocytic vesicles. We have used fluorescence anisotropy measurements to detect fluorescence resonance energy transfer between identical fluorophores (homoFRET resulting from myosin VI heavy chains being brought into close proximity. We observed that, when associated with clathrin-mediated endocytic vesicles, myosin VI heavy chains are precisely positioned to bring their tail domains in close proximity. Our data show that on endocytic vesicles, myosin VI heavy chains are brought together in an orientation that previous in vitro studies have shown causes dimerization of the motor. Our results are therefore consistent with vesicle-associated myosin VI existing as a processive dimer, capable of its known trafficking function.

  7. Influence of the cardiac myosin hinge region on contractile activity.

    OpenAIRE

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P.; Slayter, H. S.

    1991-01-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myos...

  8. Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links

    DEFF Research Database (Denmark)

    Lametsch, Marianne Lund; Luxford, Catherine; Skibsted, Leif Horsfelt

    2008-01-01

    radical species have been detected by EPR in both the presence and the absence of spin traps. Evidence has been obtained for the presence of thiyl, tyrosyl and other unidentified radical species on myosin as a result of damage-transfer from oxidized myoglobin or horseradish peroxidase. The generation...

  9. Structural insight into the UNC-45–myosin complex

    DEFF Research Database (Denmark)

    Fratev, Filip; Jonsdottir, Svava Osk; Pajeva, Ilza

    2013-01-01

    The UNC-45 chaperone protein interacts with and affects the folding, stability, and the ATPase activity of myosins. It plays a critical role in the cardiomyopathy development and in the breast cancer tumor growth. Here we propose the first structural model of the UNC-45–myosin complex using vario...

  10. Structural Dynamics of Actin during Active Interaction with Myosin Depends on the Isoform of the Essential Light Chain

    Science.gov (United States)

    Prochniewicz, Ewa; Guhathakurta, Piyali; Thomas, David D.

    2013-01-01

    We have used time-resolved phosphorescence anisotropy (TPA) to investigate the effects of essential light chain (ELC) isoforms (A1 and A2) on the interaction of skeletal muscle myosin with actin, in order to relate structural dynamics to previously reported functional effects. Actin was labeled with a phosphorescent probe at C374, and the myosin head (S1) was separated into isoenzymes S1A1 and S1A2 by ion-exchange chromatography. As previously reported, S1A1 exhibited substantially lower ATPase activity at saturating actin but substantially higher apparent actin affinity, resulting in higher catalytic efficiency. In the absence of ATP, each isoenzyme increased actin’s final anisotropy cooperatively and to a similar extent, indicating similar restriction of the amplitude of intrafilament rotational motions in the strong-binding (S) state of actomyosin. In contrast, in the presence of saturating ATP, S1A1 increased actin anisotropy much more than S1A2 and with greater cooperativity, indicating that S1A1 was more effective in restricting actin dynamics during the active interaction of actin and myosin. We conclude that during the active interaction of actin and ATP with myosin, S1A1 is more effective at stabilizing the S state (probably the force-generating state) of actomyosin, while S1A2 tends to stabilize the weak-binding (non-force-generating) W state. When a mixture of isoenzymes is present, S1A1 is dominant in its effects on actin dynamics. We conclude that ELC of skeletal muscle myosin modulates strong-to-weak structural transitions during the actomyosin ATPase cycle in an isoform-dependent manner, with significant implications for the contractile function of actomyosin. PMID:23339370

  11. Force-producing ADP state of myosin bound to actin.

    Science.gov (United States)

    Wulf, Sarah F; Ropars, Virginie; Fujita-Becker, Setsuko; Oster, Marco; Hofhaus, Goetz; Trabuco, Leonardo G; Pylypenko, Olena; Sweeney, H Lee; Houdusse, Anne M; Schröder, Rasmus R

    2016-03-29

    Molecular motors produce force when they interact with their cellular tracks. For myosin motors, the primary force-generating state has MgADP tightly bound, whereas myosin is strongly bound to actin. We have generated an 8-Å cryoEM reconstruction of this state for myosin V and used molecular dynamics flexed fitting for model building. We compare this state to the subsequent state on actin (Rigor). The ADP-bound structure reveals that the actin-binding cleft is closed, even though MgADP is tightly bound. This state is accomplished by a previously unseen conformation of the β-sheet underlying the nucleotide pocket. The transition from the force-generating ADP state to Rigor requires a 9.5° rotation of the myosin lever arm, coupled to a β-sheet rearrangement. Thus, the structure reveals the detailed rearrangements underlying myosin force generation as well as the basis of strain-dependent ADP release that is essential for processive myosins, such as myosin V.

  12. Actin filaments on myosin beds: The velocity distribution

    Science.gov (United States)

    Bourdieu, L.; Magnasco, M. O.; Winkelmann, D. A.; Libchaber, A.

    1995-12-01

    In vitro studies of actin filaments sliding on a myosin-coated surface are analyzed, filament by filament, at a sampling rate of 30 per second. For each filament, the mean arc length coordinate is computed and histograms of instantaneous velocities, along the arc length, are established. Two types of motion are observed, depending on the experimental conditions. The first one is characterized by a homogeneous flow, with well defined velocities. In this regime, specific defects are a constitutive part of the flow. It is observed at high temperature, at high myosin coverage, and with a particular mode of attachment of myosin to the surface. The second regime shows no clear velocity selection, but a broadband distribution. It is characterized by high friction and is observed at low temperature or low myosin density. (c) 1995 The American Physical Society

  13. Arginylation of Myosin Heavy Chain Regulates Skeletal Muscle Strength

    Directory of Open Access Journals (Sweden)

    Anabelle S. Cornachione

    2014-07-01

    Full Text Available Protein arginylation is a posttranslational modification with an emerging global role in the regulation of actin cytoskeleton. To test the role of arginylation in the skeletal muscle, we generated a mouse model with Ate1 deletion driven by the skeletal muscle-specific creatine kinase (Ckmm promoter. Ckmm-Ate1 mice were viable and outwardly normal; however, their skeletal muscle strength was significantly reduced in comparison to controls. Mass spectrometry of isolated skeletal myofibrils showed a limited set of proteins, including myosin heavy chain, arginylated on specific sites. Atomic force microscopy measurements of contractile strength in individual myofibrils and isolated myosin filaments from these mice showed a significant reduction of contractile forces, which, in the case of myosin filaments, could be fully rescued by rearginylation with purified Ate1. Our results demonstrate that arginylation regulates force production in muscle and exerts a direct effect on muscle strength through arginylation of myosin.

  14. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions.

    Science.gov (United States)

    Heissler, Sarah M; Sellers, James R

    2016-08-01

    Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to which actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that - together with structural adaptations - result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular functions.

  15. Allosteric communication in myosin V: from small conformational changes to large directed movements.

    Directory of Open Access Journals (Sweden)

    M Cecchini

    Full Text Available The rigor to post-rigor transition in myosin, a consequence of ATP binding, plays an essential role in the Lymn-Taylor functional cycle because it results in the dissociation of the actomyosin complex after the powerstroke. On the basis of the X-ray structures of myosin V, we have developed a new normal mode superposition model for the transition path between the two states. Rigid-body motions of the various subdomains and specific residues at the subdomain interfaces are key elements in the transition. The allosteric communication between the nucleotide binding site and the U50/L50 cleft is shown to result from local changes due to ATP binding, which induce large amplitude motions that are encoded in the structure of the protein. The triggering event is the change in the interaction of switch I and the P-loop, which is stabilized by ATP binding. The motion of switch I, which is a relatively rigid element of the U50 subdomain, leads directly to a partial opening of the U50/L50 cleft; the latter is expected to weaken the binding of myosin to actin. The calculated transition path demonstrates the nature of the subdomain coupling and offers an explanation for the mutual exclusion of ATP and actin binding. The mechanism of the uncoupling of the converter from the motor head, an essential part of the transition, is elucidated. The origin of the partial untwisting of the central beta-sheet in the rigor to post-rigor transition is described.

  16. Cooperative regulation of myosin-S1 binding to actin filaments by a continuous flexible Tm-Tn chain.

    Science.gov (United States)

    Mijailovich, Srboljub M; Kayser-Herold, Oliver; Li, Xiaochuan; Griffiths, Hugh; Geeves, Michael A

    2012-12-01

    The regulation of striated muscle contraction involves cooperative interactions between actin filaments, myosin-S1 (S1), tropomyosin (Tm), troponin (Tn), and calcium. These interactions are modeled by treating overlapping tropomyosins as a continuous flexible chain (CFC), weakly confined by electrostatic interactions with actin. The CFC is displaced locally in opposite directions on the actin surface by the binding of either S1 or Troponin I (TnI) to actin. The apparent rate constants for myosin and TnI binding to and detachment from actin are then intrinsically coupled via the CFC model to the presence of neighboring bound S1s and TnIs. Monte Carlo simulations at prescribed values of the CFC stiffness, the CFC's degree of azimuthal confinement, and the angular displacements caused by the bound proteins were able to predict the stopped-flow transients of S1 binding to regulated F-actin. The transients collected over a large range of calcium concentrations could be well described by adjusting a single calcium-dependent parameter, the rate constant of TnI detachment from actin, k(-I). The resulting equilibrium constant K(B) ≡ 1/K(I) varied sigmoidally with the free calcium, increasing from 0.12 at low calcium (pCa >7) to 12 at high calcium (pCa Hill coefficient of ~2.15. The similarity of the curves for excess-actin and excess-myosin data confirms their allosteric relationship. The spatially explicit calculations confirmed variable sizes for the cooperative units and clustering of bound myosins at low calcium concentrations. Moreover, inclusion of negative cooperativity between myosin units predicted the observed slowing of myosin binding at excess-myosin concentrations.

  17. Global fit analysis of myosin-5b motility reveals thermodynamics of Mg2+-sensitive acto-myosin-ADP states.

    Directory of Open Access Journals (Sweden)

    Igor Chizhov

    Full Text Available Kinetic and thermodynamic studies of the mechanochemical cycle of myosin motors are essential for understanding the mechanism of energy conversion. Here, we report our investigation of temperature and free Mg(2+-ion dependencies of sliding velocities of a high duty ratio class-5 myosin motor, myosin-5b from D. discoideum using in vitro motility assays. Previous studies have shown that the sliding velocity of class-5 myosins obeys modulation by free Mg(2+-ions. Free Mg(2+-ions affect ADP release kinetics and the dwell time of actin-attached states. The latter determines the maximal velocity of actin translocation in the sliding filament assay. We measured the temperature dependence of sliding velocity in the range from 5 to 55°C at two limiting free Mg(2+-ion concentrations. Arrhenius plots demonstrated non-linear behavior. Based on this observation we propose a kinetic model, which explains both sensitivity towards free Mg(2+-ions and non-linearity of the temperature dependence of sliding velocity. According to this model, velocity is represented as a simple analytical function of temperature and free Mg(2+-ion concentrations. This function has been applied to global non-linear fit analysis of three data sets including temperature and magnesium (at 20°C dependence of sliding velocity. As a result we obtain thermodynamic parameters (ΔH(Mg and ΔS(Mg of a fast equilibrium between magnesium free (AM·D and magnesium bound acto-myosin-ADP (AM· Mg(2+D states and the corresponding enthalpic barriers associated with ADP release (ΔH1(‡ and ΔH2(‡. The herein presented integrative approach of data analysis based on global fitting can be applied to the remaining steps of the acto-myosin ATPase cycle facilitating the determination of energetic parameters and thermodynamics of acto-myosin interactions.

  18. Calcium-regulated import of myosin IC into the nucleus.

    Science.gov (United States)

    Maly, Ivan V; Hofmann, Wilma A

    2016-06-01

    Myosin IC is a molecular motor involved in intracellular transport, cell motility, and transcription. Its mechanical properties are regulated by calcium via calmodulin binding, and its functions in the nucleus depend on import from the cytoplasm. The import has recently been shown to be mediated by the nuclear localization signal located within the calmodulin-binding domain. In the present paper, it is demonstrated that mutations in the calmodulin-binding sequence shift the intracellular distribution of myosin IC to the nucleus. The redistribution is displayed by isoform B, described originally as the "nuclear myosin," but is particularly pronounced with isoform C, the normally cytoplasmic isoform. Furthermore, experimental elevation of the intracellular calcium concentration induces a rapid import of myosin into the nucleus. The import is blocked by the importin β inhibitor importazole. These findings are consistent with a mechanism whereby calmodulin binding prevents recognition of the nuclear localization sequence by importin β, and the steric inhibition of import is released by cell signaling leading to the intracellular calcium elevation. The results establish a mechanistic connection between the calcium regulation of the motor function of myosin IC in the cytoplasm and the induction of its import into the nucleus. © 2016 Wiley Periodicals, Inc.

  19. Influence of the cardiac myosin hinge region on contractile activity.

    Science.gov (United States)

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P; Slayter, H S

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the anti-hinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  20. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length.

    Science.gov (United States)

    Schott, Daniel H; Collins, Ruth N; Bretscher, Anthony

    2002-01-01

    Myosins are molecular motors that exert force against actin filaments. One widely conserved myosin class, the myosin-Vs, recruits organelles to polarized sites in animal and fungal cells. However, it has been unclear whether myosin-Vs actively transport organelles, and whether the recently challenged lever arm model developed for muscle myosin applies to myosin-Vs. Here we demonstrate in living, intact yeast that secretory vesicles move rapidly toward their site of exocytosis. The maximal speed varies linearly over a wide range of lever arm lengths genetically engineered into the myosin-V heavy chain encoded by the MYO2 gene. Thus, secretory vesicle polarization is achieved through active transport by a myosin-V, and the motor mechanism is consistent with the lever arm model.

  1. Reciprocal and dynamic polarization of planar cell polarity core components and myosin.

    Science.gov (United States)

    Newman-Smith, Erin; Kourakis, Matthew J; Reeves, Wendy; Veeman, Michael; Smith, William C

    2015-04-13

    The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Wash out of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line, aimless, myosin polarization is disrupted in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization.

  2. Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles

    Directory of Open Access Journals (Sweden)

    Hanson Maureen R

    2007-02-01

    Full Text Available Abstract Background Myosins are molecular motors that carry cargo on actin filaments in eukaryotic cells. Seventeen myosin genes have been identified in the nuclear genome of Arabidopsis. The myosin genes can be divided into two plant-specific subfamilies, class VIII with four members and class XI with 13 members. Class XI myosins are related to animal and fungal myosin class V that are responsible for movement of particular vesicles and organelles. Organelle localization of only one of the 13 Arabidopsis myosin XI (myosin XI-6; At MYA2, which is found on peroxisomes, has so far been reported. Little information is available concerning the remaining 12 class XI myosins. Results We investigated 6 of the 13 class XI Arabidopsis myosins. cDNAs corresponding to the tail region of 6 myosin genes were generated and incorporated into a vector to encode YFP-myosin tail fusion proteins lacking the motor domain. Chimeric genes incorporating tail regions of myosin XI-5 (At MYA1, myosin XI-6 (At MYA2, myosin XI-8 (At XI-B, myosin XI-15 (At XI-I, myosin XI-16 (At XI-J and myosin XI-17 (At XI-K were expressed transiently. All YFP-myosin-tail fusion proteins were targeted to small organelles ranging in size from 0.5 to 3.0 μm. Despite the absence of a motor domain, the fluorescently-labeled organelles were motile in most cells. Tail cropping experiments demonstrated that the coiled-coil region was required for specific localization and shorter tail regions were inadequate for targeting. Myosin XI-6 (At MYA2, previously reported to localize to peroxisomes by immunofluorescence, labeled both peroxisomes and vesicles when expressed as a YFP-tail fusion. None of the 6 YFP-myosin tail fusions interacted with chloroplasts, and only one YFP-tail fusion appeared to sometimes co-localize with fluorescent proteins targeted to Golgi and mitochondria. Conclusion 6 myosin XI tails, extending from the coiled-coil region to the C-terminus, label specific vesicles and

  3. Preliminary research on myosin light chain kinase in rabbit liver

    Institute of Scientific and Technical Information of China (English)

    Bin Ren; Hua-Qing Zhu; Zhao-Feng Luo; Qing Zhou; Yuan Wang; Yu-Zhen Wang

    2001-01-01

    AIM: To study preliminarily the properties of myosin light chain kinase (MLCK) in rabbit liver. METHODS: The expression of MLCK was detected by reverse transcription-polymerase chain reaction (RT-PCR);the MLCK was obtained from rabbit liver, and its activity was analyzed by γ-32P incorporation technique to detect the phosphorylation of myosin light chain. RESULTS: MLCK was expressed in rabbit liver, and the activity of the enzyme was similar to rabbit smooth muscle MLCK, and calmodulin-dependent. When the concentration was 0.65 mg-L-1, the activity was at the highest level. CONCLUSION: MLCK expressed in rabbit liver may catalyze the phosphorylation of myosin light chain, which may play important roles in the regulation of hepatic cell functions.

  4. Myosin domain evolution and the primary divergence of eukaryotes.

    Science.gov (United States)

    Richards, Thomas A; Cavalier-Smith, Thomas

    2005-08-25

    Eukaryotic cells have two contrasting cytoskeletal and ciliary organizations. The simplest involves a single cilium-bearing centriole, nucleating a cone of individual microtubules (probably ancestral for unikonts: animals, fungi, Choanozoa and Amoebozoa). In contrast, bikonts (plants, chromists and all other protozoa) were ancestrally biciliate with a younger anterior cilium, converted every cell cycle into a dissimilar posterior cilium and multiple ciliary roots of microtubule bands. Here we show by comparative genomic analysis that this fundamental cellular dichotomy also involves different myosin molecular motors. We found 37 different protein domain combinations, often lineage-specific, and many previously unidentified. The sequence phylogeny and taxonomic distribution of myosin domain combinations identified five innovations that strongly support unikont monophyly and the primary bikont/unikont bifurcation. We conclude that the eukaryotic cenancestor (last common ancestor) had a cilium, mitochondria, pseudopodia, and myosins with three contrasting domain combinations and putative functions.

  5. Role of myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability in vitro and in vivo.

    Science.gov (United States)

    Wu, Fan; Guo, Xiaohua; Xu, Jing; Wang, Weiju; Li, Bingling; Huang, Qiaobing; Su, Lei; Xu, Qiulin

    2016-03-01

    We have previously reported that advanced glycation end products activated Rho-associated protein kinase and p38 mitogen-activated protein kinase, causing endothelial hyperpermeability. However, the mechanisms involved were not fully clarified. Here, we explored the role of myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability. Myosin light chain phosphorylation significantly increased by advanced glycation end products in endothelial cells in a time- and dose-dependent manner, indicating that myosin light chain phosphorylation is involved in the advanced glycation end product pathway. Advanced glycation end products also induced myosin phosphatase-targeting subunit 1 phosphorylation, and small interfering RNA knockdown of the receptor for advanced glycation end products, or blocking myosin light chain kinase with its inhibitor, ML-7, or small interfering RNA abated advanced glycation end product-induced myosin light chain phosphorylation. Advanced glycation end product-induced F-actin rearrangement and endothelial hyperpermeability were also diminished by inhibition of receptor for advanced glycation end product or myosin light chain kinase signalling. Moreover, inhibiting myosin light chain kinase with ML-7 or blocking receptor for advanced glycation end product with its neutralizing antibody attenuated advanced glycation end product-induced microvascular hyperpermeability. Our findings suggest a novel role for myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability.

  6. Catalytic strategy used by the myosin motor to hydrolyze ATP.

    Science.gov (United States)

    Kiani, Farooq Ahmad; Fischer, Stefan

    2014-07-22

    Myosin is a molecular motor responsible for biological motions such as muscle contraction and intracellular cargo transport, for which it hydrolyzes adenosine 5'-triphosphate (ATP). Early steps of the mechanism by which myosin catalyzes ATP hydrolysis have been investigated, but still missing are the structure of the final ADP·inorganic phosphate (Pi) product and the complete pathway leading to it. Here, a comprehensive description of the catalytic strategy of myosin is formulated, based on combined quantum-classical molecular mechanics calculations. A full exploration of catalytic pathways was performed and a final product structure was found that is consistent with all experiments. Molecular movies of the relevant pathways show the different reorganizations of the H-bond network that lead to the final product, whose γ-phosphate is not in the previously reported HPγO4(2-) state, but in the H2PγO4(-) state. The simulations reveal that the catalytic strategy of myosin employs a three-pronged tactic: (i) Stabilization of the γ-phosphate of ATP in a dissociated metaphosphate (PγO3(-)) state. (ii) Polarization of the attacking water molecule, to abstract a proton from that water. (iii) Formation of multiple proton wires in the active site, for efficient transfer of the abstracted proton to various product precursors. The specific role played in this strategy by each of the three loops enclosing ATP is identified unambiguously. It explains how the precise timing of the ATPase activation during the force generating cycle is achieved in myosin. The catalytic strategy described here for myosin is likely to be very similar in most nucleotide hydrolyzing enzymes.

  7. Internal Motility in Stiffening Actin-Myosin Networks

    CERN Document Server

    Uhde, J; Sackmann, E; Parmeggiani, A; Frey, E; Uhde, Joerg; Keller, Manfred; Sackmann, Erich; Parmeggiani, Andrea; Frey, Erwin

    2003-01-01

    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and suggest a "zipping" mechanism to explain the filament motion in the vicinity of the sol-gel transition.

  8. Influence of Trace Amount of Calponin on Smooth Muscle Myosin in Different States

    Institute of Scientific and Technical Information of China (English)

    Jing-Xian YANG; Xiao-Hua FENG; Ying ZHANG; Yuan LIN

    2004-01-01

    Calponin(CaP),a thin filament-associated protein,is thought to be involved in modulating smooth muscle contractile activity,but the role and mechanism keep unknown.In this study,trace amount of calponin(TAC)was found to obviously influence myosin in different states in Ca2+-independent manner,suggesting a high efficient interaction between TAC and myosin.In this assay,the lowest ratio of CaP vs.myosin was 1:10,000,with the concentration of CaP 10,000-fold lower than that used previously.Myosin phosphorylation,myosin Mg2+-ATPase activity and protein binding activity were detected to determine the effects of TAC on the myosin in different states.The amount of precipitated myosin that bound to TAC was used as the index to determine the interaction between myosin and TAC in binding assay.Our data showed that in the absence of actin,TAC significantly increased the precipitation of unphosphorylated myosin,Ca2+-dependently or independently phosphorylated myosin by MLCK,and stimulated the Mg2+-ATPase activities of these myosins slightly but significantly.However,no obvious change of precipitation of myosin phosphorylated by PKA was observed,indicating the relatively selective effect of TAC.In the presence of actin,the increase of myosin precipitations was abolished,and no obvious change of actin precipitations and actinactivated myosin Mg2+-ATPase activities were observed implicating the high efficiency of TAC on myosin being present in the absence of actin.Although we can not give conclusive comments to our results,we propose that the high efficiency of TAC-myosin interaction is present when actin is dissociated from myosin,even if CaP/myosin ratio is very low;this high efficient interaction can be abolished by actin.However,why and how TAC can possess such a high efficiency to influence myosin and how the physiological significance of the high efficiency of TAC is in regulating the interaction between myosin and actin remain to be investigated.

  9. Kinetic properties and small-molecule inhibition of human myosin-6

    Science.gov (United States)

    Heissler, Sarah M.; Selvadurai, Jayashankar; Bond, Lisa M.; Fedorov, Roman; Kendrick-Jones, John; Buss, Folma; Manstein, Dietmar J.

    2012-01-01

    Myosin-6 is an actin-based motor protein that moves its cargo towards the minus-end of actin filaments. Mutations in the gene encoding the myosin-6 heavy chain and changes in the cellular abundance of the protein have been linked to hypertrophic cardiomyopathy, neurodegenerative diseases, and cancer. Here, we present a detailed kinetic characterization of the human myosin-6 motor domain, describe the effect of 2,4,6-triiodophenol on the interaction of myosin-6 with F-actin and nucleotides, and show how addition of the drug reduces the number of myosin-6-dependent vesicle fusion events at the plasma membrane during constitutive secretion. PMID:22884421

  10. Myosin light chain genes in the turkey (Meleagris gallopavo).

    Science.gov (United States)

    Chaves, L D; Ostroski, B J; Reed, K M

    2003-01-01

    Myosin light chains associate with the motor protein myosin and are believed to play a role in the regulation of its actin-based ATPase activity. Myosin light chain cDNA clones from the turkey (Meleagris gallopavo) were isolated and sequenced. One sequence corresponded to an alternative transcript, the skeletal muscle essential light chain (MYL1 isoform 1) and a second to the smooth muscle isoform of myosin light chain (MYL6). The DNA and predicted amino acid sequences of both light chain genes were compared to that of the chicken. Based on the cDNA sequence, oligonucleotide primers were designed to amplify genomic DNA from six of the seven introns of the MYL1 gene. Approximately 5 kb of DNA was sequenced (introns and 3' UTR) and evaluated for the presence of single nucleotide polymorphisms (SNPs). SNPs were verified by sequencing common intron regions from multiple individuals and three polymorphisms were used to genotype pedigreed families. MYL1 is assigned to a turkey linkage group that corresponds to a region of chicken chromosome 7 (GGA7). The results of this study provide genomic reagents for comparative studies of avian muscle components and muscle biology.

  11. Engineering controllable bidirectional molecular motors based on myosin.

    Science.gov (United States)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D; Parker, David; Bryant, Zev

    2012-02-19

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  12. Myosin-I molecular motors at a glance.

    Science.gov (United States)

    McIntosh, Betsy B; Ostap, E Michael

    2016-07-15

    Myosin-I molecular motors are proposed to play various cellular roles related to membrane dynamics and trafficking. In this Cell Science at a Glance article and the accompanying poster, we review and illustrate the proposed cellular functions of metazoan myosin-I molecular motors by examining the structural, biochemical, mechanical and cell biological evidence for their proposed molecular roles. We highlight evidence for the roles of myosin-I isoforms in regulating membrane tension and actin architecture, powering plasma membrane and organelle deformation, participating in membrane trafficking, and functioning as a tension-sensitive dock or tether. Collectively, myosin-I motors have been implicated in increasingly complex cellular phenomena, yet how a single isoform accomplishes multiple types of molecular functions is still an active area of investigation. To fully understand the underlying physiology, it is now essential to piece together different approaches of biological investigation. This article will appeal to investigators who study immunology, metabolic diseases, endosomal trafficking, cell motility, cancer and kidney disease, and to those who are interested in how cellular membranes are coupled to the underlying actin cytoskeleton in a variety of different applications.

  13. MyosinV controls PTEN function and neuronal cell size.

    Science.gov (United States)

    van Diepen, Michiel T; Parsons, Maddy; Downes, C Peter; Leslie, Nicholas R; Hindges, Robert; Eickholt, Britta J

    2009-10-01

    The tumour suppressor PTEN can inhibit cell proliferation and migration as well as control cell growth, in different cell types. PTEN functions predominately as a lipid phosphatase, converting PtdIns(3,4,5)P(3) to PtdIns(4,5)P(2), thereby antagonizing PI(3)K (phosphoinositide 3-kinase) and its established downstream effector pathways. However, much is unclear concerning the mechanisms that regulate PTEN movement to the cell membrane, which is necessary for its activity towards PtdIns(3,4,5)P(3) (Refs 3, 4, 5). Here we show a requirement for functional motor proteins in the control of PI3K signalling, involving a previously unknown association between PTEN and myosinV. FRET (Förster resonance energy transfer) measurements revealed that PTEN interacts directly with myosinV, which is dependent on PTEN phosphorylation mediated by CK2 and/or GSK3. Inactivation of myosinV-transport function in neurons increased cell size, which, in line with known attributes of PTEN-loss, required PI(3)K and mTor. Our data demonstrate a myosin-based transport mechanism that regulates PTEN function, providing new insights into the signalling networks regulating cell growth.

  14. Drebrin attenuates the interaction between actin and myosin-V.

    Science.gov (United States)

    Ishikawa, Ryoki; Katoh, Kaoru; Takahashi, Ayumi; Xie, Ce; Oseki, Koushi; Watanabe, Michitoshi; Igarashi, Michihiro; Nakamura, Akio; Kohama, Kazuhiro

    2007-07-27

    Drebrin-A is an actin-binding protein localized in the dendritic spines of mature neurons, and has been suggested to affect spine morphology [K. Hayashi, T. Shirao, Change in the shape of dendritic spines caused by overexpression of drebrin in cultured cortical neurons, J. Neurosci. 19 (1999) 3918-3925]. However, no biochemical analysis of drebrin-A has yet been reported. In this study, we purified drebrin-A using a bacterial expression system, and characterized it in vitro. Drebrin-A bound to actin filaments with a stoichiometry of one drebrin molecule to 5-6 actin molecules. Furthermore, drebrin-A decreased the Mg-ATPase activity of myosin V. In vitro motility assay revealed that the attachment of F-actin to glass surface coated with myosin-V was decreased by drebrin-A, but once F-actin attached to the surface, the sliding speed of F-actin was unaffected by the presence of drebrin A. These findings suggest that drebrin-A may affect spine dynamics, vesicle transport, and other myosin-V-driven motility in neurons through attenuating the interaction between actin and myosin-V.

  15. Myosin superfamily: The multi-functional and irreplaceable factors in spermatogenesis and testicular tumors.

    Science.gov (United States)

    Li, Yan-Ruide; Yang, Wan-Xi

    2016-01-15

    Spermatogenesis is a fundamental process in sexual development and reproduction, in which the diploid spermatogonia transform into haploid mature spermatozoa. This process is under the regulation of multiple factors and pathway. Myosin has been implicated in various aspects during spermatogenesis. Myosins constitute a diverse superfamily of actin-based molecular motors that translocate along microfilament in an ATP-dependent manner, and six kinds of myosins have been proved that function during spermatogenesis. In mitosis and meiosis, myosins play an important role in spindle assembly and positioning, karyokinesis and cytokinesis. During spermiogenesis, myosins participate in acrosomal formation, nuclear morphogenesis, mitochondrial translocation and spermatid individualization. In this review, we summarize current understanding of the functions of myosin in spermatogenesis and some reproductive system diseases such as testicular tumors and prostate cancer, and discuss the roles of possible upstream molecules which regulate myosin in these processes.

  16. Globular tail of myosin-V is bound to vamp/synaptobrevin.

    Science.gov (United States)

    Ohyama, A; Komiya, Y; Igarashi, M

    2001-02-01

    VAMP/synaptobrevin is one of a number of v-SNAREs involved in vesicular fusion events in neurons. In a previous report, VAMP was shown to form a complex with synaptophysin and myosin V, a motor protein based on the F-actin, and that myosin V was then released from the complex in a Ca(2+)-dependent manner. Here, we found that VAMP alone is bound to myosin V in a Ca(2+)-independent manner, and determined that the globular tail domain of myosin V is its binding site. The syntaxin-VAMP-myosin V formed in the presence of Ca(2+)/calmodulin (CaM). In the absence of CaM, only syntaxin-VAMP, or VAMP-myosin V complex was formed. Our results suggest that VAMP acts as a myosin V receptor on the vesicles and regulates formation of the complex.

  17. Head Lice

    Science.gov (United States)

    ... months of age and older, this medicine offers convenience. Invermectin treats most head lice with just one ... Support AAD Donate Shop AAD Product catalog Store customer service Publications Dermatology World JAAD JAAD Case Reports ...

  18. Head MRI

    Science.gov (United States)

    ... heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not ... to: Abnormal blood vessels in the brain ( arteriovenous malformations of the head ) Tumor of the nerve that ...

  19. Head Injuries

    Science.gov (United States)

    ... ATV) Safety Balance Disorders Knowing Your Child's Medical History First Aid: Falls First Aid: Head Injuries Preventing Children's Sports Injuries Getting Help: Know the Numbers Concussions Stay Safe: Baseball Concussions Concussions: Getting Better Sports and Concussions Dealing ...

  20. Head Tilt

    Science.gov (United States)

    ... Healthy Living Healthy Living Healthy Living Nutrition Fitness Sports Oral Health Emotional Wellness Growing Healthy Sleep Safety & ... When this happens, the neck muscles go into spasm, causing the head to tilt to one side. ...

  1. Determination of the critical residues responsible for cardiac myosin binding protein C's interactions.

    Science.gov (United States)

    Bhuiyan, Md Shenuarin; Gulick, James; Osinska, Hanna; Gupta, Manish; Robbins, Jeffrey

    2012-12-01

    Despite early demonstrations of myosin binding protein C's (MyBP-C) interaction with actin, different investigators have reached different conclusions regarding the relevant and necessary domains mediating this binding. Establishing the detailed structure-function relationships is needed to fully understand cMyBP-C's ability to impact on myofilament contraction as mutations in different domains are causative for familial hypertrophic cardiomyopathy. We defined cMyBP-C's N-terminal structural domains that are necessary or sufficient to mediate interactions with actin and/or the head region of the myosin heavy chain (S2-MyHC). Using a combination of genetics and functional assays, we defined the actin binding site(s) present in cMyBP-C. We confirmed that cMyBP-C's C1 and m domains productively interact with actin, while S2-MyHC interactions are restricted to the m domain. Using residue-specific mutagenesis, we identified the critical actin binding residues and distinguished them from the residues that were critical for S2-MyHC binding. To validate the structural and functional significance of these residues, we silenced the endogenous cMyBP-C in neonatal rat cardiomyocytes (NRC) using cMyBP-C siRNA, and replaced the endogenous cMyBP-C with normal or actin binding-ablated cMyBP-C. Replacement with actin binding-ablated cMyBP-C showed that the mutated protein did not incorporate into the sarcomere normally. Residues responsible for actin and S2-MyHC binding are partially present in overlapping domains but are unique. Expression of an actin binding-deficient cMyBP-C resulted in abnormal cytosolic distribution of the protein, indicating that interaction with actin is essential for the formation and/or maintenance of normal cMyBP-C sarcomeric distribution.

  2. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Directory of Open Access Journals (Sweden)

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  3. Actin dynamics and competition for myosin monomer govern the sequential amplification of myosin filaments.

    Science.gov (United States)

    Beach, Jordan R; Bruun, Kyle S; Shao, Lin; Li, Dong; Swider, Zac; Remmert, Kirsten; Zhang, Yingfan; Conti, Mary A; Adelstein, Robert S; Rusan, Nasser M; Betzig, Eric; Hammer, John A

    2017-02-01

    The cellular mechanisms governing non-muscle myosin II (NM2) filament assembly are largely unknown. Using EGFP-NM2A knock-in fibroblasts and multiple super-resolution imaging modalities, we characterized and quantified the sequential amplification of NM2 filaments within lamellae, wherein filaments emanating from single nucleation events continuously partition, forming filament clusters that populate large-scale actomyosin structures deeper in the cell. Individual partitioning events coincide spatially and temporally with the movements of diverging actin fibres, suppression of which inhibits partitioning. These and other data indicate that NM2A filaments are partitioned by the dynamic movements of actin fibres to which they are bound. Finally, we showed that partition frequency and filament growth rate in the lamella depend on MLCK, and that MLCK is competing with centrally active ROCK for a limiting pool of monomer with which to drive lamellar filament assembly. Together, our results provide new insights into the mechanism and spatio-temporal regulation of NM2 filament assembly in cells.

  4. Kinetic characterization of the sole nonmuscle myosin-2 from the model organism Drosophila melanogaster.

    Science.gov (United States)

    Heissler, Sarah M; Chinthalapudi, Krishna; Sellers, James R

    2015-04-01

    Nonmuscle myosin-2 is the primary enzyme complex powering contractility of the F-actin cytoskeleton in the model organism Drosophila. Despite myosin's essential function in fly development and homeostasis, its kinetic features remain elusive. The purpose of this in vitro study is a detailed steady-state and presteady-state kinetic characterization of the Drosophila nonmuscle myosin-2 motor domain. Kinetic features are a slow steady-state ATPase activity, high affinities for F-actin and ADP, and a low duty ratio. Comparative analysis of the overall enzymatic signatures across the nonmuscle myosin-2 complement from model organisms indicates that the Drosophila protein resembles nonmuscle myosin-2s from metazoa rather than protozoa, though modulatory aspects of myosin motor function are distinct. Drosophila nonmuscle myosin-2 is uniquely insensitive toward blebbistatin, a commonly used myosin-2 inhibitor. An in silico modeling approach together with kinetic studies indicate that the nonconsensus amino acid Met466 in the Drosophila nonmuscle myosin-2 active-site loop switch-2 acts as blebbistatin desensitizer. Introduction of the M466I mutation sensitized the protein for blebbistatin, resulting in a half-maximal inhibitory concentration of 36.3 ± 4.1 µM. Together, these data show that Drosophila nonmuscle myosin-2 is a bona fide molecular motor and establish an important link between switch-2 and blebbistatin sensitivity.

  5. Comparison of biochemical and immunochemical properties of myosin II in taeniid parasites.

    Science.gov (United States)

    Cruz-Rivera, M; Reyes-Torres, A; Reynoso-Ducoing, O; Flisser, A; Ambrosio, J R

    2006-07-01

    Type II myosins are highly conserved proteins, though differences have been observed among organisms, mainly in the filamentous region. Myosin isoforms have been identified in Taenia solium, a helminth parasite of public health importance in many developing countries. These isoforms are probably associated with the physiological requirements of each developmental stage of the parasite. In this paper we extend the characterization of myosin to several other Taenia species. Type II myosins were purified from the larvae (cysticerci) of Taenia solium, T. taeniaeformis and T. crassiceps and the adult stages of T. solium, T. taeniaeformis and T. saginata. Rabbit polyclonal antibodies against some of these myosins were specific at high dilutions but cross-reacted at low dilutions. ATPase activity was evaluated and kinetic values were calculated for each myosin. Homologous actin-myosin interactions increased both the affinity of myosin for ATP and the hydrolysis rate. The results indicate immunological and biochemical differences among taeniid myosins. This variability suggests that different isoforms are found not only in different taeniid species but also at different developmental stages. Further characterization of myosin isoforms should include determination of their amino acid composition.

  6. Rho kinase's role in myosin recruitment to the equatorial cortex of mitotic Drosophila S2 cells is for myosin regulatory light chain phosphorylation.

    Directory of Open Access Journals (Sweden)

    Sara O Dean

    Full Text Available BACKGROUND: Myosin II recruitment to the equatorial cortex is one of the earliest events in establishment of the cytokinetic contractile ring. In Drosophila S2 cells, we previously showed that myosin II is recruited to the furrow independently of F-actin, and that Rho1 and Rok are essential for this recruitment [1]. Rok phosphorylates several cellular proteins, including the myosin regulatory light chain (RLC. METHODOLOGY/PRINCIPAL FINDINGS: Here we express phosphorylation state mimic constructs of the RLC in S2 cells to examine the role of RLC phosphorylation involving Rok in the localization of myosin. Phosphorylation of the RLC is required for myosin localization to the equatorial cortex during mitosis, and the essential role of Rok in this localization and for cytokinesis is to maintain phosphorylation of the RLC. The ability to regulate the RLC phosphorylation state spatio-temporally is not essential for the myosin localization. Furthermore, the essential role of Citron in cytokinesis is not phosphorylation of the RLC. CONCLUSIONS/SIGNIFICANCE: We conclude that the Rho1 pathway leading to myosin localization to the future cytokinetic furrow is relatively straightforward, where only Rok is needed, and it is only needed to maintain phosphorylation of the myosin RLC.

  7. The kinetics of bivalent metal ion dissociation from myosin subfragments.

    Science.gov (United States)

    Bennett, A J; Bagshaw, C R

    1986-01-01

    Bivalent metal ions have multiple roles in subunit association and ATPase regulation in scallop adductor-muscle myosin. To help elucidate these functions, the rates of Ca2+ and Mg2+ dissociation from the non-specific high-affinity sites on the regulatory light chains were measured and compared with those of rabbit skeletal-muscle myosin subfragments. Ca2+ dissociation had a rate constant of about 0.7 s-1 in both species, as measured by the time course of the pH change on EDTA addition. Mg2+ dissociation had a rate constant of 0.05 s-1, as monitored by its displacement with the paramagnetic Mn2+ ion. It is concluded that the exchange between Ca2+ and Mg2+ at the non-specific site, on excitation of both skeletal and adductor muscles, is too slow to contribute to the activation itself. The release of bivalent metal ions from the non-specific site is, however, the first step in release of the scallop regulatory light chain (Bennett & Bagshaw (1986) Biochem. J. 233, 179-186). In scallop myosin additional specific sites are present, which can bind Ca2+ rapidly, to effect activation of the ATPase. In the course of this work, Ca2+ dissociation from EGTA was studied as a model system. This gave rates of 1 s-1 and 0.3 s-1 at pH 7.0 and pH 8.0 respectively.

  8. Head Start.

    Science.gov (United States)

    Greenman, Geri

    2000-01-01

    Discusses an art project in which students created drawings of mop heads. Explains that the approach of drawing was more important than the subject. States that the students used the chiaroscuro technique, used by Rembrandt and Caravaggio, in which light appears out of the darkness. (CMK)

  9. Covalent immobilization of myosin for in-vitro motility of actin

    Indian Academy of Sciences (India)

    Ellis Bagga; Sunita Kumari; Rajesh Kumar; Rakesh Kumar; R P Bajpai; Lalit M Bharadwaj

    2005-11-01

    The present study reports the covalent immobilization of myosin on glass surface and in-vitro motility of actin-myosin biomolecular motor. Myosin was immobilized on poly-L-lysine coated glass using heterobifunctional cross linker EDC and characterized by AFM. The in-vitro motility of actin was carried out on the immobilized myosin. It was observed that velocity of actin over myosin increases with increasing actin concentration (0.4-1.0 mg/ml) and was found in the range of 0.40-3.25 m/s. The motility of actin-myosin motor on artificial surfaces is of immense importance for developing nanodevices for healthcare and engineering applications.

  10. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells.

    Science.gov (United States)

    Chen, Guokai; Hou, Zhonggang; Gulbranson, Daniel R; Thomson, James A

    2010-08-06

    Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity, junctional complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent cell-cell adhesion, all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures, programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies, their viability is significantly reduced. Here, we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase, downregulation of myosin heavy chain, and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain, suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs.

  11. Myosin individualized: single nucleotide polymorphisms in energy transduction

    Directory of Open Access Journals (Sweden)

    Wieben Eric D

    2010-03-01

    Full Text Available Abstract Background Myosin performs ATP free energy transduction into mechanical work in the motor domain of the myosin heavy chain (MHC. Energy transduction is the definitive systemic feature of the myosin motor performed by coordinating in a time ordered sequence: ATP hydrolysis at the active site, actin affinity modulation at the actin binding site, and the lever-arm rotation of the power stroke. These functions are carried out by several conserved sub-domains within the motor domain. Single nucleotide polymorphisms (SNPs affect the MHC sequence of many isoforms expressed in striated muscle, smooth muscle, and non-muscle tissue. The purpose of this work is to provide a rationale for using SNPs as a functional genomics tool to investigate structurefunction relationships in myosin. In particular, to discover SNP distribution over the conserved sub-domains and surmise what it implies about sub-domain stability and criticality in the energy transduction mechanism. Results An automated routine identifying human nonsynonymous SNP amino acid missense substitutions for any MHC gene mined the NCBI SNP data base. The routine tested 22 MHC genes coding muscle and non-muscle isoforms and identified 89 missense mutation positions in the motor domain with 10 already implicated in heart disease and another 8 lacking sequence homology with a skeletal MHC isoform for which a crystallographic model is available. The remaining 71 SNP substitutions were found to be distributed over MHC with 22 falling outside identified functional sub-domains and 49 in or very near to myosin sub-domains assigned specific crucial functions in energy transduction. The latter includes the active site, the actin binding site, the rigid lever-arm, and regions facilitating their communication. Most MHC isoforms contained SNPs somewhere in the motor domain. Conclusions Several functional-crucial sub-domains are infiltrated by a large number of SNP substitution sites suggesting these

  12. Axon extension in the fast and slow lanes: substratum-dependent engagement of myosin II functions.

    Science.gov (United States)

    Ketschek, Andrea R; Jones, Steven L; Gallo, Gianluca

    2007-09-01

    Axon extension involves the coordinated regulation of the neuronal cytoskeleton. Actin filaments drive protrusion of filopodia and lamellipodia while microtubules invade the growth cone, thereby providing structural support for the nascent axon. Furthermore, in order for axons to extend the growth cone must attach to the substratum. Previous work indicates that myosin II activity inhibits the advance of microtubules into the periphery of growth cones, and myosin II has also been implicated in mediating integrin-dependent cell attachment. However, it is not clear how the functions of myosin II in regulating substratum attachment and microtubule advance are integrated during axon extension. We report that inhibition of myosin II function decreases the rate of axon extension on laminin, but surprisingly promotes extension rate on polylysine. The differential effects of myosin II inhibition on axon extension rate are attributable to myosin II having the primary function of mediating substratum attachment on laminin, but not on polylysine. Conversely, on polylysine the primary function of myosin II is to inhibit microtubule advance into growth cones. Thus, the substratum determines the role of myosin II in axon extension by controlling the functions of myosin II that contribute to extension.

  13. Myosin VI contributes to synaptic transmission and development at the Drosophila neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Campbell Shelagh

    2011-07-01

    Full Text Available Abstract Background Myosin VI, encoded by jaguar (jar in Drosophila melanogaster, is a unique member of the myosin superfamily of actin-based motor proteins. Myosin VI is the only myosin known to move towards the minus or pointed ends of actin filaments. Although Myosin VI has been implicated in numerous cellular processes as both an anchor and a transporter, little is known about the role of Myosin VI in the nervous system. We previously recovered jar in a screen for genes that modify neuromuscular junction (NMJ development and here we report on the genetic analysis of Myosin VI in synaptic development and function using loss of function jar alleles. Results Our experiments on Drosophila third instar larvae revealed decreased locomotor activity, a decrease in NMJ length, a reduction in synaptic bouton number, and altered synaptic vesicle localization in jar mutants. Furthermore, our studies of synaptic transmission revealed alterations in both basal synaptic transmission and short-term plasticity at the jar mutant neuromuscular synapse. Conclusions Altogether these findings indicate that Myosin VI is important for proper synaptic function and morphology. Myosin VI may be functioning as an anchor to tether vesicles to the bouton periphery and, thereby, participating in the regulation of synaptic vesicle mobilization during synaptic transmission.

  14. Myosin inhibitors block accumulation movement of chloroplasts in Arabidopsis thaliana leaf cells.

    Science.gov (United States)

    Paves, H; Truve, E

    2007-01-01

    Chloroplasts alter their distribution within plant cells depending on the external light conditions. Myosin inhibitors 2,3-butanedione monoxime (BDM), N-ethylmaleimide (NEM), and 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7) were used to study the possible role of myosins in chloroplast photorelocation in Arabidopsis thaliana mesophyll cells. None of these agents had an effect on the chloroplast high-fluence-rate avoidance movement but all of the three myosin inhibitors blocked the accumulation movement of chloroplasts after a high-fluence-rate irradiation of the leaves. The results suggest that myosins have a role in A. thaliana chloroplast photorelocation.

  15. Differential patterns of myosin Va expression during the ontogenesis of the rat hippocampus

    Directory of Open Access Journals (Sweden)

    L.S. Brinn

    2010-09-01

    Full Text Available Myosin Va is an actin-based, processive molecular motor protein highly enriched in the nervous tissue of vertebrates. It has been associated with processes of cellular motility, which include organelle transport and neurite outgrowth. The in vivo expression of myosin Va protein in the developing nervous system of mammals has not yet been reported. We describe here the immunolocalization of myosin Va in the developing rat hippocampus. Coronal sections of the embryonic and postnatal rat hippocampus were probed with an affinity-purified, polyclonal anti-myosin Va antibody. Myosin Va was localized in the cytoplasm of granule cells in the dentate gyrus and of pyramidal cells in Ammon's horn formation. Myosin Va expression changed during development, being higher in differentiating rather than already differentiated granule and pyramidal cells. Some of these cells presented a typical migratory profile, while others resembled neurons that were in the process of differentiation. Myosin Va was also transiently expressed in fibers present in the fimbria. Myosin Va was not detected in germinative matrices of the hippocampus proper or of the dentate gyrus. In conclusion, myosin Va expression in both granule and pyramidal cells showed both position and time dependency during hippocampal development, indicating that this motor protein is under developmental regulation.

  16. Myosin Va is developmentally regulated and expressed in the human cerebellum from birth to old age

    Directory of Open Access Journals (Sweden)

    C.C.R. Souza

    2013-02-01

    Full Text Available Myosin Va functions as a processive, actin-based motor molecule highly enriched in the nervous system, which transports and/or tethers organelles, vesicles, and mRNA and protein translation machinery. Mutation of myosin Va leads to Griscelli disease that is associated with severe neurological deficits and a short life span. Despite playing a critical role in development, the expression of myosin Va in the central nervous system throughout the human life span has not been reported. To address this issue, the cerebellar expression of myosin Va from newborns to elderly humans was studied by immunohistochemistry using an affinity-purified anti-myosin Va antibody. Myosin Va was expressed at all ages from the 10th postnatal day to the 98th year of life, in molecular, Purkinje and granular cerebellar layers. Cerebellar myosin Va expression did not differ essentially in localization or intensity from childhood to old age, except during the postnatal developmental period. Structures resembling granules and climbing fibers in Purkinje cells were deeply stained. In dentate neurons, long processes were deeply stained by anti-myosin Va, as were punctate nuclear structures. During the first postnatal year, myosin Va was differentially expressed in the external granular layer (EGL. In the EGL, proliferating prospective granule cells were not stained by anti-myosin Va antibody. In contrast, premigratory granule cells in the EGL stained moderately. Granule cells exhibiting a migratory profile in the molecular layer were also moderately stained. In conclusion, neuronal myosin Va is developmentally regulated, and appears to be required for cerebellar function from early postnatal life to senescence.

  17. My oh my(osin): Insights into how auditory hair cells count, measure, and shape.

    Science.gov (United States)

    Pollock, Lana M; Chou, Shih-Wei; McDermott, Brian M

    2016-01-18

    The mechanisms underlying mechanosensory hair bundle formation in auditory sensory cells are largely mysterious. In this issue, Lelli et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509017) reveal that a pair of molecular motors, myosin IIIa and myosin IIIb, is involved in the hair bundle's morphology and hearing.

  18. A role for myosin VI in the localization of axonal proteins.

    Directory of Open Access Journals (Sweden)

    Tommy L Lewis

    2011-03-01

    Full Text Available In neurons polarized trafficking of vesicle-bound membrane proteins gives rise to the distinct molecular composition and functional properties of axons and dendrites. Despite their central role in shaping neuronal form and function, surprisingly little is known about the molecular processes that mediate polarized targeting of neuronal proteins. Recently, the plus-end-directed motor Myosin Va was shown to play a critical role in targeting of transmembrane proteins to dendrites; however, the role of myosin motors in axonal targeting is unknown. Here we show that Myosin VI, a minus-end-directed motor, plays a vital role in the enrichment of proteins on the surface of axons. Engineering non-neuronal proteins to interact with Myosin VI causes them to become highly concentrated at the axonal surface in dissociated rat cortical neurons. Furthermore, disruption of either Myosin VI function or expression leads to aberrant dendritic localization of axonal proteins. Myosin VI mediates the enrichment of proteins on the axonal surface at least in part by stimulating dendrite-specific endocytosis, a mechanism that has been shown to underlie the localization of many axonal proteins. In addition, a version of Channelrhodopsin 2 that was engineered to bind to Myosin VI is concentrated at the surface of the axon of cortical neurons in mice in vivo, suggesting that it could be a useful tool for probing circuit structure and function. Together, our results indicate that myosins help shape the polarized distributions of both axonal and dendritic proteins.

  19. Myosin Ⅷ Regulates Protonemal Patterning and Developmental Timing in the Moss Physcomitrella patens

    Institute of Scientific and Technical Information of China (English)

    Shu-Zon Wua; Julie A. Ritchie; Ai-Hong Pan; Ralph S. Quatrano; Magdalena Bezanilla

    2011-01-01

    Plants have two classes of myosins.While recent work has focused on class Ⅺ myosins showing that myosin Ⅺ is responsible for organelle motility and cytoplasmic streaming,much less is known about the role of myosin Ⅷ in plant growth and development.We have used a combination of RNAi and insertional knockouts to probe myosin Ⅷ function in the moss Physcomitrella patens.We isolated △myo8ABCDE plants demonstrating that myosin Ⅷ is not required for plant viability.However,myosin Ⅷ mutants are smaller than wild-type plants in part due to a defect in cell size.Additionally,△myo8ABCDE plants produce more side branches and form gametophores much earlier than wild-type plants.In the absence of nutrient media,△myo8ABCDE plants exhibit significant protonemal patterning defects,including highly curved protonemal filaments,morphologically defective side branches,as well as an increase in the number of branches.Exogenous auxin partially rescues protonemal defects in △myo8ABCDE plants grown in the absence of nutrients.This result,together with defects in protonemal branching,smaller caulonemal cells,and accelerated development in the △myo8ABCDE plants,suggests that myosin Ⅷ is involved in hormone homeostasis in P patens.

