WorldWideScience

Sample records for actin-bound myosin heads

  1. The Conformation of Myosin Heads in Relaxed Skeletal Muscle: Implications for Myosin-Based Regulation.

    Science.gov (United States)

    Fusi, Luca; Huang, Zhe; Irving, Malcolm

    2015-08-18

    In isolated thick filaments from many types of muscle, the two head domains of each myosin molecule are folded back against the filament backbone in a conformation called the interacting heads motif (IHM) in which actin interaction is inhibited. This conformation is present in resting skeletal muscle, but it is not known how exit from the IHM state is achieved during muscle activation. Here, we investigated this by measuring the in situ conformation of the light chain domain of the myosin heads in relaxed demembranated fibers from rabbit psoas muscle using fluorescence polarization from bifunctional rhodamine probes at four sites on the C-terminal lobe of the myosin regulatory light chain (RLC). The order parameter 〈P2〉 describing probe orientation with respect to the filament axis had a roughly sigmoidal dependence on temperature in relaxing conditions, with a half-maximal change at ∼19°C. Either lattice compression by 5% dextran T500 or addition of 25 μM blebbistatin decreased the transition temperature to ∼14°C. Maximum entropy analysis revealed three preferred orientations of the myosin RLC region at 25°C and above, two with its long axis roughly parallel to the filament axis and one roughly perpendicular. The parallel orientations are similar to those of the so-called blocked and free heads in the IHM and are stabilized by either lattice compression or blebbistatin. In relaxed skeletal muscle at near-physiological temperature and myofilament lattice spacing, the majority of the myosin heads have their light chain domains in IHM-like conformations, with a minority in a distinct conformation with their RLC regions roughly perpendicular to the filament axis. None of these three orientation populations were present during active contraction. These results are consistent with a regulatory transition of the thick filament in skeletal muscle associated with a conformational equilibrium of the myosin heads. PMID:26287630

  2. Detection of fluorescently labeled actin-bound cross-bridges in actively contracting myofibrils.

    OpenAIRE

    Cooper, W C; Chrin, L R; Berger, C L

    2000-01-01

    Myosin subfragment 1 (S1) can be specifically modified at Lys-553 with the fluorescent probe FHS (6-[fluorescein-5(and 6)-carboxamido]hexanoic acid succinimidyl ester) (Bertrand, R., J. Derancourt, and R. Kassab. 1995. Biochemistry. 34:9500-9507), and solvent quenching of FHS-S1 with iodide has been shown to be sensitive to actin binding at low ionic strength (MacLean, Chrin, and Berger, 2000. Biophys. J. 000-000). In order to extend these results and examine the fraction of actin-bound myosi...

  3. Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber

    Energy Technology Data Exchange (ETDEWEB)

    Minoda, Hiroki [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganeishi, Tokyo184-8588 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Okabe, Tatsuhiro; Inayoshi, Yuhri [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganeishi, Tokyo184-8588 (Japan); Miyakawa, Takuya; Miyauchi, Yumiko; Tanokura, Masaru [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan); Katayama, Eisaku [Graduate School of Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Wakabayashi, Takeyuki [Department of Biosciences, School of Science and Engineering, Teikyo University, Utsunomiya, Tochigiken 320-8551 (Japan); Akimoto, Tsuyoshi [Department of Physiology, School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605 (Japan); Sugi, Haruo, E-mail: sugi@kyf.biglobe.ne.jp [Department of Physiology, School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605 (Japan)

    2011-02-25

    Research highlights: {yields} We succeeded in recording structural changes of hydrated myosin cross-bridges. {yields} We succeeded in position-marking the cross-bridges with site-directed antibodies. {yields} We recorded cross-bridge movement at different regions in individual cross-bridge. {yields} The movement was smallest at the cross-bridge-subfragment two boundary. {yields} The results provide evidence for the cross-bridge lever arm mechanism. -- Abstract: Muscle contraction results from an attachment-detachment cycle between the myosin heads extending from myosin filaments and the sites on actin filaments. The myosin head first attaches to actin together with the products of ATP hydrolysis, performs a power stroke associated with release of hydrolysis products, and detaches from actin upon binding with new ATP. The detached myosin head then hydrolyses ATP, and performs a recovery stroke to restore its initial position. The strokes have been suggested to result from rotation of the lever arm domain around the converter domain, while the catalytic domain remains rigid. To ascertain the validity of the lever arm hypothesis in muscle, we recorded ATP-induced movement at different regions within individual myosin heads in hydrated myosin filaments, using the gas environmental chamber attached to the electron microscope. The myosin head were position-marked with gold particles using three different site-directed antibodies. The amplitude of ATP-induced movement at the actin binding site in the catalytic domain was similar to that at the boundary between the catalytic and converter domains, but was definitely larger than that at the regulatory light chain in the lever arm domain. These results are consistent with the myosin head lever arm mechanism in muscle contraction if some assumptions are made.

  4. The energetics of allosteric regulation of ADP release from myosin heads.

    Science.gov (United States)

    Jackson, Del R; Baker, Josh E

    2009-06-28

    Myosin molecules are involved in a wide range of transport and contractile activities in cells. A single myosin head functions through its ATPase reaction as a force generator and as a mechanosensor, and when two or more myosin heads work together in moving along an actin filament, the interplay between these mechanisms contributes to collective myosin behaviors. For example, the interplay between force-generating and force-sensing mechanisms coordinates the two heads of a myosin V molecule in its hand-over-hand processive stepping along an actin filament. In muscle, it contributes to the Fenn effect and smooth muscle latch. In both examples, a key force-sensing mechanism is the regulation of ADP release via interhead forces that are generated upon actin-myosin binding. Here we present a model describing the mechanism of allosteric regulation of ADP release from myosin heads as a change, DeltaDeltaG(-D), in the standard free energy for ADP release that results from the work, Deltamicro(mech), performed by that myosin head upon ADP release, or DeltaDeltaG(-D) = Deltamicro(mech). We show that this model is consistent with previous measurements for strain-dependent kinetics of ADP release in both myosin V and muscle myosin II. The model makes explicit the energetic cost of accelerating ADP release, showing that acceleration of ADP release during myosin V processivity requires approximately 4 kT of energy whereas the energetic cost for accelerating ADP release in a myosin II-based actin motility assay is only approximately 0.4 kT. The model also predicts that the acceleration of ADP release involves a dissipation of interhead forces. To test this prediction, we use an in vitro motility assay to show that the acceleration of ADP release from both smooth and skeletal muscle myosin II correlates with a decrease in interhead force. Our analyses provide clear energetic constraints for models of the allosteric regulation of ADP release and provide novel, testable insights

  5. Head-head interactions of resting myosin crossbridges in intact frog skeletal muscles, revealed by synchrotron x-ray fiber diffraction.

    Directory of Open Access Journals (Sweden)

    Kanji Oshima

    Full Text Available The intensities of the myosin-based layer lines in the x-ray diffraction patterns from live resting frog skeletal muscles with full thick-thin filament overlap from which partial lattice sampling effects had been removed were analyzed to elucidate the configurations of myosin crossbridges around the thick filament backbone to nanometer resolution. The repeat of myosin binding protein C (C-protein molecules on the thick filaments was determined to be 45.33 nm, slightly longer than that of myosin crossbridges. With the inclusion of structural information for C-proteins and a pre-powerstroke head shape, modeling in terms of a mixed population of regular and perturbed regions of myosin crown repeats along the filament revealed that the myosin filament had azimuthal perturbations of crossbridges in addition to axial perturbations in the perturbed region, producing pseudo-six-fold rotational symmetry in the structure projected down the filament axis. Myosin crossbridges had a different organization about the filament axis in each of the regular and perturbed regions. In the regular region that lacks C-proteins, there were inter-molecular interactions between the myosin heads in axially adjacent crown levels. In the perturbed region that contains C-proteins, in addition to inter-molecular interactions between the myosin heads in the closest adjacent crown levels, there were also intra-molecular interactions between the paired heads on the same crown level. Common features of the interactions in both regions were interactions between a portion of the 50-kDa-domain and part of the converter domain of the myosin heads, similar to those found in the phosphorylation-regulated invertebrate myosin. These interactions are primarily electrostatic and the converter domain is responsible for the head-head interactions. Thus multiple head-head interactions of myosin crossbridges also characterize the switched-off state and have an important role in the regulation

  6. A single-headed fission yeast myosin V transports actin in a tropomyosin-dependent manner.

    Science.gov (United States)

    Tang, Qing; Billington, Neil; Krementsova, Elena B; Bookwalter, Carol S; Lord, Matthew; Trybus, Kathleen M

    2016-07-18

    Myo51, a class V myosin in fission yeast, localizes to and assists in the assembly of the contractile ring, a conserved eukaryotic actomyosin structure that facilitates cytokinesis. Rng8 and Rng9 are binding partners that dictate the cellular localization and function of Myo51. Myo51 was expressed in insect cells in the presence or absence of Rng8/9. Surprisingly, electron microscopy of negatively stained images and hydrodynamic measurements showed that Myo51 is single headed, unlike most class V myosins. When Myo51-Rng8/9 was bound to actin-tropomyosin, two attachment sites were observed: the typical ATP-dependent motor domain attachment and a novel ATP-independent binding of the tail mediated by Rng8/9. A modified motility assay showed that this additional binding site anchors Myo51-Rng8/9 so that it can cross-link and slide actin-tropomyosin filaments relative to one another, functions that may explain the role of this motor in contractile ring assembly. PMID:27432898

  7. Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis.

    Science.gov (United States)

    Alamo, Lorenzo; Qi, Dan; Wriggers, Willy; Pinto, Antonio; Zhu, Jingui; Bilbao, Aivett; Gillilan, Richard E; Hu, Songnian; Padrón, Raúl

    2016-03-27

    Tarantula striated muscle is an outstanding system for understanding the molecular organization of myosin filaments. Three-dimensional reconstruction based on cryo-electron microscopy images and single-particle image processing revealed that, in a relaxed state, myosin molecules undergo intramolecular head-head interactions, explaining why head activity switches off. The filament model obtained by rigidly docking a chicken smooth muscle myosin structure to the reconstruction was improved by flexibly fitting an atomic model built by mixing structures from different species to a tilt-corrected 2-nm three-dimensional map of frozen-hydrated tarantula thick filament. We used heavy and light chain sequences from tarantula myosin to build a single-species homology model of two heavy meromyosin interacting-heads motifs (IHMs). The flexibly fitted model includes previously missing loops and shows five intramolecular and five intermolecular interactions that keep the IHM in a compact off structure, forming four helical tracks of IHMs around the backbone. The residues involved in these interactions are oppositely charged, and their sequence conservation suggests that IHM is present across animal species. The new model, PDB 3JBH, explains the structural origin of the ATP turnover rates detected in relaxed tarantula muscle by ascribing the very slow rate to docked unphosphorylated heads, the slow rate to phosphorylated docked heads, and the fast rate to phosphorylated undocked heads. The conservation of intramolecular interactions across animal species and the presence of IHM in bilaterians suggest that a super-relaxed state should be maintained, as it plays a role in saving ATP in skeletal, cardiac, and smooth muscles. PMID:26851071

  8. Life without double-headed non-muscle myosin II motor proteins

    Science.gov (United States)

    Betapudi, Venkaiah

    2014-07-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  9. Life without double-headed non-muscle myosin II motor proteins

    Directory of Open Access Journals (Sweden)

    Venkaiah eBetapudi

    2014-07-01

    Full Text Available Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  10. Tarantula myosin free head regulatory light chain phosphorylation stiffens N-terminal extension, releasing it and blocking its docking back.

    Science.gov (United States)

    Alamo, Lorenzo; Li, Xiaochuan Edward; Espinoza-Fonseca, L Michel; Pinto, Antonio; Thomas, David D; Lehman, William; Padrón, Raúl

    2015-08-01

    Molecular dynamics simulations of smooth and striated muscle myosin regulatory light chain (RLC) N-terminal extension (NTE) showed that diphosphorylation induces a disorder-to-order transition. Our goal here was to further explore the effects of mono- and diphosphorylation on the straightening and rigidification of the tarantula myosin RLC NTE. For that we used MD simulations followed by persistence length analysis to explore the consequences of secondary and tertiary structure changes occurring on RLC NTE following phosphorylation. Static and dynamic persistence length analysis of tarantula RLC NTE peptides suggest that diphosphorylation produces an important 24-fold straightening and a 16-fold rigidification of the RLC NTE, while monophosphorylation has a less profound effect. This new information on myosin structural mechanics, not fully revealed by previous EM and MD studies, add support to a cooperative phosphorylation-dependent activation mechanism as proposed for the tarantula thick filament. Our results suggest that the RLC NTE straightening and rigidification after Ser45 phosphorylation leads to a release of the constitutively Ser35 monophosphorylated free head swaying away from the thick filament shaft. This is so because the stiffened diphosphorylated RLC NTE would hinder the docking back of the free head after swaying away, becoming released and mobile and unable to recover its original interacting position on activation. PMID:26038302

  11. Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength.

    Directory of Open Access Journals (Sweden)

    Haruo Sugi

    Full Text Available Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca(2+-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca(2+-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM, relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca(2+-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca(2+ activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca(2+-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca(2+-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any

  12. Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle

    Energy Technology Data Exchange (ETDEWEB)

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.; Soto-Adames, Felipe N.; Vigoreaux, Jim O.; Maughan, David W.; Irving, Thomas C.; (IIT); (Vermont); (Duke)

    2010-02-02

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axial distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.

  13. The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head.

    Science.gov (United States)

    Knight, Peter J; Thirumurugan, Kavitha; Xu, Yuhui; Wang, Fei; Kalverda, Arnout P; Stafford, Walter F; Sellers, James R; Peckham, Michelle

    2005-10-14

    Myosin 10 contains a region of predicted coiled coil 120 residues long. However, the highly charged nature and pattern of charges in the proximal 36 residues appear incompatible with coiled-coil formation. Circular dichroism, NMR, and analytical ultracentrifugation show that a synthesized peptide containing this region forms a stable single alpha-helix (SAH) domain in solution and does not dimerize to form a coiled coil even at millimolar concentrations. Additionally, electron microscopy of a recombinant myosin 10 containing the motor, the three calmodulin binding domains, and the full-length predicted coiled coil showed that it was mostly monomeric at physiological protein concentration. In dimers the molecules were joined only at their extreme distal ends, and no coiled-coil tail was visible. Furthermore, the neck lengths of both monomers and dimers were much longer than expected from the number of calmodulin binding domains. In contrast, micrographs of myosin 5 heavy meromyosin obtained under the same conditions clearly showed a coiled-coil tail, and the necks were the predicted length. Thus the predicted coiled coil of myosin 10 forms a novel elongated structure in which the proximal region is a SAH domain and the distal region is a SAH domain (or has an unknown extended structure) that dimerizes only at its end. Sequence comparisons show that similar structures may exist in the predicted coiled-coil domains of myosins 6 and 7a and MyoM and could function to increase the size of the working stroke. PMID:16030012

  14. Three-dimensional Reconstruction of Tarantula Myosin Filaments Suggests How Phosphorylation May Regulate Myosin Activity

    OpenAIRE

    Alamo, Lorenzo; Wriggers, Willy; Pinto, Antonio; Bártoli, Fulvia; Salazar, Leiría; Zhao, Fa-Qing; Craig, Roger; Padrón, Raúl

    2008-01-01

    Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLC). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that my...

  15. Heavy chain of Acanthamoeba myosine IB is a fusion of myosin-like and non-myosin-like sequences

    Energy Technology Data Exchange (ETDEWEB)

    Jung, G.; Korn, E.D.; Hammer, J.A. III

    1987-10-01

    Acanthamoeba castellanii myosins IA and IB demonstrate the catalytic properties of a myosin and can support analogues of contractile and motile activity in vitro, but their single, low molecular weight heavy chains, roughly globular shapes, and inabilities to self-assemble into filaments make them structurally atypical myosins. The authors present the complete amino acid sequence of the 128-kDa myosin IB heavy chain, which they deduced from the nucleotide sequence of the gene and which reveals that the polypeptide is a fusion of myosin-like and non-myosin-like sequences. Specifically, the amino-terminal approx. 76 kDa of amino acid sequence is highly similar to the globular head sequences of conventional myosins. By contrast, the remaining approx. 51 kDa of sequence shows no similarity to any portion of conventional myosin sequences, contains regions that are rich in glycine, proline, and alanine residues, and lacks the distinctive sequence characteristics of an ..cap alpha..-helical, coiled-coil structure. They conclude, therefore, that the protein is composed of a myosin globular head fused not to the typical coiled-coil rod-like myosin tail structure but rather to an unusual carboxyl-terminal domain. These results support the conclusion that filamentous myosin is not required for force generation and provide a further perspective on the structural requirements for myosin function. Finally, they find a striking conservation of intron/exon structure between this gene and a vertebrate muscle myosin gene. They discuss this observation in relation to the evolutionary origin of the myosin IB gene and the antiquity of myosin gene intron/exon structure.

  16. Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP.

    Science.gov (United States)

    Sugi, Haruo; Yamaguchi, Maki; Ohno, Tetsuo; Kobayashi, Takakazu; Chaen, Shigeru; Okuyama, Hiroshi

    2016-01-01

    During muscle contraction, myosin heads (M) bound to actin (A) perform power stroke associated with reaction, AMADPPi → AM + ADP + Pi. In this scheme, A • M is believed to be a high-affinity complex after removal of ATP. Biochemical studies on extracted protein samples show that, in the AM complex, actin-binding sites are located at both sides of junctional peptide between 50K and 20K segments of myosin heavy chain. Recently, we found that a monoclonal antibody (IgG) to the junctional peptide had no effect on both in vitro actin-myosin sliding and skinned muscle fiber contraction, though it covers the actin-binding sites on myosin. It follows from this that, during muscle contraction, myosin heads do not pass through the static rigor AM configuration, determined biochemically and electron microscopically using extracted protein samples. To study the nature of AM and AMADP myosin heads, actually existing in muscle, we examined mechanical responses to ramp-shaped releases (0.5% of Lo, complete in 5ms) in single skinned rabbit psoas muscle fibers in high-Ca (pCa, 4) and low-Ca (pCa, >9) rigor states. The fibers exhibited initial elastic tension drop and subsequent small but definite tension recovery to a steady level. The tension recovery was present over many minutes in high-Ca rigor fibers, while it tended to decrease quickly in low-Ca rigor fibers. EDTA (10mM, with MgCl2 removed) had no appreciable effect on the tension recovery in high-Ca rigor fibers, while it completely eliminated the tension recovery in low-Ca rigor fibers. These results suggest that the AMADP myosin heads in rigor muscle have long lifetimes and dynamic properties, which show up as the tension recovery following applied release. Possible AM linkage structure in muscle is discussed in connection with the X-ray diffraction pattern from contracting muscle, which is intermediate between resting and rigor muscles.

  17. Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP

    Science.gov (United States)

    Sugi, Haruo; Yamaguchi, Maki; Ohno, Tetsuo; Kobayashi, Takakazu; Chaen, Shigeru; Okuyama, Hiroshi

    2016-01-01

    During muscle contraction, myosin heads (M) bound to actin (A) perform power stroke associated with reaction, AMADPPi → AM + ADP + Pi. In this scheme, A • M is believed to be a high-affinity complex after removal of ATP. Biochemical studies on extracted protein samples show that, in the AM complex, actin-binding sites are located at both sides of junctional peptide between 50K and 20K segments of myosin heavy chain. Recently, we found that a monoclonal antibody (IgG) to the junctional peptide had no effect on both in vitro actin-myosin sliding and skinned muscle fiber contraction, though it covers the actin-binding sites on myosin. It follows from this that, during muscle contraction, myosin heads do not pass through the static rigor AM configuration, determined biochemically and electron microscopically using extracted protein samples. To study the nature of AM and AMADP myosin heads, actually existing in muscle, we examined mechanical responses to ramp-shaped releases (0.5% of Lo, complete in 5ms) in single skinned rabbit psoas muscle fibers in high-Ca (pCa, 4) and low-Ca (pCa, >9) rigor states. The fibers exhibited initial elastic tension drop and subsequent small but definite tension recovery to a steady level. The tension recovery was present over many minutes in high-Ca rigor fibers, while it tended to decrease quickly in low-Ca rigor fibers. EDTA (10mM, with MgCl2 removed) had no appreciable effect on the tension recovery in high-Ca rigor fibers, while it completely eliminated the tension recovery in low-Ca rigor fibers. These results suggest that the AMADP myosin heads in rigor muscle have long lifetimes and dynamic properties, which show up as the tension recovery following applied release. Possible AM linkage structure in muscle is discussed in connection with the X-ray diffraction pattern from contracting muscle, which is intermediate between resting and rigor muscles. PMID:27583360

  18. Enhanced force generation by smooth muscle myosin in vitro.

    OpenAIRE

    VanBuren, P; Work, S S; Warshaw, D.M.

    1994-01-01

    To determine whether the apparent enhanced force-generating capabilities of smooth muscle relative to skeletal muscle are inherent to the myosin cross-bridge, the isometric steady-state force produced by myosin in the in vitro motility assay was measured. In this assay, myosin adhered to a glass surface pulls on an actin filament that is attached to an ultracompliant (50-200 nm/pN) glass microneedle. The number of myosin cross-bridge heads able to interact with a length of actin filament was ...

  19. Phosphorylation and the N-terminal Extension of the Regulatory Light Chain Help Orient and Align the Myosin Heads in Drosophila Flight Muscle

    OpenAIRE

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.; Soto-Adames, Felipe N.; Vigoreaux, Jim O.; Maughan, David W.; Irving, Thomas C.

    2009-01-01

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2Δ2-46) or disruption of the phosphorylation sites by substituting alanines (Dmlc2S66A, S67A) decreased the equatorial intensity ratio (I20/I10), indicating decreased myosin mass associated with the thin f...

  20. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    OpenAIRE

    Bekyarova, T. I.; Reedy, M C; Baumann, B. A. J.; Tregear, R T; Ward, A; Krzic, U.; Prince, K.M.; Perz-Edwards, R. J.; Reconditi, M.; Gore, D.; Irving, T C; Reedy, M K

    2008-01-01

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the “steric blocking” mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca2+ with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence...

  1. Structural Basis of Cargo Recognition by Unconventional Myosins in Cellular Trafficking.

    Science.gov (United States)

    Li, Jianchao; Lu, Qing; Zhang, Mingjie

    2016-08-01

    Unconventional myosins are a superfamily of actin-based molecular motors playing diverse roles including cellular trafficking, mechanical supports, force sensing and transmission, etc. The variable neck and tail domains of unconventional myosins function to bind to specific cargoes including proteins and lipid vesicles and thus are largely responsible for the diverse cellular functions of myosins in vivo. In addition, the tail regions, together with their cognate cargoes, can regulate activities of the motor heads. This review outlines the advances made in recent years on cargo recognition and cargo binding-induced regulation of the activity of several unconventional myosins including myosin-I, V, VI and X in cellular trafficking. We approach this topic by describing a series of high-resolution structures of the neck and tail domains of these unconventional myosins either alone or in complex with their specific cargoes, and by discussing potential implications of these structural studies on cellular trafficking of these myosin motors. PMID:26842936

  2. In vivo definition of cardiac myosin-binding protein C's critical interactions with myosin.

    Science.gov (United States)

    Bhuiyan, Md Shenuarin; McLendon, Patrick; James, Jeanne; Osinska, Hanna; Gulick, James; Bhandary, Bidur; Lorenz, John N; Robbins, Jeffrey

    2016-10-01

    Cardiac myosin-binding protein C (cMyBP-C) is an integral part of the sarcomeric machinery in cardiac muscle that enables normal function. cMyBP-C regulates normal cardiac contraction by functioning as a brake through interactions with the sarcomere's thick, thin, and titin filaments. cMyBP-C's precise effects as it binds to the different filament systems remain obscure, particularly as it impacts on the myosin heavy chain's head domain, contained within the subfragment 2 (S2) region. This portion of the myosin heavy chain also contains the ATPase activity critical for myosin's function. Mutations in myosin's head, as well as in cMyBP-C, are a frequent cause of familial hypertrophic cardiomyopathy (FHC). We generated transgenic lines in which endogenous cMyBP-C was replaced by protein lacking the residues necessary for binding to S2 (cMyBP-C(S2-)). We found, surprisingly, that cMyBP-C lacking the S2 binding site is incorporated normally into the sarcomere, although systolic function is compromised. We show for the first time the acute and chronic in vivo consequences of ablating a filament-specific interaction of cMyBP-C. This work probes the functional consequences, in the whole animal, of modifying a critical structure-function relationship, the protein's ability to bind to a region of the critical enzyme responsible for muscle contraction, the subfragment 2 domain of the myosin heavy chain. We show that the binding is not critical for the protein's correct insertion into the sarcomere's architecture, but is essential for long-term, normal function in the physiological context of the heart.

  3. Different subcellular localizations and functions of Arabidopsis myosin VIII

    Directory of Open Access Journals (Sweden)

    Belausov Eduard

    2008-01-01

    Full Text Available Abstract Background Myosins are actin-activated ATPases that use energy to generate force and move along actin filaments, dragging with their tails different cargos. Plant myosins belong to the group of unconventional myosins and Arabidopsis myosin VIII gene family contains four members: ATM1, ATM2, myosin VIIIA and myosin VIIIB. Results In transgenic plants expressing GFP fusions with ATM1 (IQ-tail truncation, lacking the head domain, fluorescence was differentially distributed: while in epidermis cells at the root cap GFP-ATM1 equally distributed all over the cell, in epidermal cells right above this region it accumulated in dots. Further up, in cells of the elongation zone, GFP-ATM1 was preferentially positioned at the sides of transversal cell walls. Interestingly, the punctate pattern was insensitive to brefeldin A (BFA while in some cells closer to the root cap, ATM1 was found in BFA bodies. With the use of different markers and transient expression in Nicotiana benthamiana leaves, it was found that myosin VIII co-localized to the plasmodesmata and ER, colocalized with internalized FM4-64, and partially overlapped with the endosomal markers ARA6, and rarely with ARA7 and FYVE. Motility of ARA6 labeled organelles was inhibited whenever associated with truncated ATM1 but motility of FYVE labeled organelles was inhibited only when associated with large excess of ATM1. Furthermore, GFP-ATM1 and RFP-ATM2 (IQ-tail domain co-localized to the same spots on the plasma membrane, indicating a specific composition at these sites for myosin binding. Conclusion Taken together, our data suggest that myosin VIII functions differently in different root cells and can be involved in different steps of endocytosis, BFA-sensitive and insensitive pathways, ER tethering and plasmodesmatal activity.

  4. Various Themes of Myosin Regulation.

    Science.gov (United States)

    Heissler, Sarah M; Sellers, James R

    2016-05-01

    Members of the myosin superfamily are actin-based molecular motors that are indispensable for cellular homeostasis. The vast functional and structural diversity of myosins accounts for the variety and complexity of the underlying allosteric regulatory mechanisms that determine the activation or inhibition of myosin motor activity and enable precise timing and spatial aspects of myosin function at the cellular level. This review focuses on the molecular basis of posttranslational regulation of eukaryotic myosins from different classes across species by allosteric intrinsic and extrinsic effectors. First, we highlight the impact of heavy and light chain phosphorylation. Second, we outline intramolecular regulatory mechanisms such as autoinhibition and subsequent activation. Third, we discuss diverse extramolecular allosteric mechanisms ranging from actin-linked regulatory mechanisms to myosin:cargo interactions. At last, we briefly outline the allosteric regulation of myosins with synthetic compounds.

  5. Elastic lever arm model for myosin V

    CERN Document Server

    Vilfan, A

    2005-01-01

    We present a mechanochemical model for myosin V, a two-headed processive motor protein. We derive the properties of a dimer from those of an individual head, which we model both with a 4-state cycle (detached, attached with ADP.Pi, attached with ADP and attached without nucleotide) and alternatively with a 5-state cycle (where the power stroke is not tightly coupled to the phosphate release). In each state the lever arm leaves the head at a different, but fixed, angle. The lever arm itself is described as an elastic rod. The chemical cycles of both heads are coordinated exclusively by the mechanical connection between the two lever arms. The model explains head coordination by showing that the lead head only binds to actin after the power stroke in the trail head and that it only undergoes its power stroke after the trail head unbinds from actin. Both models (4- and 5-state) reproduce the observed hand-over-hand motion and fit the measured force-velocity relations. The main difference between the two models c...

  6. Myosin VI regulates actin structure specialization through conserved cargo-binding domain sites.

    Directory of Open Access Journals (Sweden)

    Mamiko Isaji

    Full Text Available Actin structures are often stable, remaining unchanged in organization for the lifetime of a differentiated cell. Little is known about stable actin structure formation, organization, or maintenance. During Drosophila spermatid individualization, long-lived actin cones mediate cellular remodeling. Myosin VI is necessary for building the dense meshwork at the cones' fronts. We test several ideas for myosin VI's mechanism of action using domain deletions or site-specific mutations of myosin VI. The head (motor and globular tail (cargo-binding domains were both needed for localization at the cone front and dense meshwork formation. Several conserved partner-binding sites in the globular tail previously identified in vertebrate myosin VI were critical for function in cones. Localization and promotion of proper actin organization were separable properties of myosin VI. A vertebrate myosin VI was able to localize and function, indicating that functional properties are conserved. Our data eliminate several models for myosin VI's mechanism of action and suggest its role is controlling organization and action of actin assembly regulators through interactions at conserved sites. The Drosophila orthologues of interaction partners previously identified for vertebrate myosin VI are likely not required, indicating novel partners mediate this effect. These data demonstrate that generating an organized and functional actin structure in this cell requires multiple activities coordinated by myosin VI.

  7. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity.

    Science.gov (United States)

    Jana, Biman; Onuchic, José N

    2016-08-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities.

  8. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution

    Science.gov (United States)

    Hu, Zhongjun; Taylor, Dianne W.; Reedy, Michael K.; Edwards, Robert J.; Taylor, Kenneth A.

    2016-01-01

    We describe a cryo–electron microscopy three-dimensional image reconstruction of relaxed myosin II–containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin’s long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation. PMID:27704041

  9. Calcium and cargoes as regulators of myosin 5a activity

    International Nuclear Information System (INIS)

    Myosin 5a is a two-headed actin-dependent motor that transports various cargoes in cells. Its enzymology and mechanochemistry have been extensively studied in vitro. It is a processive motor that takes multiple 36 nm steps on actin. The enzymatic activity of myosin 5 is regulated by an intramolecular folding mechanism whereby its lever arms fold back against the coiled-coil tail such that the motor domains directly bind the globular tail domains. We show that the structure seen in individual folded molecules is consistent with electron density map of two-dimensional crystals of the molecule. In this compact state, the actin-activated MgATPase activity of the molecule is markedly inhibited and the molecule cannot move processively on surface bound actin filaments. The actin-activated MgATPase activity of myosin 5a is activated by increasing the calcium concentration or by binding of a cargo-receptor molecule, melanophilin, in vitro. However, calcium binding to the calmodulin light chains results in dissociation of some of the calmodulin which disrupts the ability of myosin 5a to move on actin filaments in vitro. Thus we propose that the physiologically relevant activation pathway in vivo involves binding of cargo-receptor proteins

  10. Genetics Home Reference: myosin storage myopathy

    Science.gov (United States)

    ... myosin rod cause myosin storage myopathy via multiple mechanisms. Proc Natl Acad Sci U S A. 2009 Apr ... PubMed Tajsharghi H, Oldfors A. Myosinopathies: pathology and mechanisms. Acta Neuropathol. 2013 Jan;125(1):3-18. ...

  11. Myosin is involved in postmitotic cell spreading

    OpenAIRE

    1995-01-01

    We have investigated a role for myosin in postmitotic Potoroo tridactylis kidney (PtK2) cell spreading by inhibitor studies, time- lapse video microscopy, and immunofluorescence. We have also determined the spatial organization and polarity of actin filaments in postmitotic spreading cells. We show that butanedione monoxime (BDM), a known inhibitor of muscle myosin II, inhibits nonmuscle myosin II and myosin V adenosine triphosphatases. BDM reversibly inhibits PtK2 postmitotic cell spreading....

  12. Myosin molecule packing within the vertebrate skeletal muscle thick filaments. A complete bipolar model.

    Science.gov (United States)

    Skubiszak, Ludmila; Kowalczyk, Leszek

    2002-01-01

    Computer modelling related to the real dimensions of both the whole filament and the myosin molecule subfragments has revealed two alternative modes for myosin molecule packing which lead to the head disposition similar to that observed by EM on the surface of the cross-bridge zone of the relaxed vertebrate skeletal muscle thick filaments. One of the modes has been known for three decades and is usually incorporated into the so-called three-stranded model. The new mode differs from the former one in two aspects: (1) myosin heads are grouped into asymmetrical cross-bridge crowns instead of symmetrical ones; (2) not the whole myosin tail, but only a 43-nm C-terminus of each of them is straightened and near-parallel to the filament axis, the rest of the tail is twisted. Concurrent exploration of these alternative modes has revealed their influence on the filament features. The parameter values for the filament models as well as for the building units depicting the myosin molecule subfragments are verified by experimental data found in the literature. On the basis of the new mode for myosin molecule packing a complete bipolar structure of the thick filament is created. PMID:12545190

  13. Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.

    Science.gov (United States)

    Winkelmann, D A; Bourdieu, L; Kinose, F; Libchaber, A

    1995-04-01

    We have analyzed the dependence of actin filament movement on the mode of myosin attachment to surfaces. Monoclonal antibodies that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. These monoclonal antibodies were used to provide increasing flexibility in the mode of attachment. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these monoclonal antibodies and the sliding movement of fluorescently labeled actin filaments analyzed by video microscopy. Each of these antibodies produced stable, myosin-coated surfaces that supported uniform movement of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM monoclonal antibodies yielded a maximum velocity of 10 microns/s at 30 degrees C, whereas attachment through anti-LC2 produced a lower velocity of 4-5 microns/s. Each antibody showed a characteristic minimum myosin density below which sliding movement was no longer supported and an exponential dependence of actin filament velocity on myosin surface density below Vmax. Maximum sliding velocity was achieved over a range of myosin surface densities. Thus, the specific mode of attachment can influence the characteristic velocity of actin filament movement and the surface density needed to support movement. These data are being used to analyze the dynamics of sliding filament assays and evaluate estimates of the average number of motor molecules per unit length of actin required to support movement.

  14. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    Energy Technology Data Exchange (ETDEWEB)

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K. (IIT); (EMBL); (Scripps); (Duke); (Prince); (FSU); (MRC); (U. Florence)

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  15. Twirling motion of actin filaments in gliding assays with non-processive myosin motors

    CERN Document Server

    Vilfan, Andrej

    2009-01-01

    We present a model study of gliding assays in which actin filaments are moved by non-processive myosin motors. We show that even if the power stroke of the motor protein has no lateral component, the filaments will rotate around their axis while moving over the surface. Notably, the handedness of this twirling motion is opposite from that of the actin filament structure. It stems from the fact that the gliding actin filament has "target zones" where its subunits point towards the surface and are therefore more accessible for myosin heads. Each myosin head has a higher binding probability before it reaches the center of the target zone than afterwards, which results in a left-handed twirling. We present a stochastic simulation and an approximative analytical solution. The calculated pitch of the twirling motion depends on the filament velocity (ATP concentration). It reaches about 400nm for low speeds and increases with higher speeds.

  16. Myosin lever arm directs collective motion on cellular actin network.

    Science.gov (United States)

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  17. Revisiting Myosin Families Through Large-scale Sequence Searches Leads to the Discovery of New Myosins.

    Science.gov (United States)

    Pasha, Shaik Naseer; Meenakshi, Iyer; Sowdhamini, Ramanathan

    2016-01-01

    Myosins are actin-based motor proteins involved in many cellular movements. It is interesting to study the evolutionary patterns and the functional attributes of various types of myosins. Computational search algorithms were performed to identify putative myosin members by phylogenetic analysis, sequence motifs, and coexisting domains. This study is aimed at understanding the distribution and the likely biological functions of myosins encoded in various taxa and available eukaryotic genomes. We report here a phylogenetic analysis of around 4,064 myosin motor domains, built entirely from complete or near-complete myosin repertoires incorporating many unclassified, uncharacterized sequences and new myosin classes, with emphasis on myosins from Fungi, Haptophyta, and other Stramenopiles, Alveolates, and Rhizaria (SAR). The identification of large classes of myosins in Oomycetes, Cellular slime molds, Choanoflagellates, Pelagophytes, Eustigmatophyceae, Fonticula, Eucoccidiorida, and Apicomplexans with novel myosin motif variants that are conserved and thus presumably functional extends our knowledge of this important family of motor proteins. This work provides insights into the distribution and probable function of myosins including newly identified myosin classes. PMID:27597808

  18. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation.

    Science.gov (United States)

    Homburger, Julian R; Green, Eric M; Caleshu, Colleen; Sunitha, Margaret S; Taylor, Rebecca E; Ruppel, Kathleen M; Metpally, Raghu Prasad Rao; Colan, Steven D; Michels, Michelle; Day, Sharlene M; Olivotto, Iacopo; Bustamante, Carlos D; Dewey, Frederick E; Ho, Carolyn Y; Spudich, James A; Ashley, Euan A

    2016-06-14

    Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within β-cardiac myosin. We first developed computational models of the human β-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease. PMID:27247418

  19. Myosin VI deafness mutation prevents the initiation of processive runs on actin.

    Science.gov (United States)

    Pylypenko, Olena; Song, Lin; Shima, Ai; Yang, Zhaohui; Houdusse, Anne M; Sweeney, H Lee

    2015-03-17

    Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations.

  20. Fitting of atomic coordinates of myosin S1 into the envelope of the 3-D reconstruction of muscle thick filaments

    International Nuclear Information System (INIS)

    Recently atomic coordinates of myosin S1of hen pectoral muscle have been reported (Rayment et al. Science 261: 50-58, 1993), allowing to know the precise position of the Regulatory Light Chain (RLC), the Essential Light Chain (ELC), as well as the interlacing places of ATP and actin. By means of the use of the Program of Advanced Three-dimensional Visualization AVS (Advanced Visual Systems, Inc., Waltham, M A, USA) we have been able to obtain the surface of the three-dimensional reconstruction of the thick filaments of tarantula muscle (Crowther et al. J. Mol. Biol. 184: 429-439, 1985) which shows a topographical detail associated to each myosin head (subfragment S1) non previously seen, and confirmed in a very evident way the antiparallel arrangement of both heads of a same myosin molecule. In view of the above-mentioned we have carried out an approximate adjustment of reported atomic coordinates of sub fragment S1 to the surface of one myosin head of the three-dimensional reconstruction. This adjustment allows to locate the approximate position of the Light Chains RLC and ELC, as well as the interlacing place of ATP and actin. The precise determination of the position of RLC and its phosphoryl able serine in the three-dimensional reconstruction can be important in terms of the molecular regulation mechanism of the muscular contraction bounded to the myosin that happens through the phosphorylation of RLC

  1. Different Head Environments in Tarantula Thick Filaments Support a Cooperative Activation Process

    OpenAIRE

    Sulbarán, Guidenn; Biasutto, Antonio; Alamo, Lorenzo; Riggs, Claire; Pinto, Antonio; Méndez, Franklin; Craig, Roger; Padrón, Raúl

    2013-01-01

    Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). Structural analysis of relaxed tarantula thick filaments shows that the RLCs of the interacting free and blocked myosin heads are in different environments. This and other data suggested a phosphorylation mechanism in which Ser-35 of the free head is exposed and constitutively phosphorylated by protein kinase C, whereas the blocked head is hidden and unphosphorylated; on activation, my...

  2. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Directory of Open Access Journals (Sweden)

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  3. Sequential myosin phosphorylation activates tarantula thick filament via a disorder-order transition.

    Science.gov (United States)

    Espinoza-Fonseca, L Michel; Alamo, Lorenzo; Pinto, Antonio; Thomas, David D; Padrón, Raúl

    2015-08-01

    Phosphorylation of myosin regulatory light chain (RLC) N-terminal extension (NTE) activates myosin in thick filaments. RLC phosphorylation plays a primary regulatory role in smooth muscles and a secondary (modulatory) role in striated muscles, which is regulated by Ca(2+)via TnC/TM on the thin filament. Tarantula striated muscle exhibits both regulatory systems: one switches on/off contraction through thin filament regulation, and another through PKC constitutively Ser35 phosphorylated swaying free heads in the thick filaments that produces quick force on twitches regulated from 0 to 50% and modulation is accomplished recruiting additional force-potentiating free and blocked heads via Ca(2+)4-CaM-MLCK Ser45 phosphorylation. We have used microsecond molecular dynamics (MD) simulations of tarantula RLC NTE to understand the structural basis for phosphorylation-based regulation in tarantula thick filament activation. Trajectory analysis revealed that an inter-domain salt bridge network (R39/E58,E61) facilitates the formation of a stable helix-coil-helix (HCH) motif formed by helices P and A in the unphosphorylated NTE of both myosin heads. Phosphorylation of the blocked head on Ser45 does not induce any substantial structural changes. However, phosphorylation of the free head on Ser35 disrupts this salt bridge network and induces a partial extension of helix P along RLC helix A. While not directly participating in the HCH folding, phosphorylation of Ser35 unlocks a compact structure and allows the NTE to spontaneously undergo coil-helix transitions. The modest structural change induced by the subsequent Ser45 diphosphorylation monophosphorylated Ser35 free head facilitates full helix P extension into a single structurally stable α-helix through a network of intra-domain salt bridges (pS35/R38,R39,R42). We conclude that tarantula thick filament activation is controlled by sequential Ser35-Ser45 phosphorylation via a conserved disorder-to-order transition. PMID

  4. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  5. Preparation of human cardiac anti-myosin: a review

    International Nuclear Information System (INIS)

    The present communication is a review of the physicochemical characterization and immunological properties of myosin isolated from the cardiac muscle, the production of monoclonal antibody anti-myosin, the radiolabeling of this antibody and its applications as radiopharmaceuticals to imaging myocardial infarcts. The classical example of radioimmunologic diagnosis of non malignant tissues is the detection of myocardial infarction by radiolabeled antibodies to myosin. (author)

  6. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    Science.gov (United States)

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358

  7. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    Science.gov (United States)

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.

  8. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle.

    Science.gov (United States)

    Poetter, K; Jiang, H; Hassanzadeh, S; Master, S R; Chang, A; Dalakas, M C; Rayment, I; Sellers, J R; Fananapazir, L; Epstein, N D

    1996-05-01

    The muscle myosins and hexomeric proteins consisting of two heavy chains and two pairs of light chains, the latter called essential (ELC) and regulatory (RLC). The light chains stabilize the long alpha helical neck of the myosin head. Their function in striated muscle, however, is only partially understood. We report here the identification of distinct missense mutations in a skeletal/ventricular ELC and RLC, each of which are associated with a rare variant of cardiac hypertrophy as well as abnormal skeletal muscle. We show that myosin containing the mutant ELC has abnormal function, map the mutant residues on the three-dimensional structure of myosin and suggest that the mutations disrupt the stretch activation response of the cardiac papillary muscles.

  9. Purification and characterization of myosin from wheat mitochondria

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Myosin was purified from wheat mitochondria using DE-52 anion exchange chromatography and Sephacryl S-300 gel ffitration. The molecular weight of its heavy chain is about 210 ku, similar to that of muscle myosin Ⅱ (205 ku),and it could be recognized by the polyclonal antibodies against human skeletal muscle myosin Ⅱ. The ATPase activity of the mitochondrial myosin stimulated by F-actin from chicken muscle is 202.5 nmoles Pi/min @ mg. The mitochondrial myosin could be activated by Ca2+ and was not inhibited by Ca2+ at high concentration. The results demonstrate that the myosin of wheat mitochondria shares some similarities with the skeletal muscle myosin Ⅱ.

  10. The SAH domain extends the functional length of the myosin lever.

    Science.gov (United States)

    Baboolal, Thomas G; Sakamoto, Takeshi; Forgacs, Eva; White, Howard D; Jackson, Scott M; Takagi, Yasuharu; Farrow, Rachel E; Molloy, Justin E; Knight, Peter J; Sellers, James R; Peckham, Michelle

    2009-12-29

    Stable, single alpha-helix (SAH) domains are widely distributed in the proteome, including in myosins, but their functions are unknown. To test whether SAH domains can act as levers, we replaced four of the six calmodulin-binding IQ motifs in the levers of mouse myosin 5a (Myo5) with the putative SAH domain of Dictyostelium myosin MyoM of similar length. The SAH domain was inserted between the IQ motifs and the coiled coil in a Myo5 HMM construct in which the levers were truncated from six to two IQ motifs (Myo5-2IQ). Electron microscopy of this chimera (Myo5-2IQ-SAH) showed the SAH domain was straight and 17 nm long as predicted, restoring the truncated lever to the length of wild-type (Myo5-6IQ). The powerstroke (of 21.5 nm) measured in the optical trap was slightly less than that for Myo5-6IQ but much greater than for Myo5-2IQ. Myo5-2IQ-SAH moved processively along actin at physiological ATP concentrations with similar stride and run lengths to Myo5-6IQ in in-vitro single molecule assays. In comparison, Myo5-2IQ is not processive under these conditions. Solution biochemical experiments indicated that the rear head did not mechanically gate the rate of ADP release from the lead head, unlike Myo5-6IQ. These data show that the SAH domain can form part of a functional lever in myosins, although its mechanical stiffness might be lower. More generally, we conclude that SAH domains can act as stiff structural extensions in aqueous solution and this structural role may be important in other proteins. PMID:20018767

  11. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  12. Nuclear myosin I regulates cell membrane tension

    Science.gov (United States)

    Venit, Tomáš; Kalendová, Alžběta; Petr, Martin; Dzijak, Rastislav; Pastorek, Lukáš; Rohožková, Jana; Malohlava, Jakub; Hozák, Pavel

    2016-01-01

    Plasma membrane tension is an important feature that determines the cell shape and influences processes such as cell motility, spreading, endocytosis and exocytosis. Unconventional class 1 myosins are potent regulators of plasma membrane tension because they physically link the plasma membrane with adjacent cytoskeleton. We identified nuclear myosin 1 (NM1) - a putative nuclear isoform of myosin 1c (Myo1c) - as a new player in the field. Although having specific nuclear functions, NM1 localizes predominantly to the plasma membrane. Deletion of NM1 causes more than a 50% increase in the elasticity of the plasma membrane around the actin cytoskeleton as measured by atomic force microscopy. This higher elasticity of NM1 knock-out cells leads to 25% higher resistance to short-term hypotonic environment and rapid cell swelling. In contrast, overexpression of NM1 in wild type cells leads to an additional 30% reduction of their survival. We have shown that NM1 has a direct functional role in the cytoplasm as a dynamic linker between the cell membrane and the underlying cytoskeleton, regulating the degree of effective plasma membrane tension. PMID:27480647

  13. Influence of the cardiac myosin hinge region on contractile activity.

    OpenAIRE

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P.; Slayter, H. S.

    1991-01-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myos...

  14. Calmodulin binding to recombinant myosin-1c and myosin-1c IQ peptides

    Directory of Open Access Journals (Sweden)

    Cyr Janet L

    2002-11-01

    Full Text Available Abstract Background Bullfrog myosin-1c contains three previously recognized calmodulin-binding IQ domains (IQ1, IQ2, and IQ3 in its neck region; we identified a fourth IQ domain (IQ4, located immediately adjacent to IQ3. How calmodulin binds to these IQ domains is the subject of this report. Results In the presence of EGTA, calmodulin bound to synthetic peptides corresponding to IQ1, IQ2, and IQ3 with Kd values of 2–4 μM at normal ionic strength; the interaction with an IQ4 peptide was much weaker. Ca2+ substantially weakened the calmodulin-peptide affinity for all of the IQ peptides except IQ3. To reveal how calmodulin bound to the linearly arranged IQ domains of the myosin-1c neck, we used hydrodynamic measurements to determine the stoichiometry of complexes of calmodulin and myosin-1c. Purified myosin-1c and T701-Myo1c (a myosin-1c fragment with all four IQ domains and the C-terminal tail each bound 2–3 calmodulin molecules. At a physiologically relevant temperature (25°C and under low-Ca2+ conditions, T701-Myo1c bound two calmodulins in the absence and three calmodulins in the presence of 5 μM free calmodulin. Ca2+ dissociated nearly all calmodulins from T701-Myo1c at 25°C; one calmodulin was retained if 5 μM free calmodulin was present. Conclusions We inferred from these data that at 25°C and normal cellular concentrations of calmodulin, calmodulin is bound to IQ1, IQ2, and IQ3 of myosin-1c when Ca2+ is low. The calmodulin bound to one of these IQ domains, probably IQ2, is only weakly associated. Upon Ca2+ elevation, all calmodulin except that bound to IQ3 should dissociate.

  15. Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links

    DEFF Research Database (Denmark)

    Lund, Marianne Nissen; Luxford, Catherine; Skibsted, Leif Horsfelt;

    2008-01-01

    (alteration of myocyte function and force generation) and in disease (e.g. cardiomyopathy, chronic heart failure). The oxidant species, mechanisms of reaction and consequences of these reactions are incompletely characterized. In the present study, the nature of the transient species generated on myosin...... radical species have been detected by EPR in both the presence and the absence of spin traps. Evidence has been obtained for the presence of thiyl, tyrosyl and other unidentified radical species on myosin as a result of damage-transfer from oxidized myoglobin or horseradish peroxidase. The generation...

  16. Masticatory (;superfast') myosin heavy chain and embryonic/atrial myosin light chain 1 in rodent jaw-closing muscles.

    Science.gov (United States)

    Reiser, Peter J; Bicer, Sabahattin; Chen, Qun; Zhu, Ling; Quan, Ning

    2009-08-01

    Masticatory myosin is widely expressed among several vertebrate classes. Generally, the expression of masticatory myosin has been associated with high bite force for a carnivorous feeding style (including capturing/restraining live prey), breaking down tough plant material and defensive biting in different species. Masticatory myosin expression in the largest mammalian order, Rodentia, has not been reported. Several members of Rodentia consume large numbers of tree nuts that are encased in very hard shells, presumably requiring large forces to access the nutmeat. We, therefore, tested whether some rodent species express masticatory myosin in jaw-closing muscles. Myosin isoform expression in six Sciuridae species was examined, using protein gel electrophoresis, immunoblotting, mass spectrometry and RNA analysis. The results indicate that masticatory myosin is expressed in some Sciuridae species but not in other closely related species with similar diets but having different nut-opening strategies. We also discovered that the myosin light chain 1 isoform associated with masticatory myosin heavy chain, in the same four Sciuridae species, is the embryonic/atrial isoform. We conclude that rodent speciation did not completely eliminate masticatory myosin and that its persistent expression in some rodent species might be related to not only diet but also to feeding style. PMID:19648394

  17. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium.

    Science.gov (United States)

    Pulcastro, Hannah C; Awinda, Peter O; Breithaupt, Jason J; Tanner, Bertrand C W

    2016-07-01

    Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles. PMID:26763941

  18. Does 2,3-butanedione monoxime inhibit nonmuscle myosin?

    Science.gov (United States)

    Forer, Arthur; Fabian, Lacramioara

    2005-04-01

    BDM (2,3-butanedione monoxime) has been used extensively to inhibit nonmuscle myosin. However, recent articles raise the question of what BDM actually does, because of experiments in which BDM did not affect the actin-activated ATPase of nonmuscle myosins. We describe results that indicate that BDM indeed inhibits motility due to nonmuscle myosins: in many different cells BDM has the same effects as anti-actin agents and/or as other anti-myosin agents, and BDM slows or stops the sliding between actin filaments and myosin in vitro. We discuss how the two sets of apparently contradictory results might be resolved, and we suggest possible experiments that might clarify the contradictory interpretations. PMID:15868207

  19. Myosins and cell dynamics in cellular slime molds.

    Science.gov (United States)

    Yumura, Shigehiko; Uyeda, Taro Q P

    2003-01-01

    Myosin is a mechanochemical transducer and serves as a motor for various motile activities such as cell migration, cytokinesis, maintenance of cell shape, phagocytosis, and morphogenesis. Nonmuscle myosin in vivo does not either stay static at specific subcellular regions or construct highly organized structures, such as sarcomere in skeletal muscle cells. The cellular slime mold Dictyostelium discoideum is an ideal "model organism" for the investigation of cell movement and cytokinesis. The advantages of this organism prompted researchers to carry out pioneering cell biological, biochemical, and molecular genetic studies on myosin II, which resulted in elucidation of many fundamental features of function and regulation of this most abundant molecular motor. Furthermore, recent molecular biological research has revealed that many unconventional myosins play various functions in vivo. In this article, how myosins are organized and regulated in a dynamic manner in Dictyostelium cells is reviewed and discussed. PMID:12722951

  20. Myosin-I Isozymes in Neonatal Rodent Auditory and Vestibular Epithelia

    OpenAIRE

    Dumont, Rachel A.; Zhao, Yi-Dong; Holt, Jeffrey R.; Bähler, Martin; Gillespie, Peter G.

    2002-01-01

    Myosin isozymes are essential for hair cells, the sensory cells of the inner ear. Because a myosin-I subfamily member may mediate adaptation of mechanoelectrical transduction, we examined expression of all eight myosin-I isozymes in rodent auditory and vestibular epithelia. Using RT-PCR, we found prominent expression of three isozymes, Myo1b (also known as myosin-Ia or myr 1), Myo1c (myosin-Ib or myr 2), and Myo1e (myr 3). By contrast, Myo1a (brush-border myosin-I), Myo1d (myosin lg or myr 4)...

  1. The role of myosin phosphorylation in anaphase chromosome movement.

    Science.gov (United States)

    Sheykhani, Rozhan; Shirodkar, Purnata V; Forer, Arthur

    2013-01-01

    This work deals with the role of myosin phosphorylation in anaphase chromosome movement. Y27632 and ML7 block two different pathways for phosphorylation of the myosin regulatory light chain (MRLC). Both stopped or slowed chromosome movement when added to anaphase crane-fly spermatocytes. To confirm that the effects of the pharmacological agents were on the presumed targets, we studied cells stained with antibodies against mono- or bi-phosphorylated myosin. For all chromosomes whose movements were affected by a drug, the corresponding spindle fibres of the affected chromosomes had reduced levels of 1P- and 2P-myosin. Thus the drugs acted on the presumed target and myosin phosphorylation is involved in anaphase force production. Calyculin A, an inhibitor of MRLC dephosphorylation, reversed and accelerated the altered movements caused by Y27632 and ML-7, suggesting that another phosphorylation pathway is involved in phosphorylation of spindle myosin. Staurosporine, a more general phosphorylation inhibitor, also reduced the levels of MRLC phosphorylation and caused anaphase chromosomes to stop or slow. The effects of staurosporine on chromosome movements were not reversed by Calyculin A, confirming that another phosphorylation pathway is involved in phosphorylation of spindle myosin. PMID:23566798

  2. Arginylation of Myosin Heavy Chain Regulates Skeletal Muscle Strength

    Directory of Open Access Journals (Sweden)

    Anabelle S. Cornachione

    2014-07-01

    Full Text Available Protein arginylation is a posttranslational modification with an emerging global role in the regulation of actin cytoskeleton. To test the role of arginylation in the skeletal muscle, we generated a mouse model with Ate1 deletion driven by the skeletal muscle-specific creatine kinase (Ckmm promoter. Ckmm-Ate1 mice were viable and outwardly normal; however, their skeletal muscle strength was significantly reduced in comparison to controls. Mass spectrometry of isolated skeletal myofibrils showed a limited set of proteins, including myosin heavy chain, arginylated on specific sites. Atomic force microscopy measurements of contractile strength in individual myofibrils and isolated myosin filaments from these mice showed a significant reduction of contractile forces, which, in the case of myosin filaments, could be fully rescued by rearginylation with purified Ate1. Our results demonstrate that arginylation regulates force production in muscle and exerts a direct effect on muscle strength through arginylation of myosin.