  20. Head Position and Internally Headed Relative Clauses.

    Science.gov (United States)

    Basilico, David

    1996-01-01

    Examines "Head Movement" in internally headed relative clauses (IHRCs). The article shows that in some cases, head movement to an external position need not take place and demonstrates that this movement of the head to a sentence-internal position results from the quantificational nature of IHRCs and Diesing's mapping hypothesis (1990, 1992). (56…

  1. Peroxynitrite-mediated oxidative modifications of myosin and implications on structure and function.

    Science.gov (United States)

    Tiago, Teresa; Palma, Pedro S; Gutierrez-Merino, Carlos; Aureliano, Manuel

    2010-11-01

    Abstract The peroxynitrite-induced functional impairment of myosin was studied in different reaction conditions, known to alter the oxidative chemistry of peroxynitrite, to better understand the molecular mechanisms of this interaction. It is shown that peroxynitrite is able to enhance the basal MgATPase activity up to 2-fold while inhibiting the actin-stimulated ATPase activity of myosin and that the extent of these functional alterations is dependent on the reaction medium. The observed changes in the stimulation of the MgATPase activity correlate with the extent of carbonyl formation in myosin. The enzyme inhibition is more potent in conditions where the efficiency of tyrosine nitration and peroxynitrite reactivity towards sulphydryls are lower. Together with the observation that reversion of sulphydryl oxidation did not lead to the recovery of myosin functional and structural impairments, these results point out to the importance of protein carbonylation as a post-translational modification in the peroxynitrite-induced myosin functional impairment.

  2. Modeling Hand-Over-Hand and Inchworm Steps in Myosin VI

    Science.gov (United States)

    Jack, Amanda; Lowe, Ian; Tehver, Riina

    Myosin VI is a molecular motor protein that moves along actin filaments to transport cargo within a cell. There is much experimental evidence that the myosin VI dimer moves ``hand-over-hand'' along actin; however, recent experiments suggest that the protein can also move via an ``inchworm'' mechanism. We created a mechanochemical kinetic model to predict myosin VI's behavior under different ATP, ADP, and force conditions, taking these alternative mechanisms into account. Our model's calculations agree well with experimental results and can also be used to predict myosin VI's behavior outside experimentally tested regimes, such as under forward force. We also predict an optimized motor function for the protein around physiological (-2 pN) load and anchoring under -3 pN load. By using our model to predict myosin VI's response to environmental change, we can gain insight into the behavior of a protein that can be difficult to observe experimentally.

  3. Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels

    Science.gov (United States)

    Tang, Wanjian; Blair, Cheavar A.; Walton, Shane D.; Málnási-Csizmadia, András; Campbell, Kenneth S.; Yengo, Christopher M.

    2017-01-01

    Inherited cardiomyopathies are a common form of heart disease that are caused by mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most frequently affected genes. Since the discovery of the first cardiomyopathy associated mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin motor properties with the contractile performance of cardiac muscle. There has been substantial progress in developing assays to measure the force and velocity properties of purified cardiac muscle myosin but it is still challenging to correlate results from molecular and tissue-level experiments. Mutations that cause hypertrophic cardiomyopathy are more common than mutations that lead to dilated cardiomyopathy and are also often associated with increased isometric force and hyper-contractility. Therefore, the development of drugs designed to decrease isometric force by reducing the duty ratio (the proportion of time myosin spends bound to actin during its ATPase cycle) has been proposed for the treatment of hypertrophic cardiomyopathy. Para-Nitroblebbistatin is a small molecule drug proposed to decrease the duty ratio of class II myosins. We examined the impact of this drug on human beta cardiac myosin using purified myosin motor assays and studies of permeabilized muscle fiber mechanics. We find that with purified human beta-cardiac myosin para-Nitroblebbistatin slows actin-activated ATPase and in vitro motility without altering the ADP release rate constant. In permeabilized human myocardium, para-Nitroblebbistatin reduces isometric force, power, and calcium sensitivity while not changing shortening velocity or the rate of force development (ktr). Therefore, designing a drug that reduces the myosin duty ratio by inhibiting strong attachment to actin while not changing detachment can cause a reduction in force without changing shortening velocity or relaxation. PMID:28119616

  4. Discoidin Domain Receptor 1 Mediates Myosin-Dependent Collagen Contraction

    Directory of Open Access Journals (Sweden)

    Nuno M. Coelho

    2017-02-01

    Full Text Available Discoidin domain receptor 1 (DDR1 is a tyrosine kinase collagen adhesion receptor that mediates cell migration through association with non-muscle myosin IIA (NMIIA. Because DDR1 is implicated in cancer fibrosis, we hypothesized that DDR1 interacts with NMIIA to enable collagen compaction by traction forces. Mechanical splinting of rat dermal wounds increased DDR1 expression and collagen alignment. In periodontal ligament of DDR1 knockout mice, collagen mechanical reorganization was reduced >30%. Similarly, cultured cells with DDR1 knockdown or expressing kinase-deficient DDR1d showed 50% reduction of aligned collagen. Tractional remodeling of collagen was dependent on DDR1 clustering, activation, and interaction of the DDR1 C-terminal kinase domain with NMIIA filaments. Collagen remodeling by traction forces, DDR1 tyrosine phosphorylation, and myosin light chain phosphorylation were increased on stiff versus soft substrates. Thus, DDR1 clustering, activation, and interaction with NMIIA filaments enhance the collagen tractional remodeling that is important for collagen compaction in fibrosis.

  5. A new role for myosin II in vesicle fission.

    Science.gov (United States)

    Flores, Juan A; Balseiro-Gomez, Santiago; Cabeza, Jose M; Acosta, Jorge; Ramirez-Ponce, Pilar; Ales, Eva

    2014-01-01

    An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis.

  6. Yeast myosin light chain, Mlc1p, interacts with both IQGAP and class II myosin to effect cytokinesis.

    Science.gov (United States)

    Boyne, J R; Yosuf, H M; Bieganowski, P; Brenner, C; Price, C

    2000-12-01

    MLC1 (myosin light chain) acts as a dosage suppressor of a temperature sensitive mutation in the gene encoding the S. cerevisiae IQGAP protein. Both proteins localize to the bud neck in mitosis although Mlc1p localisation precedes Iqg1p. Mlc1p is also found at the incipient bud site in G(1) and the growing bud tip during S and G(2) phases of the cell cycle. A dominant negative GST-Mlc1p fusion protein specifically blocks cytokinesis and prevents Iqg1p localisation to the bud neck, as does depletion of Mlc1p. These data support a direct interaction between the two proteins and immunoprecipitation experiments confirm this prediction. Mlc1p is also shown to interact with the class II conventional myosin (Myo1p). All three proteins form a complex, however, the interaction between Mlc1p and Iqg1p can be separated from the Mlc1p/Myo1p interaction. Mlc1p localisation and maintenance at the bud neck is independent of actin, Myo1p and Iqg1p. It is proposed that Mlc1p therefore functions to recruit Iqg1p and in turn actin to the actomyosin ring and that it is also required for Myo1p function during ring contraction.

  7. Is HEADS in our heads?

    DEFF Research Database (Denmark)

    Boisen, Kirsten A; Hertz, Pernille Grarup; Blix, Charlotte;

    2016-01-01

    contraception], Safety, Self-harm) interview is a feasible way of exploring health risk behaviors and resilience. OBJECTIVE: The purpose of this study was to evaluate how often HEADS topics were addressed according to young patients and staff in pediatric and adult outpatient clinics. METHODS: We conducted...... care professionals participated. We found only small reported differences between staff and young patients regarding whether home, education, and activity were addressed. However, staff reported twice the rate of addressing smoking, alcohol, illegal drugs, sexuality, and contraception compared to young...... patients. Young patients reported that smoking, alcohol, illegal drugs, sexuality, and contraception were addressed significantly more at adult clinics in comparison to pediatric clinics. After controlling for age, gender and duration of illness, according to young patients, adjusted odds ratios...

  8. Loss of cargo binding in the human myosin VI deafness mutant (R1166X) leads to increased actin filament binding.

    Science.gov (United States)

    Arden, Susan D; Tumbarello, David A; Butt, Tariq; Kendrick-Jones, John; Buss, Folma

    2016-10-01

    Mutations in myosin VI have been associated with autosomal-recessive (DFNB37) and autosomal-dominant (DFNA22) deafness in humans. Here, we characterise an myosin VI nonsense mutation (R1166X) that was identified in a family with hereditary hearing loss in Pakistan. This mutation leads to the deletion of the C-terminal 120 amino acids of the myosin VI cargo-binding domain, which includes the WWY-binding motif for the adaptor proteins LMTK2, Tom1 as well as Dab2. Interestingly, compromising myosin VI vesicle-binding ability by expressing myosin VI with the R1166X mutation or with single point mutations in the adaptor-binding sites leads to increased F-actin binding of this myosin in vitro and in vivo As our results highlight the importance of cargo attachment for regulating actin binding to the motor domain, we perform a detailed characterisation of adaptor protein binding and identify single amino acids within myosin VI required for binding to cargo adaptors. We not only show that the adaptor proteins can directly interact with the cargo-binding tail of myosin VI, but our in vitro studies also suggest that multiple adaptor proteins can bind simultaneously to non-overlapping sites in the myosin VI tail. In conclusion, our characterisation of the human myosin VI deafness mutant (R1166X) suggests that defects in cargo binding may leave myosin VI in a primed/activated state with an increased actin-binding ability.

  9. Approaches to myosin modelling in a two-phase flow model for cell motility

    Science.gov (United States)

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2016-04-01

    A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.

  10. Genetic Variation in Myosin 1H Contributes to Mandibular Prognathism

    Science.gov (United States)

    Tassopoulou-Fishell, Maria; Deeley, Kathleen; Harvey, Erika M.; Sciote, James; Vieira, Alexandre R.

    2013-01-01

    Introduction Several candidate loci have been suggested as influencing mandibular prognathism (1p22.1, 1p22.2, 1p36, 3q26.2, 5p13-p12, 6q25, 11q22.2-q22.3, 12q23, 12q13.13, and 19p13.2). The goal of this study was to replicate these results in a well-characterized homogeneous sample set. Methods Thirty-three single nucleotide polymorphisms spanning all candidate regions were studied in 44 prognathic and 35 Class I subjects from the University of Pittsburgh School of Dental Medicine Dental Registry and DNA Repository. The 44 mandibular prognathism subjects had an average age of 18.4 years, 31 were females and 13 males, and 24 were White, 15 African American, two Hispanic, and three Asian. The 35 Class I subjects had an average age of 17.6 years, 27 were females and 9 males, and 27 were White, six African Americans, one Hispanic, and two Asian. Skeletal mandibular prognathism diagnosis included cephalometric values indicative of Class III such as ANB smaller than two degrees, negative Witts appraisal, and positive A–B plane. Additional mandibular prognathism criteria included negative OJ and visually prognathic (concave) profile as determined by the subject's clinical evaluation. Orthognathic subjects without jaw deformations were used as a comparison group. Mandibular prognathism and orthognathic subjects were matched based on race, sex and age. Genetic markers were tested by polymerase chain reaction using TaqMan chemistry. Chi-square and Fisher exact tests were used to determine overrepresentation of marker allele with alpha of 0.05. Results An association was unveiled between a marker in MYO1H (rs10850110) and the mandibular prognathism phenotype (p=0.03). MYO1H is a Class-I myosin that is in a different protein group than the myosin isoforms of muscle sarcomeres, which are the basis of skeletal muscle fiber typing. Class I myosins are necessary for cell motility, phagocytosis and vesicle transport. Conclusions More strict clinical definitions may increase

  11. The Role of Structural Dynamics of Actin in Class-Specific Myosin Motility

    Science.gov (United States)

    Noguchi, Taro Q. P.; Morimatsu, Masatoshi; Iwane, Atsuko H.; Yanagida, Toshio; Uyeda, Taro Q. P.

    2015-01-01

    The structural dynamics of actin, including the tilting motion between the small and large domains, are essential for proper interactions with actin-binding proteins. Gly146 is situated at the hinge between the two domains, and we previously showed that a G146V mutation leads to severe motility defects in skeletal myosin but has no effect on motility of myosin V. The present study tested the hypothesis that G146V mutation impaired rotation between the two domains, leading to such functional defects. First, our study showed that depolymerization of G146V filaments was slower than that of wild-type filaments. This result is consistent with the distinction of structural states of G146V filaments from those of the wild type, considering the recent report that stabilization of actin filaments involves rotation of the two domains. Next, we measured intramolecular FRET efficiencies between two fluorophores in the two domains with or without skeletal muscle heavy meromyosin or the heavy meromyosin equivalent of myosin V in the presence of ATP. Single-molecule FRET measurements showed that the conformations of actin subunits of control and G146V actin filaments were different in the presence of skeletal muscle heavy meromyosin. This altered conformation of G146V subunits may lead to motility defects in myosin II. In contrast, distributions of FRET efficiencies of control and G146V subunits were similar in the presence of myosin V, consistent with the lack of motility defects in G146V actin with myosin V. The distribution of FRET efficiencies in the presence of myosin V was different from that in the presence of skeletal muscle heavy meromyosin, implying that the roles of actin conformation in myosin motility depend on the type of myosin. PMID:25945499

  12. The role of structural dynamics of actin in class-specific myosin motility.

    Directory of Open Access Journals (Sweden)

    Taro Q P Noguchi

    Full Text Available The structural dynamics of actin, including the tilting motion between the small and large domains, are essential for proper interactions with actin-binding proteins. Gly146 is situated at the hinge between the two domains, and we previously showed that a G146V mutation leads to severe motility defects in skeletal myosin but has no effect on motility of myosin V. The present study tested the hypothesis that G146V mutation impaired rotation between the two domains, leading to such functional defects. First, our study showed that depolymerization of G146V filaments was slower than that of wild-type filaments. This result is consistent with the distinction of structural states of G146V filaments from those of the wild type, considering the recent report that stabilization of actin filaments involves rotation of the two domains. Next, we measured intramolecular FRET efficiencies between two fluorophores in the two domains with or without skeletal muscle heavy meromyosin or the heavy meromyosin equivalent of myosin V in the presence of ATP. Single-molecule FRET measurements showed that the conformations of actin subunits of control and G146V actin filaments were different in the presence of skeletal muscle heavy meromyosin. This altered conformation of G146V subunits may lead to motility defects in myosin II. In contrast, distributions of FRET efficiencies of control and G146V subunits were similar in the presence of myosin V, consistent with the lack of motility defects in G146V actin with myosin V. The distribution of FRET efficiencies in the presence of myosin V was different from that in the presence of skeletal muscle heavy meromyosin, implying that the roles of actin conformation in myosin motility depend on the type of myosin.

  13. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... of the Head? What is CT Scanning of the Head? Computed tomography, more commonly known as a ... of page What are some common uses of the procedure? CT scanning of the head is typically ...

  14. Chitin synthases with a myosin motor-like domain control the resistance of Aspergillus fumigatus to echinocandins.

    Science.gov (United States)

    Jiménez-Ortigosa, Cristina; Aimanianda, Vishukumar; Muszkieta, Laetitia; Mouyna, Isabelle; Alsteens, David; Pire, Stéphane; Beau, Remi; Krappmann, Sven; Beauvais, Anne; Dufrêne, Yves F; Roncero, César; Latgé, Jean-Paul

    2012-12-01

    Aspergillus fumigatus has two chitin synthases (CSMA and CSMB) with a myosin motor-like domain (MMD) arranged in a head-to-head configuration. To understand the function of these chitin synthases, single and double csm mutant strains were constructed and analyzed. Although there was a slight reduction in mycelial growth of the mutants, the total chitin synthase activity and the cell wall chitin content were similar in the mycelium of all of the mutants and the parental strain. In the conidia, chitin content in the ΔcsmA strain cell wall was less than half the amount found in the parental strain. In contrast, the ΔcsmB mutant strain and, unexpectedly, the ΔcsmA/ΔcsmB mutant strain did not show any modification of chitin content in their conidial cell walls. In contrast to the hydrophobic conidia of the parental strain, conidia of all of the csm mutants were hydrophilic due to the presence of an amorphous material covering the hydrophobic surface-rodlet layer. The deletion of CSM genes also resulted in an increased susceptibility of resting and germinating conidia to echinocandins. These results show that the deletion of the CSMA and CSMB genes induced a significant disorganization of the cell wall structure, even though they contribute only weakly to the overall cell wall chitin synthesis.

  15. Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy.

    Science.gov (United States)

    Rivard, Maxime; Couture, Charles-André; Miri, Amir K; Laliberté, Mathieu; Bertrand-Grenier, Antony; Mongeau, Luc; Légaré, François

    2013-01-01

    We report that combining interferometry with Second Harmonic Generation (SHG) microscopy provides valuable information about the relative orientation of noncentrosymmetric structures composing tissues. This is confirmed through the imaging of rat medial gastrocnemius muscle. The inteferometric Second Harmonic Generation (ISHG) images reveal that each side of the myosin filaments composing the A band of the sarcomere generates π phase shifted SHG signal which implies that the myosin proteins at each end of the filaments are oriented in opposite directions. This highlights the bipolar structural organization of the myosin filaments and shows that muscles can be considered as a periodically poled biological structure.

  16. Cooperative folding of muscle myosins: I. Mechanical model

    CERN Document Server

    Caruel, Matthieu; Truskinovsky, Lev

    2013-01-01

    Mechanically induced folding of passive cross-linkers is a fundamental biological phenomenon. A typical example is a conformational change in myosin II responsible for the power-stroke in skeletal muscles. In this paper we present an athermal perspective on such folding by analyzing the simplest purely mechanical prototype: a parallel bundle of bi-stable units attached to a common backbone. We show that in this analytically transparent model, characterized by a rugged energy landscape, the ground states are always highly coherent, single-phase configurations. We argue that such cooperative behavior, ensuring collective conformational change, is due to the dominance of long- range interactions making the system non-additive. The detailed predictions of our model are in agreement with experimentally observed non-equivalence of fast force recovery in skeletal muscles loaded in soft and hard devices. Some features displayed by the model are also recognizable in the behavior of other biological systems with passiv...

  17. Myosin Vc Is Specialized for Transport on a Secretory Superhighway.

    Science.gov (United States)

    Sladewski, Thomas E; Krementsova, Elena B; Trybus, Kathleen M

    2016-08-22

    A hallmark of the well-studied vertebrate class Va myosin is its ability to take multiple steps on actin as a single molecule without dissociating, a feature called "processivity." Therefore, it was surprising when kinetic and single-molecule assays showed that human myosin Vc (MyoVc) was not processive on single-actin filaments [1-3]. We explored the possibility that MyoVc is processive only under conditions that resemble its biological context. Recently, it was shown that zymogen vesicles are transported on actin "superhighways" composed of parallel actin cables nucleated by formins from the plasma membrane [4]. Loss of these cables compromises orderly apical targeting of vesicles. MyoVc has been implicated in transporting secretory vesicles to the apical membrane [5]. We hypothesized that actin cables regulate the processive properties of MyoVc. We show that MyoVc is unique in taking variable size steps, which are frequently in the backward direction. Results obtained with chimeric constructs implicate the lever arm/rod of MyoVc as being responsible for these properties. Actin bundles allow single MyoVc motors to move processively. Remarkably, even teams of MyoVc motors require actin bundles to move continuously at physiological ionic strength. The irregular stepping pattern of MyoVc, which may result from flexibility in the lever arm/rod of MyoVc, appears to be a unique structural adaptation that allows the actin track to spatially restrict the activity of MyoVc to specialized actin cables in order to co-ordinate and target the final stages of vesicle secretion.

  18. Sarcomere lattice geometry influences cooperative myosin binding in muscle.

    Directory of Open Access Journals (Sweden)

    Bertrand C W Tanner

    2007-07-01

    Full Text Available In muscle, force emerges from myosin binding with actin (forming a cross-bridge. This actomyosin binding depends upon myofilament geometry, kinetics of thin-filament Ca(2+ activation, and kinetics of cross-bridge cycling. Binding occurs within a compliant network of protein filaments where there is mechanical coupling between myosins along the thick-filament backbone and between actin monomers along the thin filament. Such mechanical coupling precludes using ordinary differential equation models when examining the effects of lattice geometry, kinetics, or compliance on force production. This study uses two stochastically driven, spatially explicit models to predict levels of cross-bridge binding, force, thin-filament Ca(2+ activation, and ATP utilization. One model incorporates the 2-to-1 ratio of thin to thick filaments of vertebrate striated muscle (multi-filament model, while the other comprises only one thick and one thin filament (two-filament model. Simulations comparing these models show that the multi-filament predictions of force, fractional cross-bridge binding, and cross-bridge turnover are more consistent with published experimental values. Furthermore, the values predicted by the multi-filament model are greater than those values predicted by the two-filament model. These increases are larger than the relative increase of potential inter-filament interactions in the multi-filament model versus the two-filament model. This amplification of coordinated cross-bridge binding and cycling indicates a mechanism of cooperativity that depends on sarcomere lattice geometry, specifically the ratio and arrangement of myofilaments.

  19. Nonmuscle myosin II isoforms coassemble in living cells.

    Science.gov (United States)

    Beach, Jordan R; Shao, Lin; Remmert, Kirsten; Li, Dong; Betzig, Eric; Hammer, John A

    2014-05-19

    Nonmuscle myosin II (NM II) powers myriad developmental and cellular processes, including embryogenesis, cell migration, and cytokinesis [1]. To exert its functions, monomers of NM II assemble into bipolar filaments that produce a contractile force on the actin cytoskeleton. Mammalian cells express up to three isoforms of NM II (NM IIA, IIB, and IIC), each of which possesses distinct biophysical properties and supports unique as well as redundant cellular functions [2-8]. Despite previous efforts [9-13], it remains unclear whether NM II isoforms assemble in living cells to produce mixed (heterotypic) bipolar filaments or whether filaments consist entirely of a single isoform (homotypic). We addressed this question using fluorescently tagged versions of NM IIA, IIB, and IIC, isoform-specific immunostaining of the endogenous proteins, and two-color total internal reflection fluorescence structured-illumination microscopy, or TIRF-SIM, to visualize individual myosin II bipolar filaments inside cells. We show that NM II isoforms coassemble into heterotypic filaments in a variety of settings, including various types of stress fibers, individual filaments throughout the cell, and the contractile ring. We also show that the differential distribution of NM IIA and NM IIB typically seen in confocal micrographs of well-polarized cells is reflected in the composition of individual bipolar filaments. Interestingly, this differential distribution is less pronounced in freshly spread cells, arguing for the existence of a sorting mechanism acting over time. Together, our work argues that individual NM II isoforms are potentially performing both isoform-specific and isoform-redundant functions while coassembled with other NM II isoforms.

  20. Head Impact Laboratory (HIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The HIL uses testing devices to evaluate vehicle interior energy attenuating (EA) technologies for mitigating head injuries resulting from head impacts during mine/...

  1. Heading and head injuries in soccer.

    Science.gov (United States)

    Kirkendall, D T; Jordan, S E; Garrett, W E

    2001-01-01

    In the world of sports, soccer is unique because of the purposeful use of the unprotected head for controlling and advancing the ball. This skill obviously places the player at risk of head injury and the game does carry some risk. Head injury can be a result of contact of the head with another head (or other body parts), ground, goal post, other unknown objects or even the ball. Such impacts can lead to contusions, fractures, eye injuries, concussions or even, in rare cases, death. Coaches, players, parents and physicians are rightly concerned about the risk of head injury in soccer. Current research shows that selected soccer players have some degree of cognitive dysfunction. It is important to determine the reasons behind such deficits. Purposeful heading has been blamed, but a closer look at the studies that focus on heading has revealed methodological concerns that question the validity of blaming purposeful heading of the ball. The player's history and age (did they play when the ball was leather and could absorb significant amounts of water), alcohol intake, drug intake, learning disabilities, concussion definition and control group use/composition are all factors that cloud the ability to blame purposeful heading. What does seem clear is that a player's history of concussive episodes is a more likely explanation for cognitive deficits. While it is likely that the subconcussive impact of purposeful heading is a doubtful factor in the noted deficits, it is unknown whether multiple subconcussive impacts might have some lingering effects. In addition, it is unknown whether the noted deficits have any affect on daily life. Proper instruction in the technique is critical because if the ball contacts an unprepared head (as in accidental head-ball contacts), the potential for serious injury is possible. To further our understanding of the relationship of heading, head injury and cognitive deficits, we need to: learn more about the actual impact of a ball on the

  2. Involvement of myosin VI immunoanalog in pinocytosis and phagocytosis in Amoeba proteus.

    Science.gov (United States)

    Sobczak, Magdalena; Wasik, Anna; Kłopocka, Wanda; Redowicz, Maria Jolanta

    2008-12-01

    Recently, we found a 130-kDa myosin VI immunoanalog in amoeba, which bound to actin in an ATP-sensitive manner and in migrating amoebae colocalized to filamentous actin and dynamin II-containing vesicular structures. To further characterize this protein, we assessed its involvement in amoeba pinocytosis and phagocytosis. Confocal immunofluorescence microscopy and electron microscopy of immunogold-stained cells revealed that, in pinocytotic and phagocytotic amoebae, the myosin VI immunoanalog was visible throughout the cells, including pinocytotic channels and pinocytotic vesicles as well as phagosomes and emerging phagocytic cups. Blocking endogenous protein with anti-porcine myosin VI antibody (introduced into cells by means of microinjection) caused severe defects in pinocytosis and phagocytosis. In comparison with control cells, the treated amoebae formed ~75% less pinocytotic channels and phagocytosed ~65% less Tetrahymena cells. These data indicate that the myosin VI immunoanalog has an important role in pinocytosis and phagocytosis in Amoeba proteus (Pal.).

  3. Two distinct myosin II populations coordinate ovulatory contraction of the myoepithelial sheath in the Caenorhabditis elegans somatic gonad.

    Science.gov (United States)

    Ono, Kanako; Ono, Shoichiro

    2016-04-01

    The myoepithelial sheath in the somatic gonad of the nematode Caenorhabditis elegans has nonstriated contractile actomyosin networks that produce highly coordinated contractility for ovulation of mature oocytes. Two myosin heavy chains are expressed in the myoepithelial sheath, which are also expressed in the body-wall striated muscle. The troponin/tropomyosin system is also present and essential for ovulation. Therefore, although the myoepithelial sheath has smooth muscle-like contractile apparatuses, it has a striated muscle-like regulatory mechanism through troponin/tropomyosin. Here we report that the myoepithelial sheath has a distinct myosin population containing nonmuscle myosin II isoforms, which is regulated by phosphorylation and essential for ovulation. MLC-4, a nonmuscle myosin regulatory light chain, localizes to small punctate structures and does not colocalize with large, needle-like myosin filaments containing MYO-3, a striated-muscle myosin isoform. RNA interference of MLC-4, as well as of its upstream regulators, LET-502 (Rho-associated coiled-coil forming kinase) and MEL-11 (a myosin-binding subunit of myosin phosphatase), impairs ovulation. Expression of a phosphomimetic MLC-4 mutant mimicking a constitutively active state also impairs ovulation. A striated-muscle myosin (UNC-54) appears to provide partially compensatory contractility. Thus the results indicate that the two spatially distinct myosin II populations coordinately regulate ovulatory contraction of the myoepithelial sheath.

  4. Identification and characterization of the Bombyx mori myosin II essential light chain and its effect in BmNPV infection

    Directory of Open Access Journals (Sweden)

    L Hao

    2015-02-01

    Full Text Available Myosin, as a type of molecular motor, is mainly involved in muscle contraction. Recently, myosin research has made considerable progress. However, the function of Bombyx mori myosin remains unclear. In this study, we cloned the BmMyosin II essential light chain (BmMyosin II ELC gene from a cDNA library of silkworm, which had an open reading frame (ORF of 444 bp encoding 147 amino acids (about 16 kDa. After analyzing their sequences, BmMyosin II ELC was similar to the ELCs of 27 other Myosin II types, which contained EFh domain that bound Ca2+. In addition, 28 sequences had five motifs, motifs 1 and 3 were relatively conserved. We constructed two vectors with BmMyosin to transfect MGC803 or BmN, monolayer wound healing of cells indicated they can promote cell migration successfully. For three fifth instar silkworms, Bm306, BmNB, BmBC8, we mainly analyzed the change of BmMyosin II ELC from transcription and translation after infecting with nucleopolyhedrovirus (BmNPV. We found that gene expression of resistant strains were higher than susceptible strains at 12 h, while the result of the translation level was opposite that of the transcription level. Through in vitro protein interactions, we found BmMyosin II ELC can interact with BmNPV ubiquitin.

  5. Two distinct myosin II populations coordinate ovulatory contraction of the myoepithelial sheath in the Caenorhabditis elegans somatic gonad

    Science.gov (United States)

    Ono, Kanako; Ono, Shoichiro

    2016-01-01

    The myoepithelial sheath in the somatic gonad of the nematode Caenorhabditis elegans has nonstriated contractile actomyosin networks that produce highly coordinated contractility for ovulation of mature oocytes. Two myosin heavy chains are expressed in the myoepithelial sheath, which are also expressed in the body-wall striated muscle. The troponin/tropomyosin system is also present and essential for ovulation. Therefore, although the myoepithelial sheath has smooth muscle–like contractile apparatuses, it has a striated muscle–like regulatory mechanism through troponin/tropomyosin. Here we report that the myoepithelial sheath has a distinct myosin population containing nonmuscle myosin II isoforms, which is regulated by phosphorylation and essential for ovulation. MLC-4, a nonmuscle myosin regulatory light chain, localizes to small punctate structures and does not colocalize with large, needle-like myosin filaments containing MYO-3, a striated-muscle myosin isoform. RNA interference of MLC-4, as well as of its upstream regulators, LET-502 (Rho-associated coiled-coil forming kinase) and MEL-11 (a myosin-binding subunit of myosin phosphatase), impairs ovulation. Expression of a phosphomimetic MLC-4 mutant mimicking a constitutively active state also impairs ovulation. A striated-muscle myosin (UNC-54) appears to provide partially compensatory contractility. Thus the results indicate that the two spatially distinct myosin II populations coordinately regulate ovulatory contraction of the myoepithelial sheath. PMID:26864628

  6. Interaction of Myosin Phosphatase Target Subunit (MYPT1) with Myosin Phosphatase-RhoA Interacting Protein (MRIP): A Role of Glutamic Acids in the Interaction.

    Science.gov (United States)

    Lee, Eunhee; Stafford, Walter F

    2015-01-01

    Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724-837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 991-1030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 998-1000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction.

  7. Myosin types and fiber types in cardiac muscle. II. Atrial myocardium

    OpenAIRE

    1982-01-01

    Antibodies were produced against myosins isolated from the left atrial myocardium (anti-bAm) and the left ventricular myocardium (anti-bVm) of the bovine heart. Cross-reactive antibodies were removed by cross- absorption. Absorbed anti-bAm and anti-bVm were specific for the myosin heavy chains when tested by enzyme immunoassay combined with SDS gel electrophoresis. Indirect immunofluorescence was used to determine the reactivity of atrial muscle fibers to the two antibodies. Three populations...

  8. Localization and mobility of synaptic vesicles in Myosin VI mutants of Drosophila.

    Directory of Open Access Journals (Sweden)

    Marta Kisiel

    Full Text Available BACKGROUND: At the Drosophila neuromuscular junction (NMJ, synaptic vesicles are mobile; however, the mechanisms that regulate vesicle traffic at the nerve terminal are not fully understood. Myosin VI has been shown to be important for proper synaptic physiology and morphology at the NMJ, likely by functioning as a vesicle tether. Here we investigate vesicle dynamics in Myosin VI mutants of Drosophila. RESULTS: In Drosophila, Myosin VI is encoded by the gene, jaguar (jar. To visualize active vesicle cycling we used FM dye loading and compared loss of function alleles of jar with controls. These studies revealed a differential distribution of vesicles at the jar mutant nerve terminal, with the newly endocytosed vesicles observed throughout the mutant boutons in contrast to the peripheral localization visualized at control NMJs. This finding is consistent with a role for Myosin VI in restraining vesicle mobility at the synapse to ensure proper localization. To further investigate regulation of vesicle dynamics by Myosin VI, FRAP analysis was used to analyze movement of GFP-labeled synaptic vesicles within individual boutons. FRAP revealed that synaptic vesicles are moving more freely in the jar mutant boutons, indicated by changes in initial bleach depth and rapid recovery of fluorescence following photobleaching. CONCLUSION: This data provides insights into the role for Myosin VI in mediating synaptic vesicle dynamics at the nerve terminal. We observed mislocalization of actively cycling vesicles and an apparent increase in vesicle mobility when Myosin VI levels are reduced. These observations support the notion that a major function of Myosin VI in the nerve terminal is tethering synaptic vesicles to proper sub-cellular location within the bouton.

  9. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    Science.gov (United States)

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  10. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis.

    Science.gov (United States)

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G; González-Reyes, Acaimo; Martín-Bermudo, María D

    2016-01-01

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies.

  11. Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Qiu Xinping

    2010-03-01

    Full Text Available Abstract Background Although the mechanistic details of the vesicle transport process from the cell body to the nerve terminal are well described, the mechanisms underlying vesicle traffic within nerve terminal boutons is relatively unknown. The actin cytoskeleton has been implicated but exactly how actin or actin-binding proteins participate in vesicle movement is not clear. Results In the present study we have identified Nonmuscle Myosin II as a candidate molecule important for synaptic vesicle traffic within Drosophila larval neuromuscular boutons. Nonmuscle Myosin II was found to be localized at the Drosophila larval neuromuscular junction; genetics and pharmacology combined with the time-lapse imaging technique FRAP were used to reveal a contribution of Nonmuscle Myosin II to synaptic vesicle movement. FRAP analysis showed that vesicle dynamics were highly dependent on the expression level of Nonmuscle Myosin II. Conclusion Our results provide evidence that Nonmuscle Myosin II is present presynaptically, is important for synaptic vesicle mobility and suggests a role for Nonmuscle Myosin II in shuttling vesicles at the Drosophila neuromuscular junction. This work begins to reveal the process by which synaptic vesicles traverse within the bouton.

  12. Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth

    Science.gov (United States)

    Lelli, Andrea; Michel, Vincent; Boutet de Monvel, Jacques; Cortese, Matteo; Bosch-Grau, Montserrat; Aghaie, Asadollah; Perfettini, Isabelle; Dupont, Typhaine; Avan, Paul

    2016-01-01

    The precise architecture of hair bundles, the arrays of mechanosensitive microvilli-like stereocilia crowning the auditory hair cells, is essential to hearing. Myosin IIIa, defective in the late-onset deafness form DFNB30, has been proposed to transport espin-1 to the tips of stereocilia, thereby promoting their elongation. We show that Myo3a−/−Myo3b−/− mice lacking myosin IIIa and myosin IIIb are profoundly deaf, whereas Myo3a-cKO Myo3b−/− mice lacking myosin IIIb and losing myosin IIIa postnatally have normal hearing. Myo3a−/−Myo3b−/− cochlear hair bundles display robust mechanoelectrical transduction currents with normal kinetics but show severe embryonic abnormalities whose features rapidly change. These include abnormally tall and numerous microvilli or stereocilia, ungraded stereocilia bundles, and bundle rounding and closure. Surprisingly, espin-1 is properly targeted to Myo3a−/−Myo3b−/− stereocilia tips. Our results uncover the critical role that class III myosins play redundantly in hair-bundle morphogenesis; they unexpectedly limit the elongation of stereocilia and of subsequently regressing microvilli, thus contributing to the early hair bundle shaping. PMID:26754646

  13. P-cadherin counteracts myosin II-B function: implications in melanoma progression

    Directory of Open Access Journals (Sweden)

    De Wever Olivier

    2010-09-01

    Full Text Available Abstract Background Malignant transformation of melanocytes is frequently attended by a switch in cadherin expression profile as shown for E- and N-cadherin. For P-cadherin, downregulation in metastasizing melanoma has been demonstrated, and over-expression of P-cadherin in melanoma cell lines has been shown to inhibit invasion. The strong invasive and metastatic nature of cutaneous melanoma implies a deregulated interplay between intercellular adhesion and migration-related molecules Results In this study we performed a microarray analysis to compare the mRNA expression profile of an invasive BLM melanoma cell line (BLM LIE and the non-invasive P-cadherin over-expression variant (BLM P-cad. Results indicate that nonmuscle myosin II-B is downregulated in BLM P-cad. Moreover, myosin II-B plays a major role in melanoma migration and invasiveness by retracting the tail during the migratory cycle, as shown by the localization of myosin II-B stress fibers relative to Golgi and the higher levels of phosphorylated myosin light chain. Analysis of P-cadherin and myosin II-B in nodular melanoma sections and in a panel of melanoma cell lines further confirmed that there is an inverse relationship between both molecules. Conclusions Therefore, we conclude that P-cadherin counteracts the expression and function of myosin II-B, resulting in the suppression of the invasive and migratory behaviour of BLM melanoma cells

  14. Actin-myosin network is required for proper assembly of influenza virus particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  15. Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth.

    Science.gov (United States)

    Lelli, Andrea; Michel, Vincent; Boutet de Monvel, Jacques; Cortese, Matteo; Bosch-Grau, Montserrat; Aghaie, Asadollah; Perfettini, Isabelle; Dupont, Typhaine; Avan, Paul; El-Amraoui, Aziz; Petit, Christine

    2016-01-18

    The precise architecture of hair bundles, the arrays of mechanosensitive microvilli-like stereocilia crowning the auditory hair cells, is essential to hearing. Myosin IIIa, defective in the late-onset deafness form DFNB30, has been proposed to transport espin-1 to the tips of stereocilia, thereby promoting their elongation. We show that Myo3a(-/-)Myo3b(-/-) mice lacking myosin IIIa and myosin IIIb are profoundly deaf, whereas Myo3a-cKO Myo3b(-/-) mice lacking myosin IIIb and losing myosin IIIa postnatally have normal hearing. Myo3a(-/-)Myo3b(-/-) cochlear hair bundles display robust mechanoelectrical transduction currents with normal kinetics but show severe embryonic abnormalities whose features rapidly change. These include abnormally tall and numerous microvilli or stereocilia, ungraded stereocilia bundles, and bundle rounding and closure. Surprisingly, espin-1 is properly targeted to Myo3a(-/-)Myo3b(-/-) stereocilia tips. Our results uncover the critical role that class III myosins play redundantly in hair-bundle morphogenesis; they unexpectedly limit the elongation of stereocilia and of subsequently regressing microvilli, thus contributing to the early hair bundle shaping.

  16. Role of plant myosins in motile organelles:Is a direct interaction required?

    Institute of Scientific and Technical Information of China (English)

    Limor Buchnik; Mohamad Abu-Abied; Einat Sadot

    2015-01-01

    Plant organel es are highly motile, with speed values of 3–7 mm/s in cel s of land plants and about 20–60 mm/s in characean algal cel s. This movement is believed to be important for rapid distribution of materials around the cel , for the plant’s ability to respond to environmental biotic and abiotic signals and for proper growth. The main machinery that propels motility of organel es within plant cel s is based on the actin cytoskeleton and its motor proteins the myosins. Most plants express multiple members of two main classes:myosin VIII and myosin XI. While myosin VIII has been characterized as a slow motor protein, myosins from class XI were found to be the fastest motor proteins known in al kingdoms. Paradoxical y, while it was found that myosins from class XI regulate most organel e movement, it is not quite clear how or even if these motor proteins attach to the organel es whose movement they regulate.

  17. Why muscle is an efficient shock absorber.

    Directory of Open Access Journals (Sweden)

    Michael A Ferenczi

    Full Text Available Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.

  18. Myosin II controls cellular branching morphogenesis and migration in three dimensions by minimizing cell-surface curvature.

    Science.gov (United States)

    Elliott, Hunter; Fischer, Robert S; Myers, Kenneth A; Desai, Ravi A; Gao, Lin; Chen, Christopher S; Adelstein, Robert S; Waterman, Clare M; Danuser, Gaudenz

    2015-02-01

    In many cases, cell function is intimately linked to cell shape control. We used endothelial cell branching morphogenesis as a model to understand the role of myosin II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell-surface curvature. We find that Rho/ROCK-stimulated myosin II contractility minimizes cell-scale branching by recognizing and minimizing local cell-surface curvature. Using microfabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin II cortical association, where it acts to maintain minimal curvature. The feedback between regulation of myosin II by curvature and control of curvature by myosin II drives cycles of localized cortical myosin II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration.

  19. Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays).

    Science.gov (United States)

    Wang, Guifeng; Zhong, Mingyu; Wang, Jiajia; Zhang, Jushan; Tang, Yuanping; Wang, Gang; Song, Rentao

    2014-03-01

    The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses.

  20. Identification, modeling, and characterization studies of Tetrahymena thermophila myosin FERM domains suggests a conserved core fold but functional differences.

    Science.gov (United States)

    Martin, Che L; Singh, Shaneen M

    2015-11-01

    Myosins (MYO) define a superfamily of motor proteins which facilitate movement along cytoskeletal actin filaments in an ATP-dependent manner. To date, over 30 classes of myosin have been defined that vary in their roles and distribution across different taxa. The multidomain tail of myosin is responsible for the observed functional differences in different myosin classes facilitating differential binding to different cargos. One domain found in this region, the FERM domain, is found in several diverse proteins and is involved in many biological functions ranging from cell adhesion and actin-driven cytoskeleton assembly to cell signaling. Recently, new classes of unconventional myosin have been identified in Tetrahymena thermophila. In this study, we have identified, modeled, and characterized eight FERM domains from the unconventional T. thermophila myosins as their complete functional MyTH4-FERM cassettes. Our results reveal notable sequence, structural, and electrostatic differences between T. thermophila and other characterized FERM domains. Specifically, T. thermophila FERM domains contain helical inserts or extensions, which contribute to significant differences in surface electrostatic profiles of T. thermophila myosin FERMs when compared to the conventional FERM domains. Analyses of the modeled domains reveal differences in key functional residues as well as phosphoinositide-binding signatures and affinities. The work presented here broadens the scope of our understanding of myosin classes and their inherent functions, and provides a platform for experimentalists to design rational experimental studies to test the functional roles for T. thermophila myosins.

  1. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.

    Science.gov (United States)

    Tiago, Teresa; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2004-05-11

    Decameric vanadate (V(10)) inhibits the actin-stimulated myosin ATPase activity, noncompetitively with actin or with ATP upon interaction with a high-affinity binding site (K(i) = 0.27 +/- 0.05 microM) in myosin subfragment-1 (S1). The binding of V(10) to S1 can be monitored from titration with V(10) of the fluorescence of S1 labeled at Cys-707 and Cys-697 with N-iodo-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) or 5-(iodoacetamido) fluorescein, which showed the presence of only one V(10) binding site per monomer with a dissociation constant of 0.16-0.7 microM, indicating that S1 labeling with these dyes produced only a small distortion of the V(10) binding site. The large quenching of AEDANS-labeled S1 fluorescence produced by V(10) indicated that the V(10) binding site is close to Cys-697 and 707. Fluorescence studies demonstrated the following: (i) the binding of V(10) to S1 is not competitive either with actin or with ADP.V(1) or ADP.AlF(4); (ii) the affinity of V(10) for the complex S1/ADP.V(1) and S1/ADP.AlF(4) is 2- and 3-fold lower than for S1; and (iii) it is competitive with the S1 "back door" ligand P(1)P(5)-diadenosine pentaphosphate. A local conformational change in S1 upon binding of V(10) is supported by (i) a decrease of the efficiency of fluorescence energy transfer between eosin-labeled F-actin and fluorescein-labeled S1, and (ii) slower reassociation between S1 and F-actin after ATP hydrolysis. The results are consistent with binding of V(10) to the Walker A motif of ABC ATPases, which in S1 corresponds to conserved regions of the P-loop which form part of the phosphate tube.

  2. Myosin MyTH4-FERM structures highlight important principles of convergent evolution.

    Science.gov (United States)

    Planelles-Herrero, Vicente José; Blanc, Florian; Sirigu, Serena; Sirkia, Helena; Clause, Jeffrey; Sourigues, Yannick; Johnsrud, Daniel O; Amigues, Beatrice; Cecchini, Marco; Gilbert, Susan P; Houdusse, Anne; Titus, Margaret A

    2016-05-24

    Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution.

  3. Actin and myosin regulate cytoplasm stiffness in plant cells: a study using optical tweezers.

    Science.gov (United States)

    van der Honing, Hannie S; de Ruijter, Norbert C A; Emons, Anne Mie C; Ketelaar, Tijs

    2010-01-01

    Here, we produced cytoplasmic protrusions with optical tweezers in mature BY-2 suspension cultured cells to study the parameters involved in the movement of actin filaments during changes in cytoplasmic organization and to determine whether stiffness is an actin-related property of plant cytoplasm. Optical tweezers were used to create cytoplasmic protrusions resembling cytoplasmic strands. Simultaneously, the behavior of the actin cytoskeleton was imaged. After actin filament depolymerization, less force was needed to create cytoplasmic protrusions. During treatment with the myosin ATPase inhibitor 2,3-butanedione monoxime, more trapping force was needed to create and maintain cytoplasmic protrusions. Thus, the presence of actin filaments and, even more so, the deactivation of a 2,3-butanedione monoxime-sensitive factor, probably myosin, stiffens the cytoplasm. During 2,3-butanedione monoxime treatment, none of the tweezer-formed protrusions contained filamentous actin, showing that a 2,3-butanedione monoxime-sensitive factor, probably myosin, is responsible for the movement of actin filaments, and implying that myosin serves as a static cross-linker of actin filaments when its motor function is inhibited. The presence of actin filaments does not delay the collapse of cytoplasmic protrusions after tweezer release. Myosin-based reorganization of the existing actin cytoskeleton could be the basis for new cytoplasmic strand formation, and thus the production of an organized cytoarchitecture.

  4. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms

    Science.gov (United States)

    Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.

  5. Identification and characterization of an unusual class I myosin involved in vesicle traffic in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Diana Spitznagel

    Full Text Available Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1 that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of approximately 90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites.

  6. Identification and characterization of an unusual class I myosin involved in vesicle traffic in Trypanosoma brucei.

    Science.gov (United States)

    Spitznagel, Diana; O'Rourke, John F; Leddy, Neal; Hanrahan, Orla; Nolan, Derek P

    2010-01-01

    Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1) that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of approximately 90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites.

  7. Roles of an unconventional protein kinase and myosin II in amoeba osmotic shock responses.

    Science.gov (United States)

    Betapudi, Venkaiah; Egelhoff, Thomas T

    2009-12-01

    The contractile vacuole (CV) is a dynamic organelle that enables Dictyostelium amoeba and other protist to maintain osmotic homeostasis by expelling excess water. In the present study, we have uncovered a mechanism that coordinates the mechanics of the CV with myosin II, regulated by VwkA, an unconventional protein kinase that is conserved in an array of protozoa. Green fluorescent protein (GFP)-VwkA fusion proteins localize persistently to the CV during both filling and expulsion phases of water. In vwkA null cells, the established CV marker dajumin still localizes to the CV, but these structures are large, spherical and severely impaired for discharge. Furthermore, myosin II cortical localization and assembly are abnormal in vwkA null cells. Parallel analysis of wild-type cells treated with myosin II inhibitors or of myosin II null cells also results in enlarged CVs with impaired dynamics. We suggest that the myosin II cortical cytoskeleton, regulated by VwkA, serves a critical conserved role in the periodic contractions of the CV, as part of the osmotic protective mechanism of protozoa.

  8. Increased Association of Dynamin Ⅱ with Myosin Ⅱ in Ras Transformed NIH3T3 Cells

    Institute of Scientific and Technical Information of China (English)

    Soon-Jeong JEONG; Su-Gwan KIM; Jiyun YOO; Mi-Young HAN; Joo-Cheol PARK; Heung-Joong KIM; Seong Soo KANG; Baik-Dong CHOI; Moon-Jin JEONG

    2006-01-01

    Dynamin has been implicated in the formation of nascent vesicles through both endocytic and secretory pathways. However, dynamin has recently been implicated in altering the cell membrane shape during cell migration associated with cytoskeleton-related proteins. Myosin Ⅱ has been implicated in maintaining cell morphology and in cellular movement. Therefore, reciprocal immunoprecipitation was carried out to identify the potential relationship between dynamin Ⅱ and myosin Ⅱ. The dynamin Ⅱ expression level was higher when co-expressed with myosin Ⅱ in Ras transformed NIH3T3 cells than in normal NIH3T3 cells.Confocal microscopy also confirmed the interaction between these two proteins. Interestingly, exposing the NIH3T3 cells to platelet-derived growth factor altered the interaction and localization of these two proteins.The platelet-derived growth factor treatment induced lamellipodia and cell migration, and dynamin Ⅱ interacted with myosin Ⅱ. Grb2, a 24 kDa adaptor protein and an essential element of the Ras signaling pathway,was found to be associated with dynamin Ⅱ and myosin Ⅱ gene expression in the Ras transformed NIH3T3 cells. These results suggest that dynamin Ⅱ acts as an intermediate messenger in the Ras signal transduction pathway leading to membrane ruffling and cell migration.

  9. Criticalities in crosslinked actin networks due to myosin activity

    Science.gov (United States)

    Sheinman, Michael

    2013-03-01

    Many essential processes in cells and tissues, like motility and morphogenesis, are orchestrated by molecular motors applying internal, active stresses on crosslinked networks of actin filaments. Using scaling analysis, mean-field calculation, numerical modelling and in vitro experiments of such active networks we predict and observe different mechanical regimes exhibiting interesting critical behaviours with non-trivial power-law dependencies. Firstly, we find that the presence of active stresses can dramatically increase the stiffness of a floppy network, as was observed in reconstituted intracellular F-actin networks with myosin motors and extracellular gels with contractile cells. Uniform internal stress results in an anomalous, critical mechanical regime only in the vicinity of the rigidity percolation points of the network. However, taking into account heterogeneity of motors, we demonstrate that the motors, stiffening any floppy network, induce large non-affine fluctuations, giving rise to a critical mechanical regime. Secondly, upon increasing motor concentration, the resulting large internal stress is able to significantly enhance unbinding of the network's crosslinks and, therefore, disconnect the initially well-connected network to isolated clusters. However, during this process, when the network approaches marginal connectivity the internal stresses are expected to drop drastically such that the connectivity stabilizes. This general argument and detailed numerical simulations show that motors should drive a well connected network to a close vicinity of a critical point of marginal connectivity. Experiments clearly confirm this conclusion and demonstrate robust critical connectivity of initially well-connected networks, ruptured by the motor activity for a wide range of parameters. M. Sheinman, C.P. Broedersz and F.C. MacKintosh, Phys. Rev. Lett, in press. J. Alvarado, M. Sheinman, A. Sharma, F.C. MacKintosh and G. Koenderink, in preparation.

  10. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.; Reshetnikova, L.; Brown, J. H.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.

  11. Direct photoaffinity labeling by nucleotides of the apparent catalytic site on the heavy chains of smooth muscle and Acanthamoeba myosins

    Energy Technology Data Exchange (ETDEWEB)

    Maruta, H.; Korn, E.D.

    1981-01-10

    The heavy chains of Acanthamoeba myosins, IA, IB and II, turkey gizzard myosin, and rabbit skeletal muscle myosin subfragment-1 were specifically labeled by radioactive ATP, ADP, and UTP, each of which is a substrate or product of myosin ATPase activity, when irradiated with uv light at 0/sup 0/C. With UTP, as much as 0.45 mol/mol of Acanthamoeba myosin IA heavy chain and 1 mol/mol of turkey gizzard myosin heavy chain was incorporated. Evidence that the ligands were associated with the catalytic site included the observations that reaction occurred only with nucleotides that are substrates or products of the ATPase activity; that the reaction was blocked by pyrophosphate which is an inhibitor of the ATPase activity; that ATP was bound as ADP; and that label was probably restricted to a single peptide following limited subtilisin proteolysis of labeled Acanthamoeba myosin IA heavy chain and extensive cleavage with CNBr and trypsin of labeled turkey gizzard myosin heavy chain.

  12. Determining the impact of oxidation on the motility of single muscle-fibres expressing different myosin isoforms

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Li, M.; Baron, Caroline P.;

    2013-01-01

    Under oxidative stress, myosin has been shown to be one of the muscle proteins that are extensively modified, leading to carbonylation and cross-linking. However, how oxidation affects the actomyosin interaction in muscle fibres with different metabolic profiles and expressing different myosin...

  13. Aberrant post-translational modifications compromise human myosin motor function in old age.

    Science.gov (United States)

    Li, Meishan; Ogilvie, Hannah; Ochala, Julien; Artemenko, Konstantin; Iwamoto, Hiroyuki; Yagi, Naoto; Bergquist, Jonas; Larsson, Lars

    2015-04-01

    Novel experimental methods, including a modified single fiber in vitro motility assay, X-ray diffraction experiments, and mass spectrometry analyses, have been performed to unravel the molecular events underlying the aging-related impairment in human skeletal muscle function at the motor protein level. The effects of old age on the function of specific myosin isoforms extracted from single human muscle fiber segments, demonstrated a significant slowing of motility speed (P old age in both type I and IIa myosin heavy chain (MyHC) isoforms. The force-generating capacity of the type I and IIa MyHC isoforms was, on the other hand, not affected by old age. Similar effects were also observed when the myosin molecules extracted from muscle fibers were exposed to oxidative stress. X-ray diffraction experiments did not show any myofilament lattice spacing changes, but unraveled a more disordered filament organization in old age as shown by the greater widths of the 1, 0 equatorial reflections. Mass spectrometry (MS) analyses revealed eight age-specific myosin post-translational modifications (PTMs), in which two were located in the motor domain (carbonylation of Pro79 and Asn81) and six in the tail region (carbonylation of Asp900, Asp904, and Arg908; methylation of Glu1166; deamidation of Gln1164 and Asn1168). However, PTMs in the motor domain were only observed in the IIx MyHC isoform, suggesting PTMs in the rod region contributed to the observed disordering of myosin filaments and the slowing of motility speed. Hence, interventions that would specifically target these PTMs are warranted to reverse myosin dysfunction in old age.

  14. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A. (UPENN); (Duke); (MRCLMB); (FSU); (Jikei-Med)

    2010-10-22

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are

  15. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.

    Directory of Open Access Journals (Sweden)

    Shenping Wu

    Full Text Available Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  16. Clinical significance and pathogenic role of anti-cardiac myosin autoantibody in dilated cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective In order to explore the possible roles played by the autoimmune mechanism in the progression of myocarditis into dilated cardiomyopathy (DCM) using an animal model, we investigated whether autoimmune myocarditis might develop into DCM. Methods Experimental Balb/C mice (n=20) were immunized with cardiac myosin with Freund's complete adjuvant at days 0, 7 and 30. The control Balb/C mice (n=10) were immunized with Freund's complete adjuvant in the same mannere. Serum and myocardium samples were collected after the first immunization at days 15, 21 and 120. The anti-myosin antibody was examined by enzyme-linked immunosorbent assay and immunoblotting.Results Pathological findings demonstrated that there was myocardial necrosis or inflammatory infiltration during acute stages and fibrosis mainly in the late phase of experimental group, but the myocardial lesions were not found in the control group. Autoimmunity could induce myocarditis and DCM in the absence of viral infection. High titer anti-myosin IgG antibodies were found in the experimental group, but not in the control group. Furthermore, the anti-myosin heavy chain (200 KD) antibody was positive in 21 of 48 patients with DCM and viral myocarditis, but only 4 of 20 patients with coronary heart disease, including 1 case and 3 cases that reacted with heavy and light chains (27.5 KD), respectively. The antibodies were not detected in healthy donors.Conclusion Cardiac myosin might be an autoantigen that provokes autoimmunity and leads to the transformation of myocarditis into DCM. Detection of anti-myosin heavy chain antibody might contribute to diagnosis for DCM and viral myocarditis.

  17. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development.

    Directory of Open Access Journals (Sweden)

    Valera V Peremyslov

    Full Text Available Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI, cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.

  18. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  19. Humoral immune response against contractile proteins (actin and myosin) during cardiovascular disease.

    Science.gov (United States)

    De Scheerder, I K; De Buyzere, M; Delanghe, J; Maas, A; Clement, D L; Wieme, R

    1991-08-01

    Sensitive and highly specific ELISA assays were developed to determine humoral immune response against actin and myosin in 122 patients suffering from various cardiovascular diseases: acute viral myocarditis (n = 10, MYO), acute myocardial infarction (n = 28, AMI), valve surgery (n = 35, VALVE), coronary bypass surgery (n = 35, CABG), and peripheral vascular surgery (n = 14, VASC). Anti-actin and anti-myosin antibodies were determined on admission and serially during a period of 90 days. Anti-actin and anti-myosin immune response (IgG, IgM) was expressed comparing absorbance of the patients' serum with a reference serum. In the different patient groups significantly (P less than 0.01) higher anti-actin and anti-myosin antibody concentrations were found on admission compared with age-matched control groups. During follow-up, all patient groups except the vascular surgery group showed a significant immune response against actin and myosin, with an immune response ratio (peak/admission) for AMA IgG and IgM respectively of 2.12 and 2.40 in the VALVE group, 1.30 and 1.99 in the CABG group, 1.42 and 1.48 in the AMI group and 1.66 and 1.25 in the MYO group; and for AAA IgG and IgM respectively of 1.57 and 3.00 in the VALVE group, 1.54 and 1.64 in the CABG group, 1.25 and 1.07 in the AMI group, and 1.42 and 1.42 in the MYO group. A significant correlation between pre-cardiac injury and peak post-cardiac injury anti-myosin and anti-actin autoantibody levels could be demonstrated suggesting that pre-injury sensitization to these antigens plays an important role in evoking post-cardiac injury immune response.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development.

    Science.gov (United States)

    Peremyslov, Valera V; Cole, Rex A; Fowler, John E; Dolja, Valerian V

    2015-01-01

    Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.

  1. Metastasis-associated protein Mts1 (S100A4) inhibits CK2-mediated phosphorylation and self-assembly of the heavy chain of nonmuscle myosin

    DEFF Research Database (Denmark)

    Kriajevska, M; Bronstein, I B; Scott, D J

    2000-01-01

    A role for EF-hand calcium-binding protein Mts1 (S100A4) in the phosphorylation and the assembly of myosin filaments was studied. The nonmuscle myosin molecules form bipolar filaments, which interact with actin filaments to produce a contractile force. Phosphorylation of the myosin plays...

  2. Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice

    OpenAIRE

    1999-01-01

    To elucidate the role of cardiac myosin-binding protein-C (MyBP-C) in myocardial structure and function, we have produced mice expressing altered forms of this sarcomere protein. The engineered mutations encode truncated forms of MyBP-C in which the cardiac myosin heavy chain-binding and titin-binding domain has been replaced with novel amino acid residues. Analogous heterozygous defects in humans cause hypertrophic cardiomyopathy. Mice that are homozygous for the mutated MyBP-C alleles expre...

  3. Inhibition of skeletal muscle S1-myosin ATPase by peroxynitrite.

    Science.gov (United States)

    Tiago, Teresa; Simão, Sónia; Aureliano, Manuel; Martín-Romero, Francisco Javier; Gutiérrez-Merino, Carlos

    2006-03-21

    Exposure of myosin subfragment 1 (S1) to 3-morpholinosydnonimine (SIN-1) produced a time-dependent inhibition of the F-actin-stimulated S1 Mg(2+)-ATPase activity, reaching 50% inhibition with 46.7 +/- 8.3 microM SIN-1 for 8.7 microM S1, that is, at a SIN-1/S1 molar ratio of approximately 5.5. The inhibition was due to the peroxynitrite produced by SIN-1 decomposition because (1) decomposed SIN-1 was found to have no effect on S1 ATPase activity, (2) addition of SIN-1 in the presence of superoxide dismutase and catalase fully prevented inhibition by SIN-1, and (3) micromolar pulses of chemically synthesized peroxynitrite produced inhibition of F-actin-stimulated S1 Mg(2+)-ATPase activity. In parallel, SIN-1 produced the inhibition of the nonphysiological Ca(2+)-dependent and K(+)/EDTA-dependent S1 ATPase activity of S1 and, therefore, suggested that the inhibition of F-actin-stimulated S1 Mg(2+)-ATPase activity is produced by the oxidation of highly reactive cysteines of S1 (Cys(707) and Cys(697)), located close to the catalytic center. This point was further confirmed by the titration of S1 cysteines with 5,5'-dithiobis(2-nitrobenzoic acid) and by the parallel decrease of Cys(707) labeling by 5-(iodoacetamido)fluorescein, and it was reinforced by the fact that other common protein modifications produced by peroxynitrite, for example, protein carbonyl and nitrotyrosine formation, were barely detected at the concentrations of SIN-1 that produced more than 50% inhibition of the F-actin-stimulated S1 Mg(2+)-ATPase activity. Differential scanning calorimetry of S1 (untreated and treated with different SIN-1 concentrations) pointed out that SIN-1, at concentrations that generate micromolar peroxynitrite fluxes, impaired the ability of ADP.V(1) to induce the intermediate catalytic transition state and also produced the partial unfolding of S1 that leads to an enhanced susceptibility of S1 to trypsin digestion, which can be fully protected by 2 mM GSH.

  4. Head and Neck

    DEFF Research Database (Denmark)

    Højgaard, Liselotte; Berthelsen, Anne Kiil; Loft, Annika

    2014-01-01

    Positron emission tomography (PET)/computed tomography with FDG of the head and neck region is mainly used for the diagnosis of head and neck cancer, for staging, treatment evaluation, relapse, and planning of surgery and radio therapy. This article is a practical guide of imaging techniques......, including a detailed protocol for FDG PET in head and neck imaging, physiologic findings, and pitfalls in selected case stories....

  5. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients

    KAUST Repository

    Conti, Antonio

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS\\'s pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V.

  6. Specific Myosins Control Actin Organization, Cell Morphology, and Migration in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Katarzyna A. Makowska

    2015-12-01

    Full Text Available We investigated the myosin expression profile in prostate cancer cell lines and found that Myo1b, Myo9b, Myo10, and Myo18a were expressed at higher levels in cells with high metastatic potential. Moreover, Myo1b and Myo10 were expressed at higher levels in metastatic tumors. Using an siRNA-based approach, we found that knockdown of each myosin resulted in distinct phenotypes. Myo10 knockdown ablated filopodia and decreased 2D migration speed. Myo18a knockdown increased circumferential non-muscle myosin 2A-associated actin filament arrays in the lamella and reduced directional persistence of 2D migration. Myo9b knockdown increased stress fiber formation, decreased 2D migration speed, and increased directional persistence. Conversely, Myo1b knockdown increased numbers of stress fibers but did not affect 2D migration. In all cases, the cell spread area was increased and 3D migration potential was decreased. Therefore, myosins not only act as molecular motors but also directly influence actin organization and cell morphology, which can contribute to the metastatic phenotype.

  7. Binding modes of decavanadate to myosin and inhibition of the actomyosin ATPase activity.

    Science.gov (United States)

    Tiago, Teresa; Martel, Paulo; Gutiérrez-Merino, Carlos; Aureliano, Manuel

    2007-04-01

    Decavanadate, a vanadate oligomer, is known to interact with myosin and to inhibit the ATPase activity, but the putative binding sites and the mechanism of inhibition are still to be clarified. We have previously proposed that the decavanadate (V(10)O(28)(6-)) inhibition of the actin-stimulated myosin ATPase activity is non-competitive towards both actin and ATP. A likely explanation for these results is that V(10) binds to the so-called back-door at the end of the Pi-tube opposite to the nucleotide-binding site. In order to further investigate this possibility, we have carried out molecular docking simulations of the V(10) oligomer on three different structures of the myosin motor domain of Dictyostelium discoideum, representing distinct states of the ATPase cycle. The results indicate a clear preference of V(10) to bind at the back-door, but only on the "open" structures where there is access to the phosphate binding-loop. It is suggested that V(10) acts as a "back-door stop" blocking the closure of the 50-kDa cleft necessary to carry out ATP-gamma-phosphate hydrolysis. This provides a simple explanation to the non-competitive behavior of V(10) and spurs the use of the oligomer as a tool to elucidate myosin back-door conformational changes in the process of muscle contraction.

  8. Myosin types and fiber types in cardiac muscle. II. Atrial myocardium.

    Science.gov (United States)

    Gorza, L; Sartore, S; Schiaffino, S

    1982-12-01

    Antibodies were produced against myosins isolated from the left atrial myocardium (anti-bAm) and the left ventricular myocardium (anti-bVm) of the bovine heart. Cross-reactive antibodies were removed by cross-absorption. Absorbed anti-bAm and anti-bVm were specific for the myosin heavy chains when tested by enzyme immunoassay combined with SDS gel electrophoresis. Indirect immunofluorescence was used to determine the reactivity of atrial muscle fibers to the two antibodies. Three populations of atrial muscle fibers were distinguished in the bovine heart: (a) fibers reactive with anti-bAm and unreactive with anti-bVm, like most fibers in the left atrium; (b) fibers reactive with both antibodies, especially numerous in the right atrium; (c) fibers reactive with anti-bVm and unreactive with anti-bAm, present only in the interatrial septum and in specific regions of the right atrium, such as the crista terminalis. These findings can be accounted for by postulating the existence of two distinct types of atrial myosin heavy chains, one of which is antigenically related to ventricular myosin. The tendency for fibers labeled by anti-bVm to occur frequently in bundles and their preferential distribution in the crista terminalis, namely along one of the main conduction pathways between the sinus node and the atrioventricular node, and in the interatrial septum, where different internodal tracts are known to converge, suggests that these fibers may be specialized for faster conduction.

  9. Myosin heavy chain composition of single fibres from m. biceps brachii of male body builders

    DEFF Research Database (Denmark)

    Klitgaard, H; Zhou, M.-Y.; Richter, Erik

    1990-01-01

    The myosin heavy chain (MHC) composition of single fibres from m. biceps brachii of young sedentary men (28 +/- 0.4 years, mean +/- SE, n = 4) and male body builders (25 +/- 2.0 years, n = 4) was analysed with a sensitive one-dimensional electrophoretic technique. Compared with sedentary men...

  10. Invertebrate and vertebrate class III myosins interact with MORN repeat-containing adaptor proteins.

    Directory of Open Access Journals (Sweden)

    Kirk L Mecklenburg

    Full Text Available In Drosophila photoreceptors, the NINAC-encoded myosin III is found in a complex with a small, MORN-repeat containing, protein Retinophilin (RTP. Expression of these two proteins in other cell types showed NINAC myosin III behavior is altered by RTP. NINAC deletion constructs were used to map the RTP binding site within the proximal tail domain of NINAC. In vertebrates, the RTP ortholog is MORN4. Co-precipitation experiments demonstrated that human MORN4 binds to human myosin IIIA (MYO3A. In COS7 cells, MORN4 and MYO3A, but not MORN4 and MYO3B, co-localize to actin rich filopodia extensions. Deletion analysis mapped the MORN4 binding to the proximal region of the MYO3A tail domain. MYO3A dependent MORN4 tip localization suggests that MYO3A functions as a motor that transports MORN4 to the filopodia tips and MORN4 may enhance MYO3A tip localization by tethering it to the plasma membrane at the protrusion tips. These results establish conserved features of the RTP/MORN4 family: they bind within the tail domain of myosin IIIs to control their behavior.

  11. Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis.

    Science.gov (United States)

    Ferreira, Tânia; Prudêncio, Pedro; Martinho, Rui Gonçalo

    2014-10-15

    Nurse cell dumping is an actin-myosin based process, where 15 nurse cells of a given egg chamber contract and transfer their cytoplasmic content through the ring canals into the growing oocyte. We isolated two mutant alleles of protein kinase N (pkn) and showed that Pkn negatively-regulates activation of the actin-myosin cytoskeleton during the onset of dumping. Using live-cell imaging analysis we observed that nurse cell dumping rates sharply increase during the onset of fast dumping. Such rate increase was severely impaired in pkn mutant nurse cells due to excessive nurse cell actin-myosin activity and/or loss of tissue integrity. Our work demonstrates that the transition between slow and fast dumping is a discrete event, with at least a five to six-fold dumping rate increase. We show that Pkn negatively regulates nurse cell actin-myosin activity. This is likely to be important for directional cytoplasmic flow. We propose Pkn provides a negative feedback loop to help avoid excessive contractility after local activation of Rho GTPase.

  12. Review: Ras GTPases and myosin: Qualitative conservation and quantitative diversification in signal and energy transduction.

    Science.gov (United States)

    Mueller, Matthias P; Goody, Roger S

    2016-08-01

    Most GTPases and many ATPases belong to the P-loop class of proteins with significant structural and mechanistic similarities. Here we compare and contrast the basic properties of the Ras family GTPases and myosin, and conclude that there are fundamental similarities but also distinct differences related to their specific roles. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 422-430, 2016.

  13. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Conti, Antonio; Riva, Nilo; Pesca, Mariasabina; Iannaccone, Sandro; Cannistraci, Carlo V; Corbo, Massimo; Previtali, Stefano C; Quattrini, Angelo; Alessio, Massimo

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS.

  14. Visualizing Key Hinges and a Potential Major Source of Compliance in the Lever Arm of Myosin

    Energy Technology Data Exchange (ETDEWEB)

    J Brown; V Senthil Kumar; E ONeall-Hennessey; L Reshetnikova; H Robinson; M Nguyen-McCarty; A Szent-Gyorgyi; C Cohen

    2011-12-31

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.

  15. Visualizing key hinges and a potential major source of compliance in the lever arm of myosin

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.H.; Robinson, H.; Senthil Kumar, V. S.; O' Neall-Hennessey, E.; Reshetnikova, L.; Nguyen-McCarty, M.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-01-04

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.

  16. Motor-motor interactions in ensembles of muscle myosin: using theory to connect single molecule to ensemble measurements

    Science.gov (United States)

    Walcott, Sam

    2013-03-01

    Interactions between the proteins actin and myosin drive muscle contraction. Properties of a single myosin interacting with an actin filament are largely known, but a trillion myosins work together in muscle. We are interested in how single-molecule properties relate to ensemble function. Myosin's reaction rates depend on force, so ensemble models keep track of both molecular state and force on each molecule. These models make subtle predictions, e.g. that myosin, when part of an ensemble, moves actin faster than when isolated. This acceleration arises because forces between molecules speed reaction kinetics. Experiments support this prediction and allow parameter estimates. A model based on this analysis describes experiments from single molecule to ensemble. In vivo, actin is regulated by proteins that, when present, cause the binding of one myosin to speed the binding of its neighbors; binding becomes cooperative. Although such interactions preclude the mean field approximation, a set of linear ODEs describes these ensembles under simplified experimental conditions. In these experiments cooperativity is strong, with the binding of one molecule affecting ten neighbors on either side. We progress toward a description of myosin ensembles under physiological conditions.

  17. Solubilisation of myosin in a solution of low ionic strength L-histidine: Significance of the imidazole ring.

    Science.gov (United States)

    Chen, Xing; Zou, Yufeng; Han, Minyi; Pan, Lihua; Xing, Tong; Xu, Xinglian; Zhou, Guanghong

    2016-04-01

    Myosin, a major muscle protein, can be solubilised in a low ionic strength solution containing L-histidine (His). To elucidate which chemical constituents in His are responsible for this solubilisation, we investigated the effects of 5mM His, imidazole (Imi), L-α-alanine (Ala), 1-methyl-L-histidine (M-his) and L-carnosine (Car) on particle properties of myosin suspensions and conformational characteristics of soluble myosin at low ionic strength (1 mM KCl, pH 7.5). His, Imi and Car, each containing an imidazole ring, were able to induce a myosin suspension, which had small particle size species and high absolute zeta potential, thus increasing the solubility of myosin. His, Imi and Car affected the tertiary structure and decreased the α-helix content of soluble myosin. Therefore, the imidazole ring of His appeared to be the significant chemical constituent in solubilising myosin at low ionic strength solution, presumably by affecting its secondary structure.

  18. Myosin VIIA, important for human auditory function, is necessary for Drosophila auditory organ development.

    Directory of Open Access Journals (Sweden)

    Sokol V Todi

    Full Text Available BACKGROUND: Myosin VIIA (MyoVIIA is an unconventional myosin necessary for vertebrate audition [1]-[5]. Human auditory transduction occurs in sensory hair cells with a staircase-like arrangement of apical protrusions called stereocilia. In these hair cells, MyoVIIA maintains stereocilia organization [6]. Severe mutations in the Drosophila MyoVIIA orthologue, crinkled (ck, are semi-lethal [7] and lead to deafness by disrupting antennal auditory organ (Johnston's Organ, JO organization [8]. ck/MyoVIIA mutations result in apical detachment of auditory transduction units (scolopidia from the cuticle that transmits antennal vibrations as mechanical stimuli to JO. PRINCIPAL FINDINGS: Using flies expressing GFP-tagged NompA, a protein required for auditory organ organization in Drosophila, we examined the role of ck/MyoVIIA in JO development and maintenance through confocal microscopy and extracellular electrophysiology. Here we show that ck/MyoVIIA is necessary early in the developing antenna for initial apical attachment of the scolopidia to the articulating joint. ck/MyoVIIA is also necessary to maintain scolopidial attachment throughout adulthood. Moreover, in the adult JO, ck/MyoVIIA genetically interacts with the non-muscle myosin II (through its regulatory light chain protein and the myosin binding subunit of myosin II phosphatase. Such genetic interactions have not previously been observed in scolopidia. These factors are therefore candidates for modulating MyoVIIA activity in vertebrates. CONCLUSIONS: Our findings indicate that MyoVIIA plays evolutionarily conserved roles in auditory organ development and maintenance in invertebrates and vertebrates, enhancing our understanding of auditory organ development and function, as well as providing significant clues for future research.

  19. Orbit/CLASP is required for myosin accumulation at the cleavage furrow in Drosophila male meiosis.

    Directory of Open Access Journals (Sweden)

    Daishi Kitazawa

    Full Text Available Peripheral microtubules (MTs near the cell cortex are essential for the positioning and continuous constriction of the contractile ring (CR in cytokinesis. Time-lapse observations of Drosophila male meiosis showed that myosin II was first recruited along the cell cortex independent of MTs. Then, shortly after peripheral MTs made contact with the equatorial cortex, myosin II was concentrated there in a narrow band. After MT contact, anillin and F-actin abruptly appeared on the equatorial cortex, simultaneously with myosin accumulation. We found that the accumulation of myosin did not require centralspindlin, but was instead dependent on Orbit, a Drosophila ortholog of the MT plus-end tracking protein CLASP. This protein is required for stabilization of central spindle MTs, which are essential for cytokinesis. Orbit was also localized in a mid-zone of peripheral MTs, and was concentrated in a ring at the equatorial cortex during late anaphase. Fluorescence resonance energy transfer experiments indicated that Orbit is closely associated with F-actin in the CR. We also showed that the myosin heavy chain was in close proximity with Orbit in the cleavage furrow region. Centralspindlin was dispensable in Orbit ring formation. Instead, the Polo-KLP3A/Feo complex was required for the Orbit accumulation independently of the Orbit MT-binding domain. However, orbit mutations of consensus sites for the phosphorylation of Cdk1 or Polo did not influence the Orbit accumulation, suggesting an indirect regulatory role of these protein kinases in Orbit localization. Orbit was also necessary for the maintenance of the CR. Our data suggest that Orbit plays an essential role as a connector between MTs and the CR in Drosophila male meiosis.

  20. Size and speed of the working stroke of cardiac myosin in situ.

    Science.gov (United States)

    Caremani, Marco; Pinzauti, Francesca; Reconditi, Massimo; Piazzesi, Gabriella; Stienen, Ger J M; Lombardi, Vincenzo; Linari, Marco

    2016-03-29

    The power in the myocardium sarcomere is generated by two bipolar arrays of the motor protein cardiac myosin II extending from the thick filament and pulling the thin, actin-containing filaments from the opposite sides of the sarcomere. Despite the interest in the definition of myosin-based cardiomyopathies, no study has yet been able to determine the mechanokinetic properties of this motor protein in situ. Sarcomere-level mechanics recorded by a striation follower is used in electrically stimulated intact ventricular trabeculae from the rat heart to determine the isotonic velocity transient following a stepwise reduction in force from the isometric peak force TP to a value T(0.8-0.2 TP). The size and the speed of the early rapid shortening (the isotonic working stroke) increase by reducing T from ∼3 nm per half-sarcomere (hs) and 1,000 s(-1) at high load to ∼8 nm⋅hs(-1) and 6,000 s(-1) at low load. Increases in sarcomere length (1.9-2.2 μm) and external [Ca(2+)]o (1-2.5 mM), which produce an increase of TP, do not affect the dependence on T, normalized for TP, of the size and speed of the working stroke. Thus, length- and Ca(2+)-dependent increase of TP and power in the heart can solely be explained by modulation of the number of myosin motors, an emergent property of their array arrangement. The motor working stroke is similar to that of skeletal muscle myosin, whereas its speed is about three times slower. A new powerful tool for investigations and therapies of myosin-based cardiomyopathies is now within our reach.

  1. Actin and nuclear myosin Ⅰ are associated with RNAP Ⅱ and function in gene transcription

    Institute of Scientific and Technical Information of China (English)

    ZHU XiaoJuan; HUANG BaiQu; WANG XingZhi; HAO Shui; ZENG XianLu

    2007-01-01

    The presence of actin in the nucleus as well as its functions in various nuclear processes has been made clear in the past few years. Actin is known to be a part of chromatin-remodeling complexes BAF,which are required for maximal ATPase activity of the Brg1 component of the BAF complex. Moreover,the essential roles of acfin in transcription mediated by RNA polymerases Ⅰ, Ⅱ and Ⅲ have been demonstrated recently. On the other hand, a myosin Ⅰ isoform, which contains a unique NH2-terminal extension for nucleus localization, has been specifically localized in nucleus. As is well known, myosin Ⅰis an actin-binding protein and plays an important role in various cellular activities. Though actin and nuclear myosin Ⅰ (NM Ⅰ) have been implicated to play distinct roles in gene expression, there has been no evidence for the actin-myosin interaction that might be involved in gene transcription mediated by RNA polymerase Ⅱ (RNAP Ⅱ). Here we show evidence that both actin and NM Ⅰ are associated with RNAP Ⅱ in nucleus by using co-localization and co-IP assays, and they may act together on gene transcription.The antibodies against β-actin or NM Ⅰ can block RNA synthesis in a eukaryotic in vitro transcription system with template DNA comprising the promoter and the coding region of human autocrine motility factor receptor (hAMFR) gene; the antibodies pre-adsorbed with purified actin and NM Ⅰ have no effect in transcriptional inhibition, indicating that the inhibition of transcription by anti-actin and anti-NM Ⅰ is specific. These results suggest a direct involvement of actin-myosin complexes in regulating transcription. It also implicates that actin and NM Ⅰ may co-exist in a same complex with RNAP Ⅱ and the interaction of RNAP Ⅱ with actin and NM Ⅰ functions in the RNAP Ⅱ-mediated transcription.

  2. Chemical-genetic inhibition of a sensitized mutant myosin Vb demonstrates a role in peripheral-pericentriolar membrane traffic.

    Science.gov (United States)

    Provance, D William; Gourley, Christopher R; Silan, Colleen M; Cameron, L C; Shokat, Kevan M; Goldenring, James R; Shah, Kavita; Gillespie, Peter G; Mercer, John A

    2004-02-17

    Selective, in situ inhibition of individual unconventional myosins is a powerful approach to determine their specific physiological functions. Here, we report the engineering of a myosin Vb mutant that still hydrolyzes ATP, yet is selectively sensitized to an N(6)-substituted ADP analog that inhibits its activity, causing it to remain tightly bound to actin. Inhibition of the sensitized mutant causes inhibition of accumulation of transferrin in the cytoplasm and increases levels of plasma-membrane transferrin receptor, suggesting that myosin Vb functions in traffic between peripheral and pericentrosomal compartments.

  3. Novel Interactome of Saccharomyces cerevisiae Myosin Type II Identified by a Modified Integrated Membrane Yeast Two-Hybrid (iMYTH Screen

    Directory of Open Access Journals (Sweden)

    Ednalise Santiago

    2016-05-01

    Full Text Available Nonmuscle myosin type II (Myo1p is required for cytokinesis in the budding yeast Saccharomyces cerevisiae. Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other functions of the Myo1p tail domain. To identify novel Myo1p-interacting proteins, and determine if Myo1p can serve as a scaffold to recruit proteins to the bud neck during cytokinesis, we used the integrated split-ubiquitin membrane yeast two-hybrid (iMYTH system. Myo1p was iMYTH-tagged at its C-terminus, and screened against both cDNA and genomic prey libraries to identify interacting proteins. Control experiments showed that the Myo1p-bait construct was appropriately expressed, and that the protein colocalized to the yeast bud neck. Thirty novel Myo1p-interacting proteins were identified by iMYTH. Eight proteins were confirmed by coprecipitation (Ape2, Bzz1, Fba1, Pdi1, Rpl5, Tah11, and Trx2 or mass spectrometry (AP-MS (Abp1. The novel Myo1p-interacting proteins identified come from a range of different processes, including cellular organization and protein synthesis. Actin assembly/disassembly factors such as the SH3 domain protein Bzz1 and the actin-binding protein Abp1 represent likely Myo1p interactions during cytokinesis.

  4. Inhibition of Myosin light-chain kinase attenuates cerebral edema after traumatic brain injury in postnatal mice.

    Science.gov (United States)

    Rossi, Janet L; Todd, Tracey; Bazan, Nicolas G; Belayev, Ludmila

    2013-10-01

    Traumatic brain injury (TBI) in children less than 8 years of age leads to decline in intelligence and executive functioning. Neurological outcomes after TBI correlate to development of cerebral edema, which affect survival rates after TBI. It has been shown that myosin light-chain kinase (MLCK) increases cerebral edema and that pretreatment with an MLCK inhibitor (ML-7) reduces cerebral edema. The aim of this study was to determine whether inhibition of MLCK after TBI in postnatal day 24 (PND-24) mice would prevent breakdown of the blood-brain barrier (BBB) and development of cerebral edema and improve neurological outcome. We used a closed head injury model of TBI. ML-7 or saline treatment was administered at 4 h and every 24 h until sacrifice or 5 days after TBI. Mice were sacrificed at 24 h, 48 h, and 72 h and 7 days after impact. Mice treated with ML-7 after TBI had decreased levels of MLCK-expressing cells (20.7±4.8 vs. 149.3±40.6), less albumin extravasation (28.3±11.2 vs. 116.2±60.7 mm(2)) into surrounding parenchymal tissue, less Evans Blue extravasation (339±314 vs. 4017±560 ng/g), and showed a significant difference in wet/dry weight ratio (1.9±0.07 vs. 2.2±0.05 g), compared to saline-treated groups. Treatment with ML-7 also resulted in preserved neurological function measured by the wire hang test (57 vs. 21 sec) and two-object novel recognition test (old vs. new, 10.5 touches). We concluded that inhibition of MLCK reduces cerebral edema and preserves neurological function in PND-24 mice.

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive ... of page What are some common uses of the procedure? MR imaging of the head is performed ...

  6. Ulnar head replacement.

    Science.gov (United States)

    Herbert, Timothy J; van Schoonhoven, Joerg

    2007-03-01

    Recent years have seen an increasing awareness of the anatomical and biomechanical significance of the distal radioulnar joint (DRUJ). With this has come a more critical approach to surgical management of DRUJ disorders and a realization that all forms of "excision arthroplasty" can only restore forearm rotation at the expense of forearm stability. This, in turn, has led to renewed interest in prosthetic replacement of the ulnar head, a procedure that had previously fallen into disrepute because of material failures with early implants, in particular, the Swanson silicone ulnar head replacement. In response to these early failures, a new prosthesis was developed in the early 1990s, using materials designed to withstand the loads across the DRUJ associated with normal functional use of the upper limb. Released onto the market in 1995 (Herbert ulnar head prosthesis), clinical experience during the last 10 years has shown that this prosthesis is able to restore forearm function after ulnar head excision and that the materials (ceramic head and noncemented titanium stem), even with normal use of the limb, are showing no signs of failure in the medium to long term. As experience with the use of an ulnar head prosthesis grows, so does its acceptance as a viable and attractive alternative to more traditional operations, such as the Darrach and Sauve-Kapandji procedures. This article discusses the current indications and contraindications for ulnar head replacement and details the surgical procedure, rehabilitation, and likely outcomes.

  7. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes.

    Science.gov (United States)

    Dewerchin, Hannah L; Desmarets, Lowiese M; Noppe, Ytse; Nauwynck, Hans J

    2014-02-12

    Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.

  8. Tuning of shortening speed in coleoid cephalopod muscle: no evidence for tissue-specific muscle myosin heavy chain isoforms.

    Science.gov (United States)

    Shaffer, Justin F; Kier, William M

    2016-03-01

    The contractile protein myosin II is ubiquitous in muscle. It is widely accepted that animals express tissue-specific myosin isoforms that differ in amino acid sequence and ATPase activity in order to tune muscle contractile velocities. Recent studies, however, suggested that the squid Doryteuthis pealeii might be an exception; members of this species do not express muscle-specific myosin isoforms, but instead alter sarcomeric ultrastructure to adjust contractile velocities. We investigated whether this alternative mechanism of tuning muscle contractile velocity is found in other coleoid cephalopods. We analyzed myosin heavy chain transcript sequences and expression profiles from muscular tissues of a cuttlefish, Sepia officinalis, and an octopus, Octopus bimaculoides, in order to determine if these cephalopods express tissue-specific myosin heavy chain isoforms. We identified transcripts of four and six different myosin heavy chain isoforms in S. officinalis and O. bimaculoides muscular tissues, respectively. Transcripts of all isoforms were expressed in all muscular tissues studied, and thus S. officinalis and O. bimaculoides do not appear to express tissue-specific muscle myosin isoforms. We also examined the sarcomeric ultrastructure in the transverse muscle fibers of the arms of O. bimaculoides and the arms and tentacles of S. officinalis using transmission electron microscopy and found that the fast contracting fibers of the prey capture tentacles of S. officinalis have shorter thick filaments than those found in the slower transverse muscle fibers of the arms of both species. It thus appears that coleoid cephalopods, including the cuttlefish and octopus, may use ultrastructural modifications rather than tissue-specific myosin isoforms to adjust contractile velocities.

  9. Chemical-genetic inhibition of a sensitized mutant myosin Vb demonstrates a role in peripheral-pericentriolar membrane traffic

    OpenAIRE

    Provance, D. William; Gourley, Christopher R.; Silan, Colleen M.; Cameron, L. C.; Kevan M Shokat; Goldenring, James R.; Shah, Kavita; Gillespie, Peter G.; John A. Mercer

    2004-01-01

    Selective, in situ inhibition of individual unconventional myosins is a powerful approach to determine their specific physiological functions. Here, we report the engineering of a myosin Vb mutant that still hydrolyzes ATP, yet is selectively sensitized to an N6-substituted ADP analog that inhibits its activity, causing it to remain tightly bound to actin. Inhibition of the sensitized mutant causes inhibition of accumulation of transferrin in the cytoplasm and increases levels of plasma-membr...

  10. Stimulation of cortical myosin phosphorylation by p114RhoGEF drives cell migration and tumor cell invasion.

    Directory of Open Access Journals (Sweden)

    Stephen J Terry

    Full Text Available Actinomyosin activity is an important driver of cell locomotion and has been shown to promote collective cell migration of epithelial sheets as well as single cell migration and tumor cell invasion. However, the molecular mechanisms underlying activation of cortical myosin to stimulate single cell movement, and the relationship between the mechanisms that drive single cell locomotion and those that mediate collective cell migration of epithelial sheets are incompletely understood. Here, we demonstrate that p114RhoGEF, an activator of RhoA that associates with non-muscle myosin IIA, regulates collective cell migration of epithelial sheets and tumor cell invasion. Depletion of p114RhoGEF resulted in specific spatial inhibition of myosin activation at cell-cell contacts in migrating epithelial sheets and the cortex of migrating single cells, but only affected double and not single phosphorylation of myosin light chain. In agreement, overall elasticity and contractility of the cells, processes that rely on persistent and more constant forces, were not affected, suggesting that p114RhoGEF mediates process-specific myosin activation. Locomotion was p114RhoGEF-dependent on Matrigel, which favors more roundish cells and amoeboid-like actinomyosin-driven movement, but not on fibronectin, which stimulates flatter cells and lamellipodia-driven, mesenchymal-like migration. Accordingly, depletion of p114RhoGEF led to reduced RhoA, but increased Rac activity. Invasion of 3D matrices was p114RhoGEF-dependent under conditions that do not require metalloproteinase activity, supporting a role of p114RhoGEF in myosin-dependent, amoeboid-like locomotion. Our data demonstrate that p114RhoGEF drives cortical myosin activation by stimulating myosin light chain double phosphorylation and, thereby, collective cell migration of epithelial sheets and amoeboid-like motility of tumor cells.

  11. Early Head Start Evaluation

    Data.gov (United States)

    U.S. Department of Health & Human Services — Longitudinal information from an evaluation where children were randomly assigned to Early Head Start or community services as usual;direct assessments and...

  12. Head Start Impact Study

    Data.gov (United States)

    U.S. Department of Health & Human Services — Nationally representative, longitudinal information from an evaluation where children were randomly assigned to Head Start or community services as usual;direct...

  13. Head Lice: Treatment

    Science.gov (United States)

    ... What's this? Submit Button Information For: Parents Schools Listen to audio/Podcast ... Guidelines Treatment for head lice is recommended for persons diagnosed with an active infestation. All household members and other close contacts ...

  14. Computed Tomography (CT) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the ... images. These images can be viewed on a computer monitor, printed on film or transferred to a ...

  15. Head and Neck Cancers

    Science.gov (United States)

    ... oral cancer ( 12 , 13 ). Preserved or salted foods . Consumption of certain preserved or salted foods during childhood ... head and neck cancers―particularly those who use tobacco―should talk with their doctor about ways that ...

  16. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... headaches, dizziness, and other symptoms of aneurysm, bleeding, stroke and brain tumors. It also helps your doctor ... scanning provides more detailed information on head injuries, stroke , brain tumors and other brain diseases than regular ...

  17. Head and face reconstruction

    Science.gov (United States)

    ... work together. Head and neck surgeons also perform craniofacial reconstruction operations. The surgery is done while you are deep asleep and pain-free (under general anesthesia ). The surgery may take ...

  18. Head CT scan

    Science.gov (United States)

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... hold your breath for short periods. A complete scan usually take only 30 seconds to a few ...

  19. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... special x-ray equipment to help assess head injuries, severe headaches, dizziness, and other symptoms of aneurysm, ... cancer. In emergency cases, it can reveal internal injuries and bleeding quickly enough to help save lives. ...

  20. Arabidopsis Myosins XI1, XI2, and XIK Are Crucial for Gravity-Induced Bending of Inflorescence Stems

    Science.gov (United States)

    Talts, Kristiina; Ilau, Birger; Ojangu, Eve-Ly; Tanner, Krista; Peremyslov, Valera V.; Dolja, Valerian V.; Truve, Erkki; Paves, Heiti

    2016-01-01

    Myosins and actin filaments in the actomyosin system act in concert in regulating cell structure and dynamics and are also assumed to contribute to plant gravitropic response. To investigate the role of the actomyosin system in the inflorescence stem gravitropism, we used single and multiple mutants affecting each of the 17 Arabidopsis myosins of class VIII and XI. We show that class XI but not class VIII myosins are required for stem gravitropism. Simultaneous loss of function of myosins XI1, XI2, and XIK leads to impaired gravitropic bending that is correlated with altered growth, stiffness, and insufficient sedimentation of gravity sensing amyloplasts in stem endodermal cells. The gravitropic defect of the corresponding triple mutant xi1 xi2 xik could be rescued by stable expression of the functional XIK:YFP in the mutant background, indicating a role of class XI myosins in this process. Altogether, our results emphasize the critical contributions of myosins XI in stem gravitropism of Arabidopsis. PMID:28066484

  1. Phosphorylated peptides occur in a non-helical portion of the tail of a catch muscle myosin

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, L.; Elliott, B.W. Jr.; Cohen, C.

    1987-05-01

    Myosin from a molluscan catch muscle (the Anterior Byssus Retractor (ABRM) of Mytilus edulis) is unusual in being phosphorylated in the rod by an endogenous heavy-chain kinase. This phosphorylation enhances myosin solubility at low ionic strength and induces molecular folding of the myosin tail. Papain and chymotryptic cleavage of this myosin, phosphorylated with (..gamma..-/sup 32/P)ATP, indicates that the phosphorylated residues are associated with the carboxy-terminal end of the light meromyosin. Ion-exchange and reverse-phase HPLC of radiolabeled chymotryptic peptides allow the isolation of two different peptides with high specific activity. One of these peptides is rich in lysine and arginine residues, a finding consistent with the observation that basic residues often determine the substrate specificity of protein kinases. The second peptide contains proline residues. Taken together, these results suggest that, as in the case of Acanthamoeba myosin, phosphorylation occurs in a nonhelical portion of the rod that may also control solubility. Identification of the residues that are phosphorylated and their location in the rod may reveal how the phosphorylation-dependent changes observed in the myosin in vitro are related to changes in intermolecular interactions in the thick filaments in vivo.

  2. Myosin VI Must Dimerize and Deploy Its Unusual Lever Arm in Order to Perform Its Cellular Roles

    Directory of Open Access Journals (Sweden)

    Monalisa Mukherjea

    2014-09-01

    Full Text Available It is unclear whether the reverse-direction myosin (myosin VI functions as a monomer or dimer in cells and how it generates large movements on actin. We deleted a stable, single-α-helix (SAH domain that has been proposed to function as part of a lever arm to amplify movements without impact on in vitro movement or in vivo functions. A myosin VI construct that used this SAH domain as part of its lever arm was able to take large steps in vitro but did not rescue in vivo functions. It was necessary for myosin VI to internally dimerize, triggering unfolding of a three-helix bundle and calmodulin binding in order to step normally in vitro and rescue endocytosis and Golgi morphology in myosin VI-null fibroblasts. A model for myosin VI emerges in which cargo binding triggers dimerization and unfolds the three-helix bundle to create a lever arm essential for in vivo functions.

  3. Head and neck teratomas

    OpenAIRE

    Shah, Ajaz; Latoo, Suhail; Ahmed, Irshad; Malik, Altaf H

    2009-01-01

    Teratomas are complex lesions composed of diverse tissues from all 3 germinal cell layers and may exhibit variable levels of maturity. Head and neck teratomas are most commonly cervical with the oropharynx (epignathus) being the second commonest location. In this article, clinical presentation, behaviour and associated significance of head and neck teratomas have been highlightened. Because of their obscure origin, bizarre microscopic appearance, unpredictable behaviour and often dramatic cli...

  4. Myosin-II dependent cell contractility contributes to spontaneous nodule formation of mesothelioma cells

    CERN Document Server

    Tárnoki-Zách, Julia; Méhes, Elod; Paku, Sándor; Neufeld, Zoltán; Hegedus, Balázs; Döme, Balázs; Czirok, Andras

    2015-01-01

    We demonstrate that characteristic nodules emerge in cultures of several malignant pleural mesothelioma (MPM) cell lines. Instead of excessive local cell proliferation, the nodules arise by Myosin II-driven cell contractility. The aggregation process can be prevented or reversed by suitable pharmacological inhibitors of acto-myosin contractility. A cell-resolved elasto-plastic model of the multicellular patterning process indicates that the morphology and size of the nodules as well as the speed of their formation is determined by the mechanical tension cells exert on their neighbors, and the stability of cell-substrate adhesion complexes. A linear stability analysis of a homogenous, self-tensioned Maxwell fluid indicates the unconditional presence of a patterning instability.

  5. Magnetic manipulation of actin orientation, polymerization, and gliding on myosin using superparamagnetic iron oxide particles.

    Science.gov (United States)

    Chen, Yun; Guzik, Stephanie; Sumner, James P; Moreland, John; Koretsky, Alan P

    2011-02-11

    The actin cytoskeleton controls cell shape, motility, as well as intracellular molecular trafficking. The ability to remotely manipulate actin is therefore highly desirable as a tool to probe and manipulate biological processes at the molecular level. We demonstrate actin manipulation by labeling actin filaments with superparamagnetic iron oxide particles (IOPs) and applying a uniform magnetic field to affect actin orientation, polymerization and gliding on myosin. We show for the first time magnetic manipulation of magnetizable actin filaments at the molecular level while gliding on a bed of myosin molecules and during polymerization. A model for the magnetic alignment and guiding mechanism is proposed based on the torque from the induced molecular anisotropy due to interactions between neighboring IOPs distributed along magnetically labeled actin molecules.

  6. Myosin Specific-T Lymphocytes Mediated Myocardial Inflammation in Adoptive Transferred Rats

    Institute of Scientific and Technical Information of China (English)

    Jin Zhang; Yuhua Liao; Xiang Cheng; Jing Chen; Peng Chen; Xiang Gao; Zhengjenny Zhang

    2006-01-01

    Myosin specific-T lymphocytes might mediate myocardial inflammation and remodeling after AMI. Myosinactivated or unactivated T lymphocytes in vitro were transferred into naǐve syngeneic rats, respectively. T lymphocyte infiltration and myocyte apoptosis were explored by the H&E and TUNNEL. Proteins and mRNA levels of cytokines (IL-1β, IL-6 and TNF-α) in myocardium were determined by RT-PCR and immunohistochemistry. T lymphocyte infiltration was evidently observed after one week of activated T cell transfer. The expressions of cytokines were elevated markedly one week later. The myocyte apoptosis occurred after T lymphocyte infiltration in myocardium. Our findings suggest that cardiac myosin activated-T lymphocytes may mediate myocardial inflammation and remodeling.

  7. Direct observation of motion of single F-actin filaments in the presence of myosin

    Science.gov (United States)

    Yanagida, Toshio; Nakase, Michiyuki; Nishiyama, Katsumi; Oosawa, Fumio

    1984-01-01

    Actin is found in almost all kinds of non-muscle cells where it is thought to have an important role in cell motility. A proper understanding of that role will only be possible when reliable in vitro systems are available for investigating the interaction of cellular actin and myosin. A start has been made on several systems1-4, most recently by Sheetz and Spudich who demonstrated unidirectional movement of HMM-coated beads along F-actin cables on arrays of chloroplasts exposed by dissection of a Nitella cell5. As an alternative approach, we report here the direct observation by fluorescence microscopy of the movements of single F-actin filaments interacting with soluble myosin fragments energized by Mg2+-ATP.

  8. The Rho kinases I and II regulate different aspects of myosin II activity

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Multhaupt, Hinke A B; Couchman, John R

    2005-01-01

    persistent ROCK II and guanine triphosphate-bound RhoA. In contrast, the microfilament cytoskeleton was enhanced by ROCK II down-regulation. Phagocytic uptake of fibronectin-coated beads was strongly down-regulated in ROCK II-depleted cells but not those lacking ROCK I. These effects originated in part from......The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament...... bundle assembly and smooth muscle contractility. Here, analysis of fibroblast adhesion to fibronectin revealed that although ROCK II was more abundant, its activity was always lower than ROCK I. Specific reduction of ROCK I by siRNA resulted in loss of stress fibers and focal adhesions, despite...

  9. Novel Mutation in the α-Myosin Heavy Chain Gene Is Associated With Sick Sinus Syndrome

    OpenAIRE

    Ishikawa, Taisuke; Jou, Chuanchau J.; Nogami, Akihiko; Kowase, Shinya; Arrington, Cammon B.; Barnett, Spencer M.; Harrell, Daniel T.; Arimura, Takuro; Tsuji, Yukiomi; Kimura, Akinori; Makita, Naomasa

    2015-01-01

    Recent genome-wide association studies have demonstrated an association between MYH6, the gene encoding α-myosin heavy chain (α-MHC), and sinus node function in the general population. Moreover, a rare MYH6 variant, R721W, predisposing susceptibility to sick sinus syndrome has been identified. However, the existence of disease-causing MYH6 mutations for familial sick sinus syndrome and their underlying mechanisms remain unknown. Methods and Results-We screened 9 genotype-negative probands wit...

  10. Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction

    OpenAIRE

    Qiu Xinping; Seabrooke Sara; Stewart Bryan A

    2010-01-01

    Abstract Background Although the mechanistic details of the vesicle transport process from the cell body to the nerve terminal are well described, the mechanisms underlying vesicle traffic within nerve terminal boutons is relatively unknown. The actin cytoskeleton has been implicated but exactly how actin or actin-binding proteins participate in vesicle movement is not clear. Results In the present study we have identified Nonmuscle Myosin II as a candidate molecule important for synaptic ves...

  11. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S., E-mail: bcssj@iacs.res.in

    2014-08-01

    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC{sub 20}) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC{sub 20} phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation.

  12. Lead reduces tension development and the myosin ATPase activity of the rat right ventricular myocardium

    Directory of Open Access Journals (Sweden)

    D.V. Vassallo

    2008-09-01

    Full Text Available Lead (Pb2+ poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 µM to the bath. Changes in rate of stimulation (0.1-1.5 Hz, relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM, and the effect of isoproterenol (20 ng/mL were determined before and after the addition of 100 µM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 µM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 µM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 µM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 µM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.

  13. A Kinase Anchoring Protein 9 Is a Novel Myosin VI Binding Partner That Links Myosin VI with the PKA Pathway in Myogenic Cells

    Directory of Open Access Journals (Sweden)

    Justyna Karolczak

    2015-01-01

    Full Text Available Myosin VI (MVI is a unique motor protein moving towards the minus end of actin filaments unlike other known myosins. Its important role has recently been postulated for striated muscle and myogenic cells. Since MVI functions through interactions of C-terminal globular tail (GT domain with tissue specific partners, we performed a search for MVI partners in myoblasts and myotubes using affinity chromatography with GST-tagged MVI-GT domain as a bait. A kinase anchoring protein 9 (AKAP9, a regulator of PKA activity, was identified by means of mass spectrometry as a possible MVI interacting partner both in undifferentiated and differentiating myoblasts and in myotubes. Coimmunoprecipitation and proximity ligation assay confirmed that both proteins could interact. MVI and AKAP9 colocalized at Rab5 containing early endosomes. Similarly to MVI, the amount of AKAP9 decreased during myoblast differentiation. However, in MVI-depleted cells, both cAMP and PKA levels were increased and a change in the MVI motor-dependent AKAP9 distribution was observed. Moreover, we found that PKA phosphorylated MVI-GT domain, thus implying functional relevance of MVI-AKAP9 interaction. We postulate that this novel interaction linking MVI with the PKA pathway could be important for targeting AKAP9-PKA complex within cells and/or providing PKA to phosphorylate MVI tail domain.

  14. A Kinase Anchoring Protein 9 Is a Novel Myosin VI Binding Partner That Links Myosin VI with the PKA Pathway in Myogenic Cells.

    Science.gov (United States)

    Karolczak, Justyna; Sobczak, Magdalena; Skowronek, Krzysztof; Rędowicz, Maria Jolanta

    2015-01-01

    Myosin VI (MVI) is a unique motor protein moving towards the minus end of actin filaments unlike other known myosins. Its important role has recently been postulated for striated muscle and myogenic cells. Since MVI functions through interactions of C-terminal globular tail (GT) domain with tissue specific partners, we performed a search for MVI partners in myoblasts and myotubes using affinity chromatography with GST-tagged MVI-GT domain as a bait. A kinase anchoring protein 9 (AKAP9), a regulator of PKA activity, was identified by means of mass spectrometry as a possible MVI interacting partner both in undifferentiated and differentiating myoblasts and in myotubes. Coimmunoprecipitation and proximity ligation assay confirmed that both proteins could interact. MVI and AKAP9 colocalized at Rab5 containing early endosomes. Similarly to MVI, the amount of AKAP9 decreased during myoblast differentiation. However, in MVI-depleted cells, both cAMP and PKA levels were increased and a change in the MVI motor-dependent AKAP9 distribution was observed. Moreover, we found that PKA phosphorylated MVI-GT domain, thus implying functional relevance of MVI-AKAP9 interaction. We postulate that this novel interaction linking MVI with the PKA pathway could be important for targeting AKAP9-PKA complex within cells and/or providing PKA to phosphorylate MVI tail domain.