  3. Actin filaments on myosin beds: The velocity distribution

    Science.gov (United States)

    Bourdieu, L.; Magnasco, M. O.; Winkelmann, D. A.; Libchaber, A.

    1995-12-01

    In vitro studies of actin filaments sliding on a myosin-coated surface are analyzed, filament by filament, at a sampling rate of 30 per second. For each filament, the mean arc length coordinate is computed and histograms of instantaneous velocities, along the arc length, are established. Two types of motion are observed, depending on the experimental conditions. The first one is characterized by a homogeneous flow, with well defined velocities. In this regime, specific defects are a constitutive part of the flow. It is observed at high temperature, at high myosin coverage, and with a particular mode of attachment of myosin to the surface. The second regime shows no clear velocity selection, but a broadband distribution. It is characterized by high friction and is observed at low temperature or low myosin density. (c) 1995 The American Physical Society

  4. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions.

    Science.gov (United States)

    Heissler, Sarah M; Sellers, James R

    2016-08-01

    Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to which actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that - together with structural adaptations - result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular functions.

  5. Allosteric communication in myosin V: from small conformational changes to large directed movements.

    Directory of Open Access Journals (Sweden)

    M Cecchini

    Full Text Available The rigor to post-rigor transition in myosin, a consequence of ATP binding, plays an essential role in the Lymn-Taylor functional cycle because it results in the dissociation of the actomyosin complex after the powerstroke. On the basis of the X-ray structures of myosin V, we have developed a new normal mode superposition model for the transition path between the two states. Rigid-body motions of the various subdomains and specific residues at the subdomain interfaces are key elements in the transition. The allosteric communication between the nucleotide binding site and the U50/L50 cleft is shown to result from local changes due to ATP binding, which induce large amplitude motions that are encoded in the structure of the protein. The triggering event is the change in the interaction of switch I and the P-loop, which is stabilized by ATP binding. The motion of switch I, which is a relatively rigid element of the U50 subdomain, leads directly to a partial opening of the U50/L50 cleft; the latter is expected to weaken the binding of myosin to actin. The calculated transition path demonstrates the nature of the subdomain coupling and offers an explanation for the mutual exclusion of ATP and actin binding. The mechanism of the uncoupling of the converter from the motor head, an essential part of the transition, is elucidated. The origin of the partial untwisting of the central beta-sheet in the rigor to post-rigor transition is described.

  6. Internal Motility in Stiffening Actin-Myosin Networks

    OpenAIRE

    Uhde, Joerg; Keller, Manfred; Sackmann, Erich; Parmeggiani, Andrea; Frey, Erwin

    2003-01-01

    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and sug...

  7. Structural changes accompanying phosphorylation of tarantula muscle myosin filaments

    OpenAIRE

    1987-01-01

    Electron microscopy has been used to study the structural changes that occur in the myosin filaments of tarantula striated muscle when they are phosphorylated. Myosin filaments in muscle homogenates maintained in relaxing conditions (ATP, EGTA) are found to have nonphosphorylated regulatory light chains as shown by urea/glycerol gel electrophoresis and [32P]phosphate autoradiography. Negative staining reveals an ordered, helical arrangement of crossbridges in these filaments, in which the hea...

  8. A Perspective on the Role of Myosins as Mechanosensors.

    Science.gov (United States)

    Greenberg, Michael J; Arpağ, Göker; Tüzel, Erkan; Ostap, E Michael

    2016-06-21

    Cells are dynamic systems that generate and respond to forces over a range of spatial and temporal scales, spanning from single molecules to tissues. Substantial progress has been made in recent years in identifying the molecules and pathways responsible for sensing and transducing mechanical signals to short-term cellular responses and longer-term changes in gene expression, cell identity, and tissue development. In this perspective article, we focus on myosin motors, as they not only function as the primary force generators in well-studied mechanobiological processes, but also act as key mechanosensors in diverse functions including intracellular transport, signaling, cell migration, muscle contraction, and sensory perception. We discuss how the biochemical and mechanical properties of different myosin isoforms are tuned to fulfill these roles in an array of cellular processes, and we highlight the underappreciated diversity of mechanosensing properties within the myosin superfamily. In particular, we use modeling and simulations to make predictions regarding how diversity in force sensing affects the lifetime of the actomyosin bond, the myosin power output, and the ability of myosin to respond to a perturbation in force for several nonprocessive myosin isoforms. PMID:27332116

  9. Two Regions of the Tail Are Necessary for the Isoform-specific Functions of Nonmuscle Myosin IIB

    OpenAIRE

    Sato, Masaaki K.; Takahashi, Masayuki; Yazawa, Michio

    2007-01-01

    To function in the cell, nonmuscle myosin II molecules assemble into filaments through their C-terminal tails. Because myosin II isoforms most likely assemble into homo-filaments in vivo, it seems that some self-recognition mechanisms of individual myosin II isoforms should exist. Exogenous expression of myosin IIB rod fragment is thus expected to prevent the function of myosin IIB specifically. We expected to reveal some self-recognition sites of myosin IIB from the phenotype by expressing a...

  10. Involvement of myosin in intracellular motility and cytomorphogenesis in Micrasterias.

    Science.gov (United States)

    Oertel, Anke; Holzinger, Andreas; Lütz-Meindl, Ursula

    2003-01-01

    Myosin was detected on Western blots of Micrasterias denticulata extracts by use of antibodies from different sources. Inhibitors with different targets of the actomyosin system, such as the myosin ATPase-blockers N-ethylmaleimide (NEM) and 2,3-butanedione monoxime (BDM), or the myosin light chain kinase inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexhydro-1,4-diazapine (ML7), had similar effects on intracellular motility during cell development in the green alga Micrasterias, thus pointing towards a participation of myosin in these processes. The drugs markedly altered the mode of postmitotic nuclear migration, slowed down cytoplasmic streaming, changed cell pattern development and prevented normal chloroplast distribution and spreading into the growing semicell. In addition, an increase and dilatations in ER cisternae and marked morphological changes of the Golgi system were observed by transmission electron microscopy after exposure of growing cells to BDM. Neither BDM nor ML7 exhibited any effect on the distribution or arrangement of the cortical F-actin network nor on the F-actin basket around the nucleus, characteristic of untreated growing Micrasterias cells (J Cell Sci 107 (1994) 1929). This is particularly interesting since BDM caused disintegration of the microtubule system co-localized to the F-actin cage during normal nuclear migration. Together with the fact that other microtubules not connected to the F-actin system remained uninfluenced by BDM, this observation is evidence of an integrative function of myosin between the cytoskeleton elements. PMID:14642529

  11. Influence of the cardiac myosin hinge region on contractile activity.

    Science.gov (United States)

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P; Slayter, H S

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the anti-hinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  12. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length.

    Science.gov (United States)

    Schott, Daniel H; Collins, Ruth N; Bretscher, Anthony

    2002-01-01

    Myosins are molecular motors that exert force against actin filaments. One widely conserved myosin class, the myosin-Vs, recruits organelles to polarized sites in animal and fungal cells. However, it has been unclear whether myosin-Vs actively transport organelles, and whether the recently challenged lever arm model developed for muscle myosin applies to myosin-Vs. Here we demonstrate in living, intact yeast that secretory vesicles move rapidly toward their site of exocytosis. The maximal speed varies linearly over a wide range of lever arm lengths genetically engineered into the myosin-V heavy chain encoded by the MYO2 gene. Thus, secretory vesicle polarization is achieved through active transport by a myosin-V, and the motor mechanism is consistent with the lever arm model.

  13. Review: The ATPase mechanism of myosin and actomyosin.

    Science.gov (United States)

    Geeves, Michael A

    2016-08-01

    Myosins are a large family of molecular motors that use the common P-loop, Switch 1 and Switch 2 nucleotide binding motifs to recognize ATP, to create a catalytic site than can efficiently hydrolyze ATP and to communicate the state of the nucleotide pocket to other allosteric binding sites on myosin. The energy of ATP hydrolysis is used to do work against an external load. In this short review I will outline current thinking on the mechanism of ATP hydrolysis and how the energy of ATP hydrolysis is coupled to a series of protein conformational changes that allow a myosin, with the cytoskeleton track actin, to operate as a molecular motor of distinct types; fast movers, processive motors or strain sensors. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 483-491, 2016. PMID:27061920

  14. Preliminary research on myosin light chain kinase in rabbit liver

    Institute of Scientific and Technical Information of China (English)

    Bin Ren; Hua-Qing Zhu; Zhao-Feng Luo; Qing Zhou; Yuan Wang; Yu-Zhen Wang

    2001-01-01

    AIM: To study preliminarily the properties of myosin light chain kinase (MLCK) in rabbit liver. METHODS: The expression of MLCK was detected by reverse transcription-polymerase chain reaction (RT-PCR);the MLCK was obtained from rabbit liver, and its activity was analyzed by γ-32P incorporation technique to detect the phosphorylation of myosin light chain. RESULTS: MLCK was expressed in rabbit liver, and the activity of the enzyme was similar to rabbit smooth muscle MLCK, and calmodulin-dependent. When the concentration was 0.65 mg-L-1, the activity was at the highest level. CONCLUSION: MLCK expressed in rabbit liver may catalyze the phosphorylation of myosin light chain, which may play important roles in the regulation of hepatic cell functions.

  15. Catalytic strategy used by the myosin motor to hydrolyze ATP.

    Science.gov (United States)

    Kiani, Farooq Ahmad; Fischer, Stefan

    2014-07-22

    Myosin is a molecular motor responsible for biological motions such as muscle contraction and intracellular cargo transport, for which it hydrolyzes adenosine 5'-triphosphate (ATP). Early steps of the mechanism by which myosin catalyzes ATP hydrolysis have been investigated, but still missing are the structure of the final ADP·inorganic phosphate (Pi) product and the complete pathway leading to it. Here, a comprehensive description of the catalytic strategy of myosin is formulated, based on combined quantum-classical molecular mechanics calculations. A full exploration of catalytic pathways was performed and a final product structure was found that is consistent with all experiments. Molecular movies of the relevant pathways show the different reorganizations of the H-bond network that lead to the final product, whose γ-phosphate is not in the previously reported HPγO4(2-) state, but in the H2PγO4(-) state. The simulations reveal that the catalytic strategy of myosin employs a three-pronged tactic: (i) Stabilization of the γ-phosphate of ATP in a dissociated metaphosphate (PγO3(-)) state. (ii) Polarization of the attacking water molecule, to abstract a proton from that water. (iii) Formation of multiple proton wires in the active site, for efficient transfer of the abstracted proton to various product precursors. The specific role played in this strategy by each of the three loops enclosing ATP is identified unambiguously. It explains how the precise timing of the ATPase activation during the force generating cycle is achieved in myosin. The catalytic strategy described here for myosin is likely to be very similar in most nucleotide hydrolyzing enzymes.

  16. Nonmuscle myosin dependent synthesis of type I collagen

    OpenAIRE

    Cai, Le; Fritz, Dillon; Stefanovic, Lela; Stefanovic, Branko

    2010-01-01

    Type I collagen is the most abundant protein in human body synthesized in all tissues as the heterotrimer of two α1(I) and one α2(I) polypeptides. Here we show that intact nonmuscle myosin filaments are required for synthesis of heterotrimeric type I collagen. Conserved 5′ stem-loop in collagen α1(I) and α2(I) mRNAs binds RNA binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle my...

  17. Internal Motility in Stiffening Actin-Myosin Networks

    CERN Document Server

    Uhde, J; Sackmann, E; Parmeggiani, A; Frey, E; Uhde, Joerg; Keller, Manfred; Sackmann, Erich; Parmeggiani, Andrea; Frey, Erwin

    2003-01-01

    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and suggest a "zipping" mechanism to explain the filament motion in the vicinity of the sol-gel transition.

  18. Influence of Trace Amount of Calponin on Smooth Muscle Myosin in Different States

    Institute of Scientific and Technical Information of China (English)

    Jing-Xian YANG; Xiao-Hua FENG; Ying ZHANG; Yuan LIN

    2004-01-01

    Calponin(CaP),a thin filament-associated protein,is thought to be involved in modulating smooth muscle contractile activity,but the role and mechanism keep unknown.In this study,trace amount of calponin(TAC)was found to obviously influence myosin in different states in Ca2+-independent manner,suggesting a high efficient interaction between TAC and myosin.In this assay,the lowest ratio of CaP vs.myosin was 1:10,000,with the concentration of CaP 10,000-fold lower than that used previously.Myosin phosphorylation,myosin Mg2+-ATPase activity and protein binding activity were detected to determine the effects of TAC on the myosin in different states.The amount of precipitated myosin that bound to TAC was used as the index to determine the interaction between myosin and TAC in binding assay.Our data showed that in the absence of actin,TAC significantly increased the precipitation of unphosphorylated myosin,Ca2+-dependently or independently phosphorylated myosin by MLCK,and stimulated the Mg2+-ATPase activities of these myosins slightly but significantly.However,no obvious change of precipitation of myosin phosphorylated by PKA was observed,indicating the relatively selective effect of TAC.In the presence of actin,the increase of myosin precipitations was abolished,and no obvious change of actin precipitations and actinactivated myosin Mg2+-ATPase activities were observed implicating the high efficiency of TAC on myosin being present in the absence of actin.Although we can not give conclusive comments to our results,we propose that the high efficiency of TAC-myosin interaction is present when actin is dissociated from myosin,even if CaP/myosin ratio is very low;this high efficient interaction can be abolished by actin.However,why and how TAC can possess such a high efficiency to influence myosin and how the physiological significance of the high efficiency of TAC is in regulating the interaction between myosin and actin remain to be investigated.

  19. Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments

    NARCIS (Netherlands)

    Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Mansson, Alf; Kocer, Armagan

    2013-01-01

    Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies.

  20. Myosin light chain genes in the turkey (Meleagris gallopavo).

    Science.gov (United States)

    Chaves, L D; Ostroski, B J; Reed, K M

    2003-01-01

    Myosin light chains associate with the motor protein myosin and are believed to play a role in the regulation of its actin-based ATPase activity. Myosin light chain cDNA clones from the turkey (Meleagris gallopavo) were isolated and sequenced. One sequence corresponded to an alternative transcript, the skeletal muscle essential light chain (MYL1 isoform 1) and a second to the smooth muscle isoform of myosin light chain (MYL6). The DNA and predicted amino acid sequences of both light chain genes were compared to that of the chicken. Based on the cDNA sequence, oligonucleotide primers were designed to amplify genomic DNA from six of the seven introns of the MYL1 gene. Approximately 5 kb of DNA was sequenced (introns and 3' UTR) and evaluated for the presence of single nucleotide polymorphisms (SNPs). SNPs were verified by sequencing common intron regions from multiple individuals and three polymorphisms were used to genotype pedigreed families. MYL1 is assigned to a turkey linkage group that corresponds to a region of chicken chromosome 7 (GGA7). The results of this study provide genomic reagents for comparative studies of avian muscle components and muscle biology.

  1. Structural insight into the UNC-45–myosin complex

    DEFF Research Database (Denmark)

    Fratev, Filip; Jonsdottir, Svava Osk; Pajeva, Ilza

    2013-01-01

    in silico methods. Initially, the human UNC-45B binding epitope was identified and the protein was docked to the cardiac myosin (MYH7) motor domain. The final UNC45B–MYH7 structure was obtained by performing of total 630 ns molecular dynamics simulations. The results indicate a complex formation, which...

  2. Drebrin attenuates the interaction between actin and myosin-V.

    Science.gov (United States)

    Ishikawa, Ryoki; Katoh, Kaoru; Takahashi, Ayumi; Xie, Ce; Oseki, Koushi; Watanabe, Michitoshi; Igarashi, Michihiro; Nakamura, Akio; Kohama, Kazuhiro

    2007-07-27

    Drebrin-A is an actin-binding protein localized in the dendritic spines of mature neurons, and has been suggested to affect spine morphology [K. Hayashi, T. Shirao, Change in the shape of dendritic spines caused by overexpression of drebrin in cultured cortical neurons, J. Neurosci. 19 (1999) 3918-3925]. However, no biochemical analysis of drebrin-A has yet been reported. In this study, we purified drebrin-A using a bacterial expression system, and characterized it in vitro. Drebrin-A bound to actin filaments with a stoichiometry of one drebrin molecule to 5-6 actin molecules. Furthermore, drebrin-A decreased the Mg-ATPase activity of myosin V. In vitro motility assay revealed that the attachment of F-actin to glass surface coated with myosin-V was decreased by drebrin-A, but once F-actin attached to the surface, the sliding speed of F-actin was unaffected by the presence of drebrin A. These findings suggest that drebrin-A may affect spine dynamics, vesicle transport, and other myosin-V-driven motility in neurons through attenuating the interaction between actin and myosin-V.

  3. Calyculin A, an enhancer of myosin, speeds up anaphase chromosome movement.

    Science.gov (United States)

    Fabian, Lacramioara; Troscianczuk, Joanna; Forer, Arthur

    2007-01-01

    Actin and myosin inhibitors often blocked anaphase movements in insect spermatocytes in previous experiments. Here we treat cells with an enhancer of myosin, Calyculin A, which inhibits myosin-light-chain phosphatase from dephosphorylating myosin; myosin thus is hyperactivated. Calyculin A causes anaphase crane-fly spermatocyte chromosomes to accelerate poleward; after they reach the poles they often move back toward the equator. When added during metaphase, chromosomes at anaphase move faster than normal. Calyculin A causes prometaphase chromosomes to move rapidly up and back along the spindle axis, and to rotate. Immunofluorescence staining with an antibody against phosphorylated myosin regulatory light chain (p-squash) indicated increased phosphorylation of cleavage furrow myosin compared to control cells, indicating that calyculin A indeed increased myosin phosphorylation. To test whether the Calyculin A effects are due to myosin phosphatase or to type 2 phosphatases, we treated cells with okadaic acid, which inhibits protein phosphatase 2A at concentrations similar to Calyculin A but requires much higher concentrations to inhibit myosin phosphatase. Okadaic acid had no effect on chromosome movement. Backward movements did not require myosin or actin since they were not affected by 2,3-butanedione monoxime or LatruculinB. Calyculin A affects the distribution and organization of spindle microtubules, spindle actin, cortical actin and putative spindle matrix proteins skeletor and titin, as visualized using immunofluorescence. We discuss how accelerated and backwards movements might arise. PMID:17381845

  4. Model of Rho-Mediated Myosin Recruitment to the Cleavage Furrow during Cytokinesis

    Science.gov (United States)

    Veksler, Alexander; Vavylonis, Dimitrios

    2010-03-01

    The formation and constriction of the contractile ring during cytokinesis, the final step of cell division, depends on the recruitment of motor protein myosin to the cell's equatorial region. During cytokinesis, the myosin attached to the cell's cortex progressively disassembles at the flanking regions and concentrates in the equator [1]. This recruitment depends on myosin motor activity and activation by Rho proteins. Central spindle and astral microtubules establish a spatial pattern of differential Rho activity [2]. We propose a reaction-diffusion model for the dynamics of myosin and Rho proteins during cytokinesis. In the model, the mitotic spindle activates Rho at the equator. Active Rho promotes, in a switch-like manner, myosin assembly into cortical minifilaments. Mechanical stress by cortical myosin causes disassembly of myosin minifilaments and deactivates Rho. Our results explain both the recruitment of myosin to the cleavage furrow and the observed damped myosin oscillations in the cell's flanking regions [1]. Spatial extent, period and decay rate of myosin oscillations are calculated. Various regimes of myosin recruitment are predicted. [1] Zhou & Wang, Mol. Biol. Cell 19:318 (2008) [2] Murthy & Wadsworth, J. Cell Sci. 121:2350 (2008)

  5. Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus.

    Directory of Open Access Journals (Sweden)

    Khalid Amari

    2014-10-01

    Full Text Available Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP and to a delay in the MP accumulation in plasmodesmata (PD. The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection.

  6. Globular tail of myosin-V is bound to vamp/synaptobrevin.

    Science.gov (United States)

    Ohyama, A; Komiya, Y; Igarashi, M

    2001-02-01

    VAMP/synaptobrevin is one of a number of v-SNAREs involved in vesicular fusion events in neurons. In a previous report, VAMP was shown to form a complex with synaptophysin and myosin V, a motor protein based on the F-actin, and that myosin V was then released from the complex in a Ca(2+)-dependent manner. Here, we found that VAMP alone is bound to myosin V in a Ca(2+)-independent manner, and determined that the globular tail domain of myosin V is its binding site. The syntaxin-VAMP-myosin V formed in the presence of Ca(2+)/calmodulin (CaM). In the absence of CaM, only syntaxin-VAMP, or VAMP-myosin V complex was formed. Our results suggest that VAMP acts as a myosin V receptor on the vesicles and regulates formation of the complex.

  7. Determination of the critical residues responsible for cardiac myosin binding protein C's interactions.

    Science.gov (United States)

    Bhuiyan, Md Shenuarin; Gulick, James; Osinska, Hanna; Gupta, Manish; Robbins, Jeffrey

    2012-12-01

    Despite early demonstrations of myosin binding protein C's (MyBP-C) interaction with actin, different investigators have reached different conclusions regarding the relevant and necessary domains mediating this binding. Establishing the detailed structure-function relationships is needed to fully understand cMyBP-C's ability to impact on myofilament contraction as mutations in different domains are causative for familial hypertrophic cardiomyopathy. We defined cMyBP-C's N-terminal structural domains that are necessary or sufficient to mediate interactions with actin and/or the head region of the myosin heavy chain (S2-MyHC). Using a combination of genetics and functional assays, we defined the actin binding site(s) present in cMyBP-C. We confirmed that cMyBP-C's C1 and m domains productively interact with actin, while S2-MyHC interactions are restricted to the m domain. Using residue-specific mutagenesis, we identified the critical actin binding residues and distinguished them from the residues that were critical for S2-MyHC binding. To validate the structural and functional significance of these residues, we silenced the endogenous cMyBP-C in neonatal rat cardiomyocytes (NRC) using cMyBP-C siRNA, and replaced the endogenous cMyBP-C with normal or actin binding-ablated cMyBP-C. Replacement with actin binding-ablated cMyBP-C showed that the mutated protein did not incorporate into the sarcomere normally. Residues responsible for actin and S2-MyHC binding are partially present in overlapping domains but are unique. Expression of an actin binding-deficient cMyBP-C resulted in abnormal cytosolic distribution of the protein, indicating that interaction with actin is essential for the formation and/or maintenance of normal cMyBP-C sarcomeric distribution.

  8. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Directory of Open Access Journals (Sweden)

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  9. Head injury.

    Science.gov (United States)

    Hureibi, K A; McLatchie, G R

    2010-05-01

    Head injury is one of the commonest injuries in sport. Most are mild but some can have serious outcomes. Sports medicine doctors should be able to recognise the clinical features and evaluate athletes with head injury. It is necessary during field assessment to recognise signs and symptoms that help in assessing the severity of injury and making a decision to return-to-play. Prevention of primary head injury should be the aim. This includes protective equipment like helmets and possible rule changes. PMID:20533694

  10. Quantitative determination of type I myosin heavy chain in bovine muscle with anti myosin monoclonal antibodies.

    Science.gov (United States)

    Picard, B; Leger, J; Robelin, J

    1994-01-01

    Bovine type I muscle fibers were characterized by enzyme-linked immunosorbent assay (ELISA) with a monoclonal antibody specific for slow myosin heavy chains (MHC 1). Two bovine muscles, the Masseter and Cutaneus trunci, were analyzed by different complementary techniques: electrophoresis, immunoblotting and immunohistiology. The results showed that the two muscles have extreme characteristics. The Masseter contains only slow MHC and the Cutaneus trunci is composed solely of rapid MHC (MHC 2a and 2b). A standard for this ELISA was obtained by mixing the two muscles and was used as a reference in the determination of the percentage of MHC 1 in a given muscle. In this study, the Longissimus thoracis of 27 Charolais cattle were examined. The different conditions under which assays were carried out were described and the accuracy of the measurement was calculated. In view of the results, ELISA was chosen for the analysis of muscle fiber types in large numbers of animal specimens. This technique could be used in several research projects to study the muscle characteristics that determine beef quality. PMID:22061628

  11. Kinetic characterization of the sole nonmuscle myosin-2 from the model organism Drosophila melanogaster.

    Science.gov (United States)

    Heissler, Sarah M; Chinthalapudi, Krishna; Sellers, James R

    2015-04-01

    Nonmuscle myosin-2 is the primary enzyme complex powering contractility of the F-actin cytoskeleton in the model organism Drosophila. Despite myosin's essential function in fly development and homeostasis, its kinetic features remain elusive. The purpose of this in vitro study is a detailed steady-state and presteady-state kinetic characterization of the Drosophila nonmuscle myosin-2 motor domain. Kinetic features are a slow steady-state ATPase activity, high affinities for F-actin and ADP, and a low duty ratio. Comparative analysis of the overall enzymatic signatures across the nonmuscle myosin-2 complement from model organisms indicates that the Drosophila protein resembles nonmuscle myosin-2s from metazoa rather than protozoa, though modulatory aspects of myosin motor function are distinct. Drosophila nonmuscle myosin-2 is uniquely insensitive toward blebbistatin, a commonly used myosin-2 inhibitor. An in silico modeling approach together with kinetic studies indicate that the nonconsensus amino acid Met466 in the Drosophila nonmuscle myosin-2 active-site loop switch-2 acts as blebbistatin desensitizer. Introduction of the M466I mutation sensitized the protein for blebbistatin, resulting in a half-maximal inhibitory concentration of 36.3 ± 4.1 µM. Together, these data show that Drosophila nonmuscle myosin-2 is a bona fide molecular motor and establish an important link between switch-2 and blebbistatin sensitivity.

  12. Head Injuries

    Science.gov (United States)

    ... Aid: Falls First Aid: Head Injuries Preventing Children's Sports Injuries Getting Help: Know the Numbers Concussions Stay Safe: ... Tips: Inline Skating Safety Tips: Skateboarding Dealing With Sports Injuries Concussions: What to Do Contact Us Print Resources ...

  13. Head MRI

    Science.gov (United States)

    ... the brain ( arteriovenous malformations of the head ) Acoustic neuroma Bleeding in the brain Brain abscess Brain aneurysms ... 2014:chap 5. Read More Absence seizure Acoustic neuroma Alzheimer disease Amyotrophic lateral sclerosis Aneurysm in the ...

  14. Rho kinase's role in myosin recruitment to the equatorial cortex of mitotic Drosophila S2 cells is for myosin regulatory light chain phosphorylation.

    Directory of Open Access Journals (Sweden)

    Sara O Dean

    Full Text Available BACKGROUND: Myosin II recruitment to the equatorial cortex is one of the earliest events in establishment of the cytokinetic contractile ring. In Drosophila S2 cells, we previously showed that myosin II is recruited to the furrow independently of F-actin, and that Rho1 and Rok are essential for this recruitment [1]. Rok phosphorylates several cellular proteins, including the myosin regulatory light chain (RLC. METHODOLOGY/PRINCIPAL FINDINGS: Here we express phosphorylation state mimic constructs of the RLC in S2 cells to examine the role of RLC phosphorylation involving Rok in the localization of myosin. Phosphorylation of the RLC is required for myosin localization to the equatorial cortex during mitosis, and the essential role of Rok in this localization and for cytokinesis is to maintain phosphorylation of the RLC. The ability to regulate the RLC phosphorylation state spatio-temporally is not essential for the myosin localization. Furthermore, the essential role of Citron in cytokinesis is not phosphorylation of the RLC. CONCLUSIONS/SIGNIFICANCE: We conclude that the Rho1 pathway leading to myosin localization to the future cytokinetic furrow is relatively straightforward, where only Rok is needed, and it is only needed to maintain phosphorylation of the myosin RLC.

  15. Mode coupling points to functionally important residues in myosin II.

    OpenAIRE

    Varol, Onur; Yüret, Deniz; Erman, Burak; Kabakçıoğlu, Alkan

    2015-01-01

    Relevance of mode coupling to energy/information transfer during protein function, particularly in the context of allosteric interactions is widely accepted. However, existing evidence in favor of this hypothesis comes essentially from model systems. We here report a novel formal analysis of the near-native dynamics of myosin II, which allows us to explore the impact of the interaction between possibly non-Gaussian vibrational modes on fluctutational dynamics. We show that an information-theo...

  16. Bighead carp myosin stability tb heat and frozen storage

    OpenAIRE

    Radičević Tatjana; Raičević Smiljana; Niketić Vesna P.

    2002-01-01

    Differential scanning calorimetry (DSC) was used to investigate thermal transitions of bighead carp muscle (Aristichthys nobilis Richardson). Three endothermic peaks were observed in DSC thermograms of fresh muscle. After addition of salt, transition temperatures shifted to lower temperatures. Preheating samples at 70°C caused virtual disappearance of all transition peaks. Low temperature storage (-18°C, for five weeks) caused changes in myosin transitions. The evidence suggests that changes ...

  17. Smooth muscle myosin: a high force-generating molecular motor.

    OpenAIRE

    VanBuren, P; Guilford, W. H.; Kennedy, G.; Wu, J.; Warshaw, D.M.

    1995-01-01

    Smooth muscle generates as much force per cross sectional area of muscle as skeletal muscle with only one-fifth the myosin content. Although this apparent difference could be explained at the tissue or cellular level, it is possible that at the molecular level smooth muscle cross-bridges generate greater average force than skeletal muscle cross-bridges. To test this hypothesis, we used an in vitro motility assay (VanBuren et al., 1994) in which either chicken thiophosphorylated gizzard smooth...

  18. Covalent immobilization of myosin for in-vitro motility of actin

    Indian Academy of Sciences (India)

    Ellis Bagga; Sunita Kumari; Rajesh Kumar; Rakesh Kumar; R P Bajpai; Lalit M Bharadwaj

    2005-11-01

    The present study reports the covalent immobilization of myosin on glass surface and in-vitro motility of actin-myosin biomolecular motor. Myosin was immobilized on poly-L-lysine coated glass using heterobifunctional cross linker EDC and characterized by AFM. The in-vitro motility of actin was carried out on the immobilized myosin. It was observed that velocity of actin over myosin increases with increasing actin concentration (0.4-1.0 mg/ml) and was found in the range of 0.40-3.25 m/s. The motility of actin-myosin motor on artificial surfaces is of immense importance for developing nanodevices for healthcare and engineering applications.

  19. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells.

    Science.gov (United States)

    Chen, Guokai; Hou, Zhonggang; Gulbranson, Daniel R; Thomson, James A

    2010-08-01

    Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity, junctional complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent cell-cell adhesion, all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures, programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies, their viability is significantly reduced. Here, we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase, downregulation of myosin heavy chain, and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain, suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs.

  20. Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling

    OpenAIRE

    Barfod, Elisabeth T.; Moore, Ann L.; Van de Graaf, Benjamin G.; Steven D Lidofsky

    2011-01-01

     The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin ...

  1. Structural basis for myopathic defects engendered by alterations in the myosin rod

    OpenAIRE

    Cammarato, Anthony; Li, Xiaochuan; Reedy, Mary C.; Lee, Chi F.; Lehman, William; Bernstein, Sanford I

    2011-01-01

    While mutations in the myosin S1 motor domain can directly disrupt the generation and transmission of force along myofibrils and lead to myopathy, the mechanism whereby mutations in the myosin rod influence mechanical function is less clear. Here, we used a combination of various imaging techniques and molecular dynamics simulations to test the hypothesis that perturbations in the myosin rod can disturb normal sarcomeric uniformity and, like motor domain lesions, would influence force product...

  2. Recent Advances in Understanding Plant Myosin Function: Life in the Fast Lane

    Institute of Scientific and Technical Information of China (English)

    Imogen Sparkes

    2011-01-01

    Plant myosins are required for organelle movement,and a role in actin organization has recently come to light.Myosin mutants display several gross morphological phenotypes,the most severe being dwarfism and reduced fecundity,and there is a correlation between reduced organelle movement and morphological defects.This review aims to discuss recent findings in plants relating to the role of myosins in actin dynamics,development,and organelle movement,more specifically the endoplasmic reticulum (ER).One overarching theme is that there still appear to be more questions than answers relating to plant myosin function and regulation.

  3. Arabidopsis myosin XI-K localizes to the motile endomembrane vesicles associated with F-actin

    Directory of Open Access Journals (Sweden)

    Valera V. Peremyslov

    2012-09-01

    Full Text Available Plant myosins XI were implicated in cell growth, F-actin organization, and organelle transport, with myosin XI-K being a critical contributor to each of these processes. However, subcellular localization of myosins and the identity of their principal cargoes remain poorly understood. Here, we generated a functionally competent, fluorescent protein-tagged, myosin XI-K, and investigated its spatial distribution within Arabidopsis cells. This myosin was found to associate primarily not with larger organelles (e.g., Golgi as was broadly assumed, but with endomembrane vesicles trafficking along F-actin. Subcellular localization and fractionation experiments indicated that the nature of myosin-associated vesicles is organ- and cell type-specific. In leaves, a large proportion of these vesicles aligned and co-fractionated with a motile ER subdomain. In roots, non-ER vesicles were a dominant myosin cargo. Myosin XI-K showed a striking polar localization at the tips of growing, but not mature, root hairs. These results strongly suggest that a major mechanism whereby myosins contribute to plant cell physiology is vesicle transport, and that this activity can be regulated depending on the growth phase of a cell.

  4. Differential patterns of myosin Va expression during the ontogenesis of the rat hippocampus

    Directory of Open Access Journals (Sweden)

    L.S. Brinn

    2010-09-01

    Full Text Available Myosin Va is an actin-based, processive molecular motor protein highly enriched in the nervous tissue of vertebrates. It has been associated with processes of cellular motility, which include organelle transport and neurite outgrowth. The in vivo expression of myosin Va protein in the developing nervous system of mammals has not yet been reported. We describe here the immunolocalization of myosin Va in the developing rat hippocampus. Coronal sections of the embryonic and postnatal rat hippocampus were probed with an affinity-purified, polyclonal anti-myosin Va antibody. Myosin Va was localized in the cytoplasm of granule cells in the dentate gyrus and of pyramidal cells in Ammon's horn formation. Myosin Va expression changed during development, being higher in differentiating rather than already differentiated granule and pyramidal cells. Some of these cells presented a typical migratory profile, while others resembled neurons that were in the process of differentiation. Myosin Va was also transiently expressed in fibers present in the fimbria. Myosin Va was not detected in germinative matrices of the hippocampus proper or of the dentate gyrus. In conclusion, myosin Va expression in both granule and pyramidal cells showed both position and time dependency during hippocampal development, indicating that this motor protein is under developmental regulation.

  5. Unconventional myosins, actin dynamics and endocytosis: a ménage à trois?

    Science.gov (United States)

    Soldati, Thierry

    2003-06-01

    Ever since the discovery of class I myosins, the first nonmuscle myosins, about 30 years ago, the history of unconventional myosins has been linked to the organization and working of actin filaments. It slowly emerged from studies of class I myosins in lower eukaryotes that they are involved in mechanisms of endocytosis. Most interestingly, a flurry of recent findings assign a more active role to class I myosins in regulating the spatial and temporal organization of actin filament nucleation and elongation. The results highlight the multiple links between class I myosins and the major actin nucleator, the Arp2/3 complex, and its newly described activators. Two additional types of unconventional myosins, myosinIX, and Dictyostelium discoideum MyoM, have recently been tied to the signaling pathways controlling actin cytoskeleton remodeling. The present review surveys the links between these three classes of molecular motors and the complex cellular processes of endocytosis and actin dynamics, and concentrates on a working model accounting for the function of class I myosins via recruitment of the machinery responsible for actin nucleation and elongation. PMID:12753645

  6. Myosin individualized: single nucleotide polymorphisms in energy transduction

    Directory of Open Access Journals (Sweden)

    Wieben Eric D

    2010-03-01

    Full Text Available Abstract Background Myosin performs ATP free energy transduction into mechanical work in the motor domain of the myosin heavy chain (MHC. Energy transduction is the definitive systemic feature of the myosin motor performed by coordinating in a time ordered sequence: ATP hydrolysis at the active site, actin affinity modulation at the actin binding site, and the lever-arm rotation of the power stroke. These functions are carried out by several conserved sub-domains within the motor domain. Single nucleotide polymorphisms (SNPs affect the MHC sequence of many isoforms expressed in striated muscle, smooth muscle, and non-muscle tissue. The purpose of this work is to provide a rationale for using SNPs as a functional genomics tool to investigate structurefunction relationships in myosin. In particular, to discover SNP distribution over the conserved sub-domains and surmise what it implies about sub-domain stability and criticality in the energy transduction mechanism. Results An automated routine identifying human nonsynonymous SNP amino acid missense substitutions for any MHC gene mined the NCBI SNP data base. The routine tested 22 MHC genes coding muscle and non-muscle isoforms and identified 89 missense mutation positions in the motor domain with 10 already implicated in heart disease and another 8 lacking sequence homology with a skeletal MHC isoform for which a crystallographic model is available. The remaining 71 SNP substitutions were found to be distributed over MHC with 22 falling outside identified functional sub-domains and 49 in or very near to myosin sub-domains assigned specific crucial functions in energy transduction. The latter includes the active site, the actin binding site, the rigid lever-arm, and regions facilitating their communication. Most MHC isoforms contained SNPs somewhere in the motor domain. Conclusions Several functional-crucial sub-domains are infiltrated by a large number of SNP substitution sites suggesting these

  7. Myosin localization during meiosis I of crane-fly spermatocytes gives indications about its role in division.

    Science.gov (United States)

    Silverman-Gavrila, Rosalind V; Forer, Arthur

    2003-06-01

    We showed previously that in crane-fly spermatocytes myosin is required for tubulin flux [Silverman-Gavrila and Forer, 2000a: J Cell Sci 113:597-609], and for normal anaphase chromosome movement and contractile ring contraction [Silverman-Gavrila and Forer, 2001: Cell Motil Cytoskeleton 50:180-197]. Neither the identity nor the distribution of myosin(s) were known. In the present work, we used immunofluorescence and confocal microscopy to study myosin during meiosis-I of crane-fly spermatocytes compared to tubulin, actin, and skeletor, a spindle matrix protein, in order to further understand how myosin might function during cell division. Antibodies to myosin II regulatory light chain and myosin II heavy chain gave similar staining patterns, both dependent on stage: myosin is associated with nuclei, asters, centrosomes, chromosomes, spindle microtubules, midbody microtubules, and contractile rings. Myosin and actin colocalization along kinetochore fibers from prometaphase to anaphase are consistent with suggestions that acto-myosin forces in these stages propel kinetochore fibres poleward and trigger tubulin flux in kinetochore fibres, contributing in this way to poleward chromosome movement. Myosin and actin colocalization at the cell equator in cytokinesis, similar to studies in other cells [e.g., Fujiwara and Pollard, 1978: J Cell Biol 77:182-195], supports a role of actin-myosin interactions in contractile ring function. Myosin and skeletor colocalization in prometaphase spindles is consistent with a role of these proteins in spindle formation. After microtubules or actin were disrupted, myosin remained in spindles and contractile rings, suggesting that the presence of myosin in these structures does not require the continued presence of microtubules or actin. BDM (2,3 butanedione, 2 monoxime) treatment that inhibits chromosome movement and cytokinesis also altered myosin distributions in anaphase spindles and contractile rings, consistent with the

  8. Head Lice

    Science.gov (United States)

    ... resources Meet our partners Español Donate Diseases and treatments Acne and rosacea Bumps and growths Color problems Contagious skin diseases ... Head lice public SPOT Skin Cancer™ Diseases and treatments Acne and rosacea Bumps and growths Color problems Contagious skin diseases ...

  9. Myosin Va is developmentally regulated and expressed in the human cerebellum from birth to old age

    Directory of Open Access Journals (Sweden)

    C.C.R. Souza

    2013-02-01

    Full Text Available Myosin Va functions as a processive, actin-based motor molecule highly enriched in the nervous system, which transports and/or tethers organelles, vesicles, and mRNA and protein translation machinery. Mutation of myosin Va leads to Griscelli disease that is associated with severe neurological deficits and a short life span. Despite playing a critical role in development, the expression of myosin Va in the central nervous system throughout the human life span has not been reported. To address this issue, the cerebellar expression of myosin Va from newborns to elderly humans was studied by immunohistochemistry using an affinity-purified anti-myosin Va antibody. Myosin Va was expressed at all ages from the 10th postnatal day to the 98th year of life, in molecular, Purkinje and granular cerebellar layers. Cerebellar myosin Va expression did not differ essentially in localization or intensity from childhood to old age, except during the postnatal developmental period. Structures resembling granules and climbing fibers in Purkinje cells were deeply stained. In dentate neurons, long processes were deeply stained by anti-myosin Va, as were punctate nuclear structures. During the first postnatal year, myosin Va was differentially expressed in the external granular layer (EGL. In the EGL, proliferating prospective granule cells were not stained by anti-myosin Va antibody. In contrast, premigratory granule cells in the EGL stained moderately. Granule cells exhibiting a migratory profile in the molecular layer were also moderately stained. In conclusion, neuronal myosin Va is developmentally regulated, and appears to be required for cerebellar function from early postnatal life to senescence.

  10. Missense mutation of the {beta}-cardiac myosin heavy-chain gene in hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Shoichi; Matsuoka, Rumiko; Hirayama, Kenji; Sakurai, Hisanao [Heart Inst. of Japan, Tokyo (Japan)] [and others

    1995-09-11

    Hypertrophic cardiomyopathy occurs as an autosomal dominant familial disorder or as a sporadic disease without familial involvement. We describe a missense mutation of the {beta}-cardiac myosin heavy chain (MHC) gene, a G to T transversion (741 Gly{r_arrow}Trp) identified by direct sequencing of exon 20 in four individuals affected with familial hypertrophic cardiomyopathy. Three individuals with sporadic hypertrophic cardiomyopathy, whose parents are clinically and genetically unaffected, had sequence variations of exon 34 of the {alpha}-cardiac MHC gene (a C to T transversion, 1658 Asp{r_arrow}Asp, resulting in FokI site polymorphism), of intron 33 of the {alpha}-cardiac MHC gene (a G to A and an A to T transversion), and also of intron 14 of the {beta}-cardiac MHC gene (a C to T transversion in a patient with Noonan syndrome). Including our case, 30 missense mutations of the {beta}-cardiac MHC gene in 49 families have been reported thus far worldwide. Almost all are located in the region of the gene coding for the globular head of the molecule, and only one mutation was found in both Caucasian and Japanese families. Missense mutations of the {Beta}-cardiac MHC gene in hypertrophic cardiomyopathy may therefore differ according to race. 29 refs., 6 figs., 3 tabs.

  11. Laing early onset distal myopathy: slow myosin defect with variable abnormalities on muscle biopsy

    NARCIS (Netherlands)

    P.J. Lamont; B. Udd; F.L. Mastaglia; M. de Visser; P. Hedera; T. Voit; L.R. Bridges; V. Fabian; A. Rozemuller; N.G. Laing

    2006-01-01

    Background: Laing early onset distal myopathy (MPD1) is an autosomal dominant myopathy caused by mutations within the slow skeletal muscle fibre myosin heavy chain gene, MYH7 It is allelic with myosin storage myopathy, with the commonest form of familial hypertrophic cardiomyopathy, and with one for

  12. My oh my(osin): Insights into how auditory hair cells count, measure, and shape.

    Science.gov (United States)

    Pollock, Lana M; Chou, Shih-Wei; McDermott, Brian M

    2016-01-18

    The mechanisms underlying mechanosensory hair bundle formation in auditory sensory cells are largely mysterious. In this issue, Lelli et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509017) reveal that a pair of molecular motors, myosin IIIa and myosin IIIb, is involved in the hair bundle's morphology and hearing.

  13. Myosin Ⅷ Regulates Protonemal Patterning and Developmental Timing in the Moss Physcomitrella patens

    Institute of Scientific and Technical Information of China (English)

    Shu-Zon Wua; Julie A. Ritchie; Ai-Hong Pan; Ralph S. Quatrano; Magdalena Bezanilla

    2011-01-01

    Plants have two classes of myosins.While recent work has focused on class Ⅺ myosins showing that myosin Ⅺ is responsible for organelle motility and cytoplasmic streaming,much less is known about the role of myosin Ⅷ in plant growth and development.We have used a combination of RNAi and insertional knockouts to probe myosin Ⅷ function in the moss Physcomitrella patens.We isolated △myo8ABCDE plants demonstrating that myosin Ⅷ is not required for plant viability.However,myosin Ⅷ mutants are smaller than wild-type plants in part due to a defect in cell size.Additionally,△myo8ABCDE plants produce more side branches and form gametophores much earlier than wild-type plants.In the absence of nutrient media,△myo8ABCDE plants exhibit significant protonemal patterning defects,including highly curved protonemal filaments,morphologically defective side branches,as well as an increase in the number of branches.Exogenous auxin partially rescues protonemal defects in △myo8ABCDE plants grown in the absence of nutrients.This result,together with defects in protonemal branching,smaller caulonemal cells,and accelerated development in the △myo8ABCDE plants,suggests that myosin Ⅷ is involved in hormone homeostasis in P patens.

  14. My oh my(osin): Insights into how auditory hair cells count, measure, and shape

    OpenAIRE

    Pollock, Lana M.; Chou, Shih-Wei; McDermott, Brian M., Jr.

    2016-01-01

    The mechanisms underlying mechanosensory hair bundle formation in auditory sensory cells are largely mysterious. In this issue, Lelli et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509017) reveal that a pair of molecular motors, myosin IIIa and myosin IIIb, is involved in the hair bundle’s morphology and hearing.

  15. Intra-axonal myosin and actin in nerve regeneration.

    Science.gov (United States)

    McQuarrie, Irvine G; Lund, Linda M

    2009-10-01

    A focused review of sciatic nerve regeneration in the rat model, based on research conducted by the authors, is presented. We examine structural proteins carried distally in the axon by energy-requiring motor enzymes, using protein chemistry and molecular biology techniques in combination with immunohistochemistry. Relevant findings from other laboratories are cited and discussed. The general conclusion is that relatively large amounts of actin and tubulin are required to construct a regenerating axon and that these materials mainly originate in the parent axon. The motor enzymes that carry these proteins forward as macromolecules include kinesin and dynein but probably also include myosin. PMID:19927086

  16. THE CHARACTERIZATION OF MYOSIN LIGHT CHAIN PHOSPHORYLATION BY THE CONSTITUTIVELY ACTIVE FRAGMENT OF MLCK

    Institute of Scientific and Technical Information of China (English)

    杨静娴; 王晓明; 唐泽耀; 陈华; 戴淑芳; 林原

    2003-01-01

    Objective. To study the exact effects and characteristics of a constitutively active myosin light chain kinase fragment (MLCKF) on Ca2+-CaM dependent phosphorylation of myosin light chains (CDPM) of smooth muscle. Methods. Proteolysis of myosin light chain kinase (MLCK) by trypsin was used to obtain the constitutively active fragment of MLCK; Western blot was applied to demonstrate the homogeneity of typsin-digested MLCK fragments and intact MLCK. The phosphorylation of myosin light chains was detected using SDS-PAGE and Scoin Image Software, and myosin Mg2+-ATPase activities were measured using spectrophotometry to observe the characteristics of MLCKF in phosphorylating myosin light chains and stimulating myosin Mg2+-ATPase activities compared with intact MLCK. Results. Our assay demonstrated that MLCKF had a specific activity on CDPM. We also found that the extent of CDPM by MLCKF was greater than that by intact MLCK at different concentrations, different incubation time and different incubation temperatures. CDPM by MLCKF was also less influenced by the change of ionic strength of KC1 than CDPM by intact MLCK. Mg2+--ATPase activities of phosphorylat- ed myosin light chains by MLCKF were higher than those by MLCK at different concentrations and different reaction time. These differences were statistically significant (**P<0.01, *P<0.05). Conclusion. MLCKF not only possessed a specific activity on CDPM but also was more efficient than MLCK in phosphorylating myosin light chains and stimulating myosin Mg2*-ATPase activities. Our results suggested that MLCKF possibly plays a certain role in smooth muscle contraction-relaxation cycle.

  17. Is HEADS in our heads?

    DEFF Research Database (Denmark)

    Boisen, Kirsten A; Hertz, Pernille Grarup; Blix, Charlotte;

    2016-01-01

    BACKGROUND: Outpatient clinic visits are a window of opportunity to address health risk behaviors and promote a healthier lifestyle among young people. The HEADS (Home, Education, Eating, Activities, Drugs [i.e. substance use including tobacco, alcohol, and illegal drugs], Sexuality [including...... contraception], Safety, Self-harm) interview is a feasible way of exploring health risk behaviors and resilience. OBJECTIVE: The purpose of this study was to evaluate how often HEADS topics were addressed according to young patients and staff in pediatric and adult outpatient clinics. METHODS: We conducted...... patients. Young patients reported that smoking, alcohol, illegal drugs, sexuality, and contraception were addressed significantly more at adult clinics in comparison to pediatric clinics. After controlling for age, gender and duration of illness, according to young patients, adjusted odds ratios...

  18. Minimum energy reaction profiles for ATP hydrolysis in myosin.

    Science.gov (United States)

    Grigorenko, Bella L; Kaliman, Ilya A; Nemukhin, Alexander V

    2011-11-01

    The minimum energy reaction profiles corresponding to two possible reaction mechanisms of adenosine triphosphate (ATP) hydrolysis in myosin are computed in this work within the framework of the quantum mechanics-molecular mechanics (QM/MM) method by using the same partitioning of the model system to the QM and MM parts and the same computational protocol. On the first reaction route, one water molecule performs nucleophilic attack at the phosphorus center P(γ) from ATP while the second water molecule in the closed protein cleft serves as a catalytic base assisted by the Glu residue from the myosin salt bridge. According to the present QM/MM calculations consistent with the results of kinetic studies this reaction pathway is characterized by a low activation energy barrier about 10 kcal/mol. The computed activation energy barrier for the second mechanism, which assumes the penta-coordinated oxyphosphorane transition state upon involvement of single water molecule in the reaction, is considerably higher than that for the two-water mechanism. PMID:21839658

  19. Head Position and Internally Headed Relative Clauses.

    Science.gov (United States)

    Basilico, David

    1996-01-01

    Examines "Head Movement" in internally headed relative clauses (IHRCs). The article shows that in some cases, head movement to an external position need not take place and demonstrates that this movement of the head to a sentence-internal position results from the quantificational nature of IHRCs and Diesing's mapping hypothesis (1990, 1992). (56…

  20. Approaches to myosin modelling in a two-phase flow model for cell motility

    Science.gov (United States)

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2016-04-01

    A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.

  1. Molecular biological approaches to study myosin functions in cytokinesis of Dictyostelium.

    Science.gov (United States)

    Uyeda, T Q; Yumura, S

    2000-04-15

    The cellular slime mold Dictyostelium discoideum is amenable to biochemical, cell biological, and molecular genetic analyses, and offers a unique opportunity for multifaceted approaches to dissect the mechanism of cytokinesis. One of the important questions that are currently under investigation using Dictyostelium is to understand how cleavage furrows or contractile rings are assembled in the equatorial region. Contractile rings consist of a number of components including parallel filaments of actin and myosin II. Phenotypic analyses and in vivo localization studies of cells expressing mutant myosin IIs have demonstrated that myosin II's transport to and localization at the equatorial region does not require regulation by phosphorylation of myosin II, specific amino acid sequences of myosin II, or the motor activity of myosin II. Rather, the transport appears to depend on a myosin II-independent flow of cortical cytoskeleton. What drives the flow of cortical cytoskeleton is still elusive. However, a growing number of mutants that affect assembly of contractile rings have been accumulated. Analyses of these mutations, identification of more cytokinesis-specific genes, and information deriving from other experimental systems, should allow us to understand the mechanism of contractile ring formation and other aspects of cytokinesis. PMID:10816252

  2. Epithelial cell shape is regulated by Lulu proteins via myosin-II.

    Science.gov (United States)

    Nakajima, Hiroyuki; Tanoue, Takuji

    2010-02-15

    Cell-shape change in epithelial structures is fundamental to animal morphogenesis. Recent studies identified myosin-II as the major generator of driving forces for cell-shape changes during morphogenesis. Lulu (Epb41l5) is a major regulator of morphogenesis, although the downstream molecular and cellular mechanisms remain obscure in mammals. In Drosophila and zebrafish, Lulu proteins were reported to negatively regulate Crumbs, an apical domain regulator, thus regulating morphogenesis. In this study, we show that mammalian Lulu activates myosin-II, thus regulating epithelial cell shape. In our experiments, Lulu expression in epithelial cells resulted in apical constriction and lateral elongation in the cells, accompanied by upregulation of myosin-II. The inhibition of myosin-II activity almost completely blocked this Lulu-driven cell-shape change. We further found that Rock participates in the myosin-II activation. Additionally, RNAi-mediated depletion of Lulu in epithelial cells resulted in disorganization of myosin-II and a concomitant loss of proper lateral domain organization in the cells. From these results, we propose that Lulu regulates epithelial cell shape by controlling myosin-II activity. PMID:20103536

  3. Cloning, expression, and characterization of a novel molecular motor, Leishmania myosin-XXI.

    Science.gov (United States)

    Batters, Christopher; Woodall, Katy A; Toseland, Christopher P; Hundschell, Christian; Veigel, Claudia

    2012-08-10

    The genome of the Leishmania parasite contains two classes of myosin. Myosin-XXI, seemingly the only myosin isoform expressed in the protozoan parasite, has been detected in both the promastigote and amastigote stages of the Leishmania life cycle. It has been suggested to perform a variety of functions, including roles in membrane anchorage, but also long-range directed movements of cargo. However, nothing is known about the biochemical or mechanical properties of this motor. Here we designed and expressed various myosin-XXI constructs using a baculovirus expression system. Both full-length (amino acids 1-1051) and minimal motor domain constructs (amino acids 1-800) featured actin-activated ATPase activity. Myosin-XXI was soluble when expressed either with or without calmodulin. In the presence of calcium (pCa 4.1) the full-length motor could bind a single calmodulin at its neck domain (probably amino acids 809-823). Calmodulin binding was required for motility but not for ATPase activity. Once bound, calmodulin remained stably attached independent of calcium concentration (pCa 3-7). In gliding filament assays, myosin-XXI moved actin filaments at ∼15 nm/s, insensitive to both salt (25-1000 mm KCl) and calcium concentrations (pCa 3-7). Calmodulin binding to the neck domain might be involved in regulating the motility of the myosin-XXI motor for its various cellular functions in the different stages of the Leishmania parasite life cycle. PMID:22718767

  4. The SAH domain extends the functional length of the myosin lever

    OpenAIRE

    Baboolal, TG; Sakamoto, T.; Forgacs, E; White, HD; Jackson, SM; Takagi, Y.; Farrow, RE; Molloy, JE; Knight, PJ; Sellers, JS; Peckham, M.