  15. Myogenin, MyoD, and myosin expression after pharmacologically and surgically induced hypertrophy

    Science.gov (United States)

    Mozdziak, P. E.; Greaser, M. L.; Schultz, E.

    1998-01-01

    The relationship between myogenin or MyoD expression and hypertrophy of the rat soleus produced either by clenbuterol and 3,3', 5-triiodo-L-thyronine (CT) treatment or by surgical overload was examined. Mature female rats were subjected to surgical overload of the right soleus with the left soleus serving as a control. Another group received the same surgical treatment but were administered CT. Soleus muscles were harvested 4 wk after surgical overload and weighed. Myosin heavy chain isoforms were separated by using polyacrylamide gel electrophoresis while myogenin and MyoD expression were evaluated by Northern analysis. CT and functional overload increased soleus muscle weight. CT treatment induced the appearance of the fast type IIX myosin heavy chain isoform, depressed myogenin expression, and induced MyoD expression. However, functional overload did not alter myogenin or MyoD expression in CT-treated or non-CT-treated rats. Thus pharmacologically and surgically induced hypertrophy have differing effects on myogenin and MyoD expression, because their levels were associated with changes in myosin heavy chain composition (especially type IIX) rather than changes in muscle mass.

  16. Myosin filament sliding through the Z-disc relates striated muscle fibre structure to function.

    Science.gov (United States)

    Rode, Christian; Siebert, Tobias; Tomalka, Andre; Blickhan, Reinhard

    2016-03-16

    Striated muscle contraction requires intricate interactions of microstructures. The classic textbook assumption that myosin filaments are compressed at the meshed Z-disc during striated muscle fibre contraction conflicts with experimental evidence. For example, myosin filaments are too stiff to be compressed sufficiently by the muscular force, and, unlike compressed springs, the muscle fibres do not restore their resting length after contractions to short lengths. Further, the dependence of a fibre's maximum contraction velocity on sarcomere length is unexplained to date. In this paper, we present a structurally consistent model of sarcomere contraction that reconciles these findings with the well-accepted sliding filament and crossbridge theories. The few required model parameters are taken from the literature or obtained from reasoning based on structural arguments. In our model, the transition from hexagonal to tetragonal actin filament arrangement near the Z-disc together with a thoughtful titin arrangement enables myosin filament sliding through the Z-disc. This sliding leads to swivelled crossbridges in the adjacent half-sarcomere that dampen contraction. With no fitting of parameters required, the model predicts straightforwardly the fibre's entire force-length behaviour and the dependence of the maximum contraction velocity on sarcomere length. Our model enables a structurally and functionally consistent view of the contractile machinery of the striated fibre with possible implications for muscle diseases and evolution.

  17. Lack of replication for the myosin-18B association with mathematical ability in independent cohorts.

    Science.gov (United States)

    Pettigrew, K A; Fajutrao Valles, S F; Moll, K; Northstone, K; Ring, S; Pennell, C; Wang, C; Leavett, R; Hayiou-Thomas, M E; Thompson, P; Simpson, N H; Fisher, S E; Whitehouse, A J O; Snowling, M J; Newbury, D F; Paracchini, S

    2015-04-01

    Twin studies indicate that dyscalculia (or mathematical disability) is caused partly by a genetic component, which is yet to be understood at the molecular level. Recently, a coding variant (rs133885) in the myosin-18B gene was shown to be associated with mathematical abilities with a specific effect among children with dyslexia. This association represents one of the most significant genetic associations reported to date for mathematical abilities and the only one reaching genome-wide statistical significance. We conducted a replication study in different cohorts to assess the effect of rs133885 maths-related measures. The study was conducted primarily using the Avon Longitudinal Study of Parents and Children (ALSPAC), (N = 3819). We tested additional cohorts including the York Cohort, the Specific Language Impairment Consortium (SLIC) cohort and the Raine Cohort, and stratified them for a definition of dyslexia whenever possible. We did not observe any associations between rs133885 in myosin-18B and mathematical abilities among individuals with dyslexia or in the general population. Our results suggest that the myosin-18B variant is unlikely to be a main factor contributing to mathematical abilities.

  18. Smooth muscle myosin inhibition: a novel therapeutic approach for pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    David Ho

    Full Text Available OBJECTIVE: Pulmonary hypertension remains a major clinical problem despite current therapies. In this study, we examine for the first time a novel pharmacological target, smooth muscle myosin, and determine if the smooth muscle myosin inhibitor, CK-2019165 (CK-165 ameliorates pulmonary hypertension. MATERIALS AND METHODS: Six domestic female pigs were surgically instrumented to measure pulmonary blood flow and systemic and pulmonary vascular dynamics. Pulmonary hypertension was induced by hypoxia, or infusion of the thromboxane analog (U-46619, 0.1 µg/kg/min, i.v.. In rats, chronic pulmonary hypertension was induced by monocrotaline. RESULTS: CK-165 (4 mg/kg, i.v. reduced pulmonary vascular resistance by 22±3 and 28±6% from baseline in hypoxia and thromboxane pig models, respectively (p<0.01 and 0.01, while mean arterial pressure also fell and heart rate rose slightly. When CK-165 was delivered via inhalation in the hypoxia model, pulmonary vascular resistance fell by 17±6% (p<0.05 while mean arterial pressure and heart rate were unchanged. In the monocrotaline model of chronic pulmonary hypertension, inhaled CK-165 resulted in a similar (18.0±3.8% reduction in right ventricular systolic pressure as compared with sildenafil (20.3±4.5%. CONCLUSION: Inhibition of smooth muscle myosin may be a novel therapeutic target for treatment of pulmonary hypertension.

  19. Interactions between Leishmania braziliensis and Macrophages Are Dependent on the Cytoskeleton and Myosin Va

    Directory of Open Access Journals (Sweden)

    Elisama Azevedo

    2012-01-01

    Full Text Available Leishmaniasis is a neglected tropical disease with no effective vaccines. Actin, microtubules and the actin-based molecular motor myosin Va were investigated for their involvement in Leishmania braziliensis macrophage interactions. Results showed a decrease in the association index when macrophages were without F-actin or microtubules regardless of the activation state of the macrophage. In the absence of F-actin, the production of NO in non-activated cells increased, while in activated cells, the production of NO was reduced independent of parasites. The opposite effect of an increased NO production was observed in the absence of microtubules. In activated cells, the loss of cytoskeletal components inhibited the release of IL-10 during parasite interactions. The production of IL-10 also decreased in the absence of actin or microtubules in non-activated macrophages. Only the disruption of actin altered the production of TNF-α in activated macrophages. The expression of myosin Va tail resulted in an acute decrease in the association index between transfected macrophages and L. braziliensis promastigotes. These data reveal the importance of F-actin, microtubules, and myosin-Va suggesting that modulation of the cytoskeleton may be a mechanism used by L. braziliensis to overcome the natural responses of macrophages to establish infections.

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head ... limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is ...

  1. Missouri: Early Head Start Initiative

    Science.gov (United States)

    Center for Law and Social Policy, Inc. (CLASP), 2012

    2012-01-01

    Missouri's Early Head Start/Child Care Partnership Project expands access to Early Head Start (EHS) services for children birth to age 3 by developing partnerships between federal Head Start, EHS contractors, and child care providers. Head Start and EHS contractors that participate in the initiative provide services through community child care…

  2. Economics of head injuries

    Directory of Open Access Journals (Sweden)

    Singh Manmohan

    2006-01-01

    Full Text Available Summary: Head injuries account for significant proportion of neurosurgical admissions and bed occupancy. Patients with head injuries also consume significant proportions of neurosurgical resources. A prospective 6-month study has been carried out to evaluate the expenditure incurred on head injury patients in a modern neurosurgical center equipped with state of the art infrastructure. Costing areas included wages / salaries of health care personnel, cost of medicines / surgical items / crystalloids, general store items, stationary, all investigation charges, equipment cost, overhead building cost, maintenance cost, electricity and water charges and cost of medical gases, air conditioning and operation theatre expenses. Expenditure in each area was calculated and apportioned to each bed. The statistical analysis was done using X2 test. The cost of stay in ward was found to be Rs. 1062 / bed / day and in neurosurgical ICU Rs. 3082 / bed / day. The operation theatre cost for each surgery was Rs. 11948. The cost of hospital stay per day for minor, moderate and severe head injury group was found to be Rs. 1921, Rs. 2569 and Rs. 2713 respectively. The patients who developed complications, the cost of stay per day in the hospital were Rs. 2867. In the operative group, the cost of hospital stay per day was Rs. 3804. The total expenditure in minor head injury was Rs. 7800 per patient, in moderate head injury was Rs. 22172 per patient, whereas in severe head injury, it was found to be Rs. 32852 per patient. Patients who underwent surgery, the total cost incurred was Rs. 33100 per operated patient.

  3. Differences in the ionic interaction of actin with the motor domains of nonmuscle and muscle myosin II.

    Science.gov (United States)

    Van Dijk, J; Furch, M; Derancourt, J; Batra, R; Knetsch, M L; Manstein, D J; Chaussepied, P

    1999-03-01

    Changes in the actin-myosin interface are thought to play an important role in microfilament-linked cellular movements. In this study, we compared the actin binding properties of the motor domain of Dictyostelium discoideum (M765) and rabbit skeletal muscle myosin subfragment-1 (S1). The Dictyostelium motor domain resembles S1(A2) (S1 carrying the A2 light chain) in its interaction with G-actin. Similar to S1(A2), none of the Dictyostelium motor domain constructs induced G-actin polymerization. The affinity of monomeric actin (G-actin) was 20-fold lower for M765 than for S1(A2) but increasing the number of positive charges in the loop 2 region of the D. discoideum motor domain (residues 613-623) resulted in equivalent affinities of G-actin for M765 and for S1. Proteolytic cleavage and cross-linking approaches were used to show that M765, like S1, interacts via the loop 2 region with filamentous actin (F-actin). For both types of myosin, F-actin prevents trypsin cleavage in the loop 2 region and F-actin segment 1-28 can be cross-linked to loop 2 residues by a carbodiimide-induced reaction. In contrast with the S1, loop residues 559-565 of D. discoideum myosin was not cross-linked to F-actin, probably due to the lower number of positive charges. These results confirm the importance of the loop 2 region of myosin for the interaction with both G-actin and F-actin, regardless of the source of myosin. The differences observed in the way in which M765 and S1 interact with actin may be linked to more general differences in the structure of the actomyosin interface of muscle and nonmuscle myosins.

  4. Pediatric head injury.

    Science.gov (United States)

    Tulipan, N

    1998-01-01

    Pediatric head injury is a public health problem that exacts a high price from patients, their families and society alike. While much of the brain damage in head-injured patients occurs at the moment of impact, secondary injuries can be prevented by aggressive medical and surgical intervention. Modern imaging devices have simplified the task of diagnosing intracranial injuries. Recent advances in monitoring technology have made it easier to assess the effectiveness of medical therapy. These include intracranial pressure monitoring devices that are accurate and safe, and jugular bulb monitoring which provides a continuous, qualitative measure of cerebral blood flow. The cornerstones of treatment remain hyperventilation and osmotherapy. Despite maximal treatment, however, the mortality and morbidity associated with pediatric head injury remains high. Reduction of this mortality and morbidity will likely depend upon prevention rather than treatment.

  5. Head first Ajax

    CERN Document Server

    Riordan, Rebecca M

    2008-01-01

    Ajax is no longer an experimental approach to website development, but the key to building browser-based applications that form the cornerstone of Web 2.0. Head First Ajax gives you an up-to-date perspective that lets you see exactly what you can do -- and has been done -- with Ajax. With it, you get a highly practical, in-depth, and mature view of what is now a mature development approach. Using the unique and highly effective visual format that has turned Head First titles into runaway bestsellers, this book offers a big picture overview to introduce Ajax, and then explores the use of ind

  6. Rocket injector head

    Science.gov (United States)

    Green, C. W., Jr. (Inventor)

    1968-01-01

    A high number of liquid oxygen and gaseous hydrogen orifices per unit area are provided in an injector head designed to give intimate mixing and more thorough combustion. The injector head comprises a main body portion, a cooperating plate member as a flow chamber for one propellant, a cooperating manifold portion for the second propellant, and an annular end plate for enclosing an annular propellant groove formed around the outer edge of the body. All the openings for one propellant are located at the same angle with respect to a radial plane to permit a short combustion chamber.

  7. Head First Statistics

    CERN Document Server

    Griffiths, Dawn

    2009-01-01

    Wouldn't it be great if there were a statistics book that made histograms, probability distributions, and chi square analysis more enjoyable than going to the dentist? Head First Statistics brings this typically dry subject to life, teaching you everything you want and need to know about statistics through engaging, interactive, and thought-provoking material, full of puzzles, stories, quizzes, visual aids, and real-world examples. Whether you're a student, a professional, or just curious about statistical analysis, Head First's brain-friendly formula helps you get a firm grasp of statistics

  8. Structural analysis of the transitional state of Arp2/3 complex activation by two actin-bound WCAs.

    Science.gov (United States)

    Boczkowska, Malgorzata; Rebowski, Grzegorz; Kast, David J; Dominguez, Roberto

    2014-01-01

    Actin filament nucleation and branching by Arp2/3 complex is activated by nucleation-promoting factors (NPFs), whose C-terminal WCA region contains binding sites for actin (W) and Arp2/3 complex (CA). It is debated whether one or two NPFs are required for activation. Here we present evidence in support of the two-NPF model and show that actin plays a crucial role in the interactions of two mammalian NPFs, N-WASP and WAVE2, with Arp2/3 complex. Competition between actin-WCA and glia maturation factor (GMF) for binding to Arp2/3 complex suggests that during activation the first actin monomer binds at the barbed end of Arp2. Based on distance constraints obtained by time-resolved fluorescence resonance energy transfer, we define the relative position of the two actin-WCAs on Arp2/3 complex and propose an atomic model of the 11-subunit transitional complex.

  9. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle.

    Science.gov (United States)

    Boëda, Batiste; El-Amraoui, Aziz; Bahloul, Amel; Goodyear, Richard; Daviet, Laurent; Blanchard, Stéphane; Perfettini, Isabelle; Fath, Karl R; Shorte, Spencer; Reiners, Jan; Houdusse, Anne; Legrain, Pierre; Wolfrum, Uwe; Richardson, Guy; Petit, Christine

    2002-12-16

    Deaf-blindness in three distinct genetic forms of Usher type I syndrome (USH1) is caused by defects in myosin VIIa, harmonin and cadherin 23. Despite being critical for hearing, the functions of these proteins in the inner ear remain elusive. Here we show that harmonin, a PDZ domain-containing protein, and cadherin 23 are both present in the growing stereocilia and that they bind to each other. Moreover, we demonstrate that harmonin b is an F-actin-bundling protein, which is thus likely to anchor cadherin 23 to the stereocilia microfilaments, thereby identifying a novel anchorage mode of the cadherins to the actin cytoskeleton. Moreover, harmonin b interacts directly with myosin VIIa, and is absent from the disorganized hair bundles of myosin VIIa mutant mice, suggesting that myosin VIIa conveys harmonin b along the actin core of the developing stereocilia. We propose that the shaping of the hair bundle relies on a functional unit composed of myosin VIIa, harmonin b and cadherin 23 that is essential to ensure the cohesion of the stereocilia.

  10. Effects of FSGS-associated mutations on the stability and function of myosin-1 in fission yeast

    Directory of Open Access Journals (Sweden)

    Jing Bi

    2015-08-01

    Full Text Available Point mutations in the human MYO1E gene, encoding class I myosin Myo1e, are associated with focal segmental glomerulosclerosis (FSGS, a primary kidney disorder that leads to end-stage kidney disease. In this study, we used a simple model organism, fission yeast Schizosaccharomyces pombe, to test the effects of FSGS-associated mutations on myosin activity. Fission yeast has only one class I myosin, Myo1, which is involved in actin patch assembly at the sites of endocytosis. The amino acid residues mutated in individuals with FSGS are conserved between human Myo1e and yeast Myo1, which allowed us to introduce equivalent mutations into yeast myosin and use the resulting mutant strains for functional analysis. Yeast strains expressing mutant Myo1 exhibited defects in growth and endocytosis similar to those observed in the myo1 deletion strain. These mutations also disrupted Myo1 localization to endocytic actin patches and resulted in mis-localization of Myo1 to eisosomes, linear membrane microdomains found in yeast cells. Although both mutants examined in this study exhibited loss of function, one of these mutants was also characterized by the decreased protein stability. Thus, using the yeast model system, we were able to determine that the kidney-disease-associated mutations impair myosin functional activity and have differential effects on protein stability.

  11. Alternative exon-encoding regions of Locusta migratoria muscle myosin modulate the pH dependence of ATPase activity.

    Science.gov (United States)

    Li, J; Lu, Z; He, J; Chen, Q; Wang, X; Kang, L; Li, X-D

    2016-12-01

    Whereas the vertebrate muscle myosin heavy chains (MHCs) are encoded by a family of Mhc genes, most insects examined to date contain a single Mhc gene and produce all of the different MHC isoforms by alternative RNA splicing. Here, we found that the migratory locust, Locusta migratoria, has one Mhc gene, which contains 41 exons, including five alternative exclusive exons and one differently included penultimate exon, and potentially encodes 360 MHC isoforms. From the adult L. migratoria, we identified 14 MHC isoforms (including two identical isoforms): four from flight muscle (the thorax dorsal longitudinal muscle), three from jump muscle (the hind leg extensor tibiae muscle) and seven from the abdominal intersegmental muscle. We purified myosins from flight muscle and jump muscle and characterized their motor activities. At neutral pH, the flight and the jump muscle myosins displayed similar levels of in vitro actin-gliding activity, whereas the former had a slightly higher actin-activated ATPase activity than the latter. Interestingly, the pH dependences of the actin-activated ATPase activity of these two myosins are different. Because the dominant MHC isoforms in these two muscles are identical except for the two alternative exon-encoding regions, we propose that these two alternative regions modulate the pH dependence of L. migratoria muscle myosin.

  12. Induction of antibodies reactive to cardiac myosin and development of heart alterations in cruzipain-immunized mice and their offspring.

    Science.gov (United States)

    Giordanengo, L; Maldonado, C; Rivarola, H W; Iosa, D; Girones, N; Fresno, M; Gea, S

    2000-11-01

    Human and murine infection with Trypanosoma cruzi parasite is usually accompanied by strong humoral and cellular immune response to cruzipain, a parasite immunodominant antigen. In the present study we report that the immunization of mice with cruzipain devoid of enzymatic activity, was able to induce antibodies which bind to a 223-kDa antigen from a mouse heart extract. We identified this protein as the mouse cardiac myosin heavy chain by sequencing analysis. The study of IgG isotype profile revealed the occurrence of all IgG isotypes against cruzipain and myosin. IgG1 showed the strongest reactivity against cruzipain, whereas IgG2a was the main isotype against myosin. Anti-cruzipain antibodies purified by immunoabsorption recognized the cardiac myosin heavy chain, suggesting cross-reactive epitopes between cruzipain and myosin. Autoimmune response in mice immunized with cruzipain was associated to heart conduction disturbances. In addition, ultrastructural findings revealed severe alterations of cardiomyocytes and IgG deposit on heart tissue of immunized mice. We investigated whether antibodies induced by cruzipain transferred from immunized mothers to their offsprings could alter the heart function in the pups. All IgG isotypes against cruzipain derived from transplacental crossing were detected in pups' sera. Electrocardiographic studies performed in the offsprings born to immunized mothers revealed conduction abnormalities. These results provide strong evidence for a pathogenic role of autoimmune response induced by a purified T. cruzi antigen in the development of experimental Chagas' disease.

  13. Lubricating the swordfish head

    NARCIS (Netherlands)

    Videler, John J.; Haydar, Deniz; Snoek, Roelant; Hoving, Henk-Jan T.; Szabo, Ben G.

    2016-01-01

    The swordfish is reputedly the fastest swimmer on Earth. The concave head and iconic sword are unique characteristics, but how they contribute to its speed is still unknown. Recent computed tomography scans revealed a poorly mineralised area near the base of the rostrum. Here we report, using magnet

  14. Rho/Rho-dependent kinase affects locomotion and actin-myosin II activity of Amoeba proteus.

    Science.gov (United States)

    Kłopocka, W; Redowicz, M J

    2004-10-01

    The highly motile free-living unicellular organism Amoeba proteus has been widely used as a model to study cell motility. However, the molecular mechanisms underlying its unique locomotion are still scarcely known. Recently, we have shown that blocking the amoebae's endogenous Rac- and Rho-like proteins led to distinct and irreversible changes in the appearance of these large migrating cells as well as to a significant inhibition of their locomotion. In order to elucidate the mechanism of the Rho pathway, we tested the effects of blocking the endogenous Rho-dependent kinase (ROCK) by anti-ROCK antibodies and Y-27632, (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride, a specific inhibitor of ROCK, on migrating amoebae and the effect of the Rho and ROCK inhibition on the actin-activated Mg-ATPase of the cytosolic fraction of the amoebae. Amoebae microinjected with anti-ROCK inhibitors remained contracted and strongly attached to the glass surface and exhibited an atypical locomotion. Despite protruding many pseudopodia that were advancing in various directions, the amoebae could not effectively move. Immunofluorescence studies showed that ROCK-like protein was dispersed throughout the cytoplasm and was also found in the regions of actin-myosin II interaction during both isotonic and isometric contraction. The Mg-ATPase activity was about two- to threefold enhanced, indicating that blocking the Rho/Rho-dependent kinase activated myosin. It is possible then that in contrast to the vertebrate cells, the inactivation of Rho/Rho-dependent kinase in amoebae leads to the activation of myosin II and to the observed hypercontracted cells which cannot exert effective locomotion.

  15. Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function.

    Science.gov (United States)

    Previs, Michael J; Mun, Ji Young; Michalek, Arthur J; Previs, Samantha Beck; Gulick, James; Robbins, Jeffrey; Warshaw, David M; Craig, Roger

    2016-03-22

    During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C's N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain's extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C's inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C's calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C's phosphorylation state.

  16. Clinical assessment of serum myosin light chain I in patients with dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Takashi; Izumi, Tohru; Shibata, Akira (Niigata Univ. (Japan). School of Medicine)

    1992-08-01

    Serum cardiac myosin light chain I (LCI) levels were quantitated using a radioimmunoassay kit in patients suspected of dilated cardiomyopathy (DCM). In this study, 55 patients were evaluated between 1986 and 1991. They were composed of 40 males and 15 females, and their age was 27-75 years (51[+-]11 years). The patients with renal dysfunction were excluded due to their serum creatinine levels (>2.0 mg/dl). After cardiac catheterization, endomyocardial biopsy and echocardiography, 44 patients were diagnosed as DCM, 2 as ischemic heart disease, 2 as chronic myocarditis, 1 as restrictive cardiomyopathy, 1 as dilated hypertrophic cardiomyopathy, 1 as cardiac amyloidosis, 2 as myopathy, 1 as polymyositis and 1 as hypothyroidism. Only two patients with DCM had elevated LCI. Besides, two patients with myopathy or hypothyroidism had elevated LCI. In the follow-up, one patient died suddenly 6 months later and another showed normal value of LCI four years later. LCI elevation in DCM was not related to either the severity of heart failure or cardiac function and it showed no finding of [sup 201]Tl myocardial defect or elevated CPK. The mechanism for elevated LCI in myopathy is related to a crossreaction with myosin light chain in the skeletal muscle. In hypothyroidism, it may be related to decreased clearance of normal LCI concentration or increased myosin light chain from damaged skeletal muscle. In conclusion, it is evident that the measurement of LCI is not helpful in clinical assessment of patients with DCM, but may be useful in detection of secondary cardiomyopathy. (author).

  17. Responses of Myosin Heavy Chain Phenotypes and Gene Expressions in Neck Muscle to Micro- an Hyper-Gravity in Mice

    Science.gov (United States)

    Ohira, Tomotaka; Ohira, Takashi; Kawano, F.; Shibaguchi, T.; Okabe, H.; Ohno, Y.; Nakai, N.; Ochiai, T.; Goto, K.; Ohira, Y.

    2013-02-01

    Neck muscles are known to play important roles in the maintenance of head posture against gravity. However, it is not known how the properties of neck muscle are influenced by gravity. Therefore, the current study was performed to investigate the responses of neck muscle (rhomboideus capitis) in mice to inhibition of gravity and/or increase to 2-G for 3 months to test the hypothesis that the properties of neck muscles are regulated in response to the level of mechanical load applied by the gravitational load. Three male wild type C57BL/10J mice (8 weeks old) were launched by space shuttle Discovery (STS-128) and housed in Japanese Experimental Module “KIBO” on the International Space Station in mouse drawer system (MDS) project, which was organized by Italian Space Agency. Only 1 mouse returned to the Earth alive after 3 months by space shuttle Atlantis (STS-129). Neck muscles were sampled from both sides within 3 hours after landing. Cage and laboratory control experiments were also performed on the ground. Further, 3-month ground-based control experiments were performed with 6 groups, i.e. pre-experiment, 3-month hindlimb suspension, 2-G exposure by using animal centrifuge, and vivarium control (n=5 each group). Five mice were allowed to recover from hindlimb suspension (including 5 cage control) for 3 months in the cage. Neck muscles were sampled bilaterally before and after 3-month suspension and 2-G exposure, and at the end of 3-month ambulation recovery. Spaceflight-associated shift of myosin heavy chain phenotype from type I to II and atrophy of type I fibers were observed. In response to spaceflight, 17 genes were up-regulated and 13 genes were down-regulated vs. those in the laboratory control. Expression of 6 genes were up-regulated and that of 88 genes were down-regulated by 3-month exposure to 2-G vs. the age-matched cage control. In response to chronic hindlimb suspension, 4 and 20 genes were up- or down-regulated. Further, 98 genes responded

  18. Head and Neck Cancer Treatment

    Science.gov (United States)

    ... oncologist will listen to the history of your problem and perform a physical examination. Consultations with other members of the head and neck team, such as the head and neck surgeon, pathologist, ...

  19. Head Lice: Prevention and Control

    Science.gov (United States)

    ... Diseases Laboratory Diagnostic Assistance [DPDx] Parasites Home Prevention & Control Language: English Español (Spanish) Recommend on Facebook Tweet ... that can be taken to help prevent and control the spread of head lice: Avoid head-to- ...

  20. Effect of aerobic exercise on the contractile function of gastrocnemius myosin heavy chain

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To study the effect of 4-6 weeks' treadmill training of male SD rats on the contractile function of their gastrocnemius myosin heavy chain (MHC). Methods Forty male SD rats were randomly divided into control group and training group. The treadmill training of the training group rats was incessantly performed for 4-6 weeks at an intensity of about 75% VO2max (18.5-24 m/min,gradient of 0°,each training session lasting 50 minutes,twice a day). The content of gastrocnemius MHC mRNA was tested by rever...

  1. Characteristics of myosin profile in human vastus lateralis muscle in relation to training background.

    Directory of Open Access Journals (Sweden)

    J A Zoladz

    2004-10-01

    Full Text Available Twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg of different training background were investigated and classified into three groups according to their physical activity and sport discipline: untrained students (group A, national and sub-national level endurance athletes (group B, 7.8+/-2.9 years of specialised training and sprint-power athletes (group C, 12.8+/-8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase and SDH activities, immunohistochemically for fast and slow myosin, and electrophoretically followed by Western immunoblotting for myosin heavy chain (MyHC composition. Significant differences (P<0.05 regarding composition of muscle fibre types and myosin heavy chains were found only between groups A (41.7+/-1.6% of MyHCI, 40.8+/-4.0% of MyHCIIA and 17.5+/-4.0% of MyHCIIX and B (64.3+/-0.8% of MyHCI, 34.0+/-1.4% of MyHCIIA and 1.7+/-1.4% of MyHCIIX and groups A and C (59.6+/-1.6% of MyHCI, 37.2+/-1.3% of MyHCIIA and 3.2+/-1.3% of MyHCIIX. Unexpectedly, endurance athletes (group B such as long-distance runners, cyclists and cross country skiers, did not differ from the athletes representing short term, high power output sports (group C such as ice hockey, karate, ski-jumping, volleyball, soccer and modern dance. Furthermore, the relative amount of the fastest MyHCIIX isoform in vastus lateralis muscle was significantly lower in the athletes from group C than in students (group A. We conclude that the myosin profile in the athletes belonging to group C was unfavourable for their sport disciplines. This could be the reason why those athletes did not reach international level despite of several years of training.

  2. Myosin content of single muscle fibers following short-term disuse and active recovery in young and old healthy men

    DEFF Research Database (Denmark)

    Hvid, Lars G; Brocca, Lorenza; Ørtenblad, Niels

    2017-01-01

    Short-term disuse and subsequent recovery affect whole muscle and single myofiber contractile function in young and old. While the loss and recovery of single myofiber specific force (SF) following disuse and rehabilitation has been shown to correlate with alterations in myosin concentrations...... in young, it is unknown whether similar relationships exist in old. Therefore, the purpose of the present study was to examine the effect of 14days lower limb disuse followed by 28days of active recovery on single muscle fiber myosin content in old (68yrs) and young (24yrs) recreationally physically active...... contractile capacity of MHC 2a fibers. In conclusion, adaptive changes in myofiber myosin content appear to occur rapidly following brief periods of disuse (2wks) and after subsequent active recovery (4wks) in young and old, which contribute to alterations in contractile function at the single muscle fiber...

  3. Harmonic Force Spectroscopy Reveals a Force-Velocity Curve from a Single Human Beta Cardiac Myosin Motor

    DEFF Research Database (Denmark)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian L.;

    2014-01-01

    A muscle contracts rapidly under low load, but slowly under high load. This load-dependent muscle shortening has been described with a hyperbolic load-velocity curve. Its molecular mechanisms remain to be elucidated, however. During muscle contraction, myosins in thick filaments interact with actin...... is slow under high load and fast under low load. We use a new, simple method we call "harmonic force spectroscopy" to extract a load-velocity relationship from a single human beta cardiac myosin II motor (S1). With a dual-beam optical trap, we hold an actin dumbbell over a single myosin molecule...... that is anchored to the microscope stage, which we oscillate sinusoidally in the direction of the dumbbell. Upon binding of the motor to the actin filament, it experiences an oscillatory load with a mean value that may be directed forward or backward, depending on where the binding took place. We find...

  4. "Head versus heart"

    Directory of Open Access Journals (Sweden)

    Paul Rozin

    2007-08-01

    Full Text Available Most American respondents give ``irrational,'' magical responses in a variety of situations that exemplify the sympathetic magical laws of similarity and contagion. In most of these cases, respondents are aware that their responses (usually rejections, as of fudge crafted to look like dog feces, or a food touched by a sterilized, dead cockroach are not ``scientifically'' justified, but they are willing to avow them. We interpret this, in some sense, as ``heart over head.'' We report in this study that American adults and undergraduates are substantially less likely to acknowledge magical effects when the judgments involve money (amount willing to pay to avoid an ``unpleasant'' magical contact than they are when using preference or rating measures. We conclude that in ``head-heart'' conflicts of this type, money tips the balance towards the former, or, in other words, that money makes the mind less magical.

  5. The Elastic Properties of the Structurally Characterized Myosin II S2 Subdomain: A Molecular Dynamics and Normal Mode Analysis

    OpenAIRE

    2008-01-01

    The elastic properties (stretching and bending moduli) of myosin are expected to play an important role in its function. Of particular interest is the extended α-helical coiled-coil portion of the molecule. Since there is no high resolution structure for the entire coiled-coil, a study is made of the scallop myosin II S2 subdomain for which an x-ray structure is available (Protein Data Bank 1nkn). We estimate the stretching and bending moduli of the S2 subdomain with an atomic level model by ...

  6. "Head versus heart"

    OpenAIRE

    2007-01-01

    Most American respondents give ``irrational,'' magical responses in a variety of situations that exemplify the sympathetic magical laws of similarity and contagion. In most of these cases, respondents are aware that their responses (usually rejections, as of fudge crafted to look like dog feces, or a food touched by a sterilized, dead cockroach) are not ``scientifically'' justified, but they are willing to avow them. We interpret this, in some sense, as ``heart over head.'' We report in this ...

  7. Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse.

    Science.gov (United States)

    Yue, Hai-Yuan; Xu, Jianhua

    2014-01-01

    Neuronal activity triggers endocytosis at synaptic terminals to retrieve efficiently the exocytosed vesicle membrane, ensuring the membrane homeostasis of active zones and the continuous supply of releasable vesicles. The kinetics of endocytosis depends on Ca(2+) and calmodulin which, as a versatile signal pathway, can activate a broad spectrum of downstream targets, including myosin light chain kinase (MLCK). MLCK is known to regulate vesicle trafficking and synaptic transmission, but whether this kinase regulates vesicle endocytosis at synapses remains elusive. We investigated this issue at the rat calyx of Held synapse, where previous studies using whole-cell membrane capacitance measurement have characterized two common forms of Ca(2+)/calmodulin-dependent endocytosis, i.e., slow clathrin-dependent endocytosis and rapid endocytosis. Acute inhibition of MLCK with pharmacological agents was found to slow down the kinetics of both slow and rapid forms of endocytosis at calyces. Similar impairment of endocytosis occurred when blocking myosin II, a motor protein that can be phosphorylated upon MLCK activation. The inhibition of endocytosis was not accompanied by a change in Ca(2+) channel current. Combined inhibition of MLCK and calmodulin did not induce synergistic inhibition of endocytosis. Together, our results suggest that activation of MLCK accelerates both slow and rapid forms of vesicle endocytosis at nerve terminals, likely by functioning downstream of Ca(2+)/calmodulin.

  8. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion

    Science.gov (United States)

    Fan, Xueping; Yang, Hongying; Kumar, Sudhir; Tumelty, Kathleen E.; Pisarek-Horowitz, Anna; Sharma, Richa; Chan, Stefanie; Tyminski, Edyta; Shamashkin, Michael; Belghasem, Mostafa; Henderson, Joel M.; Coyle, Anthony J.; Berasi, Stephen P.

    2016-01-01

    The repulsive guidance cue SLIT2 and its receptor ROBO2 are required for kidney development and podocyte foot process structure, but the SLIT2/ROBO2 signaling mechanism regulating podocyte function is not known. Here we report that a potentially novel signaling pathway consisting of SLIT/ROBO Rho GTPase activating protein 1 (SRGAP1) and nonmuscle myosin IIA (NMIIA) regulates podocyte adhesion downstream of ROBO2. We found that the myosin II regulatory light chain (MRLC), a subunit of NMIIA, interacts directly with SRGAP1 and forms a complex with ROBO2/SRGAP1/NMIIA in the presence of SLIT2. Immunostaining demonstrated that SRGAP1 is a podocyte protein and is colocalized with ROBO2 on the basal surface of podocytes. In addition, SLIT2 stimulation inhibits NMIIA activity, decreases focal adhesion formation, and reduces podocyte attachment to collagen. In vivo studies further showed that podocyte-specific knockout of Robo2 protects mice from hypertension-induced podocyte detachment and albuminuria and also partially rescues the podocyte-loss phenotype in Myh9 knockout mice. Thus, we have identified SLIT2/ROBO2/SRGAP1/NMIIA as a potentially novel signaling pathway in kidney podocytes, which may play a role in regulating podocyte adhesion and attachment. Our findings also suggest that SLIT2/ROBO2 signaling might be a therapeutic target for kidney diseases associated with podocyte detachment and loss. PMID:27882344

  9. A Novel Myosin Essential Light Chain Mutation Causes Hypertrophic Cardiomyopathy with Late Onset and Low Expressivity

    Directory of Open Access Journals (Sweden)

    Paal Skytt Andersen

    2012-01-01

    Full Text Available Hypertrophic cardiomyopathy (HCM is caused by mutations in genes encoding sarcomere proteins. Mutations in MYL3, encoding the essential light chain of myosin, are rare and have been associated with sudden death. Both recessive and dominant patterns of inheritance have been suggested. We studied a large family with a 38-year-old asymptomatic HCM-affected male referred because of a murmur. The patient had HCM with left ventricular hypertrophy (max WT 21 mm, a resting left ventricular outflow gradient of 36 mm Hg, and left atrial dilation (54 mm. Genotyping revealed heterozygosity for a novel missense mutation, p.V79I, in MYL3. The mutation was not found in 300 controls, and the patient had no mutations in 10 sarcomere genes. Cascade screening revealed a further nine heterozygote mutation carriers, three of whom had ECG and/or echocardiographic abnormalities but did not fulfil diagnostic criteria for HCM. The penetrance, if we consider this borderline HCM the phenotype of the p.V79I mutation, was 40%, but the mean age of the nonpenetrant mutation carriers is 15, while the mean age of the penetrant mutation carriers is 47. The mutation affects a conserved valine replacing it with a larger isoleucine residue in the region of contact between the light chain and the myosin lever arm. In conclusion, MYL3 mutations can present with low expressivity and late onset.

  10. Antibodies covalently immobilized on actin filaments for fast myosin driven analyte transport.

    Directory of Open Access Journals (Sweden)

    Saroj Kumar

    Full Text Available Biosensors would benefit from further miniaturization, increased detection rate and independence from external pumps and other bulky equipment. Whereas transportation systems built around molecular motors and cytoskeletal filaments hold significant promise in the latter regard, recent proof-of-principle devices based on the microtubule-kinesin motor system have not matched the speed of existing methods. An attractive solution to overcome this limitation would be the use of myosin driven propulsion of actin filaments which offers motility one order of magnitude faster than the kinesin-microtubule system. Here, we realized a necessary requirement for the use of the actomyosin system in biosensing devices, namely covalent attachment of antibodies to actin filaments using heterobifunctional cross-linkers. We also demonstrated consistent and rapid myosin II driven transport where velocity and the fraction of motile actin filaments was negligibly affected by the presence of antibody-antigen complexes at rather high density (>20 µm(-1. The results, however, also demonstrated that it was challenging to consistently achieve high density of functional antibodies along the actin filament, and optimization of the covalent coupling procedure to increase labeling density should be a major focus for future work. Despite the remaining challenges, the reported advances are important steps towards considerably faster nanoseparation than shown for previous molecular motor based devices, and enhanced miniaturization because of high bending flexibility of actin filaments.

  11. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes

    Science.gov (United States)

    Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B. Cicero; Zarzoso, Manuel; Ramirez, Rafael J.; Sener, Michelle F.; Mundada, Lakshmi V.; Klos, Matthew; Devaney, Eric J.; Vikstrom, Karen L.; Herron, Todd J.; Jalife, José

    2014-01-01

    Applications of human induced pluripotent stemcell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricularmyocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. PMID:24095945

  12. Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1.

    Science.gov (United States)

    Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria

    2015-03-12

    Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP₃ receptors (IP₃Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP₃R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP₃R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP₃R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment.

  13. [Ontogenetic and phylogenetic analysis of myosin light chain proteins from skeletal muscles of loach Misgurnus fossilis].

    Science.gov (United States)

    Miuge, N S; Tikhonov, A V; Ozerniuk, N D

    2005-01-01

    mRNAs of all three types of myosin light chain proteins are expressed in skeletal muscles of both larval and adult stages of loach Misgurnus fossilis (Cobitidae) and these proteins are encoded by different genes (mlc1, mlc2, and mlc3). No difference was revealed between transcripts from larval stage and adult fish for all three mlc proteins. Our approach (RT-PCR with fish-specific mlc1, mlc2, and mlc3 primers) failed to reveal the larval form of myosin light chain protein found previously by protein electrophoresis of loach fry muscle extract. Comparative analysis of the protein structure shows high homology of MLC1 and MLC3 proteins sharing a large EF-hand calcium-binding domain. Phylogenetic analysis of MLC1 from skeletal muscles of fish and other vertebrate species is concordant with the traditional phylogeny of the group. Within the Teleostei, loach MLC1 had the highest homology with other Cyprinidae, and least with Salmonidae fishes.

  14. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution

    Science.gov (United States)

    Bamman, M. M.; Clarke, M. S.; Feeback, D. L.; Talmadge, R. J.; Stevens, B. R.; Lieberman, S. A.; Greenisen, M. C.

    1998-01-01

    Because resistance exercise (REx) and bed-rest unloading (BRU) are associated with opposing adaptations, our purpose was to test the efficacy of REx against the effects of 14 days of BRU on the knee-extensor muscle group. Sixteen healthy men were randomly assigned to no exercise (NoEx; n = 8) or REx (n = 8). REx performed five sets of leg press exercise with 80-85% of one repetition maximum (1 RM) every other day during BRU. Muscle samples were removed from the vastus lateralis muscle by percutaneous needle biopsy. Myofiber distribution was determined immunohistochemically with three monoclonal antibodies against myosin heavy chain (MHC) isoforms (I, IIa, IIx). MHC distribution was further assessed by quantitative gel electrophoresis. Dynamic 1-RM leg press and unilateral maximum voluntary isometric contraction (MVC) were determined. Maximal neural activation (root mean squared electromyogram) and rate of torque development (RTD) were measured during MVC. Reductions (P training-specific strength. Unlike spaceflight, BRU did not induce shifts in myosin phenotype. The reported benefits of REx may prove useful in prescribing exercise for astronauts in microgravity.

  15. The molecular motor Myosin Va interacts with the cilia-centrosomal protein RPGRIP1L

    Science.gov (United States)

    Assis, L. H. P.; Silva-Junior, R. M. P.; Dolce, L. G.; Alborghetti, M. R.; Honorato, R. V.; Nascimento, A. F. Z.; Melo-Hanchuk, T. D.; Trindade, D. M.; Tonoli, C. C. C.; Santos, C. T.; Oliveira, P. S. L.; Larson, R. E.; Kobarg, J.; Espreafico, E. M.; Giuseppe, P. O.; Murakami, M. T.

    2017-01-01

    Myosin Va (MyoVa) is an actin-based molecular motor abundantly found at the centrosome. However, the role of MyoVa at this organelle has been elusive due to the lack of evidence on interacting partners or functional data. Herein, we combined yeast two-hybrid screen, biochemical studies and cellular assays to demonstrate that MyoVa interacts with RPGRIP1L, a cilia-centrosomal protein that controls ciliary signaling and positioning. MyoVa binds to the C2 domains of RPGRIP1L via residues located near or in the Rab11a-binding site, a conserved site in the globular tail domain (GTD) from class V myosins. According to proximity ligation assays, MyoVa and RPGRIP1L can interact near the cilium base in ciliated RPE cells. Furthermore, we showed that RPE cells expressing dominant-negative constructs of MyoVa are mostly unciliated, providing the first experimental evidence about a possible link between this molecular motor and cilia-related processes. PMID:28266547

  16. Cytoskeletal turnover and Myosin contractility drive cell autonomous oscillations in a model of Drosophila Dorsal Closure

    Science.gov (United States)

    Machado, P. F.; Blanchard, G. B.; Duque, J.; Gorfinkiel, N.

    2014-06-01

    Oscillatory behaviour in force-generating systems is a pervasive phenomenon in cell biology. In this work, we investigate how oscillations in the actomyosin cytoskeleton drive cell shape changes during the process of Dorsal Closure (DC), a morphogenetic event in Drosophila embryo development whereby epidermal continuity is generated through the pulsatile apical area reduction of cells constituting the amnioserosa (AS) tissue. We present a theoretical model of AS cell dynamics by which the oscillatory behaviour arises due to a coupling between active myosin-driven forces, actin turnover and cell deformation. Oscillations in our model are cell-autonomous and are modulated by neighbour coupling, and our model accurately reproduces the oscillatory dynamics of AS cells and their amplitude and frequency evolution. A key prediction arising from our model is that the rate of actin turnover and Myosin contractile force must increase during DC in order to reproduce the decrease in amplitude and period of cell area oscillations observed in vivo. This prediction opens up new ways to think about the molecular underpinnings of AS cell oscillations and their link to net tissue contraction and suggests the form of future experimental measurements.

  17. The role of myosin II in glioma invasion: A mathematical model

    Science.gov (United States)

    Lee, Wanho; Lim, Sookkyung; Kim, Yangjin

    2017-01-01

    Gliomas are malignant tumors that are commonly observed in primary brain cancer. Glioma cells migrate through a dense network of normal cells in microenvironment and spread long distances within brain. In this paper we present a two-dimensional multiscale model in which a glioma cell is surrounded by normal cells and its migration is controlled by cell-mechanical components in the microenvironment via the regulation of myosin II in response to chemoattractants. Our simulation results show that the myosin II plays a key role in the deformation of the cell nucleus as the glioma cell passes through the narrow intercellular space smaller than its nuclear diameter. We also demonstrate that the coordination of biochemical and mechanical components within the cell enables a glioma cell to take the mode of amoeboid migration. This study sheds lights on the understanding of glioma infiltration through the narrow intercellular spaces and may provide a potential approach for the development of anti-invasion strategies via the injection of chemoattractants for localization. PMID:28166231

  18. Myosin binding protein C:Structural abnormalities in familial hypertrophic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The muscle protein myosin binding protein C (MyBPC) is a large multi-domain protein whose role in the sarcomere is complex and not yet fully understood. Mutations in MyBPC are strongly associated with the heart disease familial hypertrophic cardiomyopathy (FHC) and these experiments of nature have provided some insight into the intricate workings of this protein in the heart. While some regions of the MyBPC molecule have been assigned a function in the regulation of muscle contraction, the interaction of other regions with various parts of the myosin molecule and the sarcomeric proteins, actin and titin, remain obscure. In additic n, several intra-domain interactions between adjacent MyBPC molecules have been identified. Although the basic structure of the molecule (a series of immunoglobulin and fibronectin domains) has been elucidated, the assembly of MyBPC in the sarcomere is a topic for debate. By analysing the MyBPC sequence with respect to FHC-causing mutations it is possible to identify individual residues or regions of each domain that may be important either for binding or regulation. This review looks at the current literature, in concert with alignments and the structural models of MyBPC, in an attempt to understand how FHC mutations may lead to the disease state.

  19. ENDOR and ELDOR studies of x-irradiated polycrystalline dipeptides, myosin, and actomyosin

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.S. (Univ. of Alabama, Tuscaloosa); Dickinson, A.C.; Kispert, L.D.

    1979-12-27

    ENDOR and ELDOR studies have been carried out for nine dipeptide powders as well as powders of myosin and actomyosin x ray irradiated at 77/sup 0/K in an attempt to characterize the final radical stable upon annealing between 183 and 260/sup 0/K. The dipeptides studied were glycylglycine, L-alanylglycine, glycyl-L-alanine, L-alanyl-L-alanine, glycyl-L-aspartic acid, glycyl-L-glutamic acid, glycyl-L-methionine, glycyl-L-serine, and L-lysyl-L-lysine. Nitrogen ENDOR spectra have been observed between 1 and 8 MHz for each powder and the nitrogen hyperfine and quadrupole tensor has been estimated. Analysis of the ENDOR, ELDOR, and ESR spectra indicates at least one of the final radicals in the dipeptide powders (except Gly-Gly, and possibly Gly-Glu, Gly-Ser) to be the decarboxylation product NH/sub 2/CHRCONHCHR' rather than just the abstraction type (NH/sub 3//sup +/-CHRONHCR'COO/sup -/) previously identified in irradiated dipeptide ices. A decarboxylation type radical is also present as a final radical in the irradiated myosin and actomyosin.

  20. The zebrafish goosepimples/myosin Vb mutant exhibits cellular attributes of human microvillus inclusion disease.

    Science.gov (United States)

    Sidhaye, Jaydeep; Pinto, Clyde Savio; Dharap, Shweta; Jacob, Tressa; Bhargava, Shobha; Sonawane, Mahendra

    2016-11-01

    Microvillus inclusion disease (MVID) is a life-threatening enteropathy characterised by malabsorption and incapacitating fluid loss due to chronic diarrhoea. Histological analysis has revealed that enterocytes in MVID patients exhibit reduction of microvilli, presence of microvillus inclusion bodies and intestinal villus atrophy, whereas genetic linkage analysis has identified mutations in myosin Vb gene as the main cause of MVID. In order to understand the cellular basis of MVID and the associated formation of inclusion bodies, an animal model that develops ex utero and is tractable genetically as well as by microscopy would be highly useful. Here we report that the intestine of the zebrafish goosepimples (gsp)/myosin Vb (myoVb) mutant shows severe reduction in intestinal folds - structures similar to mammalian villi. The loss of folds is further correlated with changes in the shape of enterocytes. In striking similarity with MVID patients, zebrafish gsp/myoVb mutant larvae exhibit microvillus atrophy, microvillus inclusions and accumulation of secretory material in enterocytes. We propose that the zebrafish gsp/myoVb mutant is a valuable model to study the pathophysiology of MVID. Furthermore, owing to the advantages of zebrafish in screening libraries of small molecules, the gsp mutant will be an ideal tool to identify compounds having therapeutic value against MVID.

  1. Model of myosin node aggregation into a contractile ring: the effect of local alignment

    Energy Technology Data Exchange (ETDEWEB)

    Ojkic, Nikola; Vavylonis, Dimitrios [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Wu Jianqiu, E-mail: vavylonis@lehigh.edu [Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210 (United States)

    2011-09-21

    Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.

  2. Syntactic-Head-Driven Generation

    CERN Document Server

    Koenig, E

    1994-01-01

    The previously proposed semantic-head-driven generation methods run into problems if none of the daughter constituents in the syntacto-semantic rule schemata of a grammar fits the definition of a semantic head given in Shieber et al. 1990. This is the case for the semantic analysis rules of certain constraint-based semantic representations, e.g. Underspecified Discourse Representation Structures (UDRSs) (Frank/Reyle 1992). Since head-driven generation in general has its merits, we simply return to a syntactic definition of `head' and demonstrate the feasibility of syntactic-head-driven generation. In addition to its generality, a syntactic-head-driven algorithm provides a basis for a logically well-defined treatment of the movement of (syntactic) heads, for which only ad-hoc solutions existed, so far.

  3. Head first C#

    CERN Document Server

    Stellman, Andrew

    2008-01-01

    Head First C# is a complete learning experience for object-oriented programming, C#, and the Visual Studio IDE. Built for your brain, this book covers C# 3.0 and Visual Studio 2008, and teaches everything from language fundamentals to advanced topics including garbage collection, extension methods, and double-buffered animation. You'll also master C#'s hottest and newest syntax, LINQ, for querying SQL databases, .NET collections, and XML documents. By the time you're through, you'll be a proficient C# programmer, designing and coding large-scale applications. Every few chapters you will come

  4. Head First Python

    CERN Document Server

    Barry, Paul

    2010-01-01

    Ever wished you could learn Python from a book? Head First Python is a complete learning experience for Python that helps you learn the language through a unique method that goes beyond syntax and how-to manuals, helping you understand how to be a great Python programmer. You'll quickly learn the language's fundamentals, then move onto persistence, exception handling, web development, SQLite, data wrangling, and Google App Engine. You'll also learn how to write mobile apps for Android, all thanks to the power that Python gives you. We think your time is too valuable to waste struggling with

  5. Head First Web Design

    CERN Document Server

    Watrall, Ethan

    2008-01-01

    Want to know how to make your pages look beautiful, communicate your message effectively, guide visitors through your website with ease, and get everything approved by the accessibility and usability police at the same time? Head First Web Design is your ticket to mastering all of these complex topics, and understanding what's really going on in the world of web design. Whether you're building a personal blog or a corporate website, there's a lot more to web design than div's and CSS selectors, but what do you really need to know? With this book, you'll learn the secrets of designing effecti

  6. Head first C#

    CERN Document Server

    Stellman, Andrew

    2010-01-01

    You want to learn C# programming, but you're not sure you want to suffer through another tedious technical book. You're in luck: Head First C# introduces this language in a fun, visual way. You'll quickly learn everything from creating your first program to learning sophisticated coding skills with C# 4.0, Visual Studio 2010 and .NET 4, while avoiding common errors that frustrate many students. The second edition offers several hands-on labs along the way to help you build and test programs using skills you've learned up to that point. In the final lab, you'll put everything together. From o

  7. Head First Mobile Web

    CERN Document Server

    Gardner, Lyza; Grigsby, Jason

    2011-01-01

    Despite the huge number of mobile devices and apps in use today, your business still needs a website. You just need it to be mobile. Head First Mobile Web walks you through the process of making a conventional website work on a variety smartphones and tablets. Put your JavaScript, CSS media query, and HTML5 skills to work-then optimize your site to perform its best in the demanding mobile market. Along the way, you'll discover how to adapt your business strategy to target specific devices. Navigate the increasingly complex mobile landscapeTake both technical and strategic approaches to mobile

  8. Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9-related disease

    DEFF Research Database (Denmark)

    Pecci, A.; Panza, E.; Pujol-Moix, N.