    2009-01-01

    Stable, single alpha-helix (SAH) domains are widely distributed in the proteome, including in myosins, but their functions are unknown. To test whether SAH domains can act as levers, we replaced four of the six calmodulin-binding IQ motifs in the levers of mouse myosin 5a (Myo5) with the putative SAH domain of Dictyostelium myosin MyoM of similar length. The SAH domain was inserted between the IQ motifs and the coiled coil in a Myo5 HMM construct in which the levers were truncated from six to...

  5. Sarcomere lattice geometry influences cooperative myosin binding in muscle.

    Directory of Open Access Journals (Sweden)

    Bertrand C W Tanner

    2007-07-01

    Full Text Available In muscle, force emerges from myosin binding with actin (forming a cross-bridge. This actomyosin binding depends upon myofilament geometry, kinetics of thin-filament Ca(2+ activation, and kinetics of cross-bridge cycling. Binding occurs within a compliant network of protein filaments where there is mechanical coupling between myosins along the thick-filament backbone and between actin monomers along the thin filament. Such mechanical coupling precludes using ordinary differential equation models when examining the effects of lattice geometry, kinetics, or compliance on force production. This study uses two stochastically driven, spatially explicit models to predict levels of cross-bridge binding, force, thin-filament Ca(2+ activation, and ATP utilization. One model incorporates the 2-to-1 ratio of thin to thick filaments of vertebrate striated muscle (multi-filament model, while the other comprises only one thick and one thin filament (two-filament model. Simulations comparing these models show that the multi-filament predictions of force, fractional cross-bridge binding, and cross-bridge turnover are more consistent with published experimental values. Furthermore, the values predicted by the multi-filament model are greater than those values predicted by the two-filament model. These increases are larger than the relative increase of potential inter-filament interactions in the multi-filament model versus the two-filament model. This amplification of coordinated cross-bridge binding and cycling indicates a mechanism of cooperativity that depends on sarcomere lattice geometry, specifically the ratio and arrangement of myofilaments.

  6. Myosin Vc Is Specialized for Transport on a Secretory Superhighway.

    Science.gov (United States)

    Sladewski, Thomas E; Krementsova, Elena B; Trybus, Kathleen M

    2016-08-22

    A hallmark of the well-studied vertebrate class Va myosin is its ability to take multiple steps on actin as a single molecule without dissociating, a feature called "processivity." Therefore, it was surprising when kinetic and single-molecule assays showed that human myosin Vc (MyoVc) was not processive on single-actin filaments [1-3]. We explored the possibility that MyoVc is processive only under conditions that resemble its biological context. Recently, it was shown that zymogen vesicles are transported on actin "superhighways" composed of parallel actin cables nucleated by formins from the plasma membrane [4]. Loss of these cables compromises orderly apical targeting of vesicles. MyoVc has been implicated in transporting secretory vesicles to the apical membrane [5]. We hypothesized that actin cables regulate the processive properties of MyoVc. We show that MyoVc is unique in taking variable size steps, which are frequently in the backward direction. Results obtained with chimeric constructs implicate the lever arm/rod of MyoVc as being responsible for these properties. Actin bundles allow single MyoVc motors to move processively. Remarkably, even teams of MyoVc motors require actin bundles to move continuously at physiological ionic strength. The irregular stepping pattern of MyoVc, which may result from flexibility in the lever arm/rod of MyoVc, appears to be a unique structural adaptation that allows the actin track to spatially restrict the activity of MyoVc to specialized actin cables in order to co-ordinate and target the final stages of vesicle secretion. PMID:27498562

  7. Myosin Vc Is Specialized for Transport on a Secretory Superhighway.

    Science.gov (United States)

    Sladewski, Thomas E; Krementsova, Elena B; Trybus, Kathleen M

    2016-08-22

    A hallmark of the well-studied vertebrate class Va myosin is its ability to take multiple steps on actin as a single molecule without dissociating, a feature called "processivity." Therefore, it was surprising when kinetic and single-molecule assays showed that human myosin Vc (MyoVc) was not processive on single-actin filaments [1-3]. We explored the possibility that MyoVc is processive only under conditions that resemble its biological context. Recently, it was shown that zymogen vesicles are transported on actin "superhighways" composed of parallel actin cables nucleated by formins from the plasma membrane [4]. Loss of these cables compromises orderly apical targeting of vesicles. MyoVc has been implicated in transporting secretory vesicles to the apical membrane [5]. We hypothesized that actin cables regulate the processive properties of MyoVc. We show that MyoVc is unique in taking variable size steps, which are frequently in the backward direction. Results obtained with chimeric constructs implicate the lever arm/rod of MyoVc as being responsible for these properties. Actin bundles allow single MyoVc motors to move processively. Remarkably, even teams of MyoVc motors require actin bundles to move continuously at physiological ionic strength. The irregular stepping pattern of MyoVc, which may result from flexibility in the lever arm/rod of MyoVc, appears to be a unique structural adaptation that allows the actin track to spatially restrict the activity of MyoVc to specialized actin cables in order to co-ordinate and target the final stages of vesicle secretion.

  8. Rho GAP myosin IXa is a regulator of kidney tubule function.

    Science.gov (United States)

    Thelen, Sabine; Abouhamed, Marouan; Ciarimboli, Giuliano; Edemir, Bayram; Bähler, Martin

    2015-09-15

    Mammalian class IX myosin Myo9a is a single-headed, actin-dependent motor protein with Rho GTPase-activating protein activity that negatively regulates Rho GTPase signaling. Myo9a is abundantly expressed in ciliated epithelial cells of several organs. In mice, genetic deletion of Myo9a leads to the formation of hydrocephalus. Whether Myo9a also has essential functions in the epithelia of other organs of the body has not been explored. In the present study, we report that Myo9a-deficient mice develop bilateral renal disease, characterized by dilation of proximal tubules, calyceal dilation, and thinning of the parenchyma and fibrosis. These structural changes are accompanied by polyuria (with normal vasopressin levels) and low-molecular-weight proteinuria. Immunohistochemistry revealed that Myo9a is localized to the circumferential F-actin belt of proximal tubule cells. In kidneys lacking Myo9a, the multiligand binding receptor megalin and its ligand albumin accumulated at the luminal surface of Myo9a-deficient proximal tubular cells, suggesting that endocytosis is dysregulated. In addition, we found, surprisingly, that levels of murine diaphanous-related formin-1, a Rho effector, were decreased in Myo9a-deficient kidneys as well as in Myo9a knockdown LLC-PK1 cells. In summary, deletion of the Rho GTPase-activating protein Myo9a in mice causes proximal tubular dilation and fibrosis, and we speculate that downregulation of murine diaphanous-related formin-1 and impaired protein reabsorption contribute to the pathophysiology. PMID:26136556

  9. Two distinct myosin II populations coordinate ovulatory contraction of the myoepithelial sheath in the Caenorhabditis elegans somatic gonad

    Science.gov (United States)

    Ono, Kanako; Ono, Shoichiro

    2016-01-01

    The myoepithelial sheath in the somatic gonad of the nematode Caenorhabditis elegans has nonstriated contractile actomyosin networks that produce highly coordinated contractility for ovulation of mature oocytes. Two myosin heavy chains are expressed in the myoepithelial sheath, which are also expressed in the body-wall striated muscle. The troponin/tropomyosin system is also present and essential for ovulation. Therefore, although the myoepithelial sheath has smooth muscle–like contractile apparatuses, it has a striated muscle–like regulatory mechanism through troponin/tropomyosin. Here we report that the myoepithelial sheath has a distinct myosin population containing nonmuscle myosin II isoforms, which is regulated by phosphorylation and essential for ovulation. MLC-4, a nonmuscle myosin regulatory light chain, localizes to small punctate structures and does not colocalize with large, needle-like myosin filaments containing MYO-3, a striated-muscle myosin isoform. RNA interference of MLC-4, as well as of its upstream regulators, LET-502 (Rho-associated coiled-coil forming kinase) and MEL-11 (a myosin-binding subunit of myosin phosphatase), impairs ovulation. Expression of a phosphomimetic MLC-4 mutant mimicking a constitutively active state also impairs ovulation. A striated-muscle myosin (UNC-54) appears to provide partially compensatory contractility. Thus the results indicate that the two spatially distinct myosin II populations coordinately regulate ovulatory contraction of the myoepithelial sheath. PMID:26864628

  10. Crystal structure of the rigor-like human non-muscle myosin-2 motor domain.

    Science.gov (United States)

    Münnich, Stefan; Pathan-Chhatbar, Salma; Manstein, Dietmar J

    2014-12-20

    We determined the crystal structure of the motor domain of human non-muscle myosin 2B (NM-2B) in a nucleotide-free state and at a resolution of 2.8 Å. The structure shows the motor domain with an open active site and the large cleft that divides the 50 kDa domain in a closed state. Compared to other rigor-like myosin motor domain structures, our structure shows subtle but significant conformational changes in regions important for actin binding and mechanochemical coupling. Moreover, our crystal structure helps to rationalize the impact of myosin, heavy chain 9 (MYH9)-related disease mutations Arg709Cys and Arg709His on the kinetic and functional properties of NM-2B and of the closely related non-muscle myosin 2A (NM-2A). PMID:25451231

  11. Computed Tomography (CT) -- Head

    Science.gov (United States)

    ... the head is typically used to detect: bleeding, brain injury and skull fractures in patients with head injuries. ... medically necessary because of potential risk to the baby. This risk is, however, minimal with head CT ...

  12. Head Trauma, First Aid

    Science.gov (United States)

    ... rashes clinical tools newsletter | contact Share | Head Trauma, First Aid A A A Head trauma signs and symptoms ... to take care for potential neck/spinal injury. First Aid Guide If you suspect either a serious head ...

  13. Cloning, molecular characterization, and expression analysis of the unc45 myosin chaperone b(unc45b)gene of grass carp (Ctenopharyngodon idellus).

    Science.gov (United States)

    Hu, Jing; Guo, Ting; Pan, Wen-Qian; Gan, Tian; Wei, Jing; Wang, Jun-Peng; Leng, Xiang-Jun; Li, Xiao-Qin

    2016-06-01

    Unc45 myosin chaperone b(unc45b)gene is a molecular chaperone that mediates the folding, assembly and accumulation of thick-filament myosin in the formation of sarcomere, which plays an important role in the development of striated muscle and the stability of sarcomere. In this study, the complete cDNA sequence of unc45b gene of grass carp was obtained by rapid amplification of cDNA ends (RACE), and the characteristics of the unc45b protein predicted from gene sequence was analyzed by bioinformatics methods. The differential expression pattern in tissues was also detected by quantitative real-time PCR. The results showed that the full-length of unc45b gene of grass carp is 3163 bp, which contains a 60 bp 5'UTR, a 298 bp 3'UTR, and a 2865 bp open reading frame (ORF) encoding a 934 amino acid peptide. The deduced unc45b protein exhibits a homology of 92, 86, 86 % with the protein of zebrafish (Danio rerio), channel catfish (Ietalurus punctatus) and tilapia (Oreochromis niloticus) respectively, and the protein contains UCS myosin head binding domain and TPR peptide repeat domain. The protein is a hydrophilic and non-secretory protein with a molecular mass and isoeletronic point of 103,699.8 and 7.39 Da. The structural elements of the protein includes α-helixes and loops, and the unc45b gene highly expresses in skeletal muscle and heart in grass carp. This study laid a foundation for further research in explaining the myofibril accumulation in crisped grass carp. PMID:27334505

  14. Possible roles of actin and myosin during anaphase chromosome movements in locust spermatocytes.

    Science.gov (United States)

    Fabian, Lacramioara; Forer, Arthur

    2007-01-01

    We tested whether the mechanisms of chromosome movement during anaphase in locust (Locusta migratoria L.) spermatocytes might be similar to those described for crane-fly spermatocytes. Actin and myosin have been implicated in anaphase chromosome movements in crane-fly spermatocytes, as indicated by the effects of inhibitors and by the localisations of actin and myosin in spindles. In this study, we tested whether locust spermatocyte spindles also utilise actin and myosin, and whether actin is involved in microtubule flux. Living locust spermatocytes were treated with inhibitors of actin (latrunculin B and cytochalasin D), myosin (BDM), or myosin phosphorylation (Y-27632 and ML-7). We added drugs (individually) during anaphase. Actin inhibitors alter anaphase: chromosomes either completely stop moving, slow, or sometimes accelerate. The myosin inhibitor, BDM, also alters anaphase: in most cases, the chromosomes drastically slow or stop. ML-7, an inhibitor of MLCK, causes chromosomes to stop, slow, or sometimes accelerate, similar to actin inhibitors. Y-27632, an inhibitor of Rho-kinase, drastically slows or stops anaphase chromosome movements. The effects of the drugs on anaphase movement are reversible: most of the half-bivalents resumed movement at normal speed after these drugs were washed out. Actin and myosin were present in the spindles in locations consistent with their possible involvement in force production. Microtubule flux along kinetochore fibres is an actin-dependent process, since LatB completely removes or drastically reduces the gap in microtubule acetylation at the kinetochore. These results suggest that actin and myosin are involved in anaphase chromosome movements in locust spermatocytes. PMID:17922265

  15. Sequential Myosin Phosphorylation Activates Tarantula Thick Filament via a Disorder-Order Transition

    OpenAIRE

    Espinoza-Fonseca, L Michel; Alamo, Lorenzo; Pinto, Antonio; Thomas, David D.; Padrón, Raúl

    2015-01-01

    Phosphorylation of myosin regulatory light chain (RLC) N-terminal extension (NTE) activates myosin in thick filaments. RLC phosphorylation plays a primary regulatory role in smooth muscle and a secondary (modulatory) role in striated muscle, which is regulated by Ca2+ via TnC/TM on the thin filament. Tarantula striated muscle exhibits both regulatory systems: one switches on/off contraction through thin filament regulation, and another through PKC constitutively Ser35 phosphorylated swaying f...

  16. Localization and mobility of synaptic vesicles in Myosin VI mutants of Drosophila.

    Directory of Open Access Journals (Sweden)

    Marta Kisiel

    Full Text Available BACKGROUND: At the Drosophila neuromuscular junction (NMJ, synaptic vesicles are mobile; however, the mechanisms that regulate vesicle traffic at the nerve terminal are not fully understood. Myosin VI has been shown to be important for proper synaptic physiology and morphology at the NMJ, likely by functioning as a vesicle tether. Here we investigate vesicle dynamics in Myosin VI mutants of Drosophila. RESULTS: In Drosophila, Myosin VI is encoded by the gene, jaguar (jar. To visualize active vesicle cycling we used FM dye loading and compared loss of function alleles of jar with controls. These studies revealed a differential distribution of vesicles at the jar mutant nerve terminal, with the newly endocytosed vesicles observed throughout the mutant boutons in contrast to the peripheral localization visualized at control NMJs. This finding is consistent with a role for Myosin VI in restraining vesicle mobility at the synapse to ensure proper localization. To further investigate regulation of vesicle dynamics by Myosin VI, FRAP analysis was used to analyze movement of GFP-labeled synaptic vesicles within individual boutons. FRAP revealed that synaptic vesicles are moving more freely in the jar mutant boutons, indicated by changes in initial bleach depth and rapid recovery of fluorescence following photobleaching. CONCLUSION: This data provides insights into the role for Myosin VI in mediating synaptic vesicle dynamics at the nerve terminal. We observed mislocalization of actively cycling vesicles and an apparent increase in vesicle mobility when Myosin VI levels are reduced. These observations support the notion that a major function of Myosin VI in the nerve terminal is tethering synaptic vesicles to proper sub-cellular location within the bouton.

  17. Targeting a Dynamic Protein–Protein Interaction: Fragment Screening against the Malaria Myosin A Motor Complex

    OpenAIRE

    Douse, Christopher H; Vrielink, Nina; Wenlin, Zhang; Cota, Ernesto; Tate, Edward W

    2014-01-01

    Motility is a vital feature of the complex life cycle of Plasmodium falciparum, the apicomplexan parasite that causes human malaria. Processes such as host cell invasion are thought to be powered by a conserved actomyosin motor (containing myosin A or myoA), correct localization of which is dependent on a tight interaction with myosin A tail domain interacting protein (MTIP) at the inner membrane of the parasite. Although disruption of this protein–protein interaction represents an attractive...

  18. Pharmacological activation of myosin II paralogs to correct cell mechanics defects

    OpenAIRE

    Surcel, Alexandra; Ng, Win Pin; West-Foyle, Hoku; Zhu, Qingfeng; Ren, Yixin; Avery, Lindsay B.; Krenc, Agata K.; Meyers, David J.; Rock, Ronald S.; Anders, Robert A.; Freel Meyers, Caren L.; Robinson, Douglas N.

    2015-01-01

    Despite the integral role of cell mechanics, efforts to target mechanics for drug development have lagged. Here, we present an approach to identifying small molecules capable of modulating mechanics. We characterize 4-hydroxyacetophenone (4-HAP), isolated as a breakdown product of a hit from our pilot screen of over 22,000 compounds. We show that 4-HAP specifically alters the localization of the mechanoenzyme myosin II, increasing the stiffness of cells. The effect of 4-HAP on myosin II, whos...

  19. Nucleotide Dependent Intrinsic Fluorescence Changes of W29 and W36 in Smooth Muscle Myosin

    OpenAIRE

    van Duffelen, Marilyn; Chrin, Lynn R.; Berger, Christopher L.

    2004-01-01

    The intrinsic fluorescence of smooth muscle myosin is sensitive to both nucleotide binding and hydrolysis. We have examined this relationship by making MDE mutants containing a single tryptophan residue at each of the seven positions found in the wild-type molecule. Previously, we have demonstrated that a conserved tryptophan residue (W512) is a major contributor to nucleotide-dependent changes of intrinsic fluorescence in smooth muscle myosin. In this study, an MDE containing all the endogen...

  20. Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth.

    Science.gov (United States)

    Lelli, Andrea; Michel, Vincent; Boutet de Monvel, Jacques; Cortese, Matteo; Bosch-Grau, Montserrat; Aghaie, Asadollah; Perfettini, Isabelle; Dupont, Typhaine; Avan, Paul; El-Amraoui, Aziz; Petit, Christine

    2016-01-18

    The precise architecture of hair bundles, the arrays of mechanosensitive microvilli-like stereocilia crowning the auditory hair cells, is essential to hearing. Myosin IIIa, defective in the late-onset deafness form DFNB30, has been proposed to transport espin-1 to the tips of stereocilia, thereby promoting their elongation. We show that Myo3a(-/-)Myo3b(-/-) mice lacking myosin IIIa and myosin IIIb are profoundly deaf, whereas Myo3a-cKO Myo3b(-/-) mice lacking myosin IIIb and losing myosin IIIa postnatally have normal hearing. Myo3a(-/-)Myo3b(-/-) cochlear hair bundles display robust mechanoelectrical transduction currents with normal kinetics but show severe embryonic abnormalities whose features rapidly change. These include abnormally tall and numerous microvilli or stereocilia, ungraded stereocilia bundles, and bundle rounding and closure. Surprisingly, espin-1 is properly targeted to Myo3a(-/-)Myo3b(-/-) stereocilia tips. Our results uncover the critical role that class III myosins play redundantly in hair-bundle morphogenesis; they unexpectedly limit the elongation of stereocilia and of subsequently regressing microvilli, thus contributing to the early hair bundle shaping.

  1. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    Science.gov (United States)

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  2. Actin-myosin network is required for proper assembly of influenza virus particles

    International Nuclear Information System (INIS)

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network

  3. Actin-myosin network is required for proper assembly of influenza virus particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  4. A potentially exhaustive screening strategy reveals two novel divergent myosins in Dictyostelium.

    Science.gov (United States)

    Schwarz, E C; Geissler, H; Soldati, T

    1999-01-01

    In recent years, the myosin superfamily has kept expanding at an explosive rate, but the understanding of their complex functions has been lagging. Therefore, Dictyostelium discoideum, a genetically and biochemically tractable eukaryotic amoeba, appears as a powerful model organism to investigate the involvement of the actomyosin cytoskeleton in a variety of cellular tasks. Because of the relatively high degree of functional redundancy, such studies would be greatly facilitated by the prior knowledge of the whole myosin repertoire in this organism. Here, we present a strategy based on PCR amplification using degenerate primers and followed by negative hybridization screening which led to the potentially exhaustive identification of members of the myosin family in D. discoideum. Two novel myosins were identified and their genetic loci mapped by hybridization to an ordered YAC library. Preliminary inspection of myoK and myoM sequences revealed that, despite carrying most of the hallmarks of myosin motors, both molecules harbor features surprisingly divergent from most known myosins. PMID:10403059

  5. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis.

    Science.gov (United States)

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G; González-Reyes, Acaimo; Martín-Bermudo, María D

    2016-01-01

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies.

  6. Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Qiu Xinping

    2010-03-01

    Full Text Available Abstract Background Although the mechanistic details of the vesicle transport process from the cell body to the nerve terminal are well described, the mechanisms underlying vesicle traffic within nerve terminal boutons is relatively unknown. The actin cytoskeleton has been implicated but exactly how actin or actin-binding proteins participate in vesicle movement is not clear. Results In the present study we have identified Nonmuscle Myosin II as a candidate molecule important for synaptic vesicle traffic within Drosophila larval neuromuscular boutons. Nonmuscle Myosin II was found to be localized at the Drosophila larval neuromuscular junction; genetics and pharmacology combined with the time-lapse imaging technique FRAP were used to reveal a contribution of Nonmuscle Myosin II to synaptic vesicle movement. FRAP analysis showed that vesicle dynamics were highly dependent on the expression level of Nonmuscle Myosin II. Conclusion Our results provide evidence that Nonmuscle Myosin II is present presynaptically, is important for synaptic vesicle mobility and suggests a role for Nonmuscle Myosin II in shuttling vesicles at the Drosophila neuromuscular junction. This work begins to reveal the process by which synaptic vesicles traverse within the bouton.

  7. Role of plant myosins in motile organelles:Is a direct interaction required?

    Institute of Scientific and Technical Information of China (English)

    Limor Buchnik; Mohamad Abu-Abied; Einat Sadot

    2015-01-01

    Plant organel es are highly motile, with speed values of 3–7 mm/s in cel s of land plants and about 20–60 mm/s in characean algal cel s. This movement is believed to be important for rapid distribution of materials around the cel , for the plant’s ability to respond to environmental biotic and abiotic signals and for proper growth. The main machinery that propels motility of organel es within plant cel s is based on the actin cytoskeleton and its motor proteins the myosins. Most plants express multiple members of two main classes:myosin VIII and myosin XI. While myosin VIII has been characterized as a slow motor protein, myosins from class XI were found to be the fastest motor proteins known in al kingdoms. Paradoxical y, while it was found that myosins from class XI regulate most organel e movement, it is not quite clear how or even if these motor proteins attach to the organel es whose movement they regulate.

  8. Head Impact Laboratory (HIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The HIL uses testing devices to evaluate vehicle interior energy attenuating (EA) technologies for mitigating head injuries resulting from head impacts during mine/...

  9. Why muscle is an efficient shock absorber.

    Directory of Open Access Journals (Sweden)

    Michael A Ferenczi

    Full Text Available Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.

  10. Myosin II controls cellular branching morphogenesis and migration in three dimensions by minimizing cell-surface curvature.

    Science.gov (United States)

    Elliott, Hunter; Fischer, Robert S; Myers, Kenneth A; Desai, Ravi A; Gao, Lin; Chen, Christopher S; Adelstein, Robert S; Waterman, Clare M; Danuser, Gaudenz

    2015-02-01

    In many cases, cell function is intimately linked to cell shape control. We used endothelial cell branching morphogenesis as a model to understand the role of myosin II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell-surface curvature. We find that Rho/ROCK-stimulated myosin II contractility minimizes cell-scale branching by recognizing and minimizing local cell-surface curvature. Using microfabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin II cortical association, where it acts to maintain minimal curvature. The feedback between regulation of myosin II by curvature and control of curvature by myosin II drives cycles of localized cortical myosin II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration.

  11. Modelling the effect of myosin X motors on filopodia growth

    International Nuclear Information System (INIS)

    We present a numerical simulation study of the dynamics of filopodial growth in the presence of active transport by myosin X motors. We employ both a microscopic agent-based model, which captures the stochasticity of the growth process, and a continuum mean-field theory which neglects fluctuations. We show that in the absence of motors, filopodia growth is overestimated by the continuum mean-field theory. Thus fluctuations slow down the growth, especially when the protrusions are driven by a small number (10 or less) of F-actin fibres, and when the force opposing growth (coming from membrane elasticity) is large enough. We also show that, with typical parameter values for eukaryotic cells, motors are unlikely to provide an actin transport mechanism which enhances filopodial size significantly, unless the G-actin concentration within the filopodium greatly exceeds that of the cytosol bulk. We explain these observations in terms of order-of-magnitude estimates of diffusion-induced and advection-induced growth of a bundle of Brownian ratchets. (paper)

  12. Modelling the effect of myosin X motors on filopodia growth

    CERN Document Server

    Wolff, Katrin; Evans, Martin R; Goryachev, Andrew B; Marenduzzo, Davide

    2014-01-01

    We present a numerical simulation study of the dynamics of filopodial growth in the presence of active transport by myosin X motors. We employ both a microscopic agent-based model, which captures the stochasticity of the growth process, and a continuum mean-field theory which neglects fluctuations. We show that in the absence of motors, filopodia growth is overestimated by the continuum mean-field theory. Thus fluctuations slow down the growth, especially when the protrusions are driven by a small number (10 or less) of F-actin fibres, and when the force opposing growth (coming from membrane elasticity) is large enough. We also show that, with typical parameter values for eukaryotic cells, motors are unlikely to provide an actin transport mechanism which enhances filopodial size significantly, unless the G-actin concentration within the filopodium greatly exceeds that of the cytosol bulk. We explain these observations in terms of order-of-magnitude estimates of diffusion-induced and advection-induced growth o...

  13. Absence of platelet phenotype in mice lacking the motor protein myosin Va.

    Directory of Open Access Journals (Sweden)

    Matthew T Harper

    Full Text Available BACKGROUND: The motor protein myosin Va plays an important role in the trafficking of intracellular vesicles. Mutation of the Myo5a gene causes Griscelli syndrome type 1 in humans and the dilute phenotype in mice, which are both characterised by pigment dilution and neurological defects as a result of impaired vesicle transport in melanocytes and neuroendocrine cells. The role of myosin Va in platelets is currently unknown. Rab27 has been shown to be associated with myosin Va cargo vesicles and is known to be important in platelet dense granule biogenesis and secretion, a crucial event in thrombus formation. Therefore, we hypothesised that myosin Va may regulate granule secretion or formation in platelets. METHODOLOGY/PRINCIPAL FINDINGS: Platelet function was studied in vitro using a novel Myo5a gene deletion mouse model. Myo5a(-/- platelets were devoid of myosin Va, as determined by immunoblotting, and exhibited normal expression of surface markers. We assessed dense granule, α-granule and lysosomal secretion, integrin α(IIbβ(3 activation, Ca(2+ signalling, and spreading on fibrinogen in response to collagen-related peptide or the PAR4 agonist, AYPGKF in washed mouse platelets lacking myosin Va or wild-type platelets. Surprisingly, Myo5a(-/- platelets showed no significant functional defects in these responses, or in the numbers of dense and α-granules expressed. CONCLUSION: Despite the importance of myosin Va in vesicle transport in other cells, our data demonstrate this motor protein has no non-redundant role in the secretion of dense and α-granules or other functional responses in platelets.

  14. Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes.

    Science.gov (United States)

    Pylypenko, Olena; Welz, Tobias; Tittel, Janine; Kollmar, Martin; Chardon, Florian; Malherbe, Gilles; Weiss, Sabine; Michel, Carina Ida Luise; Samol-Wolf, Annette; Grasskamp, Andreas Till; Hume, Alistair; Goud, Bruno; Baron, Bruno; England, Patrick; Titus, Margaret A; Schwille, Petra; Weidemann, Thomas; Houdusse, Anne; Kerkhoff, Eugen

    2016-01-01

    There is growing evidence for a coupling of actin assembly and myosin motor activity in cells. However, mechanisms for recruitment of actin nucleators and motors on specific membrane compartments remain unclear. Here we report how Spir actin nucleators and myosin V motors coordinate their specific membrane recruitment. The myosin V globular tail domain (MyoV-GTD) interacts directly with an evolutionarily conserved Spir sequence motif. We determined crystal structures of MyoVa-GTD bound either to the Spir-2 motif or to Rab11 and show that a Spir-2:MyoVa:Rab11 complex can form. The ternary complex architecture explains how Rab11 vesicles support coordinated F-actin nucleation and myosin force generation for vesicle transport and tethering. New insights are also provided into how myosin activation can be coupled with the generation of actin tracks. Since MyoV binds several Rab GTPases, synchronized nucleator and motor targeting could provide a common mechanism to control force generation and motility in different cellular processes. PMID:27623148

  15. Increased Association of Dynamin Ⅱ with Myosin Ⅱ in Ras Transformed NIH3T3 Cells

    Institute of Scientific and Technical Information of China (English)

    Soon-Jeong JEONG; Su-Gwan KIM; Jiyun YOO; Mi-Young HAN; Joo-Cheol PARK; Heung-Joong KIM; Seong Soo KANG; Baik-Dong CHOI; Moon-Jin JEONG

    2006-01-01

    Dynamin has been implicated in the formation of nascent vesicles through both endocytic and secretory pathways. However, dynamin has recently been implicated in altering the cell membrane shape during cell migration associated with cytoskeleton-related proteins. Myosin Ⅱ has been implicated in maintaining cell morphology and in cellular movement. Therefore, reciprocal immunoprecipitation was carried out to identify the potential relationship between dynamin Ⅱ and myosin Ⅱ. The dynamin Ⅱ expression level was higher when co-expressed with myosin Ⅱ in Ras transformed NIH3T3 cells than in normal NIH3T3 cells.Confocal microscopy also confirmed the interaction between these two proteins. Interestingly, exposing the NIH3T3 cells to platelet-derived growth factor altered the interaction and localization of these two proteins.The platelet-derived growth factor treatment induced lamellipodia and cell migration, and dynamin Ⅱ interacted with myosin Ⅱ. Grb2, a 24 kDa adaptor protein and an essential element of the Ras signaling pathway,was found to be associated with dynamin Ⅱ and myosin Ⅱ gene expression in the Ras transformed NIH3T3 cells. These results suggest that dynamin Ⅱ acts as an intermediate messenger in the Ras signal transduction pathway leading to membrane ruffling and cell migration.

  16. Actin and myosin regulate cytoplasm stiffness in plant cells: a study using optical tweezers.

    Science.gov (United States)

    van der Honing, Hannie S; de Ruijter, Norbert C A; Emons, Anne Mie C; Ketelaar, Tijs

    2010-01-01

    Here, we produced cytoplasmic protrusions with optical tweezers in mature BY-2 suspension cultured cells to study the parameters involved in the movement of actin filaments during changes in cytoplasmic organization and to determine whether stiffness is an actin-related property of plant cytoplasm. Optical tweezers were used to create cytoplasmic protrusions resembling cytoplasmic strands. Simultaneously, the behavior of the actin cytoskeleton was imaged. After actin filament depolymerization, less force was needed to create cytoplasmic protrusions. During treatment with the myosin ATPase inhibitor 2,3-butanedione monoxime, more trapping force was needed to create and maintain cytoplasmic protrusions. Thus, the presence of actin filaments and, even more so, the deactivation of a 2,3-butanedione monoxime-sensitive factor, probably myosin, stiffens the cytoplasm. During 2,3-butanedione monoxime treatment, none of the tweezer-formed protrusions contained filamentous actin, showing that a 2,3-butanedione monoxime-sensitive factor, probably myosin, is responsible for the movement of actin filaments, and implying that myosin serves as a static cross-linker of actin filaments when its motor function is inhibited. The presence of actin filaments does not delay the collapse of cytoplasmic protrusions after tweezer release. Myosin-based reorganization of the existing actin cytoskeleton could be the basis for new cytoplasmic strand formation, and thus the production of an organized cytoarchitecture.

  17. Identification and characterization of an unusual class I myosin involved in vesicle traffic in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Diana Spitznagel

    Full Text Available Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1 that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of approximately 90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites.

  18. Identification and characterization of an unusual class I myosin involved in vesicle traffic in Trypanosoma brucei.

    Science.gov (United States)

    Spitznagel, Diana; O'Rourke, John F; Leddy, Neal; Hanrahan, Orla; Nolan, Derek P

    2010-01-01

    Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1) that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of approximately 90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites.

  19. The Role of Dietary Protein Intake and Resistance Training on Myosin Heavy Chain Expression

    Directory of Open Access Journals (Sweden)

    Willoughby Darryn S

    2004-12-01

    Full Text Available Abstract During resistance training the muscle undergoes many changes. Possibly the most profound and significant changes are those that occur in the muscles contractile proteins. Increases in these contractile proteins are one of the primary factors contributing to myofibrillar hypertrophy. The most abundant muscle protein is myosin, which comprises 25% of the total muscle protein. Due to the large amount of skeletal muscle that is composed of myosin, changes in this fiber may have profound effects on skeletal muscle size and strength. The myosin molecule is made up of 6 subunits, 2 very large heavy chains, and 4 smaller light chains. The myosin heavy chain (MHC accounts for 25–30% of all muscle proteins making its size an important factor in skeletal muscle growth. In conjunction with resistance training, dietary protein intake must be adequate to illicit positive adaptations. Although many studies have evaluated the role of dietary protein intake on skeletal muscle changes, few have evaluated the MHC specifically. Research has clearly defined the need for dietary protein and resistance training to facilitate positive changes in skeletal muscle. The purpose of this review was to evaluate the current literature on the effects of dietary protein and resistance training on the expression of the myosin heavy chain.

  20. Transportation of nanoscale cargoes by myosin propelled actin filaments.

    Directory of Open Access Journals (Sweden)

    Malin Persson

    Full Text Available Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies. However, it is poorly understood how actomyosin function is affected by different number of nanoscale cargoes, by cargo size, and by the mode of cargo-attachment to the actin filament. This is studied here using biotin/fluorophores, streptavidin, streptavidin-coated quantum dots, and liposomes as model cargoes attached to monomers along the actin filaments ("side-attached" or to the trailing filament end via the plus end capping protein CapZ. Long-distance transportation (>100 µm could be seen for all cargoes independently of attachment mode but the fraction of motile filaments decreased with increasing number of side-attached cargoes, a reduction that occurred within a range of 10-50 streptavidin molecules, 1-10 quantum dots or with just 1 liposome. However, as observed by monitoring these motile filaments with the attached cargo, the velocity was little affected. This also applied for end-attached cargoes where the attachment was mediated by CapZ. The results with side-attached cargoes argue against certain models for chemomechanical energy transduction in actomyosin and give important insights of relevance for effective exploitation of actomyosin-based cargo-transportation in molecular diagnostics and other nanotechnological applications. The attachment of quantum dots via CapZ, without appreciable modulation of actomyosin function, is useful in fundamental studies as exemplified here by tracking with nanometer accuracy.

  1. Determining the impact of oxidation on the motility of single muscle-fibres expressing different myosin isoforms

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Li, M.; Baron, Caroline P.;

    2013-01-01

    Under oxidative stress, myosin has been shown to be one of the muscle proteins that are extensively modified, leading to carbonylation and cross-linking. However, how oxidation affects the actomyosin interaction in muscle fibres with different metabolic profiles and expressing different myosin he...

  2. Direct photoaffinity labeling by nucleotides of the apparent catalytic site on the heavy chains of smooth muscle and Acanthamoeba myosins

    Energy Technology Data Exchange (ETDEWEB)

    Maruta, H.; Korn, E.D.

    1981-01-10

    The heavy chains of Acanthamoeba myosins, IA, IB and II, turkey gizzard myosin, and rabbit skeletal muscle myosin subfragment-1 were specifically labeled by radioactive ATP, ADP, and UTP, each of which is a substrate or product of myosin ATPase activity, when irradiated with uv light at 0/sup 0/C. With UTP, as much as 0.45 mol/mol of Acanthamoeba myosin IA heavy chain and 1 mol/mol of turkey gizzard myosin heavy chain was incorporated. Evidence that the ligands were associated with the catalytic site included the observations that reaction occurred only with nucleotides that are substrates or products of the ATPase activity; that the reaction was blocked by pyrophosphate which is an inhibitor of the ATPase activity; that ATP was bound as ADP; and that label was probably restricted to a single peptide following limited subtilisin proteolysis of labeled Acanthamoeba myosin IA heavy chain and extensive cleavage with CNBr and trypsin of labeled turkey gizzard myosin heavy chain.

  3. Actin and myosin inhibitors block elongation of kinetochore fibre stubs in metaphase crane-fly spermatocytes.

    Science.gov (United States)

    Forer, A; Spurck, T; Pickett-Heaps, J D

    2007-01-01

    We used an ultraviolet microbeam to cut individual kinetochore spindle fibres in metaphase crane-fly spermatocytes. We then followed the growth of the "kinetochore stubs", the remnants of kinetochore fibres that remain attached to kinetochores. Kinetochore stubs elongate with constant velocity by adding tubulin subunits at the kinetochore, and thus elongation is related to tubulin flux in the kinetochore microtubules. Stub elongation was blocked by cytochalasin D and latrunculin A, actin inhibitors, and by butanedione monoxime, a myosin inhibitor. We conclude that actin and myosin are involved in generating elongation and thus in producing tubulin flux in kinetochore microtubules. We suggest that actin and myosin act in concert with a spindle matrix to propel kinetochore fibres poleward, thereby causing stub elongation and generating anaphase chromosome movement in nonirradiated cells. PMID:18094930

  4. Inverse interaction between tropomyosin and phosphorylated myosin in the presence or absence of caldesmon

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Houli Zhang; Zeyao Tang; Kazuhiro Kohama; Yuan Lin

    2013-01-01

    In the present study,co-sedimentation assay,intrinsic fluorescence intensity measurement,and Mg2+-ATPase activity analysis were carried out to investigate the direct effect of tropomyosin (TM) on unphosphorylated myosin (UM) or phosphorylated myosin (PM) in the presence or absence of caldesmon (CaD).Results showed that TM significantly decreased the sedimentation,intrinsic fluorescence intensity,and the Mg2+-ATPase activity of PM,but not UM.In the presence of CaD,TM also significantly decreased these parameters irrespective of myosin phosphorylation,suggesting that the interaction between TM and CaD abolished the effects of TM on PM or UM and that there was an inverse interaction between TM and PM,characterized by the decreased PM sedimentation and intrinsic fluorescence intensity.

  5. Novel Dictyostelium unconventional myosin, MyoM, has a putative RhoGEF domain.

    Science.gov (United States)

    Oishi, N; Adachi, H; Sutoh, K

    2000-05-26

    We have cloned a novel unconventional myosin gene myoM in Dictyostelium. Phylogenetic analysis of the motor domain indicated that MyoM does not belong to any known subclass of the myosin superfamily. Following the motor domain, two calmodulin-binding IQ motifs, a putative coiled-coil region, and a Pro, Ser and Thr-rich domain, lies a combination of dbl homology and pleckstrin homology domains. These are conserved in Rho GDP/GTP exchange factors (RhoGEFs). We have identified for the first time the RhoGEF domain in the myosin sequences. The growth and terminal developmental phenotype of Dictyostelium cells were not affected by the myoM(-) mutation. Green fluorescent protein-tagged MyoM, however, accumulated at crown-shaped projections and membranes of phase lucent vesicles in growing cells, suggesting its possible roles in macropinocytosis. PMID:10828443

  6. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development.

    Directory of Open Access Journals (Sweden)

    Valera V Peremyslov

    Full Text Available Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI, cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.

  7. Preparation of monoclonal antibodies against cardiac myosin and some radiolabelling studies

    International Nuclear Information System (INIS)

    Monoclonal antibodies were raised against myosin, a specific indicator of myocardial infarction and labelled with 125I and 99mTc. Human cardiac myosin was isolated from normal human heart and was used for raising the monoclonal antibodies by the hybridoma technique. Antibody producing clones were identified by ELISA and cloning was done by the limiting dilution technique. Of the 13 clones obtained, 4 were deemed suitable for further studies. The antibodies were grown in ascites, purified, isotyped and their cross reactions with other forms of myosin were estimated. All the clones showed negligible cross reaction with rabbit myosin, but reacted to different extents with bovine skeletal myosin. The most avid antibody Mab-4G4 was chosen for further labelling studies. Mab-4G4 was labelled with 125I using different oxidising agents such as iodogen, chloramine-T and lactoperoxidase. Purified radioiodinated antibody with radiochemical purity >95% could be obtained by gel filtration. Immunoreactivity was retained as tested by binding to myosin immobilised on a solid support. Mab-4G4 was also labelled with 99mTc using stannous tartrate as the reducing agent. Radiolabelling yield was ∼60%, the purity was >95% and the immunoreactivity was retained. Both the labelled preparations were tested for bio-distribution in normal and infarcted rats. The activity accumulation in the infarcted region was ∼ 1.5 and 3.5 times as that in normal heart muscle for 125I and 99mTc labelled Mab-4G4 respectively. The major problem with the iodinated antibody was the in vivo deiodination resulting in very high percentage of activity in the thyroid. Although the fraction of the total activity associated with the infarcted heart is not very impressive, the fact that the activities with the infarcted and normal hearths are significantly different is heartening. With further optimisation of labelling and use of F(ab)'2 fragments, better delineation of the infarct sites is aspired. (author)

  8. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development

    Science.gov (United States)

    Peremyslov, Valera V.; Cole, Rex A.; Fowler, John E.; Dolja, Valerian V.

    2015-01-01

    Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6–1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development. PMID:26426395

  9. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  10. Aberrant post-translational modifications compromise human myosin motor function in old age.

    Science.gov (United States)

    Li, Meishan; Ogilvie, Hannah; Ochala, Julien; Artemenko, Konstantin; Iwamoto, Hiroyuki; Yagi, Naoto; Bergquist, Jonas; Larsson, Lars

    2015-04-01

    Novel experimental methods, including a modified single fiber in vitro motility assay, X-ray diffraction experiments, and mass spectrometry analyses, have been performed to unravel the molecular events underlying the aging-related impairment in human skeletal muscle function at the motor protein level. The effects of old age on the function of specific myosin isoforms extracted from single human muscle fiber segments, demonstrated a significant slowing of motility speed (P old age in both type I and IIa myosin heavy chain (MyHC) isoforms. The force-generating capacity of the type I and IIa MyHC isoforms was, on the other hand, not affected by old age. Similar effects were also observed when the myosin molecules extracted from muscle fibers were exposed to oxidative stress. X-ray diffraction experiments did not show any myofilament lattice spacing changes, but unraveled a more disordered filament organization in old age as shown by the greater widths of the 1, 0 equatorial reflections. Mass spectrometry (MS) analyses revealed eight age-specific myosin post-translational modifications (PTMs), in which two were located in the motor domain (carbonylation of Pro79 and Asn81) and six in the tail region (carbonylation of Asp900, Asp904, and Arg908; methylation of Glu1166; deamidation of Gln1164 and Asn1168). However, PTMs in the motor domain were only observed in the IIx MyHC isoform, suggesting PTMs in the rod region contributed to the observed disordering of myosin filaments and the slowing of motility speed. Hence, interventions that would specifically target these PTMs are warranted to reverse myosin dysfunction in old age.

  11. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.

    Directory of Open Access Journals (Sweden)

    Shenping Wu

    Full Text Available Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  12. Clinical significance and pathogenic role of anti-cardiac myosin autoantibody in dilated cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective In order to explore the possible roles played by the autoimmune mechanism in the progression of myocarditis into dilated cardiomyopathy (DCM) using an animal model, we investigated whether autoimmune myocarditis might develop into DCM. Methods Experimental Balb/C mice (n=20) were immunized with cardiac myosin with Freund's complete adjuvant at days 0, 7 and 30. The control Balb/C mice (n=10) were immunized with Freund's complete adjuvant in the same mannere. Serum and myocardium samples were collected after the first immunization at days 15, 21 and 120. The anti-myosin antibody was examined by enzyme-linked immunosorbent assay and immunoblotting.Results Pathological findings demonstrated that there was myocardial necrosis or inflammatory infiltration during acute stages and fibrosis mainly in the late phase of experimental group, but the myocardial lesions were not found in the control group. Autoimmunity could induce myocarditis and DCM in the absence of viral infection. High titer anti-myosin IgG antibodies were found in the experimental group, but not in the control group. Furthermore, the anti-myosin heavy chain (200 KD) antibody was positive in 21 of 48 patients with DCM and viral myocarditis, but only 4 of 20 patients with coronary heart disease, including 1 case and 3 cases that reacted with heavy and light chains (27.5 KD), respectively. The antibodies were not detected in healthy donors.Conclusion Cardiac myosin might be an autoantigen that provokes autoimmunity and leads to the transformation of myocarditis into DCM. Detection of anti-myosin heavy chain antibody might contribute to diagnosis for DCM and viral myocarditis.

  13. Radiation-induced myosin IIA expression stimulates collagen type I matrix reorganization

    International Nuclear Information System (INIS)

    Background and purpose: Extracellular matrix (ECM) reorganization critically contributes to breast cancer (BC) progression and radiotherapy response. We investigated the molecular background and functional consequences of collagen type I (col-I) reorganization by irradiated breast cancer cells (BCC). Materials and methods: Radiation-induced (RI) col-I reorganization was evaluated for MCF-7/6, MCF-7/AZ, T47D and SK-BR-3 BCC. Phase-contrast microscopy and a stressed matrix contraction assay were used for visualization and quantification of col-I reorganization. Cell–matrix interactions were assessed by the inhibition of β1 integrin (neutralizing antibody ‘P5D2’) or focal adhesion kinase (FAK; GSK22560098 small molecule kinase inhibitor). The role of the actomyosin cytoskeleton was explored by western blotting analysis of myosin II expression and activity; and by gene silencing of myosin IIA and pharmacological inhibition of the actomyosin system (blebbistatin, cytochalasin D). BCC death was evaluated by propidium iodide staining. Results: We observed a radiation dose-dependent increase of col-I reorganization by BCC. β1 Integrin/FAK-mediated cell–matrix interactions are essential for RI col-I reorganization. Irradiated BCC are characterized by increased myosin IIA expression and myosin IIA-dependent col-I reorganization. Moreover, RI col-I reorganization by BCC is associated with decreased BCC death, as suggested by pharmacological targeting of the β1 integrin/FAK/myosin IIA pathway. Conclusions: Our data indicate the role of myosin IIA in col-I reorganization by irradiated BCC and reciprocal BCC death

  14. Head injury - first aid

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000028.htm Head injury - first aid To use the sharing features on this page, ... a concussion can range from mild to severe. First Aid Learning to recognize a serious head injury and ...

  15. The Rho kinases I and II regulate different aspects of myosin II activity

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Multhaupt, Hinke A B; Couchman, John R

    2005-01-01

    The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament...... persistent ROCK II and guanine triphosphate-bound RhoA. In contrast, the microfilament cytoskeleton was enhanced by ROCK II down-regulation. Phagocytic uptake of fibronectin-coated beads was strongly down-regulated in ROCK II-depleted cells but not those lacking ROCK I. These effects originated in part from...

  16. Opening the Arg-Glu salt bridge in myosin: computational study.

    Science.gov (United States)

    Kaliman, Ilya; Grigorenko, Bella; Shadrina, Maria; Nemukhin, Alexander

    2009-06-28

    Opening the Arg-Glu salt bridge in myosin, which presumably succeeds the myosin-catalyzed hydrolysis of adenosine triphosphate, was modeled computationally on the basis of the structures corresponding to the enzyme-substrate and enzyme-product complexes found in the quantum mechanics-molecular mechanics simulations. According to the calculations of the potential of mean force, opening the bridge is considerably facilitated upon termination of the chemical reaction, but does not promote egress of inorganic phosphate by the back-door mechanism. PMID:19506754

  17. Specific Myosins Control Actin Organization, Cell Morphology, and Migration in Prostate Cancer Cells

    OpenAIRE

    Katarzyna A. Makowska; Ruth E. Hughes; Kathryn J. White; Claire M. Wells; Michelle Peckham

    2015-01-01

    We investigated the myosin expression profile in prostate cancer cell lines and found that Myo1b, Myo9b, Myo10, and Myo18a were expressed at higher levels in cells with high metastatic potential. Moreover, Myo1b and Myo10 were expressed at higher levels in metastatic tumors. Using an siRNA-based approach, we found that knockdown of each myosin resulted in distinct phenotypes. Myo10 knockdown ablated filopodia and decreased 2D migration speed. Myo18a knockdown increased circumferential non-mus...

  18. SLOW MYOSIN ATP TURNOVER IN THE SUPER-RELAXED STATE IN TARANTULA MUSCLE

    OpenAIRE

    Naber, Nariman; Cooke, Roger; Pate, Edward

    2011-01-01

    We measured the nucleotide turnover rate of myosin in tarantula leg-muscle fibers by observing single turnovers of the fluorescent nucleotide analog, mantATP, as monitored by the decrease in fluorescence when mantATP is replaced by ATP in a chase experiment. We find a multi-exponential process, with approximately two-thirds of the myosin showing a very slow nucleotide turnover time constant, ~30 minutes. This slow-turnover state is termed the super-relaxed state (SRX). If fibers are incubated...

  19. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special x-ray ... What is CT Scanning of the Head? Computed tomography, more commonly known as a CT or CAT ...

  20. Model of myosin recruitment to the cell equator for cytokinesis: feedback mechanisms and dynamical regimes

    Science.gov (United States)

    Veksler, Alexander; Vavylonis, Dimitrios

    2011-03-01

    The formation and constriction of the contractile ring during cytokinesis, the final step of cell division, depends on the recruitment of motor protein myosin to the cell's equatorial region. During animal cell cytokinesis, cortical myosin filaments (MF) disassemble at the flanking regions and concentrate in the equator. This recruitment depends on myosin motor activity and the Rho proteins that regulate MF assembly and disassembly. Central spindle and astral microtubules help establish a spatial pattern of differential Rho activity. We propose a reaction-diffusion model for the dynamics of MF recruitment to the equatorial region. In the model, the central spindle and mechanical stress promote self-reinforcing MF assembly. Negative feedback is introduced by MF-induced recruitment of inhibitor myosin phosphatase. Our model yields various dynamical regimes and explains both the recruitment of MF to the cleavage furrow and the observed damped MF oscillations in the flanking regions, as well as steady MF assembly. Space and time parameters of MF oscillations are calculated. We predict oscillatory relaxation of cortical MF upon removal of locally-applied external stress.

  1. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients

    KAUST Repository

    Conti, Antonio

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS\\'s pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V.

  2. Comparison of the variable loop regions of myosin heavy chain genes from Antarctic and temperate isopods.

    Science.gov (United States)

    Holmes, J M; Whiteley, N M; Magnay, J L; El Haj, A J

    2002-03-01

    The evolutionary adaptations of functional genes to life at low temperatures are not well characterised in marine and fresh water invertebrates. Temperature has been shown to affect the functional characteristics of fish muscles, with changes in the velocity of shortening and ATPase activity being associated with myosin heavy chain (MyHC) isoform composition and the structure of the surface loop regions. Two PCR products spanning loops 1 and 2 of a MyHC gene from an Antarctic isopod (Glyptonotus antarcticus) were sequenced and compared with those of a temperate isopod (Idotea resecata), slow and fast fibres from lobster (Homarus gammarus) and a cold water amphipod (Eulimnogammarus verrucosus), revealing specific differences between the species, possibly related to fibre type and habitat temperature. The loop 2 region from G. antarcticus myosin was cloned and used for Northern analysis of total RNA from the other species. The cloned myosin cDNA hybridised specifically to a 6.6-kb transcript, in G. antarcticus muscle. In contrast, cDNA probes for lobster slow myosin and actin hybridised to muscle RNA from all species, demonstrating that a distinct MyHC isoform is expressed in the Antarctic isopod, as opposed to the temperate species. The inter- and intra-specific sequence differences in loop 2 region suggest that this may be a site for muscle adaptation to enable function at the low temperatures found in the Southern Ocean. PMID:11959017

  3. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    Energy Technology Data Exchange (ETDEWEB)

    Schoenitzer, Veronika [INM - Leibniz Institute for New Materials, Biomineralisation Group, Campus D2.2, D-66123 Saarbruecken (Germany); Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Eichner, Norbert [Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Clausen-Schaumann, Hauke [Munich University of Applied Sciences, Lothstrasse 34, D-80335 Muenchen, Germany, and Center for NanoScience (CeNS), Geschwister-Scholl-Platz 1, D-80539 Muenchen (Germany); Weiss, Ingrid M., E-mail: ingrid.weiss@inm-gmbh.de [INM - Leibniz Institute for New Materials, Biomineralisation Group, Campus D2.2, D-66123 Saarbruecken (Germany); Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.

  4. Study on the Tripolyphosphatase (TPPase) Property of Bighead Carp (Aristichthys nobilis) Myosin Subfragment-1

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Myosin subfragment-1 was prepared from the myofibrils of bighead carp (Aristichthys nobilis). The myosin subfragment-1 was proved to have the activity of tripolyphosphatase (TPPase) responding to the hydrolysis of sodium tripolyphosphate (STPP). The optimum temperature and pH for the TPPase of myosin subfragment-1 were 30C and pH 5.0, and at pH 8.0 the TPPase also showed a high activity. Mg2+ was necessary to TPPase. The TPPase activity of myosin subfragment-1 was activated by Mg2+ under low concentrations, but was inhibited when the concentration was over 17 mmolL-1. The TPPase activity was also affected by KCl. The optimum concentration of KCl for TPPase was 0.3molL-1 under the condition of 17mmolL-1 Mg2+. The TPPase activity was significantly inhibited by EDTA-Na2. Reagents such as KBr, KI and KIO3 could inhibit the TPPase effectively. K2Cr2O7 as well as KMnO7 and KNO3 exhibited weak inhibiting effects. The TPPase converted STPP to pyrophosphate (PP) and orthophosphate (Pi) stoichiometrically with a KM of 3.2 mmolL-1.