    2008-01-01

    MYH9-related disease (MYH9-RD) is a rare autosomal-dominant disorder caused by mutations in MYH9, the gene for the heavy chain of nonmuscle myosin IIA (NMMHC-IIA). All patients present from birth with macrothrombocytopenia, but in infancy or adult life, some of them develop sensorineural deafness...

  9. An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking

    NARCIS (Netherlands)

    Schneeberger, Kerstin; Vogel, Georg F.; Teunissen, Hans; Zomer-van Ommen, Domenique; Begthel, Harry; El Bouazzaoui, Layla; van Vugt, Anke H. M.; Beekman, JM; Klumperman, Judith; Mueller, Thomas; Janecke, Andreas; Gerner, Patrick; Huber, Lukas A.; Hess, Michael W.; Clevers, Hans; van Es, Johan H.; Nieuwenhuis, Edward E. S.; Middendorp, Sabine

    2015-01-01

    Microvillus inclusion disease (MVID) is a rare intestinal enteropathy with an onset within a few days to months after birth, resulting in persistent watery diarrhea. Mutations in the myosin Vb gene (MYO5B) have been identified in the majority of MVID patients. However, the exact pathophysiology of M

  10. Myosin IXB gene region and gluten intolerance : linkage to coeliac disease and a putative dermatitis herpetiformis association

    NARCIS (Netherlands)

    Koskinen, L. L. E.; Korponay-Szabo, I. R.; Viiri, K.; Juuti-Uusitalo, K.; Kaukinen, K.; Lindfors, K.; Mustalahti, K.; Kurppa, K.; Adany, R.; Pocsai, Z.; Szeles, G.; Einarsdottir, E.; Wijmenga, C.; Maeki, M.; Partanen, J.; Kere, J.; Saavalainen, P.

    2008-01-01

    Background: Coeliac disease is caused by dietary gluten, which triggers chronic inflammation of the small intestine in genetically predisposed individuals. In one quarter of the patients the disease manifests in the skin as dermatitis herpetiformis. Recently, a novel candidate gene, myosin IXB on ch

  11. Memory Disrupting Effects of Nonmuscle Myosin II Inhibition Depend on the Class of Abused Drug and Brain Region

    Science.gov (United States)

    Briggs, Sherri B.; Blouin, Ashley M.; Young, Erica J.; Rumbaugh, Gavin; Miller, Courtney A.

    2017-01-01

    Depolymerizing actin in the amygdala through nonmuscle myosin II inhibition (NMIIi) produces a selective, lasting, and retrieval-independent disruption of the storage of methamphetamine-associated memories. Here we report a similar disruption of memories associated with amphetamine, but not cocaine or morphine, by NMIIi. Reconsolidation appeared…

  12. Harmonic force spectroscopy reveals a force-velocity curve from a single human beta cardiac myosin motor

    Science.gov (United States)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian; Mortensen, Kim; Flyvbjerg, Henrik; Spudich, James

    2014-03-01

    A muscle contracts rapidly under low load, but slowly under high load. Its molecular mechanisms remain to be elucidated, however. During contraction, myosins in thick filaments interact with actin in thin filaments in the sarcomere, cycling between a strongly bound (force producing) state and a weakly bound (relaxed) state. Huxley et al. have previously proposed that the transition from the strong to the weak interaction can be modulated by a load. We use a new method we call ``harmonic force spectroscopy'' to extract a load-velocity curve from a single human beta cardiac myosin II motor. With a dual-beam optical trap, we hold an actin dumbbell over a myosin molecule anchored to the microscope stage that oscillates sinusoidally. Upon binding, the motor experiences an oscillatory load with a mean that is directed forward or backward, depending on binding location We find that the bound time at saturating [ATP] is exponentially correlated with the mean load, which is explained by Arrhenius transition theory. With a stroke size measurement, we obtained a load-velocity curve from a single myosin. We compare the curves for wild-type motors with mutants that cause hypertrophic cardiomyopathies, to understand the effects on the contractile cycle

  13. Maintenance of muscle myosin levels in adult C. elegans requires both the double bromodomain protein BET-1 and sumoylation

    Directory of Open Access Journals (Sweden)

    Kate Fisher

    2013-10-01

    Attenuation of RAS-mediated signalling is a conserved process essential to control cell proliferation, differentiation, and apoptosis. Cooperative interactions between histone modifications such as acetylation, methylation and sumoylation are crucial for proper attenuation in C. elegans, implying that the proteins recognising these histone modifications could also play an important role in attenuation of RAS-mediated signalling. We sought to systematically identify these proteins and found BET-1. BET-1 is a conserved double bromodomain protein that recognises acetyl-lysines on histone tails and maintains the stable fate of various lineages. Unexpectedly, adults lacking both BET-1 and SUMO-1 are depleted of muscle myosin, an essential component of myofibrils. We also show that this muscle myosin depletion does not occur in all animals at a specific time, but rather that the penetrance of the phenotype increases with age. To gain mechanistic insights into this process, we sought to delay the occurrence of the muscle myosin depletion phenotype and found that it requires caspase activity and MEK-dependent signalling. We also performed transcription profiling on these mutants and found an up-regulation of the FGF receptor, egl-15, a tyrosine kinase receptor acting upstream of MEK. Consistent with a MEK requirement, we could delay the muscle phenotype by systemic or hypodermal knock down of egl-15. Thus, this work uncovered a caspase- and MEK-dependent mechanism that acts specifically on ageing adults to maintain the appropriate net level of muscle myosin.

  14. Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Melkani, Girish C.; Lee, Chi F.; Cammarato, Anthony [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States); Bernstein, Sanford I., E-mail: sbernst@sciences.sdsu.edu [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States)

    2010-05-28

    UNC-45 belongs to the UCS (UNC-45, CRO1, She4p) domain protein family, whose members interact with various classes of myosin. Here we provide structural and biochemical evidence that Escherichia coli-expressed Drosophila UNC-45 (DUNC-45) maintains the integrity of several substrates during heat-induced stress in vitro. DUNC-45 displays chaperone function in suppressing aggregation of the muscle myosin heavy meromyosin fragment, the myosin S-1 motor domain, {alpha}-lactalbumin and citrate synthase. Biochemical evidence is supported by electron microscopy, which reveals the first structural evidence that DUNC-45 prevents inter- or intra-molecular aggregates of skeletal muscle heavy meromyosin caused by elevated temperatures. We also demonstrate for the first time that UNC-45 is able to refold a denatured substrate, urea-unfolded citrate synthase. Overall, this in vitro study provides insight into the fate of muscle myosin under stress conditions and suggests that UNC-45 protects and maintains the contractile machinery during in vivo stress.

  15. Characterization of the minimum domain required for targeting budding yeast myosin II to the site of cell division

    Directory of Open Access Journals (Sweden)

    Tolliday Nicola J

    2006-06-01

    Full Text Available Abstract Background All eukaryotes with the exception of plants use an actomyosin ring to generate a constriction force at the site of cell division (cleavage furrow during mitosis and meiosis. The structure and filament forming abilities located in the C-terminal or tail region of one of the main components, myosin II, are important for localising the molecule to the contractile ring (CR during cytokinesis. However, it remains poorly understood how myosin II is recruited to the site of cell division and how this recruitment relates to myosin filament assembly. Significant conservation between species of the components involved in cytokinesis, including those of the CR, allows the use of easily genetically manipulated organisms, such as budding yeast (Saccharomyces cerevisiae, in the study of cytokinesis. Budding yeast has a single myosin II protein, named Myo1. Unlike most other class II myosins, the tail of Myo1 has an irregular coiled coil. In this report we use molecular genetics, biochemistry and live cell imaging to characterize the minimum localisation domain (MLD of budding yeast Myo1. Results We show that the MLD is a small region in the centre of the tail of Myo1 and that it is both necessary and sufficient for localisation of Myo1 to the yeast bud neck, the pre-determined site of cell division. Hydrodynamic measurements of the MLD, purified from bacteria or yeast, show that it is likely to exist as a trimer. We also examine the importance of a small region of low coiled coil forming probability within the MLD, which we call the hinge region. Removal of the hinge region prevents contraction of the CR. Using fluorescence recovery after photobleaching (FRAP, we show that GFP-tagged MLD is slightly more dynamic than the GFP-tagged full length molecule but less dynamic than the GFP-tagged Myo1 construct lacking the hinge region. Conclusion Our results define the intrinsic determinant for the localization of budding yeast myosin II and show

  16. Myosin IIA participates in docking of Glut4 storage vesicles with the plasma membrane in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Le Thi Kim, E-mail: ngocanh@nutr.med.tokushima-u.ac.jp [Department of Nutrition and Metabolism, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503 (Japan); Hosaka, Toshio [Department of Public Health and Applied Nutrition, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima (Japan); Harada, Nagakatsu; Jambaldorj, Bayasgalan; Fukunaga, Keiko; Nishiwaki, Yuka [Department of Nutrition and Metabolism, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503 (Japan); Teshigawara, Kiyoshi [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Sakai, Tohru [Department of Public Health and Applied Nutrition, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima (Japan); Nakaya, Yutaka [Department of Nutrition and Metabolism, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503 (Japan); Funaki, Makoto, E-mail: m-funaki@clin.med.tokushima-u.ac.jp [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan)

    2010-01-01

    In adipocytes and myocytes, insulin stimulation translocates glucose transporter 4 (Glut4) storage vesicles (GSVs) from their intracellular storage sites to the plasma membrane (PM) where they dock with the PM. Then, Glut4 is inserted into the PM and initiates glucose uptake into these cells. Previous studies using chemical inhibitors demonstrated that myosin II participates in fusion of GSVs and the PM and increase in the intrinsic activity of Glut4. In this study, the effect of myosin IIA on GSV trafficking was examined by knocking down myosin IIA expression. Myosin IIA knockdown decreased both glucose uptake and exposures of myc-tagged Glut4 to the cell surface in insulin-stimulated cells, but did not affect insulin signal transduction. Interestingly, myosin IIA knockdown failed to decrease insulin-dependent trafficking of Glut4 to the PM. Moreover, in myosin IIA knockdown cells, insulin-stimulated binding of GSV SNARE protein, vesicle-associated membrane protein 2 (VAMP2) to PM SNARE protein, syntaxin 4 was inhibited. These data suggest that myosin IIA plays a role in insulin-stimulated docking of GSVs to the PM in 3T3-L1 adipocytes through SNARE complex formation.

  17. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform

    Directory of Open Access Journals (Sweden)

    Yi Ting

    2012-11-01

    Full Text Available Abstract It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG and that exposure of zinc ion (Zn2+ to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after β-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% β-myosin heavy chain expression in the heart. β-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our

  18. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform.

    Science.gov (United States)

    Yi, Ting; Cheema, Yaser; Tremble, Sarah M; Bell, Stephen P; Chen, Zengyi; Subramanian, Meenakumari; LeWinter, Martin M; VanBuren, Peter; Palmer, Bradley M

    2012-11-02

    It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG) and that exposure of zinc ion (Zn2+) to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after β-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% β-myosin heavy chain expression in the heart. β-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR) at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our results suggest that the

  19. Arabidopsis myosin XI sub-domains homologous to the yeast myo2p organelle inheritance sub-domain target subcellular structures in plant cells

    Directory of Open Access Journals (Sweden)

    Amirali eSattarzadeh

    2013-10-01

    Full Text Available Myosin XI motor proteins transport plant organelles on the actin cytoskeleton. The Arabidopsis gene family that encodes myosin XI has 13 members, 12 of which have sub-domains within the tail region that are homologous to well-characterized cargo-binding domains in the yeast myosin V myo2p. Little is presently known about the cargo-binding domains of plant myosin XIs. Prior experiments in which most or all of the tail regions of myosin XIs have been fused to yellow fluorescent protein (YFP and transiently expressed have often not resulted in fluorescent labeling of plant organelles. We identified 42 amino-acid regions within 12 Arabidopsis myosin XIs that are homologous to the yeast myo2p tail region known to be essential for vacuole and mitochondrial inheritance. A YFP fusion of the yeast region expressed in plants did not label tonoplasts or mitochondria. We investigated whether the homologous Arabidopsis regions, termed by us the PAL sub-domain, could associate with subcellular structures following transient expression of fusions with YFP in Nicotiana benthamiana. Seven YFP::PAL sub-domain fusions decorated Golgi and six were localized to mitochondria. In general, the myosin XI PAL sub-domains labeled organelles whose motility had previously been observed to be affected by mutagenesis or dominant negative assays with the respective myosins. Simultaneous transient expression of the PAL sub-domains of myosin XI-H, XI-I, and XI-K resulted in inhibition of movement of mitochondria and Golgi.

  20. Role of LARP6 and nonmuscle myosin in partitioning of collagen mRNAs to the ER membrane.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Type I collagen is extracellular matrix protein composed of two α1(I and one α2(I polypeptides that fold into triple helix. Collagen polypeptides are translated in coordination to synchronize the rate of triple helix folding to the rate of posttranslational modifications of individual polypeptides. This is especially important in conditions of high collagen production, like fibrosis. It has been assumed that collagen mRNAs are targeted to the membrane of the endoplasmic reticulum (ER after translation of the signal peptide and by signal peptide recognition particle (SRP. Here we show that collagen mRNAs associate with the ER membrane even when translation is inhibited. Knock down of LARP6, an RNA binding protein which binds 5' stem-loop of collagen mRNAs, releases a small amount of collagen mRNAs from the membrane. Depolimerization of nonmuscle myosin filaments has a similar, but stronger effect. In the absence of LARP6 or nonmuscle myosin filaments collagen polypeptides become hypermodified, are poorly secreted and accumulate in the cytosol. This indicates lack of coordination of their synthesis and retro-translocation due to hypermodifications and misfolding. Depolimerization of nonmuscle myosin does not alter the secretory pathway through ER and Golgi, suggesting that the role of nonmuscle myosin is primarily to partition collagen mRNAs to the ER membrane. We postulate that collagen mRNAs directly partition to the ER membrane prior to synthesis of the signal peptide and that LARP6 and nonmuscle myosin filaments mediate this process. This allows coordinated initiation of translation on the membrane bound collagen α1(I and α2(I mRNAs, a necessary step for proper synthesis of type I collagen.

  1. EF-hand proteins and the regulation of actin-myosin interaction in the eutardigrade Hypsibius klebelsbergi (tardigrada).

    Science.gov (United States)

    Prasath, Thiruketheeswaran; Greven, Hartmut; D'Haese, Jochen

    2012-06-01

    Many tardigrade species resist harsh environmental conditions by entering anhydrobiosis or cryobiosis. Desiccation as well as freeze resistance probably leads to changes of the ionic balance that includes the intracellular calcium concentration. In order to search for protein modifications affecting the calcium homoeostasis, we studied the regulatory system controlling actin-myosin interaction of the eutardigrade Hypsibius klebelsbergi and identified full-length cDNA clones for troponin C (TnC, 824 bp), calmodulin (CaM, 1,407 bp), essential myosin light chain (eMLC, 1,015 bp), and regulatory myosin light chain (rMLC, 984 bp) from a cDNA library. All four proteins belong to the EF-hand superfamily typified by a calcium coordinating helix-loop-helix motif. Further, we cloned and obtained recombinant TnC and both MLCs. CaM and TnC revealed four and two potential calcium-binding domains, respectively. Gel mobility shift assays demonstrated calcium-induced conformational transition of TnC. From both MLCs, only the rMLC showed one potential N-terminal EF-hand domain. Additionally, sequence properties suggest phosphorylation of this myosin light chain. Based on our results, we suggest a dual-regulated system at least in somatic muscles for tardigrades with a calcium-dependent tropomyosin-troponin complex bound to the actin filaments and a phosphorylation of the rMLC turning on and off both actin and myosin. Our results indicate no special modifications of the molecular structure and function of the EF-hand proteins in tardigrades. Phylogenetic trees of 131 TnCs, 96 rMLCs, and 62 eMLCs indicate affinities to Ecdysozoa, but also to some other taxa suggesting that our results reflect the complex evolution of these proteins rather than phylogenetic relationships.

  2. A Novel Alpha Cardiac Actin (ACTC1) Mutation Mapping to a Domain in Close Contact with Myosin Heavy Chain Leads to a Variety of Congenital Heart Defects, Arrhythmia and Possibly Midline Defects

    Science.gov (United States)

    Augière, Céline; Mégy, Simon; El Malti, Rajae; Boland, Anne; El Zein, Loubna; Verrier, Bernard; Mégarbané, André; Deleuze, Jean-François; Bouvagnet, Patrice

    2015-01-01

    Background A Lebanese Maronite family presented with 13 relatives affected by various congenital heart defects (mainly atrial septal defects), conduction tissue anomalies and midline defects. No mutations were found in GATA4 and NKX2-5. Methods and Results A set of 399 poly(AC) markers was used to perform a linkage analysis which peaked at a 2.98 lod score on the long arm of chromosome 15. The haplotype analysis delineated a 7.7 meganucleotides genomic interval which included the alpha-cardiac actin gene (ACTC1) among 36 other protein coding genes. A heterozygous missense mutation was found (c.251T>C, p.(Met84Thr)) in the ACTC1 gene which changed a methionine residue conserved up to yeast. This mutation was absent from 1000 genomes and exome variant server database but segregated perfectly in this family with the affection status. This mutation and 2 other ACTC1 mutations (p.(Glu101Lys) and p.(Met125Val)) which result also in congenital heart defects are located in a region in close apposition to a myosin heavy chain head region by contrast to 3 other alpha-cardiac actin mutations (p.(Ala297Ser),p.(Asp313His) and p.(Arg314His)) which result in diverse cardiomyopathies and are located in a totally different interaction surface. Conclusions Alpha-cardiac actin mutations lead to congenital heart defects, cardiomyopathies and eventually midline defects. The consequence of an ACTC1 mutation may in part be dependent on the interaction surface between actin and myosin. PMID:26061005

  3. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    Science.gov (United States)

    Sung, Jongmin; Nag, Suman; Mortensen, Kim I.; Vestergaard, Christian L.; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A.

    2015-08-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using `harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load.

  4. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons.

    Science.gov (United States)

    Sotelo, José R; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José R; Xu, Lei; Wallrabe, Horst; Calliari, Aldo; Rosso, Gonzalo; Cal, Karina; Mercer, John A

    2013-01-01

    To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells) at the site of injury to promote regeneration.

  5. The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract

    DEFF Research Database (Denmark)

    Hansen, Lars; Comyn, Sophie; Mang, Yuan;

    2014-01-01

    Genome-wide linkage analysis, followed by targeted deep sequencing, in a Danish multigeneration family with juvenile cataract revealed a region of chromosome 17 co-segregating with the disease trait. Affected individuals were heterozygous for two potentially protein-disrupting alleles in this reg......Genome-wide linkage analysis, followed by targeted deep sequencing, in a Danish multigeneration family with juvenile cataract revealed a region of chromosome 17 co-segregating with the disease trait. Affected individuals were heterozygous for two potentially protein-disrupting alleles......-type embryos resulted in development of a phenotype similar to the steif mutant. The p.Arg805Trp alteration in the mammalian UNC45B gene suggests that developmental cataract may be caused by a defect in non-muscle myosin assembly during maturation of the lens fiber cells.European Journal of Human Genetics...

  6. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction.

    Science.gov (United States)

    Mason, Frank M; Tworoger, Michael; Martin, Adam C

    2013-08-01

    Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape. However, it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of the apical domain (medioapical cortex), separate from adherens junctions. Rok recruits or stabilizes medioapical myosin II (Myo-II), which contracts dynamic medioapical actin cables. The formin Diaphanous mediates apical actin assembly to suppress medioapical E-cadherin localization and form stable connections between the medioapical contractile network and adherens junctions. Twist is not required for apical Rok recruitment, but instead polarizes Rok medioapically. Therefore, Twist establishes radial cell polarity of Rok/Myo-II and E-cadherin and promotes medioapical actin assembly in mesoderm cells to stabilize cell shape fluctuations.

  7. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    Science.gov (United States)

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-06-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ~95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes.

  8. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    Science.gov (United States)

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-01-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. PMID:27251117

  9. HEADS UP: Sensorimotor control of the head-neck system

    NARCIS (Netherlands)

    Forbes, P.A.

    2014-01-01

    Head-neck stabilization is inherently challenging even when stationary, requiring constant vigilance to counter the downward pull of gravity. It involves a highly complex biomechanical system comprised of a large mass (the head) balanced on top of seven vertebrae (the neck), that are in turn connect

  10. Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations.

    Directory of Open Access Journals (Sweden)

    Haibo Yu

    2007-02-01

    Full Text Available Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP, the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such "mechanochemical coupling" in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [] is to propose the actual mechanism behind these "population shifts" and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide

  11. The Intriguing Dual Lattices of the Myosin Filaments in Vertebrate Striated Muscles: Evolution and Advantage

    Directory of Open Access Journals (Sweden)

    Pradeep K. Luther

    2014-12-01

    Full Text Available Myosin filaments in vertebrate striated muscle have a long roughly cylindrical backbone with cross-bridge projections on the surfaces of both halves except for a short central bare zone. In the middle of this central region the filaments are cross-linked by the M-band which holds them in a well-defined hexagonal lattice in the muscle A-band. During muscular contraction the M-band-defined rotation of the myosin filaments around their long axes influences the interactions that the cross-bridges can make with the neighbouring actin filaments. We can visualise this filament rotation by electron microscopy of thin cross-sections in the bare-region immediately adjacent to the M-band where the filament profiles are distinctly triangular. In the muscles of teleost fishes, the thick filament triangular profiles have a single orientation giving what we call the simple lattice. In other vertebrates, for example all the tetrapods, the thick filaments have one of two orientations where the triangles point in opposite directions (they are rotated by 60° or 180° according to set rules. Such a distribution cannot be developed in an ordered fashion across a large 2D lattice, but there are small domains of superlattice such that the next-nearest neighbouring thick filaments often have the same orientation. We believe that this difference in the lattice forms can lead to different contractile behaviours. Here we provide a historical review, and when appropriate cite recent work related to the emergence of the simple and superlattice forms by examining the muscles of several species ranging back to primitive vertebrates and we discuss the functional differences that the two lattice forms may have.

  12. Non-muscle Myosin II Isoforms Co-assemble in Living Cells

    Science.gov (United States)

    Beach, Jordan R.; Shao, Lin; Remmert, Kirsten; Li, Dong; Betzig, Eric; Hammer, John A.

    2014-01-01

    SUMMARY Non-muscle myosin II (NM II) powers myriad developmental and cellular processes, including embryogenesis, cell migration, and cytokinesis [1]. To exert its functions, monomers of NM II assemble into bipolar filaments that produce a contractile force on the actin cytoskeleton. Mammalian cells express up to three isoforms of NM II (NM IIA, IIB and IIC), each of which possesses distinct biophysical properties and supports unique, as well as redundant, cellular functions [2-8]. Despite previous efforts [9-13], it remains unclear if NM II isoforms assemble in living cells to produce mixed (heterotypic) bipolar filaments, or if filaments consist entirely of a single isoform (homotypic). We addressed this question using fluorescently-tagged versions of NM IIA, IIB and IIC, isoform-specific immunostaining of the endogenous proteins, and two-color total internal reflection fluorescence structured-illumination microscopy, or TIRF-SIM, to visualize individual myosin II bipolar filaments inside cells. We show that NM II isoforms co-assemble into heterotypic filaments in a variety of settings, including various types of stress fibers, individual filaments throughout the cell, and the contractile ring. We also show that the differential distribution of NM IIA and NM IIB typically seen in confocal micrographs of well-polarized cells is reflected in the composition of individual bipolar filaments. Interestingly, this differential distribution is less pronounced in freshly-spread cells, arguing for the existence of sorting mechanism acting over time. Together, our work argues that individual NM II isoforms are potentially performing both isoform-specific and isoform-redundant functions while co-assembled with other NM II isoforms. PMID:24814144

  13. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    Science.gov (United States)

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts.

  14. Shifts in the myosin heavy chain isozymes in the mouse heart result in increased energy efficiency

    Science.gov (United States)

    Hoyer, Kirsten; Krenz, Maike; Robbins, Jeffrey; Ingwall, Joanne S.

    2007-01-01

    Cardiac-specific transgenesis in the mouse is widely used to study the basic biology and chemistry of the heart and to model human cardiovascular disease. A fundamental difference between mouse and human hearts is the background motor protein: mouse hearts contain predominantly the αα-myosin heavy chain (MyHC) isozyme while human hearts contain predominantly the ββ-MyHC isozyme. Although the intrinsic differences in mechanical and enzymatic properties of the αα- and ββ-MyHC molecules are well known, the consequences of isozyme shifts on energetic of the intact beating heart remain unknown. Therefore, we compared the free energy of ATP hydrolysis (|ΔG~ATP|) determined by 31P NMR spectroscopy in isolated perfused littermate mouse hearts containing the same amount of myosin comprised of either >95% αα-MyHC or ~83% ββ-MyHC. |ΔG~ATP| was ~2 kJ mol−1 higher in the ββ-MyHC hearts at all workloads. Furthermore, upon inotropic challenge, hearts containing predominantly ββ-MyHC hearts increased developed pressure more than αα-MyHC hearts whereas heart rate increased more in αα-MyHC hearts. Thus, hearts containing predominantly the ββ-MyHC isozyme are more energy efficient than αα-MyHC hearts. We suggest that these fundamental differences in the motor protein energy efficiency at the whole heart level should be considered when interpreting results using mouse-based cardiovascular modeling of normal and diseased human heart. PMID:17054980

  15. 5DFRXXL region of long myosin light chain kinase causes F-actin bundle formation

    Institute of Scientific and Technical Information of China (English)

    YANG Chunxiang; WEI Dongmei; CHEN Chen; YU Weiping; ZHU Minsheng

    2005-01-01

    Long myosin light chain kinase (L-MLCK) contains five DFRXXL motifs with ability to bind F-actin. Binding stoichiometry data indicated that each DFRXXL motif might bind each G-actin, but its biological significance remained unknown. We hypothesized that L-MLCK might act as an F-actin bundle peptides by its multiple binding sites of 5DFRXXL motifs to actin. In order to characterize F-actin-bundle formation properties of 5DFRXXL region of long myosin light chain kinase, we expressed and purified 5DFRXXL peptides tagged with HA in vitro. The properties of 5DFRXXL peptides binding to myofilaments or F-actin were analyzed by binding stoichiometries assays. The results indicated that 5DFRXXL peptides bound to myofilaments or F-actin with high affinity. KD values of 5DFRXXL binding to myofilaments and F-actin were 0.45 and 0.41 μmol/L, re- spectively. Cross-linking assay demonstrated that 5DFRXXL peptides could bundle F-actin efficiently. Typical F-actin bundles were observed morphologically through determina- tion of confocal and electron microscopy after adding 5DFRXXL peptides. After transfection of pEGFP-5DFRXXL plasmid into eukaryocyte, spike structure was observed around cell membrane edge. We guess that such structure formation may be attributable to F-actin over-bundle forma- tion caused by 5DFRXXL peptides. Therefore, we suppose that L-MLCK may be a new bundling protein and somehow play a certain role in organization of cell skeleton besides mediating cell contraction by it kinase activity.

  16. Chryse 'Alien Head'

    Science.gov (United States)

    2005-01-01

    26 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an impact crater in Chryse Planitia, not too far from the Viking 1 lander site, that to seems to resemble a bug-eyed head. The two odd depressions at the north end of the crater (the 'eyes') may have formed by wind or water erosion. This region has been modified by both processes, with water action occurring in the distant past via floods that poured across western Chryse Planitia from Maja Valles, and wind action common occurrence in more recent history. This crater is located near 22.5oN, 47.9oW. The 150 meter scale bar is about 164 yards long. Sunlight illuminates the scene from the left/lower left.

  17. NASA head sworn in

    Science.gov (United States)

    James C. Fletcher was sworn in on May 12, 1986, as administrator of the National Aeronautics and Space Administration (NASA). At a news conference after he was sworn in, Fletcher said that NASA would deal with both its technical problems and its procedural problems before the shuttle will fly again. According to press accounts, he stressed that funds should be made available to replace the Challenger orbiter, which was lost in an explosion on January 28.Fletcher, who had also headed the agency from 1971 to 1977, succeeds James M. Beggs, who was indicted in December 1985 for conspiring to defraud the federal government while serving as a senior executive at the General Dynamics Corporation.

  18. Dilated cardiomyopathy mutation (R134W in mouse cardiac troponin T induces greater contractile deficits against α-myosin heavy chain than against β-myosin heavy chain

    Directory of Open Access Journals (Sweden)

    Sampath K Gollapudi

    2016-10-01

    Full Text Available Many studies have demonstrated that depressed myofilament Ca2+ sensitivity is common to dilated cardiomyopathy (DCM in humans. However, it remains unclear whether a single determinant — such as myofilament Ca2+ sensitivity — is sufficient to characterize all cases of DCM because the severity of disease varies widely with a given mutation. Because dynamic features dominate in the heart muscle, alterations in dynamic contractile parameters may offer better insight on the molecular mechanisms that underlie disparate effects of DCM mutations on cardiac phenotypes. Dynamic features are dominated by myofilament cooperativity that stem from different sources. One such source is the strong tropomyosin binding region in troponin T (TnT, which is known to modulate crossbridge (XB recruitment dynamics in a myosin heavy chain (MHC-dependent manner. Therefore, we hypothesized that the effects of DCM-linked mutations in TnT on contractile dynamics would be differently modulated by α- and β-MHC. After reconstitution with the mouse TnT equivalent (TnTR134W of the human DCM mutation (R131W, we measured dynamic contractile parameters in detergent-skinned cardiac muscle fiber bundles from normal (α-MHC and transgenic mice (β-MHC. TnTR134W significantly attenuated the rate constants of tension redevelopment, XB recruitment dynamics, XB distortion dynamics, and the magnitude of length-mediated XB recruitment only in α-MHC fiber bundles. TnTR134W decreased myofilament Ca2+ sensitivity to a greater extent in α-MHC (0.14 pCa units than in β-MHC fiber bundles (0.08 pCa units. Thus, our data demonstrate that TnTR134W induces a more severe DCM-like contractile phenotype against α-MHC than against β-MHC background.

  19. The head-mounted microscope.

    Science.gov (United States)

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery.

  20. Eye-based head gestures

    DEFF Research Database (Denmark)

    Mardanbegi, Diako; Witzner Hansen, Dan; Pederson, Thomas

    2012-01-01

    A novel method for video-based head gesture recognition using eye information by an eye tracker has been proposed. The method uses a combination of gaze and eye movement to infer head gestures. Compared to other gesture-based methods a major advantage of the method is that the user keeps the gaze...

  1. Clinical trials in head injury

    NARCIS (Netherlands)

    Narayan, RK; Michel, ME

    2002-01-01

    Traumatic brain injury (TBI) remains a major public health problem globally. In the United States the incidence of closed head injuries admitted to hospitals is conservatively estimated to be 200 per 100,000 population, and the incidence of penetrating head injury is estimated to be 12 per 100,000,

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  3. Non-muscle myosin as target antigen for human autoantibodies in patients with hepatitis C virus-associated chronic liver diseases.

    Science.gov (United States)

    von Mühlen, C A; Chan, E K; Peebles, C L; Imai, H; Kiyosawa, K; Tan, E M

    1995-04-01

    Three patients with hepatitis C virus (HCV)-related chronic liver disease were shown to have autoantibodies strongly reacting with cytoskeletal fibres of non-muscle cells. The heavy chain of non-muscle myosin microfilament was the main target for those autoantibodies, as determined by (i) cell and tissue immunofluorescence studies showing colocalization with an anti-myosin antibody prototype; (ii) primary reactivity in immunoblotting with a 200-kD protein, using either MOLT-4 cells, human platelets, or affinity-purified non-muscle myosin as antigen extract; and (iii) immunoblotting of similar immunoreactive fragments in papain-digested MOLT-4 cell extracts, by using those human sera and antibody prototype. Autoantibodies to non-muscle myosin heavy chain were not previously reported in patients with chronic liver diseases, especially in those associated with HCV infection.

  4. Structural Basis for the Allosteric Interference of Myosin Function by Reactive Thiol Region Mutations G680A and G680V*

    Science.gov (United States)

    Preller, Matthias; Bauer, Stefanie; Adamek, Nancy; Fujita-Becker, Setsuko; Fedorov, Roman; Geeves, Michael A.; Manstein, Dietmar J.

    2011-01-01

    The cold-sensitive single-residue mutation of glycine 680 in the reactive thiol region of Dictyostelium discoideum myosin-2 or the corresponding conserved glycine in other myosin isoforms has been reported to interfere with motor function. Here we present the x-ray structures of myosin motor domain mutants G680A in the absence and presence of nucleotide as well as the apo structure of mutant G680V. Our results show that the Gly-680 mutations lead to uncoupling of the reactive thiol region from the surrounding structural elements. Structural and functional data indicate that the mutations induce the preferential population of a state that resembles the ADP-bound state. Moreover, the Gly-680 mutants display greatly reduced dynamic properties, which appear to be related to the recovery of myosin motor function at elevated temperatures. PMID:21841195

  5. Turbidity Current Head Mixing

    Science.gov (United States)

    Hernandez, David; Sanchez, Miguel Angel; Medina, Pablo

    2010-05-01

    A laboratory experimental set - up for studying the behaviour of sediment in presence of a turbulent field with zero mean flow is compared with the behaviour of turbidity currents [1] . Particular interest is shown on the initiation of sediment motion and in the sediment lift - off. The behaviour of the turbidity current in a flat ground is compared with the zero mean flow oscilating grid generated turbulence as when wave flow lifts off suspended sediments [2,3]. Some examples of the results obtained with this set-up relating the height of the head of the turbidity current to the equilibrium level of stirred lutoclines are shown. A turbulent velocity u' lower than that estimated by the Shield diagram is required to start sediment motion. The minimum u' required to start sediment lift - off, is a function of sediment size, cohesivity and resting time. The lutocline height depends on u', and the vorticity at the lutocline seems constant for a fixed sediment size [1,3]. Combining grid stirring and turbidty current head shapes analyzed by means of advanced image analysis, sediment vertical fluxes and settling speeds can be measured [4,5]. [1] D. Hernandez Turbulent structure of turbidity currents and sediment transport Ms Thesis ETSECCPB, UPC. Barcelona 2009. [2] A. Sánchez-Arcilla; A. Rodríguez; J.C. Santás; J.M. Redondo; V. Gracia; R. K'Osyan; S. Kuznetsov; C. Mösso. Delta'96 Surf-zone and nearshore measurements at the Ebro Delta. A: International Conference on Coastal Research through large Scale Experiments (Coastal Dynamics '97). University of Plymouth, 1997, p. 186-187. [3] P. Medina, M. A. Sánchez and J. M. Redondo. Grid stirred turbulence: applications to the initiation of sediment motion and lift-off studies Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26, Issue 4, 2001, Pages 299-304 [4] M.O. Bezerra, M. Diez, C. Medeiros, A. Rodriguez, E. Bahia., A. Sanchez-Arcilla and J.M. Redondo. Study on the influence of waves on

  6. Cardiac and skeletal muscle expression of mutant β-myosin heavy chains, degree of functional impairment and phenotypic heterogeneity in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Di Domenico, Marina; Casadonte, Rita; Ricci, Pietroantonio; Santini, Mario; Frati, Giacomo; Rizzo, Antonietta; Carratelli, Caterina Romano; Lamberti, Monica; Parrotta, Elvira; Quaresima, Barbara; Faniello, Concetta M; Costanzo, Francesco; Cuda, Giovanni

    2012-10-01

    Several mutations in distinct genes, all coding for sarcomeric proteins, have been reported in unrelated kindreds with familial hypertrophic cardiomyopathy (FHC). We have identified nine individuals from three families harboring two distinct mutations in one copy of the β-myosin heavy chain (β-MHC) gene. In this study, the expression of the mutant β-myosin protein isoform, isolated from slow-twitch fibers of skeletal muscle, was demonstrated by Northern and Western blot analysis; this myosin showed a decreased in vitro motility activity and produced a lower actin-activated ATPase activity. Isometric tension, measured in single slow-twitch fibers isolated from the affected individuals, also showed a significant decrease. The degree of impairment of β-myosin function, as well as the loss in isometric tension development, were strictly dependent on the amount of the isoform transcribed from the mutated allele. Interestingly, a strong correlation was also demonstrated between mutant β-myosin content and clinical features of FHC. On the other hand, we were unable to detect any correlation between mutant β-myosin expression and degree of cardiac hypertrophy, thereby strengthening the hypothesis that hypertrophy, one of the hallmarks of FHC, might not necessarily be related to the clinical evolution of this disease. These findings lend support to the notion that additional factors rather than the mutated gene may play a pathogenetic role in cardiac wall thickening, whereas the prognosis appears to be strongly related to the amount of mutant protein.

  7. Direct photoaffinity labeling of gizzard myosin with ( sup 3 H)uridine diphosphate places Glu185 of the heavy chain at the active site

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, T.E.; Yount, R.G. (Washington State Univ., Pullman (USA))

    1990-12-25

    The active site of chicken gizzard myosin was labeled by direct photoaffinity labeling with ({sup 3}H)UDP. ({sup 3}H) UDP was stably trapped at the active site by addition of vanadate (Vi) and Co{sup 2+}. The extraordinary stability of the myosin.Co2+.(3H)UDP.Vi complex (t1/2 greater than 5 days at 0{degrees}C) allowed it to be purified free of extraneous ({sup 3}H)UDP before irradiation began. Upon UV irradiation, greater than 60% of the trapped ({sup 3}H)UDP was photoincorporated into the active site. Only the 200-kDa heavy chain was labeled, confirming earlier results using ({sup 3}H)UTP. Extensive tryptic digestion of photolabeled myosin subfragment 1 followed by high performance liquid chromatography separations and removal of nucleotide phosphates by treatment with alkaline phosphatase allowed two labeled peptides to be isolated. Sequencing of the labeled peptides and radioactive counting showed that Glu185 was the residue labeled. Since UDP is a zero-length cross-linker, Glu185 is located at the purine-binding pocket of the active site of smooth myosin and adjacent to the glycine-rich loop which binds the polyphosphate portion of ATP. This Glu residue is conserved in smooth and nonmuscle myosins and is the same residue identified previously by ({sup 3}H)UTP photolabeling in Acanthamoeba myosin II.

  8. An optimized micro-assay of myosin Ⅱ ATPase activity based on the molybdenum blue method and its application in screening natural product inhibitors

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-Lin; ZHAO Jing; ZHANG Guan-Jun; KOU Jun-Ping; YU Bo-Yang

    2016-01-01

    Myosin Ⅱ plays multiple roles in physiological and pathological functions through its ATPase activity.The present study was designed to optimize a micro-assay of myosin Ⅱ ATPase activity based on molybdenum blue method,using a known myosin Ⅱ ATPase inhibitor,blebbistatin.Several parameters were observed in the enzymatic reaction procedure,including the concentrations of the substrate (ATP) and calcium chloride,pH,and the reaction and incubation times.The proportion of coloration agent was also investigated.The sensitivity of this assay was compared with the malachite green method and bioluminescence method.Additionally,20 natural compounds were studied for myosin Ⅱ ATPase inhibitory activity using the optimized method.Our results showed that ATP at the concentration of 5 mmol·L-1 and ammonium molybdate:stannous chloride at the ratio of 15 ∶ 1 could greatly improve the sensitivity of this method.The IC50 of blebbistatin obtained by this method was consistent with literature.Compound 8 was screened with inhibitory activity on myosin Ⅱ ATPase.The optimized method showed similar accuracy,lower detecting limit,and wider linear range,which could be a promising approach to screening myosin Ⅱ ATPase inhibitors in vitro.

  9. Structure and function of Drosophila unconventional myosin%果蝇非常规肌球蛋白的结构与功能

    Institute of Scientific and Technical Information of China (English)

    曹洋; 沈梅; 张洁; 李向东

    2011-01-01

    肌球蛋白是一类重要的分子马达,可以将ATP水解产生的能量转化成动能,沿由肌动蛋白组成的细丝运动.肌球蛋白构成一个大的基因家族,在许多细胞活动中起着重要作用,包括肌肉收缩、胞内转运、听觉、视觉等.果蝇基因组有13种肌球蛋白基因,包括2种常规肌球蛋白和11种非常规肌球蛋白.本文综述了近年来果蝇非常规肌球蛋白的研究进展.%Myosins are important molecular motor proteins that convert energy from ATP hydrolysis into mechanical movement along the actin filaments.Myosins constitute a large superfamily and play key roles in a number of cellular processes including muscle contraction, intracellular trafficking, hearing, vision et al.Drosophila melanogaster has 13 myosin genes, including 2 conventional myosins and 11 unconventional myosins.In this review, we summarize recent progress in Drosophila unconventional myosins.

  10. Intramanchette transport during primate spermiogenesis:expression of dynein, myosin Va, motor recruiter myosin Va,Ⅶa-Rab27a/b interacting protein, and Rab27b in the manchette during human and monkey spermiogenesis

    Institute of Scientific and Technical Information of China (English)

    Shinichi Hayasaka; Yukihiro Terada; Kichiya Suzuki; Haruo Murakawa; Ikuo Tachibana; Tadashi Sankai; Takashi Murakami; Nobuo Yaegashi; Kunihiro Okamura

    2008-01-01

    Aim: To show whether molecular motor dynein on a microtubule track, molecular motor myosin Va, motor recruiter myosin Va, Ⅶa-Rab27a/b interacting protein (MyRIP), and vesicle receptor Rab27b on an F-actin track were present during human and monkey spermiogenesis involving intramanchette transport (IMT). Methods: Spermiogenic cells were obtained from three men with obstructive azoospermia and normal adult cynomolgus monkey (Macaca fascieularis). Immunocytochemical detection and reverse transcription-polymerase chain reaction (RT-PCR) analysis of the pro- teins were carried out. Samples were analyzed by light microscope. Results: Using RT-PCR, we found that dynein, myosin Va, MyRIP and Rab27b were expressed in monkey testis. These proteins were localized to the manchette, as shown by immunofluorescence, particularly during human and monkey spermiogenesis. Conclusion: We speculate that during primate spermiogenesis, those proteins that compose microtubule-based and actin-based vesicle transport systems are actually present in the manchette and might possibly be involved in intramanchette transport. (Asian J Androl 2008 Jul; 10: 561-568)

  11. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... Learn More about the Brain and How it Works Order Free Copies of CDC's “Heads Up” Educational ... Up! Prevent Concussions Prevent Head Injuries Sports Safety Students Play Safe Youth Sports Safety PROMOTIONAL MATERIALS "Heads ...

  12. Abusive Head Trauma (Shaken Baby Syndrome)

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Abusive Head Trauma (Shaken Baby Syndrome) KidsHealth > For Parents > Abusive Head ... babies tend to cry the most. How These Injuries Happen Abusive head trauma results from injuries caused ...

  13. Dependence of myosin-ATPase on structure bound creatine kinase in cardiac myfibrils from rainbow trout and freshwater turtle

    DEFF Research Database (Denmark)

    Haagensen, L.; Jensen, D.H.; Gesser, Hans

    2008-01-01

    The influence of myofibrillar creatine kinase on the myosin-ATPase activity was examined in cardiac ventricular myofibrils isolated from rainbow trout (Oncorhynchus mykiss) and freshwater turtle (Trachemys scripta). The ATPase rate was assessed by recording the rephosphorylation of ADP by the pyr......The influence of myofibrillar creatine kinase on the myosin-ATPase activity was examined in cardiac ventricular myofibrils isolated from rainbow trout (Oncorhynchus mykiss) and freshwater turtle (Trachemys scripta). The ATPase rate was assessed by recording the rephosphorylation of ADP...... activity twice or more for both trout and turtle. As examined for trout myofibrils, the ATPase activity was reduced about four times by inhibiting the activity of myofibril-bound creatine kinase with iodoacetamide and this reduction was only partially counteracted, when the creatine kinase activity...

  14. Myosin II directly binds and inhibits Dbl family guanine nucleotide exchange factors: a possible link to Rho family GTPases

    OpenAIRE

    Lee, Chan-Soo; Choi, Chang-Ki; Shin, Eun-Young; Schwartz, Martin Alexander; Kim, Eung-Gook

    2010-01-01

    Cell migration requires the coordinated spatiotemporal regulation of actomyosin contraction and cell protrusion/adhesion. Nonmuscle myosin II (MII) controls Rac1 and Cdc42 activation, and cell protrusion and focal complex formation in migrating cells. However, these mechanisms are poorly understood. Here, we show that MII interacts specifically with multiple Dbl family guanine nucleotide exchange factors (GEFs). Binding is mediated by the conserved tandem Dbl homology–pleckstrin homology modu...

  15. Shared gene structures and clusters of mutually exclusive spliced exons within the metazoan muscle myosin heavy chain genes.

    Directory of Open Access Journals (Sweden)

    Martin Kollmar

    Full Text Available Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs. The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis. Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both have independently been developed

  16. The zebrafish goosepimples/myosin Vb mutant exhibits cellular attributes of human microvillus inclusion disease ☆ ☆☆

    OpenAIRE

    Sidhaye, Jaydeep; Pinto, Clyde Savio; Dharap, Shweta; Jacob, Tressa; Bhargava, Shobha; Sonawane, Mahendra

    2016-01-01

    Microvillus inclusion disease (MVID) is a life-threatening enteropathy characterised by malabsorption and incapacitating fluid loss due to chronic diarrhoea. Histological analysis has revealed that enterocytes in MVID patients exhibit reduction of microvilli, presence of microvillus inclusion bodies and intestinal villus atrophy, whereas genetic linkage analysis has identified mutations in myosin Vb gene as the main cause of MVID. In order to understand the cellular basis of MVID and the asso...

  17. Anaphylaxis Due to Head Injury

    Directory of Open Access Journals (Sweden)

    Bruner, Heather C.

    2015-05-01

    Full Text Available Both anaphylaxis and head injury are often seen in the emergency department, but they are rarely seen in combination. We present a case of a 30-year-old woman who presented with anaphylaxis with urticaria and angioedema following a minor head injury. The patient responded well to intramuscular epinephrine without further complications or airway compromise. Prior case reports have reported angioedema from hereditary angioedema during dental procedures and maxillofacial surgery, but there have not been any cases of first-time angioedema or anaphylaxis due to head injury. [West J Emerg Med. 2015;16(3:435–437.

  18. Return of the talking heads

    DEFF Research Database (Denmark)

    Reinecke Hansen, Kenneth; Bro, Peter; Andersson, Ralf

    2016-01-01

    The present article suggests that the brief history of Western television news dramaturgy can be expounded as three major waves: from the early days of the talking heads in the studio, over the narrativization of the field report to a (re-)current studio- and field-based talking heads format....... In order to analyze the latest development entering the third wave, we propose a theoretically based dramaturgical model for the television news item. The analysis concludes that, with the current ‘return’ of the talking heads format, the pre-produced and pre-packaged bulletin program about past events...

  19. Boxing-related head injuries.

    Science.gov (United States)

    Jayarao, Mayur; Chin, Lawrence S; Cantu, Robert C

    2010-10-01

    Fatalities in boxing are most often due to traumatic brain injury that occurs in the ring. In the past 30 years, significant improvements in ringside and medical equipment, safety, and regulations have resulted in a dramatic reduction in the fatality rate. Nonetheless, the rate of boxing-related head injuries, particularly concussions, remains unknown, due in large part to its variability in clinical presentation. Furthermore, the significance of repeat concussions sustained when boxing is just now being understood. In this article, we identify the clinical manifestations, pathophysiology, and management of boxing-related head injuries, and discuss preventive strategies to reduce head injuries sustained by boxers.

  20. Age- and Activity-Related Differences in the Abundance of Myosin Essential and Regulatory Light Chains in Human Muscle

    Directory of Open Access Journals (Sweden)

    James N. Cobley

    2016-04-01

    Full Text Available Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM. We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping.

  1. Characterization and ontogenetic expression analysis of the myosin light chains from the fast white muscle of mandarin fish Siniperca chuatsi.

    Science.gov (United States)

    Chu, W Y; Chen, J; Zhou, R X; Zhao, F L; Meng, T; Chen, D X; Nong, X X; Liu, Z; Lu, S Q; Zhang, J S

    2011-04-01

    Three full-length complementary DNA (cDNA) clones were isolated encoding the skeletal myosin light chain 1 (MLC1; 1237 bp), myosin light chain 2 (MLC2; 1206 bp) and myosin light chain 3 (MLC3; 1079 bp) from the fast white muscle cDNA library of mandarin fish Siniperca chuatsi. The sequence analysis indicated that MLC1 and MLC3 were not produced from differentially spliced messenger RNAs (mRNA) as reported in birds and rodents but were encoded by different genes. The MLC2 encodes 170 amino acids, which include four EF-hand (helix-loop-helix) structures. The primary structures of the Ca(2+)-binding domain were well conserved among the MLC2s of seven other fish species. The ontogenetic expression analysis by real-time PCR showed that the three light-chain mRNAs were first detected in the gastrula stage, and their expression increased from the tail bud stage to the larval stage. All three MLC mRNAs showed longitudinal expression variation in the fast white muscle of S. chuatsi, especially MLC1 which was highly expressed at the posterior area. Taken together, the study provides a better understanding about the MLC gene structure and their expression pattern in muscle development of S. chuatsi.

  2. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin.

    Science.gov (United States)

    Ngo, Kien Xuan; Umeki, Nobuhisa; Kijima, Saku T; Kodera, Noriyuki; Ueno, Hiroaki; Furutani-Umezu, Nozomi; Nakajima, Jun; Noguchi, Taro Q P; Nagasaki, Akira; Tokuraku, Kiyotaka; Uyeda, Taro Q P

    2016-10-20

    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells.

  3. Drosophila myosin-XX functions as an actin-binding protein to facilitate the interaction between Zyx102 and actin.

    Science.gov (United States)

    Cao, Yang; White, Howard D; Li, Xiang-Dong

    2014-01-21

    The class XX myosin is a member of the diverse myosin superfamily and exists in insects and several lower invertebrates. DmMyo20, the class XX myosin in Drosophila, is encoded by dachs, which functions as a crucial downstream component of the Fat signaling pathway, influencing growth, affinity, and gene expression during development. Sequence analysis shows that DmMyo20 contains a unique N-terminal extension, the motor domain, followed by one IQ motif, and a C-terminal tail. To investigate the biochemical properties of DmMyo20, we expressed several DmMyo20 truncated constructs containing the motor domain in the baculovirus/Sf9 system. We found that the motor domain of DmMyo20 had neither ATPase activity nor the ability to bind to ATP, suggesting that DmMyo20 does not function as a molecular motor. We found that the motor domain of DmMyo20 could specifically bind to actin filaments in an ATP-independent manner and enhance the interaction between actin filaments and Zyx102, a downstream component of DmMyo20 in the Fat signaling pathway. These results suggest that DmMyo20 functions as a scaffold protein, but not as a molecular motor, in a signaling pathway controlling cell differentiation.