  5. Study on the tripolyphosphatase (TPPase) property of bighead carp ( Aristichthys nobilis) myosin subfragment-1

    Science.gov (United States)

    Gao, Ruichang; Xue, Changhu; Yuan, Li; Zhang, Yongqin; Xue, Yong; Sun, Yan; Feng, Hui

    2007-10-01

    Myosin subfragment-1 was prepared from the myofibrils of bighead carp ( Aristichthys nobilis). The myosin subfragment-1 was proved to have the activity of tripolyphosphatase (TPPase) responding to the hydrolysis of sodium tripolyphosphate (STPP). The optimum temperature and pH for the TPPase of myosin subfragment-1 were 30°C and pH 5.0, and at pH 8.0 the TPPase also showed a high activity. Mg2+ was necessary to TPPase. The TPPase activity of myosin subfragment-1 was activated by Mg2+ under low concentrations, but was inhibited when the concentration was over 17 mmolL-1. The TPPase activity was also affected by KCl. The optimum concentration of KCl for TPPase was 0.3 molL-1 under the condition of 17 mmolL-1 Mg2+. The TPPase activity was significantly inhibited by EDTA-Na2. Reagents such as KBr, KI and KIO3 could inhibit the TPPase effectively. K2Cr2O7 as well as KMnO7 and KNO3 exhibited weak inhibiting effects. The TPPase converted STPP to pyrophosphate (PP) and orthophosphate (Pi) stoichiometrically with a K M of 3.2mmolL-1.

  6. Invertebrate and vertebrate class III myosins interact with MORN repeat-containing adaptor proteins.

    Directory of Open Access Journals (Sweden)

    Kirk L Mecklenburg

    Full Text Available In Drosophila photoreceptors, the NINAC-encoded myosin III is found in a complex with a small, MORN-repeat containing, protein Retinophilin (RTP. Expression of these two proteins in other cell types showed NINAC myosin III behavior is altered by RTP. NINAC deletion constructs were used to map the RTP binding site within the proximal tail domain of NINAC. In vertebrates, the RTP ortholog is MORN4. Co-precipitation experiments demonstrated that human MORN4 binds to human myosin IIIA (MYO3A. In COS7 cells, MORN4 and MYO3A, but not MORN4 and MYO3B, co-localize to actin rich filopodia extensions. Deletion analysis mapped the MORN4 binding to the proximal region of the MYO3A tail domain. MYO3A dependent MORN4 tip localization suggests that MYO3A functions as a motor that transports MORN4 to the filopodia tips and MORN4 may enhance MYO3A tip localization by tethering it to the plasma membrane at the protrusion tips. These results establish conserved features of the RTP/MORN4 family: they bind within the tail domain of myosin IIIs to control their behavior.

  7. Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis.

    Science.gov (United States)

    Ferreira, Tânia; Prudêncio, Pedro; Martinho, Rui Gonçalo

    2014-10-15

    Nurse cell dumping is an actin-myosin based process, where 15 nurse cells of a given egg chamber contract and transfer their cytoplasmic content through the ring canals into the growing oocyte. We isolated two mutant alleles of protein kinase N (pkn) and showed that Pkn negatively-regulates activation of the actin-myosin cytoskeleton during the onset of dumping. Using live-cell imaging analysis we observed that nurse cell dumping rates sharply increase during the onset of fast dumping. Such rate increase was severely impaired in pkn mutant nurse cells due to excessive nurse cell actin-myosin activity and/or loss of tissue integrity. Our work demonstrates that the transition between slow and fast dumping is a discrete event, with at least a five to six-fold dumping rate increase. We show that Pkn negatively regulates nurse cell actin-myosin activity. This is likely to be important for directional cytoplasmic flow. We propose Pkn provides a negative feedback loop to help avoid excessive contractility after local activation of Rho GTPase.

  8. Brush border myosin Ia inactivation in gastric but not endometrial tumors

    NARCIS (Netherlands)

    Mazzolini, Rocco; Rodrigues, Paulo; Bazzocco, Sarah; Dopeso, Higinio; Ferreira, Ana M.; Mateo-Lozano, Silvia; Andretta, Elena; Woerner, Stefan M.; Alazzouzi, Hafid; Landolfi, Stefania; Hernandez-Losa, Javier; Macaya, Irati; Suzuki, Hiromu; Ramon y Cajal, Santiago; Mooseker, Mark S.; Mariadason, John M.; Gebert, Johannes; Hofstra, Robert M. W.; Reventos, Jaume; Yamamoto, Hiroyuki; Schwartz, Simo; Arango, Diego

    2013-01-01

    Brush border Myosin Ia (MYO1A) has been shown to be frequently mutated in colorectal tumors with microsatellite instability (MSI) and to have tumor suppressor activity in intestinal tumors. Here, we investigated the frequency of frameshift mutations in the A8 microsatellite in exon 28 of MYO1A in MS

  9. Visualizing key hinges and a potential major source of compliance in the lever arm of myosin

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.H.; Robinson, H.; Senthil Kumar, V. S.; O' Neall-Hennessey, E.; Reshetnikova, L.; Nguyen-McCarty, M.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-01-04

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.

  10. Visualizing Key Hinges and a Potential Major Source of Compliance in the Lever Arm of Myosin

    Energy Technology Data Exchange (ETDEWEB)

    J Brown; V Senthil Kumar; E ONeall-Hennessey; L Reshetnikova; H Robinson; M Nguyen-McCarty; A Szent-Gyorgyi; C Cohen

    2011-12-31

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.

  11. Force dependent biotinylation of myosin IIA by α-catenin tagged with a promiscuous biotin ligase.

    Directory of Open Access Journals (Sweden)

    Shuji Ueda

    Full Text Available Tissues and organs undergo constant physical perturbations and individual cells must respond to mechanical forces to maintain tissue integrity. However, molecular interactions underlying mechano-transduction are not fully defined at cell-cell junctions. This is in part due to weak and transient interactions that are likely prevalent in force-induced protein complexes. Using in situ proximal biotinylation by the promiscuous biotin ligase BirA tagged to α-catenin and a substrate stretch cell chamber, we sought to identify force-dependent molecular interactions surrounding α-catenin, an actin regulator at the sites of cadherin mediated cell-cell adhesion. While E-cadherin, β-catenin, vinculin and actin localize with α-catenin at cell-cell contacts in immuno-fluorescent staining, only β-catenin and plakoglobin were biotinylated, suggesting that this proximal biotinylation is limited to the molecules that are in the immediate vicinity of α-catenin. In mechanically stretched samples, increased biotinylation of non-muscle myosin IIA, but not myosin IIB, suggests close spatial proximity between α-catenin and myosin IIA during substrate stretching. This force-induced biotinylation diminished as myosin II activity was inhibited by blebbistatin. Taken together, this promising technique enables us to identify force sensitive complexes that may be essential for mechano-responses in force bearing cell adhesion.

  12. Solubilisation of myosin in a solution of low ionic strength L-histidine: Significance of the imidazole ring.

    Science.gov (United States)

    Chen, Xing; Zou, Yufeng; Han, Minyi; Pan, Lihua; Xing, Tong; Xu, Xinglian; Zhou, Guanghong

    2016-04-01

    Myosin, a major muscle protein, can be solubilised in a low ionic strength solution containing L-histidine (His). To elucidate which chemical constituents in His are responsible for this solubilisation, we investigated the effects of 5mM His, imidazole (Imi), L-α-alanine (Ala), 1-methyl-L-histidine (M-his) and L-carnosine (Car) on particle properties of myosin suspensions and conformational characteristics of soluble myosin at low ionic strength (1 mM KCl, pH 7.5). His, Imi and Car, each containing an imidazole ring, were able to induce a myosin suspension, which had small particle size species and high absolute zeta potential, thus increasing the solubility of myosin. His, Imi and Car affected the tertiary structure and decreased the α-helix content of soluble myosin. Therefore, the imidazole ring of His appeared to be the significant chemical constituent in solubilising myosin at low ionic strength solution, presumably by affecting its secondary structure.

  13. Solubilisation of myosin in a solution of low ionic strength L-histidine: Significance of the imidazole ring.

    Science.gov (United States)

    Chen, Xing; Zou, Yufeng; Han, Minyi; Pan, Lihua; Xing, Tong; Xu, Xinglian; Zhou, Guanghong

    2016-04-01

    Myosin, a major muscle protein, can be solubilised in a low ionic strength solution containing L-histidine (His). To elucidate which chemical constituents in His are responsible for this solubilisation, we investigated the effects of 5mM His, imidazole (Imi), L-α-alanine (Ala), 1-methyl-L-histidine (M-his) and L-carnosine (Car) on particle properties of myosin suspensions and conformational characteristics of soluble myosin at low ionic strength (1 mM KCl, pH 7.5). His, Imi and Car, each containing an imidazole ring, were able to induce a myosin suspension, which had small particle size species and high absolute zeta potential, thus increasing the solubility of myosin. His, Imi and Car affected the tertiary structure and decreased the α-helix content of soluble myosin. Therefore, the imidazole ring of His appeared to be the significant chemical constituent in solubilising myosin at low ionic strength solution, presumably by affecting its secondary structure. PMID:26593463

  14. Orbit/CLASP is required for myosin accumulation at the cleavage furrow in Drosophila male meiosis.

    Directory of Open Access Journals (Sweden)

    Daishi Kitazawa

    Full Text Available Peripheral microtubules (MTs near the cell cortex are essential for the positioning and continuous constriction of the contractile ring (CR in cytokinesis. Time-lapse observations of Drosophila male meiosis showed that myosin II was first recruited along the cell cortex independent of MTs. Then, shortly after peripheral MTs made contact with the equatorial cortex, myosin II was concentrated there in a narrow band. After MT contact, anillin and F-actin abruptly appeared on the equatorial cortex, simultaneously with myosin accumulation. We found that the accumulation of myosin did not require centralspindlin, but was instead dependent on Orbit, a Drosophila ortholog of the MT plus-end tracking protein CLASP. This protein is required for stabilization of central spindle MTs, which are essential for cytokinesis. Orbit was also localized in a mid-zone of peripheral MTs, and was concentrated in a ring at the equatorial cortex during late anaphase. Fluorescence resonance energy transfer experiments indicated that Orbit is closely associated with F-actin in the CR. We also showed that the myosin heavy chain was in close proximity with Orbit in the cleavage furrow region. Centralspindlin was dispensable in Orbit ring formation. Instead, the Polo-KLP3A/Feo complex was required for the Orbit accumulation independently of the Orbit MT-binding domain. However, orbit mutations of consensus sites for the phosphorylation of Cdk1 or Polo did not influence the Orbit accumulation, suggesting an indirect regulatory role of these protein kinases in Orbit localization. Orbit was also necessary for the maintenance of the CR. Our data suggest that Orbit plays an essential role as a connector between MTs and the CR in Drosophila male meiosis.

  15. Actin and nuclear myosin Ⅰ are associated with RNAP Ⅱ and function in gene transcription

    Institute of Scientific and Technical Information of China (English)

    ZHU XiaoJuan; HUANG BaiQu; WANG XingZhi; HAO Shui; ZENG XianLu

    2007-01-01

    The presence of actin in the nucleus as well as its functions in various nuclear processes has been made clear in the past few years. Actin is known to be a part of chromatin-remodeling complexes BAF,which are required for maximal ATPase activity of the Brg1 component of the BAF complex. Moreover,the essential roles of acfin in transcription mediated by RNA polymerases Ⅰ, Ⅱ and Ⅲ have been demonstrated recently. On the other hand, a myosin Ⅰ isoform, which contains a unique NH2-terminal extension for nucleus localization, has been specifically localized in nucleus. As is well known, myosin Ⅰis an actin-binding protein and plays an important role in various cellular activities. Though actin and nuclear myosin Ⅰ (NM Ⅰ) have been implicated to play distinct roles in gene expression, there has been no evidence for the actin-myosin interaction that might be involved in gene transcription mediated by RNA polymerase Ⅱ (RNAP Ⅱ). Here we show evidence that both actin and NM Ⅰ are associated with RNAP Ⅱ in nucleus by using co-localization and co-IP assays, and they may act together on gene transcription.The antibodies against β-actin or NM Ⅰ can block RNA synthesis in a eukaryotic in vitro transcription system with template DNA comprising the promoter and the coding region of human autocrine motility factor receptor (hAMFR) gene; the antibodies pre-adsorbed with purified actin and NM Ⅰ have no effect in transcriptional inhibition, indicating that the inhibition of transcription by anti-actin and anti-NM Ⅰ is specific. These results suggest a direct involvement of actin-myosin complexes in regulating transcription. It also implicates that actin and NM Ⅰ may co-exist in a same complex with RNAP Ⅱ and the interaction of RNAP Ⅱ with actin and NM Ⅰ functions in the RNAP Ⅱ-mediated transcription.

  16. Harmonic Force Spectroscopy Reveals a Force-Velocity Curve from a Single Human Beta Cardiac Myosin Motor

    DEFF Research Database (Denmark)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian L.;

    2014-01-01

    human beta cardiac myosin S1. We also compare load-velocity curves for wild-type motors with load-velocity curves of mutant forms that cause hypertrophic or dilated-cardiomyopathy (HCM or DCM), in order to understand the effects of mutations on the contractile cycle at the single molecule level....... is slow under high load and fast under low load. We use a new, simple method we call "harmonic force spectroscopy" to extract a load-velocity relationship from a single human beta cardiac myosin II motor (S1). With a dual-beam optical trap, we hold an actin dumbbell over a single myosin molecule...

  17. Novel Interactome of Saccharomyces cerevisiae Myosin Type II Identified by a Modified Integrated Membrane Yeast Two-Hybrid (iMYTH Screen

    Directory of Open Access Journals (Sweden)

    Ednalise Santiago

    2016-05-01

    Full Text Available Nonmuscle myosin type II (Myo1p is required for cytokinesis in the budding yeast Saccharomyces cerevisiae. Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other functions of the Myo1p tail domain. To identify novel Myo1p-interacting proteins, and determine if Myo1p can serve as a scaffold to recruit proteins to the bud neck during cytokinesis, we used the integrated split-ubiquitin membrane yeast two-hybrid (iMYTH system. Myo1p was iMYTH-tagged at its C-terminus, and screened against both cDNA and genomic prey libraries to identify interacting proteins. Control experiments showed that the Myo1p-bait construct was appropriately expressed, and that the protein colocalized to the yeast bud neck. Thirty novel Myo1p-interacting proteins were identified by iMYTH. Eight proteins were confirmed by coprecipitation (Ape2, Bzz1, Fba1, Pdi1, Rpl5, Tah11, and Trx2 or mass spectrometry (AP-MS (Abp1. The novel Myo1p-interacting proteins identified come from a range of different processes, including cellular organization and protein synthesis. Actin assembly/disassembly factors such as the SH3 domain protein Bzz1 and the actin-binding protein Abp1 represent likely Myo1p interactions during cytokinesis.

  18. Head and Neck

    DEFF Research Database (Denmark)

    Højgaard, Liselotte; Berthelsen, Anne Kiil; Loft, Annika

    2014-01-01

    Positron emission tomography (PET)/computed tomography with FDG of the head and neck region is mainly used for the diagnosis of head and neck cancer, for staging, treatment evaluation, relapse, and planning of surgery and radio therapy. This article is a practical guide of imaging techniques......, including a detailed protocol for FDG PET in head and neck imaging, physiologic findings, and pitfalls in selected case stories....

  19. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes.

    Science.gov (United States)

    Dewerchin, Hannah L; Desmarets, Lowiese M; Noppe, Ytse; Nauwynck, Hans J

    2014-02-12

    Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.

  20. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Computed tomography (CT) of the head uses special x-ray equipment to help assess head injuries, severe headaches, ... is a diagnostic medical test that, like traditional x-rays, produces multiple images or pictures of the inside ...

  1. Simultaneous recordings of force and sliding movement between a myosin-coated glass microneedle and actin cables in vitro.

    OpenAIRE

    Chaen, S; Oiwa, K; Shimmen, T; Iwamoto, H; Sugi, H

    1989-01-01

    To elucidate the molecular mechanism of muscle contraction resulting from the ATP-dependent actin-myosin interaction, we constructed an assay system with which both the force and the movement produced by the actin-myosin interaction in vitro can be simultaneously recorded and analyzed. The assay system consisted of the giant internodal cells of an alga, Nitellopsis obtusa, which contain well-organized arrays of actin filaments (actin cables) running along the cell long axis, and a glass micro...

  2. Stimulation of cortical myosin phosphorylation by p114RhoGEF drives cell migration and tumor cell invasion.

    Directory of Open Access Journals (Sweden)

    Stephen J Terry

    Full Text Available Actinomyosin activity is an important driver of cell locomotion and has been shown to promote collective cell migration of epithelial sheets as well as single cell migration and tumor cell invasion. However, the molecular mechanisms underlying activation of cortical myosin to stimulate single cell movement, and the relationship between the mechanisms that drive single cell locomotion and those that mediate collective cell migration of epithelial sheets are incompletely understood. Here, we demonstrate that p114RhoGEF, an activator of RhoA that associates with non-muscle myosin IIA, regulates collective cell migration of epithelial sheets and tumor cell invasion. Depletion of p114RhoGEF resulted in specific spatial inhibition of myosin activation at cell-cell contacts in migrating epithelial sheets and the cortex of migrating single cells, but only affected double and not single phosphorylation of myosin light chain. In agreement, overall elasticity and contractility of the cells, processes that rely on persistent and more constant forces, were not affected, suggesting that p114RhoGEF mediates process-specific myosin activation. Locomotion was p114RhoGEF-dependent on Matrigel, which favors more roundish cells and amoeboid-like actinomyosin-driven movement, but not on fibronectin, which stimulates flatter cells and lamellipodia-driven, mesenchymal-like migration. Accordingly, depletion of p114RhoGEF led to reduced RhoA, but increased Rac activity. Invasion of 3D matrices was p114RhoGEF-dependent under conditions that do not require metalloproteinase activity, supporting a role of p114RhoGEF in myosin-dependent, amoeboid-like locomotion. Our data demonstrate that p114RhoGEF drives cortical myosin activation by stimulating myosin light chain double phosphorylation and, thereby, collective cell migration of epithelial sheets and amoeboid-like motility of tumor cells.

  3. American Head and Neck Society

    Science.gov (United States)

    American Head & Neck Society Head and Neck Cancer Research & Education American Head & Neck Society | AHNS Head and Neck Cancer Research & Education About AHNS ... and Announcements Copyright ©2016 · American Head and Neck Society · Privacy and Return Policy Managed by BSC Management, ...

  4. Tubule-guided cell-to-cell movement of a plant virus requires class XI myosin motors.

    Directory of Open Access Journals (Sweden)

    Khalid Amari

    2011-10-01

    Full Text Available Cell-to-cell movement of plant viruses occurs via plasmodesmata (PD, organelles that evolved to facilitate intercellular communications. Viral movement proteins (MP modify PD to allow passage of the virus particles or nucleoproteins. This passage occurs via several distinct mechanisms one of which is MP-dependent formation of the tubules that traverse PD and provide a conduit for virion translocation. The MP of tubule-forming viruses including Grapevine fanleaf virus (GFLV recruit the plant PD receptors called Plasmodesmata Located Proteins (PDLP to mediate tubule assembly and virus movement. Here we show that PDLP1 is transported to PD through a specific route within the secretory pathway in a myosin-dependent manner. This transport relies primarily on the class XI myosins XI-K and XI-2. Inactivation of these myosins using dominant negative inhibition results in mislocalization of PDLP and MP and suppression of GFLV movement. We also found that the proper targeting of specific markers of the Golgi apparatus, the plasma membrane, PD, lipid raft subdomains within the plasma membrane, and the tonoplast was not affected by myosin XI-K inhibition. However, the normal tonoplast dynamics required myosin XI-K activity. These results reveal a new pathway of the myosin-dependent protein trafficking to PD that is hijacked by GFLV to promote tubule-guided transport of this virus between plant cells.

  5. Tyrosine phosphorylation/dephosphorylation of myosin II essential light chains of Entamoeba histolytica trophozoites regulates their motility.

    Science.gov (United States)

    Bonilla-Moreno, Raúl; Pérez-Yépez, Eloy-Andrés; Villegas-Sepúlveda, Nicolás; Morales, Fernando O; Meza, Isaura

    2016-08-01

    Entamoeba histolytica trophozoites dwell in the human intestine as comensals although under still unclear circumstances become invasive and destroy the host tissues. For these activities, trophozoites relay on remarkable motility provided by the cytoskeleton organization. Amebic actin and some of its actin-associated proteins are well known, while components of the myosin II molecule, although predicted from the E. histolytica genome, need biochemical and functional characterization. Recently, an amebic essential light myosin II chain, named EhMLCI, was identified and reported to be phosphorylated in tyrosines. The phosphorylated form of the protein was associated with the soluble assembly incompetent conformation of the heavy myosin chains, while the non-phosphorylated protein was identified with filamentous heavy chains, organized in an assembly competent conformation. It was postulated that EhMLCI tyrosine phosphorylation could act as a negative regulator of myosin II activity by its phosphorylation/dephosphorylation cycles. To test this hypothesis, we constructed an expression vector containing an EhMLCI DNA sequence where two tyrosine residues, with strong probability of phosphorylation and fall within the single EF-hand domain that interacts with the N-terminus of myosin II heavy chains, were replaced by phenylalanines. Transfected trophozoites, expressing the mutant MutEhMLCI protein cannot process it, thereby not incorporated into the phosphorylation/dephosphorylation cycles required for myosin II activity, results in motility defective trophozoites. PMID:27318258

  6. Phosphorylated peptides occur in a non-helical portion of the tail of a catch muscle myosin

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, L.; Elliott, B.W. Jr.; Cohen, C.

    1987-05-01

    Myosin from a molluscan catch muscle (the Anterior Byssus Retractor (ABRM) of Mytilus edulis) is unusual in being phosphorylated in the rod by an endogenous heavy-chain kinase. This phosphorylation enhances myosin solubility at low ionic strength and induces molecular folding of the myosin tail. Papain and chymotryptic cleavage of this myosin, phosphorylated with (..gamma..-/sup 32/P)ATP, indicates that the phosphorylated residues are associated with the carboxy-terminal end of the light meromyosin. Ion-exchange and reverse-phase HPLC of radiolabeled chymotryptic peptides allow the isolation of two different peptides with high specific activity. One of these peptides is rich in lysine and arginine residues, a finding consistent with the observation that basic residues often determine the substrate specificity of protein kinases. The second peptide contains proline residues. Taken together, these results suggest that, as in the case of Acanthamoeba myosin, phosphorylation occurs in a nonhelical portion of the rod that may also control solubility. Identification of the residues that are phosphorylated and their location in the rod may reveal how the phosphorylation-dependent changes observed in the myosin in vitro are related to changes in intermolecular interactions in the thick filaments in vivo.

  7. A novel multitarget tracking algorithm for Myosin VI protein molecules on actin filaments in TIRFM sequences.

    Science.gov (United States)

    Li, G; Sanchez, V; Nagaraj, P C S B; Khan, S; Rajpoot, N

    2015-12-01

    We propose a novel multitarget tracking framework for Myosin VI protein molecules in total internal reflection fluorescence microscopy sequences which integrates an extended Hungarian algorithm with an interacting multiple model filter. The extended Hungarian algorithm, which is a linear assignment problem based method, helps to solve measurement assignment and spot association problems commonly encountered when dealing with multiple targets, although a two-motion model interacting multiple model filter increases the tracking accuracy by modelling the nonlinear dynamics of Myosin VI protein molecules on actin filaments. The evaluation of our tracking framework is conducted on both real and synthetic total internal reflection fluorescence microscopy sequences. The results show that the framework achieves higher tracking accuracies compared to the state-of-the-art tracking methods, especially for sequences with high spot density. PMID:26259144

  8. Myosin Specific-T Lymphocytes Mediated Myocardial Inflammation in Adoptive Transferred Rats

    Institute of Scientific and Technical Information of China (English)

    Jin Zhang; Yuhua Liao; Xiang Cheng; Jing Chen; Peng Chen; Xiang Gao; Zhengjenny Zhang

    2006-01-01

    Myosin specific-T lymphocytes might mediate myocardial inflammation and remodeling after AMI. Myosinactivated or unactivated T lymphocytes in vitro were transferred into naǐve syngeneic rats, respectively. T lymphocyte infiltration and myocyte apoptosis were explored by the H&E and TUNNEL. Proteins and mRNA levels of cytokines (IL-1β, IL-6 and TNF-α) in myocardium were determined by RT-PCR and immunohistochemistry. T lymphocyte infiltration was evidently observed after one week of activated T cell transfer. The expressions of cytokines were elevated markedly one week later. The myocyte apoptosis occurred after T lymphocyte infiltration in myocardium. Our findings suggest that cardiac myosin activated-T lymphocytes may mediate myocardial inflammation and remodeling.

  9. Myosin-II dependent cell contractility contributes to spontaneous nodule formation of mesothelioma cells

    CERN Document Server

    Tárnoki-Zách, Julia; Méhes, Elod; Paku, Sándor; Neufeld, Zoltán; Hegedus, Balázs; Döme, Balázs; Czirok, Andras

    2015-01-01

    We demonstrate that characteristic nodules emerge in cultures of several malignant pleural mesothelioma (MPM) cell lines. Instead of excessive local cell proliferation, the nodules arise by Myosin II-driven cell contractility. The aggregation process can be prevented or reversed by suitable pharmacological inhibitors of acto-myosin contractility. A cell-resolved elasto-plastic model of the multicellular patterning process indicates that the morphology and size of the nodules as well as the speed of their formation is determined by the mechanical tension cells exert on their neighbors, and the stability of cell-substrate adhesion complexes. A linear stability analysis of a homogenous, self-tensioned Maxwell fluid indicates the unconditional presence of a patterning instability.

  10. Shrinkage insensitivity of NKCC1 in myosin II-depleted cytoplasts from Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2007-01-01

    Protein phosphorylation/dephosphorylation and cytoskeletal reorganization regulate the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) during osmotic shrinkage; however, the mechanisms involved are unclear. We show that in cytoplasts, plasma membrane vesicles detached from Ehrlich ascites tumor cells (EATC......) by cytochalasin treatment, NKCC1 activity evaluated as bumetanide-sensitive (86)Rb influx was increased compared with the basal level in intact cells yet could not be further increased by osmotic shrinkage. Accordingly, cytoplasts exhibited no regulatory volume increase after shrinkage. In cytoplasts......, cortical F-actin organization was disrupted, and myosin II, which in shrunken EATC translocates to the cortical region, was absent. Moreover, NKCC1 activity was essentially insensitive to the myosin light chain kinase (MLCK) inhibitor ML-7, a potent blocker of shrinkage-induced NKCC1 activity in intact...

  11. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches

    OpenAIRE

    Velten, Brandy P.; Welch, Kenneth C.

    2014-01-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25–60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to...

  12. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S., E-mail: bcssj@iacs.res.in

    2014-08-01

    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC{sub 20}) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC{sub 20} phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation.

  13. Lead reduces tension development and the myosin ATPase activity of the rat right ventricular myocardium

    Directory of Open Access Journals (Sweden)

    D.V. Vassallo

    2008-09-01

    Full Text Available Lead (Pb2+ poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 µM to the bath. Changes in rate of stimulation (0.1-1.5 Hz, relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM, and the effect of isoproterenol (20 ng/mL were determined before and after the addition of 100 µM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 µM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 µM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 µM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 µM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.

  14. Clathrin regulates centrosome positioning by promoting acto-myosin cortical tension in C. elegans embryos.

    Science.gov (United States)

    Spiró, Zoltán; Thyagarajan, Kalyani; De Simone, Alessandro; Träger, Sylvain; Afshar, Katayoun; Gönczy, Pierre

    2014-07-01

    Regulation of centrosome and spindle positioning is crucial for spatial cell division control. The one-cell Caenorhabditis elegans embryo has proven attractive for dissecting the mechanisms underlying centrosome and spindle positioning in a metazoan organism. Previous work revealed that these processes rely on an evolutionarily conserved force generator complex located at the cell cortex. This complex anchors the motor protein dynein, thus allowing cortical pulling forces to be exerted on astral microtubules emanating from microtubule organizing centers (MTOCs). Here, we report that the clathrin heavy chain CHC-1 negatively regulates pulling forces acting on centrosomes during interphase and on spindle poles during mitosis in one-cell C. elegans embryos. We establish a similar role for the cytokinesis/apoptosis/RNA-binding protein CAR-1 and uncover that CAR-1 is needed to maintain proper levels of CHC-1. We demonstrate that CHC-1 is necessary for normal organization of the cortical acto-myosin network and for full cortical tension. Furthermore, we establish that the centrosome positioning phenotype of embryos depleted of CHC-1 is alleviated by stabilizing the acto-myosin network. Conversely, we demonstrate that slight perturbations of the acto-myosin network in otherwise wild-type embryos results in excess centrosome movements resembling those in chc-1(RNAi) embryos. We developed a 2D computational model to simulate cortical rigidity-dependent pulling forces, which recapitulates the experimental data and further demonstrates that excess centrosome movements are produced at medium cortical rigidity values. Overall, our findings lead us to propose that clathrin plays a critical role in centrosome positioning by promoting acto-myosin cortical tension. PMID:24961801

  15. Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction

    OpenAIRE

    Qiu Xinping; Seabrooke Sara; Stewart Bryan A

    2010-01-01

    Abstract Background Although the mechanistic details of the vesicle transport process from the cell body to the nerve terminal are well described, the mechanisms underlying vesicle traffic within nerve terminal boutons is relatively unknown. The actin cytoskeleton has been implicated but exactly how actin or actin-binding proteins participate in vesicle movement is not clear. Results In the present study we have identified Nonmuscle Myosin II as a candidate molecule important for synaptic ves...

  16. Expression and DNA sequence analysis of a human embryonic skeletal muscle myosin heavy chain gene.

    OpenAIRE

    Karsch-Mizrachi, I; M. Travis; Blau, H; Leinwand, L A

    1989-01-01

    Vertebrate myosin heavy chains (MHC) are represented by multiple genes that are expressed in a spatially and temporally distinct pattern during development. In order to obtain molecular probes for developmentally regulated human MHC isoforms, we used monoclonal antibodies to screen an expression cDNA library constructed from primary human myotube cultures. A 3.4 kb cDNA was isolated that encodes one of the first MHCs to be transcribed in human skeletal muscle development. A portion of the cor...

  17. Interactions between actin and myosin filaments in skeletal muscle visualized in frozen-hydrated thin sections.

    OpenAIRE

    Trus, B L; Steven, A C; McDowall, A W; M. Unser; Dubochet, J; Podolsky, R J

    1989-01-01

    For the purpose of determining net interactions between actin and myosin filaments in muscle cells, perhaps the single most informative view of the myofilament lattice is its averaged axial projection. We have studied frozen-hydrated transverse thin sections with the goal of obtaining axial projections that are not subject to the limitations of conventional thin sectioning (suspect preservation of native structure) or of equatorial x-ray diffraction analysis (lack of experimental phases). In ...

  18. Novel Mutation in the α-Myosin Heavy Chain Gene Is Associated With Sick Sinus Syndrome

    OpenAIRE

    Ishikawa, Taisuke; Jou, Chuanchau J.; Nogami, Akihiko; Kowase, Shinya; Arrington, Cammon B.; Barnett, Spencer M.; Harrell, Daniel T.; Arimura, Takuro; Tsuji, Yukiomi; Kimura, Akinori; Makita, Naomasa

    2015-01-01

    Recent genome-wide association studies have demonstrated an association between MYH6, the gene encoding α-myosin heavy chain (α-MHC), and sinus node function in the general population. Moreover, a rare MYH6 variant, R721W, predisposing susceptibility to sick sinus syndrome has been identified. However, the existence of disease-causing MYH6 mutations for familial sick sinus syndrome and their underlying mechanisms remain unknown. Methods and Results-We screened 9 genotype-negative probands wit...

  19. Differential Contributions of Nonmuscle Myosin II Isoforms and Functional Domains to Stress Fiber Mechanics

    OpenAIRE

    Ching-Wei Chang; Sanjay Kumar

    2015-01-01

    While is widely acknowledged that nonmuscle myosin II (NMMII) enables stress fibers (SFs) to generate traction forces against the extracellular matrix, little is known about how specific NMMII isoforms and functional domains contribute to SF mechanics. Here we combine biophotonic and genetic approaches to address these open questions. First, we suppress the NMMII isoforms MIIA and MIIB and apply femtosecond laser nanosurgery to ablate and investigate the viscoelastic retraction of individual ...

  20. Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB

    OpenAIRE

    Rolo, Ana; Skoglund, Paul; Keller, Ray

    2008-01-01

    Vertebrate neural tube formation involves two distinct morphogenetic events -convergent extension (CE) driven by medio-lateral cell intercalation, and bending of the neural plate driven largely by cellular apical constriction. However, the cellular and molecular biomechanics of these processes are not understood. Here, using tissue-targeting techniques, we show that the myosin IIB motor protein complex is essential for both these processes, as well as for conferring resistance to deformation ...

  1. A Kinase Anchoring Protein 9 Is a Novel Myosin VI Binding Partner That Links Myosin VI with the PKA Pathway in Myogenic Cells

    Directory of Open Access Journals (Sweden)

    Justyna Karolczak

    2015-01-01

    Full Text Available Myosin VI (MVI is a unique motor protein moving towards the minus end of actin filaments unlike other known myosins. Its important role has recently been postulated for striated muscle and myogenic cells. Since MVI functions through interactions of C-terminal globular tail (GT domain with tissue specific partners, we performed a search for MVI partners in myoblasts and myotubes using affinity chromatography with GST-tagged MVI-GT domain as a bait. A kinase anchoring protein 9 (AKAP9, a regulator of PKA activity, was identified by means of mass spectrometry as a possible MVI interacting partner both in undifferentiated and differentiating myoblasts and in myotubes. Coimmunoprecipitation and proximity ligation assay confirmed that both proteins could interact. MVI and AKAP9 colocalized at Rab5 containing early endosomes. Similarly to MVI, the amount of AKAP9 decreased during myoblast differentiation. However, in MVI-depleted cells, both cAMP and PKA levels were increased and a change in the MVI motor-dependent AKAP9 distribution was observed. Moreover, we found that PKA phosphorylated MVI-GT domain, thus implying functional relevance of MVI-AKAP9 interaction. We postulate that this novel interaction linking MVI with the PKA pathway could be important for targeting AKAP9-PKA complex within cells and/or providing PKA to phosphorylate MVI tail domain.

  2. A Kinase Anchoring Protein 9 Is a Novel Myosin VI Binding Partner That Links Myosin VI with the PKA Pathway in Myogenic Cells.

    Science.gov (United States)

    Karolczak, Justyna; Sobczak, Magdalena; Skowronek, Krzysztof; Rędowicz, Maria Jolanta

    2015-01-01

    Myosin VI (MVI) is a unique motor protein moving towards the minus end of actin filaments unlike other known myosins. Its important role has recently been postulated for striated muscle and myogenic cells. Since MVI functions through interactions of C-terminal globular tail (GT) domain with tissue specific partners, we performed a search for MVI partners in myoblasts and myotubes using affinity chromatography with GST-tagged MVI-GT domain as a bait. A kinase anchoring protein 9 (AKAP9), a regulator of PKA activity, was identified by means of mass spectrometry as a possible MVI interacting partner both in undifferentiated and differentiating myoblasts and in myotubes. Coimmunoprecipitation and proximity ligation assay confirmed that both proteins could interact. MVI and AKAP9 colocalized at Rab5 containing early endosomes. Similarly to MVI, the amount of AKAP9 decreased during myoblast differentiation. However, in MVI-depleted cells, both cAMP and PKA levels were increased and a change in the MVI motor-dependent AKAP9 distribution was observed. Moreover, we found that PKA phosphorylated MVI-GT domain, thus implying functional relevance of MVI-AKAP9 interaction. We postulate that this novel interaction linking MVI with the PKA pathway could be important for targeting AKAP9-PKA complex within cells and/or providing PKA to phosphorylate MVI tail domain.

  3. Characteristics of myosin profile in human vastus lateralis muscle in relation to training background.

    Science.gov (United States)

    Zawadowska, B; Majerczak, J; Semik, D; Karasinski, J; Kolodziejski, L; Kilarski, W M; Duda, K; Zoladz, J A

    2004-01-01

    Twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background were investigated and classified into three groups according to their physical activity and sport discipline: untrained students (group A), national and sub-national level endurance athletes (group B, 7.8+/-2.9 years of specialised training) and sprint-power athletes (group C, 12.8+/-8.7 years of specialised training). Muscle biopsies of vastus lateralis were analysed histochemically for mATPase and SDH activities, immunohistochemically for fast and slow myosin, and electrophoretically followed by Western immunoblotting for myosin heavy chain (MyHC) composition. Significant differences (Pmodern dance. Furthermore, the relative amount of the fastest MyHCIIX isoform in vastus lateralis muscle was significantly lower in the athletes from group C than in students (group A). We conclude that the myosin profile in the athletes belonging to group C was unfavourable for their sport disciplines. This could be the reason why those athletes did not reach international level despite of several years of training. PMID:15493580

  4. The On-off Switch in Regulated Myosins: Different Triggers but Related Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, D.; Mui, S; O& apos; Neall-Hennessey, E; Szent-Györgyi, A; Cohen, C

    2009-01-01

    In regulated myosin, motor and enzymatic activities are toggled between the on-state and off-state by a switch located on its lever arm domain, here called the regulatory domain (RD). This region consists of a long {alpha}-helical 'heavy chain' stabilized by a 'regulatory' light chain (RLC) and an 'essential' light chain (ELC). The on-state is activated by phosphorylation of the RLC of vertebrate smooth muscle RD or by direct binding of Ca{sup 2+} to the ELC of molluscan RD. Crystal structures are available only for the molluscan RD. To understand in more detail the pathway between the on-state and the off-state, we have now also determined the crystal structure of a molluscan (scallop) RD in the absence of Ca{sup 2+}. Our results indicate that loss of Ca{sup 2+} abolishes most of the interactions between the light chains and may increase the flexibility of the RD heavy chain. We propose that disruption of critical links with the C-lobe of the RLC is the key event initiating the off-state in both smooth muscle myosins and molluscan myosins.

  5. Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells.

    Science.gov (United States)

    Pfannes, Eva K B; Anielski, Alexander; Gerhardt, Matthias; Beta, Carsten

    2013-12-01

    Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system. PMID:24136144

  6. Myosin filament sliding through the Z-disc relates striated muscle fibre structure to function.

    Science.gov (United States)

    Rode, Christian; Siebert, Tobias; Tomalka, Andre; Blickhan, Reinhard

    2016-03-16

    Striated muscle contraction requires intricate interactions of microstructures. The classic textbook assumption that myosin filaments are compressed at the meshed Z-disc during striated muscle fibre contraction conflicts with experimental evidence. For example, myosin filaments are too stiff to be compressed sufficiently by the muscular force, and, unlike compressed springs, the muscle fibres do not restore their resting length after contractions to short lengths. Further, the dependence of a fibre's maximum contraction velocity on sarcomere length is unexplained to date. In this paper, we present a structurally consistent model of sarcomere contraction that reconciles these findings with the well-accepted sliding filament and crossbridge theories. The few required model parameters are taken from the literature or obtained from reasoning based on structural arguments. In our model, the transition from hexagonal to tetragonal actin filament arrangement near the Z-disc together with a thoughtful titin arrangement enables myosin filament sliding through the Z-disc. This sliding leads to swivelled crossbridges in the adjacent half-sarcomere that dampen contraction. With no fitting of parameters required, the model predicts straightforwardly the fibre's entire force-length behaviour and the dependence of the maximum contraction velocity on sarcomere length. Our model enables a structurally and functionally consistent view of the contractile machinery of the striated fibre with possible implications for muscle diseases and evolution.

  7. Myogenin, MyoD, and myosin expression after pharmacologically and surgically induced hypertrophy

    Science.gov (United States)

    Mozdziak, P. E.; Greaser, M. L.; Schultz, E.

    1998-01-01

    The relationship between myogenin or MyoD expression and hypertrophy of the rat soleus produced either by clenbuterol and 3,3', 5-triiodo-L-thyronine (CT) treatment or by surgical overload was examined. Mature female rats were subjected to surgical overload of the right soleus with the left soleus serving as a control. Another group received the same surgical treatment but were administered CT. Soleus muscles were harvested 4 wk after surgical overload and weighed. Myosin heavy chain isoforms were separated by using polyacrylamide gel electrophoresis while myogenin and MyoD expression were evaluated by Northern analysis. CT and functional overload increased soleus muscle weight. CT treatment induced the appearance of the fast type IIX myosin heavy chain isoform, depressed myogenin expression, and induced MyoD expression. However, functional overload did not alter myogenin or MyoD expression in CT-treated or non-CT-treated rats. Thus pharmacologically and surgically induced hypertrophy have differing effects on myogenin and MyoD expression, because their levels were associated with changes in myosin heavy chain composition (especially type IIX) rather than changes in muscle mass.

  8. Myosin heavy chain-based fibre types in red cell hyper- and normovolaemic Standardbred trotters.

    Science.gov (United States)

    Karlström, K; Essén-Gustavsson, B

    2002-09-01

    An assumed link between red cell hypervolaemia, an excessive amount of training and impaired performance of hypervolaemic horses has led to a theory that the muscle fibres could be affected. Myosin heavy chain (MHC)-based fibre type composition in gluteus medius muscle of red blood cell normo- (NV) and hypervolaemic (HV) Standardbred trotters was evaluated using immunohistochemistry. Muscle biopsies were obtained from 13 NV and 16 HV horses. Serial transverse sections were cut and reacted with antibodies against different isoforms of the myosin heavy chains MHCI, MHCIIA and MHCIIX. Sections were also stained for myofibrillar ATPase pH 4,6 to identify types I, IIA and IIB, and NADH tetrazolium reductase to evaluate the oxidative capacity. The results show that types I and IIA fibres corresponded between staining methods, whereas IIB fibres in the ATPase stains were more numerous than pure MHCIIX fibres from immunohistochemistry. Many fibres identified histochemically as type IIB fibres contained both MHC isoforms IIA and IIX (MHCIIAX). Most fibres had a high oxidative capacity, but among the fibres within a section, the lowest was seen subjectively in pure MHCIIX fibres. Immunohistochemical stains make it possible to detect differences in fibre type composition that are not observed with myosin ATPase stainings, as it was found that HV horses had a lower percentage of MHCIIX fibres than NV horses. Immunohistochemical methods are, therefore, valuable for use in further research and clinical studies concerning muscle adaptations. PMID:12405701

  9. The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract

    DEFF Research Database (Denmark)

    Hansen, Lars; Comyn, Sophie; Mang, Yuan;

    2014-01-01

    -type embryos resulted in development of a phenotype similar to the steif mutant. The p.Arg805Trp alteration in the mammalian UNC45B gene suggests that developmental cataract may be caused by a defect in non-muscle myosin assembly during maturation of the lens fiber cells.European Journal of Human Genetics...... in this region, in ACACA and UNC45B. As alterations of the UNC45B protein have been shown to affect eye development in model organisms, effort was focused on the heterozygous UNC45B missense mutation. UNC45B encodes a myosin-specific chaperone that, together with the general heat shock protein HSP90, is involved...... in myosin assembly. The mutation changes p.Arg805 to Trp in the UCS domain, an amino acid that is highly conserved from yeast to human. UNC45B is strongly expressed in the heart and skeletal muscle tissue, but here we show expression in human embryo eye and zebrafish lens. The zebrafish mutant steif...

  10. Head Start Impact Study

    Data.gov (United States)

    U.S. Department of Health & Human Services — Nationally representative, longitudinal information from an evaluation where children were randomly assigned to Head Start or community services as usual;direct...

  11. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Videos related to Computed Tomography (CT) - Head About this Site RadiologyInfo.org is produced by: Please note ... you can search the ACR-accredited facilities database . This website does not provide cost information. The costs ...

  12. Foreign heading machines

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, E.P.; Chernomaz, O.L.

    1983-12-01

    A general review is presented of heading machines currently produced, divided into pointed arm, drilling and impact types. Pointed arm machines described include models manufactured by Thyssen Titan, Dosco, Anderson Strathclyde and Anderson Meyvor (UK), Mannesman Demag, Eikchoff, Paurat and Westfalia-Luenen (FRG), Jeffrey Machinery, Joy Manufacturing, Lee Norse and National Mine Service (USA), Voest-Alpine (Austria and under licence in Poland), Kawasaki and Nippon Koki (Japan). Drilling heading machines include models manufactured by Atlas Copco-Jarva (USA-Sweden), Robbins (USA), Demag (FRG; TVM model) and others. Impact heading machines are described generally, giving basic parameter ranges, with mention of their advantages: such as light weight, low dust emission, small preliminary preparation requirements, etc. Further developments in and wider use of heading machines are predicted, and mention is made of research into cutting methods using very high pressure jets in combination with mechanical cutting (USA, FRG, Japan).

  13. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... special x-ray equipment to help assess head injuries, severe headaches, dizziness, and other symptoms of aneurysm, ... cancer. In emergency cases, it can reveal internal injuries and bleeding quickly enough to help save lives. ...

  14. Early Head Start Evaluation

    Data.gov (United States)

    U.S. Department of Health & Human Services — Longitudinal information from an evaluation where children were randomly assigned to Early Head Start or community services as usual;direct assessments and...

  15. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... headaches, dizziness, and other symptoms of aneurysm, bleeding, stroke and brain tumors. It also helps your doctor ... scanning provides more detailed information on head injuries, stroke , brain tumors and other brain diseases than regular ...

  16. Overview of Head Injuries

    Science.gov (United States)

    ... Children are admitted to the hospital for these reasons or if they were unconscious even briefly or had a seizure. Children are also admitted to the hospital if child abuse is suspected. Severe head injury If the injury ...

  17. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head ...

  18. Standard integrated head package

    International Nuclear Information System (INIS)

    An integrated head package for a standard-type nuclear reactor is described which consolidates many components and subassemblies of the upper reactor structure into a single unit which may be removed from the reactor vessel in a single lift. Included among the consolidated elements are a pressure vessel head, a cooling shroud, control rod drive mechanisms, a missile shield, a lifting rig, a hoist assembly, and a cable tray assembly. (author)

  19. Head and neck teratomas

    OpenAIRE

    Shah, Ajaz; Latoo, Suhail; Ahmed, Irshad; Malik, Altaf H

    2009-01-01

    Teratomas are complex lesions composed of diverse tissues from all 3 germinal cell layers and may exhibit variable levels of maturity. Head and neck teratomas are most commonly cervical with the oropharynx (epignathus) being the second commonest location. In this article, clinical presentation, behaviour and associated significance of head and neck teratomas have been highlightened. Because of their obscure origin, bizarre microscopic appearance, unpredictable behaviour and often dramatic cli...

  20. Surrogate Head Forms for the Evaluation of Head Injury Risk

    OpenAIRE

    MacAlister, Anna

    2013-01-01

    This paper summarizes the use of surrogate head forms in biomechanical research pertaining to head injury and, more specifically, mild traumatic brain injury. Because cadavers are limited and controlled studies of brain injury using live human subjects would be unethical, surrogate head forms are used to study the response of the human head to impact. Different head forms have been developed and optimized for different purposes. The Hybrid III 50th percentile male crash test dummy was develop...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head ... limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is ...

  2. Missouri: Early Head Start Initiative

    Science.gov (United States)

    Center for Law and Social Policy, Inc. (CLASP), 2012

    2012-01-01

    Missouri's Early Head Start/Child Care Partnership Project expands access to Early Head Start (EHS) services for children birth to age 3 by developing partnerships between federal Head Start, EHS contractors, and child care providers. Head Start and EHS contractors that participate in the initiative provide services through community child care…

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  5. Economics of head injuries

    Directory of Open Access Journals (Sweden)

    Singh Manmohan

    2006-01-01

    Full Text Available Summary: Head injuries account for significant proportion of neurosurgical admissions and bed occupancy. Patients with head injuries also consume significant proportions of neurosurgical resources. A prospective 6-month study has been carried out to evaluate the expenditure incurred on head injury patients in a modern neurosurgical center equipped with state of the art infrastructure. Costing areas included wages / salaries of health care personnel, cost of medicines / surgical items / crystalloids, general store items, stationary, all investigation charges, equipment cost, overhead building cost, maintenance cost, electricity and water charges and cost of medical gases, air conditioning and operation theatre expenses. Expenditure in each area was calculated and apportioned to each bed. The statistical analysis was done using X2 test. The cost of stay in ward was found to be Rs. 1062 / bed / day and in neurosurgical ICU Rs. 3082 / bed / day. The operation theatre cost for each surgery was Rs. 11948. The cost of hospital stay per day for minor, moderate and severe head injury group was found to be Rs. 1921, Rs. 2569 and Rs. 2713 respectively. The patients who developed complications, the cost of stay per day in the hospital were Rs. 2867. In the operative group, the cost of hospital stay per day was Rs. 3804. The total expenditure in minor head injury was Rs. 7800 per patient, in moderate head injury was Rs. 22172 per patient, whereas in severe head injury, it was found to be Rs. 32852 per patient. Patients who underwent surgery, the total cost incurred was Rs. 33100 per operated patient.

  6. Interaction of c-Cbl with myosin IIA regulates Bleb associated macropinocytosis of Kaposi's sarcoma-associated herpesvirus.

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    Full Text Available KSHV is etiologically associated with Kaposi's sarcoma (KS, an angioproliferative endothelial cell malignancy. Macropinocytosis is the predominant mode of in vitro entry of KSHV into its natural target cells, human dermal microvascular endothelial (HMVEC-d cells. Although macropinocytosis is known to be a major route of entry for many viruses, the molecule(s involved in the recruitment and integration of signaling early during macropinosome formation is less well studied. Here we demonstrate that tyrosine phosphorylation of the adaptor protein c-Cbl is required for KSHV induced membrane blebbing and macropinocytosis. KSHV induced the tyrosine phosphorylation of c-Cbl as early as 1 min post-infection and was recruited to the sites of bleb formation. Infection also led to an increase in the interaction of c-Cbl with PI3-K p85 in a time dependent manner. c-Cbl shRNA decreased the formation of KSHV induced membrane blebs and macropinocytosis as well as virus entry. Immunoprecipitation of c-Cbl followed by mass spectrometry identified the interaction of c-Cbl with a novel molecular partner, non-muscle myosin heavy chain IIA (myosin IIA, in bleb associated macropinocytosis. Phosphorylated c-Cbl colocalized with phospho-myosin light chain II in the interior of blebs of infected cells and this interaction was abolished by c-Cbl shRNA. Studies with the myosin II inhibitor blebbistatin demonstrated that myosin IIA is a biologically significant component of the c-Cbl signaling pathway and c-Cbl plays a new role in the recruitment of myosin IIA to the blebs during KSHV infection. Myosin II associates with actin in KSHV induced blebs and the absence of actin and myosin ubiquitination in c-Cbl ShRNA cells suggested that c-Cbl is also responsible for the ubiquitination of these proteins in the infected cells. This is the first study demonstrating the role of c-Cbl in viral entry as well as macropinocytosis, and provides the evidence that a signaling complex

  7. Nonterminating Rewritings with Head Boundedness

    Institute of Scientific and Technical Information of China (English)

    陈意云

    1993-01-01

    We define here the concept of head boundedness,head normal form and head confluence of term rewriting systems that allow infinite derivation.Head confluence iw weaker than confluence,but sufficient to guarantee the correctness of lazy implementations of equational logic programming languages.Then we prove several results.First,if a left-linear system is locally confluent and head-bounded.then it is head-confluent.Second,head-confluent and head-bounded systems have the heau Church-Rosser property.Last,if an orthogonal system is head-terminating,then it is head-bounded.These results can be applied to generalize equational logic programming languages.

  8. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle.

    Science.gov (United States)

    Boëda, Batiste; El-Amraoui, Aziz; Bahloul, Amel; Goodyear, Richard; Daviet, Laurent; Blanchard, Stéphane; Perfettini, Isabelle; Fath, Karl R; Shorte, Spencer; Reiners, Jan; Houdusse, Anne; Legrain, Pierre; Wolfrum, Uwe; Richardson, Guy; Petit, Christine

    2002-12-16

    Deaf-blindness in three distinct genetic forms of Usher type I syndrome (USH1) is caused by defects in myosin VIIa, harmonin and cadherin 23. Despite being critical for hearing, the functions of these proteins in the inner ear remain elusive. Here we show that harmonin, a PDZ domain-containing protein, and cadherin 23 are both present in the growing stereocilia and that they bind to each other. Moreover, we demonstrate that harmonin b is an F-actin-bundling protein, which is thus likely to anchor cadherin 23 to the stereocilia microfilaments, thereby identifying a novel anchorage mode of the cadherins to the actin cytoskeleton. Moreover, harmonin b interacts directly with myosin VIIa, and is absent from the disorganized hair bundles of myosin VIIa mutant mice, suggesting that myosin VIIa conveys harmonin b along the actin core of the developing stereocilia. We propose that the shaping of the hair bundle relies on a functional unit composed of myosin VIIa, harmonin b and cadherin 23 that is essential to ensure the cohesion of the stereocilia.

  9. Head First Statistics

    CERN Document Server

    Griffiths, Dawn

    2009-01-01

    Wouldn't it be great if there were a statistics book that made histograms, probability distributions, and chi square analysis more enjoyable than going to the dentist? Head First Statistics brings this typically dry subject to life, teaching you everything you want and need to know about statistics through engaging, interactive, and thought-provoking material, full of puzzles, stories, quizzes, visual aids, and real-world examples. Whether you're a student, a professional, or just curious about statistical analysis, Head First's brain-friendly formula helps you get a firm grasp of statistics

  10. Head first Ajax

    CERN Document Server

    Riordan, Rebecca M

    2008-01-01

    Ajax is no longer an experimental approach to website development, but the key to building browser-based applications that form the cornerstone of Web 2.0. Head First Ajax gives you an up-to-date perspective that lets you see exactly what you can do -- and has been done -- with Ajax. With it, you get a highly practical, in-depth, and mature view of what is now a mature development approach. Using the unique and highly effective visual format that has turned Head First titles into runaway bestsellers, this book offers a big picture overview to introduce Ajax, and then explores the use of ind

  11. Rocket injector head

    Science.gov (United States)

    Green, C. W., Jr. (Inventor)

    1968-01-01

    A high number of liquid oxygen and gaseous hydrogen orifices per unit area are provided in an injector head designed to give intimate mixing and more thorough combustion. The injector head comprises a main body portion, a cooperating plate member as a flow chamber for one propellant, a cooperating manifold portion for the second propellant, and an annular end plate for enclosing an annular propellant groove formed around the outer edge of the body. All the openings for one propellant are located at the same angle with respect to a radial plane to permit a short combustion chamber.