  4. A novel skeletal-myosin blocking drug for the study of neuromuscular physiology

    Directory of Open Access Journals (Sweden)

    Dante J Heredia

    2016-12-01

    Full Text Available The failure to transmit neural action potentials (APs into muscle APs is referred to as neuromuscular transmission failure (NTF. Although synaptic dysfunction occurs in a variety of neuromuscular diseases and impaired neurotransmission contributes to muscle fatigue, direct evaluation of neurotransmission by measurement of successfully transduced muscle APs is difficult due to the subsequent movements produced by muscle. Moreover, the voltage-gated sodium channel inhibitor used to study neurotransmitter release at the adult neuromuscular junction is ineffective in embryonic tissue, making it nearly impossible to precisely measure any aspect of neurotransmission in embryonic lethal mouse mutants. In this study we utilized 3-(N-butylethanimidoyl-4-hydroxy-2H-chromen-2-one (BHC, previously identified in a small-molecule screen of skeletal muscle myosin inhibitors, to suppress movements without affecting membrane currents. In contrast to previously characterized drugs from this screen such as BTS, which inhibit skeletal muscle myosin ATPase activity but also block neurotransmission, BHC selectively blocked nerve-evoked muscle contraction without affecting neurotransmitter release. This feature allowed a detailed characterization of neurotransmission in both embryonic and adult mice. In the presence of BHC, neural APs produced by tonic stimulation of the phrenic nerve at rates up to 20 Hz were successfully transmitted into muscle APs. At higher rates of phrenic nerve stimulation, NTF was observed. NTF was intermittent and characterized by successful muscle APs following failed ones, with the percentage of successfully transmitted muscle APs diminishing over time. Nerve stimulation rates that failed to produce NTF in the presence of BHC similarly failed to produce a loss of peak muscle fiber shortening, which was examined using a novel optical method of muscle fatigue, or a loss of peak cytosolic calcium transient intensity, examined in whole

  5. A Novel Striated Muscle-Specific Myosin-Blocking Drug for the Study of Neuromuscular Physiology

    Science.gov (United States)

    Heredia, Dante J.; Schubert, Douglas; Maligireddy, Siddhardha; Hennig, Grant W.; Gould, Thomas W.

    2016-01-01

    The failure to transmit neural action potentials (APs) into muscle APs is referred to as neuromuscular transmission failure (NTF). Although synaptic dysfunction occurs in a variety of neuromuscular diseases and impaired neurotransmission contributes to muscle fatigue, direct evaluation of neurotransmission by measurement of successfully transduced muscle APs is difficult due to the subsequent movements produced by muscle. Moreover, the voltage-gated sodium channel inhibitor used to study neurotransmitter release at the adult neuromuscular junction is ineffective in embryonic tissue, making it nearly impossible to precisely measure any aspect of neurotransmission in embryonic lethal mouse mutants. In this study we utilized 3-(N-butylethanimidoyl)-4-hydroxy-2H-chromen-2-one (BHC), previously identified in a small-molecule screen of skeletal muscle myosin inhibitors, to suppress movements without affecting membrane currents. In contrast to previously characterized drugs from this screen such as N-benzyl-p-toluene sulphonamide (BTS), which inhibit skeletal muscle myosin ATPase activity but also block neurotransmission, BHC selectively blocked nerve-evoked muscle contraction without affecting neurotransmitter release. This feature allowed a detailed characterization of neurotransmission in both embryonic and adult mice. In the presence of BHC, neural APs produced by tonic stimulation of the phrenic nerve at rates up to 20 Hz were successfully transmitted into muscle APs. At higher rates of phrenic nerve stimulation, NTF was observed. NTF was intermittent and characterized by successful muscle APs following failed ones, with the percentage of successfully transmitted muscle APs diminishing over time. Nerve stimulation rates that failed to produce NTF in the presence of BHC similarly failed to produce a loss of peak muscle fiber shortening, which was examined using a novel optical method of muscle fatigue, or a loss of peak cytosolic calcium transient intensity, examined

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to ...

  7. New Russian science head named

    CERN Multimedia

    Levitin, C

    2000-01-01

    Ilya Klebanov, a deputy prime minister, has been appointed the country's new head of industrial and scientific policy. He will control the new Ministry for Industry, Science and Technologies (4 paragraphs).

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... page Additional Information and Resources RTAnswers.org : Radiation Therapy for Brain Tumors Radiation Therapy for Head and ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... a computer to produce detailed pictures of the brain and other cranial structures that are clearer and ... sensitive imaging test of the head (particularly the brain) in routine clinical practice. top of page What ...

  10. Heater head for stirling engine

    Science.gov (United States)

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  11. Zero torque gear head wrench

    Science.gov (United States)

    Mcdougal, A. R.; Norman, R. M. (Inventor)

    1976-01-01

    A gear head wrench particularly suited for use in applying torque to bolts without transferring torsional stress to bolt-receiving structures is introduced. The wrench is characterized by a coupling including a socket, for connecting a bolt head with a torque multiplying gear train, provided within a housing having an annulus concentrically related to the socket and adapted to be coupled with a spacer interposed between the bolt head and the juxtaposed surface of the bolt-receiving structure for applying a balancing counter-torque to the spacer as torque is applied to the bolt head whereby the bolt-receiving structure is substantially isolated from torsional stress. As a result of the foregoing, the operator of the wrench is substantially isolated from any forces which may be imposed.

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... of the head uses a powerful magnetic field, radio waves and a computer to produce detailed pictures ... medical conditions. MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed ...

  13. Montessori Head Start Implementation Brief.

    Science.gov (United States)

    Clifford, Alcillia; Kahn, David

    1995-01-01

    Discusses the use of the Montessori method in Head Start programs, focusing on educational environment, teacher training, parent involvement, and funding. Outlines the phased implementation of a Montessori program and provides a list of Montessori publications and organizations. (MDM)

  14. Flat Head Syndrome (Positional Plagiocephaly)

    Science.gov (United States)

    ... symmetrical, but for a variety of reasons the asymmetry becomes less apparent as well. For example, in ... a flattened head does not affect a child's brain growth or cause developmental delays or brain damage. ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... technologist if you have any devices or metal in your body. Guidelines about eating and drinking before ... imaging test of the head (particularly the brain) in routine clinical practice. top of page What are ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... it may cause some medical devices to malfunction. Most orthopedic implants pose no risk, but you should ... copied to a CD. Currently, MRI is the most sensitive imaging test of the head (particularly the ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... medically necessary. MRI may not always distinguish between cancer tissue and fluid, known as edema . MRI typically ... Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association top ...

  18. Analytical modelling of soccer heading

    Indian Academy of Sciences (India)

    Zahari Taha; Mohd Hasnun Arif Hassan; Iskandar Hasanuddin

    2015-08-01

    Heading occur frequently in soccer games and studies have shown that repetitive heading of the soccer ball could result in degeneration of brain cells and lead to mild traumatic brain injury. This study proposes a two degree-of-freedom linear mathematical model to study the impact of the soccer ball on the brain. The model consists of a mass–spring–damper system, in which the skull, the brain and the soccer ball are modelled as a mass and the neck modelled as a spring–damper system. The proposed model was compared with previous dynamic model for soccer ball-to-head impact. Moreover, it was also validated against drop ball experiment on an instrumented dummy skull and also compared with head acceleration data from previous studies. Comparison shows that our proposed model is capable of describing both the skull and brain accelerations qualitatively and quantitatively. This study shows that a simple linear mathematical model can be useful in giving a preliminary insight on the kinematics of human skull and brain during a ball-to-head impact. The model can be used to investigate the important parameters during soccer heading that affect the brain displacement and acceleration, thus providing better understanding of the mechanics behind it.

  19. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain

    Energy Technology Data Exchange (ETDEWEB)

    Lima, V.V. [Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT (Brazil); Lobato, N.S.; Filgueira, F.P. [Curso de Medicina, Setor de Fisiologia Humana, Universidade Federal de Goiás, Jataí, GO (Brazil); Webb, R.C. [Department of Physiology, Georgia Regents University, Augusta, GA (United States); Tostes, R.C. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Giachini, F.R. [Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT (Brazil)

    2014-08-15

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca{sup 2+}/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.

  20. Ghost Head Nebula

    Science.gov (United States)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth. The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas. NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000. The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas. In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The

  1. Myosin heavy chain composition of tiger (Panthera tigris) and cheetah (Acinonyx jubatus) hindlimb muscles.

    Science.gov (United States)

    Hyatt, Jon-Philippe K; Roy, Roland R; Rugg, Stuart; Talmadge, Robert J

    2010-01-01

    Felids have a wide range of locomotor activity patterns and maximal running speeds, including the very fast cheetah (Acinonyx jubatas), the roaming tiger (Panthera tigris), and the relatively sedentary domestic cat (Felis catus). As previous studies have suggested a relationship between the amount and type of activity and the myosin heavy chain (MHC) isoform composition of a muscle, we assessed the MHC isoform composition of selected hindlimb muscles from these three felid species with differing activity regimens. Using gel electrophoresis, western blotting, histochemistry, and immunohistochemistry with MHC isoform-specific antibodies, we compared the MHC composition in the tibialis anterior, medial gastrocnemius (MG), plantaris (Plt), and soleus muscles of the tiger, cheetah, and domestic cat. The soleus muscle was absent in the cheetah. At least one slow (type I) and three fast (types IIa, IIx, and IIb) MHC isoforms were present in the muscles of each felid. The tiger had a high combined percentage of the characteristically slower isoforms (MHCs I and IIa) in the MG (62%) and the Plt (86%), whereas these percentages were relatively low in the MG (44%) and Plt (55%) of the cheetah. In general, the MHC isoform characteristics of the hindlimb muscles matched the daily activity patterns of these felids: the tiger has daily demands for covering long distances, whereas the cheetah has requirements for speed and power.

  2. Effect of myosin heavy chain composition of muscles on meat quality in Laiwu pigs and Duroc

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to explain the mechanism of high meat quality in Laiwu pigs and investigate the relation between myosin heavy chains (MyHC) composition and meat quality, meat quality analysis was conducted and mRNA expression of MyHC I, IIa, IIx, IIb was quantified by real-time fluorescence PCR in longissimus muscle (LM) and semimembranous muscle of Laiwu pigs and Duroc. The result indicated that, compared with Duroc, mRNA expression of MyHC IIa, IIx in LM and semimembranous muscle of Laiwu pigs was significantly increased, mRNA expression of MyHC IIb was dramatically decreased. However, the expression of MyHC I was not significantly affected by breeds. The correlation between mRNA expression of MyHC I, IIa, IIx in LM and meat color, pH value, marbling, intramuscular fat content was positive, but shear value of LM was negative. The relation between MyHC IIb mRNA expression and marbling, intramuscular fat content was dramatically negative, whereas shear value was strikingly positive, as well as fiber diameter, but without reaching statistical significance. Therefore, the composition of MyHC I, IIa, IIx, IIb affected meat quality, furthermore, expression of MyHC I, IIa, IIx, IIb mRNA prominently influenced meat characteristics, especially edible quality of muscle, suggesting that mRNA expression level of MyHC I, IIa, IIx, IIb can exactly and impersonally estimate meat quality.

  3. Effect of myosin heavy chain composition of muscles on meat quality in Laiwu pigs and Duroc

    Institute of Scientific and Technical Information of China (English)

    HU HongMei; WANG JiYing; ZHU RongSheng; GUO JianFeng; WU Ying

    2008-01-01

    In order to explain the mechanism of high meat quality in Laiwu pigs and investigate the relation between myosin heavy chains (MyHC) composition and meat quality, meat quality analysis was conducted and mRNA expression of MyHC I, IIa, IIx, IIb was quantified by real-time fluorescence PCR in Iongissimus muscle (LM) and semimembranous muscle of Laiwu pigs and Duroc. The result indicated that, compared with Duroc, mRNA expression of MyHC IIa, IIx in LM and semimembranous muscle of Laiwu pigs was significantly increased, mRNA expression of MyHC Ilia'was dramatically decreased.However, the expression of MyHC I was not significantly affected by breeds. The correlation between mRNA expression of MyHC I, IIa, IIx in LM and meat color, pH value, marbling, intramuscular fat content was positive, but shear value of LM was negative. The relation between MyHC lib mRNA expression and marbling, intramuscular fat content was dramatically negative, whereas shear value was strikingly positive, as well as fiber diameter, but without reaching statistical significance. Therefore, the composition of MyHC I, IIa, IIx, IIb affected meat quality, furthermore, expression of MyHC I,IIa, IIx, IIb mRNA prominently influenced meat characteristics, especially edible quality of muscle, suggesting that mRNA expression level of MyHC I, IIa, IIx, IIb can exactly and impersonally estimate meat quality.

  4. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses.

    Science.gov (United States)

    Roux, Isabelle; Hosie, Suzanne; Johnson, Stuart L; Bahloul, Amel; Cayet, Nadège; Nouaille, Sylvie; Kros, Corné J; Petit, Christine; Safieddine, Saaid

    2009-12-01

    The ribbon synapses of auditory inner hair cells (IHCs) undergo morphological and electrophysiological transitions during cochlear development. Here we report that myosin VI (Myo6), an actin-based motor protein involved in genetic forms of deafness, is necessary for some of these changes to occur. By using post-embedding immunogold electron microscopy, we showed that Myo6 is present at the IHC synaptic active zone. In Snell's waltzer mutant mice, which lack Myo6, IHC ionic currents and ribbon synapse maturation proceeded normally until at least post-natal day 6. In adult mutant mice, however, the IHCs displayed immature potassium currents and still fired action potentials, as normally only observed in immature IHCs. In addition, the number of ribbons per IHC was reduced by 30%, and 30% of the remaining ribbons were morphologically immature. Ca2+-dependent exocytosis probed by capacitance measurement was markedly reduced despite normal Ca2+ currents and the large proportion of morphologically mature synapses, which suggests additional defects, such as loose Ca2+-exocytosis coupling or inefficient vesicular supply. Finally, we provide evidence that Myo6 and otoferlin, a putative Ca2+ sensor of synaptic exocytosis also involved in a genetic form of deafness, interact at the IHC ribbon synapse, and we suggest that this interaction is involved in the recycling of synaptic vesicles. Our findings thus uncover essential roles for Myo6 at the IHC ribbon synapse, in addition to that proposed in membrane turnover and anchoring at the apical surface of the hair cells.

  5. AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain.

    Science.gov (United States)

    Thaiparambil, Jose T; Eggers, Carrie M; Marcus, Adam I

    2012-08-01

    The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine(172) phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine(19) phosphorylated MRLC (pMRLC(ser19)) and spindle pole-associated pMRLC(ser19) are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLC(ser19) spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLC(ser19) to control spindle orientation via regulation of actin cortex-astral microtubule attachments.

  6. Manassantin B inhibits melanosome transport in melanocytes by disrupting the melanophilin-myosin Va interaction.

    Science.gov (United States)

    Chang, Huikyoung; Choi, Hyunjung; Joo, Kyung-Mi; Kim, Daegun; Lee, Tae Ryong

    2012-11-01

    Human skin hyperpigmentation disorders occur when the synthesis and/or distribution of melanin increases. The distribution of melanin in the skin is achieved by melanosome transport and transfer. The transport of melanosomes, the organelles where melanin is made, in a melanocyte precedes the transfer of the melanosomes to a keratinocyte. Therefore, hyperpigmentation can be regulated by decreasing melanosome transport. In this study, we found that an extract of Saururus chinensis Baill (ESCB) and one of its components, manassantin B, inhibited melanosome transport in Melan-a melanocytes and normal human melanocytes (NHMs). Manassantin B disturbed melanosome transport by disrupting the interaction between melanophilin and myosin Va. Manassantin B is neither a direct nor an indirect inhibitor of tyrosinase. The total melanin content was not reduced when melanosome transport was inhibited in a Melan-a melanocyte monoculture by manassantin B. Manassantin B decreased melanin content only when Melan-a melanocytes were co-cultured with SP-1 keratinocytes or stimulated by α-MSH. Therefore, we propose that specific inhibitors of melanosome transport, such as manassantin B, are potential candidate or lead compounds for the development of agents to treat undesirable hyperpigmentation of the skin.

  7. An electrophoretic study of myosin heavy chain expression in skeletal muscles of the toad Bufo marinus.

    Science.gov (United States)

    Nguyen, L T; Stephenson, G M

    1999-10-01

    In this study we developed an SDS-PAGE protocol which for the first time separates effectively all myosin heavy chain (MHC) isoforms expected to be expressed in iliofibularis (IF), pyriformis (PYR), cruralis (CRU) and sartorius (SAR) muscles of the toad Bufo marinus on the basis of previously reported fibre type composition. The main feature of the method is the use of alanine instead of glycine both in the separating gel and in the running buffer. The correlation between the MHC isoform composition of IF, SAR and PYR muscles determined in this study and the previously reported fibre type composition of IF and SAR muscles in the toad and of PYR muscle in the frog was used to tentatively identify the MHC isoforms expressed by twitch fibre types 1, 2 and 3 and by tonic fibres. The alanine-SDS electrophoretic method was employed to examine changes in the MHC composition of IF, PYR, CRU and SAR muscles with the ontogenetic growth of the toad from post-natal life (body weight muscle observed in this study are in very good agreement with those in the fibre type composition of the developing IF muscle reported in the literature.

  8. Peroxynitrite induces F-actin depolymerization and blockade of myosin ATPase stimulation.

    Science.gov (United States)

    Tiago, Teresa; Ramos, Susana; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2006-03-31

    Treatment of F-actin with the peroxynitrite-releasing agent 3-morpholinosydnonimine (SIN-1) produced a dose-dependent F-actin depolymerization. This is due to released peroxynitrite because it is not produced by 'decomposed SIN-1', and it is prevented by superoxide dismutase concentrations efficiently preventing peroxynitrite formation. F-actin depolymerization has been found to be very sensitive to peroxynitrite, as exposure to fluxes as low as 50-100nM peroxynitrite leads to nearly 50% depolymerization in about 1h. G-actin polymerization is also impaired by peroxynitrite although with nearly 2-fold lower sensitivity. Exposure of F-actin to submicromolar fluxes of peroxynitrite produced cysteine oxidation and also a blockade of the ability of actin to stimulate myosin ATPase activity. Our results suggest that an imbalance of the F-actin/G-actin equilibrium can account for the observed structural and functional impairment of myofibrils under the peroxynitrite-mediated oxidative stress reported for some pathophysiological conditions.

  9. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis.

    Science.gov (United States)

    Arjonen, Antti; Kaukonen, Riina; Mattila, Elina; Rouhi, Pegah; Högnäs, Gunilla; Sihto, Harri; Miller, Bryan W; Morton, Jennifer P; Bucher, Elmar; Taimen, Pekka; Virtakoivu, Reetta; Cao, Yihai; Sansom, Owen J; Joensuu, Heikki; Ivaska, Johanna

    2014-03-01

    Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.

  10. Segmental distribution of myosin heavy chain isoforms within single muscle fibers.

    Science.gov (United States)

    Zhang, Ming; Gould, Maree

    2017-02-18

    Despite many studies looking at the distribution of myosin heavy chain (MHC) isoforms across a transverse section of muscle, knowledge of MHC distribution along the longitudinal axis of a single skeletal muscle fiber has been relatively overlooked. Immunocytochemistry was performed on serial sections of rat extensor digitorum longus (EDL) muscle to identify MHC types I, IIA, IIX, IIY and IIB. Sixteen fascicles which contained a total of 362 fibers were randomly and systematically sampled from the 3 EDL muscles. All MHC type I and type II isoforms were expressed. Segmental expression occurred within a very limited segment. MHC isoform expression followed the accepted traditional order from I&cenveo_unknown_entity_wingdings_F0F3;IIA&cenveo_unknown_entity_wingdings_F0F3;IIX&cenveo_unknown_entity_wingdings_F0F3;IIB, however in some samples expression of an isoform was circumvented from IIB to I or from I to IIB directly. Segmental distribution of MHC isoforms along a single muscle fiber may be due to the myonuclear domain. This article is protected by copyright. All rights reserved.

  11. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Karen A. Newell-Litwa

    2015-12-01

    Full Text Available The actin motor protein non-muscle myosin II (NMII acts as a master regulator of cell morphology, with a role in several essential cellular processes, including cell migration and post-synaptic dendritic spine plasticity in neurons. NMII also generates forces that alter biochemical signaling, by driving changes in interactions between actin-associated proteins that can ultimately regulate gene transcription. In addition to its roles in normal cellular physiology, NMII has recently emerged as a critical regulator of diverse, genetically complex diseases, including neuronal disorders, cancers and vascular disease. In the context of these disorders, NMII regulatory pathways can be directly mutated or indirectly altered by disease-causing mutations. NMII regulatory pathway genes are also increasingly found in disease-associated copy-number variants, particularly in neuronal disorders such as autism and schizophrenia. Furthermore, manipulation of NMII-mediated contractility regulates stem cell pluripotency and differentiation, thus highlighting the key role of NMII-based pharmaceuticals in the clinical success of stem cell therapies. In this Review, we discuss the emerging role of NMII activity and its regulation by kinases and microRNAs in the pathogenesis and prognosis of a diverse range of diseases, including neuronal disorders, cancer and vascular disease. We also address promising clinical applications and limitations of NMII-based inhibitors in the treatment of these diseases and the development of stem-cell-based therapies.

  12. Dose-dependent electrophysiological effects of the myosin activator omecamtiv mecarbil in canine ventricular cardiomyocytes.

    Science.gov (United States)

    Szentandrassy, N; Horvath, B; Vaczi, K; Kistamas, K; Masuda, L; Magyar, J; Banyasz, T; Papp, Z; Nanasi, P P

    2016-08-01

    Omecamtiv mecarbil (OM) is a myosin activator agent recently developed for treatment of heart failure. Although its action on extending systolic ejection time and increasing left ventricular ejection fraction is well documented, no data is available regarding its possible side-effects on cardiac ion channels. Therefore, the present study was designed to investigate the effects of OM on action potential morphology and the underlying ion currents in isolated canine ventricular myocytes using sharp microelectrodes, conventional patch clamp, and action potential voltage clamp techniques. OM displayed a concentration-dependent action on action potential configuration: 1 μM OM had no effect, while action potential duration and phase-1 repolarization were reduced and the plateau potential was depressed progressively at higher concentrations (10 - 100 μM; P < 0.05 compared to control). Accordingly, OM (10 μM) decreased the density of the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa) and the rapid delayed rectifier K(+) current (IKr), but failed to modify the inward rectifier K(+) current (IK1). It is concluded, that although the therapeutic concentrations of OM are not likely to influence cardiac ion currents significantly, alterations of the major cardiac ion currents can be anticipated at concentrations above those clinically tolerated.

  13. Chronic sleep deprivation alters the myosin heavy chain isoforms in the masseter muscle in rats.

    Science.gov (United States)

    Cao, Ruihua; Huang, Fei; Wang, Peihuan; Chen, Chen; Zhu, Guoxiong; Chen, Lei; Wu, Gaoyi

    2015-05-01

    To investigate the changes in myosin heavy chain (MyHC) isoforms of rat masseter muscle fibres caused by chronic sleep deprivation and a possible link with the pathogenesis of disorders of the temporomandibular joint (TMJ). A total of 180 male rats were randomly divided into three groups (n=60 in each): cage controls, large platform controls, and chronic sleep deprivation group. Each group was further divided into three subgroups with different observation periods (7, 14, and 21 days). We investigated he expression of MyHC isoforms in masseter muscle fibres by real-time quantitative polymerase chain reaction (PCR), Western blotting, and immunohistochemical staining. In rats with chronic sleep deprivation there was increased MyHC-I expression in layers of both shallow and deep muscles at 7 and 21 days compared with the control groups, whereas sleep deprivation was associated with significantly decreased MyHC-II expression. At 21 days, there were no differences in MyHC-I or MyHC-II expression between the groups and there were no differences between the two control groups at any time point. These findings suggest that chronic sleep deprivation alters the expression of MyHC isoforms, which may contribute to the pathogenesis of disorders of the TMJ.

  14. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue.

    Science.gov (United States)

    Aranjuez, George; Burtscher, Ashley; Sawant, Ketki; Majumder, Pralay; McDonald, Jocelyn A

    2016-06-15

    Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6-10 cells, traversing a network of large germ line-derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues.

  15. Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration.

    Science.gov (United States)

    Morin, Nicole A; Oakes, Patrick W; Hyun, Young-Min; Lee, Dooyoung; Chin, Y Eugene; Chin, Eugene Y; King, Michael R; Springer, Timothy A; Shimaoka, Motomu; Tang, Jay X; Reichner, Jonathan S; Kim, Minsoo

    2008-01-21

    Precise spatial and temporal regulation of cell adhesion and de-adhesion is critical for dynamic lymphocyte migration. Although a great deal of information has been learned about integrin lymphocyte function-associated antigen (LFA)-1 adhesion, the mechanism that regulates efficient LFA-1 de-adhesion from intercellular adhesion molecule (ICAM)-1 during T lymphocyte migration is unknown. Here, we show that nonmuscle myosin heavy chain IIA (MyH9) is recruited to LFA-1 at the uropod of migrating T lymphocytes, and inhibition of the association of MyH9 with LFA-1 results in extreme uropod elongation, defective tail detachment, and decreased lymphocyte migration on ICAM-1, without affecting LFA-1 activation by chemokine CXCL-12. This defect was reversed by a small molecule antagonist that inhibits both LFA-1 affinity and avidity regulation, but not by an antagonist that inhibits only affinity regulation. Total internal reflection fluorescence microscopy of the contact zone between migrating T lymphocytes and ICAM-1 substrate revealed that inactive LFA-1 is selectively localized to the posterior of polarized T lymphocytes, whereas active LFA-1 is localized to their anterior. Thus, during T lymphocyte migration, uropodal adhesion depends on LFA-1 avidity, where MyH9 serves as a key mechanical link between LFA-1 and the cytoskeleton that is critical for LFA-1 de-adhesion.

  16. Interaction of thyroid state and denervation on skeletal myosin heavy chain expression

    Science.gov (United States)

    Haddad, F.; Arnold, C.; Zeng, M.; Baldwin, K.

    1997-01-01

    The goal of this study was to examine the effects of altered thyroid state and denervation (Den) on skeletal myosin heavy chain (MHC) expression in the plantaris and soleus muscles. Rats were subjected to unilateral denervation (Den) and randomly assigned to one of three groups: (1) euthyroid; (2) hyperthyroid; (3) and hypothyroid. Denervation caused severe muscle atrophy and muscle-type specific MHC transformation. Denervation transformed the soleus to a faster muscle, and its effects required the presence of circulating thyroid hormone. In contrast, denervation transformed the plantaris to a slower muscle independently of thyroid state. Furthermore, thyroid hormone effects did not depend upon innervation status in the soleus, while they required the presence of the nerve in the plantaris. Collectively, these findings suggest that both thyroid hormone and intact nerve (a) differentially affect MHC transformations in fast and slow muscle; and (b) are important factors in regulating the optimal expression of both type I and IIB MHC genes. This research suggests that for patients with nerve damage and/or paralysis, both muscle mass and biochemical properties can also be affected by the thyroid state.

  17. Time course of myosin heavy chain transitions in neonatal rats: importance of innervation and thyroid state

    Science.gov (United States)

    Adams, G. R.; McCue, S. A.; Zeng, M.; Baldwin, K. M.

    1999-01-01

    During the postnatal period, rat limb muscles adapt to weight bearing via the replacement of embryonic (Emb) and neonatal (Neo) myosin heavy chains (MHCs) by the adult isoforms. Our aim was to characterize this transition in terms of the six MHC isoforms expressed in skeletal muscle and to determine the importance of innervation and thyroid hormone status on the attainment of the adult MHC phenotype. Neonatal rats were made hypothyroid via propylthiouracil (PTU) injection. In normal and PTU subgroups, leg muscles were unilaterally denervated at 15 days of age. The MHC profiles of plantaris (PLN) and soleus (Sol) muscles were determined at 7, 14, 23, and 30 days postpartum. At day 7, the Sol MHC profile was 55% type I, 30% Emb, and 10% Neo; in the PLN, the pattern was 60% Neo and 25% Emb. By day 30 the Sol and PLN had essentially attained an adult MHC profile in the controls. PTU augmented slow MHC expression in the Sol, whereas in the PLN it markedly repressed IIb MHC by retaining neonatal MHC expression. Denervation blunted the upregulation of IIb in the PLN and of Type I in the Sol and shifted the pattern to greater expression of IIa and IIx MHCs in both muscles. In contrast to previous observations, these findings collectively suggest that both an intact thyroid and innervation state are obligatory for the attainment of the adult MHC phenotype, particularly in fast-twitch muscles.

  18. Myosin Binding Protein-C Slow: An Intricate Subfamily of Proteins

    Directory of Open Access Journals (Sweden)

    Maegen A. Ackermann

    2010-01-01

    Full Text Available Myosin binding protein C (MyBP-C consists of a family of thick filament associated proteins. Three isoforms of MyBP-C exist in striated muscles: cardiac, slow skeletal, and fast skeletal. To date, most studies have focused on the cardiac form, due to its direct involvement in the development of hypertrophic cardiomyopathy. Here we focus on the slow skeletal form, discuss past and current literature, and present evidence to support that: (i MyBP-C slow comprises a subfamily of four proteins, resulting from complex alternative shuffling of the single MyBP-C slow gene, (ii the four MyBP-C slow isoforms are expressed in variable amounts in different skeletal muscles, (iii at least one MyBP-C slow isoform is preferentially found at the periphery of M-bands and (iv the MyBP-C slow subfamily may play important roles in the assembly and stabilization of sarcomeric M- and A-bands and regulate the contractile properties of the actomyosin filaments.

  19. Myosin Id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells.

    Science.gov (United States)

    Hegan, Peter S; Ostertag, Eric; Geurts, Aron M; Mooseker, Mark S

    2015-10-01

    In wild type (WT) tracheal epithelial cells, ciliary basal bodies are oriented such that all cilia on the cell surface beat in the same upward direction. This precise alignment of basal bodies and, as a result, the ciliary axoneme, is termed rotational planar cell polarity (PCP). Rotational PCP in the multi-ciliated epithelial cells of the trachea is perturbed in rats lacking myosin Id (Myo1d). Myo1d is localized in the F-actin and basal body rich subapical cortex of the ciliated tracheal epithelial cell. Scanning and transmission electron microscopy of Myo1d knock out (KO) trachea revealed that the unidirectional bending pattern is disrupted. Instead, cilia splay out in a disordered, often radial pattern. Measurement of the alignment axis of the central pair axonemal microtubules was much more variable in the KO, another indicator that rotational PCP is perturbed. The asymmetric localization of the PCP core protein Vangl1 is lost. Both the velocity and linearity of cilia-driven movement of beads above the tracheal mucosal surface was impaired in the Myo1d KO. Multi-ciliated brain ependymal epithelial cells exhibit a second form of PCP termed translational PCP in which basal bodies and attached cilia are clustered at the anterior side of the cell. The precise asymmetric clustering of cilia is disrupted in the ependymal cells of the Myo1d KO rat. While basal body clustering is maintained, left-right positioning of the clusters is lost.

  20. Helicobacter pylori CagA disrupts epithelial patterning by activating myosin light chain.

    Directory of Open Access Journals (Sweden)

    Jonathan B Muyskens

    Full Text Available Helicobacter pylori infection is a leading cause of ulcers and gastric cancer. We show that expression of the H. pylori virulence factor CagA in a model Drosophila melanogaster epithelium induces morphological disruptions including ectopic furrowing. We find that CagA alters the distribution and increases the levels of activated myosin regulatory light chain (MLC, a key regulator of epithelial integrity. Reducing MLC activity suppresses CagA-induced disruptions. A CagA mutant lacking EPIYA motifs (CagA(EPISA induces less epithelial disruption and is not targeted to apical foci like wild-type CagA. In a cell culture model in which CagA(EPISA and CagA have equivalent subcellular localization, CagA(EPISA is equally potent in activating MLC. Therefore, in our transgenic system, CagA is targeted by EPIYA motifs to a specific apical region of the epithelium where it efficiently activates MLC to disrupt epithelial integrity.

  1. The effect of the substitution of D{sub 2}O for H{sub 2}O on the degradation of myosin {beta} in solution by heat and by {sup 60}Co {gamma} radiation (1962); Effet de la substitution de D{sub 2}O a H{sub 2}O sur l'alteration de la Myosine B en solution par la chaleur et par les rayons {gamma} du {sup 60}CO (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Pinset-Harstrom, I.; Fritsch, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    (1) Alterations of myosin B produced by heat or irradiation are shown to be qualitatively identical as demonstrated by analytical centrifugation. (2) A considerable isotope effect was demonstrated using 75 per cent D{sub 2}O in the solvent. The sensitivity of myosin B to heat and irradiation is discussed in the light of this isotope effect. (3) Polymers appearing upon heat treatment of myosin B seem to be of a very different nature than the polymers occurring alter a similar treatment upon myosin A. Polymers obtained from myosin B can be depolymerized by ATP and they appear in a much narrower temperature range than myosin A polymers. This fact indicates a considerable difference in the activation enthalpies in the two reactions. (authors) [French] (1) Cette etude montre que les alterations de la myosine B provoquees par la chaleur et par l'irradiation aux rayons {gamma} sont - telles qu'elles apparaissent a l'ultracentrifugation analytique - qualitativement semblables. (2) Nous avons observe un effet isotopique considerable de la presence de 75 pour cent de D{sub 2}O dans le solvant sur la sensibilite de la myosine B envers ces deux agents, et nous avons presente une tentative d'explication de ce fait. (3) Les polymeres qui apparaissent apres un traitement par la chaleur de la myosine semblent etre d'une nature tres differente des polymeres que l'on voit apparaitre apres un traitement identique de la myosine A. Ceux obtenus a partir de le myosine B sont depolymerisables par l'intermediaire de l'ATP et apparaissent dans une zone de temperature beaucoup plus etroite que celles de la myosine A. Ce dernier fait indique une difference considerable de l'enthalpie d'activation des deux reactions. (auteurs)

  2. The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy.

    Directory of Open Access Journals (Sweden)

    David A Tumbarello

    2015-10-01

    Full Text Available Autophagy plays a key role during Salmonella infection, by eliminating these pathogens following escape into the cytosol. In this process, selective autophagy receptors, including the myosin VI adaptor proteins optineurin and NDP52, have been shown to recognize cytosolic pathogens. Here, we demonstrate that myosin VI and TAX1BP1 are recruited to ubiquitylated Salmonella and play a key role in xenophagy. The absence of TAX1BP1 causes an accumulation of ubiquitin-positive Salmonella, whereas loss of myosin VI leads to an increase in ubiquitylated and LC3-positive bacteria. Our structural studies demonstrate that the ubiquitin-binding site of TAX1BP1 overlaps with the myosin VI binding site and point mutations in the TAX1BP1 zinc finger domains that affect ubiquitin binding also ablate binding to myosin VI. This mutually exclusive binding and the association of TAX1BP1 with LC3 on the outer limiting membrane of autophagosomes may suggest a molecular mechanism for recruitment of this motor to autophagosomes. The predominant role of TAX1BP1, a paralogue of NDP52, in xenophagy is supported by our evolutionary analysis, which demonstrates that functionally intact NDP52 is missing in Xenopus and mice, whereas TAX1BP1 is expressed in all vertebrates analysed. In summary, this work highlights the importance of TAX1BP1 as a novel autophagy receptor in myosin VI-mediated xenophagy. Our study identifies essential new machinery for the autophagy-dependent clearance of Salmonella typhimurium and suggests modulation of myosin VI motor activity as a potential therapeutic target in cellular immunity.

  3. A Toxoplasma gondii Class XIV Myosin, Expressed in Sf9 Cells with a Parasite Co-chaperone, Requires Two Light Chains for Fast Motility*

    Science.gov (United States)

    Bookwalter, Carol S.; Kelsen, Anne; Leung, Jacqueline M.; Ward, Gary E.; Trybus, Kathleen M.

    2014-01-01

    Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors. PMID:25231988

  4. A Toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility.

    Science.gov (United States)

    Bookwalter, Carol S; Kelsen, Anne; Leung, Jacqueline M; Ward, Gary E; Trybus, Kathleen M

    2014-10-31

    Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors.

  5. [Illustrations of visceral referred pain. "Head-less" Head's zones].

    Science.gov (United States)

    Henke, C; Beissner, F

    2011-04-01

    Reviewing anatomical, physiological and neurological standard literature for illustrations of referred visceral pain only one type of illustration can frequently be found, which is referred to as Treves and Keith. In fact, the original illustration as a model for most current pictures stems from the German edition of Sir Frederick Treves' famous book "Surgical Applied Anatomy" from 1914, which was reillustrated for didactical reasons for the German readership. While neither Treves and Keith nor the German illustrator Otto Kleinschmidt ever published any work on referred pain this illustration must have been adapted or copied from older sources by the illustrator. Therefore the comprehensive systematic original works before 1914 were reviewed, namely those of Sir Henry Head and Sir James Mackenzie. Due to the name of the phenomenon in the German literature of Head's zones, the illustrations were expected to be based mainly on Head's work. However, a comparison of all available illustrations led to the conclusion that Kleinschmidt chiefly used information from Mackenzie as a model for his illustration. Due to the inexact reproduction of Mackenzie's work by the illustrator some important features were lost that had been reported by the original authors. These include the phenomenon of Head's maximum points, which nowadays has fallen into oblivion.Therefore current charts, based on the illustration by Kleinschmidt from 1914, lack experimental evidence and appear to be a simplification of the observational results of both Head's and Mackenzie's original systematic works.

  6. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... in Spanish [Podcast: 1:27 minutes] Send a Health eCard Heads Up! Prevent Concussions Prevent Head Injuries ... in Spanish [Podcast: 1:27 minutes] Send a Health eCard Heads Up! Prevent Concussions Prevent Head Injuries ...

  7. Heading for a fall? Management of head injury in infants.

    LENUS (Irish Health Repository)

    Williamson, M

    2010-09-01

    Head injury is one of the commonest reasons for infants (< 1 year) to attend the Emergency Department (ED). Clinical management varies considerably and concern about non accidental injury results in a high admission rate in some hospitals. Information was obtained on 103 children under one year of age presenting to the ED with head injury in a prospective study. The average age was 6.7 months and 57% of patients were male. Twenty eight babies had skull x rays with 1 skull fracture diagnosed. None required CT brain scan. Ninety eight (94%) were discharged home from the ED. There were no unplanned returns, readmissions or adverse events. The incidence of traumatic brain injury in children under one year of age presenting with head injury is low and the majority can be safely discharged home.

  8. Bistable Head Positioning Arm Latch

    Science.gov (United States)

    Wasson, Ken; Endo, Juro; Mita, Masahiro; Abelein, Nathan

    A simple, low cost, yet effective device has been developed for immobilizing the head-arm assembly in a disk drive or similar mechanism during power-off conditions. The latching scheme also provides a consistent means of releasing the head-arm assembly from the immobilized position upon power up of the disk drive. The latch uses no electrical power in either immobilized or released state. This design is immune to extreme torque and linear shock forces applied to the disk drive case. The latch system can use the energy stored in the spinning disks to drive the head-arm assembly toward a safe position while simultaneously arming the latch mechanism to secure the head-arm assembly in the safe position upon arrival. A low energy five msec pulse of current drives the latch from one state to the other. Solenoids as presently used in latch mechanisms are bulky, expensive, have variable force characteristics, and often generate contaminants. The latch described in this paper is expected to replace such solenoids. It may also replace small magnet latches, which have limited latch force and apply unwanted torque to a proximate head positioning arm.

  9. Regenerating tail muscles in lizard contain Fast but not Slow Myosin indicating that most myofibers belong to the fast twitch type for rapid contraction.

    Science.gov (United States)

    Alibardi, L

    2015-10-01

    During tail regeneration in lizards a large mass of muscle tissue is formed in form of segmental myomeres of similar size located under the dermis of the new tail. These muscles accumulate glycogen and a fast form of myosin typical for twitch myofibers as it is shown by light and ultrastructural immunocytochemistry using an antibody directed against a Fast Myosin Heavy Chain. High resolution immunogold labeling shows that an intense labeling for fast myosin is localized over the thick filaments of the numerous myofibrils in about 70% of the regenerated myofibers while the labeling becomes less intense in the remaining muscle fibers. The present observations indicate that at least two subtypes of Fast Myosin containing muscle fibers are regenerated, the prevalent type was of the fast twitch containing few mitochondria, sparse glycogen, numerous smooth endoplasmic reticulum vesicles. The second, and less frequent type was a Fast-Oxidative-Glycolitic twitch fiber containing more mitochondria, a denser cytoplasm and myofibrils. Since their initial differentiation, myoblasts, myotubes and especially the regenerated myofibers do not accumulate any immuno-detectable Slow Myosin Heavy Chain. The study indicates that most of the segmental muscles of the regenerated tail serve for the limited bending of the tail during locomotion and trashing after amputation of the regenerated tail, a phenomenon that facilitates predator escape.

  10. Wheelchair control by head motion

    Directory of Open Access Journals (Sweden)

    Pajkanović Aleksandar

    2013-01-01

    Full Text Available Electric wheelchairs are designed to aid paraplegics. Unfortunately, these can not be used by persons with higher degree of impairment, such as quadriplegics, i.e. persons that, due to age or illness, can not move any of the body parts, except of the head. Medical devices designed to help them are very complicated, rare and expensive. In this paper a microcontroller system that enables standard electric wheelchair control by head motion is presented. The system comprises electronic and mechanic components. A novel head motion recognition technique based on accelerometer data processing is designed. The wheelchair joystick is controlled by the system’s mechanical actuator. The system can be used with several different types of standard electric wheelchairs. It is tested and verified through an experiment performed within this paper.

  11. Myosin light chain kinase mediates intestinal barrier disruption following burn injury.

    Directory of Open Access Journals (Sweden)

    Chuanli Chen

    Full Text Available BACKGROUND: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC phosphorylation mediated by MLC kinase (MLCK is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. METHODOLOGY/PRINCIPAL FINDINGS: Male balb/c mice were assigned randomly to either sham burn (control or 30% total body surface area (TBSA full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg, an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. CONCLUSIONS/SIGNIFICANCE: The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.

  12. Expression of Calmodulin and Myosin Light Chain Kinase during Larval Settlement of the Barnacle Balanus amphitrite

    KAUST Repository

    Chen, Zhang-Fan

    2012-02-13

    Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus (= Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca 2+/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite. © 2012 Chen et al.

  13. Myosin heavy chain 15 is associated with bovine pulmonary arterial pressure

    Science.gov (United States)

    Neary, Joseph M.; Lund, Gretchen K.; Holt, Timothy N.; Garry, Franklyn B.; Mohun, Timothy J.; Breckenridge, Ross A.

    2014-01-01

    Abstract Bovine pulmonary hypertension, brisket disease, causes significant morbidity and mortality at elevations above 2,000 m. Mean pulmonary arterial pressure (mPAP) is moderately heritable, with inheritance estimated to lie within a few major genes. Invasive mPAP measurement is currently the only tool available to identify cattle at risk of hypoxia-induced pulmonary hypertension. A genetic test could allow selection of cattle suitable for high altitude without the need for invasive testing. In this study we evaluated three candidate genes (myosin heavy chain 15 [MYH15], NADH dehydrogenase flavoprotein 2, and FK binding protein 1A) for association with mPAP in 166 yearling Angus bulls grazing at 2,182 m. The T allele (rs29016420) of MYH15 was linked to lower mPAP in a dominant manner (CC 47.2 ± 1.6 mmHg [mean ± standard error of the mean]; CT/TT 42.8 ± 0.7 mmHg; P = 0.02). The proportions of cattle with MYH15 CC, CT, and TT genotypes were 55%, 41%, and 4%, respectively. Given the high frequency of the deleterious allele, it is likely that the relative contribution of MYH15 polymorphisms to pulmonary hypertension is small, supporting previous predictions that the disease is polygenic. We evaluated allelic frequency of MYH15 in the Himalayan yak (Bos grunniens), a closely related species adapted to high altitude, and found 100% prevalence of T allele homozygosity. In summary, we identified a polymorphism in MYH15 significantly associated with mPAP. This finding may aid selection of cattle suitable for high altitude and contribute to understanding human hypoxia-induced pulmonary hypertension. PMID:25621163

  14. Analysis of myosin-V immunoreactive myenteric neurons from arthritic rats

    Directory of Open Access Journals (Sweden)

    Ivan Domicio da Silva Souza

    2011-09-01

    Full Text Available CONTEXT: The inflammatory response itself and the consequent oxidative stress are able to promote neurodegeneration. So, it is possible that enteric nervous system is affected by inflammatory diseases threatening quality of life of patients. However, gastrointestinal symptoms of arthritis are usually attributed to anti-inflammatory drugs rather than neural damage. OBJECTIVE: To confirm if the general population of myenteric neurons from the ileum and jejunum of rats is affected by arthritis. METHODS: Twenty Holtzmann rats, 58-day-old male, were used and divided in four groups: control group (C30, arthritic group (Art30, older control group (C60 and older arthritic group (Art60. At 58 days old, the animals in groups Art30 and Art60 received an injection of the complete Freund's adjuvant in order to induce arthritis. The whole-mount preparations of ileum and jejunum were processed for myosin-V immunohistochemistry. Quantitative and morphometric analyses were performed. RESULTS: Groups Art30 and Art60 presented, respectively, a reduction of 2% and 6% in intestinal area when compared to their control groups. No significant differences were observed in general neuronal density among the four groups (P>0.05. Group C60 presented a reduction of 14.4% and 10.9% in mean neuronal cell body area when compared to group C30 (P0.05. CONCLUSION: Arthritis does not promote quantitative or morphological damages in general myenteric population. However, studies in progress have revealed some significant alterations in myenteric neurons subpopulations (nitrergic and VIP-ergic neurons.

  15. Effect of aerobic exercise on the contractile function of gastrocnemius myosin heavy chain

    Institute of Scientific and Technical Information of China (English)

    Wen-jun Ren

    2009-01-01

    Objective To study the effect of 4- 6 weeks' treadmill training of male SD rats on the contractile function of their gnstroenemius myosin heavy chain (MHC). Methods Forty male SD rats were randomly divided into control group and training group. The treadmill training of the training group rats was incessantly performed for 4- 6 weeks at an intensity of about 75% VO2max (18. 5- 24 m/min, gradient of 0°, each training session lasting 50 minutes, twice a day). The content of gastrocnemlas MHC mRNA was tested by reverse transcription polymernse chain reaction (RT-PCR), and the changes of muscle fibre and its cross-section area (CSA) were measured using immunohistochemistry. Electric stimulation tests were used to determine the maximal tension of isometric contraction of the post-training gastrocnemius. Results ① After continuous treadmill training for 4 - 6 weeks, we found that the content of the total MHC, MHC Ⅰ , MHC Ⅱ x, MHC Ⅱ a mRNAs was 105%, 105%, 109% and 108% of that in the resting control group, respectively, and the MHC Ⅱ b mRNA content did not change significantly. The percentage of MHC Ⅰ mRNA in the total MHC mRNA increased while that of MHC Ⅱ mRNA decreased after aerobic training. ② The slow type of fibre type Ⅰ was the main part of the MHC after training and the CSA of the muscle fibres increased simultaneously. ③ The maximal tension of isometric contraction by pulse stimulation of square wave in the training group increased significantly compared with that in the control group (P<0. 01). Conclusion The findings indicate that aerobic exercise may promote an increase in the contractile function of MHC.

  16. Cargo Transport by Two Coupled Myosin Va Motors on Actin Filaments and Bundles.

    Science.gov (United States)

    Ali, M Yusuf; Vilfan, Andrej; Trybus, Kathleen M; Warshaw, David M

    2016-11-15

    Myosin Va (myoVa) is a processive, actin-based molecular motor essential for intracellular cargo transport. When a cargo is transported by an ensemble of myoVa motors, each motor faces significant physical barriers and directional challenges created by the complex actin cytoskeleton, a network of actin filaments and actin bundles. The principles that govern the interaction of multiple motors attached to the same cargo are still poorly understood. To understand the mechanical interactions between multiple motors, we developed a simple in vitro model in which two individual myoVa motors labeled with different-colored Qdots are linked via a third Qdot that acts as a cargo. The velocity of this two-motor complex was reduced by 27% as compared to a single motor, whereas run length was increased by only 37%, much less than expected from multimotor transport models. Therefore, at low ATP, which allowed us to identify individual motor steps, we investigated the intermotor dynamics within the two-motor complex. The randomness of stepping leads to a buildup of tension in the linkage between motors-which in turn slows down the leading motor-and increases the frequency of backward steps and the detachment rate. We establish a direct relationship between the velocity reduction and the distribution of intermotor distances. The analysis of run lengths and dwell times for the two-motor complex, which has only one motor engaged with the actin track, reveals that half of the runs are terminated by almost simultaneous detachment of both motors. This finding challenges the assumptions of conventional multimotor models based on consecutive motor detachment. Similar, but even more drastic, results were observed with two-motor complexes on actin bundles, which showed a run length that was even shorter than that of a single motor.

  17. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    Science.gov (United States)

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  18. Park7 expression influences myotube size and myosin expression in muscle.

    Directory of Open Access Journals (Sweden)

    Hui Yu

    Full Text Available Callipyge sheep exhibit postnatal muscle hypertrophy due to the up-regulation of DLK1 and/or RTL1. The up-regulation of PARK7 was identified in hypertrophied muscles by microarray analysis and further validated by quantitative PCR. The expression of PARK7 in hypertrophied muscle of callipyge lambs was confirmed to be up-regulated at the protein level. PARK7 was previously identified to positively regulate PI3K/AKT pathway by suppressing the phosphatase activity of PTEN in mouse fibroblasts. The purpose of this study was to investigate the effects of PARK7 in muscle growth and protein accretion in response to IGF1. Primary myoblasts isolated from Park7 (+/+ and Park7 (-/- mice were used to examine the effect of differential expression of Park7. The Park7 (+/+ myotubes had significantly larger diameters and more total sarcomeric myosin expression than Park7 (-/- myotubes. IGF1 treatment increased the mRNA abundance of Myh4, Myh7 and Myh8 between 20-40% in Park7 (+/+ myotubes relative to Park7 (-/-. The level of AKT phosphorylation was increased in Park7 (+/+ myotubes at all levels of IGF1 supplementation. After removal of IGF1, the Park7 (+/+ myotubes maintained higher AKT phosphorylation through 3 hours. PARK7 positively regulates the PI3K/AKT pathway by inhibition of PTEN phosphatase activity in skeletal muscle. The increased PARK7 expression can increase protein synthesis and result in myotube hypertrophy. These results support the hypothesis that elevated expression of PARK7 in callipyge muscle would increase levels of AKT activity to cause hypertrophy in response to the normal IGF1 signaling in rapidly growing lambs. Increasing expression of PARK7 could be a novel mechanism to increase protein accretion and muscle growth in livestock or help improve muscle mass with disease or aging.

  19. Expression of myosin heavy-chain mRNA in cultured myoblasts induced by centrifugal force.

    Science.gov (United States)

    Kurokawa, Katsuhide; Sakiyama, Koji; Abe, Shinichi; Hiroki, Emi; Naito, Kaoru; Nakajima, Kazunori; Takeda, Tomotaka; Inoue, Takashi; Ide, Yoshinobu; Ishigami, Keiichi

    2008-11-01

    Ballistic muscle training leads to hypertrophy of fast type fibers and training for endurance induces that of slow type fibers. Numerous studies have been conducted on electrical, extending and magnetic stimulation of cells, but the effect of centrifugal force on cells remains to be investigated. In this study, we investigated the effect of stimulating cultured myoblasts with centrifugal force at different speeds on cell proliferation and myosin heavy-chain (MyHC) mRNA expression in muscle fiber. Stimulation of myoblasts was carried out at 2 different speeds for 20 min using the Himac CT6D, a desk centrifuge, and cells were observed at 1, 3 and 5 days later. Number of cells 1 and 5 days after centrifugal stimulation was significantly larger in the 62.5 x g and 4,170 x g stimulation groups than in the control group. Expression of MyHC-2b mRNA 1 day after centrifugal stimulation was significantly higher in the 2 stimulation groups than in the control group. Almost no expression of MyHC-2a was observed in any group at 1 and 3 days after centrifugal stimulation. However, 5 days after stimulation, MyHC-2a was strongly expressed in the 2 stimulation groups in comparison to the control group. Three days after centrifugal stimulation, expression of MyHC-1 was significantly higher in the 2 stimulation groups than in the control group. The results of this study clarified the effect of different centrifugal stimulation speeds on muscle fiber characteristics, and suggest that centrifugal stimulation of myoblasts enhances cell proliferation.