  12. Myosin light chain kinase-dependent microvascular hyperpermeability in thermal injury.

    Science.gov (United States)

    Huang, Qiaobing; Xu, Wenjuan; Ustinova, Elena; Wu, Mack; Childs, Ed; Hunter, Felicia; Yuan, Sarah

    2003-10-01

    Although the critical role of systemic inflammatory edema in the development of multiple organ failure in patients with massive burns has been fully recognized, the precise mechanisms responsible for the accumulation of blood fluid and proteins in tissues remote from the burn wound are poorly understood. The aim of this study was to test the hypothesis that circulating factors released during thermal injury cause microvascular leakage by triggering endothelial cell contraction and barrier dysfunction. A third-degree scald burn was induced in rats on the dorsal skin covering 25% total body surface area. The microcirculation and transvascular flux of albumin were observed in the rat mesentery using intravital fluorescence microscopy. The direct effect of circulating factors on microvascular barrier function was assessed by measuring the apparent permeability coefficient of albumin in isolated rat mesenteric venules during perfusion of plasma freshly withdrawn from burned rats. The in vivo study showed that the transvenular flux of albumin was significantly increased over a 6-h period with a maximal response seen at 3 h postburn. Importantly, perfusion of noninjured venules with burn plasma induced a time-dependent increase in albumin permeability. Pharmacological inhibition of protein kinase C, Src tyrosine kinases, or mast cell activation did not significantly affect the hyperpermeability response; however, blockage of myosin light chain phosphorylation with the myosin light chain kinase inhibitor ML-7 greatly attenuated the burn-induced increase in venular permeability in a dose-related pattern. The results support a role for endogenous circulating factors in microvascular leakage during burns. Myosin light chain phosphorylation-dependent endothelial contractile response may serve as an end-point effector leading to microvascular barrier dysfunction. PMID:14501951

  13. Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function.

    Science.gov (United States)

    Previs, Michael J; Mun, Ji Young; Michalek, Arthur J; Previs, Samantha Beck; Gulick, James; Robbins, Jeffrey; Warshaw, David M; Craig, Roger

    2016-03-22

    During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C's N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain's extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C's inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C's calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C's phosphorylation state.

  14. Anti-β2GPI antibodies stimulate endothelial cell microparticle release via a nonmuscle myosin II motor protein-dependent pathway

    OpenAIRE

    Betapudi, Venkaiah; Lominadze, George; Hsi, Linda; Willard, Belinda; Wu, Meifang; McCrae, Keith R

    2013-01-01

    Activation of endothelial cells by anti-β2GPI antibodies causes myosin RLC phosphorylation, leading to actin-myosin association.In response to anti-β2GPI antibodies, release of endothelial microparticles, but not E-selectin expression, requires actomyosin assembly.

  15. Dynamic light scattering study of the effect of Mg2+ and ATP on synthetic myosin filaments.

    OpenAIRE

    Takayama, S.; Fujime, S

    1995-01-01

    The dynamic light scattering (DLS) method provides us with information about the apparent diffusion coefficient, Dapp, as well as the static scattering intensity, Is, of particles in solution. For long but thin rods with length L and diameter d, the dependence on L and d of Dapp is quite different from that of Is. By means of DLS we studied synthetic myosin filaments of rabbit skeletal muscle in solution at pH 8.3 and 10 degrees C. It appeared that Mg2+ ions induced thickening and lengthening...

  16. Effect of aerobic exercise on the contractile function of gastrocnemius myosin heavy chain

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To study the effect of 4-6 weeks' treadmill training of male SD rats on the contractile function of their gastrocnemius myosin heavy chain (MHC). Methods Forty male SD rats were randomly divided into control group and training group. The treadmill training of the training group rats was incessantly performed for 4-6 weeks at an intensity of about 75% VO2max (18.5-24 m/min,gradient of 0°,each training session lasting 50 minutes,twice a day). The content of gastrocnemius MHC mRNA was tested by rever...

  17. Distribution of myosin heavy chain isoforms in muscular dystrophy: insights into disease pathology

    Science.gov (United States)

    Beedle, Aaron M

    2016-01-01

    Myosin heavy chain isoforms are an important component defining fiber type specific properties in skeletal muscle, such as oxidative versus glycolytic metabolism, rate of contraction, and fatigability. While the molecular mechanisms that underlie specification of the different fiber types are becoming clearer, how this programming becomes disrupted in muscular dystrophy and the functional consequences of fiber type changes in disease are not fully resolved. Fiber type changes in disease, with specific focus on muscular dystrophies caused by defects in the dystrophin glycoprotein complex, are discussed. PMID:27430020

  18. Characteristics of myosin profile in human vastus lateralis muscle in relation to training background.

    Directory of Open Access Journals (Sweden)

    J A Zoladz

    2004-10-01

    Full Text Available Twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg of different training background were investigated and classified into three groups according to their physical activity and sport discipline: untrained students (group A, national and sub-national level endurance athletes (group B, 7.8+/-2.9 years of specialised training and sprint-power athletes (group C, 12.8+/-8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase and SDH activities, immunohistochemically for fast and slow myosin, and electrophoretically followed by Western immunoblotting for myosin heavy chain (MyHC composition. Significant differences (P<0.05 regarding composition of muscle fibre types and myosin heavy chains were found only between groups A (41.7+/-1.6% of MyHCI, 40.8+/-4.0% of MyHCIIA and 17.5+/-4.0% of MyHCIIX and B (64.3+/-0.8% of MyHCI, 34.0+/-1.4% of MyHCIIA and 1.7+/-1.4% of MyHCIIX and groups A and C (59.6+/-1.6% of MyHCI, 37.2+/-1.3% of MyHCIIA and 3.2+/-1.3% of MyHCIIX. Unexpectedly, endurance athletes (group B such as long-distance runners, cyclists and cross country skiers, did not differ from the athletes representing short term, high power output sports (group C such as ice hockey, karate, ski-jumping, volleyball, soccer and modern dance. Furthermore, the relative amount of the fastest MyHCIIX isoform in vastus lateralis muscle was significantly lower in the athletes from group C than in students (group A. We conclude that the myosin profile in the athletes belonging to group C was unfavourable for their sport disciplines. This could be the reason why those athletes did not reach international level despite of several years of training.

  19. Responses of Myosin Heavy Chain Phenotypes and Gene Expressions in Neck Muscle to Micro- an Hyper-Gravity in Mice

    Science.gov (United States)

    Ohira, Tomotaka; Ohira, Takashi; Kawano, F.; Shibaguchi, T.; Okabe, H.; Ohno, Y.; Nakai, N.; Ochiai, T.; Goto, K.; Ohira, Y.

    2013-02-01

    Neck muscles are known to play important roles in the maintenance of head posture against gravity. However, it is not known how the properties of neck muscle are influenced by gravity. Therefore, the current study was performed to investigate the responses of neck muscle (rhomboideus capitis) in mice to inhibition of gravity and/or increase to 2-G for 3 months to test the hypothesis that the properties of neck muscles are regulated in response to the level of mechanical load applied by the gravitational load. Three male wild type C57BL/10J mice (8 weeks old) were launched by space shuttle Discovery (STS-128) and housed in Japanese Experimental Module “KIBO” on the International Space Station in mouse drawer system (MDS) project, which was organized by Italian Space Agency. Only 1 mouse returned to the Earth alive after 3 months by space shuttle Atlantis (STS-129). Neck muscles were sampled from both sides within 3 hours after landing. Cage and laboratory control experiments were also performed on the ground. Further, 3-month ground-based control experiments were performed with 6 groups, i.e. pre-experiment, 3-month hindlimb suspension, 2-G exposure by using animal centrifuge, and vivarium control (n=5 each group). Five mice were allowed to recover from hindlimb suspension (including 5 cage control) for 3 months in the cage. Neck muscles were sampled bilaterally before and after 3-month suspension and 2-G exposure, and at the end of 3-month ambulation recovery. Spaceflight-associated shift of myosin heavy chain phenotype from type I to II and atrophy of type I fibers were observed. In response to spaceflight, 17 genes were up-regulated and 13 genes were down-regulated vs. those in the laboratory control. Expression of 6 genes were up-regulated and that of 88 genes were down-regulated by 3-month exposure to 2-G vs. the age-matched cage control. In response to chronic hindlimb suspension, 4 and 20 genes were up- or down-regulated. Further, 98 genes responded

  20. Kinetics of oxygen-18 exchange between inorganic phosphate and water catalyzed by myosin subfragment 1, using the 18O shift in 31P NMR.

    Science.gov (United States)

    Webb, M R; McDonald, G G; Trentham, D R

    1978-05-10

    The time course of oxygen-18 exchange between [18O]Pi and normal water, catalyzed by myosin subfragment 1 in the presence of MgADP, was followed using the shift in 31P NMR caused by the presence of oxygen-18 bound to the phosphorus. Essentially all molecules of [18O]Pi that bind to the enzyme undergo complete exchange and are released as [16O4]Pi. Exchange probably occurs by formation of myosin.ATP from a myosin.ADP.Pi complex and is rapid relative to release of Pi from this complex. The kinetics of exchange give a value for the rate constant for binding Pi to myosin.ADP of 0.23 M-1 S-1 (pH 8.0, 22 degrees C). This value is consistent with exchange occurring by reversal of the ATP-ase reaction back to the myosin.ATP complex. PMID:641045

  1. EPL rikkus head ajakirjandustava

    Index Scriptorium Estoniae

    2007-01-01

    Pressinõukogu leidis, et Eesti Päevaleht on rikkunud head ajakirjandustava, avaldades Kai Kalamehe ja Anneli Ammase art. "Reps nõuab trahviga ähvardades haridusministeeriumi ülistamist" 1. veebr. Eesti Päevalehes. Artikkel peab põhinema tõestataval ja tõenditega tagatud faktilisel infol

  2. Head space analysis

    NARCIS (Netherlands)

    Stekelenburg, G.J. van; Koorevaar, G.

    1971-01-01

    Additional analytical information is given about the method of head space analysis. From the data presented it can be concluded that this technique may be advantageous for enzyme kinetic studies in turbid solutions, provided a volatile organic substance is involved in the chemical reaction. Also som

  3. Strain-Dependent Kinetics of the Myosin Working Stroke, and How They Could Be Probed with Optical-Trap Experiments

    OpenAIRE

    Smith, David; Sleep, John

    2006-01-01

    The strain-dependent kinetics of the myosin working stroke under load is derived from a flat-energy-landscape model for its untethered lever-arm, and compared with other scenarios in the literature. The “flat landscape” scenario is compatible with muscle-fiber experiments, but is more critically relevant to single-myosin experiments with an optically trapped actin filament. In such experiments, the strain dependence of stroke kinetics may be explored by comparing event-averaged and time-avera...

  4. Myosin-binding protein C displaces tropomyosin to activate cardiac thin filaments and governs their speed by an independent mechanism

    OpenAIRE

    Mun, Ji Young; Previs, Michael J.; Yu, Hope Y.; Gulick, James; Tobacman, Larry S.; Beck Previs, Samantha; Robbins, Jeffrey; Warshaw, David M.; Craig, Roger

    2014-01-01

    Myosin-binding protein C (MyBP-C) is a component of myosin filaments, one of the two sets of contractile elements whose relative sliding is the basis of muscle contraction. In the heart, MyBP-C modulates contractility in response to cardiac stimulation; mutations in MyBP-C lead to cardiac disease. The mechanism by which MyBP-C modulates cardiac contraction is not understood. Using electron microscopy and a light microscopic assay for filament sliding, we demonstrate that MyBP-C binds to the o...

  5. Topography induces differential sensitivity on cancer cell proliferation via Rho-ROCK-Myosin contractility

    Science.gov (United States)

    Chaudhuri, Parthiv Kant; Pan, Catherine Qiurong; Low, Boon Chuan; Lim, Chwee Teck

    2016-01-01

    Although the role of stiffness on proliferative response of cancer cells has been well studied, little is known about the effect of topographic cues in guiding cancer cell proliferation. Here, we examined the effect of topographic cues on cancer cell proliferation using micron scale topographic features and observed that anisotropic features like microgratings at specific dimension could reduce proliferation of non-cancer breast epithelial cells (MCF-10A) but not that for malignant breast cancer cells (MDA-MB-231 and MCF-7). However, isotropic features such as micropillars did not affect proliferation of MCF-10A, indicating that the anisotropic environmental cues are essential for this process. Interestingly, acto-myosin contraction inhibitory drugs, Y-27632 and blebbistatin prevented micrograting-mediated inhibition on proliferation. Here, we propose the concept of Mechanically-Induced Dormancy (MID) where topographic cues could activate Rho-ROCK-Myosin signaling to suppress non-cancerous cells proliferation whereas malignant cells are resistant to this inhibitory barrier and therefore continue uncontrolled proliferation. PMID:26795068

  6. Myosin binding protein C:Structural abnormalities in familial hypertrophic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The muscle protein myosin binding protein C (MyBPC) is a large multi-domain protein whose role in the sarcomere is complex and not yet fully understood. Mutations in MyBPC are strongly associated with the heart disease familial hypertrophic cardiomyopathy (FHC) and these experiments of nature have provided some insight into the intricate workings of this protein in the heart. While some regions of the MyBPC molecule have been assigned a function in the regulation of muscle contraction, the interaction of other regions with various parts of the myosin molecule and the sarcomeric proteins, actin and titin, remain obscure. In additic n, several intra-domain interactions between adjacent MyBPC molecules have been identified. Although the basic structure of the molecule (a series of immunoglobulin and fibronectin domains) has been elucidated, the assembly of MyBPC in the sarcomere is a topic for debate. By analysing the MyBPC sequence with respect to FHC-causing mutations it is possible to identify individual residues or regions of each domain that may be important either for binding or regulation. This review looks at the current literature, in concert with alignments and the structural models of MyBPC, in an attempt to understand how FHC mutations may lead to the disease state.

  7. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution

    Science.gov (United States)

    Bamman, M. M.; Clarke, M. S.; Feeback, D. L.; Talmadge, R. J.; Stevens, B. R.; Lieberman, S. A.; Greenisen, M. C.

    1998-01-01

    Because resistance exercise (REx) and bed-rest unloading (BRU) are associated with opposing adaptations, our purpose was to test the efficacy of REx against the effects of 14 days of BRU on the knee-extensor muscle group. Sixteen healthy men were randomly assigned to no exercise (NoEx; n = 8) or REx (n = 8). REx performed five sets of leg press exercise with 80-85% of one repetition maximum (1 RM) every other day during BRU. Muscle samples were removed from the vastus lateralis muscle by percutaneous needle biopsy. Myofiber distribution was determined immunohistochemically with three monoclonal antibodies against myosin heavy chain (MHC) isoforms (I, IIa, IIx). MHC distribution was further assessed by quantitative gel electrophoresis. Dynamic 1-RM leg press and unilateral maximum voluntary isometric contraction (MVC) were determined. Maximal neural activation (root mean squared electromyogram) and rate of torque development (RTD) were measured during MVC. Reductions (P training-specific strength. Unlike spaceflight, BRU did not induce shifts in myosin phenotype. The reported benefits of REx may prove useful in prescribing exercise for astronauts in microgravity.

  8. Temperature-dependent developmental variation in lobster muscle myosin heavy chain isoforms.

    Science.gov (United States)

    Magnay, J L; Holmes, J M; Neil, D M; El Haj, A J

    2003-10-16

    The temperature- and developmental-regulation of myosin heavy chain (MyHC) expression and primary sequence was investigated in the abdominal musculature of developing Homarus gammarus larvae acclimated to 10, 14 and 19+/-1 degrees C. MyHC loop 1 (ATP binding) and loop 2 (actin binding) regions were sequenced and compared. The deduced amino acid sequence of MyHC loop 1 showed a development-related increase in net charge from +1 to +2 between larval stages 1 and 2, which was not temperature-dependent. In post-settled stage 9 larvae, minor shifts in amino acid sequence occurred at 19 degrees C, and corresponded to a significant up-regulation of fast myosin mRNA expression. However, no temperature-specific loop 1 isoforms were detected. The deduced amino acid sequence of MyHC loop 2 was not affected by temperature, and the net charge remained +4 throughout development. These findings contrast to previous studies using the common carp, in which temperature-specific MyHC isoform genes were expressed in response to disparate thermal regimes. This raises the question as to whether arthropods do not express specific temperature isoforms but instead rely on shifts in fibre type to accommodate alterations in thermal environment. PMID:14563558

  9. Ischemia/reperfusion-induced myosin light chain 1 phosphorylation increases its degradation by matrix metalloproteinase-2

    Science.gov (United States)

    Cadete, Virgilio J. J.; Sawicka, Jolanta; Jaswal, Jagdip; Lopaschuk, Gary D.; Schulz, Richard; Szczesna-Cordary, Danuta; Sawicki, Grzegorz

    2012-01-01

    Summary Degradation of myosin light chain 1 (MLC1) by matrix metalloproteinase-2 (MMP-2) during myocardial ischemia/reperfusion (I/R) injury has been established. However, the exact mechanisms controlling this process remain unknown. I/R increases the phosphorylation of MLC1, but the consequences of this modification are not known. We hypothesized that phosphorylation of MLC1 plays an important role in its degradation by MMP-2. To examine this, isolated perfused rat hearts were subjected to 20 min global ischemia followed by 30 min of aerobic reperfusion. I/R increased phosphorylation of MLC1 (as measured by mass spectrometry). If hearts were subjected to I/R in the presence of ML-7 (a myosin light chain kinase (MLCK) inhibitor) or doxycycline (a MMP inhibitor) an improved recovery of contractile function was seen compared to aerobic hearts and MLC1 was protected from degradation. Enzyme kinetic studies revealed an increased affinity of MMP-2 for the phosphorylated form of MLC1 compared to non-phosphorylated MLC1. We conclude that MLC1 phosphorylation is important mechanism controlling the intracellular action of MMP-2 and promoting the degradation of MLC1. These results further support previous findings implicating posttranslational modifications of contractile proteins as a key factor in the pathology of cardiac dysfunction during and following ischemia. PMID:22564771

  10. A Novel Myosin Essential Light Chain Mutation Causes Hypertrophic Cardiomyopathy with Late Onset and Low Expressivity

    Directory of Open Access Journals (Sweden)

    Paal Skytt Andersen

    2012-01-01

    Full Text Available Hypertrophic cardiomyopathy (HCM is caused by mutations in genes encoding sarcomere proteins. Mutations in MYL3, encoding the essential light chain of myosin, are rare and have been associated with sudden death. Both recessive and dominant patterns of inheritance have been suggested. We studied a large family with a 38-year-old asymptomatic HCM-affected male referred because of a murmur. The patient had HCM with left ventricular hypertrophy (max WT 21 mm, a resting left ventricular outflow gradient of 36 mm Hg, and left atrial dilation (54 mm. Genotyping revealed heterozygosity for a novel missense mutation, p.V79I, in MYL3. The mutation was not found in 300 controls, and the patient had no mutations in 10 sarcomere genes. Cascade screening revealed a further nine heterozygote mutation carriers, three of whom had ECG and/or echocardiographic abnormalities but did not fulfil diagnostic criteria for HCM. The penetrance, if we consider this borderline HCM the phenotype of the p.V79I mutation, was 40%, but the mean age of the nonpenetrant mutation carriers is 15, while the mean age of the penetrant mutation carriers is 47. The mutation affects a conserved valine replacing it with a larger isoleucine residue in the region of contact between the light chain and the myosin lever arm. In conclusion, MYL3 mutations can present with low expressivity and late onset.

  11. Lentivirus-Mediated Knockdown of Myosin VI Inhibits Cell Proliferation of Breast Cancer Cell.

    Science.gov (United States)

    Wang, Hong; Wang, Biyun; Zhu, Wei; Yang, Ziang

    2015-10-01

    Myosin VI (MYO6) is a unique member of the myosin superfamily, and almost no experimental studies link MYO6 to tumorigenesis of breast cancer. However, previous microarray data demonstrated that MYO6 was frequently overexpressed in breast cancer tissues. In this study, to further develop its role in breast cancer, endogenous expression of MYO6 was significantly inhibited in breast cancer ZR-75-30 and MDA-MB-231 cells using lentivirus-mediated RNA interference. Quantitative polymerase chain reaction and western blot were applied to detect the expression level of MYO6. Cell viability of both cell lines was measured by methylthiazol tetrazolium and colony formation assays. Besides, cell cycle assay was utilized to acquire the distribution information of cell phase. The results demonstrated that knockdown of MYO6 markedly reduced cell viability and colony formation, as well as suppressed cell cycle progression in breast cancer cells. The results suggested that MYO6 played a vital role in breast cancer cells and might provide useful information for diagnosis and therapy of human breast cancer in future. PMID:26407123

  12. Cytoskeletal turnover and Myosin contractility drive cell autonomous oscillations in a model of Drosophila Dorsal Closure

    Science.gov (United States)

    Machado, P. F.; Blanchard, G. B.; Duque, J.; Gorfinkiel, N.

    2014-06-01

    Oscillatory behaviour in force-generating systems is a pervasive phenomenon in cell biology. In this work, we investigate how oscillations in the actomyosin cytoskeleton drive cell shape changes during the process of Dorsal Closure (DC), a morphogenetic event in Drosophila embryo development whereby epidermal continuity is generated through the pulsatile apical area reduction of cells constituting the amnioserosa (AS) tissue. We present a theoretical model of AS cell dynamics by which the oscillatory behaviour arises due to a coupling between active myosin-driven forces, actin turnover and cell deformation. Oscillations in our model are cell-autonomous and are modulated by neighbour coupling, and our model accurately reproduces the oscillatory dynamics of AS cells and their amplitude and frequency evolution. A key prediction arising from our model is that the rate of actin turnover and Myosin contractile force must increase during DC in order to reproduce the decrease in amplitude and period of cell area oscillations observed in vivo. This prediction opens up new ways to think about the molecular underpinnings of AS cell oscillations and their link to net tissue contraction and suggests the form of future experimental measurements.

  13. Model of myosin node aggregation into a contractile ring: the effect of local alignment

    Energy Technology Data Exchange (ETDEWEB)

    Ojkic, Nikola; Vavylonis, Dimitrios [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Wu Jianqiu, E-mail: vavylonis@lehigh.edu [Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210 (United States)

    2011-09-21

    Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.

  14. Head Lice (Beyond the Basics)

    Science.gov (United States)

    ... The head louse is a tiny, grayish-white insect. Female head lice typically live for about one ... you can use a nonprescription lice treatment (see 'Insecticides' below). Examine family members and close contacts at ...

  15. Recreation-Related Head Injuries

    Science.gov (United States)

    Recreation-Related Head Injuries American Association of Neurological Surgeons 5550 Meadowbrook Drive, Rolling Meadows, IL 60008-3852  ... and follow instructions on product packaging. Top 15 Recreation/Leisure-Related Head Injuries by Product Product Category ...

  16. Cranial Ultrasound/Head Ultrasound

    Science.gov (United States)

    ... is the procedure performed? Head Ultrasound A head ultrasound is performed in the neonatal intensive care unit (NICU) at the infant's bedside. The infant is positioned lying face-up. A clear, water-based gel is applied ...

  17. Sofic one head machines

    OpenAIRE

    Gajardo, Anahi

    2008-01-01

    There are several systems consisting in an object that moves on the plane by following a given rule. It is frequently observed that these systems eventually fall into an unexplained repetitive movement. The general framework of k-dimensional Turing machines with only one head is adopted. A subshift is associated to each Turing machine, and its properties are studied. The subshift consists in the set of sequences of symbols that the machine reads together with the states that it has through ea...

  18. Where are we heading

    Energy Technology Data Exchange (ETDEWEB)

    Noto, L.A. [Mobil Corporation, (United States)

    1996-12-31

    The present paper deals with different aspects connected to the global petroleum industry by discussing the way of heading. The aspects cover themes like new frontiers, new relationships, sanctions, global climate change, new alliances and new technology. New frontiers and relationships concern domestic policy affecting the industry, and sanctions are discussed in connection with trade. The author discusses the industry`s participation in the global environmental policy and new alliances to provide greater opportunity for developing new technology

  19. Where are we heading

    International Nuclear Information System (INIS)

    The present paper deals with different aspects connected to the global petroleum industry by discussing the way of heading. The aspects cover themes like new frontiers, new relationships, sanctions, global climate change, new alliances and new technology. New frontiers and relationships concern domestic policy affecting the industry, and sanctions are discussed in connection with trade. The author discusses the industry's participation in the global environmental policy and new alliances to provide greater opportunity for developing new technology

  20. An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking

    NARCIS (Netherlands)

    Schneeberger, Kerstin; Vogel, Georg F; Teunissen, Hans; van Ommen, Domenique D; Begthel, Harry; El Bouazzaoui, Layla; van Vugt, Anke H M; Beekman, Jeffrey M; Klumperman, Judith; Müller, Thomas; Janecke, Andreas; Gerner, Patrick; Huber, Lukas A; Hess, Michael W; Clevers, Hans; van Es, Johan H; Nieuwenhuis, Edward E S; Middendorp, Sabine

    2015-01-01

    Microvillus inclusion disease (MVID) is a rare intestinal enteropathy with an onset within a few days to months after birth, resulting in persistent watery diarrhea. Mutations in the myosin Vb gene (MYO5B) have been identified in the majority of MVID patients. However, the exact pathophysiology of M

  1. Myosin heavy-chain isoform distribution, fibre-type composition and fibre size in skeletal muscle of patients on haemodialysis

    DEFF Research Database (Denmark)

    Molsted, Stig; Eidemak, Inge; Sorensen, Helle Tauby;

    2007-01-01

    and distribution of muscle fibres and the myosin heavy-chain (MHC) isoform composition in patiens on haemodialysis (HD) in order to establish any differences with values for untrained control subjects. Material and methods. Muscle biopsies were obtained from the vastus lateralis muscle of 14 non-diabetic patients...

  2. A Fetus with Hypertrophic Cardiomyopathy, Restrictive and Single Ventricle Physiology, and a β-Myosin Heavy Chain Mutation

    OpenAIRE

    Hinton,Robert B; Michelfelder, Erik C.; Bradley S. Marino; Bove, Kevin E; Ware, Stephanie M.

    2010-01-01

    Cardiomyopathy is a significant clinical problem associated with sudden death. A molecular taxonomy is emerging that is refining the clinical classification system. We describe a patient with a pathogenic familial β-myosin heavy chain mutation who was prenatally diagnosed with left ventricular hypoplasia and restrictive diastolic physiology.

  3. Functional Analysis of Slow Myosin Heavy Chain 1 and Myomesin-3 in Sarcomere Organization in Zebrafish Embryonic Slow Muscles

    Institute of Scientific and Technical Information of China (English)

    Jin Xu; Jie Gao; Junling Li; Liangyi Xue; Karl J. Clark; Stephen C. Ekker; Shao Jun Du

    2012-01-01

    Myofibrillogenesis,the process of sarcomere formation,requires close interactions of sarcomeric proteins and various components of sarcomere structures.The myosin thick filaments and M-lines are two key components of the sarcomere.It has been suggested that myomesin proteins of M-lines interact with myosin and titin proteins and keep the thick and titin filaments in order.However,the function of myomesin in myofibrillogenesis and sarcomere organization remained largely enigmatic.No knockout or knockdown animal models have been reported to elucidate the role of myomesin in sarcomere organization in vivo.In this study,by using the gene-specific knockdown approach in zebrafish embryos,we carried out a loss-of-function analysis of myomesin-3 and slow myosin heavy chain l (smyhcl) expressed specifically in slow muscles.We demonstrated that knockdown of smyhcl abolished the sarcomeric localization of myomesin-3 in slow muscles.In contrast,loss of myomesin-3 had no effect on the sarcomeric organization of thick and thin filaments as well as M- and Z-line structures.Together,these studies indicate that myosin thick filaments are required for M-line organization and M-line localization of myomesin-3.In contrast,myomesin-3 is dispensable for sarcomere organization in slow muscles.

  4. Serine-324 of myosin's heavy chain is photoaffinity-labeled by 3'(2')-O-(4-benzoylbenzoyl)adenosine triphosphate

    International Nuclear Information System (INIS)

    A portion of the active site of rabbit skeletal myosin near the ribose ring of ATP can be labeled by the photoaffinity analogue 3'(2')-O-(4-benzoylbenzoyl)adenosine triphosphate (Bz2ATP). The specificity of the photolabeling was assured by first trapping [14C]Bz2ATP at the active site by use of thiol cross-linking agents. Five radioactive peptides were isolated by high-performance liquid chromatography after extensive trypsin and subtilisin digestion of photolabeled myosin subfragment 1. Four of these peptides were sequenced by Edman techniques, and all originated from a region with the sequence Gly-Glu-Ile-Thr-Val-Pro-Ser-Ile-Asp-Asp-Gln, which corresponds to rabbit myosin heavy chain residues 312-328. The fifth labeled peptide had an amino acid composition appropriate for residues 312-328. Amino acid composition, radiochemical analysis, and sequence data indicate that Ser-324 is the major amino acid residue photolabeled by Bz2ATP. Spectrophotometric evidence indicates that the benzophenone carbonyl group has inserted into a C-H bond from either the α- or β-carbon of serine. These results place Ser-324 at a distance of 6-7 angstrom from the 3'(2') ribose oxygens of ATP bound at the active site of myosin

  5. Graded effects of unregulated smooth muscle myosin on intestinal architecture, intestinal motility and vascular function in zebrafish.

    Science.gov (United States)

    Abrams, Joshua; Einhorn, Zev; Seiler, Christoph; Zong, Alan B; Sweeney, H Lee; Pack, Michael

    2016-05-01

    Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11). Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt), which converts a highly conserved tryptophan to arginine (W512R) in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y) and coil-coiled (L1287M) domains of Myh11 that fail to complement mlt Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress. PMID:26893369

  6. Maintenance of muscle myosin levels in adult C. elegans requires both the double bromodomain protein BET-1 and sumoylation

    Directory of Open Access Journals (Sweden)

    Kate Fisher

    2013-10-01

    Attenuation of RAS-mediated signalling is a conserved process essential to control cell proliferation, differentiation, and apoptosis. Cooperative interactions between histone modifications such as acetylation, methylation and sumoylation are crucial for proper attenuation in C. elegans, implying that the proteins recognising these histone modifications could also play an important role in attenuation of RAS-mediated signalling. We sought to systematically identify these proteins and found BET-1. BET-1 is a conserved double bromodomain protein that recognises acetyl-lysines on histone tails and maintains the stable fate of various lineages. Unexpectedly, adults lacking both BET-1 and SUMO-1 are depleted of muscle myosin, an essential component of myofibrils. We also show that this muscle myosin depletion does not occur in all animals at a specific time, but rather that the penetrance of the phenotype increases with age. To gain mechanistic insights into this process, we sought to delay the occurrence of the muscle myosin depletion phenotype and found that it requires caspase activity and MEK-dependent signalling. We also performed transcription profiling on these mutants and found an up-regulation of the FGF receptor, egl-15, a tyrosine kinase receptor acting upstream of MEK. Consistent with a MEK requirement, we could delay the muscle phenotype by systemic or hypodermal knock down of egl-15. Thus, this work uncovered a caspase- and MEK-dependent mechanism that acts specifically on ageing adults to maintain the appropriate net level of muscle myosin.

  7. Harmonic force spectroscopy reveals a force-velocity curve from a single human beta cardiac myosin motor

    Science.gov (United States)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian; Mortensen, Kim; Flyvbjerg, Henrik; Spudich, James

    2014-03-01

    A muscle contracts rapidly under low load, but slowly under high load. Its molecular mechanisms remain to be elucidated, however. During contraction, myosins in thick filaments interact with actin in thin filaments in the sarcomere, cycling between a strongly bound (force producing) state and a weakly bound (relaxed) state. Huxley et al. have previously proposed that the transition from the strong to the weak interaction can be modulated by a load. We use a new method we call ``harmonic force spectroscopy'' to extract a load-velocity curve from a single human beta cardiac myosin II motor. With a dual-beam optical trap, we hold an actin dumbbell over a myosin molecule anchored to the microscope stage that oscillates sinusoidally. Upon binding, the motor experiences an oscillatory load with a mean that is directed forward or backward, depending on binding location We find that the bound time at saturating [ATP] is exponentially correlated with the mean load, which is explained by Arrhenius transition theory. With a stroke size measurement, we obtained a load-velocity curve from a single myosin. We compare the curves for wild-type motors with mutants that cause hypertrophic cardiomyopathies, to understand the effects on the contractile cycle

  8. Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9-related disease

    DEFF Research Database (Denmark)

    Pecci, A.; Panza, E.; Pujol-Moix, N.;

    2008-01-01

    MYH9-related disease (MYH9-RD) is a rare autosomal-dominant disorder caused by mutations in MYH9, the gene for the heavy chain of nonmuscle myosin IIA (NMMHC-IIA). All patients present from birth with macrothrombocytopenia, but in infancy or adult life, some of them develop sensorineural deafness...

  9. Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Melkani, Girish C.; Lee, Chi F.; Cammarato, Anthony [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States); Bernstein, Sanford I., E-mail: sbernst@sciences.sdsu.edu [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States)

    2010-05-28

    UNC-45 belongs to the UCS (UNC-45, CRO1, She4p) domain protein family, whose members interact with various classes of myosin. Here we provide structural and biochemical evidence that Escherichia coli-expressed Drosophila UNC-45 (DUNC-45) maintains the integrity of several substrates during heat-induced stress in vitro. DUNC-45 displays chaperone function in suppressing aggregation of the muscle myosin heavy meromyosin fragment, the myosin S-1 motor domain, {alpha}-lactalbumin and citrate synthase. Biochemical evidence is supported by electron microscopy, which reveals the first structural evidence that DUNC-45 prevents inter- or intra-molecular aggregates of skeletal muscle heavy meromyosin caused by elevated temperatures. We also demonstrate for the first time that UNC-45 is able to refold a denatured substrate, urea-unfolded citrate synthase. Overall, this in vitro study provides insight into the fate of muscle myosin under stress conditions and suggests that UNC-45 protects and maintains the contractile machinery during in vivo stress.

  10. Myosin IIA participates in docking of Glut4 storage vesicles with the plasma membrane in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    In adipocytes and myocytes, insulin stimulation translocates glucose transporter 4 (Glut4) storage vesicles (GSVs) from their intracellular storage sites to the plasma membrane (PM) where they dock with the PM. Then, Glut4 is inserted into the PM and initiates glucose uptake into these cells. Previous studies using chemical inhibitors demonstrated that myosin II participates in fusion of GSVs and the PM and increase in the intrinsic activity of Glut4. In this study, the effect of myosin IIA on GSV trafficking was examined by knocking down myosin IIA expression. Myosin IIA knockdown decreased both glucose uptake and exposures of myc-tagged Glut4 to the cell surface in insulin-stimulated cells, but did not affect insulin signal transduction. Interestingly, myosin IIA knockdown failed to decrease insulin-dependent trafficking of Glut4 to the PM. Moreover, in myosin IIA knockdown cells, insulin-stimulated binding of GSV SNARE protein, vesicle-associated membrane protein 2 (VAMP2) to PM SNARE protein, syntaxin 4 was inhibited. These data suggest that myosin IIA plays a role in insulin-stimulated docking of GSVs to the PM in 3T3-L1 adipocytes through SNARE complex formation.

  11. The role of actin and myosin in PtK2 spindle length changes induced by laser microbeam irradiations across the spindle.

    Science.gov (United States)

    Sheykhani, Rozhan; Baker, Norman; Gomez-Godinez, Veronica; Liaw, Lih-Huei; Shah, Jagesh; Berns, Michael W; Forer, Arthur

    2013-05-01

    This study investigates spindle biomechanical properties to better understand how spindles function. In this report, laser microbeam cutting across mitotic spindles resulted in movement of spindle poles toward the spindle equator. The pole on the cut side moved first, the other pole moved later, resulting in a shorter but symmetric spindle. Intervening spindle microtubules bent and buckled during the equatorial movement of the poles. Because of this and because there were no detectable microtubules within the ablation zone, other cytoskeletal elements would seem to be involved in the equatorial movement of the poles. One possibility is actin and myosin since pharmacological poisoning of the actin-myosin system altered the equatorial movements of both irradiated and unirradiated poles. Immunofluorescence microscopy confirmed that actin, myosin and monophosphorylated myosin are associated with spindle fibers and showed that some actin and monophosphorylated myosin remained in the irradiated regions. Overall, our experiments suggest that actin, myosin and microtubules interact to control spindle length. We suggest that actin and myosin, possibly in conjunction with the spindle matrix, cause the irradiated pole to move toward the equator and that cross-talk between the two half spindles causes the unirradiated pole to move toward the equator until a balanced length is obtained. PMID:23475753

  12. Characterization of the minimum domain required for targeting budding yeast myosin II to the site of cell division

    Directory of Open Access Journals (Sweden)

    Tolliday Nicola J

    2006-06-01

    Full Text Available Abstract Background All eukaryotes with the exception of plants use an actomyosin ring to generate a constriction force at the site of cell division (cleavage furrow during mitosis and meiosis. The structure and filament forming abilities located in the C-terminal or tail region of one of the main components, myosin II, are important for localising the molecule to the contractile ring (CR during cytokinesis. However, it remains poorly understood how myosin II is recruited to the site of cell division and how this recruitment relates to myosin filament assembly. Significant conservation between species of the components involved in cytokinesis, including those of the CR, allows the use of easily genetically manipulated organisms, such as budding yeast (Saccharomyces cerevisiae, in the study of cytokinesis. Budding yeast has a single myosin II protein, named Myo1. Unlike most other class II myosins, the tail of Myo1 has an irregular coiled coil. In this report we use molecular genetics, biochemistry and live cell imaging to characterize the minimum localisation domain (MLD of budding yeast Myo1. Results We show that the MLD is a small region in the centre of the tail of Myo1 and that it is both necessary and sufficient for localisation of Myo1 to the yeast bud neck, the pre-determined site of cell division. Hydrodynamic measurements of the MLD, purified from bacteria or yeast, show that it is likely to exist as a trimer. We also examine the importance of a small region of low coiled coil forming probability within the MLD, which we call the hinge region. Removal of the hinge region prevents contraction of the CR. Using fluorescence recovery after photobleaching (FRAP, we show that GFP-tagged MLD is slightly more dynamic than the GFP-tagged full length molecule but less dynamic than the GFP-tagged Myo1 construct lacking the hinge region. Conclusion Our results define the intrinsic determinant for the localization of budding yeast myosin II and show

  13. Arabidopsis myosin XI sub-domains homologous to the yeast myo2p organelle inheritance sub-domain target subcellular structures in plant cells

    Directory of Open Access Journals (Sweden)

    Amirali eSattarzadeh

    2013-10-01

    Full Text Available Myosin XI motor proteins transport plant organelles on the actin cytoskeleton. The Arabidopsis gene family that encodes myosin XI has 13 members, 12 of which have sub-domains within the tail region that are homologous to well-characterized cargo-binding domains in the yeast myosin V myo2p. Little is presently known about the cargo-binding domains of plant myosin XIs. Prior experiments in which most or all of the tail regions of myosin XIs have been fused to yellow fluorescent protein (YFP and transiently expressed have often not resulted in fluorescent labeling of plant organelles. We identified 42 amino-acid regions within 12 Arabidopsis myosin XIs that are homologous to the yeast myo2p tail region known to be essential for vacuole and mitochondrial inheritance. A YFP fusion of the yeast region expressed in plants did not label tonoplasts or mitochondria. We investigated whether the homologous Arabidopsis regions, termed by us the PAL sub-domain, could associate with subcellular structures following transient expression of fusions with YFP in Nicotiana benthamiana. Seven YFP::PAL sub-domain fusions decorated Golgi and six were localized to mitochondria. In general, the myosin XI PAL sub-domains labeled organelles whose motility had previously been observed to be affected by mutagenesis or dominant negative assays with the respective myosins. Simultaneous transient expression of the PAL sub-domains of myosin XI-H, XI-I, and XI-K resulted in inhibition of movement of mitochondria and Golgi.

  14. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform

    Directory of Open Access Journals (Sweden)

    Yi Ting

    2012-11-01

    Full Text Available Abstract It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG and that exposure of zinc ion (Zn2+ to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after β-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% β-myosin heavy chain expression in the heart. β-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our

  15. Role of LARP6 and nonmuscle myosin in partitioning of collagen mRNAs to the ER membrane.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Type I collagen is extracellular matrix protein composed of two α1(I and one α2(I polypeptides that fold into triple helix. Collagen polypeptides are translated in coordination to synchronize the rate of triple helix folding to the rate of posttranslational modifications of individual polypeptides. This is especially important in conditions of high collagen production, like fibrosis. It has been assumed that collagen mRNAs are targeted to the membrane of the endoplasmic reticulum (ER after translation of the signal peptide and by signal peptide recognition particle (SRP. Here we show that collagen mRNAs associate with the ER membrane even when translation is inhibited. Knock down of LARP6, an RNA binding protein which binds 5' stem-loop of collagen mRNAs, releases a small amount of collagen mRNAs from the membrane. Depolimerization of nonmuscle myosin filaments has a similar, but stronger effect. In the absence of LARP6 or nonmuscle myosin filaments collagen polypeptides become hypermodified, are poorly secreted and accumulate in the cytosol. This indicates lack of coordination of their synthesis and retro-translocation due to hypermodifications and misfolding. Depolimerization of nonmuscle myosin does not alter the secretory pathway through ER and Golgi, suggesting that the role of nonmuscle myosin is primarily to partition collagen mRNAs to the ER membrane. We postulate that collagen mRNAs directly partition to the ER membrane prior to synthesis of the signal peptide and that LARP6 and nonmuscle myosin filaments mediate this process. This allows coordinated initiation of translation on the membrane bound collagen α1(I and α2(I mRNAs, a necessary step for proper synthesis of type I collagen.

  16. Possible interrelationship between changes in F-actin and myosin II, protein phosphorylation, and cell volume regulation in Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Pedersen, S F; Hoffmann, E K

    2002-01-01

    Osmotic shrinkage of Ehrlich ascites tumor cells (EATC) elicited translocation of myosin II from the cytosol to the cortical region, and swelling elicits concentration of myosin II in the Golgi region. Rho kinase and p38 both appeared to be involved in shrinkage-induced myosin II reorganization. In...... effects on F-actin. The subsequent F-actin depolymerization, however, appeared MLCK- and PKC-dependent, and the initial swelling-induced F-actin depolymerization was MLCK-dependent; both effects were apparently secondary to kinase-mediated effects on cell volume changes. NHE1 in EATC is activated both by...

  17. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution

    Science.gov (United States)

    Bamman, M. M.; Clarke, M. S.; Feeback, D. L.; Talmadge, R. J.; Stevens, B. R.; Lieberman, S. A.; Greenisen, M. C.

    1998-01-01

    Because resistance exercise (REx) and bed-rest unloading (BRU) are associated with opposing adaptations, our purpose was to test the efficacy of REx against the effects of 14 days of BRU on the knee-extensor muscle group. Sixteen healthy men were randomly assigned to no exercise (NoEx; n = 8) or REx (n = 8). REx performed five sets of leg press exercise with 80-85% of one repetition maximum (1 RM) every other day during BRU. Muscle samples were removed from the vastus lateralis muscle by percutaneous needle biopsy. Myofiber distribution was determined immunohistochemically with three monoclonal antibodies against myosin heavy chain (MHC) isoforms (I, IIa, IIx). MHC distribution was further assessed by quantitative gel electrophoresis. Dynamic 1-RM leg press and unilateral maximum voluntary isometric contraction (MVC) were determined. Maximal neural activation (root mean squared electromyogram) and rate of torque development (RTD) were measured during MVC. Reductions (P exercise for astronauts in microgravity.

  18. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    Science.gov (United States)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  19. Direct Microtubule-Binding by Myosin-10 Orients Centrosomes toward Retraction Fibers and Subcortical Actin Clouds.

    Science.gov (United States)

    Kwon, Mijung; Bagonis, Maria; Danuser, Gaudenz; Pellman, David

    2015-08-10

    Positioning of centrosomes is vital for cell division and development. In metazoan cells, spindle positioning is controlled by a dynamic pool of subcortical actin that organizes in response to the position of retraction fibers. These actin "clouds" are proposed to generate pulling forces on centrosomes and mediate spindle orientation. However, the motors that pull astral microtubules toward these actin structures are not known. Here, we report that the unconventional myosin, Myo10, couples actin-dependent forces from retraction fibers and subcortical actin clouds to centrosomes. Myo10-mediated centrosome positioning requires its direct microtubule binding. Computational image analysis of large microtubule populations reveals a direct effect of Myo10 on microtubule dynamics and microtubule-cortex interactions. Myo10's role in centrosome positioning is distinct from, but overlaps with, that of dynein. Thus, Myo10 plays a key role in integrating the actin and microtubule cytoskeletons to position centrosomes and mitotic spindles. PMID:26235048

  20. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    Science.gov (United States)

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-06-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ~95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes.

  1. Actin- and Myosin-Dependent Vesicle Loading of Presynaptic Docking Sites Prior to Exocytosis.

    Science.gov (United States)

    Miki, Takafumi; Malagon, Gerardo; Pulido, Camila; Llano, Isabel; Neher, Erwin; Marty, Alain

    2016-08-17

    Variance analysis of postsynaptic current amplitudes suggests the presence of distinct docking sites (also called release sites) where vesicles pause before exocytosis. Docked vesicles participate in the readily releasable pool (RRP), but the relation between docking site number and RRP size remains unclear. It is also unclear whether all vesicles of the RRP are equally release competent, and what cellular mechanisms underlie RRP renewal. We address here these questions at single glutamatergic synapses, counting released vesicles using deconvolution. We find a remarkably low variance of cumulative vesicle counts during action potential trains. This, combined with Monte Carlo simulations, indicates that vesicles transit through two successive states before exocytosis, so that the RRP is up to 2-fold higher than the docking site number. The transition to the second state has a very rapid rate constant, and is specifically inhibited by latrunculin B and blebbistatin, suggesting the involvement of actin and myosin. PMID:27537485

  2. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    Science.gov (United States)

    Sung, Jongmin; Nag, Suman; Mortensen, Kim I.; Vestergaard, Christian L.; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A.

    2015-08-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using `harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load.

  3. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction.

    Science.gov (United States)

    Mason, Frank M; Tworoger, Michael; Martin, Adam C

    2013-08-01

    Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape. However, it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of the apical domain (medioapical cortex), separate from adherens junctions. Rok recruits or stabilizes medioapical myosin II (Myo-II), which contracts dynamic medioapical actin cables. The formin Diaphanous mediates apical actin assembly to suppress medioapical E-cadherin localization and form stable connections between the medioapical contractile network and adherens junctions. Twist is not required for apical Rok recruitment, but instead polarizes Rok medioapically. Therefore, Twist establishes radial cell polarity of Rok/Myo-II and E-cadherin and promotes medioapical actin assembly in mesoderm cells to stabilize cell shape fluctuations.

  4. Myosin heavy chain composition of single fibres from m. biceps brachii of male body builders

    DEFF Research Database (Denmark)

    Klitgaard, H; Zhou, M.-Y.; Richter, Erik

    1990-01-01

    expression of MHC isoforms within histochemical type II fibres of human skeletal muscle with body building. Furthermore, in human skeletal muscle differences in expression of MHC isoforms may not always be reflected in the traditional histochemical classification of types I, IIa, IIb and IIc fibres.......The myosin heavy chain (MHC) composition of single fibres from m. biceps brachii of young sedentary men (28 +/- 0.4 years, mean +/- SE, n = 4) and male body builders (25 +/- 2.0 years, n = 4) was analysed with a sensitive one-dimensional electrophoretic technique. Compared with sedentary men, the...... body builders had a higher proportion of fibres containing only MHC type IIa (36 +/- 4 vs 12 +/- 2%; P less than 0.05), but a lower proportion of fibres with a coexistence of MHC types IIa and IIb (16 +/- 3 vs 34 +/- 2%; P less than 0.05) and nearly no fibres containing only MHC type IIb (1 +/- 1 vs 12...

  5. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    Science.gov (United States)

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-01-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. PMID:27251117

  6. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells.

    Science.gov (United States)

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-01-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. PMID:27251117

  7. Head first C#

    CERN Document Server

    Stellman, Andrew

    2010-01-01

    You want to learn C# programming, but you're not sure you want to suffer through another tedious technical book. You're in luck: Head First C# introduces this language in a fun, visual way. You'll quickly learn everything from creating your first program to learning sophisticated coding skills with C# 4.0, Visual Studio 2010 and .NET 4, while avoiding common errors that frustrate many students. The second edition offers several hands-on labs along the way to help you build and test programs using skills you've learned up to that point. In the final lab, you'll put everything together. From o

  8. Head First Mobile Web

    CERN Document Server

    Gardner, Lyza; Grigsby, Jason

    2011-01-01

    Despite the huge number of mobile devices and apps in use today, your business still needs a website. You just need it to be mobile. Head First Mobile Web walks you through the process of making a conventional website work on a variety smartphones and tablets. Put your JavaScript, CSS media query, and HTML5 skills to work-then optimize your site to perform its best in the demanding mobile market. Along the way, you'll discover how to adapt your business strategy to target specific devices. Navigate the increasingly complex mobile landscapeTake both technical and strategic approaches to mobile

  9. Detector support head

    International Nuclear Information System (INIS)

    The support head of detectors for densitometric measurements of the regional function of lungs using gamma radiation consists of a group of detectors placed in a common rack. The detectors are placed on holders with adjustable height which allow side movement. The holders are slidably connected to the converging quide rail on the frame via arms. Between the holders and the rack is fitted the drive mechanism consisting of a screw. The design allows the stable adjustment of detectors on the lung field during examination and thereby allows the comparison of results of measurements carried out at different times. (J.B.). 2 figs

  10. Head First Python

    CERN Document Server

    Barry, Paul

    2010-01-01

    Ever wished you could learn Python from a book? Head First Python is a complete learning experience for Python that helps you learn the language through a unique method that goes beyond syntax and how-to manuals, helping you understand how to be a great Python programmer. You'll quickly learn the language's fundamentals, then move onto persistence, exception handling, web development, SQLite, data wrangling, and Google App Engine. You'll also learn how to write mobile apps for Android, all thanks to the power that Python gives you. We think your time is too valuable to waste struggling with

  11. Head First Web Design

    CERN Document Server

    Watrall, Ethan

    2008-01-01

    Want to know how to make your pages look beautiful, communicate your message effectively, guide visitors through your website with ease, and get everything approved by the accessibility and usability police at the same time? Head First Web Design is your ticket to mastering all of these complex topics, and understanding what's really going on in the world of web design. Whether you're building a personal blog or a corporate website, there's a lot more to web design than div's and CSS selectors, but what do you really need to know? With this book, you'll learn the secrets of designing effecti

  12. Head first C#

    CERN Document Server

    Stellman, Andrew

    2008-01-01

    Head First C# is a complete learning experience for object-oriented programming, C#, and the Visual Studio IDE. Built for your brain, this book covers C# 3.0 and Visual Studio 2008, and teaches everything from language fundamentals to advanced topics including garbage collection, extension methods, and double-buffered animation. You'll also master C#'s hottest and newest syntax, LINQ, for querying SQL databases, .NET collections, and XML documents. By the time you're through, you'll be a proficient C# programmer, designing and coding large-scale applications. Every few chapters you will come

  13. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution

    Science.gov (United States)

    Bamman, M. M.; Clarke, M. S.; Feeback, D. L.; Talmadge, R. J.; Stevens, B. R.; Lieberman, S. A.; Greenisen, M. C.

    1998-01-01

    Because resistance exercise (REx) and bed-rest unloading (BRU) are associated with opposing adaptations, our purpose was to test the efficacy of REx against the effects of 14 days of BRU on the knee-extensor muscle group. Sixteen healthy men were randomly assigned to no exercise (NoEx; n = 8) or REx (n = 8). REx performed five sets of leg press exercise with 80-85% of one repetition maximum (1 RM) every other day during BRU. Muscle samples were removed from the vastus lateralis muscle by percutaneous needle biopsy. Myofiber distribution was determined immunohistochemically with three monoclonal antibodies against myosin heavy chain (MHC) isoforms (I, IIa, IIx). MHC distribution was further assessed by quantitative gel electrophoresis. Dynamic 1-RM leg press and unilateral maximum voluntary isometric contraction (MVC) were determined. Maximal neural activation (root mean squared electromyogram) and rate of torque development (RTD) were measured during MVC. Reductions (P < 0.05) in type I (15%) and type II (17%) myofiber cross-sectional areas were found in NoEx but not in REx. Electrophoresis revealed no changes in MHC isoform distribution. The percentage of type IIx myofibers decreased (P < 0.05) in REx from 9 to 2% and did not change in NoEx. 1 RM was reduced (P < 0.05) by 9% in NoEx but was unchanged in REx. MVC fell by 15 and 13% in NoEx and REx, respectively. The agonist-to-antagonist root mean squared electromyogram ratio decreased (P < 0.05) 19% in REx. RTD slowed (P < 0.05) by 54% in NoEx only. Results indicate that REx prevented BRU-induced myofiber atrophy and also maintained training-specific strength. Unlike spaceflight, BRU did not induce shifts in myosin phenotype. The reported benefits of REx may prove useful in prescribing exercise for astronauts in microgravity.

  14. 5DFRXXL region of long myosin light chain kinase causes F-actin bundle formation

    Institute of Scientific and Technical Information of China (English)

    YANG Chunxiang; WEI Dongmei; CHEN Chen; YU Weiping; ZHU Minsheng

    2005-01-01

    Long myosin light chain kinase (L-MLCK) contains five DFRXXL motifs with ability to bind F-actin. Binding stoichiometry data indicated that each DFRXXL motif might bind each G-actin, but its biological significance remained unknown. We hypothesized that L-MLCK might act as an F-actin bundle peptides by its multiple binding sites of 5DFRXXL motifs to actin. In order to characterize F-actin-bundle formation properties of 5DFRXXL region of long myosin light chain kinase, we expressed and purified 5DFRXXL peptides tagged with HA in vitro. The properties of 5DFRXXL peptides binding to myofilaments or F-actin were analyzed by binding stoichiometries assays. The results indicated that 5DFRXXL peptides bound to myofilaments or F-actin with high affinity. KD values of 5DFRXXL binding to myofilaments and F-actin were 0.45 and 0.41 μmol/L, re- spectively. Cross-linking assay demonstrated that 5DFRXXL peptides could bundle F-actin efficiently. Typical F-actin bundles were observed morphologically through determina- tion of confocal and electron microscopy after adding 5DFRXXL peptides. After transfection of pEGFP-5DFRXXL plasmid into eukaryocyte, spike structure was observed around cell membrane edge. We guess that such structure formation may be attributable to F-actin over-bundle forma- tion caused by 5DFRXXL peptides. Therefore, we suppose that L-MLCK may be a new bundling protein and somehow play a certain role in organization of cell skeleton besides mediating cell contraction by it kinase activity.

  15. Protective Effects of Clenbuterol against Dexamethasone-Induced Masseter Muscle Atrophy and Myosin Heavy Chain Transition.

    Directory of Open Access Journals (Sweden)

    Daisuke Umeki

    Full Text Available Glucocorticoid has a direct catabolic effect on skeletal muscle, leading to muscle atrophy, but no effective pharmacotherapy is available. We reported that clenbuterol (CB induced masseter muscle hypertrophy and slow-to-fast myosin heavy chain (MHC isoform transition through direct muscle β2-adrenergic receptor stimulation. Thus, we hypothesized that CB would antagonize glucocorticoid (dexamethasone; DEX-induced muscle atrophy and fast-to-slow MHC isoform transition.We examined the effect of CB on DEX-induced masseter muscle atrophy by measuring masseter muscle weight, fiber diameter, cross-sectional area, and myosin heavy chain (MHC composition. To elucidate the mechanisms involved, we used immunoblotting to study the effects of CB on muscle hypertrophic signaling (insulin growth factor 1 (IGF1 expression, Akt/mammalian target of rapamycin (mTOR pathway, and calcineurin pathway and atrophic signaling (Akt/Forkhead box-O (FOXO pathway and myostatin expression in masseter muscle of rats treated with DEX and/or CB.Masseter muscle weight in the DEX-treated group was significantly lower than that in the Control group, as expected, but co-treatment with CB suppressed the DEX-induced masseter muscle atrophy, concomitantly with inhibition of fast-to-slow MHC isoforms transition. Activation of the Akt/mTOR pathway in masseter muscle of the DEX-treated group was significantly inhibited compared to that of the Control group, and CB suppressed this inhibition. DEX also suppressed expression of IGF1 (positive regulator of muscle growth, and CB attenuated this inhibition. Myostatin protein expression was unchanged. CB had no effect on activation of the Akt/FOXO pathway. These results indicate that CB antagonizes DEX-induced muscle atrophy and fast-to-slow MHC isoform transition via modulation of Akt/mTOR activity and IGF1 expression. CB might be a useful pharmacological agent for treatment of glucocorticoid-induced muscle atrophy.

  16. Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations.

    Directory of Open Access Journals (Sweden)

    Haibo Yu

    2007-02-01

    Full Text Available Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP, the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such "mechanochemical coupling" in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [] is to propose the actual mechanism behind these "population shifts" and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide

  17. Myosin isoform fiber type and fiber size in the tail of the Virginia opossum (Didelphis virginiana).

    Science.gov (United States)

    Hazimihalis, P J; Gorvet, M A; Butcher, M T

    2013-01-01

    Muscle fiber type is a well studied property in limb muscles, however, much less is understood about myosin heavy chain (MHC) isoform expression in caudal muscles of mammalian tails. Didelphid marsupials are an interesting lineage in this context as all species have prehensile tails, but show a range of tail-function depending on either their arboreal or terrestrial locomotor habits. Differences in prehensility suggest that MHC isoform fiber types may also be different, in that terrestrial opossums may have a large distribution of oxidative fibers for object carrying tasks instead of faster, glycolytic fiber types expected in mammals with long tails. To test this hypothesis, MHC isoform fiber type and their regional distribution (proximal/transitional/distal) were determined in the tail of the Virginia opossum (Didelphis virginiana). Fiber types were determined by a combination of myosin-ATPase histochemistry, immunohistochemistry, and SDS-PAGE. Results indicate a predominance of the fast MHC-2A and -2X isoforms in each region of the tail. The presence of two fast isoforms, in addition to the slow MHC-1 isoform, was confirmed by SDS-PAGE analysis. The overall MHC isoform fiber type distribution for the tail was: 25% MHC-1, 71% MHC-2A/X hybrid, and 4% MHC-1/2A hybrid. Oxidative MHC-2A/X isoform fibers were found to be relatively large in cross-section compared to slow, oxidative MHC-1 and MHC-1/2A hybrid fibers. A large percentage of fast MHC-2A/X hybrids fibers may be suggestive of an evolutionary transition in MHC isoform distribution (fast-to-slow fiber type) in the tail musculature of an opossum with primarily a terrestrial locomotor habit and adaptive tail-function. PMID:23152195

  18. The Intriguing Dual Lattices of the Myosin Filaments in Vertebrate Striated Muscles: Evolution and Advantage

    Directory of Open Access Journals (Sweden)

    Pradeep K. Luther

    2014-12-01

    Full Text Available Myosin filaments in vertebrate striated muscle have a long roughly cylindrical backbone with cross-bridge projections on the surfaces of both halves except for a short central bare zone. In the middle of this central region the filaments are cross-linked by the M-band which holds them in a well-defined hexagonal lattice in the muscle A-band. During muscular contraction the M-band-defined rotation of the myosin filaments around their long axes influences the interactions that the cross-bridges can make with the neighbouring actin filaments. We can visualise this filament rotation by electron microscopy of thin cross-sections in the bare-region immediately adjacent to the M-band where the filament profiles are distinctly triangular. In the muscles of teleost fishes, the thick filament triangular profiles have a single orientation giving what we call the simple lattice. In other vertebrates, for example all the tetrapods, the thick filaments have one of two orientations where the triangles point in opposite directions (they are rotated by 60° or 180° according to set rules. Such a distribution cannot be developed in an ordered fashion across a large 2D lattice, but there are small domains of superlattice such that the next-nearest neighbouring thick filaments often have the same orientation. We believe that this difference in the lattice forms can lead to different contractile behaviours. Here we provide a historical review, and when appropriate cite recent work related to the emergence of the simple and superlattice forms by examining the muscles of several species ranging back to primitive vertebrates and we discuss the functional differences that the two lattice forms may have.

  19. Shifts in the myosin heavy chain isozymes in the mouse heart result in increased energy efficiency

    Science.gov (United States)

    Hoyer, Kirsten; Krenz, Maike; Robbins, Jeffrey; Ingwall, Joanne S.

    2007-01-01

    Cardiac-specific transgenesis in the mouse is widely used to study the basic biology and chemistry of the heart and to model human cardiovascular disease. A fundamental difference between mouse and human hearts is the background motor protein: mouse hearts contain predominantly the αα-myosin heavy chain (MyHC) isozyme while human hearts contain predominantly the ββ-MyHC isozyme. Although the intrinsic differences in mechanical and enzymatic properties of the αα- and ββ-MyHC molecules are well known, the consequences of isozyme shifts on energetic of the intact beating heart remain unknown. Therefore, we compared the free energy of ATP hydrolysis (|ΔG~ATP|) determined by 31P NMR spectroscopy in isolated perfused littermate mouse hearts containing the same amount of myosin comprised of either >95% αα-MyHC or ~83% ββ-MyHC. |ΔG~ATP| was ~2 kJ mol−1 higher in the ββ-MyHC hearts at all workloads. Furthermore, upon inotropic challenge, hearts containing predominantly ββ-MyHC hearts increased developed pressure more than αα-MyHC hearts whereas heart rate increased more in αα-MyHC hearts. Thus, hearts containing predominantly the ββ-MyHC isozyme are more energy efficient than αα-MyHC hearts. We suggest that these fundamental differences in the motor protein energy efficiency at the whole heart level should be considered when interpreting results using mouse-based cardiovascular modeling of normal and diseased human heart. PMID:17054980

  20. Cardiac myosin light chain is phosphorylated by Ca2+/calmodulin-dependent and -independent kinase activities.

    Science.gov (United States)

    Chang, Audrey N; Mahajan, Pravin; Knapp, Stefan; Barton, Hannah; Sweeney, H Lee; Kamm, Kristine E; Stull, James T

    2016-07-01

    The well-known, muscle-specific smooth muscle myosin light chain kinase (MLCK) (smMLCK) and skeletal muscle MLCK (skMLCK) are dedicated protein kinases regulated by an autoregulatory segment C terminus of the catalytic core that blocks myosin regulatory light chain (RLC) binding and phosphorylation in the absence of Ca(2+)/calmodulin (CaM). Although it is known that a more recently discovered cardiac MLCK (cMLCK) is necessary for normal RLC phosphorylation in vivo and physiological cardiac performance, information on cMLCK biochemical properties are limited. We find that a fourth uncharacterized MLCK, MLCK4, is also expressed in cardiac muscle with high catalytic domain sequence similarity with other MLCKs but lacking an autoinhibitory segment. Its crystal structure shows the catalytic domain in its active conformation with a short C-terminal "pseudoregulatory helix" that cannot inhibit catalysis as a result of missing linker regions. MLCK4 has only Ca(2+)/CaM-independent activity with comparable Vmax and Km values for different RLCs. In contrast, the Vmax value of cMLCK is orders of magnitude lower than those of the other three MLCK family members, whereas its Km (RLC and ATP) and KCaM values are similar. In contrast to smMLCK and skMLCK, which lack activity in the absence of Ca(2+)/CaM, cMLCK has constitutive activity that is stimulated by Ca(2+)/CaM. Potential contributions of autoregulatory segment to cMLCK activity were analyzed with chimeras of skMLCK and cMLCK. The constitutive, low activity of cMLCK appears to be intrinsic to its catalytic core structure rather than an autoinhibitory segment. Thus, RLC phosphorylation in cardiac muscle may be regulated by two different protein kinases with distinct biochemical regulatory properties. PMID:27325775

  1. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    Science.gov (United States)

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts.

  2. Chryse 'Alien Head'

    Science.gov (United States)

    2005-01-01

    26 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an impact crater in Chryse Planitia, not too far from the Viking 1 lander site, that to seems to resemble a bug-eyed head. The two odd depressions at the north end of the crater (the 'eyes') may have formed by wind or water erosion. This region has been modified by both processes, with water action occurring in the distant past via floods that poured across western Chryse Planitia from Maja Valles, and wind action common occurrence in more recent history. This crater is located near 22.5oN, 47.9oW. The 150 meter scale bar is about 164 yards long. Sunlight illuminates the scene from the left/lower left.

  3. NASA head sworn in

    Science.gov (United States)

    James C. Fletcher was sworn in on May 12, 1986, as administrator of the National Aeronautics and Space Administration (NASA). At a news conference after he was sworn in, Fletcher said that NASA would deal with both its technical problems and its procedural problems before the shuttle will fly again. According to press accounts, he stressed that funds should be made available to replace the Challenger orbiter, which was lost in an explosion on January 28.Fletcher, who had also headed the agency from 1971 to 1977, succeeds James M. Beggs, who was indicted in December 1985 for conspiring to defraud the federal government while serving as a senior executive at the General Dynamics Corporation.

  4. An optimized micro-assay of myosin Ⅱ ATPase activity based on the molybdenum blue method and its application in screening natural product inhibitors

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-Lin; ZHAO Jing; ZHANG Guan-Jun; KOU Jun-Ping; YU Bo-Yang

    2016-01-01

    Myosin Ⅱ plays multiple roles in physiological and pathological functions through its ATPase activity.The present study was designed to optimize a micro-assay of myosin Ⅱ ATPase activity based on molybdenum blue method,using a known myosin Ⅱ ATPase inhibitor,blebbistatin.Several parameters were observed in the enzymatic reaction procedure,including the concentrations of the substrate (ATP) and calcium chloride,pH,and the reaction and incubation times.The proportion of coloration agent was also investigated.The sensitivity of this assay was compared with the malachite green method and bioluminescence method.Additionally,20 natural compounds were studied for myosin Ⅱ ATPase inhibitory activity using the optimized method.Our results showed that ATP at the concentration of 5 mmol·L-1 and ammonium molybdate:stannous chloride at the ratio of 15 ∶ 1 could greatly improve the sensitivity of this method.The IC50 of blebbistatin obtained by this method was consistent with literature.Compound 8 was screened with inhibitory activity on myosin Ⅱ ATPase.The optimized method showed similar accuracy,lower detecting limit,and wider linear range,which could be a promising approach to screening myosin Ⅱ ATPase inhibitors in vitro.

  5. Structure and function of Drosophila unconventional myosin%果蝇非常规肌球蛋白的结构与功能

    Institute of Scientific and Technical Information of China (English)

    曹洋; 沈梅; 张洁; 李向东

    2011-01-01

    肌球蛋白是一类重要的分子马达,可以将ATP水解产生的能量转化成动能,沿由肌动蛋白组成的细丝运动.肌球蛋白构成一个大的基因家族,在许多细胞活动中起着重要作用,包括肌肉收缩、胞内转运、听觉、视觉等.果蝇基因组有13种肌球蛋白基因,包括2种常规肌球蛋白和11种非常规肌球蛋白.本文综述了近年来果蝇非常规肌球蛋白的研究进展.%Myosins are important molecular motor proteins that convert energy from ATP hydrolysis into mechanical movement along the actin filaments.Myosins constitute a large superfamily and play key roles in a number of cellular processes including muscle contraction, intracellular trafficking, hearing, vision et al.Drosophila melanogaster has 13 myosin genes, including 2 conventional myosins and 11 unconventional myosins.In this review, we summarize recent progress in Drosophila unconventional myosins.

  6. Direct photoaffinity labeling of gizzard myosin with ( sup 3 H)uridine diphosphate places Glu185 of the heavy chain at the active site

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, T.E.; Yount, R.G. (Washington State Univ., Pullman (USA))

    1990-12-25

    The active site of chicken gizzard myosin was labeled by direct photoaffinity labeling with ({sup 3}H)UDP. ({sup 3}H) UDP was stably trapped at the active site by addition of vanadate (Vi) and Co{sup 2+}. The extraordinary stability of the myosin.Co2+.(3H)UDP.Vi complex (t1/2 greater than 5 days at 0{degrees}C) allowed it to be purified free of extraneous ({sup 3}H)UDP before irradiation began. Upon UV irradiation, greater than 60% of the trapped ({sup 3}H)UDP was photoincorporated into the active site. Only the 200-kDa heavy chain was labeled, confirming earlier results using ({sup 3}H)UTP. Extensive tryptic digestion of photolabeled myosin subfragment 1 followed by high performance liquid chromatography separations and removal of nucleotide phosphates by treatment with alkaline phosphatase allowed two labeled peptides to be isolated. Sequencing of the labeled peptides and radioactive counting showed that Glu185 was the residue labeled. Since UDP is a zero-length cross-linker, Glu185 is located at the purine-binding pocket of the active site of smooth myosin and adjacent to the glycine-rich loop which binds the polyphosphate portion of ATP. This Glu residue is conserved in smooth and nonmuscle myosins and is the same residue identified previously by ({sup 3}H)UTP photolabeling in Acanthamoeba myosin II.

  7. An optimized micro-assay of myosin II ATPase activity based on the molybdenum blue method and its application in screening natural product inhibitors.

    Science.gov (United States)

    Chen, Hong-Lin; Zhao, Jing; Zhang, Guan-Jun; Kou, Jun-Ping; Yu, Bo-Yang

    2016-06-01

    Myosin II plays multiple roles in physiological and pathological functions through its ATPase activity. The present study was designed to optimize a micro-assay of myosin II ATPase activity based on molybdenum blue method, using a known myosin II ATPase inhibitor, blebbistatin. Several parameters were observed in the enzymatic reaction procedure, including the concentrations of the substrate (ATP) and calcium chloride, pH, and the reaction and incubation times. The proportion of coloration agent was also investigated. The sensitivity of this assay was compared with the malachite green method and bioluminescence method. Additionally, 20 natural compounds were studied for myosin II ATPase inhibitory activity using the optimized method. Our results showed that ATP at the concentration of 5 mmol·L(-1) and ammonium molybdate : stannous chloride at the ratio of 15 : 1 could greatly improve the sensitivity of this method. The IC50 of blebbistatin obtained by this method was consistent with literature. Compound 8 was screened with inhibitory activity on myosin II ATPase. The optimized method showed similar accuracy, lower detecting limit, and wider linear range, which could be a promising approach to screening myosin II ATPase inhibitors in vitro. PMID:27473959

  8. Dependence of myosin-ATPase on structure bound creatine kinase in cardiac myfibrils from rainbow trout and freshwater turtle

    DEFF Research Database (Denmark)

    Haagensen, L.; Jensen, D.H.; Gesser, Hans

    2008-01-01

    The influence of myofibrillar creatine kinase on the myosin-ATPase activity was examined in cardiac ventricular myofibrils isolated from rainbow trout (Oncorhynchus mykiss) and freshwater turtle (Trachemys scripta). The ATPase rate was assessed by recording the rephosphorylation of ADP by the pyr......The influence of myofibrillar creatine kinase on the myosin-ATPase activity was examined in cardiac ventricular myofibrils isolated from rainbow trout (Oncorhynchus mykiss) and freshwater turtle (Trachemys scripta). The ATPase rate was assessed by recording the rephosphorylation of ADP...... activity twice or more for both trout and turtle. As examined for trout myofibrils, the ATPase activity was reduced about four times by inhibiting the activity of myofibril-bound creatine kinase with iodoacetamide and this reduction was only partially counteracted, when the creatine kinase activity...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  10. Myosin catalyzed ATP hydrolysis elucidated by 31P NMR kinetic studies and 1H PFG-diffusion measurements

    OpenAIRE

    Song, Zhiyan; Parker, Kari J.; Enoh, Idorenyin; Zhao, Hua; Olubajo, Olarongbe

    2009-01-01

    We conducted 31P NMR kinetic studies and 1H-diffusion measurements on myosin-catalyzed hydrolysis of adenosine triphosphate (ATP) under varied conditions. The data elucidate well the overall hydrolysis rate and various factors that significantly impact the reaction. We found that the enzymatic hydrolysis of ATP to adenosine diphosphate (ADP) was followed by ADP hydrolysis, and different nucleotides such as ADP and guanosine triphosphate (GTP) acted as competitors of ATP. Increasing ATP or Mg2...

  11. Molecular pathology of familial hypertrophic cardiomyopathy caused by mutations in the cardiac myosin binding protein C gene.

    OpenAIRE

    Yu, B.; French, J. A.; Carrier, L.; Jeremy, R W; McTaggart, D R; Nicholson, M R; Hambly, B; Semsarian, C; Richmond, D R; Schwartz, K.; Trent, R.J.

    1998-01-01

    DNA studies in familial hypertrophic cardiomyopathy (FHC) have shown that it is caused by mutations in genes coding for proteins which make up the muscle sarcomere. The majority of mutations in the FHC genes result from missense changes, although one of the most recent genes to be identified (cardiac myosin binding protein C gene, MYBPC3) has predominantly DNA mutations which produce truncated proteins. Both dominant negative and haploinsufficiency models have been proposed to explain the mol...

  12. Temperature-enhanced association of proteins due to electrostatic interaction: a coarse-grained simulation of actin-myosin binding.

    Science.gov (United States)

    Okazaki, Kei-ichi; Sato, Takato; Takano, Mitsunori

    2012-05-30

    Association of protein molecules constitutes the basis for the interaction network in a cell. Despite its fundamental importance, the thermodynamic aspect of protein-protein binding, particularly the issues relating to the entropy change upon binding, remains elusive. The binding of actin and myosin, which are vital proteins in motility, is a typical example, in which two different binding mechanisms have been argued: the binding affinity increases with increasing temperature and with decreasing salt-concentration, indicating the entropy-driven binding and the enthalpy-driven binding, respectively. How can these thermodynamically different binding mechanisms coexist? To address this question, which is of general importance in understanding protein-protein bindings, we conducted an in silico titration of the actin-myosin system by molecular dynamics simulation using a residue-level coarse-grained model, with particular focus on the role of the electrostatic interaction. We found a good agreement between in silico and in vitro experiments on the salt-concentration dependence and the temperature dependence of the binding affinity. We then figured out how the two binding mechanisms can coexist: the enthalpy (due to electrostatic interaction between actin and myosin) provides the basal binding affinity, and the entropy (due to the orientational disorder of water molecules) enhances it at higher temperatures. In addition, we analyzed the actin-myosin complex structures observed during the simulation and obtained a variety of weak-binding complex structures, among which were found an unusual binding mode suggested by an earlier experiment and precursor structures of the strong-binding complex proposed by electron microscopy. These results collectively indicate the potential capability of a residue-level coarse-grained model to simulate the association-dissociation dynamics (particularly for transient weak-bindings) exhibited by larger and more complicated systems, as in a

  13. Inhibition of long myosin light-chain kinase activation alleviates intestinal damage after binge ethanol exposure and burn injury

    OpenAIRE

    Zahs, Anita; Bird, Melanie D.; Ramirez, Luis; Turner, Jerrold R; Choudhry, Mashkoor A.; Kovacs, Elizabeth J

    2012-01-01

    Laboratory evidence suggests that intestinal permeability is elevated following either binge ethanol exposure or burn injury alone, and this barrier dysfunction is further perturbed when these insults are combined. We and others have previously reported a rise in both systemic and local proinflammatory cytokine production in mice after the combined insult. Knowing that long myosin light-chain kinase (MLCK) is important for epithelial barrier maintenance and can be activated by proinflammatory...

  14. Shared gene structures and clusters of mutually exclusive spliced exons within the metazoan muscle myosin heavy chain genes.

    Directory of Open Access Journals (Sweden)

    Martin Kollmar

    Full Text Available Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs. The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis. Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both have independently been developed

  15. Graded effects of unregulated smooth muscle myosin on intestinal architecture, intestinal motility and vascular function in zebrafish

    Directory of Open Access Journals (Sweden)

    Joshua Abrams

    2016-05-01

    Full Text Available Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11. Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt, which converts a highly conserved tryptophan to arginine (W512R in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y and coil-coiled (L1287M domains of Myh11 that fail to complement mlt. Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress.

  16. Myosin cross-bridge orientation in rigor and in the presence of nucleotide studied by electron spin resonance.

    OpenAIRE

    Ajtai, K; French, A R; Burghardt, T P

    1989-01-01

    The tilt series electron spin resonance (ESR) spectrum from muscle fibers decorated with spin labeled myosin subfragment 1 (S1) was measured from fibers in rigor and in the presence of MgADP. ESR spectra were measured at low amplitude modulation of the static magnetic field to insure that a minimum of spectral lineshape distortion occurs. Ten tilt series ESR data sets were fitted simultaneously by the model-independent methodology described in the accompanying paper (Burghardt, T. P., and A. ...

  17. 49 CFR 572.112 - Head assembly.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Head assembly. 572.112 Section 572.112... 50th Percentile Male § 572.112 Head assembly. The head assembly consists of the head (drawing 78051-61X...) accelerometers that are mounted in conformance to § 572.36 (c). (a) Test procedure. (1) Soak the head assembly...

  18. Age- and Activity-Related Differences in the Abundance of Myosin Essential and Regulatory Light Chains in Human Muscle

    Directory of Open Access Journals (Sweden)

    James N. Cobley

    2016-04-01

    Full Text Available Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM. We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping.

  19. Drosophila myosin-XX functions as an actin-binding protein to facilitate the interaction between Zyx102 and actin.

    Science.gov (United States)

    Cao, Yang; White, Howard D; Li, Xiang-Dong

    2014-01-21

    The class XX myosin is a member of the diverse myosin superfamily and exists in insects and several lower invertebrates. DmMyo20, the class XX myosin in Drosophila, is encoded by dachs, which functions as a crucial downstream component of the Fat signaling pathway, influencing growth, affinity, and gene expression during development. Sequence analysis shows that DmMyo20 contains a unique N-terminal extension, the motor domain, followed by one IQ motif, and a C-terminal tail. To investigate the biochemical properties of DmMyo20, we expressed several DmMyo20 truncated constructs containing the motor domain in the baculovirus/Sf9 system. We found that the motor domain of DmMyo20 had neither ATPase activity nor the ability to bind to ATP, suggesting that DmMyo20 does not function as a molecular motor. We found that the motor domain of DmMyo20 could specifically bind to actin filaments in an ATP-independent manner and enhance the interaction between actin filaments and Zyx102, a downstream component of DmMyo20 in the Fat signaling pathway. These results suggest that DmMyo20 functions as a scaffold protein, but not as a molecular motor, in a signaling pathway controlling cell differentiation.

  20. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    Science.gov (United States)

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts. PMID:27483374

  1. Turbidity Current Head Mixing

    Science.gov (United States)

    Hernandez, David; Sanchez, Miguel Angel; Medina, Pablo

    2010-05-01

    A laboratory experimental set - up for studying the behaviour of sediment in presence of a turbulent field with zero mean flow is compared with the behaviour of turbidity currents [1] . Particular interest is shown on the initiation of sediment motion and in the sediment lift - off. The behaviour of the turbidity current in a flat ground is compared with the zero mean flow oscilating grid generated turbulence as when wave flow lifts off suspended sediments [2,3]. Some examples of the results obtained with this set-up relating the height of the head of the turbidity current to the equilibrium level of stirred lutoclines are shown. A turbulent velocity u' lower than that estimated by the Shield diagram is required to start sediment motion. The minimum u' required to start sediment lift - off, is a function of sediment size, cohesivity and resting time. The lutocline height depends on u', and the vorticity at the lutocline seems constant for a fixed sediment size [1,3]. Combining grid stirring and turbidty current head shapes analyzed by means of advanced image analysis, sediment vertical fluxes and settling speeds can be measured [4,5]. [1] D. Hernandez Turbulent structure of turbidity currents and sediment transport Ms Thesis ETSECCPB, UPC. Barcelona 2009. [2] A. Sánchez-Arcilla; A. Rodríguez; J.C. Santás; J.M. Redondo; V. Gracia; R. K'Osyan; S. Kuznetsov; C. Mösso. Delta'96 Surf-zone and nearshore measurements at the Ebro Delta. A: International Conference on Coastal Research through large Scale Experiments (Coastal Dynamics '97). University of Plymouth, 1997, p. 186-187. [3] P. Medina, M. A. Sánchez and J. M. Redondo. Grid stirred turbulence: applications to the initiation of sediment motion and lift-off studies Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26, Issue 4, 2001, Pages 299-304 [4] M.O. Bezerra, M. Diez, C. Medeiros, A. Rodriguez, E. Bahia., A. Sanchez-Arcilla and J.M. Redondo. Study on the influence of waves on

  2. Visual head motion monitoring

    OpenAIRE

    Sieber, Lukáš

    2012-01-01

    Bakalářská práce se zabývá určením polohy a natočení hlavy v reálném čase ze snímků pořízených webovou kamerou vůči pevným ramenům. Dále poukazuje na výhody využití Open CV. Zahrnut je též podrobnější popis užitých funkcí Open CV, jako například optický tok, hledání korespondujících dvojic 3D-2D bodů a mimo jiné také operace s rotační maticí. V závěru jsou zhodnoceny dosažené výsledky a navržen další možný postup. This bachelor thesis is based on finding of head rotation and position again...

  3. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... Up! Prevent Concussions Prevent Head Injuries Sports Safety Students Play Safe Youth Sports Safety PROMOTIONAL MATERIALS "Heads ... Up! Prevent Concussions Prevent Head Injuries Sports Safety Students Play Safe Youth Sports Safety ORDER FREE PRINT ...

  4. Abusive Head Trauma (Shaken Baby Syndrome)

    Science.gov (United States)

    ... Things to Know About Zika & Pregnancy Abusive Head Trauma (Shaken Baby Syndrome) KidsHealth > For Parents > Abusive Head ... babies tend to cry the most. How These Injuries Happen Abusive head trauma results from injuries caused ...

  5. Heads Up to High School Sports

    Science.gov (United States)

    ... What's this? Submit What's this? Submit Button HEADS UP to School Sports Recommend on Facebook Tweet Share ... Submit What's this? Submit Button Connect with HEADS UP & CDC's Injury Center HEADS UP Resources File Formats ...

  6. The effect of the substitution of D{sub 2}O for H{sub 2}O on the degradation of myosin {beta} in solution by heat and by {sup 60}Co {gamma} radiation (1962); Effet de la substitution de D{sub 2}O a H{sub 2}O sur l'alteration de la Myosine B en solution par la chaleur et par les rayons {gamma} du {sup 60}CO (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Pinset-Harstrom, I.; Fritsch, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    (1) Alterations of myosin B produced by heat or irradiation are shown to be qualitatively identical as demonstrated by analytical centrifugation. (2) A considerable isotope effect was demonstrated using 75 per cent D{sub 2}O in the solvent. The sensitivity of myosin B to heat and irradiation is discussed in the light of this isotope effect. (3) Polymers appearing upon heat treatment of myosin B seem to be of a very different nature than the polymers occurring alter a similar treatment upon myosin A. Polymers obtained from myosin B can be depolymerized by ATP and they appear in a much narrower temperature range than myosin A polymers. This fact indicates a considerable difference in the activation enthalpies in the two reactions. (authors) [French] (1) Cette etude montre que les alterations de la myosine B provoquees par la chaleur et par l'irradiation aux rayons {gamma} sont - telles qu'elles apparaissent a l'ultracentrifugation analytique - qualitativement semblables. (2) Nous avons observe un effet isotopique considerable de la presence de 75 pour cent de D{sub 2}O dans le solvant sur la sensibilite de la myosine B envers ces deux agents, et nous avons presente une tentative d'explication de ce fait. (3) Les polymeres qui apparaissent apres un traitement par la chaleur de la myosine semblent etre d'une nature tres differente des polymeres que l'on voit apparaitre apres un traitement identique de la myosine A. Ceux obtenus a partir de le myosine B sont depolymerisables par l'intermediaire de l'ATP et apparaissent dans une zone de temperature beaucoup plus etroite que celles de la myosine A. Ce dernier fait indique une difference considerable de l'enthalpie d'activation des deux reactions. (auteurs)

  7. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain

    Energy Technology Data Exchange (ETDEWEB)

    Lima, V.V. [Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT (Brazil); Lobato, N.S.; Filgueira, F.P. [Curso de Medicina, Setor de Fisiologia Humana, Universidade Federal de Goiás, Jataí, GO (Brazil); Webb, R.C. [Department of Physiology, Georgia Regents University, Augusta, GA (United States); Tostes, R.C. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Giachini, F.R. [Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT (Brazil)

    2014-08-15

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca{sup 2+}/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.

  8. Age dependence of myosin heavy chain transitions induced by creatine depletion in rat skeletal muscle

    Science.gov (United States)

    Adams, Gregory R.; Baldwin, Kenneth M.

    1995-01-01

    This study was designed to test the hypothesis that myosin heavy chain (MHC) plasticity resulting from creatine depletion is an age-dependent process. At weaning (age 28 days), rat pups were placed on either standard rat chow (normal diet juvenile group) or the same chow supplemented with 1% wt/wt of the creatine analogue beta-guanidinopropionic acid (creatine depletion juvenile (CDJ) group). Two groups of adult rats (age approximately 8 wk) were placed on the same diet regimens (normal diet adult and creatine depletion adult (CDA) groups). After 40 days (CDJ and normal diet juvenile groups) and 60 days (CDA and normal diet adult groups), animals were killed and several skeletal muscles were removed for analysis of creatine content or MHC ditribution. In the CDJ group, creatine depletion (78%) was accompanied by significant shifts toward expression of slower MHC isoforms in two slow and three fast skeletal muscles. In contrast, creatine depletion in adult animals did not result in similar shifts toward slow MHC isoform expression in either muscle type. The results of this study indicate that there is a differential effect of creatine depletion on MHC tranitions that appears to be age dependent. These results strongly suggest that investigators contemplating experimental designs involving the use of the creatine analogue beta-guanidinopropionic acid should consider the age of the animals to be used.

  9. Electrophoretic Mobility of Cardiac Myosin Heavy Chain Isoforms Revisited: Application of MALDI TOF/TOF Analysis

    Directory of Open Access Journals (Sweden)

    Petra Arnostova

    2011-01-01

    Full Text Available The expression of two cardiac myosin heavy chain (MyHC isoforms in response to the thyroid status was studied in left ventricles (LVs of Lewis rats. Major MyHC isoform in euthyroid and hyperthyroid LVs had a higher mobility on SDS-PAGE, whereas hypothyroid LVs predominantly contained a MyHC isoform with a lower mobility corresponding to that of the control soleus muscle. By comparing the MyHC profiles obtained under altered thyroid states together with the control soleus, we concluded that MyHCα was represented by the lower band with higher mobility and MyHCβ by the upper band. The identity of these two bands in SDS-PAGE gels was confirmed by western blot and mass spectrometry. Thus, in contrast to the literature data, we found that the MyHCα possessed a higher mobility rate than the MyHCβ isoform. Our data highlighted the importance of the careful identification of the MyHCα and MyHCβ isoforms analyzed by the SDS-PAGE.

  10. Control of myosin heavy chain expression: interaction of hypothyroidism and hindlimb suspension.

    Science.gov (United States)

    Diffee, G M; Haddad, F; Herrick, R E; Baldwin, K M

    1991-12-01

    The aim of this study was to contrast competing influences, hypothyroidism and hindlimb suspension, on myosin heavy chain (MHC) expression studied at the protein level and mRNA level. Female Sprague-Dawley rats were assigned to either normal control (NC), normal suspended (NS), or hypothyroid (thyroidectomized) control (TC) and suspended (TS) groups. NS and TS animals were suspended for 14 days following which myofibrils and total RNA were purified from the hindlimb muscles. In the soleus and vastus intermedius (VI), there was an increase in type I MHC and a decrease in type IIa MHC in both the TC and TS groups and a decrease in type I and increase in type IIa MHC in the NS group. At the mRNA level, similar shifts were observed with the exception that 1) the increased type IIa MHC seen in the soleus and VI of the NS animals was not accompanied by an increase in IIa mRNA and 2) type IIb mRNA was increased in the NS soleus without concomitant changes in IIb protein levels. These data suggest the following: 1) a hypothyroid state predominates over mechanical unweighting factors in the control of MHC distribution in slow muscles; and 2) translational or posttranslational factors may be important in the regulation of type IIa and IIb MHC expression during hindlimb suspension. PMID:1767813

  11. Both Myosin-10 isoforms are required for radial neuronal migration in the developing cerebral cortex.

    Science.gov (United States)

    Ju, Xing-Da; Guo, Ye; Wang, Nan-Nan; Huang, Ying; Lai, Ming-Ming; Zhai, Yan-Hua; Guo, Yu-Guang; Zhang, Jian-Hua; Cao, Rang-Juan; Yu, Hua-Li; Cui, Lei; Li, Yu-Ting; Wang, Xing-Zhi; Ding, Yu-Qiang; Zhu, Xiao-Juan

    2014-05-01

    During embryonic development of the mammalian cerebral cortex, postmitotic cortical neurons migrate radially from the ventricular zone to the cortical plate. Proper migration involves the correct orientation of migrating neurons and the transition from a multipolar to a mature bipolar morphology. Herein, we report that the 2 isoforms of Myosin-10 (Myo10) play distinct roles in the regulation of radial migration in the mouse cortex. We show that the full-length Myo10 (fMyo10) isoform is located in deeper layers of the cortex and is involved in establishing proper migration orientation. We also demonstrate that fMyo10-dependent orientation of radial migration is mediated at least in part by the netrin-1 receptor deleted in colorectal cancer. Moreover, we show that the headless Myo10 (hMyo10) isoform is required for the transition from multipolar to bipolar morphologies in the intermediate zone. Our study reveals divergent functions for the 2 Myo10 isoforms in controlling both the direction of migration and neuronal morphogenesis during radial cortical neuronal migration. PMID:23300110

  12. Effect of myosin heavy chain composition of muscles on meat quality in Laiwu pigs and Duroc

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to explain the mechanism of high meat quality in Laiwu pigs and investigate the relation between myosin heavy chains (MyHC) composition and meat quality, meat quality analysis was conducted and mRNA expression of MyHC I, IIa, IIx, IIb was quantified by real-time fluorescence PCR in longissimus muscle (LM) and semimembranous muscle of Laiwu pigs and Duroc. The result indicated that, compared with Duroc, mRNA expression of MyHC IIa, IIx in LM and semimembranous muscle of Laiwu pigs was significantly increased, mRNA expression of MyHC IIb was dramatically decreased. However, the expression of MyHC I was not significantly affected by breeds. The correlation between mRNA expression of MyHC I, IIa, IIx in LM and meat color, pH value, marbling, intramuscular fat content was positive, but shear value of LM was negative. The relation between MyHC IIb mRNA expression and marbling, intramuscular fat content was dramatically negative, whereas shear value was strikingly positive, as well as fiber diameter, but without reaching statistical significance. Therefore, the composition of MyHC I, IIa, IIx, IIb affected meat quality, furthermore, expression of MyHC I, IIa, IIx, IIb mRNA prominently influenced meat characteristics, especially edible quality of muscle, suggesting that mRNA expression level of MyHC I, IIa, IIx, IIb can exactly and impersonally estimate meat quality.

  13. Effect of myosin heavy chain composition of muscles on meat quality in Laiwu pigs and Duroc

    Institute of Scientific and Technical Information of China (English)

    HU HongMei; WANG JiYing; ZHU RongSheng; GUO JianFeng; WU Ying

    2008-01-01

    In order to explain the mechanism of high meat quality in Laiwu pigs and investigate the relation between myosin heavy chains (MyHC) composition and meat quality, meat quality analysis was conducted and mRNA expression of MyHC I, IIa, IIx, IIb was quantified by real-time fluorescence PCR in Iongissimus muscle (LM) and semimembranous muscle of Laiwu pigs and Duroc. The result indicated that, compared with Duroc, mRNA expression of MyHC IIa, IIx in LM and semimembranous muscle of Laiwu pigs was significantly increased, mRNA expression of MyHC Ilia'was dramatically decreased.However, the expression of MyHC I was not significantly affected by breeds. The correlation between mRNA expression of MyHC I, IIa, IIx in LM and meat color, pH value, marbling, intramuscular fat content was positive, but shear value of LM was negative. The relation between MyHC lib mRNA expression and marbling, intramuscular fat content was dramatically negative, whereas shear value was strikingly positive, as well as fiber diameter, but without reaching statistical significance. Therefore, the composition of MyHC I, IIa, IIx, IIb affected meat quality, furthermore, expression of MyHC I,IIa, IIx, IIb mRNA prominently influenced meat characteristics, especially edible quality of muscle, suggesting that mRNA expression level of MyHC I, IIa, IIx, IIb can exactly and impersonally estimate meat quality.

  14. AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain.

    Science.gov (United States)

    Thaiparambil, Jose T; Eggers, Carrie M; Marcus, Adam I

    2012-08-01

    The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine(172) phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine(19) phosphorylated MRLC (pMRLC(ser19)) and spindle pole-associated pMRLC(ser19) are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLC(ser19) spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLC(ser19) to control spindle orientation via regulation of actin cortex-astral microtubule attachments.

  15. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue.

    Science.gov (United States)

    Aranjuez, George; Burtscher, Ashley; Sawant, Ketki; Majumder, Pralay; McDonald, Jocelyn A

    2016-06-15

    Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6-10 cells, traversing a network of large germ line-derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues. PMID:27122602

  16. Myosin heavy chain composition of tiger (Panthera tigris) and cheetah (Acinonyx jubatus) hindlimb muscles.

    Science.gov (United States)

    Hyatt, Jon-Philippe K; Roy, Roland R; Rugg, Stuart; Talmadge, Robert J

    2010-01-01

    Felids have a wide range of locomotor activity patterns and maximal running speeds, including the very fast cheetah (Acinonyx jubatas), the roaming tiger (Panthera tigris), and the relatively sedentary domestic cat (Felis catus). As previous studies have suggested a relationship between the amount and type of activity and the myosin heavy chain (MHC) isoform composition of a muscle, we assessed the MHC isoform composition of selected hindlimb muscles from these three felid species with differing activity regimens. Using gel electrophoresis, western blotting, histochemistry, and immunohistochemistry with MHC isoform-specific antibodies, we compared the MHC composition in the tibialis anterior, medial gastrocnemius (MG), plantaris (Plt), and soleus muscles of the tiger, cheetah, and domestic cat. The soleus muscle was absent in the cheetah. At least one slow (type I) and three fast (types IIa, IIx, and IIb) MHC isoforms were present in the muscles of each felid. The tiger had a high combined percentage of the characteristically slower isoforms (MHCs I and IIa) in the MG (62%) and the Plt (86%), whereas these percentages were relatively low in the MG (44%) and Plt (55%) of the cheetah. In general, the MHC isoform characteristics of the hindlimb muscles matched the daily activity patterns of these felids: the tiger has daily demands for covering long distances, whereas the cheetah has requirements for speed and power.

  17. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Karen A. Newell-Litwa

    2015-12-01

    Full Text Available The actin motor protein non-muscle myosin II (NMII acts as a master regulator of cell morphology, with a role in several essential cellular processes, including cell migration and post-synaptic dendritic spine plasticity in neurons. NMII also generates forces that alter biochemical signaling, by driving changes in interactions between actin-associated proteins that can ultimately regulate gene transcription. In addition to its roles in normal cellular physiology, NMII has recently emerged as a critical regulator of diverse, genetically complex diseases, including neuronal disorders, cancers and vascular disease. In the context of these disorders, NMII regulatory pathways can be directly mutated or indirectly altered by disease-causing mutations. NMII regulatory pathway genes are also increasingly found in disease-associated copy-number variants, particularly in neuronal disorders such as autism and schizophrenia. Furthermore, manipulation of NMII-mediated contractility regulates stem cell pluripotency and differentiation, thus highlighting the key role of NMII-based pharmaceuticals in the clinical success of stem cell therapies. In this Review, we discuss the emerging role of NMII activity and its regulation by kinases and microRNAs in the pathogenesis and prognosis of a diverse range of diseases, including neuronal disorders, cancer and vascular disease. We also address promising clinical applications and limitations of NMII-based inhibitors in the treatment of these diseases and the development of stem-cell-based therapies.

  18. Helicobacter pylori CagA disrupts epithelial patterning by activating myosin light chain.

    Directory of Open Access Journals (Sweden)

    Jonathan B Muyskens

    Full Text Available Helicobacter pylori infection is a leading cause of ulcers and gastric cancer. We show that expression of the H. pylori virulence factor CagA in a model Drosophila melanogaster epithelium induces morphological disruptions including ectopic furrowing. We find that CagA alters the distribution and increases the levels of activated myosin regulatory light chain (MLC, a key regulator of epithelial integrity. Reducing MLC activity suppresses CagA-induced disruptions. A CagA mutant lacking EPIYA motifs (CagA(EPISA induces less epithelial disruption and is not targeted to apical foci like wild-type CagA. In a cell culture model in which CagA(EPISA and CagA have equivalent subcellular localization, CagA(EPISA is equally potent in activating MLC. Therefore, in our transgenic system, CagA is targeted by EPIYA motifs to a specific apical region of the epithelium where it efficiently activates MLC to disrupt epithelial integrity.

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... medically necessary. MRI may not always distinguish between cancer tissue and fluid, known as edema . MRI typically ... Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association top ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... a computer to produce detailed pictures of the brain and other cranial structures that are clearer and ... sensitive imaging test of the head (particularly the brain) in routine clinical practice. top of page What ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... imaging of the head is performed for a number of abrupt onset or long-standing symptoms. It ... women should not have this exam in the first trimester of pregnancy unless the potential benefit from ...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) ... conditions such as: brain tumors stroke infections developmental anomalies hydrocephalus — dilatation of fluid spaces within the brain ( ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... of the head (particularly the brain) in routine clinical practice. top of page What are some common ... acutely injured; however, this decision is based on clinical judgment. This is because traction devices and many ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no ... Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose and treat ...

  5. New Russian science head named

    CERN Multimedia

    Levitin, C

    2000-01-01

    Ilya Klebanov, a deputy prime minister, has been appointed the country's new head of industrial and scientific policy. He will control the new Ministry for Industry, Science and Technologies (4 paragraphs).

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... page What does the equipment look like? The traditional MRI unit is a large cylinder-shaped tube ... page Additional Information and Resources RTAnswers.org : Radiation Therapy for Brain Tumors Radiation Therapy for Head and ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... page Additional Information and Resources RTAnswers.org : Radiation Therapy for Brain Tumors Radiation Therapy for Head and ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... in patients with very poor kidney function. Careful assessment of kidney function before considering a contrast injection ... the limitations of MRI of the Head? High-quality images are assured only if you are able ...

  9. Montessori Head Start Implementation Brief.

    Science.gov (United States)

    Clifford, Alcillia; Kahn, David

    1995-01-01

    Discusses the use of the Montessori method in Head Start programs, focusing on educational environment, teacher training, parent involvement, and funding. Outlines the phased implementation of a Montessori program and provides a list of Montessori publications and organizations. (MDM)

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose and treat medical ... CD. Currently, MRI is the most sensitive imaging test of the head (particularly the brain) in routine ...

  11. Tensile Tests of Round-head, Flat-head, and Brazier-head Rivets

    Science.gov (United States)

    Schuette, Evan H; Bartone, Leonard M; Mandel, Merven W

    1944-01-01

    An investigation was conducted to determine the tensile strength of round-head (AN43C), flat-head(AN442), and brazier-head (AN4556) aluminum-alloy rivets because of the scarcity of information on the tensile strength of rivets. The results of the investigation are presented as curves that show the variation of the ratio of the tensile strength of the rivet to the tensile strength of the rivet crank with the ratio of the sheet thickness to the rivet diameter for the different types of rivet.

  12. Dropped head syndrome in mitochondriopathy

    OpenAIRE

    Finsterer, J

    2004-01-01

    In a 63-year-old, 165-cm-tall woman with a history of repeated tick bites, dilative cardiomyopathy, osteoporosis, progressive head ptosis with neck stiffness and cervical pain developed. The family history was positive for thyroid dysfunction and neuromuscular disorders. Neurological examination revealed prominent forward head drop, weak anteflexion and retroflexion, nuchal rigidity, weakness of the shoulder girdle, cogwheel rigidity, and tetraspasticity. The lactate stress test was abnormal....

  13. Analytical modelling of soccer heading

    Indian Academy of Sciences (India)

    Zahari Taha; Mohd Hasnun Arif Hassan; Iskandar Hasanuddin

    2015-08-01

    Heading occur frequently in soccer games and studies have shown that repetitive heading of the soccer ball could result in degeneration of brain cells and lead to mild traumatic brain injury. This study proposes a two degree-of-freedom linear mathematical model to study the impact of the soccer ball on the brain. The model consists of a mass–spring–damper system, in which the skull, the brain and the soccer ball are modelled as a mass and the neck modelled as a spring–damper system. The proposed model was compared with previous dynamic model for soccer ball-to-head impact. Moreover, it was also validated against drop ball experiment on an instrumented dummy skull and also compared with head acceleration data from previous studies. Comparison shows that our proposed model is capable of describing both the skull and brain accelerations qualitatively and quantitatively. This study shows that a simple linear mathematical model can be useful in giving a preliminary insight on the kinematics of human skull and brain during a ball-to-head impact. The model can be used to investigate the important parameters during soccer heading that affect the brain displacement and acceleration, thus providing better understanding of the mechanics behind it.

  14. Ghost Head Nebula

    Science.gov (United States)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth. The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas. NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000. The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas. In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The

  15. Regenerating tail muscles in lizard contain Fast but not Slow Myosin indicating that most myofibers belong to the fast twitch type for rapid contraction.

    Science.gov (United States)

    Alibardi, L

    2015-10-01

    During tail regeneration in lizards a large mass of muscle tissue is formed in form of segmental myomeres of similar size located under the dermis of the new tail. These muscles accumulate glycogen and a fast form of myosin typical for twitch myofibers as it is shown by light and ultrastructural immunocytochemistry using an antibody directed against a Fast Myosin Heavy Chain. High resolution immunogold labeling shows that an intense labeling for fast myosin is localized over the thick filaments of the numerous myofibrils in about 70% of the regenerated myofibers while the labeling becomes less intense in the remaining muscle fibers. The present observations indicate that at least two subtypes of Fast Myosin containing muscle fibers are regenerated, the prevalent type was of the fast twitch containing few mitochondria, sparse glycogen, numerous smooth endoplasmic reticulum vesicles. The second, and less frequent type was a Fast-Oxidative-Glycolitic twitch fiber containing more mitochondria, a denser cytoplasm and myofibrils. Since their initial differentiation, myoblasts, myotubes and especially the regenerated myofibers do not accumulate any immuno-detectable Slow Myosin Heavy Chain. The study indicates that most of the segmental muscles of the regenerated tail serve for the limited bending of the tail during locomotion and trashing after amputation of the regenerated tail, a phenomenon that facilitates predator escape.

  16. Effect of Fetal Hypothyroidism on Cardiac Myosin Heavy Chain Expression in Male Rats

    Science.gov (United States)

    Yousefzadeh, Nasibeh; Jeddi, Sajad; Alipour, Mohammad Reza

    2016-01-01

    Background: Thyroid hormone deficiency during fetal life could affect the cardiac function in later life. The mechanism underlying this action in fetal hypothyroidism (FH) in rats has not been elucidated thus far. Objective: The aim of this study is to evaluation the effect of FH on cardiac function in male rats and to determine the contribution of α-myosin heavy chain (MHC) and β-MHC isoforms. Methods: Six pregnant female rats were randomly divided into two groups: The hypothyroid group received water containing 6-propyl-2-thiouracil during gestation and the controls consumed tap water. The offspring of the rats were tested in adulthood. Hearts from the FH and control rats were isolated and perfused with langendroff setup for measuring hemodynamic parameters; also, the heart mRNA expressions of α- MHC and β-MHC were measured by qPCR. Results: Baseline LVDP (74.0 ± 3.1 vs. 92.5 ± 3.2 mmHg, p < 0.05) and heart rate (217 ± 11 vs. 273 ± 6 beat/min, p < 0.05) were lower in the FH rats than controls. Also, these results showed the same significance in ±dp/dt. In the FH rats, β-MHC expression was higher (201%) and α- MHC expression was lower (47%) than control. Conclusion: Thyroid hormone deficiency during fetal life could attenuate normal cardiac functions in adult rats, an effect at least in part due to the increased expression of β-MHC to α- MHC ratio in the heart. PMID:27411095

  17. Association analysis of genetic variants in the myosin IXB gene in acute pancreatitis.

    Directory of Open Access Journals (Sweden)

    Rian M Nijmeijer

    Full Text Available INTRODUCTION: Impairment of the mucosal barrier plays an important role in the pathophysiology of acute pancreatitis. The myosin IXB (MYO9B gene and the two tight-junction adaptor genes, PARD3 and MAGI2, have been linked to gastrointestinal permeability. Common variants of these genes are associated with celiac disease and inflammatory bowel disease, two other conditions in which intestinal permeability plays a role. We investigated genetic variation in MYO9B, PARD3 and MAGI2 for association with acute pancreatitis. METHODS: Five single nucleotide polymorphisms (SNPs in MYO9B, two SNPs in PARD3, and three SNPs in MAGI2 were studied in a Dutch cohort of 387 patients with acute pancreatitis and over 800 controls, and in a German cohort of 235 patients and 250 controls. RESULTS: Association to MYO9B and PARD3 was observed in the Dutch cohort, but only one SNP in MYO9B and one in MAGI2 showed association in the German cohort (p < 0.05. Joint analysis of the combined cohorts showed that, after correcting for multiple testing, only two SNPs in MYO9B remained associated (rs7259292, p = 0.0031, odds ratio (OR 1.94, 95% confidence interval (95% CI 1.35-2.78; rs1545620, p = 0.0006, OR 1.33, 95% CI 1.16-1.53. SNP rs1545620 is a non-synonymous SNP previously suspected to impact on ulcerative colitis. None of the SNPs showed association to disease severity or etiology. CONCLUSION: Variants in MYO9B may be involved in acute pancreatitis, but we found no evidence for involvement of PARD3 or MAGI2.

  18. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Crew, Jennifer R.; Falzari, Kanakeshwari [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States); DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States)

    2010-04-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  19. Myosin heavy chain 15 is associated with bovine pulmonary arterial pressure.

    Science.gov (United States)

    Neary, Marianne T; Neary, Joseph M; Lund, Gretchen K; Holt, Timothy N; Garry, Franklyn B; Mohun, Timothy J; Breckenridge, Ross A

    2014-09-01

    Bovine pulmonary hypertension, brisket disease, causes significant morbidity and mortality at elevations above 2,000 m. Mean pulmonary arterial pressure (mPAP) is moderately heritable, with inheritance estimated to lie within a few major genes. Invasive mPAP measurement is currently the only tool available to identify cattle at risk of hypoxia-induced pulmonary hypertension. A genetic test could allow selection of cattle suitable for high altitude without the need for invasive testing. In this study we evaluated three candidate genes (myosin heavy chain 15 [MYH15], NADH dehydrogenase flavoprotein 2, and FK binding protein 1A) for association with mPAP in 166 yearling Angus bulls grazing at 2,182 m. The T allele (rs29016420) of MYH15 was linked to lower mPAP in a dominant manner (CC 47.2 ± 1.6 mmHg [mean ± standard error of the mean]; CT/TT 42.8 ± 0.7 mmHg; P = 0.02). The proportions of cattle with MYH15 CC, CT, and TT genotypes were 55%, 41%, and 4%, respectively. Given the high frequency of the deleterious allele, it is likely that the relative contribution of MYH15 polymorphisms to pulmonary hypertension is small, supporting previous predictions that the disease is polygenic. We evaluated allelic frequency of MYH15 in the Himalayan yak (Bos grunniens), a closely related species adapted to high altitude, and found 100% prevalence of T allele homozygosity. In summary, we identified a polymorphism in MYH15 significantly associated with mPAP. This finding may aid selection of cattle suitable for high altitude and contribute to understanding human hypoxia-induced pulmonary hypertension.

  20. Expression of myosin heavy-chain mRNA in cultured myoblasts induced by centrifugal force.

    Science.gov (United States)

    Kurokawa, Katsuhide; Sakiyama, Koji; Abe, Shinichi; Hiroki, Emi; Naito, Kaoru; Nakajima, Kazunori; Takeda, Tomotaka; Inoue, Takashi; Ide, Yoshinobu; Ishigami, Keiichi

    2008-11-01

    Ballistic muscle training leads to hypertrophy of fast type fibers and training for endurance induces that of slow type fibers. Numerous studies have been conducted on electrical, extending and magnetic stimulation of cells, but the effect of centrifugal force on cells remains to be investigated. In this study, we investigated the effect of stimulating cultured myoblasts with centrifugal force at different speeds on cell proliferation and myosin heavy-chain (MyHC) mRNA expression in muscle fiber. Stimulation of myoblasts was carried out at 2 different speeds for 20 min using the Himac CT6D, a desk centrifuge, and cells were observed at 1, 3 and 5 days later. Number of cells 1 and 5 days after centrifugal stimulation was significantly larger in the 62.5 x g and 4,170 x g stimulation groups than in the control group. Expression of MyHC-2b mRNA 1 day after centrifugal stimulation was significantly higher in the 2 stimulation groups than in the control group. Almost no expression of MyHC-2a was observed in any group at 1 and 3 days after centrifugal stimulation. However, 5 days after stimulation, MyHC-2a was strongly expressed in the 2 stimulation groups in comparison to the control group. Three days after centrifugal stimulation, expression of MyHC-1 was significantly higher in the 2 stimulation groups than in the control group. The results of this study clarified the effect of different centrifugal stimulation speeds on muscle fiber characteristics, and suggest that centrifugal stimulation of myoblasts enhances cell proliferation.