  20. Association analysis of genetic variants in the myosin IXB gene in acute pancreatitis.

    Directory of Open Access Journals (Sweden)

    Rian M Nijmeijer

    Full Text Available INTRODUCTION: Impairment of the mucosal barrier plays an important role in the pathophysiology of acute pancreatitis. The myosin IXB (MYO9B gene and the two tight-junction adaptor genes, PARD3 and MAGI2, have been linked to gastrointestinal permeability. Common variants of these genes are associated with celiac disease and inflammatory bowel disease, two other conditions in which intestinal permeability plays a role. We investigated genetic variation in MYO9B, PARD3 and MAGI2 for association with acute pancreatitis. METHODS: Five single nucleotide polymorphisms (SNPs in MYO9B, two SNPs in PARD3, and three SNPs in MAGI2 were studied in a Dutch cohort of 387 patients with acute pancreatitis and over 800 controls, and in a German cohort of 235 patients and 250 controls. RESULTS: Association to MYO9B and PARD3 was observed in the Dutch cohort, but only one SNP in MYO9B and one in MAGI2 showed association in the German cohort (p < 0.05. Joint analysis of the combined cohorts showed that, after correcting for multiple testing, only two SNPs in MYO9B remained associated (rs7259292, p = 0.0031, odds ratio (OR 1.94, 95% confidence interval (95% CI 1.35-2.78; rs1545620, p = 0.0006, OR 1.33, 95% CI 1.16-1.53. SNP rs1545620 is a non-synonymous SNP previously suspected to impact on ulcerative colitis. None of the SNPs showed association to disease severity or etiology. CONCLUSION: Variants in MYO9B may be involved in acute pancreatitis, but we found no evidence for involvement of PARD3 or MAGI2.

  1. Differential expression of myosin heavy chain isoforms in the masticatory muscles of dystrophin-deficient mice.

    Science.gov (United States)

    Spassov, Alexander; Gredes, Tomasz; Gedrange, Tomasz; Lucke, Silke; Morgenstern, Sven; Pavlovic, Dragan; Kunert-Keil, Christiane

    2011-12-01

    The dystrophin-deficient mouse (mdx) is a homologue animal model of Duchenne muscular dystrophy (DMD) and is characterized by slowly progressive muscle weakness accompanied by changes in myosin heavy chain (MyHC) composition. It is likely that the masticatory muscles undergo similar changes. The aim of this study was to examine the masticatory muscles (masseter, temporal, tongue, and soleus) of 100-day-old mdx and control mice (n = 8-10), and the fibre type distribution (by immunohistochemistry) as well as the expression of the corresponding MyHC messenger RNA (mRNA) (protein and mRNA expression, using Western blot or quantitative real-time polymerase chain reaction (RT-PCR)). Immunohistochemistry and western blot analysis revealed that the masticatory muscles in the control and mdx mice consisted mainly of type 2 fibres, whereas soleus muscle consisted of both type 1 and 2 fibres. In the masseter muscle, the mRNA in mdx mice was not different from that found in the controls. However, the mRNA content of the MyHC-2b isoform in mdx mice was lower in comparison with the controls in the temporal muscle [11.9 versus 36.9 per cent; P muscle (65.7 versus 73.8 per cent; P muscle was lower than in the controls (25.9 versus 30.8 per cent; P muscles of mdx mice may lead to changed fibre type composition. The different MyHC gene expression in mdx mice masticatory muscles may be seen as an adaptive mechanism to muscular dystrophy.

  2. Effect of Fetal Hypothyroidism on Cardiac Myosin Heavy Chain Expression in Male Rats

    Science.gov (United States)

    Yousefzadeh, Nasibeh; Jeddi, Sajad; Alipour, Mohammad Reza

    2016-01-01

    Background: Thyroid hormone deficiency during fetal life could affect the cardiac function in later life. The mechanism underlying this action in fetal hypothyroidism (FH) in rats has not been elucidated thus far. Objective: The aim of this study is to evaluation the effect of FH on cardiac function in male rats and to determine the contribution of α-myosin heavy chain (MHC) and β-MHC isoforms. Methods: Six pregnant female rats were randomly divided into two groups: The hypothyroid group received water containing 6-propyl-2-thiouracil during gestation and the controls consumed tap water. The offspring of the rats were tested in adulthood. Hearts from the FH and control rats were isolated and perfused with langendroff setup for measuring hemodynamic parameters; also, the heart mRNA expressions of α- MHC and β-MHC were measured by qPCR. Results: Baseline LVDP (74.0 ± 3.1 vs. 92.5 ± 3.2 mmHg, p < 0.05) and heart rate (217 ± 11 vs. 273 ± 6 beat/min, p < 0.05) were lower in the FH rats than controls. Also, these results showed the same significance in ±dp/dt. In the FH rats, β-MHC expression was higher (201%) and α- MHC expression was lower (47%) than control. Conclusion: Thyroid hormone deficiency during fetal life could attenuate normal cardiac functions in adult rats, an effect at least in part due to the increased expression of β-MHC to α- MHC ratio in the heart. PMID:27411095

  3. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Crew, Jennifer R.; Falzari, Kanakeshwari [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States); DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States)

    2010-04-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  4. Effects of pseudophosphorylation mutants on the structural dynamics of smooth muscle myosin regulatory light chain

    Science.gov (United States)

    Espinoza-Fonseca, L. Michel; Colson, Brett A.; Thomas, David D.

    2014-01-01

    We have performed 50 independent molecular dynamics (MD) simulations to determine the effect of pseudophosphorylation mutants on the structural dynamics of smooth muscle myosin (SMM) regulatory light chain (RLC). We previously showed that the N-terminal phosphorylation domain of RLC simultaneously populates two structural states in equilibrium, closed and open, and that phosphorylation at S19 induces a modest shift toward the open state, which is sufficient to activate smooth muscle. However, it remains unknown why pseudophosphorylation mutants poorly mimic phosphorylation-induced activation of SMM. We performed MD simulations of unphosphorylated, phosphorylated, and three pseudophosphorylatedRLC mutants: S19E, T18D/S19D and T18E/S19E. We found that the S19E mutation does not shift the equilibrium toward the open state, indicating that simple charge replacement at position S19 does not mimic the activating effect of phosphorylation, providing a structural explanation for previously published functional data. In contrast, mutants T18D/S19D and T18E/S19E shift the equilibrium toward the open structure and partially activate in vitro motility, further supporting the model that an increase in the mol fraction of the open state is coupled to SMM motility. Structural analyses of the doubly-charged pseudophosphorylation mutants suggest that alterations in an interdomain salt bridge between residues R4 and D100 results in impaired signal transmission from RLC to the catalytic domain of SMM, which explains the low ATPase activity of these mutants. Our results demonstrate that phosphorylation produces a unique structural balance in the RLC. These observations have important implications for our understanding of the structural aspects of activation and force potentiation in smooth and striated muscle. PMID:25091814

  5. Effect of Fetal Hypothyroidism on Cardiac Myosin Heavy Chain Expression in Male Rats

    Directory of Open Access Journals (Sweden)

    Nasibeh Yousefzadeh

    2016-01-01

    Full Text Available Abstract Background: Thyroid hormone deficiency during fetal life could affect the cardiac function in later life. The mechanism underlying this action in fetal hypothyroidism (FH in rats has not been elucidated thus far. Objective: The aim of this study is to evaluation the effect of FH on cardiac function in male rats and to determine the contribution of α-myosin heavy chain (MHC and β-MHC isoforms. Methods: Six pregnant female rats were randomly divided into two groups: The hypothyroid group received water containing 6-propyl-2-thiouracil during gestation and the controls consumed tap water. The offspring of the rats were tested in adulthood. Hearts from the FH and control rats were isolated and perfused with langendroff setup for measuring hemodynamic parameters; also, the heart mRNA expressions of α- MHC and β-MHC were measured by qPCR. Results: Baseline LVDP (74.0 ± 3.1 vs. 92.5 ± 3.2 mmHg, p < 0.05 and heart rate (217 ± 11 vs. 273 ± 6 beat/min, p < 0.05 were lower in the FH rats than controls. Also, these results showed the same significance in ±dp/dt. In the FH rats, β-MHC expression was higher (201% and α- MHC expression was lower (47% than control. Conclusion: Thyroid hormone deficiency during fetal life could attenuate normal cardiac functions in adult rats, an effect at least in part due to the increased expression of β-MHC to α- MHC ratio in the heart.

  6. Myosin heavy chain 15 is associated with bovine pulmonary arterial pressure.

    Science.gov (United States)

    Neary, Marianne T; Neary, Joseph M; Lund, Gretchen K; Holt, Timothy N; Garry, Franklyn B; Mohun, Timothy J; Breckenridge, Ross A

    2014-09-01

    Bovine pulmonary hypertension, brisket disease, causes significant morbidity and mortality at elevations above 2,000 m. Mean pulmonary arterial pressure (mPAP) is moderately heritable, with inheritance estimated to lie within a few major genes. Invasive mPAP measurement is currently the only tool available to identify cattle at risk of hypoxia-induced pulmonary hypertension. A genetic test could allow selection of cattle suitable for high altitude without the need for invasive testing. In this study we evaluated three candidate genes (myosin heavy chain 15 [MYH15], NADH dehydrogenase flavoprotein 2, and FK binding protein 1A) for association with mPAP in 166 yearling Angus bulls grazing at 2,182 m. The T allele (rs29016420) of MYH15 was linked to lower mPAP in a dominant manner (CC 47.2 ± 1.6 mmHg [mean ± standard error of the mean]; CT/TT 42.8 ± 0.7 mmHg; P = 0.02). The proportions of cattle with MYH15 CC, CT, and TT genotypes were 55%, 41%, and 4%, respectively. Given the high frequency of the deleterious allele, it is likely that the relative contribution of MYH15 polymorphisms to pulmonary hypertension is small, supporting previous predictions that the disease is polygenic. We evaluated allelic frequency of MYH15 in the Himalayan yak (Bos grunniens), a closely related species adapted to high altitude, and found 100% prevalence of T allele homozygosity. In summary, we identified a polymorphism in MYH15 significantly associated with mPAP. This finding may aid selection of cattle suitable for high altitude and contribute to understanding human hypoxia-induced pulmonary hypertension.

  7. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Orion D Weiner

    2006-02-01

    Full Text Available Migrating cells need to make different actin assemblies at the cell's leading and trailing edges and to maintain physical separation of signals for these assemblies. This asymmetric control of activities represents one important form of cell polarity. There are significant gaps in our understanding of the components involved in generating and maintaining polarity during chemotaxis. Here we characterize a family of complexes (which we term leading edge complexes, scaffolded by hematopoietic protein 1 (Hem-1, that organize the neutrophil's leading edge. The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE2 complex, which mediates activation of actin polymerization by Rac, is only one member of this family. A subset of these leading edge complexes are biochemically separable from the WAVE2 complex and contain a diverse set of potential polarity-regulating proteins. RNA interference-mediated knockdown of Hem-1-containing complexes in neutrophil-like cells: (a dramatically impairs attractant-induced actin polymerization, polarity, and chemotaxis; (b substantially weakens Rac activation and phosphatidylinositol-(3,4,5-tris-phosphate production, disrupting the (phosphatidylinositol-(3,4,5-tris-phosphate/Rac/F-actin-mediated feedback circuit that organizes the leading edge; and (c prevents exclusion of activated myosin from the leading edge, perhaps by misregulating leading edge complexes that contain inhibitors of the Rho-actomyosin pathway. Taken together, these observations show that versatile Hem-1-containing complexes coordinate diverse regulatory signals at the leading edge of polarized neutrophils, including but not confined to those involving WAVE2-dependent actin polymerization.

  8. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, Priya; Wang, Li; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Huang, Wenrui; Hernandez, Olga M.; Kawai, Masataka; Irving, Thomas C.; Szczesna-Cordary, Danuta (IIT); (Iowa); (Miami-MED)

    2012-04-02

    The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-{Delta}43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing ({approx} 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I{sub 1,1}/I{sub 1,0}, indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-{Delta}43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-{Delta}43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.

  9. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  10. Head kinematics during shaking associated with abusive head trauma.

    Science.gov (United States)

    Lintern, T O; Puhulwelle Gamage, N T; Bloomfield, F H; Kelly, P; Finch, M C; Taberner, A J; Nash, M P; Nielsen, P M F

    2015-09-18

    Abusive head trauma (AHT) is a potentially fatal result of child abuse but the mechanisms of injury are controversial. To address the hypothesis that shaking alone is sufficient to elicit the injuries observed, effective computational and experimental models are necessary. This paper investigates the use of a coupled rigid-body computational modelling framework to reproduce in vivo shaking kinematics in AHT. A sagittal plane OpenSim computational model of a lamb was developed and used to interpret biomechanical data from in vivo shaking experiments. The acceleration of the head during shaking was used to provide in vivo validation of the associated computational model. Results of this study demonstrated that peak accelerations occurred when the head impacted the torso and produced acceleration magnitudes exceeding 200ms(-)(2). The computational model demonstrated good agreement with the experimental measurements and was shown to be able to reproduce the high accelerations that occur during impact. The biomechanical results obtained with the computational model demonstrate the utility of using a coupled rigid-body modelling framework to describe infant head kinematics in AHT.

  11. Correlation between histochemically assessed fiber type distribution and isomyosin and myosin heavy chain content in porcine skeletal muscles.

    Science.gov (United States)

    Bee, G; Solomon, M B; Czerwinski, S M; Long, C; Pursel, V G

    1999-08-01

    Highly sensitive enzyme assays developed to differentiate skeletal muscle fibers allow the recognition of three main fiber types: slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG), and fast-twitch glycolytic (FG). Myosin, the predominant contractile protein in mammalian skeletal muscle, can be separated based on the electrophoretic mobility under nondissociating conditions into SM2, SM1, IM, FM3, and FM2 isoforms, or under dissociating conditions into myosin heavy chain (MHC) I, IIb, IIx/d, and IIa. The purpose of the present study was to determine whether the histochemical method of differentiation of fiber types is consistent with the electrophoretically identified isomyosin and MHC isoforms. These comparisons were made using serratus ventralis (SV), gluteus medius (GM), and longissimus muscles (LM) from 13 pigs. Two calculation methods for the histochemical assessed fiber type distribution were adopted. The first method incorporated the number of fibers counted for each fiber type and calculated a percentage of the total fiber number (fiber number percentage: FNP). The second method expressed the cross-sectional area of each fiber type as a percentage of the total fiber area measured per muscle (fiber area percentage: FAP). Independent of the calculation methods, correlation analyses revealed in all muscles a strong relation between SO fibers, the slow isomyosin (SM1 and SM2), and MHCI, as well as between the FG fibers, the fast isomyosin (FM3 and FM2), and MHCIIx/b content (PFOG fiber population assessed by histochemical analysis and intermediate isoform (IM) or MHCIIa content. The present results did not provide conclusive evidence as to which of the calculation methods (FNP or FAP) was more closely related to myosin composition of skeletal muscles. Despite some incompatibility between the methods, the present study shows that histochemical as well as electrophoretic analyses yielded important information about the composition of porcine

  12. The Drosophila GIPC homologue can modulate myosin based processes and planar cell polarity but is not essential for development.

    Directory of Open Access Journals (Sweden)

    Alexandre Djiane

    Full Text Available Epithelia often show, in addition to the ubiquitous apico-basal (A/B axis, a polarization within the plane of the epithelium, perpendicular to the A/B axis. Such planar cell polarity (PCP is for example evident in the regular arrangement of the stereocilia in the cochlea of the mammalian inner ear or in (almost all Drosophila adult external structures. GIPCs (GAIP interacting protein, C terminus were first identified in mammals and bind to the Galphai GTPase activating protein RGS-GAIP. They have been proposed to act in a G-protein coupled complex controlling vesicular trafficking. Although GIPCs have been found to bind to numerous proteins including Frizzled receptors, which participate in PCP establishment, there is little in vivo evidence for the functional role(s of GIPCs. We show here that overexpressed Drosophila dGIPC alters PCP generation in the wing. We were however unable to find any binding between dGIPC and the Drosophila receptors Fz1 and Fz2. The effect of overexpressed dGIPC is likely due to an effect on the actin cytoskeleton via myosins, since it is almost entirely suppressed by removing a genomic copy of the Myosin VI/jaguar gene. Surprisingly, although dGIPC can interfere with PCP generation and myosin based processes, the complete loss-of-function of dGIPC gives viable adults with no PCP or other detectable defects arguing for a non-essential role of dGIPC in viability and normal Drosophila development.

  13. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development

    Energy Technology Data Exchange (ETDEWEB)

    Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya; Patel, Jitandrakumar R.; Fitzsimons, Daniel P.; Irving, Thomas C.; Moss, Richard L. (IIT); (UW-MED)

    2010-05-25

    Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force, we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.

  14. Mechanosensing in myosin filament solves a 60 years old conflict in skeletal muscle modeling between high power output and slow rise in tension

    CERN Document Server

    Marcucci, Lorenzo

    2016-01-01

    Almost 60 years ago Andrew Huxley with his seminal paper \\cite{Huxley1957} laid the foundation of modern muscle modeling, linking chemical events to mechanical performance. He described mechanics and energetics of muscle contraction through the cyclical attachment and detachment of myosin motors to the actin filament with ad hoc assumptions on the dependence of the rate constants on the strain of the myosin motors. That relatively simple hypothesis is still present in recent models, even though with several modifications to adapt the model to the different experimental constraints which became subsequently available. However, already in that paper, one controversial aspect of the model became clear. Relatively high attachment and detachment rates of myosin to the actin filament were needed to simulate the high power output at intermediate velocity of contraction. However, these rates were incompatible with the relatively slow rise in tension after activation, despite the rise should be generated by the same r...

  15. Blunt Head Trauma and Headache

    Directory of Open Access Journals (Sweden)

    Ana B Chelse

    2015-04-01

    Full Text Available Investigators from New York Presbyterian Morgan Stanley Children’s Hospital examined whether having an isolated headache following minor blunt head trauma was suggestive of traumatic brain injury (TBI among a large cohort of children 2-18 years of age.

  16. Neuroelectromagnetic Forward Head Modeling Toolbox

    Science.gov (United States)

    Acar, Zeynep Akalin; Makeig, Scott

    2014-01-01

    This paper introduces a Neuroelectromagnetic Forward Head Modeling Toolbox (NFT) running under MATLAB (The Mathworks, Inc.) for generating realistic head models from available data (MRI and/or electrode locations) and for computing numerical solutions for the forward problem of electromagnetic source imaging. The NFT includes tools for segmenting scalp, skull, cerebrospinal fluid (CSF) and brain tissues from T1-weighted magnetic resonance (MR) images. The Boundary Element Method (BEM) is used for the numerical solution of the forward problem. After extracting segmented tissue volumes, surface BEM meshes can be generated. When a subject MR image is not available, a template head model can be warped to measured electrode locations to obtain an individualized head model. Toolbox functions may be called either from a graphic user interface compatible with EEGLAB (http://sccn.ucsd.edu/eeglab), or from the MATLAB command line. Function help messages and a user tutorial are included. The toolbox is freely available under the GNU Public License for noncommercial use and open source development. PMID:20457183

  17. The Animal Without A Head

    Institute of Scientific and Technical Information of China (English)

    万钧

    2002-01-01

    Have you ever seen an animal with out a head?there is such an animal! it has no tail or legs ,its body is full of holes it eats and breathes but never moves,it lives under water,the water brings the animal air.

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... very early stage by mapping the motion of water molecules in the tissue. This water motion, known as diffusion, is impaired by most ... the limitations of MRI of the Head? High-quality images are assured only if you are able ...

  19. In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1–Rok–Myosin-II and JNK signalling

    Directory of Open Access Journals (Sweden)

    Peytee Khoo

    2013-05-01

    The Ras oncogene contributes to ∼30% of human cancers, but alone is not sufficient for tumorigenesis. In a Drosophila screen for oncogenes that cooperate with an activated allele of Ras (RasACT to promote tissue overgrowth and invasion, we identified the GTP exchange factor RhoGEF2, an activator of Rho-family signalling. Here, we show that RhoGEF2 also cooperates with an activated allele of a downstream effector of Ras, Raf (RafGOF. We dissect the downstream pathways through which RhoGEF2 cooperates with RasACT (and RafGOF, and show that RhoGEF2 requires Rho1, but not Rac, for tumorigenesis. Furthermore, of the Rho1 effectors, we show that RhoGEF2 + Ras (Raf-mediated tumorigenesis requires the Rho kinase (Rok–Myosin-II pathway, but not Diaphanous, Lim kinase or protein kinase N. The Rho1–Rok–Myosin-II pathway leads to the activation of Jun kinase (JNK, in cooperation with RasACT. Moreover, we show that activation of Rok or Myosin II, using constitutively active transgenes, is sufficient for cooperative tumorigenesis with RasACT, and together with RasACT leads to strong activation of JNK. Our results show that Rok–Myosin-II activity is necessary and sufficient for Ras-mediated tumorigenesis. Our observation that activation of Myosin II, which regulates Filamentous actin (F-actin contractility without affecting F-actin levels, cooperates with RasACT to promote JNK activation and tumorigenesis, suggests that increased cell contractility is a key factor in tumorigenesis. Furthermore, we show that signalling via the Tumour necrosis factor (TNF; also known as Egr-ligand–JNK pathway is most likely the predominant pathway that activates JNK upon Rok activation. Overall, our analysis highlights the need for further analysis of the Rok–Myosin-II pathway in cooperation with Ras in human cancers.

  20. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, Bettina R.; Rudolf, Anja; Hornbruch-Freitag, Christina; Daum, Gabor; Kuckwa, Jessica; Kastl, Lena; Buttgereit, Detlev [Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg (Germany); Renkawitz-Pohl, Renate, E-mail: renkawit@biologie.uni-marburg.de [Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg (Germany)

    2013-02-15

    Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell–cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles. - Highlights: ► The class XVIII myosin encoding gene Mhcl is transcribed in the mesoderm. ► Mhcl localization at contact sites of fusing myoblasts depends on Rols7. ► Mhcl interacts in vitro with Rols7 which is essential for myogenesis. ► Functional redundancy with other myosins is likely as mutants show no muscle defects. ► Mhcl localizes adjacent to Z-discs of sarcomeres and might support muscle integrity.

  1. Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of 'partially' processed pseudogene

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2008-02-01

    Full Text Available Abstract Background Alternative splicing of mutually exclusive exons is an important mechanism for increasing protein diversity in eukaryotes. The insect Mhc (myosin heavy chain gene produces all different muscle myosins as a result of alternative splicing in contrast to most other organisms of the Metazoa lineage, that have a family of muscle genes with each gene coding for a protein specialized for a functional niche. Results The muscle myosin heavy chain genes of 22 species of the Arthropoda ranging from the waterflea to wasp and Drosophila have been annotated. The analysis of the gene structures allowed the reconstruction of an ancient muscle myosin heavy chain gene and showed that during evolution of the arthropods introns have mainly been lost in these genes although intron gain might have happened in a few cases. Surprisingly, the genome of Aedes aegypti contains another and that of Culex pipiens quinquefasciatus two further muscle myosin heavy chain genes, called Mhc3 and Mhc4, that contain only one variant of the corresponding alternative exons of the Mhc1 gene. Mhc3 transcription in Aedes aegypti is documented by EST data. Mhc3 and Mhc4 inserted in the Aedes and Culex genomes either by gene duplication followed by the loss of all but one variant of the alternative exons, or by incorporation of a transcript of which all other variants have been spliced out retaining the exon-intron structure. The second and more likely possibility represents a new type of a 'partially' processed pseudogene. Conclusion Based on the comparative genomic analysis of the alternatively spliced arthropod muscle myosin heavy chain genes we propose that the splicing process operates sequentially on the transcript. The process consists of the splicing of the mutually exclusive exons until one exon out of the cluster remains while retaining surrounding intronic sequence. In a second step splicing of introns takes place. A related mechanism could be responsible for

  2. Porcine head response to blast

    Directory of Open Access Journals (Sweden)

    Jay eShridharani

    2012-05-01

    Full Text Available Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposed porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110-740 kPa peak incident overpressure with scaled durations from 1.3-6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. The bulk head acceleration and the pressure at the surface of the head and in the cranial cavity were measured. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within thirty seconds and the remaining two recovered within 8 minutes following bagging and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80-685 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300-2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385-3845 G’s and were well correlated with peak incident overpressure (R2=0.90. One standard deviation corridors for the surface pressure, intracranial pressure, and head acceleration are presented to provide experimental data for

  3. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy.

    Science.gov (United States)

    Canclini, Lucía; Wallrabe, Horst; Di Paolo, Andrés; Kun, Alejandra; Calliari, Aldo; Sotelo-Silveira, José Roberto; Sotelo, José Roberto

    2014-03-15

    Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail.

  4. Preschool Facilities - MDC_HeadStart

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A label (point) feature class of Head Start / Early Head Start/ Delegate Agencies/ Child Care Partnership & Family Day Care Homes Programs location in Miami-Dade...

  5. Actin-myosin interactions visualized by the quick-freeze, deep-etch replica technique.

    Science.gov (United States)

    Heuser, J E; Cooke, R

    1983-09-05

    A new method of preparing biological samples for electron microscopy has been used to re-examine the structure of actin filaments, actin filaments decorated by myosin subfragment-1 (S1), and insect flight muscles. Samples were quick-frozen by contact with a block of copper cooled to approximately 4 K; then were freeze-fractured, deep-etched, rotary-replicated with platinum, and viewed in a transmission electron microscope. By this approach, actin filaments display prominent transverse bands whose repeat (approximately 5.5 nm) and pitch (approximately 15 to 20 degrees) fit with the expected left-handed "genetic" helix. Freeze-etched actin filaments do not, however, display the usual two-start helix as prominently as is seen after negative staining, and they also appear substantially thicker than after negative staining (9 to 10 nm versus 8 nm). The latter two-start helix appears very clearly after S1 decoration. Nevertheless, freeze-etched acto-S1 does not display the "arrowheads" that are seen after negative staining. Instead it displays the outer envelope of the helically deployed S1, and as would be expected from current models derived from optical reconstruction of negatively stained samples, this surface view looks only slightly polarized. Finally, the quick-freeze, deep-etch approach provides particularly distinct images of the crossbridges in insect flight muscles. These are plentiful and regularly arranged in rigor muscles, but rare in muscles relaxed with ATP before freezing. In rigor muscles fixed with aldehydes, these crossbridges assume a broad distribution of inclination, ranging from 45 degrees to 90 degrees with a mean of approximately 80 degrees, which is less tilt than has been seen before in thin-sectioned muscles. However, when aldehyde fixation is followed by exposure to tannic acid with or without uranyl acetate block-staining, crossbridges assume a more acute angle with respect to the fiber axis, centering around 45 degrees. This is associated

  6. Characterisation of the sarcomeric myosin heavy chain multigene family in the laboratory guinea pig

    Directory of Open Access Journals (Sweden)

    Bardsley Ronald G

    2010-06-01

    Full Text Available Abstract Background Several chronic conditions leading to skeletal muscle dysfunction are known to be associated with changes in the expression of myosin heavy chain (MHC isoforms at both the mRNA and protein level. Many of these conditions are modelled, pre-clinically, in the guinea pig due to similar disease onset and progression to the human condition, and their generally well-characterised anatomy. MHC composition is amenable to determination by protein and mRNA based methodologies, the latter quantifying the expression of MHC isoform-specific gene transcripts allowing the detection of earlier, and more subtle changes. As such, the MHC mRNAs, and specific oligonucleotide primers of all common laboratory species have been available for some time. However, due to incomplete genomic annotation, assessment of guinea pig MHC mRNA expression has not been previously possible, precluding the full characterisation of early changes in skeletal muscle in response to disease and disease modulation. The purpose of this study was to characterise the multigenic structure of the sarcomeric MHC family in the guinea pig, and to design and validate specific oligonucleotide primers to enable the assessment of the predominant adult-muscle associated MHC mRNAs in relevant disease models. Results Using a combination of ligase-mediated rapid amplification of 5' and 3' cDNA ends (RACE and bioinformatics, mRNAs to the four main skeletal-muscle isoforms of MHC were determined. Specific oligonucleotide primers were designed, and following verification of their specificity, found to successfully determine the expression of each MHC mRNA independently. Conclusions Because of their utilisation in the in vivo modelling of disease, there is a requirement to develop molecular methods that accurately differentiate the different MHC mRNAs in the guinea pig to enable rapid profiling of muscle composition in appropriate disease models. The methods developed here are suitable for

  7. Mutations of the Drosophila myosin regulatory light chain affect courtship song and reduce reproductive success.

    Science.gov (United States)

    Chakravorty, Samya; Vu, Hien; Foelber, Veronica; Vigoreaux, Jim O

    2014-01-01

    The Drosophila indirect flight muscles (IFM) rely on an enhanced stretch-activation response to generate high power output for flight. The IFM is neurally activated during the male courtship song, but its role, if any, in generating the small amplitude wing vibrations that produce the song is not known. Here, we examined the courtship song properties and mating behavior of three mutant strains of the myosin regulatory light chain (DMLC2) that are known to affect IFM contractile properties and impair flight: (i) Dmlc2(Δ2-46) (Ext), an N-terminal extension truncation; (ii) Dmlc2(S66A,S67A) (Phos), a disruption of two MLC kinase phosphorylation sites; and (iii) Dmlc2(Δ2-46;S66A,S67A) (Dual), expressing both mutations. Our results show that the Dmlc2 gene is pleiotropic and that mutations that have a profound effect on flight mechanics (Phos and Dual) have minimal effects on courtship song. None of the mutations affect interpulse interval (IPI), a determinant of species-specific song, and intrapulse frequency (IPF) compared to Control (Dmlc2 (+) rescued null strain). However, abnormalities in the sine song (increased frequency) and the pulse song (increased cycles per pulse and pulse length) evident in Ext males are not apparent in Dual males suggesting that Ext and Phos interact differently in song and flight mechanics, given their known additive effect on the latter. All three mutant males produce a less vigorous pulse song and exhibit impaired mating behavior compared to Control males. As a result, females are less receptive to Ext, Phos, and Dual males when a Control male is present. These results open the possibility that DMLC2, and perhaps contractile protein genes in general, are partly under sexual selection. That mutations in DMLC2 manifest differently in song and flight suggest that this protein fulfills different roles in song and flight and that stretch activation plays a smaller role in song production than in flight.

  8. The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles.

    Science.gov (United States)

    Orme, Mariam H; Liccardi, Gianmaria; Moderau, Nina; Feltham, Rebecca; Wicky-John, Sidonie; Tenev, Tencho; Aram, Lior; Wilson, Rebecca; Bianchi, Katiuscia; Morris, Otto; Monteiro Domingues, Celia; Robertson, David; Tare, Meghana; Wepf, Alexander; Williams, David; Bergmann, Andreas; Gstaiger, Matthias; Arama, Eli; Ribeiro, Paulo S; Meier, Pascal

    2016-03-10

    Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the initiator caspase DRONC and regulates some of its non-apoptotic functions. Loss of CK in the arista, border cells or proneural clusters of the wing imaginal discs affects DRONC-dependent patterning. Our data indicate that CK acts as substrate adaptor, recruiting SHAGGY46/GSK3-β to DRONC, thereby facilitating caspase-mediated cleavage and localized modulation of kinase activity. Similarly, the mammalian CK counterpart, MYO7A, binds to and impinges on CASPASE-8, revealing a new regulatory axis affecting receptor interacting protein kinase-1 (RIPK1)>CASPASE-8 signalling. Together, our results expose a conserved role for unconventional myosins in transducing caspase-dependent regulation of kinases, allowing them to take part in specific signalling events.

  9. Myosin II and the Gal-GalNAc lectin play a crucial role in tissue invasion by Entamoeba histolytica.

    Science.gov (United States)

    Coudrier, Evelyne; Amblard, François; Zimmer, Christophe; Roux, Pascal; Olivo-Marin, Jean-Christophe; Rigothier, Marie-Christine; Guillén, Nancy

    2005-01-01

    Entamoeba histolytica is the human parasite responsible of amoebiasis, during which highly motile trophozoites invade the intestinal epithelium leading to amoebic colitis, and disseminate via the blood circulation causing liver abscesses. The invasive process, central to the pathogenesis, is known to be driven by parasites motility. To investigate molecules responsible for in vivo motion, we performed a high resolution dynamic imaging analysis using two-photon laser scanning microscopy. Image analysis of the parasites during invasion of Caco-2 cell monolayers, an enterocyte-like model, and hamster liver shows that E. histolytica undergoes non-Brownian motion. However, studies of movements of parasite strains dominant negative for myosin II, a central component of the cytoskeleton, and for Gal-GalNAc lectin, a major adhesion molecule, indicate that myosin II is essential for E. histolytica intercellular motility through intestinal cell monolayers and for its motility in liver. In contrast, the Gal-GalNAc lectin exclusively triggers invasion of the liver. These observations are in agreement with emerging studies that highlight marked differences in the way that cells migrate in vitro in two dimensions versus in vivo in three dimensions. The approach that we have developed should be powerful to identify adhesive complexes required for in vivo cell migration in normal and pathogenic situations and may, thereby, lead to new therapeutic drug, for pathologies based on cell motility and adhesion.

  10. AN INTEGRATIVE WAY OF TEACHING MOLECULAR CELL BIOLOGY AND PROTEIN CHEMISTRY USING ACTIN IMMOBILIZATION ON CHITIN FOR PURIFYING MYOSIN II.

    Directory of Open Access Journals (Sweden)

    M.G. Souza

    2007-05-01

    Full Text Available Our intent is to present our experience on teaching Molecular Cell Biology andProtein Chemistry at UNIRIO through an innovative approach that includes myosin IIextraction and purification. We took advantage of the properties of muscle contractionand propose a simple method for purifying myosin II by affinity chromatography. Thisoriginal method is based on the preparation of an affinity column containing actinmolecules covalently bound to chitin particles. We propose a three-week syllabus thatincludes lectures and bench experimental work. The syllabus favors the activelearning of protein extraction and purification, as well as, of scientific concepts suchas muscle contraction, cytoskeleton structure and its importance for the living cell. Italso promotes the learning of the biotechnological applications of chitin and theapplications of protein immobilization in different industrial fields. Furthermore, theactivities also target the development of laboratorial technical abilities, thedevelopment of problem solving skills and the ability to write up a scientific reportfollowing the model of a scientific article. It is very important to mention that thissyllabus can be used even in places where a facility such as ultra-centrifugation islacking.

  11. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling

    Directory of Open Access Journals (Sweden)

    Olga Ossipova

    2015-07-01

    Full Text Available The vertebrate neural tube forms as a result of complex morphogenetic movements, which require the functions of several core planar cell polarity (PCP proteins, including Vangl2 and Prickle. Despite the importance of these proteins for neurulation, their subcellular localization and the mode of action have remained largely unknown. Here we describe the anteroposterior planar cell polarity (AP-PCP of the cells in the Xenopus neural plate. At the neural midline, the Vangl2 protein is enriched at anterior cell edges and that this localization is directed by Prickle, a Vangl2-interacting protein. Our further analysis is consistent with the model, in which Vangl2 AP-PCP is established in the neural plate as a consequence of Wnt-dependent phosphorylation. Additionally, we uncover feedback regulation of Vangl2 polarity by Myosin II, reiterating a role for mechanical forces in PCP. These observations indicate that both Wnt signaling and Myosin II activity regulate cell polarity and cell behaviors during vertebrate neurulation.

  12. Rho-kinase regulates tissue morphogenesis via non-muscle myosin and LIM-kinase during Drosophila development

    Directory of Open Access Journals (Sweden)

    Settleman Jeffrey

    2006-08-01

    Full Text Available Abstract Background The Rho-kinases (ROCKs are major effector targets of the activated Rho GTPase that have been implicated in many of the Rho-mediated effects on cell shape and movement via their ability to affect acto-myosin contractility. The role of ROCKs in cell shape change and motility suggests a potentially important role for Rho-ROCK signaling in tissue morphogenesis during development. Indeed, in Drosophila, a single ROCK ortholog, DRok, has been identified and has been found to be required for establishing planar cell polarity. Results We have examined a potential role for DRok in additional aspects of tissue morphogenesis using an activated form of the protein in transgenic flies. Our findings demonstrate that DRok activity can influence multiple morphogenetic processes, including eye and wing development. Furthermore, genetic studies reveal that Drok interacts with multiple downstream effectors of the Rho GTPase signaling pathway, including non-muscle myosin heavy chain, adducin, and Diaphanous in those developmental processes. Finally, in overexpression studies, we determined that Drok and Drosophila Lim-kinase interact in the developing nervous system. Conclusion These findings indicate widespread diverse roles for DRok in tissue morphogenesis during Drosophila development, in which multiple DRok substrates appear to be required.

  13. Head stabilization in whooping cranes

    Science.gov (United States)

    Kinloch, M.R.; Cronin, T.W.; Olsen, G.H.; Chavez-Ramirez, Felipe

    2005-01-01

    The whooping crane (Grus americana) is the tallest bird in North America, yet not much is known about its visual ecology. How these birds overcome their unusual height to identify, locate, track, and capture prey items is not well understood. There have been many studies on head and eye stabilization in large wading birds (herons and egrets), but the pattern of head movement and stabilization during foraging is unclear. Patterns of head movement and stabilization during walking were examined in whooping cranes at Patuxent Wildlife Research Center, Laurel, Maryland USA. Four whooping cranes (1 male and 3 females) were videotaped for this study. All birds were already acclimated to the presence of people and to food rewards. Whooping cranes were videotaped using both digital and Hi-8 Sony video cameras (Sony Corporation, 7-35 Kitashinagawa, 6-Chome, Shinagawa-ku, Tokyo, Japan), placed on a tripod and set at bird height in the cranes' home pens. The cranes were videotaped repeatedly, at different locations in the pens and while walking (or running) at different speeds. Rewards (meal worms, smelt, crickets and corn) were used to entice the cranes to walk across the camera's view plane. The resulting videotape was analyzed at the University of Maryland at Baltimore County. Briefly, we used a computerized reduced graphic model of a crane superimposed over each frame of analyzed tape segments by means of a custom written program (T. W. Cronin, using C++) with the ability to combine video and computer graphic input. The speed of the birds in analyzed segments ranged from 0.30 m/s to 2.64 m/s, and the proportion of time the head was stabilized ranged from 79% to 0%, respectively. The speed at which the proportion reached 0% was 1.83 m/s. The analyses suggest that the proportion of time the head is stable decreases as speed of the bird increases. In all cases, birds were able to reach their target prey with little difficulty. Thus when cranes are walking searching for food

  14. Supernumerary head of biceps brachii

    OpenAIRE

    Balasubramanian A

    2010-01-01

    The biceps brachii muscle and the musculocutaneous nerve of arm are frequent in their variations. A third head of biceps brachii was noted unilaterally during routine anatomy dissection. Variation in musculocutaneous nerve was also seen on the same arm. The evolutionary and functional basis of such variations are discussed. Such variations become relevant during surgical intervention of the arm, especially after humeral fracture with subsequent unusual bone displacements.

  15. Supernumerary head of biceps brachii

    Directory of Open Access Journals (Sweden)

    Balasubramanian A

    2010-12-01

    Full Text Available The biceps brachii muscle and the musculocutaneous nerve of arm are frequent in their variations. A third head of biceps brachii was noted unilaterally during routine anatomy dissection. Variation in musculocutaneous nerve was also seen on the same arm. The evolutionary and functional basis of such variations are discussed. Such variations become relevant during surgical intervention of the arm, especially after humeral fracture with subsequent unusual bone displacements.

  16. Target position relative to the head is essential for predicting head movement during head-free gaze pursuit.

    Science.gov (United States)

    C Pallus, Adam; G Freedman, Edward

    2016-08-01

    Gaze pursuit is the coordinated movement of the eyes and head that allows humans and other foveate animals to track moving objects. The control of smooth pursuit eye movements when the head is restrained is relatively well understood, but how the eyes coordinate with concurrent head movements when the head is free remains unresolved. In this study, we describe behavioral tasks that dissociate head and gaze velocity during head-free pursuit in monkeys. Existing models of gaze pursuit propose that both eye and head movements are driven only by the perceived velocity of the visual target and are therefore unable to account for these data. We show that in addition to target velocity, the positions of the eyes in the orbits and the retinal position of the target are important factors for predicting head movement during pursuit. When the eyes are already near their limits, further pursuit in that direction will be accompanied by more head movement than when the eyes are centered in the orbits, even when target velocity is the same. The step-ramp paradigm, often used in pursuit tasks, produces larger or smaller head movements, depending on the direction of the position step, while gaze pursuit velocity is insensitive to this manipulation. Using these tasks, we can reliably evoke head movements with peak velocities much faster than the target's velocity. Under these circumstances, the compensatory eye movements, which are often called counterproductive since they rotate the eyes in the opposite direction, are essential to maintaining accurate gaze velocity.

  17. Preventing head and neck injury.

    Science.gov (United States)

    McIntosh, A S; McCrory, P

    2005-06-01

    A wide range of head and neck injury risks are present in sport, including catastrophic injury. The literature since 1980 on prevention of head and neck injury in sport was reviewed, focusing on catastrophic and brain injury and identifying the range of injury prevention methods in use. There have been few formal evaluations of injury prevention methods. Approaches that are considered, or have been proven, to be successful in preventing injury include: modification of the baseball; implementation of helmet standards in ice hockey and American football and increased wearing rates; use of full faceguards in ice hockey; changes in rules associated with body contact; implementation of rules to reduce the impact forces in rugby scrums. Helmets and other devices have been shown to reduce the risk of severe head and facial injury, but current designs appear to make little difference to rates of concussion. Research methods involving epidemiological, medical, and human factors are required in combination with biomechanical and technological approaches to reduce further injury risks in sport.

  18. First Class Call Stacks: Exploring Head Reduction

    Directory of Open Access Journals (Sweden)

    Philip Johnson-Freyd

    2016-06-01

    Full Text Available Weak-head normalization is inconsistent with functional extensionality in the call-by-name λ-calculus. We explore this problem from a new angle via the conflict between extensionality and effects. Leveraging ideas from work on the λ-calculus with control, we derive and justify alternative operational semantics and a sequence of abstract machines for performing head reduction. Head reduction avoids the problems with weak-head reduction and extensionality, while our operational semantics and associated abstract machines show us how to retain weak-head reduction's ease of implementation.

  19. Neuropsychiatric sequelae of head injuries.

    Science.gov (United States)

    McAllister, T W

    1992-06-01

    Based on the above review several general points can be highlighted: Head injuries are extremely common, affecting probably close to 2,000,000 people in this country each year. The most common are nonmissile, closed-head injuries, the majority of which occur in association with motor vehicle accidents. Virtually all studies of head injury suggest a peak incidence in the 15 to 24 years of age group. Coarse measures of outcome suggest that the very young and the elderly have poorer outcomes. Because of improved acute care, however, a large number of young, otherwise healthy patients are surviving head injuries with a variety of profound neuropsychiatric sequelae. Because of the mechanics of brain injury in acceleration-deceleration injuries, certain brain injury profiles are common including orbitofrontal, anterior and inferior temporal contusions, and diffuse axonal injury. The latter particularly affects the corpus callosum, superior cerebellar peduncle, basal ganglia, and periventricular white matter. The neuropsychiatric sequelae follow from the above injury profiles. Cognitive impairment is often diffuse with more prominent deficits in rate of information processing, attention, memory, cognitive flexibility, and problem solving. Prominent impulsivity, affective instability, and disinhibition are seen frequently, secondary to injury to frontal, temporal, and limbic areas. In association with the typical cognitive deficits, these sequelae characterize the frequently noted "personality changes" in TBI patients. In addition, these changes can exacerbate premorbid problems with impulse control. Marked difficulties with substance use, sexual expression, and aggression often result. The constellation of symptoms, which make up the postconcussive syndrome, are seen across the whole spectrum of brain injury severity. Even in so-called mild or minor head injury, these symptoms are likely to have an underlying neuropathologic, neurochemical, or neurophysiologic cause

  20. Cloning and Expression Analysis of Skeletal Myosin Heavy Chain (MYHs Gene from the Most Famous Freshwater Fishes in China-Culter alburnus

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2014-04-01

    Full Text Available Culter alburnus, one of the four most famous freshwater fishes, is a very important freshwater fishing species with high economic value in China. The present study focused on the myosin, major protein in skeletal muscles from Culter alburnus in Xingkai Lake. Two types of the gene encoding Myosin Heavy Chain (MYH, a large subunit of the myosin molecule, were cloned from fast skeletal muscle and defined as MYHa (Genbank ID JX272926 and MYHb (Gen bank ID JX402919. The full-length cDNA clones of MYHa and MYHb consisted of 6003 and 5990 bp, which encoded 1933 and 1930 amino acids, respectively. The total levels of the MYHs were significantly higher with the fish age increase. In comparison to the wild and cultured muscles, From 2 to 6 years old, MYHa gene expression of wild population was significantly lower than the cultured population (p<0.05, else MYHb gene expression of wild population was higher than cultured population. The two kinds of genotype interaction affect meat quality traits. The present study has therefore, revealed a complex pattern of expression of MYH genes in relation to developmental stage and population. Our work provided a novel myosin heavy chain gene sequence in fish biology and the results indicate that the MYH gene and the protein it encodes are important for the growth and development of fish, as well as its muscle characterization.

  1. [The effect of myosin from the human myocardium on quantitative T-lymphocyte values--active rosettes in patients with myocardial infarct and stenocardia].

    Science.gov (United States)

    Manev, V; Penkova, K; Ivanov, G; Ivanova, I; Grigorov, M; Nedialkova, V

    1990-01-01

    The aim of the investigation is to study the influence of human myocardium myosin on the quantitative values of T-lymphocytes examined as active rosettes [correction of rosellae] in patients with ischemic heart disease. The study included 99 patients with ischemic heart disease, 49 of them with myocardial infarction and 50--with stenocardia. The controls were 61 clinically healthy donors. It was established that the active rosettes [correction of rosellae] in the patients with myocardial infarction were significantly less than in the controls (p less than 0.05). A significant inhibiting action of the human myocardium myosin on the active rosettes [correction of rosellae] was manifested (p less than 0.002). This action in the patients with stenocardia was less expressed (p less than 0.05). Myosin from a striated muscle did not exert an inhibiting action (p greater than 0.1). The results prove the participation of human myocardium myosin in the pathogenetic mechanism of T-lymphocytes suppression in patients with ischemic heart disease.

  2. Conformational changes at the highly reactive cystein and lysine regions of skeletal muscle myosin induced by formation of transition state analogues.

    Science.gov (United States)

    Maruta, S; Homma, K; Ohki, T

    1998-09-01

    Myosin forms stable ternary complexes with Mg2+-ADP and phosphate analogues of aluminum fluoride (AlF4-), beryllium fluoride (BeFn), and scandium fluoride (ScFn). These complexes are distinct from each other and may mimic different transient states in the ATPase cycle [Maruta et al. (1993) J. Biol. Chem. 268, 7093-7100]. Regions of skeletal muscle myosin containing the highly reactive residues Cys 707 (SH1), Cys 697 (SH2), and lysine 83 (RLR) dramatically alter their local conformation when myosin hydrolyzes ATP, and these changes may reflect formation of a series of transient intermediates during ATP hydrolysis. We used the fluorescent probes 4-fluoro-7-sulfamoylbezofurazan, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid, and trinitrobenzene-sulfonate, which bind to SH1, SH2, and RLR, respectively, to examine differences in local conformations within myosin.ADP.phosphate analogue (BeFn, Vi, AlF4-, and ScFn) complexes. It was observed that the ternary complexes had SH1 conformations similar to those seen on S-1 in the presence of ATP. In contrast, local conformations in the SH2 and RLR regions of S-1.ADP.BeFn were different from those in corresponding regions of S-1.ADP.AlF4- or ScFn. These results suggest that SH1 and SH2 move distinctly during ATP hydrolysis and that the local conformations of the SH2 and RLR regions more sensitively reflect different transient states.

  3. High fat/low carbohydrate diet attenuates left ventricular hypertrophy and prevents myosin heavy chain isoform switching induced by chronic hypertenstion

    Science.gov (United States)

    A switch in the expression of myosin heavy chain isoform (MHC) alpha to beta is observed with left ventricular hypertrophy (LVH) and heart failure. This switch is associated with a defect in myocardial energy production and contractile dysfunction. Similar MHC isoform profile is observed in the fe...

  4. Angiotensin II induces reorganization of the actin cytoskeleton and myosin light-chain phosphorylation in podocytes through rho/ROCK-signaling pathway

    NARCIS (Netherlands)

    Wang, Siyuan; Chen, Cheng; Su, Ke; Zha, Dongqing; Liang, Wei; Hillebrands, J L; van Goor, Harry; Ding, Guohua

    2016-01-01

    Aims In the present study, we have evaluated the effect of angiotensin II (Ang II) on actin cytoskeleton reorganization and myosin light-chain (MLC) phosphorylation in podocytes to demonstrate whether the Rho/Rho-associated coiled kinase (ROCK) pathway is involved podocyte injury. Methods Eighteen m

  5. Genotype-phenotype correlation between the cardiac myosin binding protein C mutation A31P and hypertrophic cardiomyopathy in a cohort of Maine Coon cats

    DEFF Research Database (Denmark)

    Granström, S; Godiksen, M T N; Christiansen, M;

    2015-01-01

    OBJECTIVES: A missense mutation (A31P) in the cardiac myosin binding protein C gene has been associated with hypertrophic cardiomyopathy (HCM) in Maine Coon cats. The aim of this study was to investigate the effect of A31P on development of HCM, myocardial diastolic dysfunction detected by color ...

  6. Blebbistain, a myosin II inhibitor, as a novel strategy to regulate detrusor contractility in a rat model of partial bladder outlet obstruction.

    Directory of Open Access Journals (Sweden)

    Xinhua Zhang

    Full Text Available Partial bladder outlet obstruction (PBOO, a common urologic pathology mostly caused by benign prostatic hyperplasia, can coexist in 40-45% of patients with overactive bladder (OAB and is associated with detrusor overactivity (DO. PBOO that induces DO results in alteration in bladder myosin II type and isoform composition. Blebbistatin (BLEB is a myosin II inhibitor we recently demonstrated potently relaxed normal detrusor smooth muscle (SM and reports suggest varied BLEB efficacy for different SM myosin (SMM isoforms and/or SMM vs nonmuscle myosin (NMM. We hypothesize BLEB inhibition of myosin II as a novel contraction protein targeted strategy to regulate DO. Using a surgically-induced male rat PBOO model, organ bath contractility, competitive and Real-Time-RT-PCR were performed. It was found that obstructed-bladder weight significantly increased 2.74-fold while in vitro contractility of detrusor to various stimuli was impaired ∼50% along with decreased shortening velocity. Obstruction also altered detrusor spontaneous activities with significantly increased amplitude but depressed frequency. PBOO switched bladder from a phasic-type to a more tonic-type SM. Expression of 5' myosin heavy chain (MHC alternatively spliced isoform SM-A (associated with tonic-type SM increased 3-fold while 3' MHC SM1 and essential light chain isoform MLC(17b also exhibited increased relative expression. Total SMMHC expression was decreased by 25% while the expression of NMM IIB (SMemb was greatly increased by 4.5-fold. BLEB was found to completely relax detrusor strips from both sham-operated and PBOO rats pre-contracted with KCl, carbachol or electrical field stimulation although sensitivity was slightly decreased (20% only at lower doses for PBOO. Thus we provide the first thorough characterization of the response of rat bladder myosin to PBOO and demonstrate complete BLEB-induced PBOO bladder SM relaxation. Furthermore, the present study provides valuable

  7. Expressiveness of multiple heads in CHR

    CERN Document Server

    Di Giusto, Cinzia; Meo, Maria Chiara

    2008-01-01

    Constraint Handling Rules (CHR) are a committed-choice declarative language which has been designed for writing constraint solvers. A CHR program consists of multi-headed guarded rules which allow one to rewrite constraints into simpler ones until a solved form is reached. Many examples in the vast literature on the subject show that multiple heads are important in order to write programs which solve specific problems. On the other hand, the presence of multiples heads complicates considerably the semantics. Therefore, since restricting to single head rules does not affect the Turing completeness of the language, one can legitimately ask whether multiple heads do indeed augment the expressive power of the language. In this paper we answer positively to this question by showing that, under certain reasonable assumptions, it is not possible to encode the CHR language (with multi-headed rules) into a single head language while preserving the intended meaning of programs.

  8. Head flexion angle while using a smartphone.

    Science.gov (United States)

    Lee, Sojeong; Kang, Hwayeong; Shin, Gwanseob

    2015-01-01

    Repetitive or prolonged head flexion posture while using a smartphone is known as one of risk factors for pain symptoms in the neck. To quantitatively assess the amount and range of head flexion of smartphone users, head forward flexion angle was measured from 18 participants when they were conducing three common smartphone tasks (text messaging, web browsing, video watching) while sitting and standing in a laboratory setting. It was found that participants maintained head flexion of 33-45° (50th percentile angle) from vertical when using the smartphone. The head flexion angle was significantly larger (p neck pain of heavy smartphone users. Practitioner Summary: In this laboratory study, the severity of head flexion of smartphone users was quantitatively evaluated when conducting text messaging, web browsing and video watching while sitting and standing. Study results indicate that text messaging while sitting caused the largest head flexion than that of other task conditions.