  1. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    Science.gov (United States)

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  2. Park7 expression influences myotube size and myosin expression in muscle.

    Directory of Open Access Journals (Sweden)

    Hui Yu

    Full Text Available Callipyge sheep exhibit postnatal muscle hypertrophy due to the up-regulation of DLK1 and/or RTL1. The up-regulation of PARK7 was identified in hypertrophied muscles by microarray analysis and further validated by quantitative PCR. The expression of PARK7 in hypertrophied muscle of callipyge lambs was confirmed to be up-regulated at the protein level. PARK7 was previously identified to positively regulate PI3K/AKT pathway by suppressing the phosphatase activity of PTEN in mouse fibroblasts. The purpose of this study was to investigate the effects of PARK7 in muscle growth and protein accretion in response to IGF1. Primary myoblasts isolated from Park7 (+/+ and Park7 (-/- mice were used to examine the effect of differential expression of Park7. The Park7 (+/+ myotubes had significantly larger diameters and more total sarcomeric myosin expression than Park7 (-/- myotubes. IGF1 treatment increased the mRNA abundance of Myh4, Myh7 and Myh8 between 20-40% in Park7 (+/+ myotubes relative to Park7 (-/-. The level of AKT phosphorylation was increased in Park7 (+/+ myotubes at all levels of IGF1 supplementation. After removal of IGF1, the Park7 (+/+ myotubes maintained higher AKT phosphorylation through 3 hours. PARK7 positively regulates the PI3K/AKT pathway by inhibition of PTEN phosphatase activity in skeletal muscle. The increased PARK7 expression can increase protein synthesis and result in myotube hypertrophy. These results support the hypothesis that elevated expression of PARK7 in callipyge muscle would increase levels of AKT activity to cause hypertrophy in response to the normal IGF1 signaling in rapidly growing lambs. Increasing expression of PARK7 could be a novel mechanism to increase protein accretion and muscle growth in livestock or help improve muscle mass with disease or aging.

  3. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Orion D Weiner

    2006-02-01

    Full Text Available Migrating cells need to make different actin assemblies at the cell's leading and trailing edges and to maintain physical separation of signals for these assemblies. This asymmetric control of activities represents one important form of cell polarity. There are significant gaps in our understanding of the components involved in generating and maintaining polarity during chemotaxis. Here we characterize a family of complexes (which we term leading edge complexes, scaffolded by hematopoietic protein 1 (Hem-1, that organize the neutrophil's leading edge. The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE2 complex, which mediates activation of actin polymerization by Rac, is only one member of this family. A subset of these leading edge complexes are biochemically separable from the WAVE2 complex and contain a diverse set of potential polarity-regulating proteins. RNA interference-mediated knockdown of Hem-1-containing complexes in neutrophil-like cells: (a dramatically impairs attractant-induced actin polymerization, polarity, and chemotaxis; (b substantially weakens Rac activation and phosphatidylinositol-(3,4,5-tris-phosphate production, disrupting the (phosphatidylinositol-(3,4,5-tris-phosphate/Rac/F-actin-mediated feedback circuit that organizes the leading edge; and (c prevents exclusion of activated myosin from the leading edge, perhaps by misregulating leading edge complexes that contain inhibitors of the Rho-actomyosin pathway. Taken together, these observations show that versatile Hem-1-containing complexes coordinate diverse regulatory signals at the leading edge of polarized neutrophils, including but not confined to those involving WAVE2-dependent actin polymerization.

  4. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, Priya; Wang, Li; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Huang, Wenrui; Hernandez, Olga M.; Kawai, Masataka; Irving, Thomas C.; Szczesna-Cordary, Danuta (IIT); (Iowa); (Miami-MED)

    2012-04-02

    The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-{Delta}43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing ({approx} 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I{sub 1,1}/I{sub 1,0}, indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-{Delta}43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-{Delta}43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.

  5. Myosin light chain kinase mediates intestinal barrier disruption following burn injury.

    Directory of Open Access Journals (Sweden)

    Chuanli Chen

    Full Text Available BACKGROUND: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC phosphorylation mediated by MLC kinase (MLCK is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. METHODOLOGY/PRINCIPAL FINDINGS: Male balb/c mice were assigned randomly to either sham burn (control or 30% total body surface area (TBSA full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg, an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. CONCLUSIONS/SIGNIFICANCE: The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.

  6. Effect of aerobic exercise on the contractile function of gastrocnemius myosin heavy chain

    Institute of Scientific and Technical Information of China (English)

    Wen-jun Ren

    2009-01-01

    Objective To study the effect of 4- 6 weeks' treadmill training of male SD rats on the contractile function of their gnstroenemius myosin heavy chain (MHC). Methods Forty male SD rats were randomly divided into control group and training group. The treadmill training of the training group rats was incessantly performed for 4- 6 weeks at an intensity of about 75% VO2max (18. 5- 24 m/min, gradient of 0°, each training session lasting 50 minutes, twice a day). The content of gastrocnemlas MHC mRNA was tested by reverse transcription polymernse chain reaction (RT-PCR), and the changes of muscle fibre and its cross-section area (CSA) were measured using immunohistochemistry. Electric stimulation tests were used to determine the maximal tension of isometric contraction of the post-training gastrocnemius. Results ① After continuous treadmill training for 4 - 6 weeks, we found that the content of the total MHC, MHC Ⅰ , MHC Ⅱ x, MHC Ⅱ a mRNAs was 105%, 105%, 109% and 108% of that in the resting control group, respectively, and the MHC Ⅱ b mRNA content did not change significantly. The percentage of MHC Ⅰ mRNA in the total MHC mRNA increased while that of MHC Ⅱ mRNA decreased after aerobic training. ② The slow type of fibre type Ⅰ was the main part of the MHC after training and the CSA of the muscle fibres increased simultaneously. ③ The maximal tension of isometric contraction by pulse stimulation of square wave in the training group increased significantly compared with that in the control group (P<0. 01). Conclusion The findings indicate that aerobic exercise may promote an increase in the contractile function of MHC.

  7. Expression of Calmodulin and Myosin Light Chain Kinase during Larval Settlement of the Barnacle Balanus amphitrite

    KAUST Repository

    Chen, Zhang-Fan

    2012-02-13

    Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus (= Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca 2+/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite. © 2012 Chen et al.

  8. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... Health eCard Heads Up! Prevent Concussions Prevent Head Injuries Sports Safety Students Play Safe Youth Sports Safety PROMOTIONAL ... Health eCard Heads Up! Prevent Concussions Prevent Head Injuries Sports Safety Students Play Safe Youth Sports Safety ORDER ...

  9. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... in Spanish [Podcast: 1:27 minutes] Send a Health eCard Heads Up! Prevent Concussions Prevent Head Injuries ... in Spanish [Podcast: 1:27 minutes] Send a Health eCard Heads Up! Prevent Concussions Prevent Head Injuries ...

  10. 49 CFR 572.182 - Head assembly.

    Science.gov (United States)

    2010-10-01

    .... The head shall be tested per procedure specified in 49 CFR § 572.112(a). (c) Performance criteria. (1... 49 Transportation 7 2010-10-01 2010-10-01 false Head assembly. 572.182 Section 572.182... Dummy, 50th Percentile Adult Male § 572.182 Head assembly. (a) The head assembly consists of the...

  11. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... and parents “Heads Up” for school nurses, parents, teachers, counselors, and other school professionals “Heads Up” for ... Up! Prevent Concussions Prevent Head Injuries Sports Safety Students Play Safe Youth Sports Safety PROMOTIONAL MATERIALS "Heads ...

  12. Heading for a fall? Management of head injury in infants.

    LENUS (Irish Health Repository)

    Williamson, M

    2010-09-01

    Head injury is one of the commonest reasons for infants (< 1 year) to attend the Emergency Department (ED). Clinical management varies considerably and concern about non accidental injury results in a high admission rate in some hospitals. Information was obtained on 103 children under one year of age presenting to the ED with head injury in a prospective study. The average age was 6.7 months and 57% of patients were male. Twenty eight babies had skull x rays with 1 skull fracture diagnosed. None required CT brain scan. Ninety eight (94%) were discharged home from the ED. There were no unplanned returns, readmissions or adverse events. The incidence of traumatic brain injury in children under one year of age presenting with head injury is low and the majority can be safely discharged home.

  13. Phospholipase C and myosin light chain kinase inhibition define a common step in actin regulation during cytokinesis

    Directory of Open Access Journals (Sweden)

    Fabian Lacramioara

    2007-05-01

    Full Text Available Abstract Background Phosphatidylinositol 4,5-bisphosphate (PIP2 is required for successful completion of cytokinesis. In addition, both PIP2 and phosphoinositide-specific phospholipase C (PLC have been localized to the cleavage furrow of dividing mammalian cells. PLC hydrolyzes PIP2 to yield diacylglycerol (DAG and inositol trisphosphate (IP3, which in turn induces calcium (Ca2+ release from the ER. Several studies suggest PIP2 must be hydrolyzed continuously for continued cleavage furrow ingression. The majority of these studies employ the N-substituted maleimide U73122 as an inhibitor of PLC. However, the specificity of U73122 is unclear, as its active group closely resembles the non-specific alkylating agent N-ethylmaleimide (NEM. In addition, the pathway by which PIP2 regulates cytokinesis remains to be elucidated. Results Here we compared the effects of U73122 and the structurally unrelated PLC inhibitor ET-18-OCH3 (edelfosine on cytokinesis in crane-fly and Drosophila spermatocytes. Our data show that the effects of U73122 are indeed via PLC because U73122 and ET-18-OCH3 produced similar effects on cell morphology and actin cytoskeleton organization that were distinct from those caused by NEM. Furthermore, treatment with the myosin light chain kinase (MLCK inhibitor ML-7 caused cleavage furrow regression and loss of both F-actin and phosphorylated myosin regulatory light chain from the contractile ring in a manner similar to treatment with U73122 and ET-18-OCH3. Conclusion We have used multiple inhibitors to examine the roles of PLC and MLCK, a predicted downstream target of PLC regulation, in cytokinesis. Our results are consistent with a model in which PIP2 hydrolysis acts via Ca2+ to activate myosin via MLCK and thereby control actin dynamics during constriction of the contractile ring.

  14. Mechanosensing in myosin filament solves a 60 years old conflict in skeletal muscle modeling between high power output and slow rise in tension

    CERN Document Server

    Marcucci, Lorenzo

    2016-01-01

    Almost 60 years ago Andrew Huxley with his seminal paper \\cite{Huxley1957} laid the foundation of modern muscle modeling, linking chemical events to mechanical performance. He described mechanics and energetics of muscle contraction through the cyclical attachment and detachment of myosin motors to the actin filament with ad hoc assumptions on the dependence of the rate constants on the strain of the myosin motors. That relatively simple hypothesis is still present in recent models, even though with several modifications to adapt the model to the different experimental constraints which became subsequently available. However, already in that paper, one controversial aspect of the model became clear. Relatively high attachment and detachment rates of myosin to the actin filament were needed to simulate the high power output at intermediate velocity of contraction. However, these rates were incompatible with the relatively slow rise in tension after activation, despite the rise should be generated by the same r...

  15. The role of the N-terminus of the myosin essential light chain in cardiac muscle contraction

    OpenAIRE

    Kazmierczak, Katarzyna; Xu, Yuanyuan; Jones, Michelle; Guzman, Georgianna; Hernandez, Olga M.; Kerrick, W. Glenn L.; Szczesna-Cordary, Danuta

    2009-01-01

    To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43 amino acid N-terminal truncation mutant (Tg-Δ43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle and the ELC pro...

  16. Bistable Head Positioning Arm Latch

    Science.gov (United States)

    Wasson, Ken; Endo, Juro; Mita, Masahiro; Abelein, Nathan

    A simple, low cost, yet effective device has been developed for immobilizing the head-arm assembly in a disk drive or similar mechanism during power-off conditions. The latching scheme also provides a consistent means of releasing the head-arm assembly from the immobilized position upon power up of the disk drive. The latch uses no electrical power in either immobilized or released state. This design is immune to extreme torque and linear shock forces applied to the disk drive case. The latch system can use the energy stored in the spinning disks to drive the head-arm assembly toward a safe position while simultaneously arming the latch mechanism to secure the head-arm assembly in the safe position upon arrival. A low energy five msec pulse of current drives the latch from one state to the other. Solenoids as presently used in latch mechanisms are bulky, expensive, have variable force characteristics, and often generate contaminants. The latch described in this paper is expected to replace such solenoids. It may also replace small magnet latches, which have limited latch force and apply unwanted torque to a proximate head positioning arm.

  17. Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of 'partially' processed pseudogene

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2008-02-01

    Full Text Available Abstract Background Alternative splicing of mutually exclusive exons is an important mechanism for increasing protein diversity in eukaryotes. The insect Mhc (myosin heavy chain gene produces all different muscle myosins as a result of alternative splicing in contrast to most other organisms of the Metazoa lineage, that have a family of muscle genes with each gene coding for a protein specialized for a functional niche. Results The muscle myosin heavy chain genes of 22 species of the Arthropoda ranging from the waterflea to wasp and Drosophila have been annotated. The analysis of the gene structures allowed the reconstruction of an ancient muscle myosin heavy chain gene and showed that during evolution of the arthropods introns have mainly been lost in these genes although intron gain might have happened in a few cases. Surprisingly, the genome of Aedes aegypti contains another and that of Culex pipiens quinquefasciatus two further muscle myosin heavy chain genes, called Mhc3 and Mhc4, that contain only one variant of the corresponding alternative exons of the Mhc1 gene. Mhc3 transcription in Aedes aegypti is documented by EST data. Mhc3 and Mhc4 inserted in the Aedes and Culex genomes either by gene duplication followed by the loss of all but one variant of the alternative exons, or by incorporation of a transcript of which all other variants have been spliced out retaining the exon-intron structure. The second and more likely possibility represents a new type of a 'partially' processed pseudogene. Conclusion Based on the comparative genomic analysis of the alternatively spliced arthropod muscle myosin heavy chain genes we propose that the splicing process operates sequentially on the transcript. The process consists of the splicing of the mutually exclusive exons until one exon out of the cluster remains while retaining surrounding intronic sequence. In a second step splicing of introns takes place. A related mechanism could be responsible for

  18. In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1–Rok–Myosin-II and JNK signalling

    Directory of Open Access Journals (Sweden)

    Peytee Khoo

    2013-05-01

    The Ras oncogene contributes to ∼30% of human cancers, but alone is not sufficient for tumorigenesis. In a Drosophila screen for oncogenes that cooperate with an activated allele of Ras (RasACT to promote tissue overgrowth and invasion, we identified the GTP exchange factor RhoGEF2, an activator of Rho-family signalling. Here, we show that RhoGEF2 also cooperates with an activated allele of a downstream effector of Ras, Raf (RafGOF. We dissect the downstream pathways through which RhoGEF2 cooperates with RasACT (and RafGOF, and show that RhoGEF2 requires Rho1, but not Rac, for tumorigenesis. Furthermore, of the Rho1 effectors, we show that RhoGEF2 + Ras (Raf-mediated tumorigenesis requires the Rho kinase (Rok–Myosin-II pathway, but not Diaphanous, Lim kinase or protein kinase N. The Rho1–Rok–Myosin-II pathway leads to the activation of Jun kinase (JNK, in cooperation with RasACT. Moreover, we show that activation of Rok or Myosin II, using constitutively active transgenes, is sufficient for cooperative tumorigenesis with RasACT, and together with RasACT leads to strong activation of JNK. Our results show that Rok–Myosin-II activity is necessary and sufficient for Ras-mediated tumorigenesis. Our observation that activation of Myosin II, which regulates Filamentous actin (F-actin contractility without affecting F-actin levels, cooperates with RasACT to promote JNK activation and tumorigenesis, suggests that increased cell contractility is a key factor in tumorigenesis. Furthermore, we show that signalling via the Tumour necrosis factor (TNF; also known as Egr-ligand–JNK pathway is most likely the predominant pathway that activates JNK upon Rok activation. Overall, our analysis highlights the need for further analysis of the Rok–Myosin-II pathway in cooperation with Ras in human cancers.

  19. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, Bettina R.; Rudolf, Anja; Hornbruch-Freitag, Christina; Daum, Gabor; Kuckwa, Jessica; Kastl, Lena; Buttgereit, Detlev [Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg (Germany); Renkawitz-Pohl, Renate, E-mail: renkawit@biologie.uni-marburg.de [Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg (Germany)

    2013-02-15

    Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell–cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles. - Highlights: ► The class XVIII myosin encoding gene Mhcl is transcribed in the mesoderm. ► Mhcl localization at contact sites of fusing myoblasts depends on Rols7. ► Mhcl interacts in vitro with Rols7 which is essential for myogenesis. ► Functional redundancy with other myosins is likely as mutants show no muscle defects. ► Mhcl localizes adjacent to Z-discs of sarcomeres and might support muscle integrity.

  20. Wheelchair control by head motion

    Directory of Open Access Journals (Sweden)

    Pajkanović Aleksandar

    2013-01-01

    Full Text Available Electric wheelchairs are designed to aid paraplegics. Unfortunately, these can not be used by persons with higher degree of impairment, such as quadriplegics, i.e. persons that, due to age or illness, can not move any of the body parts, except of the head. Medical devices designed to help them are very complicated, rare and expensive. In this paper a microcontroller system that enables standard electric wheelchair control by head motion is presented. The system comprises electronic and mechanic components. A novel head motion recognition technique based on accelerometer data processing is designed. The wheelchair joystick is controlled by the system’s mechanical actuator. The system can be used with several different types of standard electric wheelchairs. It is tested and verified through an experiment performed within this paper.

  1. Return of the talking heads

    DEFF Research Database (Denmark)

    Reinecke Hansen, Kenneth; Bro, Peter; Andersson, Ralf

    2016-01-01

    The present article suggests that the brief history of Western television news dramaturgy can be expounded as three major waves: from the early days of the talking heads in the studio, over the narrativization of the field report to a (re-)current studio- and field-based talking heads format. In...... order to analyze the latest development entering the third wave, we propose a theoretically based dramaturgical model for the television news item. The analysis concludes that, with the current ‘return’ of the talking heads format, the pre-produced and pre-packaged bulletin program about past events is...... dissolving and transforming into an evaluative present- and future-oriented update format that resembles the 24-hour newsonly channels. Production time merges with broadcast time so that the uncertainty of live spreads to the dramaturgy....

  2. The influence of temperature on the distribution and intensity of the reaction product in rat muscle fibers obtained with the histochemical method for myosin ATPase

    DEFF Research Database (Denmark)

    Kirkeby, S; Tuxen, A

    1989-01-01

    The influence of temperature in the incubation medium on the localization and intensity of myosin ATPase was investigated in striated muscles from the rat using a conventional histochemical technique. It was found that the enzyme reaction was temperature-dependent since the activity in some fibers...... was raised and in others was depressed by alteration of the incubation temperature. There was no obvious correlation between the temperature sensitivity of ATPase in the muscle fibers and their activity for succinic dehydrogenase. It is proposed that the histochemical method for myosin ATPase can be used...... for demonstration of isoenzymes in striated muscle fibers....

  3. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  4. Head kinematics during shaking associated with abusive head trauma.

    Science.gov (United States)

    Lintern, T O; Puhulwelle Gamage, N T; Bloomfield, F H; Kelly, P; Finch, M C; Taberner, A J; Nash, M P; Nielsen, P M F

    2015-09-18

    Abusive head trauma (AHT) is a potentially fatal result of child abuse but the mechanisms of injury are controversial. To address the hypothesis that shaking alone is sufficient to elicit the injuries observed, effective computational and experimental models are necessary. This paper investigates the use of a coupled rigid-body computational modelling framework to reproduce in vivo shaking kinematics in AHT. A sagittal plane OpenSim computational model of a lamb was developed and used to interpret biomechanical data from in vivo shaking experiments. The acceleration of the head during shaking was used to provide in vivo validation of the associated computational model. Results of this study demonstrated that peak accelerations occurred when the head impacted the torso and produced acceleration magnitudes exceeding 200ms(-)(2). The computational model demonstrated good agreement with the experimental measurements and was shown to be able to reproduce the high accelerations that occur during impact. The biomechanical results obtained with the computational model demonstrate the utility of using a coupled rigid-body modelling framework to describe infant head kinematics in AHT. PMID:26256822

  5. Head kinematics during shaking associated with abusive head trauma.

    Science.gov (United States)

    Lintern, T O; Puhulwelle Gamage, N T; Bloomfield, F H; Kelly, P; Finch, M C; Taberner, A J; Nash, M P; Nielsen, P M F

    2015-09-18

    Abusive head trauma (AHT) is a potentially fatal result of child abuse but the mechanisms of injury are controversial. To address the hypothesis that shaking alone is sufficient to elicit the injuries observed, effective computational and experimental models are necessary. This paper investigates the use of a coupled rigid-body computational modelling framework to reproduce in vivo shaking kinematics in AHT. A sagittal plane OpenSim computational model of a lamb was developed and used to interpret biomechanical data from in vivo shaking experiments. The acceleration of the head during shaking was used to provide in vivo validation of the associated computational model. Results of this study demonstrated that peak accelerations occurred when the head impacted the torso and produced acceleration magnitudes exceeding 200ms(-)(2). The computational model demonstrated good agreement with the experimental measurements and was shown to be able to reproduce the high accelerations that occur during impact. The biomechanical results obtained with the computational model demonstrate the utility of using a coupled rigid-body modelling framework to describe infant head kinematics in AHT.

  6. Strain-dependent kinetics of the myosin working stroke, and how they could be probed with optical-trap experiments.

    Science.gov (United States)

    Smith, David; Sleep, John

    2006-11-01

    The strain-dependent kinetics of the myosin working stroke under load is derived from a flat-energy-landscape model for its untethered lever-arm, and compared with other scenarios in the literature. The "flat landscape" scenario is compatible with muscle-fiber experiments, but is more critically relevant to single-myosin experiments with an optically trapped actin filament. In such experiments, the strain dependence of stroke kinetics may be explored by comparing event-averaged and time-averaged displacements of the filament. With a specific kinetic model of the cross-bridge cycle, we have previously shown that the event-averaged displacement underestimates the working stroke. Here we predict that the two kinds of averaging give diverging estimates of the working stroke as the resolving time of the event detector is decreased to 1 ms or less, the discrepancy being critically dependent on the strain dependence of the stroke rate. Such analysis of trap displacement data offers the possibility of testing the strain-dependent stroke rate predicted by the flat-landscape model. PMID:16891364

  7. AN INTEGRATIVE WAY OF TEACHING MOLECULAR CELL BIOLOGY AND PROTEIN CHEMISTRY USING ACTIN IMMOBILIZATION ON CHITIN FOR PURIFYING MYOSIN II.

    Directory of Open Access Journals (Sweden)

    M.G. Souza

    2007-05-01

    Full Text Available Our intent is to present our experience on teaching Molecular Cell Biology andProtein Chemistry at UNIRIO through an innovative approach that includes myosin IIextraction and purification. We took advantage of the properties of muscle contractionand propose a simple method for purifying myosin II by affinity chromatography. Thisoriginal method is based on the preparation of an affinity column containing actinmolecules covalently bound to chitin particles. We propose a three-week syllabus thatincludes lectures and bench experimental work. The syllabus favors the activelearning of protein extraction and purification, as well as, of scientific concepts suchas muscle contraction, cytoskeleton structure and its importance for the living cell. Italso promotes the learning of the biotechnological applications of chitin and theapplications of protein immobilization in different industrial fields. Furthermore, theactivities also target the development of laboratorial technical abilities, thedevelopment of problem solving skills and the ability to write up a scientific reportfollowing the model of a scientific article. It is very important to mention that thissyllabus can be used even in places where a facility such as ultra-centrifugation islacking.

  8. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling

    Directory of Open Access Journals (Sweden)

    Olga Ossipova

    2015-07-01

    Full Text Available The vertebrate neural tube forms as a result of complex morphogenetic movements, which require the functions of several core planar cell polarity (PCP proteins, including Vangl2 and Prickle. Despite the importance of these proteins for neurulation, their subcellular localization and the mode of action have remained largely unknown. Here we describe the anteroposterior planar cell polarity (AP-PCP of the cells in the Xenopus neural plate. At the neural midline, the Vangl2 protein is enriched at anterior cell edges and that this localization is directed by Prickle, a Vangl2-interacting protein. Our further analysis is consistent with the model, in which Vangl2 AP-PCP is established in the neural plate as a consequence of Wnt-dependent phosphorylation. Additionally, we uncover feedback regulation of Vangl2 polarity by Myosin II, reiterating a role for mechanical forces in PCP. These observations indicate that both Wnt signaling and Myosin II activity regulate cell polarity and cell behaviors during vertebrate neurulation.

  9. Myosin II and the Gal-GalNAc lectin play a crucial role in tissue invasion by Entamoeba histolytica.

    Science.gov (United States)

    Coudrier, Evelyne; Amblard, François; Zimmer, Christophe; Roux, Pascal; Olivo-Marin, Jean-Christophe; Rigothier, Marie-Christine; Guillén, Nancy

    2005-01-01

    Entamoeba histolytica is the human parasite responsible of amoebiasis, during which highly motile trophozoites invade the intestinal epithelium leading to amoebic colitis, and disseminate via the blood circulation causing liver abscesses. The invasive process, central to the pathogenesis, is known to be driven by parasites motility. To investigate molecules responsible for in vivo motion, we performed a high resolution dynamic imaging analysis using two-photon laser scanning microscopy. Image analysis of the parasites during invasion of Caco-2 cell monolayers, an enterocyte-like model, and hamster liver shows that E. histolytica undergoes non-Brownian motion. However, studies of movements of parasite strains dominant negative for myosin II, a central component of the cytoskeleton, and for Gal-GalNAc lectin, a major adhesion molecule, indicate that myosin II is essential for E. histolytica intercellular motility through intestinal cell monolayers and for its motility in liver. In contrast, the Gal-GalNAc lectin exclusively triggers invasion of the liver. These observations are in agreement with emerging studies that highlight marked differences in the way that cells migrate in vitro in two dimensions versus in vivo in three dimensions. The approach that we have developed should be powerful to identify adhesive complexes required for in vivo cell migration in normal and pathogenic situations and may, thereby, lead to new therapeutic drug, for pathologies based on cell motility and adhesion.

  10. The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles.

    Science.gov (United States)

    Orme, Mariam H; Liccardi, Gianmaria; Moderau, Nina; Feltham, Rebecca; Wicky-John, Sidonie; Tenev, Tencho; Aram, Lior; Wilson, Rebecca; Bianchi, Katiuscia; Morris, Otto; Monteiro Domingues, Celia; Robertson, David; Tare, Meghana; Wepf, Alexander; Williams, David; Bergmann, Andreas; Gstaiger, Matthias; Arama, Eli; Ribeiro, Paulo S; Meier, Pascal

    2016-03-10

    Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the initiator caspase DRONC and regulates some of its non-apoptotic functions. Loss of CK in the arista, border cells or proneural clusters of the wing imaginal discs affects DRONC-dependent patterning. Our data indicate that CK acts as substrate adaptor, recruiting SHAGGY46/GSK3-β to DRONC, thereby facilitating caspase-mediated cleavage and localized modulation of kinase activity. Similarly, the mammalian CK counterpart, MYO7A, binds to and impinges on CASPASE-8, revealing a new regulatory axis affecting receptor interacting protein kinase-1 (RIPK1)>CASPASE-8 signalling. Together, our results expose a conserved role for unconventional myosins in transducing caspase-dependent regulation of kinases, allowing them to take part in specific signalling events.

  11. Surface-Controlled Properties of Myosin Studied by Electric Field Modulation.

    Science.gov (United States)

    van Zalinge, Harm; Ramsey, Laurence C; Aveyard, Jenny; Persson, Malin; Mansson, Alf; Nicolau, Dan V

    2015-08-01

    The efficiency of dynamic nanodevices using surface-immobilized protein molecular motors, which have been proposed for diagnostics, drug discovery, and biocomputation, critically depends on the ability to precisely control the motion of motor-propelled, individual cytoskeletal filaments transporting cargo to designated locations. The efficiency of these devices also critically depends on the proper function of the propelling motors, which is controlled by their interaction with the surfaces they are immobilized on. Here we use a microfluidic device to study how the motion of the motile elements, i.e., actin filaments propelled by heavy mero-myosin (HMM) motor fragments immobilized on various surfaces, is altered by the application of electrical loads generated by an external electric field with strengths ranging from 0 to 8 kVm(-1). Because the motility is intimately linked to the function of surface-immobilized motors, the study also showed how the adsorption properties of HMM on various surfaces, such as nitrocellulose (NC), trimethylclorosilane (TMCS), poly(methyl methacrylate) (PMMA), poly(tert-butyl methacrylate) (PtBMA), and poly(butyl methacrylate) (PBMA), can be characterized using an external field. It was found that at an electric field of 5 kVm(-1) the force exerted on the filaments is sufficient to overcome the frictionlike resistive force of the inactive motors. It was also found that the effect of assisting electric fields on the relative increase in the sliding velocity was markedly higher for the TMCS-derivatized surface than for all other polymer-based surfaces. An explanation of this behavior, based on the molecular rigidity of the TMCS-on-glass surfaces as opposed to the flexibility of the polymer-based ones, is considered. To this end, the proposed microfluidic device could be used to select appropriate surfaces for future lab-on-a-chip applications as illustrated here for the almost ideal TMCS surface. Furthermore, the proposed methodology can

  12. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle

    Science.gov (United States)

    Baldwin, K. M.; Haddad, F.

    2001-01-01

    The goal of this mini-review is to summarize findings concerning the role that different models of muscular activity and inactivity play in altering gene expression of the myosin heavy chain (MHC) family of motor proteins in mammalian cardiac and skeletal muscle. This was done in the context of examining parallel findings concerning the role that thyroid hormone (T(3), 3,5,3'-triiodothyronine) plays in MHC expression. Findings show that both cardiac and skeletal muscles of experimental animals are initially undifferentiated at birth and then undergo a marked level of growth and differentiation in attaining the adult MHC phenotype in a T(3)/activity level-dependent fashion. Cardiac MHC expression in small mammals is highly sensitive to thyroid deficiency, diabetes, energy deprivation, and hypertension; each of these interventions induces upregulation of the beta-MHC isoform, which functions to economize circulatory function in the face of altered energy demand. In skeletal muscle, hyperthyroidism, as well as interventions that unload or reduce the weight-bearing activity of the muscle, causes slow to fast MHC conversions. Fast to slow conversions, however, are seen under hypothyroidism or when the muscles either become chronically overloaded or subjected to intermittent loading as occurs during resistance training and endurance exercise. The regulation of MHC gene expression by T(3) or mechanical stimuli appears to be strongly regulated by transcriptional events, based on recent findings on transgenic models and animals transfected with promoter-reporter constructs. However, the mechanisms by which T(3) and mechanical stimuli exert their control on transcriptional processes appear to be different. Additional findings show that individual skeletal muscle fibers have the genetic machinery to express simultaneously all of the adult MHCs, e.g., slow type I and fast IIa, IIx, and IIb, in unique combinations under certain experimental conditions. This degree of

  13. Firing Properties of Rat Lateral Mammillary Single Units: Head Direction, Head Pitch, and Angular Head Velocity

    OpenAIRE

    Stackman, Robert W.; Taube, Jeffrey S.

    1998-01-01

    Many neurons in the rat anterodorsal thalamus (ADN) and postsubiculum (PoS) fire selectively when the rat points its head in a specific direction in the horizontal plane, independent of the animal’s location and ongoing behavior. The lateral mammillary nuclei (LMN) are interconnected with both the ADN and PoS and, therefore, are in a pivotal position to influence ADN/PoS neurophysiology. To further understand how the head direction (HD) cell signal is generated, we recorded single neurons fro...

  14. Return of the talking heads

    DEFF Research Database (Denmark)

    Reinecke Hansen, Kenneth; Bro, Peter; Andersson, Ralf

    2016-01-01

    . In order to analyze the latest development entering the third wave, we propose a theoretically based dramaturgical model for the television news item. The analysis concludes that, with the current ‘return’ of the talking heads format, the pre-produced and pre-packaged bulletin program about past events...

  15. Head nurse or hotel manager?

    Science.gov (United States)

    McAlvanah, M

    1989-01-01

    The responsibility of making room assignments for patients can be both a challenging and frustrating experience for a head nurse. Many factors must be considered when making room assignments while consumer dissatisfaction with the process must be handled creatively and with understanding. PMID:2734042

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... of which shows a thin slice of the body. The images can then be studied from different angles by ... information please consult the ACR Manual on Contrast Media and its references. top of page What are the limitations of MRI of the Head? High-quality images are assured only if you are able to ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...

  18. The Animal Without A Head

    Institute of Scientific and Technical Information of China (English)

    万钧

    2002-01-01

    Have you ever seen an animal with out a head?there is such an animal! it has no tail or legs ,its body is full of holes it eats and breathes but never moves,it lives under water,the water brings the animal air.

  19. Blunt Head Trauma and Headache

    Directory of Open Access Journals (Sweden)

    Ana B Chelse

    2015-04-01

    Full Text Available Investigators from New York Presbyterian Morgan Stanley Children’s Hospital examined whether having an isolated headache following minor blunt head trauma was suggestive of traumatic brain injury (TBI among a large cohort of children 2-18 years of age.

  20. Outcomes Following Radial Head Arthroplasty.

    Science.gov (United States)

    Fowler, John R; Henry, Sarah E; Xu, Peter; Goitz, Robert J

    2016-05-01

    Most current series of radial head arthroplasty include small numbers of patients with short- to medium-term follow-up and significant heterogeneity in patients, treatments, and outcome measures. The purpose of this systematic review was to review outcomes for radial head arthroplasty based on injury chronicity, injury pattern, and type of implant used. The authors systematically searched electronic databases for studies containing radial head arthroplasty or radial head replacement and identified 19 studies for inclusion in the analysis. For each included study, a composite mean was obtained for Mayo Elbow Performance Score (MEPS) and range of motion. Outcomes were said to differ significantly if their confidence intervals did not overlap. The MEPS for acute treatment (90) was higher than that for delayed treatment (81). There was no difference in the pooled MEPS between the isolated (89) and complex injury pattern (87) groups or implant material. There was no difference in range of motion between the acute and delayed or isolated and complex groups, but the average degree of pronation was higher in patients treated with titanium implants (76°) compared with cobalt chromium implants (66°). This systematic review suggests that outcomes are improved following acute arthroplasty for treatment of radial head fractures compared with delayed treatment, based on MEPS. The lack of other significant differences detected is likely due to the significant heterogeneity and inadequate power in current studies. Further prospective studies isolating the different variables will be needed to determine their true effect on outcomes. [Orthopedics. 2016; 39(3):153-160.]. PMID:27045484

  1. Atrial and ventricular myosin heavy-chain expression in the developing chicken heart: Strengths and limitations of non-radioactive in situ hybridization

    NARCIS (Netherlands)

    S. Somi; A.T.J. Klein; A.C. Houweling; J.M. Ruijter; A.A.M. Buffing; A.F.M. Moorman; M.J.B. van den Hoff

    2006-01-01

    Myosin heavy-chain (MHC) isoforms are major structural components of the contractile apparatus of the heart muscle. Their spatio-temporal patterns of expression have been used as a tool to dissect cardiac development and differentiation. Although extensively investigated, controversy still exists co

  2. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts.

    Science.gov (United States)

    Kasahara, Kohji; Kaneda, Mizuho; Miki, Toshiaki; Iida, Kazuko; Sekino-Suzuki, Naoko; Kawashima, Ikuo; Suzuki, Hidenori; Shimonaka, Motoyuki; Arai, Morio; Ohno-Iwashita, Yoshiko; Kojima, Soichi; Abe, Mitsuhiro; Kobayashi, Toshihide; Okazaki, Toshiro; Souri, Masayoshi; Ichinose, Akitada; Yamamoto, Naomasa

    2013-11-01

    Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction. PMID:24002447

  3. High fat/low carbohydrate diet attenuates left ventricular hypertrophy and prevents myosin heavy chain isoform switching induced by chronic hypertenstion

    Science.gov (United States)

    A switch in the expression of myosin heavy chain isoform (MHC) alpha to beta is observed with left ventricular hypertrophy (LVH) and heart failure. This switch is associated with a defect in myocardial energy production and contractile dysfunction. Similar MHC isoform profile is observed in the fe...

  4. The tail domain of myosin M catalyses nucleotide exchange on Rac1 GTPases and can induce actin-driven surface protrusions.

    Science.gov (United States)

    Geissler, H; Ullmann, R; Soldati, T

    2000-05-01

    Members of the myosin superfamily play crucial roles in cellular processes including management of the cortical cytoskeleton, organelle transport and signal transduction. GTPases of the Rho family act as key control elements in the reorganization of the actin cytoskeleton in response to growth factors, and other functions such as membrane trafficking, transcriptional regulation, growth control and development. Here, we describe a novel unconventional myosin from Dictyostelium discoideum, MyoM. Primary sequence analysis revealed that it has the appearance of a natural chimera between a myosin motor domain and a guanine nucleotide exchange factor (GEF) domain for Rho GTPases. The functionality of both domains was established. Binding of the motor domain to F-actin was ATP-dependent and potentially regulated by phosphorylation. The GEF domain displayed selective activity on Rac1-related GTPases. Overexpression, rather than absence of MyoM, affected the cell morphology and viability. Particularly in response to hypo-osmotic stress, cells overexpressing the MyoM tail domain extended massive actin-driven protrusions. The GEF was enriched at the tip of growing protuberances, probably through its pleckstrin homology domain. MyoM is the first unconventional myosin containing an active Rac-GEF domain, suggesting a role at the interface of Rac-mediated signal transduction and remodeling of the actin cytoskeleton. PMID:11208126

  5. Cloning and Expression Analysis of Skeletal Myosin Heavy Chain (MYHs Gene from the Most Famous Freshwater Fishes in China-Culter alburnus

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2014-04-01

    Full Text Available Culter alburnus, one of the four most famous freshwater fishes, is a very important freshwater fishing species with high economic value in China. The present study focused on the myosin, major protein in skeletal muscles from Culter alburnus in Xingkai Lake. Two types of the gene encoding Myosin Heavy Chain (MYH, a large subunit of the myosin molecule, were cloned from fast skeletal muscle and defined as MYHa (Genbank ID JX272926 and MYHb (Gen bank ID JX402919. The full-length cDNA clones of MYHa and MYHb consisted of 6003 and 5990 bp, which encoded 1933 and 1930 amino acids, respectively. The total levels of the MYHs were significantly higher with the fish age increase. In comparison to the wild and cultured muscles, From 2 to 6 years old, MYHa gene expression of wild population was significantly lower than the cultured population (p<0.05, else MYHb gene expression of wild population was higher than cultured population. The two kinds of genotype interaction affect meat quality traits. The present study has therefore, revealed a complex pattern of expression of MYH genes in relation to developmental stage and population. Our work provided a novel myosin heavy chain gene sequence in fish biology and the results indicate that the MYH gene and the protein it encodes are important for the growth and development of fish, as well as its muscle characterization.

  6. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... Headache or "pressure" in head Nausea or vomiting Balance problems or dizziness Double or blurry vision Sensitivity ... pressure” in head 11 Nausea or vomiting 12 Balance problems or dizziness 13 Double or blurry vision ...

  7. Blebbistain, a myosin II inhibitor, as a novel strategy to regulate detrusor contractility in a rat model of partial bladder outlet obstruction.

    Directory of Open Access Journals (Sweden)

    Xinhua Zhang

    Full Text Available Partial bladder outlet obstruction (PBOO, a common urologic pathology mostly caused by benign prostatic hyperplasia, can coexist in 40-45% of patients with overactive bladder (OAB and is associated with detrusor overactivity (DO. PBOO that induces DO results in alteration in bladder myosin II type and isoform composition. Blebbistatin (BLEB is a myosin II inhibitor we recently demonstrated potently relaxed normal detrusor smooth muscle (SM and reports suggest varied BLEB efficacy for different SM myosin (SMM isoforms and/or SMM vs nonmuscle myosin (NMM. We hypothesize BLEB inhibition of myosin II as a novel contraction protein targeted strategy to regulate DO. Using a surgically-induced male rat PBOO model, organ bath contractility, competitive and Real-Time-RT-PCR were performed. It was found that obstructed-bladder weight significantly increased 2.74-fold while in vitro contractility of detrusor to various stimuli was impaired ∼50% along with decreased shortening velocity. Obstruction also altered detrusor spontaneous activities with significantly increased amplitude but depressed frequency. PBOO switched bladder from a phasic-type to a more tonic-type SM. Expression of 5' myosin heavy chain (MHC alternatively spliced isoform SM-A (associated with tonic-type SM increased 3-fold while 3' MHC SM1 and essential light chain isoform MLC(17b also exhibited increased relative expression. Total SMMHC expression was decreased by 25% while the expression of NMM IIB (SMemb was greatly increased by 4.5-fold. BLEB was found to completely relax detrusor strips from both sham-operated and PBOO rats pre-contracted with KCl, carbachol or electrical field stimulation although sensitivity was slightly decreased (20% only at lower doses for PBOO. Thus we provide the first thorough characterization of the response of rat bladder myosin to PBOO and demonstrate complete BLEB-induced PBOO bladder SM relaxation. Furthermore, the present study provides valuable

  8. Head stabilization in whooping cranes

    Science.gov (United States)

    Kinloch, M.R.; Cronin, T.W.; Olsen, G.H.; Chavez-Ramirez, Felipe

    2005-01-01

    The whooping crane (Grus americana) is the tallest bird in North America, yet not much is known about its visual ecology. How these birds overcome their unusual height to identify, locate, track, and capture prey items is not well understood. There have been many studies on head and eye stabilization in large wading birds (herons and egrets), but the pattern of head movement and stabilization during foraging is unclear. Patterns of head movement and stabilization during walking were examined in whooping cranes at Patuxent Wildlife Research Center, Laurel, Maryland USA. Four whooping cranes (1 male and 3 females) were videotaped for this study. All birds were already acclimated to the presence of people and to food rewards. Whooping cranes were videotaped using both digital and Hi-8 Sony video cameras (Sony Corporation, 7-35 Kitashinagawa, 6-Chome, Shinagawa-ku, Tokyo, Japan), placed on a tripod and set at bird height in the cranes' home pens. The cranes were videotaped repeatedly, at different locations in the pens and while walking (or running) at different speeds. Rewards (meal worms, smelt, crickets and corn) were used to entice the cranes to walk across the camera's view plane. The resulting videotape was analyzed at the University of Maryland at Baltimore County. Briefly, we used a computerized reduced graphic model of a crane superimposed over each frame of analyzed tape segments by means of a custom written program (T. W. Cronin, using C++) with the ability to combine video and computer graphic input. The speed of the birds in analyzed segments ranged from 0.30 m/s to 2.64 m/s, and the proportion of time the head was stabilized ranged from 79% to 0%, respectively. The speed at which the proportion reached 0% was 1.83 m/s. The analyses suggest that the proportion of time the head is stable decreases as speed of the bird increases. In all cases, birds were able to reach their target prey with little difficulty. Thus when cranes are walking searching for food

  9. Process optimization in the head end area

    International Nuclear Information System (INIS)

    The measures to improve feed clarity and how they fit into the overall concept of the chemical head end are described as considerable changes in the head end. The effects which the conversion from the bundle shears to the individual rod shears has on the mechanical head end are also shown. The changes made, particularly in the chemical head end, are intended to increase the availability of the main process by improved feed clarity with a centrifuge, container and filter. (orig./DG)

  10. First Class Call Stacks: Exploring Head Reduction

    OpenAIRE

    Johnson-Freyd, Philip; Downen, Paul; Ariola, Zena M.

    2016-01-01

    Weak-head normalization is inconsistent with functional extensionality in the call-by-name $\\lambda$-calculus. We explore this problem from a new angle via the conflict between extensionality and effects. Leveraging ideas from work on the $\\lambda$-calculus with control, we derive and justify alternative operational semantics and a sequence of abstract machines for performing head reduction. Head reduction avoids the problems with weak-head reduction and extensionality, while our operational ...

  11. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... TOOLS — CONCUSSION INFORMATION View CDC's “Heads Up” Concussion Educational Materials “Heads Up” for youth sports coaches, administrators, ... parents Order Free Copies of CDC's “Heads Up” Educational Materials Materials on Concussion in Sports Materials for ...

  12. Resection indications of radius head fractures

    OpenAIRE

    Domanic, Unsal; Taser, Omer; Akalin, Yilmaz; Cakmak, Mehmet

    2004-01-01

    Boundaries of resection indication of radius head and timing of resection problems in radius head fractures are discussed on our cases with literature on the subject. In Mason type II. And type III., the best treatment is resection of the head. But it must be performed as soon as possible.

  13. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... CONCUSSION INFORMATION View CDC's “Heads Up” Concussion Educational Materials “Heads Up” for youth sports coaches, administrators, and ... Order Free Copies of CDC's “Heads Up” Educational Materials Materials on Concussion in Sports Materials for Health ...

  14. Roles for Cardiac MyBP-C in Maintaining Myofilament Lattice Rigidity and Prolonging Myosin Cross-Bridge Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, B.M.; Sadayappan, S.; Wang, Y.; Weith, A.E.; Previs, M.J.; Bekyarova, T.; Irving, T.C.; Robbins, J.; Maughan, D.W. (Vermont)

    2011-10-06

    We investigated the influence of cardiac myosin binding protein-C (cMyBP-C) and its constitutively unphosphorylated status on the radial and longitudinal stiffnesses of the myofilament lattice in chemically skinned myocardial strips of the following mouse models: nontransgenic (NTG), effective null for cMyBP-C (t/t), wild-type cMyBP-C expressed into t/t (WT{sub t/t}), and constitutively unphosphorylated cMyBP-C (AllP{sub -t/t}). We found that the absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP{sub -t/t} resulted in a compressible cardiac myofilament lattice induced by rigor not observed in the NTG and WT{sub t/t}. These results suggest that the presence and phosphorylation of the N-terminus of cMyBP-C provides structural support and radial rigidity to the myofilament lattice. Examination of myofilament longitudinal stiffness under rigor conditions demonstrated a significant reduction in cross-bridge-dependent stiffness in the t/t compared with NTG controls, but not in the AllP{sub -t/t} compared with WT{sub t/t} controls. The absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP{sub -t/t} both resulted in a shorter myosin cross-bridge lifetime when myosin isoform was controlled. These data collectively suggest that cMyBP-C provides radial rigidity to the myofilament lattice through the N-terminus, and that disruption of the phosphorylation of cMyBP-C is sufficient to abolish this structural role of the N-terminus and shorten cross-bridge lifetime. Although the presence of cMyBP-C also provides longitudinal rigidity, phosphorylation of the N-terminus is not necessary to maintain longitudinal rigidity of the lattice, in contrast to radial rigidity.

  15. Supernumerary head of biceps brachii

    Directory of Open Access Journals (Sweden)

    Balasubramanian A

    2010-12-01

    Full Text Available The biceps brachii muscle and the musculocutaneous nerve of arm are frequent in their variations. A third head of biceps brachii was noted unilaterally during routine anatomy dissection. Variation in musculocutaneous nerve was also seen on the same arm. The evolutionary and functional basis of such variations are discussed. Such variations become relevant during surgical intervention of the arm, especially after humeral fracture with subsequent unusual bone displacements.

  16. ACR Appropriateness Criteria Head Trauma.

    Science.gov (United States)

    Shetty, Vilaas S; Reis, Martin N; Aulino, Joseph M; Berger, Kevin L; Broder, Joshua; Choudhri, Asim F; Kendi, A Tuba; Kessler, Marcus M; Kirsch, Claudia F; Luttrull, Michael D; Mechtler, Laszlo L; Prall, J Adair; Raksin, Patricia B; Roth, Christopher J; Sharma, Aseem; West, O Clark; Wintermark, Max; Cornelius, Rebecca S; Bykowski, Julie

    2016-06-01

    Neuroimaging plays an important role in the management of head trauma. Several guidelines have been published for identifying which patients can avoid neuroimaging. Noncontrast head CT is the most appropriate initial examination in patients with minor or mild acute closed head injury who require neuroimaging as well as patients with moderate to severe acute closed head injury. In short-term follow-up neuroimaging of acute traumatic brain injury, CT and MRI may have complementary roles. In subacute to chronic traumatic brain injury, MRI is the most appropriate initial examination, though CT may have a complementary role in select circumstances. Advanced neuroimaging techniques are areas of active research but are not considered routine clinical practice at this time. In suspected intracranial vascular injury, CT angiography or venography or MR angiography or venography is the most appropriate imaging study. In suspected posttraumatic cerebrospinal fluid leak, high-resolution noncontrast skull base CT is the most appropriate initial imaging study to identify the source, with cisternography reserved for problem solving. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every three years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment. PMID:27262056

  17. Target position relative to the head is essential for predicting head movement during head-free gaze pursuit.

    Science.gov (United States)

    C Pallus, Adam; G Freedman, Edward

    2016-08-01

    Gaze pursuit is the coordinated movement of the eyes and head that allows humans and other foveate animals to track moving objects. The control of smooth pursuit eye movements when the head is restrained is relatively well understood, but how the eyes coordinate with concurrent head movements when the head is free remains unresolved. In this study, we describe behavioral tasks that dissociate head and gaze velocity during head-free pursuit in monkeys. Existing models of gaze pursuit propose that both eye and head movements are driven only by the perceived velocity of the visual target and are therefore unable to account for these data. We show that in addition to target velocity, the positions of the eyes in the orbits and the retinal position of the target are important factors for predicting head movement during pursuit. When the eyes are already near their limits, further pursuit in that direction will be accompanied by more head movement than when the eyes are centered in the orbits, even when target velocity is the same. The step-ramp paradigm, often used in pursuit tasks, produces larger or smaller head movements, depending on the direction of the position step, while gaze pursuit velocity is insensitive to this manipulation. Using these tasks, we can reliably evoke head movements with peak velocities much faster than the target's velocity. Under these circumstances, the compensatory eye movements, which are often called counterproductive since they rotate the eyes in the opposite direction, are essential to maintaining accurate gaze velocity.

  18. Myosin Heavy Chain Gene Expression in Developing Neonatal Skeletal Muscle: Involvement of the Nerve, Gravity, and Thyroid State

    Science.gov (United States)

    Baldwin, K. M.; Adams, G.; Haddad, F.; Zeng, M.; Qin, A.; Qin, L.; McCue, S.; Bodell, P.

    1999-01-01

    The myosin heavy chain (MHC) gene family encodes at least six MHC proteins (herein designated as neonatal, embryonic, slow type I (beta), and fast IIa, IIx, and IIb) that are expressed in skeletal muscle in a muscle-specific and developmentally-regulated fashion. At birth, both antigravity (e.g. soleus) and locomotor (e.g., plantaris) skeletal muscles are undifferentiated relative to the adult MHC phenotype such that the neonatal and embryonic MHC isoforms account for 80 - 90% of the MHC pool in a fast locomotor muscle; whereas, the embryonic and slow, type I isoforms account for approx. 90% of the pool in a typical antigravity muscle. The goal of this study was to investigate the role of an intact nerve, gravity and thyroid hormone (T3), as well as certain interactions of these interventions, on MHC gene expression in developing neonatal skeletal muscles of rodents.

  19. CLONING AND CHARACTERISATION OF ALKALI MYOSIN LIGHT CHAIN GENE (MLC-3 OF CATTLE FILARIAL PARASITE SETARIA DIGITATA

    Directory of Open Access Journals (Sweden)

    Arumugam Murugananthan, Eric Hamilton Karunanayake*, Kamani Hemamala Tennekoon

    2010-11-01

    Full Text Available Lymphatic filariasis is a tropical disease caused by filarial parasites including Wuchereria bancrofti. Although bancroftian filariasis causes severe disabling and debilitating clinical conditions in human, very little is known about the molecular biology of the parasite. The paucity of parasitic material is the main reason for this lack of knowledge. Setaria digitata is a cattle filarial parasite, closely resembling W. bancrofti in many aspects. Therefore it can be used as a model organism to study W. bancrofti. In the present study, the genomic library of S. digitata adult parasites was constructed and probed with a 32P labeled partial mRNA sequence PCR amplified from a previously isolated cDNA clone containing a 661 bp mRNA transcript of S. digitata alkali myosin light chain gene. Isolated positive clones were sequenced and edited by using bioinformatics tools. Though the 5´ flanking region did not reveal any consensus TATA box sequences, a potential CAAT box like sequence, CCAAT and seven possible transcription factor elements were identified. The entire gene had four exons encoding 149 amino acids interrupted by three introns of varying lengths of 87, 295 and 69 bp respectively. Sequences around the splice junctions were fairly conserved and agreed with the general GT-AG splicing rule. The 3´ flanking region consists of three putative polyadenylation signals with the sequence AATAAA. The gene was AT rich with a GC content of 35%. Southern hybridisation studies suggested that this gene is likely to be a single-copy gene. Homology search of amino acid sequences showed more than 80% similarity with Caenorhabditis species and 40-50% with other vertebrate and invertebrate myosin light chains. Analysis of the amino acid sequence with the NCBI conserved domain database for interactive domain family identified the protein as a member of calcium binding protein family as it comprised of two highly conserved EF hand motifs, and may suggest a

  20. Cardiac myosin binding protein C and MAP-kinase activating death domain-containing gene polymorphisms and diastolic heart failure.

    Directory of Open Access Journals (Sweden)

    Cho-Kai Wu

    Full Text Available OBJECTIVE: Myosin binding protein C (MYBPC3 plays a role in ventricular relaxation. The aim of the study was to investigate the association between cardiac myosin binding protein C (MYBPC3 gene polymorphisms and diastolic heart failure (DHF in a human case-control study. METHODS: A total of 352 participants of 1752 consecutive patients from the National Taiwan University Hospital and its affiliated hospital were enrolled. 176 patients diagnosed with DHF confirmed by echocardiography were recruited. Controls were matched 1-to-1 by age, sex, hypertension, diabetes, renal function and medication use. We genotyped 12 single nucleotide polymorphisms (SNPs according to HapMap Han Chinese Beijing databank across a 40 kb genetic region containing the MYBPC3 gene and the neighboring DNA sequences to capture 100% of haplotype variance in all SNPs with minor allele frequencies ≥ 5%. We also analyzed associations of these tagging SNPs and haplotypes with DHF and linkage disequilibrium (LD structure of the MYBPC3 gene. RESULTS: In a single locus analysis, SNP rs2290149 was associated with DHF (allele-specific p = 0.004; permuted p = 0.031. The SNP with a minor allele frequency of 9.4%, had an odds ratio 2.14 (95% CI 1.25-3.66; p = 0.004 for the additive model and 2.06 for the autosomal dominant model (GG+GA : AA, 95% CI 1.17-3.63; p = 0.013, corresponding to a population attributable risk fraction of 12.02%. The haplotypes in a LD block of rs2290149 (C-C-G-C was also significantly associated with DHF (odds ratio 2.10 (1.53-2.89; permuted p = 0.029. CONCLUSIONS: We identified a SNP (rs2290149 among the tagging SNP set that was significantly associated with early DHF in a Chinese population.