  9. Roles for Cardiac MyBP-C in Maintaining Myofilament Lattice Rigidity and Prolonging Myosin Cross-Bridge Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, B.M.; Sadayappan, S.; Wang, Y.; Weith, A.E.; Previs, M.J.; Bekyarova, T.; Irving, T.C.; Robbins, J.; Maughan, D.W. (Vermont)

    2011-10-06

    We investigated the influence of cardiac myosin binding protein-C (cMyBP-C) and its constitutively unphosphorylated status on the radial and longitudinal stiffnesses of the myofilament lattice in chemically skinned myocardial strips of the following mouse models: nontransgenic (NTG), effective null for cMyBP-C (t/t), wild-type cMyBP-C expressed into t/t (WT{sub t/t}), and constitutively unphosphorylated cMyBP-C (AllP{sub -t/t}). We found that the absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP{sub -t/t} resulted in a compressible cardiac myofilament lattice induced by rigor not observed in the NTG and WT{sub t/t}. These results suggest that the presence and phosphorylation of the N-terminus of cMyBP-C provides structural support and radial rigidity to the myofilament lattice. Examination of myofilament longitudinal stiffness under rigor conditions demonstrated a significant reduction in cross-bridge-dependent stiffness in the t/t compared with NTG controls, but not in the AllP{sub -t/t} compared with WT{sub t/t} controls. The absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP{sub -t/t} both resulted in a shorter myosin cross-bridge lifetime when myosin isoform was controlled. These data collectively suggest that cMyBP-C provides radial rigidity to the myofilament lattice through the N-terminus, and that disruption of the phosphorylation of cMyBP-C is sufficient to abolish this structural role of the N-terminus and shorten cross-bridge lifetime. Although the presence of cMyBP-C also provides longitudinal rigidity, phosphorylation of the N-terminus is not necessary to maintain longitudinal rigidity of the lattice, in contrast to radial rigidity.

  10. Correlation between the distribution of smooth muscle or non muscle myosins and alpha-smooth muscle actin in normal and pathological soft tissues.

    Science.gov (United States)

    Benzonana, G; Skalli, O; Gabbiani, G

    1988-01-01

    The distribution of smooth muscle (SM) and non muscle myosins was compared with that of alpha-SM actin in various normal and pathological tissues and in cultured cells by means of indirect immunofluorescence using a monoclonal antibody specific for alpha-SM actin [anti-alpha sm-1, Skalli et al., 1986b] and two polyclonal antibodies raised against bovine aortic myosin (ABAM) and human platelet myosin (AHPM), respectively. In normal tissues ABAM stained vascular and parenchymal smooth muscle cells (SMC), myoepithelial cells and myoid cells of the testis in a pattern similar to that reported by other authors with antisera raised against non vascular SM myosin. Cells stained with ABAM were always positive for anti-alpha sm-1. In human and experimental atheromatous plaques, most cells were positive for AHPM; a variable proportion was also stained for ABAM plus anti-alpha sm-1. Myofibroblasts from rat granulation tissue, Dupuytren's nodule and stroma from breast carcinoma were constantly positive for AHPM and negative for ABAM; however, myofibroblasts from Dupuytren's nodule and breast carcinoma were anti-alpha sm-1 positive. Early primary cultures of rat aortic SMC were positive for ABAM and anti-alpha sm-1 and became negative for ABAM and positive for AHPM after a few days in culture. They remained positive for AHPM and anti-alpha sm-1 after passages; the staining of AHPM and anti-alpha sm-1 appeared to be colocalized along the same stress fibers. These results may be relevant for the understanding of SMC function and adaptation, and show that in non malignant SMC proliferation, alpha-SM actin represents a more general marker of SM origin than SM myosin.

  11. Head position modulates optokinetic nystagmus

    Science.gov (United States)

    Ferraresi, A.; Botti, F. M.; Panichi, R.; Barmack, N. H.

    2011-01-01

    Orientation and movement relies on both visual and vestibular information mapped in separate coordinate systems. Here, we examine how coordinate systems interact to guide eye movements of rabbits. We exposed rabbits to continuous horizontal optokinetic stimulation (HOKS) at 5°/s to evoke horizontal eye movements, while they were statically or dynamically roll-tilted about the longitudinal axis. During monocular or binocular HOKS, when the rabbit was roll-tilted 30° onto the side of the eye stimulated in the posterior → anterior (P → A) direction, slow phase eye velocity (SPEV) increased by 3.5–5°/s. When the rabbit was roll-tilted 30° onto the side of the eye stimulated in the A → P direction, SPEV decreased to ~2.5°/s. We also tested the effect of roll-tilt after prolonged optokinetic stimulation had induced a negative optokinetic afternystagmus (OKAN II). In this condition, the SPEV occurred in the dark, “open loop.” Modulation of SPEV of OKAN II depended on the direction of the nystagmus and was consistent with that observed during “closed loop” HOKS. Dynamic roll-tilt influenced SPEV evoked by HOKS in a similar way. The amplitude and the phase of SPEV depended on the frequency of vestibular oscillation and on HOKS velocity. We conclude that the change in the linear acceleration of the gravity vector with respect to the head during roll-tilt modulates the gain of SPEV depending on its direction. This modulation improves gaze stability at different image retinal slip velocities caused by head roll-tilt during centric or eccentric head movement. PMID:21735244

  12. Head First jQuery

    CERN Document Server

    Benedetti, Ryan

    2011-01-01

    Want to add more interactivity and polish to your websites? Discover how jQuery can help you build complex scripting functionality in just a few lines of code. With Head First jQuery, you'll quickly get up to speed on this amazing JavaScript library by learning how to navigate HTML documents while handling events, effects, callbacks, and animations. By the time you've completed the book, you'll be incorporating Ajax apps, working seamlessly with HTML and CSS, and handling data with PHP, MySQL and JSON. If you want to learn-and understand-how to create interactive web pages, unobtrusive scrip

  13. Myosin Heavy Chain Gene Expression in Developing Neonatal Skeletal Muscle: Involvement of the Nerve, Gravity, and Thyroid State

    Science.gov (United States)

    Baldwin, K. M.; Adams, G.; Haddad, F.; Zeng, M.; Qin, A.; Qin, L.; McCue, S.; Bodell, P.

    1999-01-01

    The myosin heavy chain (MHC) gene family encodes at least six MHC proteins (herein designated as neonatal, embryonic, slow type I (beta), and fast IIa, IIx, and IIb) that are expressed in skeletal muscle in a muscle-specific and developmentally-regulated fashion. At birth, both antigravity (e.g. soleus) and locomotor (e.g., plantaris) skeletal muscles are undifferentiated relative to the adult MHC phenotype such that the neonatal and embryonic MHC isoforms account for 80 - 90% of the MHC pool in a fast locomotor muscle; whereas, the embryonic and slow, type I isoforms account for approx. 90% of the pool in a typical antigravity muscle. The goal of this study was to investigate the role of an intact nerve, gravity and thyroid hormone (T3), as well as certain interactions of these interventions, on MHC gene expression in developing neonatal skeletal muscles of rodents.

  14. A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation.

    Science.gov (United States)

    Orr, Nathan; Arnaout, Rima; Gula, Lorne J; Spears, Danna A; Leong-Sit, Peter; Li, Qiuju; Tarhuni, Wadea; Reischauer, Sven; Chauhan, Vijay S; Borkovich, Matthew; Uppal, Shaheen; Adler, Arnon; Coughlin, Shaun R; Stainier, Didier Y R; Gollob, Michael H

    2016-04-12

    Atrial fibrillation (AF), the most common arrhythmia, is a growing epidemic with substantial morbidity and economic burden. Mechanisms underlying vulnerability to AF remain poorly understood, which contributes to the current lack of highly effective therapies. Recognizing mechanistic subtypes of AF may guide an individualized approach to patient management. Here, we describe a family with a previously unreported syndrome characterized by early-onset AF (age <35 years), conduction disease and signs of a primary atrial myopathy. Phenotypic penetrance was complete in all mutation carriers, although complete disease expressivity appears to be age-dependent. We show that this syndrome is caused by a novel, heterozygous p.Glu11Lys mutation in the atrial-specific myosin light chain gene MYL4. In zebrafish, mutant MYL4 leads to disruption of sarcomeric structure, atrial enlargement and electrical abnormalities associated with human AF. These findings describe the cause of a rare subtype of AF due to a primary, atrial-specific sarcomeric defect.

  15. Myosin heavy-chain isoform distribution, fibre-type composition and fibre size in skeletal muscle of patients on haemodialysis

    DEFF Research Database (Denmark)

    Molsted, Stig; Eidemak, Inge; Sorensen, Helle Tauby;

    2007-01-01

    Objective. Chronic uraemia is associated with abnormalities in skeletal muscles, which can affect their working capacity. It is also well known that the fibre-type composition of skeletal muscles influences endurance, muscle strength and power. In this study we therefore determined the size...... and distribution of muscle fibres and the myosin heavy-chain (MHC) isoform composition in patiens on haemodialysis (HD) in order to establish any differences with values for untrained control subjects. Material and methods. Muscle biopsies were obtained from the vastus lateralis muscle of 14 non-diabetic patients...... determined fibre-type composition of the vastus lateralis muscle. The mean fibre area of type 1 and 2 fibres was 3283±873 and 3594±1483 µm2, respectively. The MHC composition and the size of the type 1 fibres of the patients on HD were significantly different from those of the control subjects. Conclusions...

  16. Head movement during walking in the cat.

    Science.gov (United States)

    Zubair, Humza N; Beloozerova, Irina N; Sun, Hai; Marlinski, Vladimir

    2016-09-22

    Knowledge of how the head moves during locomotion is essential for understanding how locomotion is controlled by sensory systems of the head. We have analyzed head movements of the cat walking along a straight flat pathway in the darkness and light. We found that cats' head left-right translations, and roll and yaw rotations oscillated once per stride, while fore-aft and vertical translations, and pitch rotations oscillated twice. The head reached its highest vertical positions during second half of each forelimb swing, following maxima of the shoulder/trunk by 20-90°. Nose-up rotation followed head upward translation by another 40-90° delay. The peak-to-peak amplitude of vertical translation was ∼1.5cm and amplitude of pitch rotation was ∼3°. Amplitudes of lateral translation and roll rotation were ∼1cm and 1.5-3°, respectively. Overall, cats' heads were neutral in roll and 10-30° nose-down, maintaining horizontal semicircular canals and utriculi within 10° of the earth horizontal. The head longitudinal velocity was 0.5-1m/s, maximal upward and downward linear velocities were ∼0.05 and ∼0.1m/s, respectively, and maximal lateral velocity was ∼0.05m/s. Maximal velocities of head pitch rotation were 20-50°/s. During walking in light, cats stood 0.3-0.5cm taller and held their head 0.5-2cm higher than in darkness. Forward acceleration was 25-100% higher and peak-to-peak amplitude of head pitch oscillations was ∼20°/s larger. We concluded that, during walking, the head of the cat is held actively. Reflexes appear to play only a partial role in determining head movement, and vision might further diminish their role.

  17. Re-evaluating the roles of myosin 18Aα and F-actin in determining Golgi morphology.

    Science.gov (United States)

    Bruun, Kyle; Beach, Jordan R; Heissler, Sarah M; Remmert, Kirsten; Sellers, James R; Hammer, John A

    2017-03-22

    The peri-centrosomal localization and morphology of the Golgi apparatus depends largely on the microtubule cytoskeleton and the microtubule motor protein dynein. Recent studies proposed that myosin 18Aα (M18Aα) also contributes to Golgi morphology by binding the Golgi protein GOLPH3 and walking along adjacent actin filaments to stretch the Golgi into its classic ribbon structure. Biochemical analyses have shown, however, that M18A is not an actin-activated ATPase and lacks motor activity. Our goal, therefore, was to define the precise molecular mechanism by which M18Aα determines Golgi morphology. We show that purified M18Aα remains inactive in the presence of GOLPH3, arguing against the Golgi-specific activation of the myosin. Using M18A-specific antibodies and expression of GFP-tagged M18Aα, we find no evidence that it localizes to the Golgi. Moreover, several cell lines with reduced or eliminated M18Aα expression exhibited normal Golgi morphology. Interestingly, actin filament disassembly resulted in a marked reduction in lateral stretching of the Golgi in both control and M18Aα-deficient cells. Importantly, this reduction was accompanied by an expansion of the Golgi in the vertical direction, vertical movement of the centrosome, and increases in the height of both the nucleus and the cell. Collectively, our data indicate that M18Aα does not localize to the Golgi or play a significant role in determining its morphology, and suggest that global F-actin disassembly alters Golgi morphology indirectly by altering cell shape. This article is protected by copyright. All rights reserved.

  18. A pre-Hispanic head.

    Directory of Open Access Journals (Sweden)

    Raffaella Bianucci

    Full Text Available This report on a male head revealed biologic rhythms, as gleaned from hydrogen isotope ratios in hair, consistent with a South-American origin and Atomic Mass Spectrometry radiocarbon dating (AMS compatible with the last pre-Hispanic period (1418-1491 AD, 95.4% probability. Biopsies showed exceptionally well-preserved tissues. The hair contained high levels of toxic elements (lead, arsenic and mercury incompatible with life. There was no evidence for lead deposition in bone consistent with post-mortem accumulation of this toxic element in the hair. We propose that the high content of metals in hair was the result of metabolic activity of bacteria leading to metal complexation in extra cellular polymeric substances (EPS. This is a recognized protective mechanism for bacteria that thrive in toxic environments. This mechanism may account for the tissues preservation and gives a hint at soil composition where the head was presumably buried. Our results have implications for forensic toxicology which has, hitherto, relied on hair analyses as one means to reconstruct pre-mortem metabolism and for detecting toxic elements accumulated during life. Our finding also has implications for other archaeological specimens where similar circumstances may distort the results of toxicological studies.

  19. Head and neck position sense.

    Science.gov (United States)

    Armstrong, Bridget; McNair, Peter; Taylor, Denise

    2008-01-01

    Traumatic minor cervical strains are common place in high-impact sports (e.g. tackling) and premature degenerative changes have been documented in sports people exposed to recurrent impact trauma (e.g. scrummaging in rugby) or repetitive forces (e.g. Formula 1 racing drivers, jockeys). While proprioceptive exercises have been an integral part of rehabilitation of injuries in the lower limb, they have not featured as prominently in the treatment of cervical injuries. However, head and neck position sense (HNPS) testing and re-training may have relevance in the management of minor sports-related neck injuries, and play a role in reducing the incidence of ongoing pain and problems with function. For efficacious programmes to be developed and tested, fundamental principles associated with proprioception in the cervical spine should be considered. Hence, this article highlights the importance of anatomical structures in the cervical spine responsible for position sense, and how their interaction with the CNS affects our ability to plan and execute effective purposeful movements. This article includes a review of studies examining position sense in subjects with and without pathology and describes the effects of rehabilitation programmes that have sought to improve position sense. In respect to the receptors providing proprioceptive information for the CNS, the high densities and complex arrays of spindles found in cervical muscles suggest that these receptors play a key role. There is some evidence suggesting that ensemble encoding of discharge patterns from muscle spindles is relayed to the CNS and that a pattern recognition system is used to establish joint position and movement. Sensory information from neck proprioceptive receptors is processed in tandem with information from the vestibular system. There are extensive anatomical connections between neck proprioceptive inputs and vestibular inputs. If positional information from the vestibular system is inaccurate or

  20. The catch state of mollusc catch muscle is established during activation: experiments on skinned fibre preparations of the anterior byssus retractor muscle of Mytilus edulis L. using the myosin inhibitors orthovanadate and blebbistatin.

    Science.gov (United States)

    Andruchov, Oleg; Andruchova, Olena; Galler, Stefan

    2006-11-01

    Catch is a holding state of muscle where tension is maintained passively for long time periods in the absence of stimulation. The catch state becomes obvious after termination of activation; however, it is possible that catch linkages are already established during activation. To investigate this, skinned fibre bundles of the anterior byssus retractor muscle of Mytilus edulis were maximally activated with Ca(2+) and subsequently exposed to 10 mmol l(-1) orthovanadate (V(i)) or 5 mumol l(-1) blebbistatin to inhibit the force-generating myosin head cross-bridges. Repetitive stretches of about 0.1% fibre bundle length were applied to measure stiffness. Inhibitor application depressed force substantially but never resulted in a full relaxation. The remaining force was further decreased by moderate alkalization (change of pH from 6.7 to 7.4) or by cAMP. Furthermore, the stiffness/force ratio was higher during exposure to V(i) or blebbistatin than during partial Ca(2+) activation producing the same submaximal force. The increased stiffness/force ratio was abolished by moderate alkalization or cAMP. Finally, the stretch-induced delayed force increase (stretch activation) disappeared, and the force recovery following a quick release of the fibre length, was substantially reduced when the force was depressed by V(i) or blebbistatin. All these findings suggest that catch linkages are already established during maximal Ca(2+) activation. They seem to exhibit ratchet properties because they allow shortening and resist stretches. In isometric experiments a force decrease is needed to stress the catch linkages in the high resistance direction so that they contribute to force.

  1. Eye-head coordination in cats.

    Science.gov (United States)

    Guitton, D; Douglas, R M; Volle, M

    1984-12-01

    Gaze is the position of the visual axis in space and is the sum of the eye movement relative to the head plus head movement relative to space. In monkeys, a gaze shift is programmed with a single saccade that will, by itself, take the eye to a target, irrespective of whether the head moves. If the head turns simultaneously, the saccade is correctly reduced in size (to prevent gaze overshoot) by the vestibuloocular reflex (VOR). Cats have an oculomotor range (OMR) of only about +/- 25 degrees, but their field of view extends to about +/- 70 degrees. The use of the monkey's motor strategy to acquire targets lying beyond +/- 25 degrees requires the programming of saccades that cannot be physically made. We have studied, in cats, rapid horizontal gaze shifts to visual targets within and beyond the OMR. Heads were either totally unrestrained or attached to an apparatus that permitted short unexpected perturbations of the head trajectory. Qualitatively, similar rapid gaze shifts of all sizes up to at least 70 degrees could be accomplished with the classic single-eye saccade and a saccade-like head movement. For gaze shifts greater than 30 degrees, this classic pattern frequently was not observed, and gaze shifts were accomplished with a series of rapid eye movements whose time separation decreased, frequently until they blended into each other, as head velocity increased. Between discrete rapid eye movements, gaze continued in constant velocity ramps, controlled by signals added to the VOR-induced compensatory phase that followed a saccade. When the head was braked just prior to its onset in a 10 degrees gaze shift, the eye attained the target. This motor strategy is the same as that reported for monkeys. However, for larger target eccentricities (e.g., 50 degrees), the gaze shift was interrupted by the brake and the average saccade amplitude was 12-15 degrees, well short of the target and the OMR. Gaze shifts were completed by vestibularly driven eye movements when the

  2. Research on genetics of rice heading date

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Heading date is one of the most important traits for rice adaptation to cultivation area and crop seasons, and it is mainly determined by photoperiod, basic vegetative growth, and temperature of cultivars. The diversity of combinations of photo-sensitive varieties and the basic vegetative, makes the heading date varied. On one hand, this supplies abundant resources for different ecotypes breeding; on the other hand, it complicates the inheritance of heading date. In recent years, transgression of late maturity has often been encountered, especially between indica and japonica subspecies, this had inhabited the use of hybrid vigor. Therefore, understanding the inheritance basis of heading date is very important for breeding practices.

  3. Moving your head reduces perisaccadic compression.

    Science.gov (United States)

    Matziridi, Maria; Brenner, Eli; Smeets, Jeroen B J

    2016-10-01

    Flashes presented around the time of a saccade appear to be closer to the saccade endpoint than they really are. The resulting compression of perceived positions has been found to increase with the amplitude of the saccade. In most studies on perisaccadic compression the head is static, so the eye-in-head movement is equal to the change in gaze. What if moving the head causes part of the change in gaze? Does decreasing the eye-in-head rotation by moving the head decrease the compression of perceived positions? To find out, we asked participants to shift their gaze between two positions, either without moving their head or with the head contributing to the change in gaze. Around the time of the saccades we flashed bars that participants had to localize. When the head contributed to the change in gaze, the duration of the saccade was shorter and compression was reduced. We interpret this reduction in compression as being caused by a reduction in uncertainty about gaze position at the time of the flash. We conclude that moving one's head can reduce the systematic mislocalization of flashes presented around the time of saccades.

  4. Radial head button holing: a cause of irreducible anterior radial head dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)

    2016-10-15

    ''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)

  5. Image data rate converter having a drum with a fixed head and a rotatable head

    Science.gov (United States)

    Billingsley, F. C. (Inventor)

    1973-01-01

    A data-rate converter is disclosed comprising a rotatable data-storing drum with at least one fixed read/record head and a rotatable read/record head. The latter is rotatable in a circular path about the drum axis of rotation. The drum is positionable in any one of a plurality of axial positions with respect to the heads, so that at least one drum track is aligned with the fixed head in one drum position and with the rotatable head in another drum position. When a track is aligned with the fixed head, data may be recorded therin or read out therefrom at a rate which is a function of drum rotation, while when aligned with the rotatable head, data may be recorded or read out at a rate which is a function of the rates and directions of rotation of both the drum and the head.

  6. Office of Head Start (OHS) Head Start Center Locations Search Tool

    Data.gov (United States)

    U.S. Department of Health & Human Services — Office of Head Start (OHS) web based search tool for finding Head Start program office contact information. Searchable by location, grant number or center type....

  7. Natural head position: An overview.

    Science.gov (United States)

    Meiyappan, N; Tamizharasi, S; Senthilkumar, K P; Janardhanan, K

    2015-08-01

    Cephalometrics has given us a different perspective of interpreting various skeletal problems in the dentofacial complex. Natural head position (NHP) is a reproducible, physiologically determined aspect of function. To determine NHP, a horizontal or vertical reference line outside the crania was used, but preference was given generally to the horizontal. Various intra and extracranial cephalometric horizontal reference planes have been used to formulate diagnosis and plan individualized treatment for an integrated correction of the malocclusion cephalometrics is constantly undergoing refinements in its techniques and analyses to improve the clinical applications. Even though various methods for establishing NHP have been proposed, still it remains a challenge to the clinicians to implement the concept of NHP thoroughly in all the stages of treatment because of practical difficulties in the clinical scenario.

  8. Head First WordPress

    CERN Document Server

    Siarto, Jeff

    2010-01-01

    Whether you're promoting your business or writing about your travel adventures, Head First WordPress will teach you not only how to make your blog look unique and attention-grabbing, but also how to dig into the more complex features of WordPress 3.0 to make your website work well, too. You'll learn how to move beyond the standard WordPress look and feel by customizing your blog with your own URL, templates, plugin functionality, and more. As you learn, you'll be working with real WordPress files: The book's website provides pre-fab WordPress themes to download and work with as you follow al

  9. Turning CSR on it's head

    DEFF Research Database (Denmark)

    Kampf, Constance Elizabeth

    CSR takes a stakeholder approach that considers a broader definition of people who can affect and are affected by firms (Freeman 1984, Donaldson & Preston 1995). Currently, CSR is conceptualized from the perspective of firms choosing their practices based on communication with these stakeholders...... on its head, Carrotmob.org turns a firm-focused understanding of the CSR conversation upside down by providing a platform for consumers to bring their ideas about CSR to local firms, engaging the firms in a competition to pledge a percentage of their profits during an afternoon towards reducing...... their ecological footprint. Then CarrotMob members use social media to recruit as many customers as possible to shop at that time, thus increasing both profits and available resources for the business to engage in sustainability. As sustainability and CSR are enacted differently in the US and EU (Matten and Moon...

  10. Reactor vessel lower head integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, A.M.

    1997-02-01

    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) in this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.

  11. Eye-head coordination abnormalities in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Simon Schwab

    Full Text Available BACKGROUND: Eye-movement abnormalities in schizophrenia are a well-established phenomenon that has been observed in many studies. In such studies, visual targets are usually presented in the center of the visual field, and the subject's head remains fixed. However, in every-day life, targets may also appear in the periphery. This study is among the first to investigate eye and head movements in schizophrenia by presenting targets in the periphery of the visual field. METHODOLOGY/PRINCIPAL FINDINGS: Two different visual recognition tasks, color recognition and Landolt orientation tasks, were presented at the periphery (at a visual angle of 55° from the center of the field of view. Each subject viewed 96 trials, and all eye and head movements were simultaneously recorded using video-based oculography and magnetic motion tracking of the head. Data from 14 patients with schizophrenia and 14 controls were considered. The patients had similar saccadic latencies in both tasks, whereas controls had shorter saccadic latencies in the Landolt task. Patients performed more head movements, and had increased eye-head offsets during combined eye-head shifts than controls. CONCLUSIONS/SIGNIFICANCE: Patients with schizophrenia may not be able to adapt to the two different tasks to the same extent as controls, as seen by the former's task-specific saccadic latency pattern. This can be interpreted as a specific oculomotoric attentional dysfunction and may support the hypothesis that schizophrenia patients have difficulties determining the relevance of stimuli. Patients may also show an uneconomic over-performance of head-movements, which is possibly caused by alterations in frontal executive function that impair the inhibition of head shifts. In addition, a model was created explaining 93% of the variance of the response times as a function of eye and head amplitude, which was only observed in the controls, indicating abnormal eye-head coordination in patients

  12. National Head Start Association Position Paper: A Vision for Head Start and State Collaboration.

    Science.gov (United States)

    Ryan, Joel; Allen, Ben

    Based on the view that coordinated efforts among Head Start programs, child care programs and other prekindergarten programs, and states can be enhanced without devolving Head Start and its high quality standards to the states, this position paper draws on a Bush Administration report and the Head Start Program Performance Standards to demonstrate…

  13. The nondigestible disaccharide epilactose increases paracellular Ca absorption via rho-associated kinase- and myosin light chain kinase-dependent mechanisms in rat small intestines.

    Science.gov (United States)

    Suzuki, Takuya; Nishimukai, Megumi; Takechi, Maki; Taguchi, Hidenori; Hamada, Shigeki; Yokota, Atsushi; Ito, Susumu; Hara, Hiroshi; Matsui, Hirokazu

    2010-02-10

    We previously showed that epilactose, a nondigestible disaccharide, increased calcium (Ca) absorption in the small intestines of rats. Here, we explored the mechanism(s) underlying the epilactose-mediated promotion of Ca absorption in a ligated intestinal segment of anesthetized rats. The addition of epilactose to the luminal solution increased Ca absorption and chromium (Cr)-EDTA permeability, a paracellular indicator, with a strong correlation (R = 0.93) between these changes. Epilactose induced the phosphorylation of myosin regulatory light chains (MLCs), which is known to activate the paracellular route, without any change in the association of tight junction proteins with the actin cytoskeleton. The epilactose-mediated promotion of the Ca absorption was suppressed by specific inhibitors of myosin light chain kinase (MLCK) and Rho-associated kinase (ROCK). These results indicate that epilactose increases paracellular Ca absorption in the small intestine of rats through the induction of MLC phosphorylation via MLCK- and ROCK-dependent mechanisms.

  14. Humeral head size in shoulder arthroplasty

    DEFF Research Database (Denmark)

    Vaesel, M T; Olsen, Bo Sanderhoff; Søjbjerg, Jens Ole

    1998-01-01

    Changes in kinematics after hemiarthroplasty of the glenohumeral joint were investigated in nine cadaveric specimens. During experiments the influence of the humeral head size on glenohumeral kinematics was evaluated. A modular prosthesis with five different head sizes and press-fit stems was use...

  15. Evaluation of head and neck postures

    NARCIS (Netherlands)

    Delleman, N.J.

    2000-01-01

    This paper describes the literature and two experiments on the evaluation of head and neck postures. It is concluded that health and safety professiona1s and ergonomists during posture evaluation should consider neck flexion/extension (head vs. trunk), besides the traditionally used inclination of t

  16. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... minutes] Heads Up! [Podcast: 0:59 seconds]; in Spanish [Podcast: 1:27 minutes] Send a Health eCard ... minutes] Heads Up! [Podcast: 0:59 seconds]; in Spanish [Podcast: 1:27 minutes] Send a Health eCard ...

  17. The Role of the Primary School Head.

    Science.gov (United States)

    Davies, Lester

    1987-01-01

    This study uses Henry Mintzberg's structural observation method to examine British primary school head teachers' work patterns and determine the nature of their role. Head teachers' days were characterized by brevity, variety, and fragmentation similar to those discussed in findings of other empirical managerial studies. Leadership roles stressed…

  18. Outcome after complicated minor head injury.

    NARCIS (Netherlands)

    Smits, M.; Hunink, M.G.; Rijssel, DA van; Dekker, H.M.; Vos, P.E.; Kool, D.R.; Nederkoorn, P.J.; Hofman, P.A.; Twijnstra, A.; Tanghe, H.L.; Dippel, D.W.

    2008-01-01

    BACKGROUND AND PURPOSE: Functional outcome in patients with minor head injury with neurocranial traumatic findings on CT is largely unknown. We hypothesized that certain CT findings may be predictive of poor functional outcome. Materials and METHODS: All patients from the CT in Head Injury Patients

  19. Achieving Consensus Through Professionalized Head Nods

    DEFF Research Database (Denmark)

    Oshima, Sae

    2014-01-01

    While the interactional functions of head nodding in everyday Japanese conversation have been frequently studied, a discourse on head nodding as a professional communicative practice has yet to be explored. With the method of multimodal conversation analysis, the current study examines the role o...

  20. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen

    2013-02-01

    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  1. Bobbling head in a young subject

    Directory of Open Access Journals (Sweden)

    Kalyan B Bhattacharyya

    2014-01-01

    Full Text Available Bobble-head Doll Syndrome is a rare and unique movement disorder found in children. Clinically, it is characterized by a to and fro or side to side movement of the head at the frequency of 2 to 3 Hz. It is mostly associated with cystic lesions around the third ventricle, choroid plexus papilloma, aqueductal stenosis and other rare disorders. An eleven year old child presented in the outpatient department with continuous to and fro movement of the head and declining vision for the last one month. MRI Scan showed a large contrast-enhanced lesion in the region of the third ventricle along with gross hydrocephalus. Ventriculo-peritoneal shunt was inserted and the movements of the head disappeared completely. Bobble-head doll syndrome is a rare condition and therefore this case is presented and the literature reviewed.

  2. Head orientation prediction: delta quaternions versus quaternions.

    Science.gov (United States)

    Himberg, Henry; Motai, Yuichi

    2009-12-01

    Display lag in simulation environments with helmet-mounted displays causes a loss of immersion that degrades the value of virtual/augmented reality training simulators. Simulators use predictive tracking to compensate for display lag, preparing display updates based on the anticipated head motion. This paper proposes a new method for predicting head orientation using a delta quaternion (DQ)-based extended Kalman filter (EKF) and compares the performance to a quaternion EKF. The proposed framework operates on the change in quaternion between consecutive data frames (the DQ), which avoids the heavy computational burden of the quaternion motion equation. Head velocity is estimated from the DQ by an EKF and then used to predict future head orientation. We have tested the new framework with captured head motion data and compared it with the computationally expensive quaternion filter. Experimental results indicate that the proposed DQ method provides the accuracy of the quaternion method without the heavy computational burden.

  3. Public knowledge of head and neck cancer.

    LENUS (Irish Health Repository)

    O'Connor, T E

    2010-04-01

    Studies show 60% of patients with newly diagnosed Head & Neck Squamous Cell Cancer in Ireland, present with advanced disease. A poor level of knowledge and awareness among the public of Head & Neck Cancer, is an important consideration in the often delayed presentation for medical attention in many of these cases. Our study surveyed 200 members of the public to assess their knowledge and awareness of Head & Neck Cancer. One hundred and forty (70%) of respondents had never encountered the term "Head & Neck Cancer". One hundred and forty six (73%) failed to identify excessive alcohol consumption as a risk factor. Less than 100 (50%) would have concern about persisting hoarseness or a prolonged oral ulcer. An urgent need exists to raise awareness of Head & Neck Cancer among the public in Ireland.

  4. Head positioning for anterior circulation aneurysms microsurgery

    Directory of Open Access Journals (Sweden)

    Feres Chaddad-Neto

    2014-11-01

    Full Text Available Objective To study the ideal patient's head positioning for the anterior circulation aneurysms microsurgery. Method We divided the study in two parts. Firstly, 10 fresh cadaveric heads were positioned and dissected in order to ideally expose the anterior circulation aneurysm sites. Afterwards, 110 patients were submitted to anterior circulation aneurysms microsurgery. During the surgery, the patient's head was positioned accordingly to the aneurysm location and the results from the cadaveric study. The effectiveness of the position was noted. Results We could determine mainly two patterns for head positioning for the anterior circulation aneurysms. Conclusion The best surgical exposure is related to specific head positions. The proper angle of microscopic view may minimize neurovascular injury and brain retraction.

  5. Tracking of human head with particle filter

    Institute of Scientific and Technical Information of China (English)

    GUO Chao

    2009-01-01

    To cope with the problem of tracking a human head in a complicated scene, we propose a method that adopts human skin color and hair color integrated with a kind of particle filter named condensation algorithm. Firstly, a novel method is presented to set up human head color model using skin color and hair color separately based on region growing. Compared with traditional human face model, this method is more precise and works well when human turns around and the face disappears in the image. Then a novel method is presented to use color model in condensation algorithm more effectively. In this method, a combination of edge detection result, color segmentation result and color edge detection result in an Omega window is used to measure the scale and position of human head in condensation. Experiments show that this approach can track human head in complicated scene even when human turns around or the distance of tracking a human head changes quickly.

  6. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    Full Text Available Mechanical stress that arises due to deformation of the extracellular matrix (ECM either stretches or compresses cells. The cellular response to stretching has been actively studied. For example, stretching induces phosphorylation of the myosin regulatory light chain (MRLC via the RhoA/RhoA-associated protein kinase (ROCK pathway, resulting in increased cellular tension. In contrast, the effects of compressive stress on cellular functions are not fully resolved. The mechanisms for sensing and differentially responding to stretching and compressive stress are not known. To address these questions, we investigated whether phosphorylation levels of MRLC were affected by compressive stress. Contrary to the response in stretching cells, MRLC was dephosphorylated 5 min after cells were subjected to compressive stress. Compressive loading induced activation of myosin phosphatase mediated via the dephosphorylation of myosin phosphatase targeting subunit 1 (Thr853. Because myosin phosphatase targeting subunit 1 (Thr853 is phosphorylated only by ROCK, compressive loading may have induced inactivation of ROCK. However, GTP-bound RhoA (active form increased in response to compressive stress. The compression-induced activation of RhoA and inactivation of its effector ROCK are contradictory. This inconsistency was due to phosphorylation of RhoA (Ser188 that reduced affinity of RhoA to ROCK. Treatment with the inhibitor of protein kinase A that phosphorylates RhoA (Ser188 induced suppression of compression-stimulated MRLC dephosphorylation. Incidentally, stretching induced phosphorylation of MRLC, but did not affect phosphorylation levels of RhoA (Ser188. Together, our results suggest that RhoA phosphorylation is an important process for MRLC dephosphorylation by compressive loading, and for distinguishing between stretching and compressing cells.

  7. Supplementation with 0.1% and 2% vitamin e in diabetic rats: analysis of myenteric neurons immunostained for myosin-V and nNOS in the jejunum

    Directory of Open Access Journals (Sweden)

    Eleandro Aparecido Tronchini

    2012-12-01

    Full Text Available CONTEXT: Diabetes mellitus is a disease characterized by hyperglycemia that, when allowed to progress long-term untreated, develops vascular and neurological complications, which are responsible for the development of alterations in the enteric nervous system in diabetic patients. In the gastrointestinal tract, diabetes mellitus promotes motor and sensory changes, and in the reflex function of this system, causing gastroparesis, diarrhea, constipation, megacolon, slow gastrointestinal transit, gastric stasis and dilation with decreased or increased peristaltic contractions. Several studies have shown that oxidative stress is the main responsible for the vascular and neurological complications affecting the enteric nervous system of diabetics. OBJECTIVE: The effects of 0.1% and 2% vitamin E on myosin-V- and nNOS-immunoreactive neurons in the jejunum of diabetic rats were investigated. METHODS: Thirty rats were divided into the groups: normoglycemic, normoglycemic treated with 0.1% vitamin E, normoglycemic treated with 2% vitamin E, diabetic, diabetic treated with 0.1% vitamin E, and diabetic treated with 2% vitamin E. The neuronal density and areas of neuron cell bodies were determined. RESULTS: Diabetes (diabetic group significantly reduced the number of myosin-V-immunoreactive neurons compared with the normoglycemic group. The diabetic treated with 0.1% vitamin E and diabetic treated with 2% vitamin E groups did not exhibit a greater density than the D group (P>0.05. Nitrergic density did not change with diabetes (P>0.05. The areas of myosin-V- and nNOS-immunoreactive neurons significantly increased in the normoglycemic treated with 2% vitamin E and diabetic groups compared with the normoglycemic group. CONCLUSION: Supplementation with 2% vitamin E had a neurotrophic effect only in the area of myosin-V-immunoreactive neurons compared with the diabetic group.

  8. C0 and C1 N-terminal Ig domains of myosin binding protein C exert different effects on thin filament activation.

    Science.gov (United States)

    Harris, Samantha P; Belknap, Betty; Van Sciver, Robert E; White, Howard D; Galkin, Vitold E

    2016-02-01

    Mutations in genes encoding myosin, the molecular motor that powers cardiac muscle contraction, and its accessory protein, cardiac myosin binding protein C (cMyBP-C), are the two most common causes of hypertrophic cardiomyopathy (HCM). Recent studies established that the N-terminal domains (NTDs) of cMyBP-C (e.g., C0, C1, M, and C2) can bind to and activate or inhibit the thin filament (TF). However, the molecular mechanism(s) by which NTDs modulate interaction of myosin with the TF remains unknown and the contribution of each individual NTD to TF activation/inhibition is unclear. Here we used an integrated structure-function approach using cryoelectron microscopy, biochemical kinetics, and force measurements to reveal how the first two Ig-like domains of cMyPB-C (C0 and C1) interact with the TF. Results demonstrate that despite being structural homologs, C0 and C1 exhibit different patterns of binding on the surface of F-actin. Importantly, C1 but not C0 binds in a position to activate the TF by shifting tropomyosin (Tm) to the "open" structural state. We further show that C1 directly interacts with Tm and traps Tm in the open position on the surface of F-actin. Both C0 and C1 compete with myosin subfragment 1 for binding to F-actin and effectively inhibit actomyosin interactions when present at high ratios of NTDs to F-actin. Finally, we show that in contracting sarcomeres, the activating effect of C1 is apparent only once low levels of Ca(2+) have been achieved. We suggest that Ca(2+) modulates the interaction of cMyBP-C with the TF in the sarcomere.

  9. Identifikation und Charakterisierung von Medium Chain Acyl-CoA Dehydrogenase und Myosin Light Chain 4 als neuartige Interaktionspartner des Östrogenrezeptor alpha

    OpenAIRE

    Schanz, Miriam A.

    2012-01-01

    Estrogens (E2) are key regulators of growth, differentiation and physiological processes in various target tissues, including the human heart. E2 exerts its effects mainly through its cognate receptors, e.g.estrogen receptor (ER) α. ERα acts in concert with other interaction partners to mediate estrogenic effects. So far, only few interaction partners of ERα are known in the human myocardium. This project identified Medium Chain Acyl-CoA Dehydrogenase (MCAD) and atrial Myosin Light Chain ...

  10. Supplemental leucine and isoleucine affect expression of cationic amino acid transporters and myosin, serum concentration of amino acids, and growth performance of pigs.

    Science.gov (United States)

    Cervantes-Ramírez, M; Mendez-Trujillo, V; Araiza-Piña, B A; Barrera-Silva, M A; González-Mendoza, D; Morales-Trejo, A

    2013-01-24

    Leucine (Leu) participates in the activity of cationic amino acid (aa) transporters. Also, branched-chain aa [Leu, isoleucine (Ile), and valine (Val)] share intestinal transporters for absorption. We conducted an experiment with 16 young pigs (body weight of about 16 kg) to determine whether Leu and Ile affect expression of aa transporters b(0,+) and CAT-1 in the jejunum and expression of myosin in muscle, as well as serum concentration of essential aa, and growth performance in pigs. Dietary treatments were: wheat-based diets fortified with Lys, Thr, and Met; basal diet plus 0.50% Leu; basal diet plus 0.50% Ile, and basal diet plus 0.50% Leu and 0.50% Ile. After 28 days, the pigs were sacrificed to collect blood, jejunum, and semitendinosus and longissimus muscle samples. The effects of single and combined addition of Leu and Ile were analyzed. Leu alone or combined with Ile significantly decreased daily weight gain and reduced feed conversion. Leu and Ile, alone or in combination, significantly decreased expression of b(0,+) and significantly increased CAT-1. Ile alone or combined with Leu significantly decreased myosin expression in semitendinosus and significantly decreased it in longissimus muscle. Leu alone significantly decreased Lys, Ile and Thr serum concentrations; Ile significantly decreased Thr serum concentration; combined Leu and Ile significantly decreased Thr and significantly increased Val serum concentration. We conclude that dietary levels of Leu and Ile affect growth performance, expression of aa transporters and myosin, and aa serum concentrations in pigs.

  11. Vascular smooth muscle cell glycocalyx mediates shear stress-induced contractile responses via a Rho kinase (ROCK)-myosin light chain phosphatase (MLCP) pathway.

    Science.gov (United States)

    Kang, Hongyan; Liu, Jiajia; Sun, Anqiang; Liu, Xiao; Fan, Yubo; Deng, Xiaoyan

    2017-02-13

    The vascular smooth muscle cells (VSMCs) are exposed to interstitial flow induced shear stress that may be sensed by the surface glycocalyx, a surface layer composed primarily of proteoglycans and glycoproteins, to mediate cell contraction during the myogenic response. We, therefore, attempted to elucidate the signal pathway of the glycocalyx mechanotransduction in shear stress regulated SMC contraction. Human umbilical vein SMCs (HUVSMCs) deprived of serum for 3-4 days were exposed to a step increase (0 to 20 dyn/cm(2)) in shear stress in a parallel plate flow chamber, and reduction in the cell area was quantified as contraction. The expressions of Rho kinase (ROCK) and its downstream signal molecules, the myosin-binding subunit of myosin phosphatase (MYPT) and the myosin light chain 2 (MLC2), were evaluated. Results showed that the exposure of HUVSMCs to shear stress for 30 min induced cell contraction significantly, which was accompanied by ROCK1 up-regulation, re-distribution, as well as MYPT1 and MLC activation. However, these shear induced phenomenon could be completely abolished by heparinase III or Y-27632 pre-treatment. These results indicate shear stress induced VSMC contraction was mediated by cell surface glycocalyx via a ROCK-MLC phosphatase (MLCP) pathway, providing evidence of the glycocalyx mechanotransduction in myogenic response.

  12. An experimentally based computer search identifies unstructured membrane-binding sites in proteins: application to class I myosins, PAKS, and CARMIL.

    Science.gov (United States)

    Brzeska, Hanna; Guag, Jake; Remmert, Kirsten; Chacko, Susan; Korn, Edward D

    2010-02-19

    Programs exist for searching protein sequences for potential membrane-penetrating segments (hydrophobic regions) and for lipid-binding sites with highly defined tertiary structures, such as PH, FERM, C2, ENTH, and other domains. However, a rapidly growing number of membrane-associated proteins (including cytoskeletal proteins, kinases, GTP-binding proteins, and their effectors) bind lipids through less structured regions. Here, we describe the development and testing of a simple computer search program that identifies unstructured potential membrane-binding sites. Initially, we found that both basic and hydrophobic amino acids, irrespective of sequence, contribute to the binding to acidic phospholipid vesicles of synthetic peptides that correspond to the putative membrane-binding domains of Acanthamoeba class I myosins. Based on these results, we modified a hydrophobicity scale giving Arg- and Lys-positive, rather than negative, values. Using this basic and hydrophobic scale with a standard search algorithm, we successfully identified previously determined unstructured membrane-binding sites in all 16 proteins tested. Importantly, basic and hydrophobic searches identified previously unknown potential membrane-binding sites in class I myosins, PAKs and CARMIL (capping protein, Arp2/3, myosin I linker; a membrane-associated cytoskeletal scaffold protein), and synthetic peptides and protein domains containing these newly identified sites bound to acidic phospholipids in vitro.

  13. The myosin-binding UCS domain but not the Hsp90-binding TPR domain of the UNC-45 chaperone is essential for function in Caenorhabditis elegans.

    Science.gov (United States)

    Ni, Weiming; Hutagalung, Alex H; Li, Shumin; Epstein, Henry F

    2011-09-15

    The UNC-45 family of molecular chaperones is expressed in metazoan organisms from Caenorhabditis elegans to humans. The UNC-45 protein is essential in C. elegans for early body-wall muscle cell development and A-band assembly. We show that the myosin-binding UCS domain of UNC-45 alone is sufficient to rescue lethal unc-45 null mutants arrested in embryonic muscle development and temperature-sensitive loss-of-function unc-45 mutants defective in worm A-band assembly. Removal of the Hsp90-binding TPR domain of UNC-45 does not affect rescue. Similar results were obtained with overexpression of the same fragments in wild-type nematodes when assayed for diminution of myosin accumulation and assembly. Titration experiments show that, on a per molecule basis, UCS has greater activity in C. elegans muscle in vivo than full-length UNC-45 protein, suggesting that UNC-45 is inhibited by either the TPR domain or its interaction with the general chaperone Hsp90. In vitro experiments with purified recombinant C. elegans Hsp90 and UNC-45 proteins show that they compete for binding to C. elegans myosin. Our in vivo genetic and in vitro biochemical experiments are consistent with a novel inhibitory role for Hsp90 with respect to UNC-45 action.

  14. Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Based on our recent finding that cardiac myosin binding protein C (cMyBP-C phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302, DAD (Asp273-Ala282-Asp302, SAS (Ser273-Ala282-Ser302, and t/t (cMyBP-C null genotypes, and the results were compared to transgenic mice expressing wide-type (WT cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi, and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc, and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.

  15. Degradation of cardiac myosin light chain kinase by matrix metalloproteinase-2 contributes to myocardial contractile dysfunction during ischemia/reperfusion.

    Science.gov (United States)

    Gao, Ling; Zheng, Yan-Jun; Gu, Shan-Shan; Tan, Ji-Liang; Paul, Christian; Wang, Yi-Gang; Yang, Huang-Tian

    2014-12-01

    Although ischemia/reperfusion (I/R)-induced myocardial contractile dysfunction is associated with a prominent decrease in myofilament Ca(2+) sensitivity, the underlying mechanisms have not yet been fully clarified. Phosphorylation of ventricular myosin light chain 2 (MLC-2v) facilitates actin-myosin interactions and enhances contractility, however, its level and regulation by cardiac MLC kinase (cMLCK) and cMLC phosphatase (cMLCP) in I/R hearts are debatable. In this study, the levels and/or effects of MLC-2v phosphorylation, cMLCK, cMLCP, and proteases during I/R were determined. Global myocardial I/R-suppressed cardiac performance in isolated rat hearts was concomitant with decreases of MLC-2v phosphorylation, myofibrillar Ca(2+)-stimulated ATPase activity, and cMLCK content, but not cMLCP proteins. Consistently, simulated I/R in isolated cardiomyocytes inhibited cell shortening, Ca(2+) transients, MLC-2v phosphorylation, and myofilament sensitivity to Ca(2+). These observations were reversed by cMLCK overexpression, while the specific cMLCK knockdown by short hairpin RNA (shRNA) had the opposite effect. Moreover, the inhibition of matrix metalloproteinase-2 (MMP-2, a zinc-dependent endopeptidase) reversed IR-decreased cMLCK, MLC-2v phosphorylation, myofibrillar Ca(2+)-stimulated ATPase activity, myocardial contractile function, and myofilament sensitivity to Ca(2+), while the inhibition or knockdown of cMLCK by ML-9 or specific shRNA abolished MMP-2 inhibition-induced cardioprotection. Finally, the co-localization in cardiomyocytes and interaction in vivo of MMP-2 and cMLCK were observed. Purified recombinant rat cMLCK was concentration- and time-dependently degraded by rat MMP-2 in vitro, and this was prevented by the inhibition of MMP-2. These findings reveal that the I/R-activated MMP-2 leads to the degradation of cMLCK, resulting in a reduction of MLC-2v phosphorylation, and myofibrillar Ca(2+)-stimulated ATPase activity, which subsequently suppresses

  16. Regulation of myosin light chain kinase during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Shelly Woody

    Full Text Available Myosin II (MyoII is required for insulin-responsive glucose transporter 4 (GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Our previous studies have shown that insulin signaling stimulates phosphorylation of the regulatory light chain (RLC of MyoIIA via myosin light chain kinase (MLCK. The experiments described here delineate upstream regulators of MLCK during insulin-stimulated glucose uptake. Since 3T3-L1 adipocytes express two MyoII isoforms, we wanted to determine which isoform was required for insulin-stimulated glucose uptake. Using a siRNA approach, we demonstrate that a 60% decrease in MyoIIA protein expression resulted in a 40% inhibition of insulin-stimulated glucose uptake. We also show that insulin signaling stimulates the phosphorylation of MLCK. We further show that MLCK can be activated by calcium as well as signaling pathways. We demonstrate that adipocytes treated with the calcium chelating agent, 1,2-b (iso-aminophenoxy ethane-N,N,N',N'-tetra acetic acid, (BAPTA (in the presence of insulin impaired the insulin-induced phosphorylation of MLCK by 52% and the RLC of MyoIIA by 45% as well as impairing the recruitment of MyoIIA to the plasma membrane when compared to cells treated with insulin alone. We further show that the calcium ionophore, A23187 alone stimulated the phosphorylation of MLCK and the RLC associated with MyoIIA to the same extent as insulin. To identify signaling pathways that might regulate MLCK, we examined ERK and CaMKII. Inhibition of ERK2 impaired phosphorylation of MLCK and insulin-stimulated glucose uptake. In contrast, while inhibition of CaMKII did inhibit phosphorylation of the RLC associated with MyoIIA, inhibition of CAMKIIδ did not impair MLCK phosphorylation or translocation to the plasma membrane or glucose uptake. Collectively, our results are the first to delineate a role for calcium and ERK in the activation of MLCK and thus MyoIIA during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

  17. NEUROENDOCRINE DISTURBANCES FOLLOWING HEAD INJURIES

    Directory of Open Access Journals (Sweden)

    Vinayak

    2015-05-01

    Full Text Available INTRODUCTION: Traumatic brain injury (TBI is one of the main causes of death and disability in young adults, with consequences ranging from physical disabilities to long - term cognitive, behavioural, psychological and social defects. Recently, c linical evidence has demonstrated that TBI may frequently cause hypothalamic – pituitary dysfunction, probably contributing to a delayed or hampered recovery from TBI. CASE REPORT: 32 year s old female presented with a history of fall from two wheeler on back hitting the head on occipital region with no history of vomiting, loss of consciousness, ENT bleed. Her GCS was 15/15. Patient was asymptomatic and was discharged from hospital on fifth day. Seven days after discharge patient again presented with heavine ss in her both breasts associated with pain and whitish discharge from both the nipples and mild fever since last two days. CONCLUSION: TBI is a public health problem that requires more effective strategies to improve the outcome and minimize disability of the affected patients. Changes in pituitary hormone secretion may be observed during the acute phase post - TBI, representing part of the acute adaptive response to the injury. Neuroendocrine disturbances, caused by damage to the pituitary and/or hypothalam us, is a frequent complication of TBI and may occur at any time after the acute event. Pituitary dysfunction presents more frequently as an isolated, and more rarely as a complete, deficiency.

  18. Head circumference in Iranian infants

    Directory of Open Access Journals (Sweden)

    Mohammad Esmaeili

    2015-03-01

    Full Text Available Introduction: Head circumference (HC measurement is one of the important parameter for diagnosis of neurological, developmental disorders and dysmorphic syndromes. Recognition of different disorders requires an understanding of normal variation for HC size, in particular, in infancy period with most rapid growth of the brain. Because of international and interracial standard chart differences about anthropometric indices, some differences from local to local, generation to generation and changes in ethnic mix of population and socioeconomic factors, periodic revolution of HC size is sugg