  1. Hesperidin alleviates rat postoperative ileus through anti-inflammation and stimulation of Ca2+-dependent myosin phosphorylation

    Science.gov (United States)

    Xiong, Yong-jian; Chu, Hong-wei; Lin, Yuan; Han, Fang; Li, Ya-chan; Wang, Ai-guo; Wang, Fu-jin; Chen, Da-peng; Wang, Jing-yu

    2016-01-01

    Aim: Postoperative ileus (POI) is a postoperative dysmotility disorder of gastrointestinal tract, which remains one of the most perplexing problems in medicine. In the present study we investigated the effects of hesperidin, a major flavonoid in sweet oranges and lemons, on POI in rats. Methods: SD rats were administered hesperidin (5, 20, and 80 mg·kg−1·d−1, ig) for 3 consecutive days. POI operation (gently manipulating the cecum for 1 min) was performed on d 2. The gastrointestinal motility and isolated intestinal contraction were examined 1 d after the operation. Then the myosin phosphorylation and inflammatory responses in cecum tissue were assessed. Smooth muscle cells were isolated from rat small intestine for in vitro experiments. Results: The gastric emptying and intestinal transit were significantly decreased in POI rats, which were reversed by administration of hesperidin. In ileum and cecum preparations of POI rats in vitro, hesperidin (2.5–160 μmol/L) dose-dependently increased the spontaneous contraction amplitudes without affecting the contractile frequency, which was blocked by the myosin light chain kinase (MLCK) inhibitor ML-7 or verapamil, but not by TTX. Furthermore, administration of hesperidin increased the phosphorylation of MLC20 in the cecum tissue of POI rats. Moreover, administration of hesperidin reversed the increased levels of inflammatory cytokines, iNOS and COX-2 in cecum tissue of POI rats. In freshly isolated intestinal smooth muscle cells, hesperidin (5–80 μmol/L) dose-dependently increased the intracellular Ca2+ concentration as well as the phosphorylation of MLC20, which was abrogated by ML-7 or siRNA that knocked down MLCK. Conclusion: Oral administration of hesperidin effectively alleviates rat POI through inhibition of inflammatory responses and stimulation of Ca2+-dependent MLC phosphorylation. PMID:27345626

  2. Expressiveness of multiple heads in CHR

    CERN Document Server

    Di Giusto, Cinzia; Meo, Maria Chiara

    2008-01-01

    Constraint Handling Rules (CHR) are a committed-choice declarative language which has been designed for writing constraint solvers. A CHR program consists of multi-headed guarded rules which allow one to rewrite constraints into simpler ones until a solved form is reached. Many examples in the vast literature on the subject show that multiple heads are important in order to write programs which solve specific problems. On the other hand, the presence of multiples heads complicates considerably the semantics. Therefore, since restricting to single head rules does not affect the Turing completeness of the language, one can legitimately ask whether multiple heads do indeed augment the expressive power of the language. In this paper we answer positively to this question by showing that, under certain reasonable assumptions, it is not possible to encode the CHR language (with multi-headed rules) into a single head language while preserving the intended meaning of programs.

  3. Head position modulates optokinetic nystagmus

    Science.gov (United States)

    Ferraresi, A.; Botti, F. M.; Panichi, R.; Barmack, N. H.

    2011-01-01

    Orientation and movement relies on both visual and vestibular information mapped in separate coordinate systems. Here, we examine how coordinate systems interact to guide eye movements of rabbits. We exposed rabbits to continuous horizontal optokinetic stimulation (HOKS) at 5°/s to evoke horizontal eye movements, while they were statically or dynamically roll-tilted about the longitudinal axis. During monocular or binocular HOKS, when the rabbit was roll-tilted 30° onto the side of the eye stimulated in the posterior → anterior (P → A) direction, slow phase eye velocity (SPEV) increased by 3.5–5°/s. When the rabbit was roll-tilted 30° onto the side of the eye stimulated in the A → P direction, SPEV decreased to ~2.5°/s. We also tested the effect of roll-tilt after prolonged optokinetic stimulation had induced a negative optokinetic afternystagmus (OKAN II). In this condition, the SPEV occurred in the dark, “open loop.” Modulation of SPEV of OKAN II depended on the direction of the nystagmus and was consistent with that observed during “closed loop” HOKS. Dynamic roll-tilt influenced SPEV evoked by HOKS in a similar way. The amplitude and the phase of SPEV depended on the frequency of vestibular oscillation and on HOKS velocity. We conclude that the change in the linear acceleration of the gravity vector with respect to the head during roll-tilt modulates the gain of SPEV depending on its direction. This modulation improves gaze stability at different image retinal slip velocities caused by head roll-tilt during centric or eccentric head movement. PMID:21735244

  4. Head Access Piping System Desing

    OpenAIRE

    中大路 道彦; 一宮 正和; 向坊 隆一; 前田 清彦; 永田 敬

    1994-01-01

    PNC made design studies on loop type FBR plants:a 600 MWe class in '91, and a 1300 MWe class in '93 both with the "head access" primary piping system. This paper focuses on the features of the smaller plant at first and afterwards on the extension to the larger one. The contents of the paper consist of R/V wall protection mechanism, primary piping circuit, secondary piping circuit, plant layout and then, discusses the extension of the applicability of the wall protection mechanism, primary pi...

  5. Head First jQuery

    CERN Document Server

    Benedetti, Ryan

    2011-01-01

    Want to add more interactivity and polish to your websites? Discover how jQuery can help you build complex scripting functionality in just a few lines of code. With Head First jQuery, you'll quickly get up to speed on this amazing JavaScript library by learning how to navigate HTML documents while handling events, effects, callbacks, and animations. By the time you've completed the book, you'll be incorporating Ajax apps, working seamlessly with HTML and CSS, and handling data with PHP, MySQL and JSON. If you want to learn-and understand-how to create interactive web pages, unobtrusive scrip

  6. Resonance in a head massager

    Science.gov (United States)

    Ribeiro, Jair Lúcio Prados

    2015-04-01

    Mechanical structures such as pendula, bridges, or buildings always exhibit one (or more) natural oscillation frequency.1 If that structure is subjected to oscillatory forces of this same frequency, resonance occurs, with consequent increase of the structure oscillation amplitude. There is no shortage of simple experiments for demonstrating resonance in high school classes using a variety of materials, such as saw blades,2 guitars,3 pendulums,4 wine glasses,5 bottles,6 Ping-Pong balls,7 and pearl strings.8 We present here an experimental demonstration using only an inexpensive head (or scalp) massager, which can be purchased for less than a dollar.

  7. Head movement during walking in the cat.

    Science.gov (United States)

    Zubair, Humza N; Beloozerova, Irina N; Sun, Hai; Marlinski, Vladimir

    2016-09-22

    Knowledge of how the head moves during locomotion is essential for understanding how locomotion is controlled by sensory systems of the head. We have analyzed head movements of the cat walking along a straight flat pathway in the darkness and light. We found that cats' head left-right translations, and roll and yaw rotations oscillated once per stride, while fore-aft and vertical translations, and pitch rotations oscillated twice. The head reached its highest vertical positions during second half of each forelimb swing, following maxima of the shoulder/trunk by 20-90°. Nose-up rotation followed head upward translation by another 40-90° delay. The peak-to-peak amplitude of vertical translation was ∼1.5cm and amplitude of pitch rotation was ∼3°. Amplitudes of lateral translation and roll rotation were ∼1cm and 1.5-3°, respectively. Overall, cats' heads were neutral in roll and 10-30° nose-down, maintaining horizontal semicircular canals and utriculi within 10° of the earth horizontal. The head longitudinal velocity was 0.5-1m/s, maximal upward and downward linear velocities were ∼0.05 and ∼0.1m/s, respectively, and maximal lateral velocity was ∼0.05m/s. Maximal velocities of head pitch rotation were 20-50°/s. During walking in light, cats stood 0.3-0.5cm taller and held their head 0.5-2cm higher than in darkness. Forward acceleration was 25-100% higher and peak-to-peak amplitude of head pitch oscillations was ∼20°/s larger. We concluded that, during walking, the head of the cat is held actively. Reflexes appear to play only a partial role in determining head movement, and vision might further diminish their role. PMID:27339731

  8. SYNTHESIS OF POLY(VINYLIDENE FLUORIDE) WITH LOW CONTENTS OF HEAD-TO-HEAD CHAIN

    Institute of Scientific and Technical Information of China (English)

    DUAN Youlu; YU Xiuying; XUE Ying; ZENG Miaoying; JI Shanrong

    1983-01-01

    The relations between polymerization conditions of vinylidene fluorideand contents of head-to-head chain in the polymer have been studied. It shows that the contents of head-to-head chain of the polymer are related to its polymerization temperature, but are not related with the kinds of initiators used. Therefore, poly(vinylidene fluoride) with low contents of head-to-head chain (ca. 3%)can be prepared under lower polymerization temperature. Plot of the contents of A chains against melting points of the polymer is linear, which can be expressed by an equation:A = 24.8 + 0.362 Tm(%).

  9. A Pre-Hispanic Head

    Science.gov (United States)

    Bianucci, Raffaella; Jeziorska, Maria; Lallo, Rudy; Mattutino, Grazia; Massimelli, Massimo; Phillips, Genevieve; Appenzeller, Otto

    2008-01-01

    This report on a male head revealed biologic rhythms, as gleaned from hydrogen isotope ratios in hair, consistent with a South-American origin and Atomic Mass Spectrometry radiocarbon dating (AMS) compatible with the last pre-Hispanic period (1418–1491 AD, 95.4% probability). Biopsies showed exceptionally well-preserved tissues. The hair contained high levels of toxic elements (lead, arsenic and mercury) incompatible with life. There was no evidence for lead deposition in bone consistent with post-mortem accumulation of this toxic element in the hair. We propose that the high content of metals in hair was the result of metabolic activity of bacteria leading to metal complexation in extra cellular polymeric substances (EPS). This is a recognized protective mechanism for bacteria that thrive in toxic environments. This mechanism may account for the tissues preservation and gives a hint at soil composition where the head was presumably buried. Our results have implications for forensic toxicology which has, hitherto, relied on hair analyses as one means to reconstruct pre-mortem metabolism and for detecting toxic elements accumulated during life. Our finding also has implications for other archaeological specimens where similar circumstances may distort the results of toxicological studies. PMID:18446229

  10. Anatomy of the infant head

    International Nuclear Information System (INIS)

    This text is mainly an atlas of illustration representing the dissection of the head and upper neck of the infant. It was prepared by the author over a 20-year period. The commentary compares the anatomy of the near-term infant with that of a younger fetus, child, and adult. As the author indicates, the dearth of anatomic information about postnatal anatomic changes represents a considerable handicap to those imaging infants. In part 1 of the book, anatomy is related to physiologic performance involving the pharynx, larynx, and mouth. Sequential topics involve the regional anatomy of the head (excluding the brain), the skeleton of the cranium, the nose, orbit, mouth, larynx, pharynx, and ear. To facilitate use of this text as a reference, the illustrations and text on individual organs are considered separately (i.e., the nose, the orbit, the eye, the mouth, the larynx, the pharynx, and the ear). Each part concerned with a separate organ includes materials from the regional illustrations contained in part 2 and from the skeleton, which is treated in part 3. Also included in a summary of the embryologic and fetal development of the organ

  11. Neuropsychological evaluation of mild head injury.

    OpenAIRE

    Gentilini, M; Nichelli, P; Schoenhuber, R; Bortolotti, P.; Tonelli, L; Falasca, A; Merli, G A

    1985-01-01

    Neuropsychological deficits following mild head injury have been reported recently in the literature. The purpose of this study was to investigate this issue with a strict methodological approach. The neuropsychological performance of 50 mildly head injured patients was compared with that of 50 normal controls chosen with the case-control approach. No conclusive evidence was found that mild head injury causes cognitive impairment one month after the trauma.

  12. Remediation of attention deficits in head injury.

    OpenAIRE

    Nag S; Rao S

    1999-01-01

    Head injury is associated with psychological sequelae which impair the patient′s psychosocial functioning. Information processing, attention and memory deficits are seen in head injuries of all severity. We attempted to improve deficits of focused, sustained and divided attention. The principle of overlapping sources of attention resource pools was utilised in devising the remediation programme. Tasks used simple inexpensive materials. Four head injured young adult males with post conc...

  13. Ultrasound Study of Femur Head Necrosis

    Institute of Scientific and Technical Information of China (English)

    HAN Jinjiang; XIANG Jiabin; LIU Qiuying; WAN Ning; ZHAO Tong

    2002-01-01

    98 cases of femur head necrosis with age of 16 ~ 50 years underwent ultrasonography in this study. Through coronal and sagittal profiles, we analyzed the imaging characteristics of the structures of normal and abnormal hip joints and the blood flow of ischemic femur head necrosis. Doppler ultrasound could be used to undergo non - invasive and repeated observation on the structure of hip joints. So it has clinically applicable value for the diagnosis, treatment, prognosis and follow - up of ischemic femur head necrosis.

  14. Tridimensional pose estimation of a person head

    International Nuclear Information System (INIS)

    In this work, we present a method for estimating 3-D motion parameters; this method provides an alternative way for 3D head pose estimation from image sequence in the current computer vision literature. This method is robust over extended sequences and large head motions and accurately extracts the orientation angles of head from a single view. Experimental results show that this tracking system works well for development a human-computer interface for people that possess severe motor incapacity

  15. The nondigestible disaccharide epilactose increases paracellular Ca absorption via rho-associated kinase- and myosin light chain kinase-dependent mechanisms in rat small intestines.

    Science.gov (United States)

    Suzuki, Takuya; Nishimukai, Megumi; Takechi, Maki; Taguchi, Hidenori; Hamada, Shigeki; Yokota, Atsushi; Ito, Susumu; Hara, Hiroshi; Matsui, Hirokazu

    2010-02-10

    We previously showed that epilactose, a nondigestible disaccharide, increased calcium (Ca) absorption in the small intestines of rats. Here, we explored the mechanism(s) underlying the epilactose-mediated promotion of Ca absorption in a ligated intestinal segment of anesthetized rats. The addition of epilactose to the luminal solution increased Ca absorption and chromium (Cr)-EDTA permeability, a paracellular indicator, with a strong correlation (R = 0.93) between these changes. Epilactose induced the phosphorylation of myosin regulatory light chains (MLCs), which is known to activate the paracellular route, without any change in the association of tight junction proteins with the actin cytoskeleton. The epilactose-mediated promotion of the Ca absorption was suppressed by specific inhibitors of myosin light chain kinase (MLCK) and Rho-associated kinase (ROCK). These results indicate that epilactose increases paracellular Ca absorption in the small intestine of rats through the induction of MLC phosphorylation via MLCK- and ROCK-dependent mechanisms.

  16. Radioimmunoassay of myosin heavy beta chains in human serum for the evaluation of the size of myocardial infarction: correlation with myocardial Tl-201 SPECT and cardiac angioscintigraphy

    International Nuclear Information System (INIS)

    To determine the relationship between serum levels of myosin heavy beta chains assessed by an IRMA technique and other radionuclide and enzymatic parameters in the evaluation of the size of myocardial infarction, we studied 22 patients with acute myocardial infarction. Blood samples taken daily between 1st to 13th day of evolution allow the determination of peak and integral of myosine release that showed a good correlation (p<0.01) with myocardial underperfusion score in T1-201 SPECT, left ventricular ejection fractions at 1st day and at the pre-discharge study, just as CPK peak. This new assay is an interesting mean to evaluate the size of myocardial infarction

  17. Bilateral internuclear ophthalmoplegia following mild head injury.

    Science.gov (United States)

    Muthukumar, N; Veerarajkumar, N; Madeswaran, K

    2001-05-01

    A 7-year-old child presented with bilateral internuclear ophthalmoplegia (INO) following a trivial head injury. CT was normal. MRI revealed a pontine lesion. Two months after the injury the patient was neurologically normal. INO following head injury is rare. Rarer still is INO following mild head injury. To date, only four cases of INO had been reported following mild head injury; the present case is the fifth and the first in which the lesion was documented using MRI. The relevant literature is reviewed. PMID:11417420

  18. Research on genetics of rice heading date

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Heading date is one of the most important traits for rice adaptation to cultivation area and crop seasons, and it is mainly determined by photoperiod, basic vegetative growth, and temperature of cultivars. The diversity of combinations of photo-sensitive varieties and the basic vegetative, makes the heading date varied. On one hand, this supplies abundant resources for different ecotypes breeding; on the other hand, it complicates the inheritance of heading date. In recent years, transgression of late maturity has often been encountered, especially between indica and japonica subspecies, this had inhabited the use of hybrid vigor. Therefore, understanding the inheritance basis of heading date is very important for breeding practices.

  19. Supplementation with 0.1% and 2% vitamin e in diabetic rats: analysis of myenteric neurons immunostained for myosin-V and nNOS in the jejunum

    Directory of Open Access Journals (Sweden)

    Eleandro Aparecido Tronchini

    2012-12-01

    Full Text Available CONTEXT: Diabetes mellitus is a disease characterized by hyperglycemia that, when allowed to progress long-term untreated, develops vascular and neurological complications, which are responsible for the development of alterations in the enteric nervous system in diabetic patients. In the gastrointestinal tract, diabetes mellitus promotes motor and sensory changes, and in the reflex function of this system, causing gastroparesis, diarrhea, constipation, megacolon, slow gastrointestinal transit, gastric stasis and dilation with decreased or increased peristaltic contractions. Several studies have shown that oxidative stress is the main responsible for the vascular and neurological complications affecting the enteric nervous system of diabetics. OBJECTIVE: The effects of 0.1% and 2% vitamin E on myosin-V- and nNOS-immunoreactive neurons in the jejunum of diabetic rats were investigated. METHODS: Thirty rats were divided into the groups: normoglycemic, normoglycemic treated with 0.1% vitamin E, normoglycemic treated with 2% vitamin E, diabetic, diabetic treated with 0.1% vitamin E, and diabetic treated with 2% vitamin E. The neuronal density and areas of neuron cell bodies were determined. RESULTS: Diabetes (diabetic group significantly reduced the number of myosin-V-immunoreactive neurons compared with the normoglycemic group. The diabetic treated with 0.1% vitamin E and diabetic treated with 2% vitamin E groups did not exhibit a greater density than the D group (P>0.05. Nitrergic density did not change with diabetes (P>0.05. The areas of myosin-V- and nNOS-immunoreactive neurons significantly increased in the normoglycemic treated with 2% vitamin E and diabetic groups compared with the normoglycemic group. CONCLUSION: Supplementation with 2% vitamin E had a neurotrophic effect only in the area of myosin-V-immunoreactive neurons compared with the diabetic group.

  20. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    Full Text Available Mechanical stress that arises due to deformation of the extracellular matrix (ECM either stretches or compresses cells. The cellular response to stretching has been actively studied. For example, stretching induces phosphorylation of the myosin regulatory light chain (MRLC via the RhoA/RhoA-associated protein kinase (ROCK pathway, resulting in increased cellular tension. In contrast, the effects of compressive stress on cellular functions are not fully resolved. The mechanisms for sensing and differentially responding to stretching and compressive stress are not known. To address these questions, we investigated whether phosphorylation levels of MRLC were affected by compressive stress. Contrary to the response in stretching cells, MRLC was dephosphorylated 5 min after cells were subjected to compressive stress. Compressive loading induced activation of myosin phosphatase mediated via the dephosphorylation of myosin phosphatase targeting subunit 1 (Thr853. Because myosin phosphatase targeting subunit 1 (Thr853 is phosphorylated only by ROCK, compressive loading may have induced inactivation of ROCK. However, GTP-bound RhoA (active form increased in response to compressive stress. The compression-induced activation of RhoA and inactivation of its effector ROCK are contradictory. This inconsistency was due to phosphorylation of RhoA (Ser188 that reduced affinity of RhoA to ROCK. Treatment with the inhibitor of protein kinase A that phosphorylates RhoA (Ser188 induced suppression of compression-stimulated MRLC dephosphorylation. Incidentally, stretching induced phosphorylation of MRLC, but did not affect phosphorylation levels of RhoA (Ser188. Together, our results suggest that RhoA phosphorylation is an important process for MRLC dephosphorylation by compressive loading, and for distinguishing between stretching and compressing cells.

  1. Collagen remodeling by phagocytosis is determined by collagen substrate topology and calcium-dependent interactions of gelsolin with nonmuscle myosin IIA in cell adhesions

    OpenAIRE

    Arora, P. D.; Wang, Y.; Bresnick, A.; Dawson, J.; Janmey, P. A.; McCulloch, C. A.

    2013-01-01

    We examine how collagen substrate topography, free intracellular calcium ion concentration ([Ca2+]i, and the association of gelsolin with nonmuscle myosin IIA (NMMIIA) at collagen adhesions are regulated to enable collagen phagocytosis. Fibroblasts plated on planar, collagen-coated substrates show minimal increase of [Ca2+]i, minimal colocalization of gelsolin and NMMIIA in focal adhesions, and minimal intracellular collagen degradation. In fibroblasts plated on collagen-coated latex beads th...

  2. The Accommodative Function of Myosin on Cell Biomechanics Effect%肌球蛋白在生物力学效应中的调控作用

    Institute of Scientific and Technical Information of China (English)

    胡鸣(综述); 洪莉(审校)

    2015-01-01

    Cytoskeleton is a component of mechanical force transmission chain .As the main protein in forming cytoskeleton in cells, myosin plays a role in regulating the effect produced by cells when they are forced by the external force.When the expression, structure and activity of myosin changes, mechanical effi-ciency of cells will have a corresponding change, thus affecting the cell function and organizational structure. Phosphorylated myosin light chain, transformation of subtypes in myosin heavy chain , and Rho GTPases sig-naling pathway play an important role in the regulation of cellular biological effects .In this article, we try to express the advanced research in myosin′s impact on cell biomechanics effect.In addition, we also discuss the generation mechanism of such effects.%细胞骨架是细胞内机械力传递链的一个组分,肌球蛋白作为细胞骨架的主要组成蛋白,对细胞受到外界力作用时产生的效应具有一定的调控作用,当细胞内的肌球蛋白的表达、结构以及活性发生改变时,细胞的力学效能也会发生相应的改变,从而影响细胞的功能以及组织结构的改变。肌球蛋白轻链的磷酸化、重链各亚型间的转化以及Rho GTP酶信号通路在对细胞生物力学效应的调控中起着一定的作用。

  3. 肌球蛋白在生物力学效应中的调控作用%The Accommodative Function of Myosin on Cell Biomechanics Effect

    Institute of Scientific and Technical Information of China (English)

    胡鸣(综述); 洪莉(审校)

    2015-01-01

    细胞骨架是细胞内机械力传递链的一个组分,肌球蛋白作为细胞骨架的主要组成蛋白,对细胞受到外界力作用时产生的效应具有一定的调控作用,当细胞内的肌球蛋白的表达、结构以及活性发生改变时,细胞的力学效能也会发生相应的改变,从而影响细胞的功能以及组织结构的改变。肌球蛋白轻链的磷酸化、重链各亚型间的转化以及Rho GTP酶信号通路在对细胞生物力学效应的调控中起着一定的作用。%Cytoskeleton is a component of mechanical force transmission chain .As the main protein in forming cytoskeleton in cells, myosin plays a role in regulating the effect produced by cells when they are forced by the external force.When the expression, structure and activity of myosin changes, mechanical effi-ciency of cells will have a corresponding change, thus affecting the cell function and organizational structure. Phosphorylated myosin light chain, transformation of subtypes in myosin heavy chain , and Rho GTPases sig-naling pathway play an important role in the regulation of cellular biological effects .In this article, we try to express the advanced research in myosin′s impact on cell biomechanics effect.In addition, we also discuss the generation mechanism of such effects.

  4. Differential muscular myosin heavy chain expression of the pectoral and pelvic girdles during early growth in the king penguin (Apetenodytes patagonicus) chick

    OpenAIRE

    Erbrech, Aude; Robin, Jean-Patrice; Guerin, Nathalie; Groscolas, René; Gilbert, Caroline; Martrette, Jean-Marc

    2011-01-01

    International audience Continuous growth, associated with a steady parental food supply, is a general pattern in offspring development. So that young chicks can acquire their locomotor independence, this period is usually marked by a fast maturation of muscles, during which different myosin heavy chain (MyHC) isoforms are expressed. However, parental food provisioning may fluctuate seasonally, and offspring therefore face a challenge to ensure the necessary maturation of their tissues when...

  5. C0 and C1 N-terminal Ig domains of myosin binding protein C exert different effects on thin filament activation.

    Science.gov (United States)

    Harris, Samantha P; Belknap, Betty; Van Sciver, Robert E; White, Howard D; Galkin, Vitold E

    2016-02-01

    Mutations in genes encoding myosin, the molecular motor that powers cardiac muscle contraction, and its accessory protein, cardiac myosin binding protein C (cMyBP-C), are the two most common causes of hypertrophic cardiomyopathy (HCM). Recent studies established that the N-terminal domains (NTDs) of cMyBP-C (e.g., C0, C1, M, and C2) can bind to and activate or inhibit the thin filament (TF). However, the molecular mechanism(s) by which NTDs modulate interaction of myosin with the TF remains unknown and the contribution of each individual NTD to TF activation/inhibition is unclear. Here we used an integrated structure-function approach using cryoelectron microscopy, biochemical kinetics, and force measurements to reveal how the first two Ig-like domains of cMyPB-C (C0 and C1) interact with the TF. Results demonstrate that despite being structural homologs, C0 and C1 exhibit different patterns of binding on the surface of F-actin. Importantly, C1 but not C0 binds in a position to activate the TF by shifting tropomyosin (Tm) to the "open" structural state. We further show that C1 directly interacts with Tm and traps Tm in the open position on the surface of F-actin. Both C0 and C1 compete with myosin subfragment 1 for binding to F-actin and effectively inhibit actomyosin interactions when present at high ratios of NTDs to F-actin. Finally, we show that in contracting sarcomeres, the activating effect of C1 is apparent only once low levels of Ca(2+) have been achieved. We suggest that Ca(2+) modulates the interaction of cMyBP-C with the TF in the sarcomere.

  6. Radial head button holing: a cause of irreducible anterior radial head dislocation.

    Science.gov (United States)

    Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina; Bae, Kee Jeong

    2016-10-01

    "Buttonholing" of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. PMID:27502623

  7. The myosin-binding UCS domain but not the Hsp90-binding TPR domain of the UNC-45 chaperone is essential for function in Caenorhabditis elegans.

    Science.gov (United States)

    Ni, Weiming; Hutagalung, Alex H; Li, Shumin; Epstein, Henry F

    2011-09-15

    The UNC-45 family of molecular chaperones is expressed in metazoan organisms from Caenorhabditis elegans to humans. The UNC-45 protein is essential in C. elegans for early body-wall muscle cell development and A-band assembly. We show that the myosin-binding UCS domain of UNC-45 alone is sufficient to rescue lethal unc-45 null mutants arrested in embryonic muscle development and temperature-sensitive loss-of-function unc-45 mutants defective in worm A-band assembly. Removal of the Hsp90-binding TPR domain of UNC-45 does not affect rescue. Similar results were obtained with overexpression of the same fragments in wild-type nematodes when assayed for diminution of myosin accumulation and assembly. Titration experiments show that, on a per molecule basis, UCS has greater activity in C. elegans muscle in vivo than full-length UNC-45 protein, suggesting that UNC-45 is inhibited by either the TPR domain or its interaction with the general chaperone Hsp90. In vitro experiments with purified recombinant C. elegans Hsp90 and UNC-45 proteins show that they compete for binding to C. elegans myosin. Our in vivo genetic and in vitro biochemical experiments are consistent with a novel inhibitory role for Hsp90 with respect to UNC-45 action.

  8. Anti-β2GPI antibodies stimulate endothelial cell microparticle release via a nonmuscle myosin II motor protein-dependent pathway.

    Science.gov (United States)

    Betapudi, Venkaiah; Lominadze, George; Hsi, Linda; Willard, Belinda; Wu, Meifang; McCrae, Keith R

    2013-11-28

    The antiphospholipid syndrome is characterized by thrombosis and recurrent fetal loss in patients with antiphospholipid antibodies (APLAs). Most pathogenic APLAs are directed against β2-glycoprotein I (β2GPI), a plasma phospholipid binding protein. One mechanism by which circulating antiphospholipid/anti-β2GPI antibodies may promote thrombosis is by inducing the release of procoagulant microparticles from endothelial cells. However, there is no information available concerning the mechanisms by which anti-β2GPI antibodies induce microparticle release. In seeking to identify proteins phosphorylated during anti-β2GPI antibody-induced endothelial activation, we observed phosphorylation of nonmuscle myosin II regulatory light chain (RLC), which regulates cytoskeletal assembly. In parallel, we observed a dramatic increase in the formation of filamentous actin, a two- to fivefold increase in the release of endothelial cell microparticles, and a 10- to 15-fold increase in the expression of E-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and tissue factor messenger RNA. Microparticle release, but not endothelial cell surface E-selectin expression, was blocked by inhibiting RLC phosphorylation or nonmuscle myosin II motor activity. These results suggest that distinct pathways, some of which mediate cytoskeletal assembly, regulate the endothelial cell response to anti-β2GPI antibodies. Inhibition of nonmuscle myosin II activation may provide a novel approach for inhibiting microparticle release by endothelial cells in response to anti-β2GPI antibodies. PMID:23954892

  9. Natural head position: An overview.

    Science.gov (United States)

    Meiyappan, N; Tamizharasi, S; Senthilkumar, K P; Janardhanan, K

    2015-08-01

    Cephalometrics has given us a different perspective of interpreting various skeletal problems in the dentofacial complex. Natural head position (NHP) is a reproducible, physiologically determined aspect of function. To determine NHP, a horizontal or vertical reference line outside the crania was used, but preference was given generally to the horizontal. Various intra and extracranial cephalometric horizontal reference planes have been used to formulate diagnosis and plan individualized treatment for an integrated correction of the malocclusion cephalometrics is constantly undergoing refinements in its techniques and analyses to improve the clinical applications. Even though various methods for establishing NHP have been proposed, still it remains a challenge to the clinicians to implement the concept of NHP thoroughly in all the stages of treatment because of practical difficulties in the clinical scenario.

  10. Head First WordPress

    CERN Document Server

    Siarto, Jeff

    2010-01-01

    Whether you're promoting your business or writing about your travel adventures, Head First WordPress will teach you not only how to make your blog look unique and attention-grabbing, but also how to dig into the more complex features of WordPress 3.0 to make your website work well, too. You'll learn how to move beyond the standard WordPress look and feel by customizing your blog with your own URL, templates, plugin functionality, and more. As you learn, you'll be working with real WordPress files: The book's website provides pre-fab WordPress themes to download and work with as you follow al

  11. Systematic analysis of head-to-head gene organization: evolutionary conservation and potential biological relevance.

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Li

    2006-07-01

    Full Text Available Several "head-to-head" (or "bidirectional" gene pairs have been studied in individual experiments, but genome-wide analysis of this gene organization, especially in terms of transcriptional correlation and functional association, is still insufficient. We conducted a systematic investigation of head-to-head gene organization focusing on structural features, evolutionary conservation, expression correlation and functional association. Of the present 1,262, 1,071, and 491 head-to-head pairs identified in human, mouse, and rat genomes, respectively, pairs with 1- to 400-base pair distance between transcription start sites form the majority (62.36%, 64.15%, and 55.19% for human, mouse, and rat,respectively of each dataset, and the largest group is always the one with a transcription start site distance of 101 to 200 base pairs. The phylogenetic analysis among Fugu, chicken, and human indicates a negative selection on the separation of head-to-head genes across vertebrate evolution, and thus the ancestral existence of this gene organization. The expression analysis shows that most of the human head-to-head genes are significantly correlated,and the correlation could be positive, negative, or alternative depending on the experimental conditions. Finally, head to-head genes statistically tend to perform similar functions, and gene pairs associated with the significant cofunctions seem to have stronger expression correlations. The findings indicate that the head-to-head gene organization is ancient and conserved, which subjects functionally related genes to correlated transcriptional regulation and thus provides an exquisite mechanism of transcriptional regulation based on gene organization. These results have significantly expanded the knowledge about head-to-head gene organization. Supplementary materials for this study are available at http://www.scbit.org/h2h.

  12. Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Based on our recent finding that cardiac myosin binding protein C (cMyBP-C phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302, DAD (Asp273-Ala282-Asp302, SAS (Ser273-Ala282-Ser302, and t/t (cMyBP-C null genotypes, and the results were compared to transgenic mice expressing wide-type (WT cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi, and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc, and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.

  13. Regulation of myosin light chain kinase during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Shelly Woody

    Full Text Available Myosin II (MyoII is required for insulin-responsive glucose transporter 4 (GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Our previous studies have shown that insulin signaling stimulates phosphorylation of the regulatory light chain (RLC of MyoIIA via myosin light chain kinase (MLCK. The experiments described here delineate upstream regulators of MLCK during insulin-stimulated glucose uptake. Since 3T3-L1 adipocytes express two MyoII isoforms, we wanted to determine which isoform was required for insulin-stimulated glucose uptake. Using a siRNA approach, we demonstrate that a 60% decrease in MyoIIA protein expression resulted in a 40% inhibition of insulin-stimulated glucose uptake. We also show that insulin signaling stimulates the phosphorylation of MLCK. We further show that MLCK can be activated by calcium as well as signaling pathways. We demonstrate that adipocytes treated with the calcium chelating agent, 1,2-b (iso-aminophenoxy ethane-N,N,N',N'-tetra acetic acid, (BAPTA (in the presence of insulin impaired the insulin-induced phosphorylation of MLCK by 52% and the RLC of MyoIIA by 45% as well as impairing the recruitment of MyoIIA to the plasma membrane when compared to cells treated with insulin alone. We further show that the calcium ionophore, A23187 alone stimulated the phosphorylation of MLCK and the RLC associated with MyoIIA to the same extent as insulin. To identify signaling pathways that might regulate MLCK, we examined ERK and CaMKII. Inhibition of ERK2 impaired phosphorylation of MLCK and insulin-stimulated glucose uptake. In contrast, while inhibition of CaMKII did inhibit phosphorylation of the RLC associated with MyoIIA, inhibition of CAMKIIδ did not impair MLCK phosphorylation or translocation to the plasma membrane or glucose uptake. Collectively, our results are the first to delineate a role for calcium and ERK in the activation of MLCK and thus MyoIIA during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

  14. Reactor vessel lower head integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, A.M.

    1997-02-01

    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) in this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.

  15. National Head Start Association Position Paper: A Vision for Head Start and State Collaboration.

    Science.gov (United States)

    Ryan, Joel; Allen, Ben

    Based on the view that coordinated efforts among Head Start programs, child care programs and other prekindergarten programs, and states can be enhanced without devolving Head Start and its high quality standards to the states, this position paper draws on a Bush Administration report and the Head Start Program Performance Standards to demonstrate…

  16. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... session will not be saved. DOWNLOADABLE TOOLS — CONCUSSION INFORMATION View CDC's “Heads Up” Concussion Educational Materials “Heads ... in Sports”) VIDEOS FROM EXPERTS AND FOR MORE INFORMATION Watch a Video or PSA on Concussion NFL ...

  17. Achieving Consensus Through Professionalized Head Nods

    DEFF Research Database (Denmark)

    Oshima, Sae

    2014-01-01

    While the interactional functions of head nodding in everyday Japanese conversation have been frequently studied, a discourse on head nodding as a professional communicative practice has yet to be explored. With the method of multimodal conversation analysis, the current study examines the role o...

  18. 49 CFR 572.192 - Head assembly.

    Science.gov (United States)

    2010-10-01

    ... CFR 572.112(a). (c) Performance criteria. (1) When the head assembly is dropped from either the right...) and a set of three (3) accelerometers in conformance with specifications in 49 CFR 572.200(d) and... 49 Transportation 7 2010-10-01 2010-10-01 false Head assembly. 572.192 Section...

  19. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... minutes] Heads Up! [Podcast: 0:59 seconds]; in Spanish [Podcast: 1:27 minutes] Send a Health eCard ... minutes] Heads Up! [Podcast: 0:59 seconds]; in Spanish [Podcast: 1:27 minutes] Send a Health eCard ...

  20. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... parents “Heads Up” for high school coaches, athletic directors, athletic trainers, and parents “Heads Up” for school ... Alliance Sarah Jane Brain Foundation Society of State Directors of Health, Physical Education & Recreation Sports Legacy Institute ...

  1. The Role of the Primary School Head.

    Science.gov (United States)

    Davies, Lester

    1987-01-01

    This study uses Henry Mintzberg's structural observation method to examine British primary school head teachers' work patterns and determine the nature of their role. Head teachers' days were characterized by brevity, variety, and fragmentation similar to those discussed in findings of other empirical managerial studies. Leadership roles stressed…

  2. Heads Up: Concussion in Youth Sports

    Medline Plus

    Full Text Available ... 59 seconds]; in Spanish [Podcast: 1:27 minutes] Send a Health eCard Heads Up! Prevent Concussions Prevent ... 59 seconds]; in Spanish [Podcast: 1:27 minutes] Send a Health eCard Heads Up! Prevent Concussions Prevent ...

  3. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Gomibuchi, Yuki [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Uyeda, Taro Q.P. [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Wakabayashi, Takeyuki, E-mail: tw007@nasu.bio.teikyo-u.ac.jp [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Department of Judo Therapy, Faculty of Medical Technology, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan)

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA

  4. Heading Tuning in Macaque Area V6

    Science.gov (United States)

    Fan, Reuben H.; Liu, Sheng; DeAngelis, Gregory C.

    2015-01-01

    Cortical areas, such as the dorsal subdivision of the medial superior temporal area (MSTd) and the ventral intraparietal area (VIP), have been shown to integrate visual and vestibular self-motion signals. Area V6 is interconnected with areas MSTd and VIP, allowing for the possibility that V6 also integrates visual and vestibular self-motion cues. An alternative hypothesis in the literature is that V6 does not use these sensory signals to compute heading but instead discounts self-motion signals to represent object motion. However, the responses of V6 neurons to visual and vestibular self-motion cues have never been studied, thus leaving the functional roles of V6 unclear. We used a virtual reality system to examine the 3D heading tuning of macaque V6 neurons in response to optic flow and inertial motion stimuli. We found that the majority of V6 neurons are selective for heading defined by optic flow. However, unlike areas MSTd and VIP, V6 neurons are almost universally unresponsive to inertial motion in the absence of optic flow. We also explored the spatial reference frames of heading signals in V6 by measuring heading tuning for different eye positions, and we found that the visual heading tuning of most V6 cells was eye-centered. Similar to areas MSTd and VIP, the population of V6 neurons was best able to discriminate small variations in heading around forward and backward headings. Our findings support the idea that V6 is involved primarily in processing visual motion signals and does not appear to play a role in visual–vestibular integration for self-motion perception. SIGNIFICANCE STATEMENT To understand how we successfully navigate our world, it is important to understand which parts of the brain process cues used to perceive our direction of self-motion (i.e., heading). Cortical area V6 has been implicated in heading computations based on human neuroimaging data, but direct measurements of heading selectivity in individual V6 neurons have been lacking. We

  5. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen

    2013-02-01

    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  6. Tracking of human head with particle filter

    Institute of Scientific and Technical Information of China (English)

    GUO Chao

    2009-01-01

    To cope with the problem of tracking a human head in a complicated scene, we propose a method that adopts human skin color and hair color integrated with a kind of particle filter named condensation algorithm. Firstly, a novel method is presented to set up human head color model using skin color and hair color separately based on region growing. Compared with traditional human face model, this method is more precise and works well when human turns around and the face disappears in the image. Then a novel method is presented to use color model in condensation algorithm more effectively. In this method, a combination of edge detection result, color segmentation result and color edge detection result in an Omega window is used to measure the scale and position of human head in condensation. Experiments show that this approach can track human head in complicated scene even when human turns around or the distance of tracking a human head changes quickly.

  7. Management of head injuries in children.

    Science.gov (United States)

    Conchie, Henry; Palmer, Sarah; Fernando, Katalin; Paul, Siba Prosad

    2016-07-01

    Head injury is the most common cause of injury-related death and permanent disability in children. Minor head trauma is common in childhood and does not require any medical treatment. Although deficits can occur even after mild to moderate head injury, they are markedly greater and become clinically evident following severe head injury. It is important that emergency department clinicians are aware of the signs and symptoms that indicate severe traumatic brain injury and triage for urgent intervention in those children who present with these signs and symptoms. Clinicians also need to know when children can be sent home with reassurance and information, and when they require admission or transfer to a neurosurgical unit. This article examines the literature on head injuries in children, describes assessment, management and treatment, and provides a simple management algorithm. PMID:27384805

  8. Head orientation prediction: delta quaternions versus quaternions.

    Science.gov (United States)

    Himberg, Henry; Motai, Yuichi

    2009-12-01

    Display lag in simulation environments with helmet-mounted displays causes a loss of immersion that degrades the value of virtual/augmented reality training simulators. Simulators use predictive tracking to compensate for display lag, preparing display updates based on the anticipated head motion. This paper proposes a new method for predicting head orientation using a delta quaternion (DQ)-based extended Kalman filter (EKF) and compares the performance to a quaternion EKF. The proposed framework operates on the change in quaternion between consecutive data frames (the DQ), which avoids the heavy computational burden of the quaternion motion equation. Head velocity is estimated from the DQ by an EKF and then used to predict future head orientation. We have tested the new framework with captured head motion data and compared it with the computationally expensive quaternion filter. Experimental results indicate that the proposed DQ method provides the accuracy of the quaternion method without the heavy computational burden.

  9. Bobbling head in a young subject

    Directory of Open Access Journals (Sweden)

    Kalyan B Bhattacharyya

    2014-01-01

    Full Text Available Bobble-head Doll Syndrome is a rare and unique movement disorder found in children. Clinically, it is characterized by a to and fro or side to side movement of the head at the frequency of 2 to 3 Hz. It is mostly associated with cystic lesions around the third ventricle, choroid plexus papilloma, aqueductal stenosis and other rare disorders. An eleven year old child presented in the outpatient department with continuous to and fro movement of the head and declining vision for the last one month. MRI Scan showed a large contrast-enhanced lesion in the region of the third ventricle along with gross hydrocephalus. Ventriculo-peritoneal shunt was inserted and the movements of the head disappeared completely. Bobble-head doll syndrome is a rare condition and therefore this case is presented and the literature reviewed.

  10. Public knowledge of head and neck cancer.

    LENUS (Irish Health Repository)

    O'Connor, T E

    2010-04-01

    Studies show 60% of patients with newly diagnosed Head & Neck Squamous Cell Cancer in Ireland, present with advanced disease. A poor level of knowledge and awareness among the public of Head & Neck Cancer, is an important consideration in the often delayed presentation for medical attention in many of these cases. Our study surveyed 200 members of the public to assess their knowledge and awareness of Head & Neck Cancer. One hundred and forty (70%) of respondents had never encountered the term "Head & Neck Cancer". One hundred and forty six (73%) failed to identify excessive alcohol consumption as a risk factor. Less than 100 (50%) would have concern about persisting hoarseness or a prolonged oral ulcer. An urgent need exists to raise awareness of Head & Neck Cancer among the public in Ireland.

  11. Gene expression patterns in transgenic mouse models of hypertrophic cardiomyopathy caused by mutations in myosin regulatory light chain.

    Science.gov (United States)

    Huang, Wenrui; Kazmierczak, Katarzyna; Zhou, Zhiqun; Aguiar-Pulido, Vanessa; Narasimhan, Giri; Szczesna-Cordary, Danuta

    2016-07-01

    Using microarray and bioinformatics, we examined the gene expression profiles in transgenic mouse hearts expressing mutations in the myosin regulatory light chain shown to cause hypertrophic cardiomyopathy (HCM). We focused on two malignant RLC-mutations, Arginine 58→Glutamine (R58Q) and Aspartic Acid 166 → Valine (D166V), and one benign, Lysine 104 → Glutamic Acid (K104E)-mutation. Datasets of differentially expressed genes for each of three mutants were compared to those observed in wild-type (WT) hearts. The changes in the mutant vs. WT samples were shown as fold-change (FC), with stringency FC ≥ 2. Based on the gene profiles, we have identified the major signaling pathways that underlie the R58Q-, D166V- and K104E-HCM phenotypes. The correlations between different genotypes were also studied using network-based algorithms. Genes with strong correlations were clustered into one group and the central gene networks were identified for each HCM mutant. The overall gene expression patterns in all mutants were distinct from the WT profiles. Both malignant mutations shared certain classes of genes that were up or downregulated, but most similarities were noted between D166V and K104E mice, with R58Q hearts showing a distinct gene expression pattern. Our data suggest that all three HCM mice lead to cardiomyopathy in a mutation-specific manner and thus develop HCM through diverse mechanisms. PMID:26906074

  12. Dlc1 interaction with non-muscle myosin heavy chain II-A (Myh9 and Rac1 activation

    Directory of Open Access Journals (Sweden)

    Mohammad G. Sabbir

    2016-04-01

    Full Text Available The Deleted in liver cancer 1 (Dlc1 gene codes for a Rho GTPase-activating protein that also acts as a tumour suppressor gene. Several studies have consistently found that overexpression leads to excessive cell elongation, cytoskeleton changes and subsequent cell death. However, none of these studies have been able to satisfactorily explain the Dlc1-induced cell morphological phenotypes and the function of the different Dlc1 isoforms. Therefore, we have studied the interacting proteins associated with the three major Dlc1 transcriptional isoforms using a mass spectrometric approach in Dlc1 overexpressing cells. We have found and validated novel interacting partners in constitutive Dlc1-expressing cells. Our study has shown that Dlc1 interacts with non-muscle myosin heavy chain II-A (Myh9, plectin and spectrin proteins in different multiprotein complexes. Overexpression of Dlc1 led to increased phosphorylation of Myh9 protein and activation of Rac1 GTPase. These data support a role for Dlc1 in induced cell elongation morphology and provide some molecular targets for further analysis of this phenotype.

  13. Striated Acto-Myosin Fibers Can Reorganize and Register in Response to Elastic Interactions with the Matrix

    Science.gov (United States)

    Friedrich, Benjamin M.; Buxboim, Amnon; Discher, Dennis E.; Safran, Samuel A.

    2011-01-01

    The remarkable striation of muscle has fascinated many for centuries. In developing muscle cells, as well as in many adherent, nonmuscle cell types, striated, stress fiberlike structures with sarcomere-periodicity tend to register: Based on several studies, neighboring, parallel fibers at the basal membrane of cultured cells establish registry of their respective periodic sarcomeric architecture, but, to our knowledge, the mechanism has not yet been identified. Here, we propose for cells plated on an elastic substrate or adhered to a neighboring cell, that acto-myosin contractility in striated fibers close to the basal membrane induces substrate strain that gives rise to an elastic interaction between neighboring striated fibers, which in turn favors interfiber registry. Our physical theory predicts a dependence of interfiber registry on externally controllable elastic properties of the substrate. In developing muscle cells, registry of striated fibers (premyofibrils and nascent myofibrils) has been suggested as one major pathway of myofibrillogenesis, where it precedes the fusion of neighboring fibers. This suggests a mechanical basis for the optimal myofibrillogenesis on muscle-mimetic elastic substrates that was recently observed by several groups in cultures of mouse-, human-, and chick-derived muscle cells. PMID:21641316

  14. Dlc1 interaction with non-muscle myosin heavy chain II-A (Myh9) and Rac1 activation.

    Science.gov (United States)

    Sabbir, Mohammad G; Dillon, Rachelle; Mowat, Michael R A

    2016-01-01

    The Deleted in liver cancer 1 (Dlc1) gene codes for a Rho GTPase-activating protein that also acts as a tumour suppressor gene. Several studies have consistently found that overexpression leads to excessive cell elongation, cytoskeleton changes and subsequent cell death. However, none of these studies have been able to satisfactorily explain the Dlc1-induced cell morphological phenotypes and the function of the different Dlc1 isoforms. Therefore, we have studied the interacting proteins associated with the three major Dlc1 transcriptional isoforms using a mass spectrometric approach in Dlc1 overexpressing cells. We have found and validated novel interacting partners in constitutive Dlc1-expressing cells. Our study has shown that Dlc1 interacts with non-muscle myosin heavy chain II-A (Myh9), plectin and spectrin proteins in different multiprotein complexes. Overexpression of Dlc1 led to increased phosphorylation of Myh9 protein and activation of Rac1 GTPase. These data support a role for Dlc1 in induced cell elongation morphology and provide some molecular targets for further analysis of this phenotype. PMID:26977077

  15. Protein multi-scale organization through graph partitioning and robustness analysis: application to the myosin–myosin light chain interaction

    International Nuclear Information System (INIS)

    Despite the recognized importance of the multi-scale spatio-temporal organization of proteins, most computational tools can only access a limited spectrum of time and spatial scales, thereby ignoring the effects on protein behavior of the intricate coupling between the different scales. Starting from a physico-chemical atomistic network of interactions that encodes the structure of the protein, we introduce a methodology based on multi-scale graph partitioning that can uncover partitions and levels of organization of proteins that span the whole range of scales, revealing biological features occurring at different levels of organization and tracking their effect across scales. Additionally, we introduce a measure of robustness to quantify the relevance of the partitions through the generation of biochemically-motivated surrogate random graph models. We apply the method to four distinct conformations of myosin tail interacting protein, a protein from the molecular motor of the malaria parasite, and study properties that have been experimentally addressed such as the closing mechanism, the presence of conserved clusters, and the identification through computational mutational analysis of key residues for binding

  16. Isolation and characterization of an avian slow myosin heavy chain gene expressed during embryonic skeletal muscle fiber formation.

    Science.gov (United States)

    Nikovits, W; Wang, G F; Feldman, J L; Miller, J B; Wade, R; Nelson, L; Stockdale, F E

    1996-07-19

    We have isolated and begun characterization of the quail slow myosin heavy chain (MyHC) 3 gene, the first reported avian slow MyHC gene. Expression of slow MyHC 3 in skeletal muscle is restricted to the embryonic period of development, when the fiber pattern of future fast and slow muscle is established. In embryonic hindlimb development, slow MyHC 3 gene expression coincides with slow muscle fiber formation as distinguished by slow MyHC-specific antibody staining. In addition to expression in embryonic appendicular muscle, slow MyHC 3 is expressed continuously in the atria. Transfection of slow MyHC 3 promoter-reporter constructs into embryonic myoblasts that form slow MyHC-expressing fibers identified two regions regulating expression of this gene in skeletal muscle. The proximal promoter, containing potential muscle-specific regulatory motifs, permits expression of a reporter gene in embryonic slow muscle fibers, while a distal element, located greater than 2600 base pairs upstream, further enhances expression 3-fold. The slow muscle fiber-restricted expression of slow MyHC 3 during embryonic development, and expression of slow MyHC 3 promoter-reporter constructs in embryonic muscle fibers in vitro, makes this gene a useful marker to study the mechanism establishing the slow fiber lineage in the embryo. PMID:8663323

  17. Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase.

    Directory of Open Access Journals (Sweden)

    Amol Bhargava

    Full Text Available Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1, suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK. Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.

  18. Top-Down Targeted Proteomics Reveals Decrease in Myosin Regulatory Light-Chain Phosphorylation That Contributes to Sarcopenic Muscle Dysfunction.

    Science.gov (United States)

    Gregorich, Zachery R; Peng, Ying; Cai, Wenxuan; Jin, Yutong; Wei, Liming; Chen, Albert J; McKiernan, Susan H; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying

    2016-08-01

    Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia. PMID:27362462

  19. Intermediate filament-co-localized molecules with myosin heavy chain epitopes define distinct cellular domains in hair follicles and epidermis

    Directory of Open Access Journals (Sweden)

    Hughes Simon M

    2003-08-01

    Full Text Available Abstract Background Proteins linking intermediate filaments to other cytoskeletal components have important functions in maintaining tissue integrity and cell shape. Results We found a set of monoclonal antibodies raised against specific human sarcomeric myosin heavy chain (MyHC isoforms labels cells in distinct regions of the mammalian epidermis. The antigens co-localize with intermediate filament-containing structures. A slow MyHC-related antigen is punctate on the cell surface and co-localizes with desmoplakin at desmosomal junctions of all suprabasal epidermal layers from rat fœtal day 16 onwards, in the root sheath of the hair follicle and in intercalated disks of cardiomyocytes. A fast MyHC-related antigen occurs in cytoplasmic filaments in a subset of basal cells of skin epidermis and bulb, but not neck, of hair follicles. A fast IIA MyHC-related antigen labels filaments of a single layer of cells in hair bulb. This 230 000 Mr antigen co-purifies with keratin. No obvious candidate for any of the antigens appears in the literature. Conclusions We describe a set of molecules that co-localize with intermediate filament in specific cell subsets in epithelial tissues. These antigens presumably influence intermediate filament structure or function.

  20. Standardization of metachromatic staining method of myofibrillar ATPase activity of myosin to skeletal striated muscle of mules and donkeys

    Directory of Open Access Journals (Sweden)

    Flora H.F. D'Angelis

    2014-09-01

    Full Text Available This study aims at standardizing the pre-incubation and incubation pH and temperature used in the metachromatic staining method of myofibrillar ATPase activity of myosin (mATPase used for asses and mules. Twenty four donkeys and 10 mules, seven females and three males, were used in the study. From each animal, fragments from the Gluteus medius muscle were collected and percutaneous muscle biopsy was performed using a 6.0-mm Bergström-type needle. In addition to the metachromatic staining method of mATPase, the technique of nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR was also performed to confirm the histochemical data. The histochemical result of mATPase for acidic pre-incubation (pH=4.50 and alkaline incubation (pH=10.50, at a temperature of 37ºC, yielded the best differentiation of fibers stained with toluidine blue. Muscle fibers were identified according to the following colors: type I (oxidative, light blue, type IIA (oxidative-glycolytic, intermediate blue and type IIX (glycolytic, dark blue. There are no reports in the literature regarding the characterization and distribution of different types of muscle fibers used by donkeys and mules when performing traction work, cargo transportation, endurance sports (horseback riding and marching competitions. Therefore, this study is the first report on the standardization of the mATPase technique for donkeys and mules.